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Abstract

Standard actuarial approaches for non-life insurance products suggest that the premium

is divided into three main components: the actuarial price, the safety loading, and the

loading for expenses. The number of product-specific policies from different companies

has increased significantly, and strong market competition has boosted the demand for

a competitive premium in global insurance market. Thus, the actuarial premium could

eventually be altered by an insurer’s marketing and management department regarding

the competitive environment. Thus in this thesis, considering the competition in in-

surance market, game theoretical approaches are applied to investigate the influence of

competition on general insurance pricing.

Firstly, a two-period deterministic N-player game is formulated to investigate the

optimal pricing strategy by calculating the Nash equilibrium in an insurance market.

Under that framework, each insurer is assumed to maximise its utility of wealth over

the unit time interval. By analyzing the competition between each pair of insurers, the

whole markets’ competition is characterized through an aggregation. With the purpose

of solving a game of N-players, the best-response potential game with non-linear ag-

gregation is implemented. The existence of a Nash equilibrium is proved by finding a

potential function of all insurers’ payoff functions. A 12-player insurance game illus-

trates the theoretical findings under the framework in which the best-response selection

premium strategies always provide the global maximum value of the corresponding

payoff function.

Secondly, deterministic differential games are constructed with the purpose of study-

ing the insurers’ equilibrium premium in a competitive market. We apply an optimal

viii



control theory to determine the open-loop Nash equilibrium premium strategies. In this

direction, two models are formulated and studied. The market power of each insur-

ance company is characterized by a price sensitive parameter, and the business volume

is affected by the solvency ratio. Considering the average market premiums, the first

model studies an exponential relation between premium strategies and volume of busi-

ness. The other model initially characterizes the competition between any selected pair

of insurers, then aggregates all the paired competitions in the market. Numerical ex-

amples illustrate the premium dynamics, and show that premium cycles may exist in

equilibrium.

Thirdly, a multi-stage stochastic game will be constructed. Insurers are considered

to be risk-averse, that is, insurers will to set risk-premiums on their products with the

purpose of avoiding risk. Mean-variance Utility function will be adopted. The expendi-

tures of insurance companies will be discussed separately as exposure related costs and

non-exposure related costs. The expenditures of insurance companies will be discussed

separately as exposure related costs and non-exposure-based costs. The exposure-based

component is assumed to be stochastic.

Finally, summary of the conclusions complete the thesis.

Keywords: Insurance Market Competition; Non-life Insurance; Non-cooperative Game;

Potential Game with Aggregation; Pure Nash Equilibrium; Price Cycles; Solvency Ra-

tio
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Chapter 1

Introduction

A general insurance policy is an agreement between insurer and policyholder. Policy-

holder pays the premium while insurance company agrees to repay the policyholder for

unpredictable losses within the contract time period. In the insurance world, the deter-

mination of an appropriate and attractive premium is always a highly challenging issue

also because of the competition between different companies. Furthermore, the pre-

mium loading depends critically on the price that other insurers charge for comparable

policies. Clapp [8] demonstrates using the seminal model by Rothschild and Stiglitz’s

([51, 50]) that companies are able to use the quantity of insurance to compete for cus-

tomers and, consequently, a bigger volume of business or a market share. By changing

the level of indemnity while holding the premium rate constant (quantity competition),

it is possible to induce customers to reveal their risk class.

On the other hand, insurance premiums contribute to the wealth while claims and

other expenses counteract theoretically the growth of the insurer. Insurance pricing is

a fundamental aspect that attracts the interest for both actuaries and academics. Stan-

dard actuarial approaches for non-life insurance products suggest that the premium is

claimed to be divided into three main components: the actuarial price, the safety load-

ing and the loading for expenses. The actuarial price is normally deduced according to

different premium principles, such as the Net Premium Principle, the Expected Value

Premium Principle, etc. (for overview of principles of premium pricing, see [49], [58]).

1
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Classical approaches focus on determining the safety loading of each policy class pro-

portional to the expected claim expenses or to the moment of it.

1.1 Motivation

However, in highly competitive environments which are dominated by a relatively small

number of insurance companies (comparing with the magnitude and quantity of the

finance-related firms), each insurer monitors, tries to predict reactions and takes ad-

vantages against the others, the actuarial premium might be altered eventually by the

marketing and management department due to several reasons, such as the affordability

of customers, the market conditions and the mutualization across the portfolio of cus-

tomers to decrease risk. It is also proposed that the pricing cycles which can be found in

different lines of insurance are affected by market competition, see [22]. These sugges-

tions indicate that the insurance premium price should not be focused only on the risk

perspectives. In order to study the competition between all insurers, a model is needed

to be constructed to research on insurers’ premium pricing interactions in a competitive

insurance market.

1.2 Developments in Competitive Insurance Markets

This area of research has attracted the interest of many academics lately, but still there

is little literature that has been done on how the competition might affect the insurance

premiums and how the insurers will respond to changes in the levels of premiums being

offered by the competitors.

Taylor [54] is the first from the actuarial community who mentioned that the compe-

tition is a key component for the insurance premium pricing, and he used the Australian

market to extract some very useful remarks. From his study, the cyclical behaviour

of the premium rates seems peculiar and raises several questions. For instance ”what

the market is attempting to achieve by such pricing” and ”what individual insurers
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are attempting to achieve in following the market”. Analytically, the relation between

the market’s behaviour and the optimal response of an individual insurer was explored,

whose objective is to maximize the expected present value of the wealth arising over

a pre-defined finite time horizon period. He also assumed that the insurance products

display a positive price-elasticity of demand. Thus, if the market as a whole begins

underwriting at a loss, any attempt by a particular insurer to maintain profitability will

result in a reduction of its volume of business. According to Taylor’s results [54], the

optimal strategies do not follow what someone might expect. Therefore, he stated that

the optimal response depends upon various factors including:

• the predicted time which will elapse before a return of market rates into profitabil-

ity,

• the price elasticity of demand for the insurance product under consideration, and

• the rate of return required on the capital supporting the insurance operation.

In his next paper, Taylor [55] noted that the optimum underwriting strategies might

be substantially affected by the proper marginal expense rates which must be taken into

account. It was first showed that the optimal strategy is not affected by the introduction

of a component of fixed expenses, irrespective of the size of that component. However,

the strategy is affected if the concomitant of the introduction of fixed expenses is the

recognition of lower marginal expenses. It is possible to set limits on the effect of

expenses on optimal underwriting strategy. The sharpness of these limits depends on:

• the extent of variation in marginal expense rates as demand varies;

• the price-elasticity of demand.

After almost two decades of silence, Emms and Haberman [23] extended signif-

icantly Taylor’s ideas presented in [54, 55] considering the continuous form of his

model and particularly, they assumed that the average premium is a positive random
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process with finite mean at time t and left the distribution for the mean claim size pro-

cess unspecified. For two choices of the demand function, a smooth optimal control

was calculated.

Later, Emms et al. [18] modelled market’s average premium as a geometric Brown-

ian motion. Consequently, the optimal strategy has two modes depending on the model

parameters: a) either set an infinite premium and accumulate wealth from the existing

customer base or b) set the premium at just above break-even in order to maximize

market exposure whilst at the same time making a profit. Consequently, the optimal

strategy for two particular approaches was investigated to adjust the premium. The

first approach was based on a linear function of the market average premium, while the

second one involved a linear combination of the break-even premium and the market

average premium.

Simultaneously, Emms [25] determined the optimal strategy for an insurer which

maximizes a particular objective over a fixed planning horizon and the premium by

using a competitive demand model as well as the expected main claim size. Base on

his approach, it is not enough that an insurer set a price to cover the claims if the rest

of the market undercuts that price. Additionally, his demand law specified in such

a way that the insurer’s income and the exposure change was related to the market

premium. Moreover, in [19] he studied the optimal premium pricing process into a

competitive market with different types of constrains. Analytically, he calculated the

premium strategy which maximises the objective of the insurer subject to a constrain on

the control or constrains on the reserve that the insurer must hold. Premium restrictions

lead to control constrains, while solvency requirements lead to state constrains. By

assuming a deterministic control framework, the optimisation problem was solved by

using elements from control parametrisation; see [57].

Finally, a simpler parametrisation was introduced by Emms [21], which represents

the insurance market’s response to an insurer adopting a pricing strategy determined via

optimal control theory and claims are modelled using a lognormally distributed mean
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claim size rate. Analytically, a generalisation of the demand function which was men-

tioned in [19] had been considered which impacts significantly on the optimal premium

strategy for an insurer.

Taylor ([54, 55]) and Emms et al. ([23, 18, 25, 19, 20, 24, 21]) studied fixed pre-

mium strategies and the sensitivity of the model to its parameters involved. In their

approaches, the important parameters which determined the optimal strategies are the

ratio of initial market average premium to break-even premium, the measure of the

inverse elasticity of the demand function and the non-dimensional drift of the market

average premium. In [41], a stochastic demand function was first introduced for the

volume of business in a discrete-time set up extending further the previous ideas. Addi-

tionally, using also a linear discounted function for the wealth process of the company,

a closed form (endogenous) formula was derived for the optimal premium strategy of

the insurance company when it was expected to lose part of the market. Mathematically

speaking, a maximization problem has been proposed for the wealth process of a com-

pany, which has been solved using stochastic dynamic programming. Thus, the optimal

controller (i.e. the premium) has been defined endogenously by the market as the com-

pany struggles to increase its volume of business into a competitive environment with

the same characteristics as in the previous literature.

In [42], the volume of business was formed to be a general stochastic demand func-

tion extending further the ides presented in [41] making the model more pragmatic and

realistic. Thus, for the formulation of the volume of business, the company’s reputation

is also considered. According to [9], company’s reputation has a strong influence on

buying decisions or in other words, on the demand of the company’s product. So, in

that case the function for the volume of business emphasizes the ratio of the markets

average to the company’s premium, the past year experience, the company’s reputation

and a stochastic disturbance.

Very recently, in [43], the analytical solutions for some common special cases and

a premium strategy concerning market’s average premium is considered. In that paper

the disturbance of the volume of business function was denoted by the set of all other



Chapter 1. Introduction 6

stochastic variables that are considered to be relevant to the demand function (moreover,

they are assumed to be independently distributed in time and Gaussian). What is more,

the volume of business was modelled as a nonlinear function with respect to reserve,

the premium, the noise and a quadratic performance criterion concerning the utility

function to be implemented.

Except the idea of optimal pricing for general insurance, other approaches are also

adopted to study the premium pricing. [56] constructs a simple but realistic insurance

model to study the stability of premium rates, profitability, and the market concentra-

tion. The competitive premium is a maximum selection between several strategies.

The exposure of the corresponding premium strategy of a selected insurer is calculated

through the exposure exchange among all insurers.

1.3 Game-Theoretic Approaches

However, for all the models and approaches discussed in the previous subsection, a com-

mon assumption has been made that there exists a single insurer whose pricing strategy

does not cause any reaction to the rest of the market’s competitors. Thus, each insurance

market participants’ reaction can not be observed. The market price is independent of

their own actions. In reality, this is not often the case. However, before we proceed fur-

ther with the recently developed game theoretic approaches, it should be mentioned that

Emms [21] released this assumption partially and he suggested a scenario where there

is a leader in the market whose pricing is followed by other insurance companies. A

simple parametrisation is introduced which represents the insurance market’s response

to an insurer’s pricing strategy.

Game theoretical approaches have been introduced mostly lately in the premium

pricing processes in non-life insurance products as they offer the opportunity to ob-

serve the pricing competition among the whole insurance market. In other words, the

competition among insurers gives the pricing strategy of each market participants in a

constructed insurance game, while one can only get a single insurer’s pricing strategy
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through optimal control approach in previous studies. In this paper, as it will be dis-

cussed more extensively in the following subsection, a non-cooperative game model is

considered in a competitive insurance market.

The use of game theory in actuarial science has a long history. The first attempts

go back to Borch ([5, 6]) and Lemaire ([33, 34], who applied cooperative games to

model insurer and reinsurer’s risk transfer (for a review, see section 3.1 of [7]). Two

models were applied in non-life insurance markets for non-cooperative games: a) the

Bertrand oligopoly where insurers set premiums and b) the Cournot oligopoly where

insurers choose volume of business. See [44, 48, 17] for the Bertrand model and also

see [46, 45] for the Cournot model.

Emms [22] developed a model by applying a differential game-theoretic method-

ology. Under his framework, each insurer’s price depends on other insurers’ premium

strategies. The whole insurance market is considered as two component: the sum of all

insurers’ exposure and the unallocated insurance exposure. Two price functions are in-

vestigated: the quotient price function and the difference price function. The calculation

of the optimal pricing strategy requires the solution of multiple coupled optimization

problems.In [22], he got the solution in a two-player game considering the competition

as market average premium. What is more, two significant features of the model were

also investigated in details in his approach: the effect of the limited total demand for

policies and the uncertainty component for the determination of the break-even pre-

mium of an insurance policy.

Finally, very recently, Boonen [4] also proposed a way to optimally regulate bar-

gaining for risk redistributions. Thus, he investigated the strategic interaction between

two insurance companies who trade risk Over-the-Counter in one-period model. A Nash

Equilibrium may exist in a game which the trading of risks occurs Over-The-Counter

by restricting the strategy space a priori.
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1.4 A New Approach: Potential Game with Aggrega-

tion

In our approach, with the purpose of solving the problem while the insurance market

contains a large number of insurers, a two-stage insurance game is constructed which

considers the competition in pairs. Thus, instead of just assuming that the competition

is only through the market average premium, an aggregate game approach is formulated

in order to further investigate the insurance market competition. In that direction, the

Nobel-prize winning concept of aggregative game which was first proposed by Rein-

hard Selten in 1970 ([52]), who considered the aggregate as the sum of the players’

strategies, is applied broadly in our approach. Thus, the derived strategy for all the in-

surers in the insurance market is presented as a single parameter, i.e. the aggregate. In

more details, each insurers’ utility (payoff) function is only depended on its own pricing

premium strategy and the aggregate parameter.

Following also the suggestions by Taylor in [56], the market competition is mea-

sured through calculating an insurer’s new volume of exposure by summing up all the

policy flows during the competition between each other and the volume of exposure in

a previous stage. An non-linear aggregate is obtained, which presents the strategies of

all the insurers in the market. Moreover, a potential game approach is further investi-

gated in order to prove the existence of Nash equilibrium in the insurance game. This

approach also offers us an opportunity to simplify the problem of finding out Nash equi-

librium by solving one single optimization problem, however, not detailed discussion

will be provided here, as it is far beyond the scope of the present article.

Literature of potential games can trace back to Monderer and Shapley [38, 39], who

created the also Nobel-prize winning concept of a potential game based on a congestion

game. This proposed potential game technique does not only solve the congestion game

itself, but also it can be regarded as an equilibrium refinement tool. Following this idea,

the best-response potential games were introduced and characterized by Voorneveld in

[60]. In his paper, it was proposed that for any best-response potential game, if the
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potential has a maximum over its domain, the best-response potential game has a Nash

equilibrium.

Dubey et al. [16] were the first to embed the aggregate into potential games. Consid-

ering just a linear aggregation, they investigated a special type of best-response poten-

tial games which restrict the best-response selection that is continuously decreasing or

increasing function. Then, it is proved that any game with linear aggregation and a de-

creasing or increasing continuous best-response selection, belongs to pseudo-potential

games, which is pre-defined in their paper. By proving that any pseudo-potential game

have a pure Nash equilibrium strategy, the existence of Nash equilibrium was obtained

in this special class of potential game irrespective of whether strategy sets are convex

or payoff functions quasi-concave.

The rest of paper is organized as follows. A two-period deterministic N-player game

is formulated to investigate the optimal pricing strategy by calculating the Nash equilib-

rium in an insurance market in Chapter 2. Chapter 3 constructs deterministic differential

games with the purpose of studying the insurers’ equilibrium premium pricing in a com-

petitive market. A multi-stage stochastic game is constructed in Chapter 4, considering

the risk aversion of players. Chapter 5 is the conclusion which is the summary of this

thesis.



Chapter 2

Potential Games with Aggregation in

Non-cooperative General Insurance

Markets

In the global insurance market, the number of product-specific policies from different

companies has increased significantly, and strong market competition has boosted the

demand for a competitive premium. Thus, in the present paper, by considering the com-

petition between each pair of insurers, an N-player game is formulated to investigate

the optimal pricing strategy by calculating the Nash equilibrium in an insurance mar-

ket. Under that framework, each insurer is assumed to maximise its utility of wealth

over the unit time interval. With the purpose of solving a game of N-players, the best-

response potential game with non-linear aggregation is implemented. The existence

of a Nash equilibrium is proved by finding a potential function of all insurers’ pay-

off functions. A 12-player insurance game illustrates the theoretical findings under the

framework in which the best-response selection premium strategies always provide the

global maximum value of the corresponding payoff function.

Keywords: Insurance Market Competition; Non-life Insurance; Potential Game

with Aggregation; Pure Nash Equilibrium

10
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2.1 Introduction

2.1.1 Motivation

In the insurance world, determining an appropriate and attractive premium is always a

highly challenging issue because of the competition among different companies. The

premium loading depends critically on the price that the other insurers charge for com-

parable policies. [8] was able to demonstrate it using the seminal model by [51, 50].

Insurance pricing is a fundamental aspect that attracts the interest of both actuaries and

academics. Standard actuarial approaches for non-life insurance products suggest that

the premium is divided into three main components: the actuarial price, the safety load-

ing, and the loading for expenses. The actuarial price is normally deduced according

to different premium principles, such as the Net Premium Principle, the Expected Value

Premium Principle, and others [49, 58]. Classical approaches focus on determining the

safety loading of each policy class proportional to the expected claim expenses or to its

moment.

However, in a highly competitive insurance environment which is dominated by a

relatively small number of companies (compared with the banking sector and invest-

ment funds), each insurer monitors, attempts to predict reactions, and takes advantages

against the others. Thus, the actuarial premium might eventually be altered by the mar-

keting and management department for several reasons, such as the customer’s afford-

ability, the market conditions, and the mutualisation across the portfolio of customers

to decrease risk. What is more, the pricing cycles, which are found in different lines of

insurance, appear also to be affected by market competition [47, 36, 22]. These sug-

gestions indicate that the insurance premium price should not focus only on the risk

assessment. Consequently, to study the competition among insurers, a model needs

to be formulated in order to investigate insurers’ premium pricing interactions in the

corresponding market.

For previous literatures research on optimal control theory, a common assumption
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was made that there exists a single insurer, whose pricing strategy does not cause any

reaction to the rest of the market’s competitors. Thus, for each participant in the insur-

ance market, others reaction cannot be observed, and the premium remains eventually

unaffected by their actions. In reality, this situation is not often the case.

Game theoretical approaches have been introduced mostly in the premium pric-

ing processes of non-life insurance products. Competition among insurers reveals the

pricing strategy of each market participant in a constructed insurance game, whereas

one can only obtain a single insurer’s pricing strategy through optimal control used

in previous studies. However, in our approach, as it is discussed more extensively in

the following subsection, a non-cooperative game model is designed for the insurance

market implementing already well-defined parameters from the corresponding literature

[54, 55, 25, 42].

2.1.2 A New Approach: Potential Game with Aggregation

In our approach, a two-stage non-life insurance game is constructed in a competitive

market. Numerical solutions of Nash equilibria are obtained for a large number of in-

surers under the two-stage framework. Moreover, instead of simply parametrizing com-

petition through comparison between single insurer’s premium and the market average

premium as it has been done so far in the relevant literature, an aggregate game ap-

proach is formulated to investigate further the insurance market competition. Different

from [22], the existence of Nash equilibrium is proved under our framework.

The concept of aggregative game, which was first proposed by [52] by considering

it as the sum of the players’ strategies, is applied broadly in our approach. Thus, the

derived strategy for all insurers in the insurance market is presented as a single param-

eter, i.e., the aggregate. In greater detail, each insurer’s utility (payoff) function only

depends on its own pricing premium strategy and the aggregate parameter.

Also following the suggestions by [56] and [22], market competition is measured by

calculating an insurer’s new volume of exposure and by summing up all of the policy
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flows during the competition between the insurers and the volume of exposure in a

previous stage. A non-linear aggregate is obtained, which presents the strategies of all

insurers in the market. Moreover, a potential game approach is further developed to

prove the existence of a Nash equilibrium in the insurance game. This approach also

gives us an opportunity to simplify the problem of determining the Nash equilibrium by

solving a single optimisation problem.1

The literature on potential games can be traced back to [38, 39], who created the

potential game concept on the basis of a congestion game. Their technique did not only

solve the congestion game itself but also was regarded as an equilibrium refinement

tool. Following their idea, the best-response potential games were introduced and char-

acterised by [60]. His paper proposed that, for any best-response potential game, if the

potential has a maximum over its domain, the best-response potential game has a Nash

equilibrium.

[16] were the first to embed the aggregate into potential games. By considering just a

linear aggregation, they investigated a special type of best-response potential game that

restricts the best-response selection to a continuously decreasing or increasing function.

Then, any game with linear aggregation and a decreasing or increasing continuous best-

response selection is proved to belong to a pseudo-potential game, which is pre-defined

in their paper. By proving that any pseudo-potential game has a pure Nash equilibrium

strategy, the existence of a Nash equilibrium was obtained in this special class of poten-

tial games irrespective of whether strategy sets were convex or payoff functions were

quasi-concave.

In this paper, for the first time according to our knowledge, these two game-theoretic

techniques are successfully implemented to determine the premium strategy for mod-

elling competition in a non-life insurance market. Thus, in greater detail, a best-response

potential game with non-linear aggregation is constructed and discussed. Premiums

per unit of exposure are regarded as the premium strategy, which makes our game to

1We won’t discuss unnecessary technical details about how to introduce and solve numerically the
single optimisation problem, as it is out of the scope of the present paper.
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be suitable for different lines of product-specific policies. As a new side-effect result

of our approach, when it is compared with the linear aggregation limitation in [16],

we still prove the existence of a pure Nash equilibrium strategy when the aggregate is

non-linear. This is novel result from a game-theoretic perspective. Furthermore, from

the point of view of actuarial science, the pure Nash equilibrium existence of a con-

structed insurance game with a non-convex strategy set is obtained.2 That is, insurers

can avoid any premium range that is not preferred to price. We solve the insurance

game with respect to two distinct insurance models by calculating the best-response

equations system. The numerical result for a 12-player insurance game is presented

under the assumption that the best-response selection premium strategies always give

the global maximum value of the corresponding payoff function.

The remainder of this chapter is organised as follows. Section 2.2 introduces the

formation of two insurance market competition models and constructs the game. In

Section 2.3, the existence of a Nash equilibrium is proved using potential game tech-

niques. Section 2.4 presents the simulation results of two models in a 12-insurer game.

2.2 Modelling Formulation and Preliminaries

2.2.1 Basic Notations and Assumptions

In this subsection, the necessary notation is provided and appropriate assumptions are

introduced. Thus, in the next lines, the definition of key parameters is concentrated for

a better understanding of the remaining paper:

2It is true that since we are able to extend the results of [16] for a non-linear aggregation, the concept
of our model is possible to be used in other fields of economics. For this comment, we would like
cordially to thank one of our reviewers who pointed this out to us. However, further discussion falls
out of the scope of this paper, since various parameters from the relevant actuarial science literature are
incorporated in the construction of our insurance model [54, 55, 25, 41, 42, 43].
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N Set of insurers in the insurance market, N = {1, . . . , n}, n ∈ N;

ai Price sensitivity (positive) parameter of insurer i ∈ N ;

h1, h2 Market presence limit factor, which controls the amount of the flow of insur-

ance policies attributable to the competition in the market;

p1
i Premium value (per unit of exposure) for insurer i ∈ N at time t = 1;

Pi Set of strategies for insurer i ∈ N ;

P Set of joint strategies for all insurers in the competitive market;

p Arbitrary profile in P;

p1
−i Strategy profile of other players at time t = 1, {P 1

1 , . . . , P
1
i−1, P

1
i+1, . . . , P

1
n};

q1
i Exposure (volume of business) for insurer i ∈ N at time t = 1, which

represents the number (quantity) of policies undertaken by i ∈ N ;

∆q1
i Marginal difference of exposure volume for insurer i ∈ N at time t = 1;

q̂1
i Actual (number of policies) volume of exposure in the market coming to in-

surer i ∈ N at time t = 1 from the unallocated exposure at time t = 0;

q̂0
i Given number of policies in the market, which is intended to flow in or away

from insurer i ∈ N at time t = 1 from the unallocated exposure of time

t = 0;
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u1
i Utility of insurer i at time t = 1, which represents the net income of insurer

i ∈ N at time t = 1, depends on insurer i’s premium and the aggregate of

other players’ strategies;

σi Interacting function, which represents the interaction between insurer i’s

payoff with the others in the market;

x1
−i Parameter indicating the aggregation of p1

−i;

αi Cost ratio of holding wealth of i ∈ N , generally higher than the risk-free

rate, αi ∈ (0, 1);

π1
i Expected breakeven premium (per unit of exposure) for insurer i ∈ N at time

t = 1, i.e., expectation of future claims plus other expenses. However, for

purposes of simplicity, we skip the word ”expected” when we refer to the

breakeven premium in the remaining paper;

ki Breakeven ratio for insurer i ∈ N , ki is equal to π1
i divided by p1

i ;

θ1 Market stability factor, which is used to describe the market’s condition;

βi Best-response correspondences for insurer i regarding all the other players’

strategies;

Ri Best-response correspondences for insurer i regarding x1
−i;

r̂i The maximal selections of Ri;

Before we proceed further, the following general assumption is proposed.

Assumption 1: In the insurance market, for any insurer i ∈ N at time t = 1,

• The breakeven premium (per unit of exposure) π1
i is assumed to be less than the

corresponding premium p1
i .

• Both π1
i and p1

i are positive quantities.

Entries of new insurers and insurance products are not taken into consideration.

Insurers avoid to set premium under cost level [54, 55, 25, 41, 42, 43], and see the

references therein. Thus, the case that p1
i ≤ π1

i is not considered in this paper.
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2.2.2 Insurance Premium Pricing Model

For the proposed insurance model, every insurer must maximise its wealth. In this di-

rection, a two-period framework: t = 0, 1 is investigated in a general insurance market.

In line with the previous literature (see Section 2.1), the utility function u1
i that concerns

insurer i with initial wealth u0
i is formulated as follows,

u1
i = −αiu0

i + (1− αi)(p1
i − π1

i )q
1
i . (2.1)

For insurer i, pi is the premium value per unit of exposure; qi represents the holding

exposure volume; πi denotes the breakeven premium per unit of exposure, which in-

cludes risk premium and other expenses. pi, qi, πi are all positive and αi ∈ (0, 1) is a

given parameter that refers to the cost ratio of holding insurer i’s wealth. As shown in

Eq. (2.1), the net income of any insurer i is regarded as its utility u1
i , and each insurer

is assumed to receive the premium from policyholders at the beginning of time t = 1.

We also assume that the insurance market contains N = {1, . . . , n} insurers, and each

insurer has perfect knowledge of its previous information. Moreover, p0
i , q

0
i , π

0
i , u

0
i are

all known as constants at time t = 1. What is more, the value of q1
i implies competition

in the market and must be determined analytically. An insurer’s change in the number

of policies is related to the deviation in the insurer’s premium which is also connected to

the market’s premium level [13]. With the purpose of investigating exposure changes,

marginal difference of exposure volume ∆q1
i is defined in Eq. (2.2)

∆q1
i = q1

i − q0
i . (2.2)

We define the total market exposure Q1
m > 0 at time t = 1 as [22] did, which

contains two components. The first part was related to the sum of the current exposure

for each insurance company, i.e., Q1 =
∑

i∈N q
1
i > 0, and the second part had to do
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with the available (unallocated) exposure in the market, Q̂1, thus

Q1
m = Q1 + Q̂1.

Q̂1 is allowed to be negative, and Q̂1 ≤ Q1
m. Policyholders may stop renewing policies

at the end of time t = 0, and new clients may buy policies at the beginning of time

t = 1 to become new policyholders. Consequently, Q1 cannot be equal to Q0, which

causes the sum of all insurers’ exposure change
∑

i∈N ∆q1
i to take any value in R. In

our approach, instead of simply applying the demand function as it was the current trend

(see the references in Section 2.1), the competition between any pair of insurers is now

considered. Thus, additionally, the interaction between insurers’ premiums needs to be

formulated; consequently, ∆q1
i is further analysed.

In the following two subsections, two distinct insurance models are introduced: a)

the simple exposure difference model I (GI), where
∑

i∈N ∆q1
i might take any value in

R and the available (unallocated) exposure of the insurance market Q̂1 is under consid-

eration; b) the advanced exposure difference model II (GII), which is used to further

analyse policies for any insurer. Both models investigate the competition under the fol-

lowing assumption.

Let us define the transfer function ρ from insurer j to insurer i at time t = 1 as fol-

lows

ρ1
j→i = 1−

p0
j

p0
i

p1
i

p1
j

. (2.3)

The transfer function ρ1
j→i in Eq. (2.3) describes that, for time t = 1, when the quotient

of insurer i’s premium and the previous premium p1i
p0i

is less than j’s quotient
p1j
p0j

, insurer

j’s policies tend to flow to insurer i. The exposure of insurer i increases in the competi-

tion with j, whereas the exposure of j decreases. Policies flow in a reverse manner and
p1i
p0i
>

p1j
p0j

.
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This assumption indicates that the preference of policyholders, i.e., when one in-

surer increases its premium and its competitor decreases its own premium, the insurer

simultaneously decreases its attractiveness. When both insurers increase their premiums

by different percentages, the insurer with the smaller increment becomes more attrac-

tive. Finally, in a similar manner, when both decrease their premiums, the insurer with

the larger decrement becomes more attractive.

Insurer i gains exposure from the competition with insurer j when it offers a more

attractive premium. However, policyholders sometimes choose an insurer’s policies

with higher premiums as the most preferable one because of a better reputation [42]

(and the references therein). For this reason, the percentage changes in the premium are

adapted in the transfer function rather than in the value of the premium itself. Note that

the transfer function ρ1
i→j can be either positive or negative. The policy amount of i is

increased when ρ1
i→j > 0 and reduced when ρ1

i→j < 0.

By investigating the flow of policies between any pair of insurers, the entire in-

surance market competition can be evaluated by aggregating every competition among

the different pairs of insurers. This topic is the focus of discussion in the following

subsections.

Simple Exposure Difference Model I (GI)

Let us consider that the competition in the insurance market is formulated as follows.

First, the premium levels vary over time, which might even cause a change in the total

number of policies in the market. Second, potential clients consider holding insurance

policies when premiums decline. In contrast, the insurance market may lose clients if

the market premium level is high.

In GI , we assume that for any pair of insurers i and j, exposure qi – which is related

to gain or loss – is not equal to exposure qj – which has to do with loss or gain –

respectively. Thus, this assumption indicates that the available exposure joins or leaves

the market because of competition between i and j. The expected exposure to flow by
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insurer i attributable to competition with j is given by

q1
j→i = h1aiρ

1
j→iq

0
i (2.4)

6= −q1
i→j, h1 > 0.

Here, we define ai as the price sensitivity (positive) parameter of insurer i and h1 as the

market presence limit factor in GI .

The exposure gain or loss from all other insurers to i is given by

∆q1
i =

∑
j∈N

q1
j→i. (2.5)

Eqs. (2.4)–(2.5) are interpreted as follows. The strength (which is related to either gain

or loss) of the exposure of insurer i attributable to the competition with j is demon-

strated in Eq. (2.4). The premium p1
j is modelled as being transferred to insurer i’s

premium by multiplying p0i
p0j

in ρ1
i→j for the purpose of simultaneously comparing two

insurers’ premiums. Insurer i’s price sensitivity parameter ai is considered as informa-

tion of insurer i for presenting the market power. Note that, regarding the transferred

premium p0i
p0j
p1
j as i’s previous premium p0

i , the item aiρ
1
j→iq

0
i is just the volume of busi-

ness i’s gain or loss when the price elasticity is ai. In our case, the price elasticity of

demand, ai, is determined by imitating the concept of the [35] index, i.e., the leader in

the insurance market which has the larger market power has lower price sensitivity and

so on and so forth. In a competitive market, q1
i depends not only on p1

i but also on other

insurers’ premiums. Hence, instead of comparing the previous premium p0
i , the trans-

ferred premium p0i
p0j
p1
j is adopted to characterise the change in the volume of polices. In

Eq. (2.4), h1 is the market presence limit factor, which is used to limit the scale of the

policies’ flow amount. Because different stabilities exist in various insurance markets,

h1 can take different positive values.

The exposure difference ∆q1
i from the competition in the entire market is obtained

by summing up all of the policies’ gains or losses when competing with all insurers.
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Note that
∑

i∈N ∆q1
i is allowed not to be equal to zero. Regarding Eqs. (2.1)–(2.5), the

utility function can be deduced.

We define u1
GI ,i

(similar for u1
GII ,i

, see Subsection 2.2.2) be the utility functions of

insurer i at time t = 1 in GI (GII).

Lemma 2.1. For the simple exposure difference model I, the utility function u1
GI ,i

of

insurer i at time t = 1 is given by

u1
GI ,i

= −aih1q
0
i (1− αi)
p0
i

(
∑
j∈N

p0
j

p1
j

)(p1
i )

2

+ (1− αi)[q0
i + nh1aiq

0
i + π1

i (
∑
j∈N

p0
j

p1
j

)
aih1q

0
i

p0
i

]p1
i

− αiu
0
i − π1

i (1− αi)[q0
i + naih1q

0
i ]. (2.6)

Proof. By combining Eqs. (2.2)–(2.5), we obtain the exposure of i considering that the

competition occurred at time t = 1.

q1
i = q0

i + ∆q1
i

= q0
i +

∑
j∈N

h1aiρ
1
j→iq

0
i

= q0
i +

∑
j∈N

h1aiq
0
i (1−

p0
j

p0
i

p1
i

p1
j

)

= q0
i + nh1aiq

0
i −

aih1q
0
i p

1
i

p0
i

∑
j∈N

p0
j

p1
j

.

By taking q1
i above into Eq. (2.1), we have that
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u1
GI ,i

= −αiu0
i + (1− αi)(p1

i − π1
i )(q

0
i + nh1aiq

0
i

−aih1q
0
i p

1
i

p0
i

∑
j∈N

p0
j

p1
j

)

= −aih1q
0
i (1− αi)
p0
i

(
∑
j∈N

p0
j

p1
j

)(p1
i )

2

+ (1− αi)[q0
i + nh1aiq

0
i + π1

i (
∑
j∈N

p0
j

p1
j

)
aih1q

0
i

p0
i

]p1
i

− αiu
0
i − π1

i (1− αi)[q0
i + naih1q

0
i ].

Advanced Exposure Difference Model II (GII)

The modified exposure for insurer i can be further analysed. Different from GI , in GII ,

we concretely characterize the two components mentioned in Subsection 2.2.2, i.e., a)

reallocated policies of the previous market Q0, and b) policies from the (unallocated)

exposure Q̂1.

Regarding the competition between any pair of insurers i and j, the number of ex-

change policies is characterised. The exposure gain or loss from i to j is obtained with

respect to both insurers’ premium strategy and market power. Given a positive market

presence limit factor h2, the strength of the flow of business between i and j is modelled

as follows

q1
j→i = h2(aiρ

1
j→iq

0
i − ajρ1

i→jq
0
j ) (2.7)

= −q1
i→j, h2 > 0.

As demonstrated in Eq. (2.7), both exposure i which tended to a gain or loss, aiρ1
j→iq

0
i ,

and exposure j which showed a potential loss or gain, −ajρ1
i→jq

0
j , represent the ex-

change strength from summing up the volume. The volume of the flow of exposure is
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further governed by h2, which is defined as the positive market presence limit factor in

GII . Note that
∑

i∈N
∑

j∈N q
1
j→i equals to zero because of policies exchange between

insurers in the component a). In the same way, for the b) component, the potential flow

of policies, either attract or withdraw from the unallocated insurance market Q̂1, and it

is modelled as h2ai(1− p1i
p0i
θ1)q0

i .

The flow of policies from the unallocated insurance market is modelled similarly to

the concept of price elasticity: a comparison with previous premium price. Apart from

the competition between pairs of insurers, they tend to lose policies to the available

market when increasing their premiums and gain policies by lowering them. In addition,

a positive market stability factor θ1 is adopted to describe the market condition: θ1 = 1

indicates that the market faces a general condition; the insurance industry expands when

θ1 < 1 because more policies tend to flow into the industry from the unallocated market;

θ1 > 1, when the market faces a situation with challenges. Overall, the exposure gain

or loss for i is given by

∆q1
i =

∑
j∈N

q1
j→i + h2ai(1−

p1
i

p0
i

θ1)q0
i , θ1 > 0. (2.8)

Following Assumption 1, ki ∈ (0, 1). Then, the objective function for the GII case

can be deduced.

Lemma 2.2. For the advanced exposure difference model II, the utility function u1
GII ,i

of insurer i at time t = 1 is given by

u1
GII ,i

= −(1− ki)(1− αi)h2aiq
0
i

p0
i

(
∑
j∈N

p0
j

p1
j

+ θ1)(p1
i )

2

+ (1− ki)(1− αi)(q0
i + (n+ 1)h2aiq

0
i − h2

∑
j∈N

ajq
0
j )p

1
i

+ (1− ki)(1− αi)h2p
0
i

∑
j∈N

ajq
0
j

p1
j

p0
j

− αiu0
i . (2.9)

Proof. Using Eqs. (2.7)–(2.8) instead, Lemma 2.2 can be showed similarly as Lemma

2.1.
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In the next Subsection, the construction of the game is presented and further dis-

cussed.

2.2.3 Game Construction

Normal Form Game

Let us define an N -insurer game, G, in a two-period framework: t = 0, 1. Each insurer

i’s strategy at time t = 1 is p1
i , which stands for the action setting premium as the

value of p1
i , whereas Pi is the set of strategies. We use P̃ 1

i to denote the equilibrium

strategy for insurer i. Insurer i’s payoff function is defined as u1
i : P → R, where

P ≡ P1 × · · · × PN and p is an arbitrary profile in P . The notation p1
−i ∈ P−i

stands for {p1
1, . . . , p

1
i−1, p

1
i+1, . . . , p

1
n}, which is used to represent the strategy profile of

other players at time t. (p1
i , p

1
−i) ∈ P decomposes a strategy profile in two parts, the

insurer i’s strategy and other insurers’ components. Given this game in the insurance

market, instead of calculating the optimal premium that maximises a single insurer’s

wealth, as was the case in the previous literature (see Section 2.1 for further details), the

calculation of the Nash equilibrium is targeted.

Generally, from a game theory perspective, the Nash equilibrium is a prediction

strategy that dictates the choices that each insurer is willing to make. Given the opti-

mal strategy profile of other insurers, the market reaches a Nash equilibrium when no

insurer can increase its total payoff by changing its strategy. The Nash equilibrium is

defined through the best-response correspondences. In what it follows the next defini-

tions should be stated.

Definition 2.3. [28] Define βi by

βi(p
1
−i) = {p1

i ∈ Pi : u1
i (p

1
i , p

1
−i) ≥ u1

i (ṕ
1
i , p

1
−i),∀ṕ1

i ∈ Pi}.

We call βi the best-response correspondences for insurer i.
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For any choice p−i ∈ P−i of others’ strategies at time t, the set βi(p1
−i) of best

replies of insurer i is given by

βi(p
1
−i) = argmax

p1i∈Pi

u1
i (p

1
i , p

1
−i).

Each player’s predicted strategy must be a best response to the predicted strategies

of the other players as the market reaches a Nash equilibrium.

Definition 2.4. [28] A strategy profile, p̃1, is a Nash equilibrium of the game (at time

t) if and only if each player’s strategy is a best response to the other players’ strategies.

That is

p̃1
i ∈ β(p̃1

−i), ∀i ∈ N.

The best-response potential game technique is further considered, which is widely

used to prove the existence of Nash equilibrium.

Definition 2.5. [60] A strategic game G̃ =< (βi,Pi)i∈N > is a best-response potential

game if there exists a function f : P → R such that

∀i ∈ N,∀p−i ∈P−i : βi(p−i) = argmax
pi∈Pi

f(pi, p−i).

The function f is called a best-response potential function of the game G̃.

The potential function f offers a new approach to determining the Nash equilibrium

for the game G̃ by maximising f . Note that, f is a function, which depends on every

insurer’s strategy. If f has a maximum over P , G̃ has a Nash equilibrium. A specific

type of game, known as an aggregate game, is introduced to solve the Nash equilibrium

for the N insurers’ game.

Aggregate Games

With the additional requirement that each insurer’s payoff is written as a function that

depends only on its own strategy and an aggregate of the full strategy profile, a normal
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form game can be transformed into a game with aggregation. Formally, we have the

following definition.

Definition 2.6. [37] An aggregate game in the insurance market,G′ =< (Pi, u1
i )i∈N , g >,

is a normal form game with an extra condition that there exists an aggregate function,

g(p1) : P −→ M ⊆ R, such that each player’s payoff function can be further spe-

cialised to the aggregate form

p1 7→ u1
i (p

1
i , g(p1)),

where M1 ∈M, is called an aggregator of p1.

The only requirement for a game to represent an aggregate game is that there exists

an aggregate function [2]. To construct an insurance game with aggregation, a mean-

ingful monotone aggregate function g is expected to be obtained. Here, the Insurance

Game I, equipped with the objective function in the simple exposure difference model

I, and the Insurance Game II, implemented with the objective function in the advanced

exposure difference model II, are considered. Before we proceed further, the definitions

of GI and GII are given as follows.

Definition 2.7. A game GI =< (PGI ,i, u
1
GI ,i

)i∈N > has a finite set of players N , with

compact, positive, pure strategy set PGI ,i with respect to every i, whereas u1
GI ,i

in Eq.

(2.6) is the payoff function for i at time t = 1. This type of game is called Insurance

Game I.

Similarly, Insurance Game II is defined as GII =< (PGII ,i, u
1
GII ,i

)i∈N >, with player

set N , compact, positive, pure strategy set PGII ,i and payoff function u1
GII ,i

in Eq. (2.9).

2.3 Main Results

In this section, the theoretical results for models GI and GII are presented. However,

before we proceed further with the existence of a Nash equilibrium, it is necessary to

show that both GI and GII are aggregate games.
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Lemma 2.8. Based on the definition of payoff functions stated in the previous section,

both GI and GII are aggregate games.

Proof. Denote M1 =
∑

j∈N
p0j
p1j

as the aggregation of GI game. Then, the payoff func-

tion in Eq. (2.6) turns out to be

u1
GI ,i

= −aih1q
0
i (1− αi)
p0
i

M1(p1
i )

2 + (1− αi)[q0
i + nh1aiq

0
i + π1

iM
1aih1q

0
i

p0
i

]p1
i

− αiu
0
i − π1

i (1− αi)[q0
i + naih1q

0
i ].

There exists an aggregate function g(p1) =
∑

j∈N
p0j
p1j

in GI . For GII game, we further

denote m1 =
∑

j∈N ajq
0
j

p1j
p0j

as the other aggregation. Similarly, we obtain the payoff,

u1
GII ,i

= −(1− ki)(1− αi)h2aiq
0
i

p0
i

(m1 + θ1)(p1
i )

2

+ (1− ki)(1− αi)(q0
i + (n+ 1)h2aiq

0
i − h2

∑
j∈N

ajq
0
j )p

1
i

+ (1− ki)(1− αi)h2p
0
im

1 − αiu0
i .

Thus, the statement of the Lemma is derived.

In aggregate games, for every player i, the other players in the competitive market

are considered as a single player because their strategies aggregate through an interact-

ing function σi : P−i → X−i ⊆ R. Intuitively, the other players influence i through the

interaction function σi(p1
−i). X−i = σi(P−i) is set to indicate the range of σi, whereas

x1
−i = σi(p

1
−i) ∈ X−i for any t. With x1

−i =
∑

j 6=i
p0j
p1j

, respectively, the GI and GII

payoff functions are given as follows:

u1
GI ,i

= −aih1q
0
i (1− αi)
p0
i

x1
−i(p

1
i )

2

+ (1− αi)[q0
i + (n− 1)h1aiq

0
i + π1

i x
1
−i
aih1q

0
i

p0
i

]p1
i

− αiu
0
i − π1

i (1− αi)[q0
i + (n− 1)aih1q

0
i ]
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and

u1
GII ,i

= −(1− ki)(1− αi)h2aiq
0
i

p0
i

(x1
−i + θ1)(p1

i )
2

+ (1− ki)(1− αi)(q0
i + nh2aiq

0
i − h2

∑
j 6=i

ajq
0
j )p

1
i

+ (1− ki)(1− αi)h2p
0
i

∑
j 6=i

ajq
0
j

p1
j

p0
j

− αiu0
i .

To generate Nash equilibrium premium strategies, Ri : X−i → 2Pi , we need to define

Ri(x
1
−i) = argmax

p1i∈P
u1
i (p

1
i , x

1
−i),

which coincides with βi(p1
−i). In other words, Ri describes how the interaction param-

eter x1
−i = σi(p

1
−i) influences insurer i’s best-response strategy.

In the case of GI , we have

RGI ,i(x
1
−i) = argmax

p1i∈P
u1
GI ,i

(p1
i , x

1
−i). (2.10)

r̂GI ,i is defined as the maximal selections of RGI ,i(x
1
−i), and for GII , we have

RGII ,i(x
1
−i) = argmax

p1i∈P
u1
GII ,i

(p1
i , x

1
−i). (2.11)

r̂GII ,i is defined as the maximal selections of RGII ,i(x
1
−i).

Before we prove that both GI and GII are best-response potential games, we need

to recall first, Lemma 2.9 which is proposed by [30].

Lemma 2.9. The game < (βi,Pi)i∈N > is a best-response potential game if and only if

there exists a real-valued function, f :→ R, such that:

p̃1 � p1 ⇒ f(p̃1) ≥ f(p1) (2.12)
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and

p̃1 � p1 ⇒ f(p̃1) > f(p1), (2.13)

where the previous two binary relations are defined as:

p̃1 � p1 ⇔ ∃i ∈ N, s.t. [p̃1
−i = p1

−i, and p̃1
i ∈ Ri(x

1
−i)]

p̃1 � p1 ⇔ [p̃1 � p1, and p1
−i /∈ Ri(x

1
−i)]

The next lemma is useful for the main result of our paper. Its proof is rather techni-

cal, and for better understanding, we present it using intermediate steps.

Lemma 2.10. Both GI and GII are best-response potential games.

Proof. Initially, GI is considered.

• Step 1: State the best-response potential function.

– Convex hull of X−i.

In the case that Pi is not convex, X−i is not convex as well. Denote Σ−i as

the convex hull of X−i, which is obviously compact.

For GI , RGI ,i is the best-response correspondences to x1
−i of i. We ex-

tend RGI ,i in a piecewise linear fashion to ΦGI ,i, defined on the domain Σ−i.

ΦGI ,i coincides with RGI ,i on X−i. For any s ∈ Σ−i \ X−i define

ΦGI ,i(s) =
z − s
z − y

RGI ,i(y) +
s− y
z − y

RGI ,i(z),

with y = max{v ∈ X−i|v ≤ s} and z = min{v ∈ X−i|v ≥ s}.

– For any insurer i, linearly enhance the best response domain to be the

same as its strategy domain.

Let P̂GI ,i denote the range of player i’s best response map, and the set be
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{p1
i ∈ PGI ,i : p1

i ∈ Ri(σi(p
1
−i))} ⊆ PGI ,i. Denote φ1

GI ,i
as the selections of

ΦGI ,i, which is continuous on Σ−i. We further define a mapping Oi(φ
1
GI ,i

),

which linearly enhances the domain P̂GI ,i to PGI ,i. In addition, r1
GI ,i

is de-

fined as the selection of Oi(φ
1
GI ,i

). In other words,

∀i,∃x̂1
−i s.t. p1

i ∈ Oi(ΦGI ,i(x̂
1
−i)).

Let ⊥1
i = minp1−i∈P1

−i
σi(p

1
−i), >1

i = maxp1−i∈P1
−i
σi(p

1
−i), and extend each

r1
GI ,i

to [⊥1
i ,>1

i ] along the line with [31].

– We state that the following Eq. (2.14) is the best-response potential func-

tion of GI .

f(p1
i , p

1
−i) =

∑
i

[
p0
i

∫ >1
i

⊥1
i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ − p0

i

p1
i

⊥i

]
+
∑
i<j

p0
i p

0
j

p1
i p

1
j

.

(2.14)

• Step 2: Prove that Eqs. (2.12) and (2.13) are true.

– Prove that each of the correspondences RGI ,i : X−i → 2Pi is a strictly

decreasing selection; that is, for every Ri, all x1
−i ∈ X−i such that

Ri(x̄
1
−i) > Ri(x

1
−i) whenever x̄1

−i ≤ x1
−i.

The statement is satisfied as long as the conditions of Topkis’ Theorem (see

[59] for details) are satisfied, i.e. each Pi is a lattice, every uGI ,i(p
1
i , x

1
−i)

supermodular in p1
i ,and has strictly decreasing differences in p1

i and x1
−i.

Since p1
i is one-dimensional for all i, the first two of these requirements are

satisfied: Pi is a lattice for all i; every uGI ,i supermodular in p1
i . In addition,

because u1
i is twice differentiable, uGI ,i(p

1
i , x

1
−i) has strictly decreasing dif-

ferences in p1
i and x1

−i if and only if ∂2uGI ,i(p
1
i , x

1
−i)/∂p

1
i∂x

1
−i < 0. In an
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insurance game GI , we have

∂2uGI ,i(p
1
i , x

1
−i)/∂x

1
−i∂p

1
i = ∂{−2

(1− αi)h1aiq
0
i

p0
i

x1
−ip

1
i + (1− αi)[q0

i

+ (n− 1)h1aiq
0
i + π1

i x
1
−i
aih1q

0
i

p0
i

]}/∂x1
−i

=
aih1q

0
i (1− αi)
p0
i

(π1
i − 2p1

i ) < 0.

According to the assumption that for any i, t, π1
i < p1

i , the above item is

negative. Hence, u1
i (p

1
i , x

1
−i) has strictly decreasing differences in p1

i and

x1
−i. Because Oi(φ

1
GI ,i

) enhance the domain P̂GI ,i linearly, r1
GI ,i

coincides

with φ1
GI ,i

. One can deduce that if x̂1
−i > x1

−i, we have p1
i < p̃1

i and vice

versa.

– The comparison between f(p̃1
i , p

1
−i) and f(p1

i , p
1
−i).

With equilibrium premium p̃1
i of i in p̃1, the difference between f(p̃1) and

f(p1) is demonstrated as

f(p̃1
i , p

1
−i)− f(p1

i , p
1
−i)

=
∑
i∈N

[∫ >1
i

⊥1
i

p0
i ·min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ

]
−

∑
i∈N

[∫ >1
i

⊥1
i

p0
i ·min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

]
−
∑
i∈N

[
p0
i

p̃1
i

· ⊥1
i

]
+
∑
i∈N

[
p0
i

p1
i

· ⊥1
i

]

+

[
p0
i

p̃1
i

− p0
i

p1
i

]
·
∑
j 6=i

p0
j

p1
j
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=

∫ >1
i

⊥1
i

p0
i ·min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ >1
i

⊥1
i

p0
i ·min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−p
0
i

p̃1
i

· ⊥1
i +

p0
i

p1
i

· ⊥1
i +

p0
i

p̃1
i

· x1
−i −

p0
i

p1
i

· x1
−i

= p0
i

[∫ >1
i

⊥1
i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ >1
i

⊥1
i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−
∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

⊥1
i

− 1

p1
i

dτ

]
.

When x̂1
−i > x1

−i,

f(P̃ 1
i , p

1
−i)− f(p1

i , p
1
−i)

=

∫ x1−i

⊥1
i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ +

∫ x̂1−i

x1−i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ

+

∫ >1
i

x̂1−i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ x1−i

⊥1
i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−
∫ x̂1−i

x1−i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ >1
i

x̂1−i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−
∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

⊥1
i

− 1

p1
i

dτ

=

∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x̂1−i

x1−i

− 1

r1
GI ,i

(τ)
dτ +

∫ >1
i

x̂1−i

− 1

r1
GI ,i

(τ)
dτ

−
∫ x1−i

⊥1
i

− 1

p1
i

dτ −
∫ x̂1−i

x1−i

− 1

p1
i

dτ −
∫ >1

i

x̂1−i

− 1

r1
GI ,i

(τ)
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

⊥1
i

− 1

p1
i

dτ

=

∫ x̂1−i

x1−i

[
1

p1
i

− 1

r1
GI ,i

(τ)
]dτ > 0.

When x̂1
−i < x1

−i,
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f(P̃ 1
i , p

1
−i)− f(p1

i , p
1
−i)

=

∫ x̂1−i

⊥1
i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ +

∫ x1−i

x̂1−i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ

+

∫ >1
i

x1−i

min{− 1

p̃1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ x̂1−i

⊥1
i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−
∫ x1−i

x̂1−i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ −

∫ >1
i

x1−i

min{− 1

p1
i

,− 1

r1
GI ,i

(τ)
}dτ

−
∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

⊥1
i

− 1

p1
i

dτ

=

∫ x̂1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

x̂1−i

− 1

r1
GI ,i

(τ)
dτ +

∫ >1
i

x1−i

− 1

r1
GI ,i

(τ)
dτ

−
∫ x1−i

⊥1
i

− 1

p1
i

dτ −
∫ x̂1−i

x1−i

− 1

p1
i

dτ −
∫ >1

i

x̂1−i

− 1

r1
GI ,i

(τ)
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1
i

dτ +

∫ x1−i

⊥1
i

− 1

p1
i

dτ

=

∫ x1−i

x̂1−i

[
1

r1
GI ,i

(τ)
− 1

p1
i

]dτ > 0.

It is obvious that if x̂1
−i = x1

−i, this item equals zero. In this case, p1
i , p̃

1
i ∈

RGI ,i(σi(p
1
−i)) (i.e. if Eq. (2.12) holds but not Eq. (2.13)), f(P̃ 1

i , p
1
−i) −

f(p1
i , p

1
−i) = 0. Eq. (2.12) is proved to be true in an insurance game GI . If

not, Eq. (2.13) is proved.

• Step 3: Conclusion

We conclude that when (p1
i , p

1
−i), (p̃

1
i , p

1
−i) ∈ Pi,(p̃1

i , p
1
−i) � (�)(p1

i , p
1
−i) ⇒

f(p̃1
i , p

1
−i)− f(p1

i , p
1
−i) ≥ (>)0, with respect to Lemma 2.10. An insurance game

G1 is the best-response potential game, whereas f is the best-response potential

function.

Similarly, in GII ,
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∂2u1
GII ,i

(p1
i , x

1
−i)/∂x

1
−i∂p

1
i = ∂{−2

(1− αi)(1− ki)h2aiq
0
i

p0
i

(x1
−i + θ1)p1

i

+(1− ki)(1− αi)(q0
i + nh2aiq

0
i − h2

∑
j 6=i

ajq
0
j )}/∂x1

−i

= −2
(1− αi)(1− ki)h2aiq

0
i

p0
i

p1
i < 0.

We also obtain that u1
GII ,i

(p1
i , x

1
−i) has strictly decreasing differences in p1

i and x1
−i.

By replacing r1
GI ,i

by r1
GII ,i

in f from Eq. (2.14), one obtains the best-response potential

function of u1
GII ,i

in GII .

Following the discussion so far, one can deduce the useful Theorem, which is the

main theoretical result of our paper.

Theorem 2.11. The Nash equilibrium at time t = 1 in both GI and GII exists.

Proof. In GI , let us suppose that

p̃1 ∈ argmax f(p1
i , p

1
−i).

Such a p̃1 exists because Pi is compact for any i and f is continuous. If p̃1 is not a

Nash equilibrium of G1, then f(c1
i , p̃

1
−i) > f(p̃1) for some c1

i ∈ Pi, contradicting that

p̃1 maximises f . Hence, the Nash equilibrium exists in GI . Similarly, it can be shown

that the Nash equilibrium exists in GII .

2.4 Numerical Example

In this section, a numerical example with 12 major non-life insurance companies based

on the number of contracts (i.e., volume of business) they have in their portfolios is

proposed to illustrate the main modelling characteristics and theoretical findings of our

paper. A scenario which investigates insurers with different market power is considered
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by consisting of a market leading insurer with 796, 139 contracts, nine almost equal

insurers with around 300, 000 contracts and two followers with only around 200, 000

contracts.3 Referring to the premium values at time t = 0, the pricing strategy for the

entire market of insurers is derived by finding the Nash equilibrium premiums at time

t = 1. The impact of different parameters involved in the process to the equilibrium

premiums is also analysed. To generate results that are comparable to those existing in

the literature of actuarial science and for simplicity in our calculations, convex premium

strategy sets are considered in the numerical example.4

Insurance Companies Premium Number of Contracts Price sensitivity
parameter

i p0
i q0

i ai

1 e269.09 298,269 2.0
2 e282.07 303,673 2.0
3 e377.06 282,224 2.0
4 e371.52 304,609 2.0
5 e281.56 295,769 2.0
6 e377.83 796,139 1.9
7 e257.88 298,304 2.0
8 e366.99 200,135 2.1
9 e347.58 211,314 2.1
10 e351.18 299,690 2.0
11 e364.11 299,995 2.0
12 e291.22 319,453 2.0

TABLE 2.1: 12 insurance companies are considered from the Greek insurance mar-
ket in 2010. Premium values and number of contracts are based on data from the
Hellenic Association of Insurance Companies. Price sensitivity parameter for every

insurer demonstrated in the table is used as a benchmark.

Data is used from the Greek market, as it was presented in [41, 43]. Thus, the

premium prices are calculated in Euros. Let us assume that the number of contracts at

time t = 0 is demonstrated in Table 2.1. With respect to t, this dataset is adopted for

a 12-player game because the insurers’ premium prices and exposure in the previous

3We don’t have here any intention to develop any type of Stackelberg leadership model. However, the
Greek insurance market might be considered as an ideal case for this model. Thus, it will be considered
as a future work.

4We recall that the theoretical results did not assume any type of convexity.
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period are used. With an intention to describe insurance companies’ market power, the

price sensitivity parameter, ai, for all insurers i is characterised further.

The standard values of price sensitivity parameter are set up in Table 2.1, and they

can be used as a benchmark. As it was already demonstrated, insurer 6 is considered

to be the market leader with the lowest price sensitivity parameter a6 = 1.9, because it

occupies significant greater market weight compared with other insurers. Correspond-

ingly, insurers 8 and 9 are regarded as market followers, which have price sensitivity

parameters of value 2.1. All of the others insurers’ price sensitivity parameter take the

value of 2.0 in our insurance game.5

The diversity of the price sensitivity parameter for the insurers obviously affect the

equilibrium premium profiles. Different values of ai are investigated through a simu-

lation. However, for any i, a1
i are restricted in [1.5, 2.5]. Using the previously demon-

strated market data, the Nash equilibrium premium profiles are calculated for both GI

and GII .

2.4.1 Insurance Game I Simulation Results

In Insurance Game I, GI , the Nash equilibrium premium profiles are calculated with

respect to the market’s data at time t = 0; see Table 2.1. Table 2.2 sets up also ad hoc

the main parameters. Note that for any insurer i in G1, the breakeven premium π1
i is not

assumed to be proportional to p1
i . The percentage between π1

i and p1
i is used to describe

the cost structure of i.

Number of market participants n 12
Market presence limit factor h1 0.09
The breakeven ratio of every insurer ki 0.5

TABLE 2.2: Environmental parameter values in GI

From Eq. (2.6), the second order condition of payoff is negative for each insurer i

in GI . Hence, when the stationary point is in the domain PGI ,i, i’s payoff is maximized.
5The values for ai have been considered ad hoc based on the concept of [35] index. Unfortunately,

we don’t have access to more detailed data, and some of the model parameters are rather artificial. This
is common in the corresponding literature [25, 24]
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What is more, one can find out the Nash equilibrium profiles by implementing the fol-

lowing algorithm:

Step 1: For each insurer i, set the first order condition of its payoff function equal to

zero as the maximum selection(s). From Eq. (2.10),

r̂GI ,i :
1 + (n− 1)h1ai + π1

i x
1
−i

aih1
p0i

2h1aix1
−i

p0
i = 0.

Step 2: Solve the system of r1
GI ,i

.

Step 3: Select the profile(s) corresponding to each insurer’s premium located in PGI ,i,

which is (are) the Nash equilibrium premium profile(s).

Be aware that when the derived values are located outside of PGI ,i, then these are not the

equilibrium premiums, as the edges of the premium domain reach a maximum instead.

Furthermore, it indicates that the Nash equilibrium still exists even though the calculated

premium profile have not located inside of PGI ,i. However, this case won’t be analysed

further here.

Let us now characterize the premium strategies set PGI ,i. For each insurer i, the

premiums are restricted to take values between e180 and e800 during any period, i.e.,

p1
i ∈ [e180,e800]. In addition the other parameters are restrained, i.e., the market pres-

ence limit factor h1 ∈ [0.07, 0.11] and the breakeven premium π1
i ∈ [30%p1

i , 70%p1
i ],

for any i, t. Numerical results for the system of equations r1
GI ,i

are generated using m-

file ”fsolve”. It should be mentioned that the Nash equilibrium premium profile might

not be unique. However, among these results we chose the first positive premium profile

which located in PGI ,i.
6 This result is illustrated in Figure 2.1. Figure 2.2 shows the

corresponding number of contracts from insurers 1 to 12.

The ratio between insurers’ equilibrium premiums at time t = 1 is correlative to

the previous premium ratio in Figure 2.1. Note that the market leader insurer 6 tends

to increase its premium, which leads to a reduction of its policy numbers in Figure 2.2.

6Among all the possible positive profiles, we pick up the smallest one based on the iterative algorithm
of the Matlab, m-file ”fsolve”.
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Larger market power offers insurer 6 the advantage in competition, which allows it to

increase its premium until equilibrium for seeking higher profit.

Figure 2.3 demonstrates the effect of the increasing parameter π1
6 in GI . In Figure

2.3, adjustment for a single insurer’s breakeven premium ratio is investigated. The

market leader, insurer 6, is modelled to increase π1
6 from 30% to 70% of p1

i , whereas

all other insurers keep the ratio at 50%. The increase in the breakeven premium ratio of

insurer 6 is observed to cause not only an increase in its equilibrium premium but also

a slight incremental increase in other insurers’ premiums.

Price sensitivity parameter, ai, strongly affects the equilibrium premium of each

insurer i. The effects of modifying ai with regard to the market leading insurer 6 and

the market follower 8 are illustrated in Figures 2.4 and 2.5, and all other parameters

remain the same as before. Figure 2.4 shows that the two players’ equilibrium premiums

decrease as the price sensitivity parameter decreases. In Figure 2.5, the number of

contracts is observed to increase as ai increases for both insurers 6 and 8. In addition,

in both Figures 2.4 and 2.5, the slope of insurer 6 is obviously larger than that of insurer

8, indicating that parameter ai is more sensitive with respect to the market leader than

the market follower.

The values of parameters a6 and h1 strongly affect the equilibrium premium at time

t = 1. We give an example of insurer 6 about the sensitivity with respect to these two

parameters in Figure 2.6.
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FIGURE 2.1: Previous (at time t = 0) vs. equilibrium (at time t = 1) premium profiles
in GI . The red solid line is the equilibrium premium profile at time t = 1 with respect
to 12 insurers, which is on the x-axis. Premium values are given on the y-axis. The

blue dash line represents the previous premium profile given in the Table 2.1.

FIGURE 2.2: Previous (at time t = 0) vs. equilibrium (at time t = 1) number of
policies in GI . The left figure illustrates the number of contracts with respect to 12
insurers at time t = 0, which are given in Table 2.1. The right figure shows the equi-

librium number of contracts at time t = 1.
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FIGURE 2.3: Diversity of equilibrium premium profiles with different π1
6 in GI . The

market leader 6’s breakeven premium ratio is investigated, which takes values from
30% to 70%. The corresponding 5 different equilibrium premium profiles are given.

FIGURE 2.4: Equilibrium premium sensitivity test of a6 and a8 in GI .
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FIGURE 2.5: Equilibrium number of policies sensitivity test of a6 and a8 in GI .

FIGURE 2.6: Diversity of insurer 6’s equilibrium premium in GI . Different equilib-
rium premium values are given, with respect to different a6 and h1.

2.4.2 Insurance Game II Simulation Results

Using Table 2.1, and the same parameters reported in Table 2.3, the Nash equilibrium

premium profiles in GII are calculated. From Eq. (2.9), the second order condition of

payoff is negative for each insurer i in GII . Similarly, we use the algorithm which is
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presented for the case GI by assuming that r̂1
GII ,i

is defined by

r̂1
GII ,i

:
q0
i + nh2aiq

0
i − h2

∑
j 6=i ajq

0
j

2h2aiq0
i (x

1
−i + θ1)

p0
i = 0,

where r̂1
GII ,i

is the maximal selection of RGII ,i(x
1
−i), see Eq. (2.11), for i at time t = 1

in GII .

Note that the breakeven ratio ki does not affect the best-reply selection inGII . If the

calculated premium for each insurer is located in PGI ,i, the Nash equilibrium is unique

in GII , since the equation of r̂1
GII ,i

is a linear one.

Number of market participants n 12

Market presence limit factor h2 0.0205

Market stability factor θ1 1

TABLE 2.3: Environmental parameter values in GII

InGII , for each insurer i, the premiums are retained betweene180 ande900 during

any period, i.e., p1
i ∈ [e150,e900]. The other parameters are also restricted, such as the

market presence limit factor h2 ∈ [0.0203, 0.0207] and the market stability factor θ1 ∈

[0.8, 1.2] for any t. Figures 2.7 and 2.8, respectively, show the equilibrium premium

profile and number of contracts from insurers 1 to 12.

In Figure 2.7, similar to GI , market leader insurer 6 tends to increase its premium

until equilibrium. As exposure flows between insurers are enhanced, the ratio between

insurers’ equilibrium premium in GII significantly diverge from the previous. Com-

pared withGI , the market leader has a greater advantage in the competition, which gen-

erates a larger reduction in the policy numbers than in Figure 2.2. Market followers 8

and 9 reduce their premiums significantly to increase their exposure. As demonstrated

in Figure 2.8, the equilibrium number of policies of insurers 8 and 9 approximately

reach the other insurer’s level, excluding the market leader insurer 6.

With the other parameters unaffected, the impacts of modifying ai inG2 with regard

to the market leading insurer 6 and the market follower 8 are illustrated in Figures 2.9
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and 2.10. Similarly as GI , Figures 2.9 and 2.10 indicate that both players’ equilibrium

premiums in GII decrease and the number of contracts increases as the price sensitivity

parameter ai decreases. In addition, we also conclude that the parameter ai with respect

to the market leader is more sensitive than the market follower in GII . Comparing with

Figures 2.4 and 2.5 in GI that a6 is more sensitive than a8 in GII is also noteworthy.

A new parameter, market stability factor θ1, significantly affect the equilibrium pre-

mium profile in GII . Figure 2.11 illustrates the diversity of the equilibrium premium

profiles with a varying market stability factor θ1 from 0.8 to 1.2. As θ1 represents the

whole market’s business condition, it is reasonable to expect the equilibrium profile

entirely moves up or down with different θ1.

Similarly as in GI , we test the sensitivity of a6 and h2 for GII in Figure 2.12. As

we can observe, h2 is much more sensitive than h1, an tiny increase of just 10−4 in h2

causes a compelling decrease in equilibrium premium for insurer 6.

Overall, we observe that insurers with larger market power take advantage in the

competition, and they tend to increase their premium to reach equilibrium. On the

other hand, insurers with less market power tend to decrease their premium requesting

a bigger volume of exposure. The price sensitivity parameter, ai, is quite sensitive. The

market presence limit factor h1, h2, and the market stability factor θ1 have an impact

on the market equilibrium levels, which control the exposure of volume flow among

the insurers and the exposures volume flow into or away from the insurance market,

respectively. Different with GI , a breakeven premium for i appears not to affect the

insurer’s equilibrium premium in GII .
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FIGURE 2.7: Previous (at time t = 0) vs. equilibrium (at time t = 1) premium profiles
in GII . Similar with Figure 2.1.

FIGURE 2.8: Previous (at time t = 0) vs. equilibrium (at time t = 1) number of
policies in GII . Similar with Figure 2.2.
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FIGURE 2.9: Equilibrium premium sensitivity test of a6 and a8 in GII .

FIGURE 2.10: Equilibrium number of policies sensitivity test of a6 and a8 in GII .
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FIGURE 2.11: Diversity of equilibrium premium profiles with different θ1 in GII .
The market stability factor θ1 is investigated which takes values from 0.8 to 1.2. The

corresponding 5 different equilibrium premium profiles are given.

FIGURE 2.12: Diversity of insurer 6’s equilibrium premium in GII . Different equilib-
rium premium values are given, with respect to different a6 and h2.



Chapter 3

Non-Cooperative Dynamic Games for

General Insurance Markets

In the insurance industry, the number of product-specific policies from different compa-

nies has increased significantly. The strong market competition has boosted the demand

for a competitive premium. In actuarial science, scant literature still exists on how com-

petition actually affects the calculation and the pricing cycles of company’s premiums.

In this paper, we model premium dynamics via a differential game, and study the insur-

ers’ equilibrium premium pricing in a competitive market. We apply an optimal control

theory methodology to determine the open-loop Nash equilibrium premium strategies.

In this direction, two models are formulated and studied. The market power of each

insurance company is characterized by a price sensitive parameter, and the business

volume is affected by the solvency ratio. Considering the average market premiums,

the first model studies an exponential relation between premium strategies and volume

of business. The other model initially characterize the competition between any selected

pair of insurers, then aggregates all the paired competitions in the market. Numerical

examples illustrate the premium dynamics, and show that premium cycles may exist in

equilibrium.

Keywords: Insurance Market Competition; Price Cycles; Non-cooperative Game; Sol-

vency Ratio

47
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3.1 Introduction

3.1.1 Motivation

This paper constructs two models for determining the price of general policies in com-

petitive, non-cooperative, insurance markets. In the corresponding literature, there is lit-

tle available research on how insurance premiums are modelled in competitive markets

and how they respond to changes offered by competitors [12, 25, 22]. Despite the fact

that in many lines of insurance the presence of underlying cycles is clearly observed,

a mathematical formulation, modelling and analysis of those underwriting strategies

have been a constant endeavour to better understand the behaviour of insurance markets

[10, 47, 15, 13, 61, 11, 32, 56, 36, 22].

Since the competition is getting higher among insurance companies, and in several

markets worldwide, the domination by a relatively few companies appears often in the

determination of insurance premium prices, a fair, but also a commercially attractive

premium is not any more a simple risk assessment exercise, but a highly challenging

decision. Consequently, the demand of a mathematical model is more essential than

ever to investigate the connectivity among the competitors in the corresponding markets

and to understand the formulation of pricing cycles.

3.1.2 New approach: Generalized finite-time differential game mod-

els

In this paper, generalized finite-time differential games with finite number of players

are constructed. The formulation allows to investigate the mechanism for the pricing

cycles by solving NE premium profiles. When the market reaches a NE, no insurer

can increase its payoff by modifying its strategy (over the time) given by the optimal

strategy profile of other insurers. As in [22], the optimal control theory methodology is

incorporated.
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Moreover, under a continuous-time framework, for any time unit, the number of

new contracts is modelled considering competition, while the loss of exposure due to

policy termination is assumed to be proportional to the current volume of exposure. In

this direction, two competition-related models are proposed, studied and compared: (1)

Model I adopts the exponential demand function of [54, 55, 22] considering the market

average premium; while, (2) Model II is formulated based on the aggregate game in

[62].

Analytically, the price sensitivity parameter, which has been proposed in [62], is

implemented as a market power parameter. The solvency ratio is the capital per unit

of premium. Solvency ratio is taken into consideration in the competition between

each pair of insurers, as it is observable by the policyholders. In [56], it is stated that

the management department will adjust its actuarial premium price with respect to the

current solvency ratio. Considering historical data, when the capital amount is relatively

high compared with actuarial premium value, insurance companies prefer to increase

its premium value. The reason is that the insurers are more confident to pay the claims

under this condition. In the present paper, we implement the concept of solvency ratio

in the competition. Differently from [56], we develop an optimization problem where

the solvency ratio is embedded in formulating an insurance game. In particular, we

assume that if the (observable) solvency ratio is high, the number of new contracts sold

will be affected less by other insurers’ premium strategies . Interestingly, pricing cycles

are observed in the numerical example of Model II, even without the consideration of

any stochastic parameter.

The remainder of this paper is organized as follows. Section 3.2 introduces the

construction of the two-insurance market competition models. In Section 3.3, the opti-

mization problem is formulated for the two models, and the Hamiltonians are presented.

Section 3.4 presents a numerical example for each of those two models.
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3.2 Model Construction

3.2.1 Baseline model

Let N = {1, . . . , n} be the finite set of insurers in the market. For a given time period

[0, T ], we assume that every insurer i ∈ N aims to maximize the net present value of

its terminal wealth. At every point in time t ∈ [0, T ], every insurer i ∈ N makes a

decision to set the premium pi(t) (per unit of exposure). The decisions of all insurers in

the market lead to the state variable θi(t) = (ki(t), qi(t)), where ki(t) > 0 is the capital

(per unit of exposure) of insurer i, and qi(t) > 0 is the volume of exposure of insurer i

at time t, which represents the number of policies. Denote Pi(t) = {pi(t′) : t′ ≤ t} and

Θi(t) = {θi(t′) : t′ ≤ t}. Moreover, we write M−i(t) = {Mj(t) : j ∈ N\{i}} for any

function M , k̇i(t) = d
dt
ki(t) and q̇i(t) = d

dt
qi(t).

In line with [23], we assume that there is a fixed length τ of insurance policies, and

all new and existing policyholders are required to pay the current premium rate pi(t).

We illustrate in Figure 3.1 how the underwriting polices affect the exposure volume of

the insurer.

FIGURE 3.1: The dashed line is the volume of exposure q(t) with respect to time t,
while thick lines denote the duration of policies with the same start date.
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The change in exposure at any time t can be split up into the one gained due to the

generation of new contracts and the other one lost due to policy termination. In order

to proceed further, in the next paragraphs we identify the necessary details of those two

effects.

In order to use conventional control theory, we follow [23] by assuming that the loss

due to policy termination is proportional to τ−1 qi(t) for any insurer i. Then, the state

equation of exposure for insurer i is given by

q̇i(t) = mi(t)qi(t)− τ−1 qi(t), (3.1)

where mi(t) is the marginal number of new policies sold at time t per unit of exposure.

The value of mi(t) may depend on (pi(t), θi(t), p−i(t), θ−i(t)). As illustrated in Figure

3.1, the bottom line indicates the group of exposure (policies) expired at time t, which

is τ−1 qi(t); the top line represents the group of new policies mi(t)qi(t); and the rest of

lines stand for the holding policies at time t.

Define Ii(t, t + ∆t) as the premium income of insurer i in period [t, t + ∆t) and

Ci(t, t+∆t) as the cost of holding capital. Here, we assume that the premiums are paid

at the beginning of each contract and all insurance policies have a fixed length τ , and

so Ii(t, t+ ∆t) is the premium income of the new contracts generated. For a small time

period ∆t after t, we have

Ii(t, t+ ∆t) = pi(t)mi(t) qi(t) ∆t+ o(∆t2).

Define πi > 0 as the constant break-even premium (per unit of exposure) for insurer

i, and βi ∈ (0, 1) as the depreciation of capital for insurer i. The break-even premium

πi is the deterministic insurance claim that needs to be paid per unit of exposure (see,

e.g., [22]). The cost of holding capital Ci(t, t+∆t) during the period [t, t+∆t) is given

by

Ci(t, t+ ∆t) = βiKi(t) ∆t+ o(∆t2).
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Moreover, the insurer needs to pay πi qi(t) ∆t+ o(∆t2) for insurance claims during the

period [t, t+ ∆t). The total capital difference for insurer i between time t and t+ ∆t is

given by

∆Ki(t) = Ii(t, t+ ∆t)− Ci(t, t+ ∆t)− πi qi(t) ∆t+ o(∆t2)

= (pi(t)mi(t)− πi − βi ki(t)) qi(t)∆t+ o(∆t2).

The volume of insurer’s exposure is also modified considering the entry of new

business and the expiration of existing policies. The difference of capital per exposure

in period [t,∆t) equals to

∆ki(t) = ki(t+ ∆t)− ki(t)

=
Ki(t+ ∆t)

qi(t+ ∆t)
− ki(t)

=
Ki(t) + ∆Ki(t)

qi(t) + q̇i(t)∆t
− ki(t) + o(∆t2)

=
ki(t) + (pi(t)mi(t)− πi − βi ki(t)) ∆t

1 + (mi(t)− τ−1) ∆t
− ki(t) + o(∆t2)

=
(
pi(t)mi(t)− πi − ki(t)

(
βi +mi(t)− τ−1

))
∆t+ o(∆t2),

by using a Taylor series expansion. Therefore, the state equation of capital per

exposure for insurer i is given by

k̇i(t) = pi(t)mi(t)− πi − ki(t)
(
βi +mi(t)− τ−1

)
. (3.2)

In line with [22], we propose the following time-separable utility function for insurer

i:

ui(Pi(T ); Θi(T )) =

∫ T

0

e−ζtFi(pi(t); θi(t))dt. (3.3)

Here, ζ ∈ (0, 1) is the discount factor, and

Fi(pi(t); θi(t)) = (pi(t)mi(t)− πi − βiki(t))qi(t). (3.4)
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A set of control functions t 7→ (p∗1(t), p∗2(t), . . . , p∗n(t)) is a NE for the game within

the class of open-loop strategies if the following holds. For any insurer i, the control

p∗i (·) provides a solution to the optimal control problem:

maximize ui(Pi(T ); Θi(T )), (3.5)

over the set of controllers, Pi(T ), where the set of controllers of other insurers, P−i(t), is

feasible, and the system has dynamics: {p1(0), ..., pn(0)} and {θ1(0), ..., θn(0)} given,

and

k̇i(t) = pi(t)mi(t)− πi − ki(t)
(
βi +mi(t)− τ−1

)
,

q̇i(t) = mi(t)qi(t)− τ−1 qi(t),

for all i ∈ N. Here we assume ki and qi always exist for all i and t.

The rate of generating business mi is affected by market competition. We propose

two models in Sections 3.3.1 and 3.3.2 that are defined as Model I and Model II, re-

spectively. Inspired by [54, 55] and [22], Model I investigates exponential relations

between exposure volume and premium competition. Market average premium is also

considered. On the other hand, Model II characterizes exposure volume regarding the

aggregation of competition among all the pairs of insurers. Furthermore, the price elas-

ticity function concept is adopted to investigate the exposure volume change in Model

II, as an extension of [62].

3.2.2 Model I Formulation

Model I adopts the exponential demand function proposed in [54, 55] and [22] for mod-

elling the competition between any pair of insurers. Let us define the function ρi of

insurer i at time t as follows,

ρi(t) = −(pi(t)− p̄−i(t)),
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where p̄−i(t) is the average premium of all the other insurers in insurance market except

i. When ρi(t) is positive, insurer i’s premium pi(t) is less than p̄−i(t); then, we assume

that insurer i tends to gain exposure from the rest of insurance market. Policies flow in

a reverse manner when ρi is negative. We model the rate of selling new policies mi(t)

for insurer i at time t as

mi(t) = τ−1 h1 ri e
bi ρi(t)−

pi(t)

ki(t) , (3.6)

where bi > 0 is the price sensitivity parameter of insurer i ∈ N, h1 > 0 is a market

presence limit factor, and ri > 0 is a benchmark parameter of insurer i.

In line with the exponential demand function in [54, 55], we initially model m as

τ−1 ebiρi(t). When, pi(t) < p̄−i(t), τ−1 ebiρi(t) is larger than τ−1. We further augment

this effect with an influence of the solvency ratio on competition, which is a new concept

in our paper.

We study the solvency ratio, and its impact on the premium pricing strategy of in-

surer i. [56] assumed that the management department will adjust the actuarial premium

price by comparing the insurer’s current solvency ratio and a benchmark solvency ratio.

Inspired by [56], we model the solvency ratio as ki(t)
pi(t)

. We further modify the expo-

nential component to e
biρi(t)+ln(ri)−

pti
kt
i , where ri is a positive benchmark solvency ratio

for insurer i. When solvency ratio ki(t)
pi(t)

increases, the rate of selling new policies mt
i

increases, which describes insurers with larger solvency ratio can obtain more policies.

3.2.3 Model II Formulation

With the price sensitive parameter h2 proposed by [62], Model II initially specifies the

flow of policies between any pair of insurers. The entire insurance market competition

can be evaluated by aggregating among the different pairs of insurers. For any insurer j,
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let us define the transfer function ρj→i(t) from insurer j to insurer i at time t as follows

ρj→i(t) = 1− pi(t)

pj(t)
.

The transfer function ρj→i(t) describes the key assumption: for time t, when insurer

i’s premium is less than insurer j’s premium, insurer j’s policies tend to flow to insurer

i. Policies flow in a reverse direction when pi(t) > pj(t). We assume that the exposure

flow from insurer j to insurer i is given by

qj→i(t) = h2 ai ρj→i(t)
e

pi(t)

ki(t)

ri
qi(t), (3.7)

where ai > 0 is the price sensitivity parameter of insurer i, h2 > 0 is a market presence

limit factor, and ri > 0 is a benchmark parameter of insurer i. Typically, we have

qj→i(t) 6= −qi→j(t).

The exposure changes over time follow from the competition in the entire market.

It is obtained by summing up all the bilateral policies’ gains or losses. The aggregate

exposure gain or loss for insurer i is then given by

q̇i(t) =
∑

j∈N,j 6=i

qj→i(t). (3.8)

We allow that
∑

i∈N q̇i(t) is not equal to zero, since potential customers may enter

(leave) the insurance market when the premiums are low (high).

Substituting (3.7) in (3.8) yields that the rate of generation of new policies for insurer

i at time t in Model II is given by

mi(t) = τ−1 + h2 ai
1

ri
e

pi(t)

ki(t)

∑
j∈N,j 6=i

(
1− pi(t)

pj(t)

)
. (3.9)
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3.3 Theoretical Results

As it was discussed in Section 3.2, the NE pricing strategy for the ith insurer follows

from a maximization problem over the set of feasible premium strategies given the fea-

sible pricing strategies of the other insurer [14]. Thus, in this section, the corresponding

Hamiltonians and related results for Models I and II are presented.

3.3.1 Optimisation Problem for Model I

From (3.4)-(3.6), we derive

Fi(pi(t); θi(t)) =

(
pi(t) τ

−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t) − πi − βi ki(t)
)
qi(t). (3.10)

We obtain the following dynamics for the state variables of insurer i:

k̇i(t) = pi(t) τ
−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − πi

−ki(t)
(
βi + τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − τ−1

)
, (3.11)

and

q̇i(t) =

(
h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − 1

)
τ−1qi(t). (3.12)
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With the objective function and state equations, the Hamiltonian for the ith insurer

is given by1

Hi = e−ζt
(
pi(t) τ

−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t) − πi − βi ki(t)
)
qi(t)

+
∑
j∈N

µij(t)

[
pj(t) τ

−1 h1 rj e
bj (p̄−j(t)−pj(t))−

pj(t)

kj(t) − πj

−kj(t)
(
βj + τ−1 h1 rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − τ−1

)]

+
∑
j∈N

λij(t)

(
h1 rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
τ−1qj(t). (3.13)

For any j ∈ N, the adjoint equations are given by

dλij(t)

dt
= − ∂Hi

∂qj(t)
, λij(T ) = 0, (3.14)

dµij(t)

dt
= − ∂Hi

∂kj(t)
, µij(T ) = 0. (3.15)

Lemma 3.1. For any j and t, it holds that λij(t) = 0 and µij(t) = 0 for all j 6= i.

Proof. For j 6= i, it holds that

dλij(t)

dt
= −λij(t)

(
h1 rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
τ−1. (3.16)

If λij(t) 6= 0, let A =

(
h1 rj e

bj (p̄−j(t)−pj(t))−
pj(t)

kj(t) − 1

)
τ−1. When A 6= 0, we have

| dλij(t)
A · λij(t)

| = dt⇔
∫
| dλij(t)
A · λij(t)

| =
∫
dt⇔ ln |λij(t)| = |A · t|+ c

and, hence, we get |λij(t)| = e|A∗t|+c. With λij(T ) = 0, it is a contradiction. When

A = 0, we have λij(t) = 0 by construction. Hence λij(t) = 0, when j 6= i. We can

prove that µij(t) = 0 for all j 6= i in a similar way.

1With slight abuse of notation, we do not explicitly write that the Hamiltonian depends on
(pi(t), θi(t), p−i(t), θ−i(t)).
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Using Lemma 3.1, the Hamiltonian in (3.13) simplifies to

Hi = e−ζt
(
pi(t) τ

−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t) − πi − βi ki(t)
)
qi(t)

+µii(t)

[
pi(t) τ

−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t) − πi

−ki(t)
(
βi + τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − τ−1

)]

+λii(t)

(
h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − 1

)
τ−1qi(t). (3.17)

From the adjoint equations, we have

dλii(t)

dt
= − ∂Hi

∂qi(t)

= −e−ζt
(
pi(t) τ

−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t) − πi − βi ki(t)
)

−λii(t)
(
h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − 1

)
τ−1, (3.18)

and

dµii(t)

dt
= − ∂Hi

∂ki(t)

= −e−ζ t qi(t)
(
pi(t)

2 ki(t)
−2 τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) − βi
)

−µii(t)

[
− βi − τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) + τ−1

+ (pi(t)− ki(t)) pi(t) ki(t)−2 τ−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t)

]
−λii(t) pi(t) ki(t)−2 τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) qi(t). (3.19)
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The first-order conditions of the Hamiltonian, defined in ((3.17)), are given by

∂Hi

∂pi(t)
= e−ζ t qi(t)

(
pi(t)

(
−bi − ki(t)−1)+ 1

)
τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t)

+µii(t)

[
(pi(t)− ki(t))

(
−bi − ki(t)−1) τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t)

+τ−1 h1 ri e
bi (p̄−i(t)−pi(t))−

pi(t)

ki(t)

]
+λii(t) qi(t)

(
−bi − ki(t)−1) τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) . (3.20)

which must equal zero for all t ∈ [0, T ] and i ∈ N.

The second-order condition of the Hamiltonian is given by

∂2Hi

∂pi(t)
2 = e−ζ t qi(t)

(
2
(
−bi − ki(t)−1)+

(
bi + ki(t)

−1)2
)
τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t)

+µii(t)

[
2
(
−bi − ki(t)−1) τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t)

+
(
pti − kti

) (
bi + ki(t)

−1)2
τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t)

]
+λii(t) qi(t)

(
bi + ki(t)

−1)2
τ−1 h1 ri e

bi (p̄−i(t)−pi(t))−
pi(t)

ki(t) . (3.21)

It is well-known in optimal control theory that the solution of the first-order conditions

is a NE when the second-order conditions of Hamiltonians are non-positive for all t ∈

[0, T ] and i ∈ N.

3.3.2 Optimisation Problem for Model II

In Model II, we derive

Fi(pi(t); θi(t)) =

pi(t)
τ−1 +

∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − βi ki(t)
 qi(t),

(3.22)
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Analogous to (3.11)-(3.12), we derive the following state equations

k̇i(t) = pi(t)

τ−1 +
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


−πi − ki(t)

βi +
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

 , (3.23)

q̇i(t) =
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri
qi(t). (3.24)

With the objective function and state equations, the Hamiltonian for insurer i is

given by

Hi = e−ζt

pi(t)
τ−1 +

∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − βi ki(t)
 qi(t)

+
∑
j∈N

µij(t)

[
pj(t)

τ−1 +
∑

`∈N,`6=j

h2 aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj


−πj − kj(t)

βj +
∑

`∈N,`6=j

h2 aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj

]

+
∑
j∈N

λij

 ∑
`∈N,` 6=j

h2 aj

(
1− pj(t)

p`(t)

)
e

pj(t)

kj(t)

rj
qj(t)

 . (3.25)

For any j ∈ N, the adjoint equations are given by

dλij(t)

dt
= − ∂Hi

∂qj(t)
, λij(T ) = 0, (3.26)

dµij(t)

dt
= − ∂Hi

∂kj(t)
, µij(T ) = 0. (3.27)

Lemma 3.2. For any i and t, it holds that λij(t) = 0 and µij(t) = 0 for all j 6= i.

Proof. The proof is similar to the proof of Lemma 3.1, and so it is omitted.



Chapter 3. Non-Cooperative Dynamic Games for General Insurance Markets 61

Due to Lemma 3.2, the Hamiltonian in ((3.25)) simplifies to

Hi = e−ζt

pi(t)
τ−1 +

∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − βi ki(t)
 qi(t)

+ µii(t)

[
pi(t)

τ−1 +
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


−πi − ki(t)

βi +
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

]

+ λii

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri
qi(t)

 , (3.28)

From the adjoint equations, we get

dµii(t)

dt
= − ∂Hi

∂ki(t)

= −e−ζ,t qi(t),

[
pi(t)

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
)

−
∑

j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

))]

−µii(t)

[
(pi(t)− ki(t))

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
)− βi

−
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

]

−λii qi(t)

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
) , (3.29)
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and

dλii(t)

dt
= − ∂Hi

∂qi(t)

= −e−ζt
pi(t)

τ−1 +
∑

j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

− πi − βi ki(t)


−λii

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

 . (3.30)

The first-order conditions of the Hamiltonian in ((3.28)) are given by

∂Hi

∂pi(t)
= e−ζ t qi(t)

[
τ−1 +

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


+pi(t)

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

))]

+µii(t)

[
τ−1 +

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri


− (pi(t)− ki(t))

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

))]

+λii(t) qi(t)

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

)) .(3.31)

which must equal zero for all t ∈ [0, T ] and i ∈ N.
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The second-order condition of the Hamiltonian in ((3.28)) is given by

∂2Hi

∂ri(t)
2 = e−ζ t qi(t)

[
2

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

))
+pi(t)

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
−2ki(t) + pj(t)− pi(t)

ki(t)
2 pj(t)

)]

+µii(t)

[
2

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
− 1

pj(t)
+

1

ki(t)

(
1− pi(t)

pj(t)

))
+ (pi(t)− ki(t))

 ∑
j∈N,j 6=i

h2 ai
e

pi(t)

ki(t)

ri

(
−2ki(t) + pj(t)− pi(t)

ki(t)
2 pj(t)

)]

+λii(t) qi(t)

 ∑
j∈N,j 6=i

h2 ai

(
1− pi(t)

pj(t)

)
e

pi(t)

ki(t)

ri

(
−(ki(t))

2 pi(t)
) ,(3.32)

which must be non-positive for all t ∈ [0, T ] and i ∈ N.

3.4 Numerical Application

In this section, the numerical application for both two models is introduced in a com-

petitive insurance market. Instead of calculating the NE with respect to many players,

more attention is paid to the formation of premium pricing cycles regarding market

competition.

3.4.1 Model I

A two players’ insurance game is constructed for Model I, with insurers 1 and 2. Then,

we have ten variables (p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, λ22), two first-order conditions

of the Hamiltonian for the two players, and eight ODEs (k̇1, k̇2, q̇1, q̇2, ˙µ11, ˙µ22, ˙λ11,

˙λ22).

We observe that when (3.20) equals to zero, the two players’ premium is not corre-

lated, thus ṗ1 can be obtained by differentiating the corresponding solution. Similarly,

ṗ2 can also be calculated. Under these circumstances, we will have 10 variables and 10
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ODEs regarding each variable. Considering the initial conditions and terminal condi-

tions, a Bounded Value Problem (BVP) is formulated, which can be solved using Matlab

Programming.

Algorithm of Calculating Equilibrium Pricing Strategy for Model I

In this section, the main steps of the algorithm are presented, whereas the appendix

provides the details of the algorithm.

Step 1: Calculate p1 when the first-order condition of the Hamiltonian for player 1 is

satisfied.

Step 2: Differentiate the p1 obtained in Step 1 with respect to time t to obtain ṗ1.

Step 3: Repeat steps 1 and 2 with respect to insurer 2 to calculate ṗ2.

Step 4: Right now we have ten variables, p1, p2, k1, k2, q1, q2, µ11, µ22, λ11, λ22 and the

corresponding ordinary differential equations. This is a BVP with six conditions

from the initial information of both players and four terminal conditions from

(3.14) and (3.15), which can be solved by ”bvp45” in Matlab.

Step 5: Test whether the second-order condition of Hamiltonian for both two players are

negative during the whole time interval [0, T ]. If yes, accept the result; If no,

reject.
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Algorithmic Steps using Matlab Programming for Model I

The steps 1 to 3 are presenting using Matlab:

Matlab - Step 1:

% Type in (3.20) with respect to insurer 1, denoted as firstorderH1 .
1: x1=solve(firstorderH1==0, p1) .

Matlab - Step 2:

% Create symbolic variables with respect to t;
1: odex1=diff(x1(t), t);
% odex1 includes diff (k1(t), t), diff (q1(t), t), diff (µ11(t), t) , diff (λ11(t), t).
(3.11), (3.12), (3.19), and (3.18) provide all the above differential
equations.
% Substitute diff (k1(t), t), diff (q1(t), t), diff (µ11(t), t) , diff (λ11(t), t) in odex1.
ṗ1 is obtained.
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Matlab - Step 3:

1: init=bvpinit(linspace(0,3,1000),@bc init);
2: sol=bvp4c(@rhs bvp,@bc bvp,init);
3: t=linspace(0,3,1000);
4: BS=deval(sol,t);
5: plot(t,BS(1,:));

6: function rhs=rhs bvp(t,y);
7: rhs=[ ṗ1; ṗ2;k̇1;k̇2;q̇1;q̇2;µ̇11;µ̇22;λ̇11;λ̇22]

8: function bc=bc bvp(yl, yr)
9: bc=[yl(1)-0.88; yl(2)-1.05; yl(3)-0.6; yl(4)-1; yr(5)-5225; yr(6)-13700;
yr(7); yr(8); yr(9); yr(10)];

% @bc init is the guess.

Numerical Example of Model I

Here, we illustrate an insurance game considering a period of three years. The scenery

in this section is modelled to investigate the competition among two candidates: one

player represents a large market power insurer, while the other is regarded as a relatively

weaker insurer.

Table 3.1 demonstrates the parameter values of our insurance game. Table 3.2 illus-

trates the initial information, including the initial premium, volume of exposure and the

capital per exposure regarding both two insurers.An insurance company with a greater

market power has a larger price sensitivity parameter b. The break-even premium of

both insurers are assumed to be constant during the whole period.
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Number of market participants n 2
Market presence limit factor h1 1
Break-even premium of insurer 1 π1 0.6
Break-even premium of insurer 2 π2 0.609
Price sensitivity parameter of insurer 1 b1 0.2
Price sensitivity parameter of insurer 2 b2 0.28
Standard solvency ratio factor of insurer 1 r1 3.3
Standard solvency ratio factor of insurer 2 r2 2.2
Expected rate of return of insurer 1 β1 0.03
Expected rate of return of insurer 2 β2 0.03
time valuing of money ζ 0.02

TABLE 3.1: Parameter values for Model I

Initial premium of insurer 1 p1(0) 0.88
Initial premium of insurer 2 p2(0) 1.05
Initial exposure volume of insurer 1 q1(0) 5225
Initial exposure volume of insurer 2 q2(0) 13700
Initial capital per exposure of insurer 1 k1(0) 0.6
Initial capital per exposure of insurer 2 k2(0 1

TABLE 3.2: Initial information of insurer 1 and insurer 2

The existence of a NE can be proved by finding out one under the game set up from

Tables 3.1 and 3.2. With the algorithm introduced in Section 3.4.1, a premium profile

of both insurers is calculated, which is presented in Figure 3.2, with negative second-

order Hamiltonian profiles observed for both insurers Figure 3.5. Since the second-

order conditions of the Hamiltonian are satisfied, the premium profile that follows from

the first-order conditions constitutes a NE. Figures 3.3 and 3.4 describe the exposure

volume and capital per exposure accordingly.
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FIGURE 3.2: Equilibrium premium profiles of both insurers over three years time in
Model I. The blue line represents insurer 1’s premium profile and the red line shows in-
surer 2’s premium profile. Premium values are given on y-axis while the corresponding

time is on x-axis.
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FIGURE 3.3: Volume of exposure profiles regarding both insurers over three years time
in Model I. The blue line represents insurer 1’s volume of exposure profile and the red
line shows insurer 2’s. Volume of exposure are given on y-axis while the corresponding

time is on x-axis.
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FIGURE 3.4: Exposure per capital profiles for both insurers over three years time in
Model I. The blue line represents insurer 1’s capital profiles (per exposure) and the red
line shows insurer 2’s. Capital are given on y-axis while the corresponding time is on

x-axis.

Although there is a slightly decrement of value of premium, the larger market power

of insurer 2 yields that the equilibrium premiums of insurer 2 keep in a relatively high

level through the whole time horizon. Insurer 1 adopts a relatively low pricing level

with the purpose of absorbing more policies. Insurer 2 slightly lower its capital (per

exposure) through the competition while insurer’s capital (per exposure) inappreciably

increased. No pricing cycles appear in the equilibrium of Model I. The equilibrium

strategies of the two insurers keep stable over the 3-year period. Different sets of pa-

rameters are tested for Model I, and none of the results illustrate any cycles. An obvious

reason is that there is no correlation between two players’ premium while the first-order

conditions of Hamiltonian are satisfied. Similar findings can be confirmed in [22].
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FIGURE 3.5: Second-order conditions of the Hamiltonians for both insurers in Model
I. The blue one refers to insurer 1 while the red represent insurer 2. Both insures’

second-order conditions keep negative through the whole time horizon.

3.4.2 Model II

Regarding now Model II, like in Section 3.4.1, we consider a two players’ game, with

insurers 1 and 2. Similarly as before, we have ten variables (p1, p2, k1, k2, q1, q2, µ11,

µ22, λ11, λ22), two first-order conditions of the Hamiltonian for the two players, and

eight ODEs (k̇1, k̇2, q̇1, q̇2, ˙µ11, ˙µ22, ˙λ11, ˙λ22).

We can eliminate two variables p2 and λ22, and transfer ˙λ22 to the differential equa-

tion of p1. Under these circumstances, we will have eight variables and eight ODEs

regarding each variable. The backward integration considers the standard Mean Value

Theorem, which is adopted in this section in order to solve the BVP.

Algorithm of Calculating Equilibrium Pricing Strategy for Model II

In this section, the main steps of the algorithm are presented, whereas the appendix

provides the details of the algorithm.
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Step 1: Calculate p2 when the first-order condition of the Hamiltonian for player 1 is

satisfied.

Step 2: Get an expression of λ22 from the first-order condition of insurer 2’s Hamiltonian,

with p2 excluded.

Step 3: Differentiate the expression of λ22 with respect to time t. Generate an ordinary

differential equation of p1.

Step 4: Apply a backward iteration of the system with the first-order conditions of Hamil-

tonian for insurer 1 and 2. Terminal values of 10 variables are required to be used

as inputs. From (3.26) and (3.27), it follows that µ11(T ) = µ22(T ) = λ11(T ) =

λ22(T ) = 0. For the other 6 variables, p1(T ), p2(T ), k1(T ), k2(T ), q1(T ), q2(T )

need to satisfy (3.31) in order to be used as inputs.

Since µ11(T ) = µ22(T ) = λ11(T ) = λ22(T ) = 0, (3.31) does not depend on

q1(T ) and q2(T ) at time T . We use the Matlab solver ’fsolve’ to provide p1(T ),

p2(T ) when k1(T ), k2(T ) are fixed, via (3.31).

Then, q1(T ) and q2(T ) will be guessed. Terminal values of the 10 variables are

used as inputs in the backward iteration.

Step 5: Stop until the initial value of p1, p2, k1, k2, q1 and q2 from backward iteration

equals to the initial data value. Otherwise, we adjust the guess of k1(T ), k2(T ),

q1(T ) and q2(T ).

Step 6: From the previous step, we collect the terminal values that yield the correct initial

values. We check whether the second-order conditions of the Hamiltonians of

both players are negative during the whole time interval [0, T ]. If yes, accept the

equilibrium; If no, reject.

Remark 3.3. A game with more players can be also investigated with a similar algo-

rithm. More loops are required to calculate the equilibrium pricing strategy.
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Algorithmic Steps using Matlab Programming for Model II

The steps 1 to 6 are presenting using Matlab:

Matlab - Step 1:

% Type in (3.31) with respect to insurer 1, denoted as FirstorderH1 .
1: x2=solve(FirstorderH1==0, p2) .

Matlab - Step 2:

% Type in (3.31) with respect to insurer 2, denoted as FirstorderH2 .
1: FirstorderH2 fh=matlabFunction(FirstorderH2) ;
2: FirstorderH2 new=FirstorderH2 fh(a2,r2,h2,τ−1,ζ ,t,p1,x2,k2,q2,µ22,λ22) ;
3: x10=solve(FirstorderH2 new==0,λ22) .
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Matlab - Step 3:

% Create symbolic variables with respect to t;
1: dx10=diff(x10(t), t);
% dx10 includes diff (p1(t), t), diff (k1(t), t), diff (k2(t), t), diff (q1(t), t), diff
(q2(t), t), diff (µ11(t), t) , diff (µ22(t), t), diff (λ11(t), t). (3.24), (3.25),

(3.29), and (3.30) provide all the above differential equations, except
diff (p1(t), t).
% Similar as step 2, substitute diff (k1(t), t), diff (k2(t), t), diff (q1(t), t),
diff (q2(t), t) , diff (µ11(t), t) , diff (µ22(t), t), diff (λ11(t), t) with the

corresponding differential equations using ’matlabFunction’. A new function
is generated including diff (p1(t), t), which is denoted as x 10;
2: x 10 - diff (λ22(t), t) == 0.
% (3.30) provides diff (λ22(t), t), an equation of diff (p1(t), t) is obtained.

Matlab - Step 4:

1: x0=[0.000001 0.000001];
2: p=fsolve(@premium,x0);
3: function F = premium(u);
% Substitute p1(N) as u(1), p2(N) as u(2) in ∂H1

∂p1
and ∂H2

∂p2
.

4: F = [ ∂H1

∂p1
; ∂H2

∂p2
] ;

5: end .

6: for i=N:-1:1 ;
7: t = (i-1) * T/(N-1) ;
8: % 8 ODE systems with 8 variables:

k1(i− 1) = −dt ∗ diff (k1(t), t) + k1(i);
k2(i− 1) = −dt ∗ diff (k2(t), t) + k2(i);
q1(i− 1) = −dt ∗ diff (q1(t), t) + q1(i);
q2(i− 1) = −dt ∗ diff (q2(t), t) + q2(i);
µ11(i− 1) = −dt ∗ diff (µ11(t), t) + µ11(i);
µ22(i− 1) = −dt ∗ diff (µ22(t), t) + µ22(i);
λ11(i− 1) = −dt ∗ diff (λ11(t), t) + λ11(i);

syms v
% Substitute diff (p1(t), t) with p1(i)−v

dt
.

% Replace p2, λ22 with x2,x10 correspondingly in diff (λ22(t), t).
p1(i− 1) = vpasolve(x 10− diff (λ22(t), t) == 0);

9: end.
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Matlab - Step 5:

1: k1=linspace(1.6,2,9) ;
2: x0=[0.000001 0.000001];
3: Y=zeros(length(k1),2);
4: for z=1:length(k1) ;
5: fun= @(x)premium(x,k1(z)) ;
6: Y(z,:)=fsolve(fun,x0);
7: end

8: for z=1:length(k1)
9: p1(N, z) = Y (:, 1); ...
10: for i=N:-1:1
11: W = [0,1];

...
12: if (p1(1, z) > 0.885) && (p1(1, z) < 0.895) && (p2(1, z) > 1.535) && (p2(1, z) < 1.545)

...
13: W(index,1)=[k1(z),1];
14: index = index +1;
15: end
16: end
17: end
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Numerical Example of Model II

An 3-years time insurance game regarding Model II is introduced in this section. The

scenery in this section also investigates the competition among a large market power

insurer and a relatively weaker insurer.

Table 3.3 demonstrates the parameter values in the insurance game. Table 3.4 illus-

trates the initial information of the two players.

According to [62], referring to Lerner Index, insurance company with greater mar-

ket power would have a lower price sensitivity parameter a. Considering a monopoly

insurance market, insurer will not lose any policies while increasing its premium value,

that is, its price sensitivity parameter a = 0. The break-even premium of both insurers

are assumed to be constants during the 3 years.

Number of market participants n 2
Market presence limit factor h2 0.58
Break-even premium of insurer 1 π1 0.6
Break-even premium of insurer 2 π2 0.61
Price sensitivity parameter of insurer 1 a1 2
Price sensitivity parameter of insurer 2 a2 1.5
Standard solvency ratio factor of insurer 1 r1 2
Standard solvency ratio factor of insurer 2 r2 3.5
Expected rate of return of insurer 1 β1 0.03
Expected rate of return of insurer 2 β2 0.03
Discount factor ζ 0.02

TABLE 3.3: Parameter values for Model II

Initial premium of insurer 1 p1(0) 0.89
Initial premium of insurer 2 p2(0) 1.54
Initial exposure volume of insurer 1 q1(0) 3240
Initial exposure volume of insurer 2 q2(0) 5240
Initial capital per exposure of insurer 1 k1(0) 1.28
Initial capital per exposure of insurer 2 k2(0 1.96

TABLE 3.4: Initial information of insurer 1 and insurer 2

With the algorithm introduced in Section 3.4.2, a NE premium profile for the two

insurers is calculated, which is presented in Figure 3.6. Similarly as for Model I, veri-

fication that it is a NE follows from the negative second-order Hamiltonian profiles for
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both insurers Figure 3.10. Figures 3.7 and 3.8 describe the exposure volume and capital

per exposure, accordingly. Pricing cycles are observed in the whole time period. Fig-

ure 3.6 supports the opinion in previous literatures [10, 15, 61, 11, 32, 36] that pricing

cycles in insurance markets are caused by market competition. Although the premiums

between the two insurers are not proportional, the shape of premium cycle profiles is

similar. Figure 3.6 suggests that insurer 1 follows insurer 2’s pricing strategy. The pre-

mium of insurer 1 even falls below the break-even premium level from the 3rd month to

the 6th month in order to keep competitive and attract more policies. The two insurers’

total capital, displayed in Figure 3.9, remains stable for the first two years. Due to the

increment of premium, both insurers gain massive capital in the third year, which is

particularly true for insurer 1.
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FIGURE 3.6: Equilibrium premium profiles of both insurers over three years time in
Model II. The blue line represents insurer 1’s premium profile and the red line shows
insurer 2’s premium profile. Premium values are given on y-axis while the correspond-

ing time is on x-axis.
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FIGURE 3.7: Volume of exposure profiles regarding both insurers over three years time
in Model II. The blue line represents insurer 1’s volume of exposure profile and the red
line shows insurer 2’s. Volume of exposure are given on y-axis while the corresponding

time is on x-axis.
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FIGURE 3.8: Exposure (per capital) profiles regarding both insurers over three years
time in Model II. The blue line represents insurer 1’s capital profiles (per exposure)
and the red line shows insurer 2’s. Capital are given on y-axis while the corresponding

time is on x-axis.
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FIGURE 3.9: Total capital profiles regarding both insurers over three years time in
Model II. The blue line represents insurer 1’s capital profiles and the red line shows

insurer 2’s. Capital are given on y-axis while the corresponding time is on x-axis.
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FIGURE 3.10: Second-order conditions of the Hamiltonians for both insurers in Model
II. The blue one refers to insurer 1 while the red represent insurer 2. Both insures’

second-order conditions keep negative through the whole time horizon.

Pricing cycles in Model II are appeared to be related with profit margins. When

the break-even premium is relatively low regarding insurers’ premium, insurers intend

to compete with their rivals and more pricing cycles are appeared. Figure 3.11 demon-

strates the equilibrium premium profiles while break-even premium π1 = 0.8, π1 = 0.85

and other parameters remain the same in Tables 3.3 and 3.4. Figure 3.12 shows the equi-

librium premium profiles while break-even premium π1 = 1.2, π1 = 1.1. As illustrated

in Figure 3.11, premium cycles are founded, but with less amounts; while both insurers’

equilibrium premium slightly increased over the time horizon smoothly.
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FIGURE 3.11: Equilibrium premium profiles of both insurers over three years time in
Model II, while π1 = 0.8, π1 = 0.85. The blue line represents insurer 1’s premium
profile and the red line shows insurer 2’s premium profile. Premium values are given

on y-axis while the corresponding time is on x-axis.
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FIGURE 3.12: Equilibrium premium profiles of both insurers over three years time in
Model II, while π1 = 1.2, π1 = 1.1. The blue line represents insurer 1’s premium
profile and the red line shows insurer 2’s premium profile. Premium values are given

on y-axis while the corresponding time is on x-axis.



Chapter 4

Multi-stage Stochastic General

Insurance Games with Risk Aversion

Players

4.1 Motivation

In general insurance market, the claims of policies are always the focused part to be

calculated since the claim of each policy is unpredictable. The uncertainty of repaid

claims differs insurance product from other products. In the previous chapters, the con-

stant break-even premium framework is expected to be further analyzed. The expendi-

tures of insurance companies will be discussed separately as exposure related costs and

non-exposure-based costs. In this chapter, the exposure-based component is assumed to

be stochastic.

A multi-stage stochastic game will be constructed. Insurers are considered to be

risk-averse, that is, insurance companies would like to set risk-premiums on their prod-

ucts with the purpose of avoiding risk. Constant absolute risk-aversion (CARA) func-

tion will be adopted in this chapter for each player. The multi-stage insurance game will

be solved by finding out the subgame perfect Nash equilibrium. A numerical example

80
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will be given to explore the effect of risk aversion on premium pricing strategy with

stochastic claims .

4.2 Baseline Model

Considering an insurance market with N=1,...,n insurers, this section investigate non-

cooperative games over M=1,...,m stages for insurance market. Each insurer is a player

and assumed to maximize its expected utility of net income for every single stage. That

is, the preferences of insurance companies are explicitly myopic. 1

Different from other products, the claim of insurance policies are not fixed. Re-

garding the uncertain claim, we explicitly separate the ”break-even premium” (which

is mentioned in both Chapter 2 and Chapter 3) into two components: exposure-based π

and non-exposure-based π̂. For i ∈ N and s ∈M, we propose π̂ is a constant and

πsi∼N
(
µsi , σ

s
i

2
)

(4.1)

π̂ are the costs which are not related with policies, such as labor costs, operating

costs, building expenses, etc. π investigates the costs based on holding the exposures,

such as claims, etc. The costs per exposure are modelled by summing up all the risks of

expenditure and then divided into each exposure. Note that for any insurer i at different

stage s, µsi and σsi could be different due to market conditions. Insurance companies

usually predict the values based on previous stages’ information and market situations.

In line with Chapter 2, the net income Isi that concerns insurer i and stage s is

formulated as follows,

Isi = −αiws−1
i + (1− αi)(psi − πsi )qsi − π̂si .

1This chapter aims to investigate the influence of stochastic claims on premium pricing. In addition,
the dynamic programming has been considered in previous chapter. Hence we assume that insurers are
myopic. Relevant assumptions are used in many papers of game theory [53, 27, 38, 29, 26].
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For insurer i, psi is the premium value per unit of exposure at stage s; qsi represents

the holding exposure volume at stage s; wsi is the holding wealth at stage s. psi , q
s
i , π

s
i ,

π̂si are all positive and αi ∈ (0, 1) is a given parameter that refers to the cost ratio

of holding insurer i’s wealth. Each insurer is assumed to receive the premium from

policyholders at the beginning of s and psi , q
s
i , π

s
i , π̂

s
i remain the same at stage s, i.e.

time in interval [s, s + 1) . It is also assumed that each insurer has perfect knowledge

of its previous information, which is regarded as constants at stage s. A decision of

premium psi will affect the volume of exposure qsi for insurer i due to the competition

with other insurers. The volume changes of q among stages cause further differences to

the net income of insurers and the market competition henceforth.

Referring to (4.1), one can deduce that

Isi∼N (µsIi, σ
s
Ii) .

Where

µsIi = −αiws−1
i + (1− αi)(psi − µsi )qsi − π̂si ,

σsIi = (1− αi)2 qsi
2 σsi

2.

Other than previous chapters, insurers are regarded as risk averse, i.e, risk pre-

mium will be applied in pricing insurance policies. Furthermore, Constant absolute

risk-aversion (CARA) function is adopted. That is,

U(Isi ) = −e−λsi Isi , λsi > 0.

λsi is denoted as risk averse parameter. Since Isi is normally distributed, according

to [3], the objective of insurer i to maximize the expected utility E[U(Isi )] of the net

income at stage s is equivalent to
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Maxpsi usi = µsIi −
1

2
λsi σ

s
Ii

= −αiws−1
i + (1− αi)(psi − µsi )qsi − π̂si

−1

2
λsi (1− αi)2 qsi

2 σsi
2. (4.2)

usi is the payoff of insurer i at stage s.

Moreover note that the Arrow-Pratt index of absolute risk aversion is given by

− U ′′(Isi )

U ′(Isi )
= λsi .

This means that, at stage s, the larger λsi , the more risk averse insurer i is.

Similar as previous chapters, the value of qsi needed to be further analyzed which

implies the competition of insurance market.

4.3 Market Competition

This section investigates the quotient price function in [22], which considers the market

average premium (exclude insurer itself) as an aggregate. The exposure volume is mod-

elled through the comparison insurer’s premium strategy with market average premium

at current stage,

qsi =

(
h− ai

psi
p̄s−i

)+

qs−1
i

Where h is the market presence limit factor, which controls the amount of exposure

insurers could gain attributable to the competition. ai is price sensitivity parameter of

insurer i 2. Both h and ai are positive. p̄s−i is the market average premium exclude

insurer i at stage s. One can deduce the following lemma from Eq. (4.2).

2Price sensitivity parameter ai plays a similar role regarding previous chapters, which is not further
investigated here.
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Lemma 4.1. For the above proposed quotient price function, the payoff usi of insurer i

at stage s is given by

usi = −αiws−1
i + (1− αi) (psi − µsi )

(
h− ai

psi
p̄s−i

)
qs−1
i − π̂si

= − 1

p̄s−i
(1− αi) ai qs−1

i

(
1 +

1

2
σsi

2 λsi (1− αi)
ai
p̄s−i

qs−1
i

)
psi

2

+ (1− αi) qs−1
i

(
h+

ai µ
s
i

p̄s−i
+ λi h (1− αi)

ai
p̄s−i

σsi
2 qs−1

i

)
psi

−αiws−1
i − π̂si − (1− αi) qs−1

i µsi h−
1

2
λsi (1− αi)2 h2 σsi

2 qs−1
i

2
. (4.3)

4.4 Game Construction

Let us define an N-insurer game, G, in a M-stage framework: for a stage s ∈ M,

the number of insurer is n. Each insurer i’s strategy at stage s is P s
i , which stands

for the action setting premium as the value of psi , whereas Pi is the set of strategies.

Pi ≡ P 1
i ×· · ·×Pm

i is the strategy profile for i over all stages. We use P̃ s
i to denote the

equilibrium strategy for insurer i at stage s and P̃i to denote the equilibrium strategy

profile over all stages. Insurer i’s payoff function is defined as usi : Ps → R, where

Ps ≡ Ps1× · · ·×PsN and p is an arbitrary profile in P . The notation ps−i ∈P−i stands

for {P s
1 , . . . , P

s
i−1, P

s
i+1, . . . , P

s
Ns}, which is used to represent the strategy profile of

other players at time t. (P s
i ,P

s
−i) ∈Ps decomposes a strategy profile in two parts, the

insurer i’s strategy and other insurers’ components. Given this game in the insurance

market, instead of calculating the optimal premium that maximises a single insurer’s

wealth, the calculation of the subgame perfect Nash equilibrium is targeted. Note that

every subgame perfect equilibrium is a Nash equilibrium.

Here we give the definition of a multi-stage stochastic insurance game with risk

aversion players with respect to the model above.

Definition 4.2. A game G =< (Pi, usi )i∈N,s∈M > has a finite set of players N, a finite

set of stages M, with compact, convex, positive strategy set Pi with respect to every i,
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whereas usi is the payoff function for i at stage s. This type of game is called Multi-stage

Stochastic Insurance Game with Risk Aversion Players.

Moreover, the definition of Subgame Perfect Nash Equilibrium is given as follows.

Definition 4.3 (Subgame Perfect Nash Equilibrium). [40] A strategy profile P̃ is a Sub-

game Perfect Nash Equilibirum (SPE) in game G if for any subgame G’ of G, P̃|G′ is a

Nash Equilibrium of G’ .

4.5 Main Results

Lemma 4.4. Based on the payoff functions stated in the Eq. (4.3), G is an aggregate

game.

Proof. Denote g = p̄s−i as the aggregate of GI game. Then, the payoff function turns

out to be

usi = −αiws−1
i + (1− αi) (psi − µsi )

(
h− ai

psi
g

)
qs−1
i − π̂si

= −1

g
(1− αi) ai qs−1

i

(
1 +

1

2
σsi

2 λsi (1− αi)
ai
g
qs−1
i

)
psi

2

+ (1− αi) qs−1
i

(
h+

ai µ
s
i

g
+ λi h (1− αi)

ai
g
σsi

2 qs−1
i

)
psi

−αiws−1
i − π̂si − (1− αi) qs−1

i µsi h−
1

2
λsi (1− αi)2 h2 σsi

2 qs−1
i

2
.

There exists an aggregate function in G, where the payoff function is only depend on

insurer i’s strategy P s
i and g. Thus, the statement of the Lemma is derived.

Lemma 4.5. The Nash equilibrium at any stage s in G exists.

Proof. Pi, is a compact, convex strategy set, and usi is a concave function of psi . The

Nash equilibrium at any stage s exists according to fixed point theorem [1].

Theorem 4.6. Subgame Perfect Nash Equilibrium (SPE) in game G exists.
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Proof. For each stage of game G, it is a subgame G’ of G with imperfect information.

From Lemma 4.5, start from the last stage m by backward induction and at each stage

there exist a equilibrium premium strategy. If SPE does not exist in game G, it is a

contradiction.

Lemma 4.7. Considering the game G with the lower bound ⊥Pi
and up bound >Pi

for

Pi. If p̃si ∈ [⊥Pi
,>Pi

], p̃si is best-response correspondence for insurer i. While

p̃si =

(
h+

ai µ
s
i

p̄s−i
+ λi h (1− αi) ai

p̄s−i
σsi

2 qs−1
i

)
2 ai

(
1 + 1

2
σsi

2 λsi (1− αi) ai
p̄s−i

qs−1
i

) p̄s−i (4.4)

Proof. p̃si is the solution while the first order derivatives of usi = 0. It is shown below

that the first order derivatives of usi is negative.

∂2usi
∂psi

2 = − 2

p̄s−i
(1− αi) ai qs−1

i

(
1 +

1

2
σsi

2 λsi (1− αi)
ai
p̄s−i

qs−1
i

)
< 0

When p̃si ∈ [⊥Pi
,>Pi

], p̃si is a global maximum. Thus, the statement of the Lemma

is derived.

4.6 Numerical Example

In this section, a numerical example with 5 non-life insurance companies based on the

number of contracts (i.e., volume of business) they have in their portfolios is proposed

to illustrate the main modelling characteristics and theoretical findings of this chapter

regarding 5 stages. Referring to the information at previous s − 1, the pricing strategy

for the entire market of insurers is derived by finding the Nash equilibrium premiums at

stage s. The impact of different parameters involved in the process to the equilibrium

premiums is also analyzed. 3

3Finding out a pure strategy SPE is the approach to solve the game G in the section of application.
The uniqueness of Nash Equilibrium at each stage is not further investigated in this chapter.
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It is considered here that all insurance companies price policies at any positive real

numbers, i.e. P s
i ∈ (0,+∞). This means that, if p̃si is positive, it is the equilibrium pre-

mium for insurer i at stage s. Regarding stage s, one can find out the Nash equilibrium

profiles by implementing the following algorithm in Matlab:

Step 1: Type in Eq.(4.4) for all i .

Step 2: Solve the system of p̃si using code ’fsolve’ starting at a positive point.

Parameters Insurer Insurer Insurer Insurer Insurer
1 2 3 4 5

q0
i 1000 2000 3000 2000 500
w0
i 40000 40000 100000 40000 10000

h 3 3 3 3 3
αi 0.03 0.03 0.03 0.03 0.03
ai 2.2 2 1.6 2 2.5
π̂si , ∀s ∈M 15000 20000 30000 20000 8000
λsi , ∀s ∈M 0.25 0.1 0.2 0.25 0.1
µsi , ∀s ∈M 100 100 100 100 100
σsi , ∀s ∈M 0.2 0.2 0.2 0.2 0.2

TABLE 4.1: Benchmark Parameters

The standard values of all parameters are set up in Table 4.1, and they can be used as

a benchmark. A scenario is investigated with a market leader insurer 3, two equivalent

size insurers 2 & 4 and market followers 1 & 5. The price sensitivity parameter ai

which indicates the market power of insurers is assumed to be the same over all stages.

The less ai indicates larger market power since insurer receives more policies while

competing with other insurers. The only difference between insurer 2 & 4 is that they

have different degrees of risk inverse as λs2 = 0.1 and λs4 = 0.25. As mentioned in

previous section, the larger λsi , the more risk averse insurer i is. This means, insurer 4

would like to set a larger risk premium to avoid risk.



Chapter 4. Multi-stage Stochastic General Insurance Games with Risk Aversion
Players 88

Stages Insurer Insurer Insurer Insurer Insurer
s 1 2 3 4 5

s=1 204.3472 216.3396 255.7188 220.8273 185.5081
s=2 203.9184 216.0736 255.6116 220.1621 185.2177
s=3 203.4642 215.7725 255.3761 219.4802 184.9129
s=4 203.0978 215.5162 255.2366 218.9803 184.6662
s=5 202.8270 215.3555 255.2158 218.5868 184.6028

TABLE 4.2: Equilibrium Premium Values p̃si

Stages Insurer Insurer Insurer Insurer Insurer
s 1 2 3 4 5

s=1 955 2009 3080 1893 462
s=2 912 2018 3131 1792 433
s=3 874 2009 3184 1721 402
s=4 838 1999 3238 1653 373
s=5 801 2007 3285 1584 405

TABLE 4.3: Volume of Exposure qsi

Stages Insurer Insurer Insurer Insurer Insurer
s 1 2 3 4 5

s=1 50476 54879 130050 50999 14239
s=2 45525 55450 139840 38781 11308
s=3 40962 54348 144560 27500 8713
s=4 37460 53261 152520 19967 6317
s=5 33922 52313 159360 12304 8990

TABLE 4.4: Wealth wsi

Table 4.2 illustrates the calculated SPE profiles with the benchmark data from Table

4.1, the corresponding exposure volume and wealth are demonstrated in Table 4.3 and

Table 4.4 respectively. Given by the benchmark price sensitivity parameters, the whole

market intends to decrease premiums over the 5 stages. Market leader insurer 3 gains



Chapter 4. Multi-stage Stochastic General Insurance Games with Risk Aversion
Players 89

policies from other four insurers step by step and it is the only insurer who has a mono-

tone increasing wealth. 4 Since insurer 2 and insurer 4 have different risk averse degree,

the performance of these two players are significantly different. As expected, insurer 4

price its premium higher than insurer 2 at each stage of game in order to cover a higher

risk premium. Regarding the same µsi and σsi over all 5 stages, insurer 2 accumulate

more wealth.

However, in realistic, µsi and σsi could be different between insurers at different

stages due to market conditions. Insurance companies usually predict the values based

on previous stages’ information and market situations.
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FIGURE 4.1: Diversity of equilibrium premium profiles with different λ3. Regard-
ing the first stage game with other parameters remain the same in Table 4.1, insurer
3’s risk averse parameter is investigated, which takes values from 0.01 to 0.5. The

corresponding 6 different equilibrium premium profiles are given in the legend.

Regarding the first stage of game, Figure 4.1 investigates the equilibrium premium

profiles’ changes when the market leader insurer 3 change its degree of risk averse. The

other parameters remain the same in Table 4.1. As illustrated, its equilibrium premium

value increases as λ1
3 is larger and the whole market follows its pricing strategy. The

smaller scale of insurer, the change of premium is less. The similar situation happens

with different µ1
3 and σ1

3 , which is shown in Figure 4.2 and Figure 4.3 respectively.

4Market competition situation could be different with different price sensitivity parameters other than
the benchmark one.
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FIGURE 4.2: Diversity of equilibrium premium profiles with different µ3. Regarding
the first stage game with other parameters remain the same in Table 4.1, µ3 is investi-
gated, which takes values from 80 to 120. The corresponding 5 different equilibrium

premium profiles are given in the legend.
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FIGURE 4.3: Diversity of equilibrium premium profiles with different σ3. Regarding
the first stage game with other parameters remain the same in Table 4.1, σ3 is investi-
gated, which takes values from 0.1 to 0.3. The corresponding 5 different equilibrium

premium profiles are given in the legend.

Differ from the benchmark parameters in Table 4.1, µsi and σsi keeps changing in

real insurance markets. Considering the random choice of µsi ∈ [70, 120] and σsi ∈

[0.01, 0.4], the equilibrium premium profiles of all 5 insurers over 5 stages are given in

Figure 4.4. Pricing cycles can be observed.
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FIGURE 4.4: Equilibrium Premium Profiles of 5 insurers over 5 stages.



Chapter 5

Conclusion

This thesis investigates game-theoretical approaches to pricing general insurance premi-

ums in competitive non-corporative market environments. Both deterministic stochastic

Games were constructed under different assumptions with the purpose of pricing equi-

librium premium by solve the games.

Chapter 2 models two-stage non-cooperative games in an insurance market to inves-

tigate how the competition impacts the pricing process of non-life insurance products.

Insurers compete to maximise their payoffs in a second stage by adjusting premium

pricing strategies, which leads to diversity of the volume of exposure. We further char-

acterise one insurer’s second-stage modified volume of exposure in a way that sums

up the exposure flows in or out during competitions with other insurers. The modi-

fied second volumes of exposure in any two insurers’ competition are characterised by

transferring one insurer’s second stage premium to the other’s first-stage premium and

modelling the changing volume through a definition of price elasticity. Two models are

discussed in detail regarding the modified volume of exposure: simple exposure differ-

ence model I (GI) and advanced exposure difference model II (GII). Using payoffs in

these two models, two N-player games are constructed with non-linear aggregate and

positive, compact but not necessarily convex, premium strategy sets. A potential game

with an aggregation technique is applied: we prove the existence of a pure Nash equi-

librium of these two games by determining the potential functions. Both games’ pure

92
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Nash equilibriums can be solved by calculating the best-response equation systems.

The numerical results for 12-player insurance games are presented under the framework

that the best-response selection premium strategies always provide the global maximum

value of the corresponding payoff function.

Chapter 3 models a generalized finite-time differential game in an insurance market

to study how the competition impacts the pricing process of non-life insurance products.

An optimal control theory approach is applied to determine premiums in the open-

loop Nash Equilibrium. Two models are proposed. The first one (Model I) adopts the

exponential demand function proposed by [54, 55] and [22], and the second one (Model

II) is formulated based on the aggregate exposure proposed by [62]. The motivation

behind the consideration and implementation of models I and II is related to compare

the existing directions in the corresponding insurance literature. Numerical examples

illustrate the premium dynamics, and show that premium cycles do exist in equilibrium

for the Model II.

Chapter 4 constructs a multi-stage stochastic game with risk aversion players. The

expenditures of insurance companies are discussed separately as exposure related costs

and non-exposure related costs. The exposure related break-even premium is modelled

as stochastic. A numerical example of 5 players during 5stages is shown to analyze the

effect of insurers’ risk averse on premium pricing.

To conclude, other than classic approaches of general insurance premium pricing,

this thesis studies the competition in insurance markets based on different game struc-

tures. Limited by the difficulty of adapting real data from market, the ad hoc parameters

are selected to obtain reasonable equilibrium premium values in numerical examples,

including pricing sensitivity parameters ai, market presence limit factor h, etc. Further

researches may be continued with two directions: adapting new concepts from game

theory to investigate the premium pricing strategy in general insurance market; or, im-

prove the exist models with characterizing the algorithm of parameters’ selection.
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