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Abstract 

 

Loss-of-function mutations of GNA11, which encodes G-protein subunit α11 (Gα11), a signaling 

partner for the calcium-sensing receptor (CaSR), result in familial hypocalciuric hypercalcemia 

type 2 (FHH2). FHH2 is characterized by hypercalcemia, inappropriately normal or raised 

PTH concentrations, and normal or low urinary calcium excretion. A mouse model for FHH2 

which would facilitate investigations of the in vivo role of Gα11 and the evaluation of 

calcimimetic drugs, that are CaSR allosteric activators, is not available. We therefore screened 

DNA from >10,000 mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for 

Gna11 mutations, and identified a Gα11 variant, Asp195Gly (D195G), which in vitro down-

regulated CaSR-mediated intracellular calcium signaling, consistent with it being a loss-of-

function mutation. Treatment with the calcimimetic cinacalcet rectified these signaling 

responses. In vivo studies showed mutant heterozygous (Gna11+/195G) and homozygous 

(Gna11195G/195G) mice to be hypercalcemic with normal or increased plasma PTH concentrations, 

and normal urinary calcium excretion. Cinacalcet (30mg/kg orally) significantly reduced 

plasma albumin-adjusted calcium and PTH concentrations in Gna11+/195G and Gna11195G/195G 

mice. Thus, our studies have established a mouse model with a germline loss-of-function Gα11 

mutation, that is representative for FHH2 in humans, and demonstrated that cinacalcet can 

correct the associated abnormalities of plasma calcium and PTH.  
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Introduction 

 

Familial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disorder of extracellular 

calcium (Ca2+
o) homeostasis characterized by lifelong elevations in serum calcium concentrations in 

association with normal or mildly elevated serum parathyroid hormone (PTH) concentrations, and 

normal or low fractional excretion of calcium (1-4). FHH is caused by a reduction in the sensitivity of 

the Ca2+
o-sensing receptor (CaSR) signaling pathway to alterations in the prevailing Ca2+

o 

concentration ([Ca2+]o) (1-4). The CaSR is a widely expressed family C G-protein coupled receptor 

(GPCR) that regulates PTH secretion and urinary calcium excretion by transducing elevations in 

[Ca2+]o into multiple intracellular signaling cascades in the parathyroid glands and kidneys, 

respectively (5, 6). In the parathyroid glands, the CaSR has been shown to couple to the Gq/11 protein 

family (7), which activates phospholipase C (PLC), thereby increasing intracellular calcium (Ca2+
i) 

and mitogen-activated protein kinase (MAPK) signaling responses (8, 9), which in turn leads to 

decreased parathyroid PTH secretion.  

FHH is a genetically heterogeneous disorder with three recognized forms referred to as FHH 

types 1-3 (FHH1-3) (1). FHH1 (OMIM #145980) is caused by heterozygous loss-of-function 

mutations of the CaSR, which is encoded by the CASR gene on chromosome 3q21.1 (1). FHH2 

(OMIM #145981) is due to heterozygous loss-of-function mutations of G-protein subunit α11 (Gα11), 

which is encoded by the GNA11 gene on chromosome 19p13.3, and to date, three FHH2-associated 

mutations have been reported, comprising two missense mutations, Thr54Met and Leu135Gln, and an 

in-frame isoleucine deletion at codon 200 (Ile200del) (3, 10). FHH3 (OMIM #600740) is caused by 

heterozygous loss-of-function mutations of the adaptor protein-2 σ subunit (AP2σ), encoded by the 

AP2S1 gene on chromosome 19q13.3, which is involved in the clathrin-mediated endocytosis of cell-

surface proteins such as the CaSR (4, 11).  

A mouse model for FHH1 has previously been generated by targeted germline disruption of 

the Casr gene, and heterozygous (Casr+/-) mice were shown to have a phenotype resembling that of 

FHH1 patients with elevated serum concentrations of calcium and PTH, and low urinary calcium 

excretion (12). In addition, homozygous (Casr-/-) mice had features of neonatal severe 
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hyperparathyroidism (NSHPT), which is caused by biallelic inactivating CaSR mutations (1), and 

exhibited growth retardation and died within the first 30 days of life (12). An in vivo model is not 

available for FHH2, although mice with parathyroid-specific combined ablations of both the Gna11 

and Gnaq (encoding Gαq) genes have previously been reported to develop marked hypercalcemia and 

hyperparathyroidism (7). We therefore sought to establish a mouse model for FHH2 to define the in 

vivo role of Gα11 in Ca2+
o homeostasis, and to undertake a more detailed characterization of the 

phenotype of this disorder, as limited information is available from the few FHH2 patients reported to 

date (3, 10). In addition, a mouse model for FHH2 would facilitate evaluation of therapeutic drugs 

such as CaSR allosteric activators, also known as calcimimetics (13). To establish a mouse model for 

FHH2, due to a germline loss-of-function GNA11 point mutation (3, 10), we screened a DNA archive 

of >10,000 samples from male mice that had mutations induced by treating them with N-ethyl-N-

nitrosourea (ENU), a chemical mutagen. ENU is an alkylating agent that introduces point mutations 

via transfer of an alkyl group from ENU to a DNA base, thus leading to mispairing and base pair 

substitution during subsequent DNA replication (14, 15). ENU mutagenesis programs utilize two 

complementary approaches that are phenotype-driven and genotype-driven screens. In phenotype-

driven screens, offspring of mutagenized mice are assessed for abnormalities in a hypothesis-

generating strategy, which may elucidate new genes, pathways, and mechanisms for disease 

phenotypes (14, 15). Genotype-driven screens in which mutations in the gene of interest are sought 

are hypothesis-driven and are feasible by available parallel archives of tissue-DNA and sperm 

samples from mutagenized male mice (14, 15). The archived tissue-DNA samples from the 

mutagenized male mice are used to search for the mutations in the gene of interest, and once these 

mutations are found, then a sperm sample from the male mouse with the mutation is used for in vitro 

fertilization (IVF) of normal female mice to establish progeny with the mutation (14, 15). The 

probability of finding three or more variant alleles in an archive of tissue-DNA samples from >5000 

ENU-mutagenized mice is >90% (14). We sought for ENU-induced Gna11 variants in tissue-DNA 

samples from >10,000 male mice treated with ENU, with the aim of establishing a mouse model for 

FHH2. 
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Results 

 

Identification and analysis of five Gna11 variants in ENU-mutagenized mice.  An analysis using 

melting curve analysis (16) of tissue-DNA samples from >10,000 ENU-mutagenized male mice, of 

the seven exons and 12 intron-exon boundaries of the Gna11 gene revealed the presence of five 

Gna11 variants, comprising c.621C>T, c.637T>A, c.682G>A, c.826A>g, and c.1048T>C 

(Supplementary Table 1). These five Gna11 variants predicted the occurrence of 4 missense variants 

(Ile132Asn, Arg147His, Asp195Gly and Val269Ala) and one nonsense variant (Gln127Stop) (Figure 

1A and Supplementary Figure 1). Bioinformatic analysis predicted all the Gα11 variants to be 

damaging and likely disease-causing (Supplementary Table 1). FHH2 has been reported to be caused 

by either an in-frame deletion or missense substituitions affecting Gα11 (3, 10) and we therefore 

further characterised only the four missense Gα11 variants identified in ENU-mutagenized mice. All of 

these 4 missense variants affected evolutionary conserved residues (Figure 1B, Supplementary Table 

1 and Supplementary Figure 1) and two variants (Asp195Gly and Val269Ala) were located in the 

Gα11 GTPase domain, which mediates GPCR binding, guanosine triphosphate (GTP) hydrolysis, and 

effector coupling; and the other two variants (Ile132Asn and Arg147His) were located in the Gα11 

helical domain, which stabilises guanine nucleotide binding (Figure 1A and Supplementary Figure 1) 

(17). Three-dimensional modeling using the reported crystal structure of the related Gαq protein (18) 

predicted the Asp195Gly variant to disrupt polar contacts within the Gα11 GTPase domain (Figure 1C 

and D), whereas the other missense variants were not predicted to alter intramolecular interactions 

within the Gα11 protein (Supplementary Figure 1). We therefore selected the Asp195Gly (D195G) 

variant for functional characterization for the following four reasons. First, this variant is located 

within the switch regions of the Gα11 GTPase domain (Figure 1B and C), which are critical for 

mediating Gα-subunit conformational changes upon GTP binding, and also for coupling to 

downstream effector proteins such as PLC (19, 20). Second, the Asp195Gly variant is situated within 

a 13 amino acid region (residues 193-205), which links switches I and II (Figure 1B and C), and is the 

location of a reported FHH2-causing Gα11 mutation (Ile200del) (3). Third, this 13 amino acid linker 

region also contains the tetrapeptide β2-β3 loop (residues 196-199), which mediates G-protein-GPCR 
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interactions (21) (Figure 1C), and our reported mutagenesis studies have shown that disruption of the 

Gα11 β2-β3 loop impairs signalling in CaSR-expressing cells (3). Fourth, three-dimensional modeling 

of the Asp195Gly Gα11 variant predicted that substitution of the WT Asp195 residue with the variant 

Gly195 residue would lead to a loss of a polar contact within the Gα11 β2-β3 loop, which would likely 

disrupt this tetrapeptide loop (Figure 1D), and thereby impair GPCR binding and Gα11 activation (3, 

19, 20). These combined observations indicated that the Asp195Gly variant was highly likely to be a 

pathogenic mutation. 

 

In vitro functional characterization of the Asp195Gly Gα11 mutation. To investigate the effects of 

these predicted Gα11 structural changes due to the Asp195Gly mutation on CaSR-mediated signaling, 

human embryonic kidney (HEK) 293 cells stably expressing the CaSR (HEK-CaSR) were transiently 

transfected with pBI-CMV2-GNA11-GFP constructs expressing either the WT (Asp195) or variant 

(Gly195) Gα11 proteins, as reported (3). This bidirectional pBI-CMV2 vector allows for co-expression 

of Gα11 and GFP at equivalent levels (3). Expression of the CaSR, Gα11, and GFP was confirmed by 

fluorescence microscopy and/or Western blot analyses (Figure 2A and B). The expression of Gα11 

was shown to be similar in cells transiently transfected with WT or mutant proteins and to be greater 

than that observed in untransfected cells (Figure 2B). Moreover, the expression of mutant Gα11 in 

cells that endogenously express WT Gα11 (Figure 2B), corresponded to the heterozygous situation 

reported in FHH2 patients (3, 10). The Ca2+
i responses to alterations in [Ca2+]o of cells expressing the 

different GNA11 vectors were assessed using a multi-well assay that utilized the Fluo-4 Ca2+-binding 

dye, as reported (22). The Ca2+
i responses were shown to increase in a dose-dependent manner 

following stimulation with increasing [Ca2+]o (Figure 2C). However, responses in mutant Gly195-

expressing cells were significantly decreased compared with WT-expressing cells. (Figure 2C). Thus, 

the mutant Gly195-expressing cells showed a rightward shift in the concentration-response curve 

(Figure 2C), with a significantly increased mean half-maximal response (EC50) of 3.39mM (95% 

confidence interval (CI), 3.26-3.53) compared to 2.70mM (95% CI, 2.53-2.88) for WT (Asp195) 

expressing cells (p<0.0001) (Figure 2C and D). These results demonstrated that the Gα11 Asp195Gly 

mutation is a loss-of-function mutation, similar to mutations that lead to FHH2 (3, 10). We next 
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investigated the ability of the CaSR allosteric activator, cinacalcet, to rectify this loss-of-function 

associated with the Asp195Gly Gα11 mutation. Cinacalcet was added to Gly195 mutant cells at a 

10nM concentration, as this dose has previously been reported to normalize the altered signaling 

responses associated with FHH2-causing Gα11 mutations in vitro (23). An assessment of Ca2+
i 

responses showed 10nM cinacalcet to induce a leftward shift of the concentration-response curve of 

cells expressing the Gly195 mutant Gα11 protein (Figure 2C) and decrease their mean EC50 value to 

2.70mM (95% CI, 2.60–2.80 mM), a value that was indistinguishable from the EC50

 

of untreated WT 

cells (Figure 2C and D). Thus, cinacalcet normalised the signaling responses of Gly195 mutant cells. 

  

In vivo functional analysis in mice harboring the germline Gna11 Asp195Gly mutation. To investigate 

the in vivo effects of the Asp195Gly Gα11 mutation on Ca2+
o homeostasis, ENU mutagenesis-derived 

mice harboring this mutation were established on the C3H inbred genetic background (24). DNA 

sequence analysis confirmed the mutant mice to harbor a germline A-to-G transition at c.584A>G at 

codon 195 of the Gα11 protein resulting in an Asp (D) to Gly (G) missense substitution (Figure 3A and 

B). This mutation led to a gain of a HaeIII restriction endonuclease site (Figure 3C), which was used 

to confirm the presence of the mutation (Figure 3D), and for genotyping of subsequent generations of 

mice. Heterozygous-affected (Gna11+/195G) mice were healthy and fertile, and an analysis of offspring 

bred from crosses of Gna11+/195G mice yielded homozygous-affected (Gna11195G/195G) mice and 

significant deviations from the Mendelian inheritance expected ratio of 1:2:1 for the WT (Gna11+/+): 

Gna11+/195G and Gna11195G/195G genotypes were not observed among the weaned mice, thereby 

indicating that the homozygous Gna11195G/195G mice were viable and did not have embryonic or 

neonatal lethality (Table 1). Moreover, Gna11195G/195G mice had a normal body weight compared to 

WT (Gna11+/+) and Gna11+/195G littermates (Table 2). Thus, Gna11195G/195G mice did not have 

evidence of growth retardation or neonatal lethality to suggest an NSHPT phenotype. However, 

plasma biochemical analysis revealed Gna11+/195G and Gna11195G/195G mice to be significantly 

hypercalcemic compared to Gna11+/+ mice (Figure 4A). Moreover, Gna11195G/195G mice had 

significantly reduced plasma phosphate concentrations and raised plasma PTH concentrations when 

compared to Gna11+/+ mice, whereas Gna11+/195G mice had plasma phosphate and PTH 
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concentrations that were similar to those of Gna11+/+ mice (Figure 4B and C). Furthermore, the 

fractional excretion of calcium was not altered in Gna11+/195G or Gna11195G/195G mice compared to 

Gna11+/+ mice (Figure 4D and Table 3). However, there were gender differences in these calcitropic 

phenotypes, as follows. Thus, female Gna11195G/195G mice were significantly more hypercalcemic than 

male Gna11195G/195G mice and female Gna11+/195G mice (Table 2). In addition, female Gna11195G/195G 

mice, but not the Gna11 mutant males, had significant hypophosphatemia with a significant reduction 

in the tubular maximum reabsorption of phosphate (Table 3), and a raised alkaline phosphatase 

activity compared to female Gna11+/+ mice (Table 2, Supplementary Figure 2). Significant 

differences were not observed in plasma electrolytes, urea and creatinine concentrations, or in 1,25-

dihydroxyvitamin D or fibroblast growth factor-23 (FGF-23) concentrations in male or female 

Gna11+/195G and Gna11195G/195G mice, when compared to respective Gna11+/+ mice  (Table 2). The 

fractional excretions of sodium and potassium were also not different between male and female 

mutant mice and respective Gna11+/+ mice (Table 3). Finally, whole body dual-energy X-ray 

absorptiometry (DXA) did not reveal significant differences in the bone mineral content or bone 

mineral density (BMD) between male and female mutant mice and respective Gna11+/+ mice (Table 

4). 

 To determine whether the hypercalcemia of Gna11+/195G and Gna11195G/195G mice may be 

improved by in vivo calcimimetic treatment we administered cinacalcet to WT and mutant mice. A 

pilot dose-ranging study in WT mice showed that a single oral gavage 30 mg/kg dose of cinacalcet 

significantly lowered plasma PTH concentrations, when compared to vehicle-treated mice 

(Supplementary Figure 3). This dose (30mg/kg) of cinacalcet was therefore administered by oral 

gavage to Gna11+/+, Gna11+/195G and Gna11195G/195G mice, and plasma samples were then taken at 0, 1, 

2, 4, 6 and 24h post-dose for the measurement of PTH, calcium, phosphate, urea, creatinine and 

albumin concentrations. Administration of cinacalcet significantly: decreased plasma PTH 

concentrations in Gna11+/+, Gna11+/195G and Gna11195G/195G mice by ≥60% at 1h post-dose, with 

values returning to baseline by 4-6h post-dose (Figure 5A-C); and reduced plasma albumin-adjusted 

calcium concentrations in Gna11+/+, Gna11+/195G and Gna11195G/195G mice between 2-6h post-dose, 

with values returning to baseline by 24h post-dose (Figure 5D-F). Cinacalcet treatment also resulted 



	 9	

in a transient rise in plasma phosphate concentrations in Gna11+/+, Gna11+/195G and Gna11195G/195G 

mice (Figure 5G-I), but was not associated with any increases in plasma concentrations of urea or 

creatinine (Supplementary Figure 4). Thus, these studies demonstrated that cinacalcet is effective in 

vivo and can reduce raised plasma calcium and PTH concentrations observed in Gna11 mutant mice 

with a loss-of-function Gα11 mutation, that is representative of FHH2.  
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Discussion 
 

We have established a mouse model for FHH2 and this will enable the calcitropic roles of 

Gα11 to be further evaluated, and also facilitate further pathophysiological studies, that are difficult to 

pursue in the few reported patients with this condition. Our results revealed that heterozygous-

affected (Gna11+/195G) mice had a similar plasma biochemical phenotype to that reported for FHH2 

patients, who also harbour heterozygous loss-of-function Gα11 mutations (Table 5) (3, 10). Thus, 

Gna11+/195G mice had mild hypercalcemia in association with normal plasma PTH concentrations, and 

also had no alterations in the plasma concentrations of phosphate and creatinine, or in alkaline 

phosphatase activity, which is consistent with the reported phenotype of FHH2 patients (Table 5) (3, 

10). Gna11+/195G mice additionally had normal plasma magnesium concentrations, which is consistent 

with one reported FHH2 proband (3), but which contrasts with the hypermagnesemia reported in a 

multi-generational FHH2 kindred (3). A key finding of this study is that Gna11+/195G and 

Gna11195G/195G mice had no alterations in urinary calcium excretion and this would be consistent with 

studies of FHH2 patients, which have reported that not all FHH2 patients have a low fractional 

excretion of calcium (Table 5) (3, 10). The absence of a urinary calcium phenotype in Gna11+/195G and 

Gna11195G/195G mice is also consistent with the reported findings in mice and humans harboring 

germline gain-of-function Gα11 mutations that is associated with hypocalcemia and reduced plasma 

PTH concentations, but with mild or no alterations in urinary calcium excretion (25-27). These studies 

highlight a potential difference in the calcitropic phenotype of disorders caused by germline Gα11 

mutations and that of disorders caused by germline CaSR mutations, and suggest that the Gα11 protein 

may not play a major role in the renal handling of calcium. Thus, it remains to be established whether 

hypocalciuria represents a major component of the FHH2 disorder in humans. Furthermore, DXA 

analysis did not reveal any alterations in the BMD values of Gna11195G/195G mice, which also suggests 

that the Gα11 protein may not influence bone mass.  

Our studies of homozygous-affected (Gna11195G/195G) mice have highlighted the importance of 

Gα11 for parathyroid gland function and PTH secretion, as Gna11195G/195G mice had more pronounced 

hypercalcemia, hypophosphatemia, and significantly raised plasma PTH concentrations, consistent 
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with primary hyperparathyroidism (28). Moreover, female Gna11195G/195G mice also had significant 

elevations of plasma alkaline phosphatase activity, which is consistent with an elevated bone turnover 

associated with this likely primary hyperparathyroidism. However, the hypercalcemic phenotype of 

Gna11195G/195G mice was in general milder than that observed in humans or mice harboring biallelic 

loss-of-function CaSR mutations, which typically lead to the life-threatening disorder of NSHPT (12, 

24). A possible explanation for the milder hypercalcemic phenotype observed in the Gna11195G/195G 

mice is that the loss of Gα11 function caused by the Asp195Gly mutation in vivo was partially 

compensated by the WT Gαq protein, which in the parathyroid glands continued to mediated signal 

transduction by the CaSR. Indeed, the importance of the Gα11 and Gαq proteins for parathyroid gland 

function has been demonstrated by studies of mice with a parathyroid-specific ablation of both Gα11 

and Gαq, which have been reported to develop features of NSHPT such as severe hypercalcemia, 

skeletal demineralisation, growth retardation and early postnatal death (7). The hypercalcemia 

observed in Gna11195G/195G mice was more severe in females compared to males, and such gender 

differences have not previously been reported in studies of FHH patients. However, gender 

differences have been noted in primary hyperparathyroidism patients, with females being more 

commonly affected than males (29). Moreover, estrogen may play a role in the pathogenesis and 

severity of primary hyperparathyroidism, as highlighted by a study that showed the potential 

involvement of estrogen signaling in parathyroid function and disease (30), and such effects may have 

contributed to the more severe hypercalcemia of female Gna11195G/195G mice.  

There is currently no effective treatment for FHH2, and we therefore evaluated the 

therapeutic potential of cinacalcet, which is a licenced CaSR positive allosteric modulator (13), for 

this condition.  In vitro studies have previously reported that nanomolar concentrations of cinacalcet 

can successfully rectify the altered signalling responses of HEK-CaSR cells expressing FHH2-

associated Gα11 mutant proteins (23). Consistent with these findings, our study showed a 10 nM 

concentration of cinacalcet to normalise the Ca2+
i responses of HEK-CaSR cells expressing the mutant 

Gly195 Gα11 protein. Moreover, oral administration of a single 30 mg/kg cinacalcet dose led to a 

transient suppression of PTH secretion in Gna11+/195G and Gna11195G/195G mice, and this was 

associated with a sustained reduction in plasma calcium concentrations, which lasted for ≥ 6h. This 
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dose of cinacalcet was well tolerated in the mice, and did not lead to hypocalcemia, with mean plasma 

calcium concentrations remaining at >2.0 mmol/L. However, transient hyperphosphatemia was noted 

in cinacalcet-treated mice, which was likely to be a consequence of suppressed PTH secretion (31). 

These results suggest that calcimimetics such as cinacalcet will likely be of benefit for FHH2 patients, 

who also harbor loss-of-function Gα11 mutations (23). 

In summary, we have established a mouse model for FHH2 and have shown the in vivo 

efficacy of cinacalcet in reducing plasma calcium and PTH concentrations, thereby illustrating the 

potential utility of this CaSR allosteric modulator for the treatment of hypercalcemia in patients with 

FHH2. 
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Methods 
 

Animals. ENU-treated G0 C57BL/6J male mice were mated to C3H/HeH (C3H) mice to produce G1 

progeny and tissue-DNA samples from >10,000 G1 ENU mutagenized male mice, together with their 

sperm, was archived, as reported (14). These tissue-DNA samples were used to identify Gna11 

variants, by melt curve analysis of PCR products utilizing a Lightscanner and gene-specific primers 

(BioFire Diagnostics, Inc., Salt Lake City, Utah, USA), and sperm from mice with Gna11 variants 

was used for IVF to generate G2 progeny on a C3H background strain, as reported (16, 24). 

Heterozygous-affected (Gna11+/195G) mutant male and female mice were intercrossed to generate 

homozygous (Gna11195G/195G) mice, which were studied along with their Gna11+/195G and WT 

(Gna11+/+) littermates. All study mice were housed in a controlled environment at the MRC Harwell 

Institute in accordance with UK Home Office and MRC Welfare guidance. Mice were fed on a 

standard diet (Rat and Mouse number 3, Special Diet Services, UK) that contained 1.15% calcium, 

0.58% phosphate and 4089 IU/kg of vitamin D, and provided with water ad libitum (25, 32). 

 

Compounds. Cinacalcet (AMG-073 HCL) was obtained from Cambridge Bioscience (catalog no. 

CAY16042) and dissolved in a 20% aqueous solution of 2-hydroxypropyl-β-cyclodextrin (Sigma-

Aldrich, catalog no. H107) prior to use in in vitro and in vivo studies. 

 

DNA sequence analysis. Genomic DNA was isolated from auricular biopsies using DNA extraction 

buffer (10mM NaCl, 20mM Tris-HCl, pH8.0, 1mM EDTA, 10% sodium dodecyl sulfate (SDS)) and 

Proteinase K solution (ThermoFisher, Carlsbad, USA) (25). Genomic DNA was used with Gna11 

gene-specific primers (SigmaAldrich, Gillingham, UK) to perform PCR amplification, followed by 

dideoxynucleotide sequencing using the BigDye Terminator v3.1 Cycle Sequencing Kit, and an 

automated detection system (ABI 3730 Automated capillary sequencer, ThermoFisher), as reported 

(25). MutationTasting (http://www.mutationtaster.org/) and Polyphen-2 software was used to predict 

variant pathogenicity (33, 34). The Gna11 germline mutation was confirmed by HaeIII restriction 

endonuclease analysis (New England Biolabs), as previously described (3, 4). 
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Protein sequence alignment and three-dimensional modeling. Protein sequences of Gα11 orthologs 

and paralogs were aligned with ClustalOmega (35). The PyMOL Molecular Graphics System 

(Version 1.2r3pre, Schrödinger, LLC) was used for structural modeling based on the complexed 

crystal structure of Gαq, which has 90% identity with Gα11 at the amino acid level (Protein Data Bank, 

accession no. 4GNK) (18). The effect of the Gα11 mutations upon Gα11 structure was modeled using 

the PyMod plug-in and Modeller (36).  

 

Cell Culture and Transfection. Functional studies were undertaken using a human GNA11 construct 

(3), as the human and mouse Gα11 proteins share an overall amino acid identity of 98% (25), and are 

100% identical in the region surrounding the mutated site. The Gly195 mutation was introduced by 

site-directed mutagenesis (QuikChange Lightning, Agilent Technologies) into a pBI-CMV2-GNA11-

GFP expression construct, as reported (3); and WT and mutant pBI-CMV2-GNA11-GFP constructs 

were transiently transfected into HEK293 cells stably expressing the full-length human CASR cDNA 

(HEK-CaSR), as described (3). HEK-CaSR cells were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM)-Glutamax media (ThermoFisher) with 10% fetal bovine serum (Gibco) and 

400µg/mL geneticin (ThermoFisher) at 37ºC, 5% CO2 (3). Successful transfection was confirmed by 

visualising GFP fluorescence using an Eclipse E400 fluorescence microscope with an epifluorescence 

filter, and images were captured using a DXM1200C digital camera and NIS Elements software 

(Nikon) (3, 11). The expression of Gα11, CaSR, GFP, calnexin and GAPDH proteins was confirmed 

by Western blot analyses using anti-Gα11 (D-6, sc-390382, Santa Cruz Biotechnologies), anti-CaSR 

(5C10, ADD, ab19347, Abcam), anti-GFP (B-2, sc-9996, Santa Cruz Biotechnologies), anti-calnexin 

(AB2301, Millipore), and anti-GAPDH (AM4300, Ambion) antibodies, respectively. The Western 

blots were visualised using an Immuno-Star Western C kit (BioRad) on a BioRad Chemidoc XRS+ 

system (3, 10). 

 

Measurement of Ca2+
i responses. The Ca2+

i responses of HEK293-CaSR cells expressing WT or 

mutant Gα11 proteins were measured by Fluo-4 calcium assays adapted from methods previously 
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published (22). HEK-CaSR cells were plated in poly-L-lysine treated black-walled 96-well plates 

(Corning), and transiently transfected with 1000µg/ml pBI-CMV2-GNA11-GFP. On the following 

day, cells were incubated in serum-free media for 2h, then loaded with the Fluo-4 Ca2+-binding dye, 

prepared according to manufacturer’s instructions (Invitrogen). Cells were loaded for 40 minutes at 

37°C, then either a 20% aqueous solution of 2-hydoxypropyl-β-cyclodextrin (vehicle), or 10nM 

cinacalcet was added, and cells incubated for a further 20 minutes at 37°C (19). Baseline 

measurements were made and increasing doses of CaCl2 injected into each well, using an automated 

system. Changes in Ca2+
i were recorded on a PHERAstar instrument (BMG Labtech) at 37°C with an 

excitation filter of 485nm and an emission filter of 520nm. The peak mean fluorescence ratio of the 

transient response after each individual stimulus was measured using MARS data analysis software 

(BMG Labtech), and expressed as a normalized response. Nonlinear regression of concentration-

response curves was performed with GraphPad Prism using the normalized response at each [Ca2+]o 

for each separate experiment for the determination of the EC50 (i.e. [Ca2+]o required for 50% of the 

maximal response).  

 

Metabolic cage studies and biochemical analysis. Thirteen to 15 week old mice were individually 

housed in metabolic cages (Techniplast) for 24h with free access to food and water. Mice were 

allowed to acclimatise to their environment over a 72h period, as described (37), prior to collection of 

24h urine samples. Twenty-four hour urine samples were collected in tubes containing sodium azide, 

and blood samples collected from the lateral tail vein under topical local anesthesia (38) or from the 

retro-orbital vein into lithium heparin Microvette tubes (Sarstedt) following terminal isoflurane 

anaesthesia, as described (25, 32). Plasma and urine were analyzed for sodium, potassium, total 

calcium, phosphate, magnesium, urea, creatinine, and alkaline phosphatase activity on a Beckman 

Coulter AU680 analyzer (25, 32). Plasma calcium was adjusted for variations in albumin 

concentrations using the formula: (plasma calcium (mmol/L) – [(plasma albumin – mean albumin 

(g/L) of respective male and female WT mice) x 0.02], as reported (39). Hormones were measured as 

follows: PTH using a two-site ELISA specific for mouse intact PTH (Immutopics, San Clemente, 

USA); 1,25-dihydroxyvitamin D by a two-step process involving purification by immunoextraction 



	 16	

and quantification by enzyme immunoassay (Immunodiagnostic Systems); and FGF-23 using a two-

site ELISA kit (Kainos Laboratories), as described (25, 39). The fractional excretion of sodium, 

potassium, and calcium were calculated using the formula Ux/Px*PCr/UCr, where Ux is the urinary 

concentration of the filtered substance (substance x) in mmol/L, Px is the plasma concentration of 

substance x in mmol/L, UCr is the urinary concentration of creatinine in mmol/L, and PCr is the plasma 

concentration of creatinine in mmol/L. The ratio of tubular maximum reabsorption of phosphate to 

GFR (TmP/GFR) was calculated using the following formula: PPi*(1-(UPi/PPi*PCr/UCr )), where PPi is 

the plasma concentration of phosphate and UPi is the urine concentration of phosphate (25, 32).  

 

Skeletal imaging. Bone mineral content and density were assessed by whole body DXA scanning, 

which was performed on mice anesthetized by inhaled isoflurane and using a Lunar Piximus 

densitometer (GE Medical Systems), as reported (25). DXA images were analyzed using Piximus 

software, as reported (25). 

 

Statistical analysis. All in vitro studies involved eight biological replicates. Statistical comparisons of 

the Ca2+
i EC50 responses, were undertaken using the F-test, as reported (3). For the in vivo studies, a 

Kruskal-Wallis test was undertaken for multiple comparisons, and any significant differences 

identified were further assessed using the Dunn’s test for non-parametric pairwise multiple 

comparisons (25). All analyses were performed using GraphPad Prism (GraphPad), and a value of 

p<0.05 was considered significant for all analyses.  

 

Study approval. Animal studies were approved by the MRC Harwell Institute Ethical Review 

Committee and were licensed under the Animal (Scientific Procedures) Act 1986, issued by the UK 

Government Home Office Department (PPL30/2433 and PPL30/3271). 
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Table 1. Proportion of offspring bred from crosses of Gna11+/195G x Gna11+/195G mice 
 

Genotype  Expected number of 
offspring (n=358 born) 
 

 Observed number of offspring  
(n=234 weaned) 

+/+ 
 

 89 (25%)  56 (24%) 

+/195G 
 

 180 (50%)  127 (54%) 

195G /195G 
 

 89 (25%)  51 (22%) 

 
The Mendelian inheritance expected ratio from heterozygous crosses is 1:2:1, and chi-square analysis shows no 
significant differences in the expected vs. observed ratios of offspring genotypes at weaning (i.e. 19-21 days of 
age) (x2 =1.0, degrees of freedom = 2). 



Table 2. Age, weight and plasma biochemical profile of Gna11+/+, Gna11+/195G and Gna11195G/195G mice 
 

Parameter  Male  Female 
  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G 

Age (weeks)  13.9±0.1 (n=12) 14.0±0.1 (n=13) 13.9±0.1 (n=14)  13.8±0.1 (n=10) 13.8±0.1 (n=15) 13.6±0.1 (n=13) 
 

Weight (g) 
 

 31.7±0.7 (n=12) 31.4±1.1 (n=13) 32.3±0.9 (n=14)  27.5±0.8 (n=13) 30.2±0.9 (n=15) 30.2±0.6 (n=13) 

Sodium (mmol/L)  149±0.7 (n=12) 
 

151±0.5 (n=13) 150±0.6 (n=13)  149±0.6 (n=10) 
 

148±0.7 (n=15) 147±0.6 (n=13) 

Potassium (mmol/L)  5.4±0.1 (n=12) 
 

5.2±0.1 (n=13) 5.3±0.1 (n=13)  5.0±0.1 (n=10) 4.9±0.1 (n=15) 4.9±0.2 (n=13) 

Urea (mmol/L) 
 

 10.7±0.6 (n=12) 9.8±0.3 (n=13) 10.1±0.4 (n=13)  8.6±0.6 (n=10) 8.8±0.2 (n=15) 9.0±0.3 (n=12) 

Creatinine (µmol/L)  11.6±0.6 (n=12) 
 

10.8±0.7 (n=13) 12.0±0.7 (n=13)  12.7±0.4 (n=10) 12.8±0.4 (n=15) 12.4±0.4 (n=13) 

Calcium (mmol/L) 

 
 2.36±0.02 (n=12) 2.40±0.02 (n=12) 2.48±0.02 (n=13)***  2.40+0.03 (n=10) 2.46±0.01 (n=15) 2.59±0.02 (n=13)***$ 

Adj-calcium (mmol/L)A 
 

 2.36±0.02 (n=12) 2.41±0.02 (n=12) 2.48±0.02 (n=13)***  2.39±0.02 (n=10) 2.45±0.01 (n=15) 2.58±0.02 (n=13)***$ 

Albumin (g/L) 
 

 25.2±0.3 (n=12) 24.8±0.3 (n=12) 25.0±0.2 (n=13)  26.2±0.4 (n=10) 26.5±0.4 (n=15) 26.9±0.4 (n=13) 

Magnesium (mmol/L)  0.80±0.02 (n=12) 0.76±0.02 (n=13) 0.76±0.02 (n=13) 
 

 0.81±0.02 (n=10) 0.83±0.02 (n=15) 0.85±0.02 (n=13) 

Phosphate (mmol/L)  1.67±0.11 (n=12) 
 

1.65±0.08 (n=13) 1.51±0.08 (n=13)  2.04±0.12 (n=10) 1.73±0.05 (n=15) 1.66±0.11 (n=13)* 

ALP (U/L)  93.2±3.3 (n=12) 
 

90.8±4.9 (n=13) 98.5±3.2 (n=13)  120±4.5 (n=10) 132±3.5 (n=15) 142±6.5 (n=13)* 

PTH (ng/L)  417±37 (n=8) 562±54 (n=12) 
 

813±63 (n=13)***  290±34 (n=10) 405±43 (n=12) 535±36 (n=9)** 

1,25D (pmol/L)  74.5±11 (n=12) 64.7±10 (n=10) 90.7±19 (n=12)  72.8±9 (n=10) 76.8±6 (n=14) 86.3±7 (n=13) 
 

FGF-23 (ng/L)  149±7 (n=12) 170±5 (n=11) 173±8 (n=12)  150±4 (n=10) 146±7 (n=14) 160±8 (n=13) 
 

 
APlasma calcium concentrations were adjusted according to the mean plasma albumin concentration of respective male and female WT mice. Adj-calcium, albumin-adjusted 
calcium; ALP, alkaline phosphatase activity; PTH, parathyroid hormone; 1,25D, 1,25 dihydroxyvitamin D; FGF-23, fibroblast growth factor-23. All values are expressed as 
mean ± SEM. A Kruskal-Wallis test followed by Dunn’s test for non-parametric pairwise multiple comparisons were used to compare mutant mice with WT mice, and a 
Mann-Whitney U test was used to compare respective male and female mice. *p<0.05, **p<0.01, ***p<0.001 compared to respective Gna11+/+ mice. $p<0.001 compared to 
respective male mice. 



Table 3. Urine biochemical profile of Gna11+/+, Gna11+/195G and Gna11195G/195G mice 
 

Parameter  Male  Female 
  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G 

24hr Ca  4.9±0.4 (n=9) 
 

5.9±0.5 (n=13) 6.4±0.7 (n=13)  11.7±1.3 (n=10)$$ 16.3±2.4 (n=15)$$ 17.0±1.7 (n=12)$$ 

Ca/Cr  0.30±0.02 (n=9) 
 

0.31±0.02 (n=12) 0.32±0.02 (n=13)  0.57±0.06(n=10)$$ 
 

0.75±0.10 (n=15)$$ 0.88±0.13 (n=12)$$ 

FECa  1.9±0.3 (n=11) 
 

1.5±0.2 (n=13) 1.4±0.2 (n=12)  2.9±0.3 (n=10)$ 
 

3.1±0.3 (n=13)$$ 3.0±0.2 (n=9)$$ 

FENa      5.3±0.4 (n=12) 
 

4.7±0.4 (n=13) 
 

5.2±0.5 (n=13) 
 

 6.1±0.2 (n=10) 
 

6.1±0.3 (n=15) 
 

6.0±0.3 (n=13) 
 

FEK 
 

 0.20±0.004 (n=11) 
 

0.18±0.02(n=13) 0.20±0.01 (n=13)  0.21±0.01 (n=10) 
 

0.23±0.01 (n=15) 0.21±0.01 (n=13) 

TmP/GFR  1.6±0.1 (n=9) 
 

1.6±0.1 (n=12) 1.5±0.1 (n=12)  2.0±0.1 (n=10) 
 

1.7±0.1 (n=15)* 1.6±0.1 (n=13)* 

 
Parameters were measured using urine samples obtained over a 24-hour period. Urinary calcium excretion values are shown as µmol/24 hours. Calcium/creatinine ratios 
(Ca/Cr) are shown as mmol/mmol. Fractional excretion (FE) of Ca and Na are multiplied by 1000. TmP/GFR, ratio of tubular maximum reabsorption of phosphate (TmP) to 
GFR. All values are expressed as mean ± SEM. A Kruskal-Wallis test followed by Dunn’s test for non-parametric pairwise multiple comparisons were used for all analyses. 
*p<0.05 compared to respective Gna11+/+ mice.  $p<0.05, $$p<0.001 compared to respective male mice.    
	



Table 4. Whole body DXA analysis of Gna11+/+, Gna11+/195G and Gna11195G/195G mice 
 
Parameter  Male  Female 
  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G  Gna11+/+ 

 
Gna11+/195G Gna11195G/195G 

BMC (g) 
 

 0.60±0.01 
(n=12)  

0.62±0.01 
(n=13) 

0.63±0.01 
(n=14) 

 

 0.57±0.01 
(n=9) 

0.59±0.01 
(n=14) 

0.57±0.01 
(n=12) 

BMC 
(corr) 
 

 0.02±0.0004 
(n=12) 

 

0.02±0.001 
(n=13) 

 

0.02±0.001 
(n=14) 

 

 0.02±0.001 
(n=9) 

 

0.02±0.001 
(n=15) 

 

0.019±0.001 
(n=12) 

 
BMD  
(g/cm2) 
 

 0.065±0.001 
(n=12) 

0.065±0.001 
(n=13) 

0.069±0.002 
(n=14) 

 0.067±0.001 
(n=9) 

0.066±0.001 
(n=15) 

0.067±0.003 
(n=12) 

Fat mass 
(%) 
 

 23.6±0.8 
(12) 

 

21.3±1.1 
(13) 

22.0±1.4 
(14) 

 23.8±1.9 
(n=9) 

27.4±1.5 
(n=15) 

29.0±0.7$ 

(n=12) 

 
DXA, dual-energy X-ray absorptiometry; BMC, bone mineral content; BMC (corr), BMC corrected for body 
weight; BMD, bone mineral density. All values are expressed as mean ± SEM. A Kruskal-Wallis test followed 
by Dunn’s test for non-parametric pairwise multiple comparisons were used for all analyses. $p=0.06 compared 
to respective Gna11+/+ mice. 
	



Table 5. Comparison of the phenotypes of FHH2 patients with mice harboring a loss-of-function 
Gna11 mutation.  
	
Parameter FHH2 patients 

 
FHH2 mouse model 

 Proband 1 
 

Proband 2 Proband 3 Gna11+/195G Gna11195G/195G 

Gα11 mutation 
 

Leu135Gln  
(Het)  

 

Ile200del 
(Het)  

Thr54Met 
(Het) 

Asp195Gly 
(Het) 

Asp195Gly  
(Hom) 

Serum/plasma biochemistry     
Calcium é é é  é  é 
Magnesium  N é nr N N 
Phosphate N N N N ê

 

Creatinine N N N N N 
ALP N N nr N éa 
PTH N N N N é 

TSHb 

 
N nr nr  nr nr 

Urine biochemistry     
FECa êc 

 
N N N N 

Infertilityb 

 
nr No nr No nr 

Reference Nesbit et al.  
2013 (3) 

Nesbit et al.  
2013 (3) 

Gorvin et al. 
2016 (10) 

- - 

	
aAlkaline phosphatase (ALP) is increased in homozygous females; bThyrotropin (TSH) reported as 4.05 mU/L 
(normal 0.35-5.5) (3). Thyrotropin-releasing hormone receptor (TRHR) and gonadotropin-releasing hormone 
receptor (GnRHR), which are both GPCRs signal via Gα11/q proteins (40). However, FHH2 patients with Gα11 
loss-of-function mutations have not been reported to have hypothyroidism, high circulating TSH concentrations 
(3), or infertility (3, 41), indicating that they are unlikely to have thyroid hormone or gonadotropin hormone 
deficiencies. The findings of normal body weights in mutant Gna11+/195G and Gna11195G/195G mice (Table 2) and 
fertility in mutant Gna11+/195G mice (Table 1), suggests that these Gna11 mutant mice, similar to the FHH2 
patients, are also unlikely to have deficiencies of thyroid hormone or gonadotropin hormone. cFractional 
excretion of calcium (FECa) is <0.01, consistent with the phenotype of FHH. Het, heterozygous; Hom; 
homozygous; N, normal; PTH, parathyroid hormone; é,high; ê low; nr, not reported. 
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Figure 1. Structural characterization of the Asp195Gly Gα11 mutation. (A) Genomic organization of Gna11 
showing the location of reported human familial hypocalciuric hypercalcemia type 2 (FHH2) mutations (black) (3, 10) 
and Gna11 variants identified in N-ethyl-N-nitrosourea (ENU)-mutagenized mice (red). The G-protein subunit α11 (G
α11 GTPase domain (encoded by exon 1, 5′ portion of exon 2, 3′ portion of exon 4 and exons 5–7) is connected to 

the helical domain (encoded by the 3′ portion of exon 2, exon 3, and 5′ portion of exon 4) by the linker 1 (L1) and 2 

(L2) peptides. The GTPase domain contains three flexible regions, termed switch regions I-III (SwI-SwIII). The 

Asp195Gly mutation is located within the GTPase domain, and between the switch I and II regions. (B) Multiple 
protein sequence alignment of Gα11 residues comprising a 13 amino acid region that links the β2 strand of the 

switch I region with the β3 strand of the switch II region. Conserved residues are shown in gray. The WT (Asp, D) 

and mutant (m) (Gly, G) residues are shown in red. (C) Homology model of the GDP-bound Gα11 protein. The Gα 

helical (blue) and GTPase (green) domains, and bound GDP nucleotide (black) are shown. Switch regions I-III are 

shown in orange. Previously reported residues mutated in FHH2 patients (3, 10) are shown in yellow. The mutated 
Asp195 residue (red) is located in a 13 amino acid region (gray) and adjacent to the β2-β3 loop. (D) Close-up view 

the β2-β3 hairpin loop region of WT and mutant Gα11 proteins showing the structural effects of the Asp195Gly 
mutant on hydrogen bonds (broken lines) within the hairpin loop. The Asp195Gly Gα11 mutant is predicted to result 
in a loss of a polar contact (hydrogen bond) between the Asp195 side chain and the backbone of the Glu197 (E197) 

residue. The one-letter amino acid codes indicate D – aspartic acid, E – glutamic acid, F – phenylalanine, G – 

glycine, I – isoleucine, L – leucine, M – methionine, N – asparagine, Q – glutamine, and T - threonine. 
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Figure 2. Ca2+i responses of the Gly195 Gα11 mutant and in vitro effect of cinacalcet treatment. (A) 
Fluorescence microscopy of untransfected (UT) HEK293 cells stably expressing calcium-sensing receptor 
(CaSR) (HEK-CaSR), and of HEK-CaSR cells transiently transfected with WT (Asp195) or mutant (m) Gly195 
pBI-CMV2-GNA11-GFP constructs. GFP expression in these cells indicates successful transfection and expres-
sion by these constructs. Bar indicates 10μm. (B) Western blot analysis of lysates from HEK-CaSR cells used 
for intracellular calcium (Ca2+i) experiments. Transient transfection with WT or mutant Gly195 G-protein subunit 
α11 (Gα11) expression constructs resulted in overexpression of Gα11 and GFP, whereas untransfected cells 
showed only endogenous Gα11 protein expression. All cells expressed the CaSR. The calnexin and GAPDH 
proteins were used as loading controls. (C) Ca2+i responses to changes in [Ca2+]o of HEK-CaSR cells express-
ing WT or Gly195 Gα11 mutant proteins. The Ca2+i responses are expressed as a percentage of the maximum 
normalized responses and shown as the mean±SEM of 8 independent transfections. The Gly195 Gα11 mutant 
led to a rightward shift in the concentration-response curve (red line) compared to cells expressing WT Gα11 
(black line). The addition of 10nM cinacalcet (Cin) normalized the shift of the mutant concentration-response 
curve (blue line) (D) Histogram showing the mean half-maximal concentration (EC50) with 95% confidence 
intervals (CI) of WT cells (black), Gly195 mutant cells (red), and Gly195 mutant cells treated with 10 nM cinacal-
cet (blue). Statistical analysis was performed using the F-test. ****p<0.0001 compared to WT. 
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Figure 3. DNA sequence and restriction endonuclease analysis of the Asp195Gly Gα11 mutation. (A) DNA 
sequence analysis showing an A-to-G transition at c.584 (red arrow) within exon 3 of Gna11. The DNA sequence 
chromatograms show that WT (Gna11+/+) mice are homozygous A/A, the heterozygous mutant Gna11+/195G mice are 
A/G, and the homozygous mutant Gna11195G/195G mice are G/G. (B) This A to G transition was predicted to lead to a 
missense substitution of Asp, encoded by GAC, to Gly, encoded by GGC, at codon 195, and resulted in the gain of a 
HaeIII restriction endonuclease (RE) site (GG/CC). (C) Restriction maps showing that HaeIII digest would result in 
two products of 108bp and 225bp for the WT, and three products of 108bp, 146bp and 79bp for the mutant (m). (D) 
RE digest of Gna11 exon 3 PCR products demonstrating that WT (Gna11+/+) mice are homozygous for the WT 
alleles, mutant Gna11+/195G mice are heterozygous and have WT and m alleles, and mutant Gna11195G/195G mice are 
homozygous for m alleles. M = male; F = female; S = size marker. 
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Figure 4. Calcitropic phenotype of Gna11+/+, Gna11+/195G and Gna11195G/195G mice. (A) Plasma albumin-
adjusted calcium concentrations, (B) plasma phosphate concentrations, (C) plasma parathyroid hormone (PTH) 
concentrations, and (D) fractional excretion of calcium (FECa) of Gna11+/+ (circles), Gna11+/195G (squares) and 
Gna11195G/195G (triangles) mice, respectively. Combined data from males and females are shown. Mean ± SEM 
values for the respective groups are indicated by the solid bars. A Kruskal-Wallis test followed by Dunn’s test for 
non-parametric pairwise multiple comparisons were used for analysis of A-D. *p<0.05, **p<0·01. ***p<0.001. NS, 
non-significant.



0 1 2 4 6 24
1.75

2.00

2.25

2.50

2.75

Time (Hrs)

A
dj

us
te

d-
ca

lc
iu

m
 (m

m
ol

/L
)

** ** *
$

0 1 2 4 6 24
0

100

200

300

400

Time (Hrs)

PT
H

 (n
g/

L)

* *

0 1 2 4 6 24
0

100

200

300

400

Time (Hrs)

PT
H

 (n
g/

L)

*

0 1 2 4 6 24
0

100

200

300

400

Time (Hrs)

PT
H

 (n
g/

L) *

0 1 2 4 6 24
1.75

2.00

2.25

2.50

2.75

Time (Hrs)

A
dj

us
te

d-
ca

lc
iu

m
 (m

m
ol

/L
)

** * **

0 1 2 4 6 24
1.75

2.00

2.25

2.50

2.75

Time (Hrs)

A
dj

us
te

d-
ca

lc
iu

m
 (m

m
ol

/L
)

* * **

0 1 2 4 6 24
0.0

1.0

2.0

3.0

4.0

Time (Hrs)

Ph
os

ph
at

e 
(m

m
ol

/L
) ** *

0 1 2 4 6 24
0.0

1.0

2.0

3.0

4.0

Time (Hrs)

Ph
os

ph
at

e 
(m

m
ol

/L
) * **

0 1 2 4 6 24
0.0

1.0

2.0

3.0

4.0

Time (Hrs)
Ph

os
ph

at
e 

(m
m

ol
/L

) **

Figure 5

A

D E

Gna11+/+ Gna11+/195G Gna11195G/195G

G H

B C

F

I

Figure 5. In vivo effect of cinacalcet on plasma PTH, calcium and phosphate concentrations of Gna11+/+, Gna11+/195G and 
Gna11195G/195G mice. (A-C) Plasma parathyroid hormone (PTH), (D-F) plasma albumin-adjusted calcium, and (G-I) plasma phosphate 
concentrations are shown at 0, 1, 2, 4, 6 and 24h following oral gavage administration of a single 30mg/kg cinacalcet dose. Mean values for 
the respective groups are indicated by solid bars. N=4-5 mice per study time-point. Squares, males; circles, females. A Kruskal-Wallis test 
followed by Dunn’s test for non-parametric pairwise multiple comparisons were used for analysis of A-I. *p<0.05, **p<0·01 compared to 
respective untreated mice. $Untreated Gna11195G/195G mice were significantly (p<0.05) hypercalcemic compared to untreated Gna11+/+ mice.


