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Abstract: For exterior acoustic field problems that lack sufficient information to 

construct precise probability distributions，an interval random model is introduced to 

deal with the uncertain parameters. In the interval random model, the probability 

variables are employed to treat the uncertain parameters, whereas some distribution 

parameters of random variables are modeled as interval variables instead of precise 

values. Based on the interval random model, the interval random finite element 

equation for exterior acoustic fields is established and a hybrid uncertain analysis 
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method is presented to solve the exterior acoustic field problem with interval random 

variables. In the presented method, by temporarily neglecting the uncertainties of 

interval variables, a first-order stochastic perturbation method is adopted to calculate 

the expectation and the variance of the response vector. According to the 

monotonicity of the expectation and variance of the response vector with respect to 

the interval variables, the lower and upper bounds of the expectation and variance of 

the response vector can be calculated by the vertex method. In addition, in order to 

ensure accuracy of the proposed method, the subinterval technique is introduced and 

investigated. The numerical example of a square flexible shell model is presented to 

demonstrate the effectiveness of the proposed method. 

Key Words: Uncertain exterior acoustic field prediction; Interval random 

variable; Matrix perturbation method; Random moment method; Vertex method; 

subinterval technique; 

  

1. Introduction 

In the past decades, there has been an increasing interesting in studying 

predictive methods for the dynamic response of systems with uncertain parameters. 

The traditional analysis techniques to cope with the uncertainties are generally based 

on the probabilistic model, in which the random variables are used to model the 

uncertainties of parameters existing in the practical engineering problems [1-2]. In the 

probabilistic approaches, probability distributions of the random variables are defined 

unambiguously. The Monte Carlo method is still the most versatile probabilistic 
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method for stochastic problems so far [3- 6]. However, the accuracy of the Monte 

Carlo method strongly depends on the number of samples generated by a random 

number generator. Due to its excessive computational cost, the Monte Carlo method is 

not applicable to the large-scale stochastic engineering problems. Perturbation 

stochastic finite element method [7- 10], spectral stochastic finite element method 

[11-13] and Bayesian approach [14- 17] are alternative approaches for the random 

problems, and have acquired significant successes. Except the probabilistic 

approaches mentioned formerly, other modern stochastic finite element methods have 

also accomplished great progresses. By integrating with the finite element method, the 

joint diagonalization approach has been well applied to linear probabilistic systems 

[18-19]. The Fourier discretization scheme has been developed to deal with stochastic 

problems in order to improving the computational efficiency and accuracy of 

stochastic finite element methods [20-22]. By using probabilistic approaches, a large 

amount of statistical information or experimental data is required to construct precise 

probability distributions of uncertain parameters. Unfortunately, in many practical 

applications, the experimental samples to determine the probability distributions are 

not always available or sometimes very difficult to obtain. As a consequence, we have 

to make some suitable assumptions for probability distributions of random variables. 

However, these assumed probability distributions may be unreliable and the results 

obtained by the probabilistic approach based these assumed probability distributions 

may be incorrect [23]. 

To describe the uncertainties of parameters without enough information 
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objectively, the interval random model is developed for uncertainty quantification. In 

the interval random model, the uncertain parameters are treated as random variables 

whose distribution parameters with limited information can only be expressed as 

interval variables instead of precise values. This uncertain model was firstly proposed 

to find the least favorable value of the mean-square response of a random vibration 

problem by Elishakoff and Colombi [24-25]. Subsequently, the interval random 

model was applied to the structural response analysis [26] and the structural reliability 

analysis [27-28]. Based on the classical probabilistic reliability theory and the interval 

analysis technique, the failure probabilistic interval of structures with interval random 

variables was evaluated by Qiu et al [29]. By combining the Monte Carlo simulation 

process into the interval analysis, Zhang et al. proposed an interval Monte Carlo 

method to investigate the interval failure probabilities of structures with interval 

random variables [30]. In order to improve the efficiency of the interval Monte Carlo 

method, an interval quasi-Monte Carlo method was proposed to calculate the variation 

ranges of the structural failure probabilities [31]. Recently, Xia et al. have proposed 

an interval random perturbation method to compute the bounds of expectations and 

variances of the responses of acoustic fields and structural-acoustic systems with 

interval random variables [32-33]. On the basis of the change-of-variable technique 

and interval perturbation technique, an inverse mapping hybrid perturbation method 

was proposed to estimate the variation ranges of the response probability distributions 

of acoustic fields with interval random variables [34]. Chen et al. have proposed a 

hybrid stochastic interval perturbation method for determining the energy flow in 
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coupled vibrating systems with interval random variables [35]. As mentioned above, 

researches on the interval random models have achieved significance progress. 

However, from the overall perspective, studies on the interval random models are still 

in its preliminary stage and are limited to the special fields. Up to now, the application 

of the interval random model in the exterior acoustic problem is promising, yet hardly 

been exploited. 

Traditional numerical analysis for the exterior acoustic problem with given 

parameters has received considerable attention in the last decades [36-37]. However, 

due to the effects of manufacturing tolerance, physical imperfection and system 

complex, uncertainties usually exist in material properties, geometric dimensions and 

boundary conditions. Without considering the uncertainties of the exterior acoustic 

problem, the results computed by the deterministic numerical approach may be 

unreliable. Some developments have been achieved in the analysis for the exterior 

acoustic field with uncertainties. Chen et al. proposed a hybrid perturbation method to 

calculate the bounds of expectations and variances of the responses of exterior 

acoustic fields with both random variables and interval variables [38]. Wang et al. 

proposed two interval analysis methods for the exterior acoustic field prediction with 

interval variables [39]. Recently, an efficient evidence-theory-based analysis method 

is proposed by Chen et al. for the response prediction of exterior acoustic fields with 

epistemic uncertainty [40]. 

This paper aims to solve the problem of an exterior acoustic field with interval 

random variables, in which the random variables are used to model the uncertain 
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parameters, whereas some key distribution parameters of the random variables are 

expressed as interval variables but not precise values. Compared with the problem of 

an exterior acoustic field with both random variables and interval variables studied in 

literature [38], the interval random model in this work is more complicated. To some 

extent, the hybrid uncertain random and interval model is a special case of interval 

random model. The random variable can be interpreted as an interval random variable 

with deterministic distributional parameters, and the interval variable can be 

interpreted as an interval random variable whose standard variance is equal to zero. 

Based on the interval random model, the interval random dynamic equilibrium 

equation of the exterior acoustic field is established. Inspired by the way of handling 

the hybrid uncertain exterior acoustic field with both random variables and interval 

variables in literature [38], a similar analysis process is presented for the exterior 

acoustic field prediction with interval random variables. In the present method, by 

temporarily neglecting the uncertainties of interval variables, a first-order stochastic 

perturbation method is adopted to calculate the expectation and variance of the 

response vector. According to the linear monotonicity of the expectation and variance 

of the response vector with respect to interval variables, the lower and upper bounds 

of the expectation and the variance of the response vector can be calculated by a 

vertex method. Besides, in order to guarantee the accuracy of the presented method, 

the subinterval technique is introduced into the hybrid uncertain analysis for the 

exterior acoustic field with interval random variables.  

The remainder of this paper is organized as follows. The equilibrium equation for 
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the exterior acoustic field prediction is discussed in Section 2. In Section 3, an 

uncertain analysis method to calculate the bounds of the expectation and the variance 

of the response vector of the exterior acoustic field with interval random parameters is 

deduced. Section 4 provides a numerical example and Section 5 gives some 

conclusions. 

2. Formulation of the exterior acoustic field prediction 

The coupled finite element method/boundary element method (FEM/BEM) is 

widely used to handle the exterior acoustic field prediction because it only refers to 

structural surface discretization and solves exterior problems naturally. The acoustic 

medium is assumed to be inviscid and incompressible. Only the normal direction of 

the interaction between the acoustic field and the vibrating structure is considered. 

2.1. FEM formulation for shell structure 

In the frequency domain, the finite element equation of the shell structure with 

considering damping can be expressed as 

 2( ) sK C M u Fs s s siω ω+ − =  (1) 

where Ks, Ms, Cs, and Fs denote the structural stiffness matrix, structural mass matrix, 

structural damping matrix and exciting force vector, respectively; us denotes the 

displacement vector; ω  is the angular frequency; and 1i = −  is an imaginary unit. 

The structural damping matrix Cs can be expressed as 

 s s sα β= +C M K  (2) 

where α and β are the damping coefficients of the damping material. 

In the steady-state form, the relationship between the structural velocity vector v 
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and displacement vector us can be expressed as following  

 iω= sv u  (3) 

The dynamic equilibrium equation about the structural vibration velocity can be 

obtained through multiplying both sides of Eq. (1) with iω  

 2( ) sK C M v Fs s s si iω ω ω+ − =  (4) 

2.2. BEM formulation for acoustic field  

The Helmholtz equation can be cast into a boundary integral equation as follows 

 0
0( ) ( ) ( )f n

S

GC P p P i v G p dsρ ω ∂
= +

∂∫ n
 (5) 

Here, the symbol P represents the objective field point where the sound pressure 

will be computed and C represents the interpolation coefficient. The integration of Eq. 

(5) is conducted along the structural surface S, where the symbol ρf and vn denote the 

mass density and normal velocity of the acoustic medium, respectively; ω  and c are 

the angular frequency and the sound speed, respectively. The symbol G0 denotes the 

Green function which is the fundamental solution of the Helmholtz equation. The 

symbol n is the normal vector pointing to the acoustic domain. These variables are 

also illustrated in Fig. 1. 
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Fig. 1 Schematic illustrating of the boundary integral equation 

 

Discretize the Helmholtz integral equation using the standard boundary element 

method, which gives the following system of algebraic equations 

 n=HP Gv  (6) 

 
1

1 ,ˆ ,
0 ,

N

l lm lm lm
l

l m
C H

l m
δ δ

=

=
= + =  ≠

∑H  (7) 

 0
0

1

ˆ, ,
l l

N

lm lm lm fS S
m

GG H ds G i G ds
n

ρ ω
=

∂
= = =

∂∑ ∫ ∫G  (8) 

where Sl denotes the area of the lth element. 

2.3. Coupled FEM/BEM for exterior acoustic field prediction 

Combining the governing equation of the structure and acoustic domain 

described previously, the coupled governing equation of the structure-acoustic system 

can be expressed as follows 

 =ZU F  (9) 

where Z is the structural–acoustic dynamic stiffness matrix; U is the frequency 

response vector; and F is the external excitation vector. They can be expressed as 
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2K C M L

Z
GT H

s s siω ω + − −
=  − 

  (10) 

 { }T=U v p  (11) 

 { }T0siω=F F    (12) 

Here, the symbol T denotes the conversion matrix which transforms the velocity 

vector to the normal velocity vector; the symbol v and p are the structural velocity 

vector and the sound pressure vector on the interface, respectively; the symbol L 

denotes the structure-acoustic coupling matrix. 

If Eq. (9) is solved, by substituting v and p into Eq. (5), the sound pressure Pc at 

any point c in the exterior field can be computed by 

 [ ] 1cP − 
= + = = = 

 

v
gTv hp gT h CU CZ F

p
 (13) 

where g, h and C are the interpolation coefficient row vectors in the exterior acoustic 

field 

  0f
S

i G dsρ ω= ∫g  (14) 

 0

S

G ds∂
=

∂∫h
n

 (15) 

 [ ]=C gT h  (16) 

3. Matrix perturbation analysis for the exterior acoustic field prediction 

with interval random parameters 

3.1. Exterior acoustic field prediction with interval random parameters 

Let A be the parameter vector of the exterior field problem consist of the 

structural properties, the acoustic properties and the external excitation. Due to the 

effects of model inaccuracies, physical imperfections, multiphase characteristics of 
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materials and unpredictable environment factors, the parameter vector A is treated as 

interval random vector and denoted as ( )R IA a . The interval random vector 

composed by all independent interval random parameters can be expressed as  

 1 1( ) ( ( ), , ( ), , ( ))
R R

R I R I R I R I
n n L LA A A= … …A a a a a ，n=1, 2, …, LR  (17) 

Where LR represents the number of interval random parameters; ( )R I
n nA a  

represents the n-th interval random parameters; I
na  represents the interval vector 

related to the interval random parameter ( )R I
n nA a  and can be expressed as 

 ,I L U m I
n n n n = = + ∆ a a a a a  (18) 

 
2

U L
m n n
n

+
=

a aa  (19) 

 [ ], ,
2

U L
I n n
n n n n

−
∆ = −∆ ∆ ∆ =

a aa a a a  (20) 

or in component forms 

 [ ], , ,  1, 2,...,I L U m I I
i i i i i i i i na a a a a a a a i l = = + ∆ ∆ = −∆ ∆ =  ，    (21) 

 ,
2 2

U L U L
mi i i i

i i
a a a aa a− +

∆ = =  (22)                  

Where ln denotes the number of interval variables related to ( )R I
n nA a ; L

na  and 

U
na  denote the lower and upper bounds of the interval vector I

na ; m
na  denotes the of 

the midpoint interval vector I
na ; n∆a  denotes the maximum deviation width of the 

interval vector I
na ; I

n∆a  denotes the deviation interval of the interval vector I
na ; L

ia  

and U
ia  denote the lower and upper bounds of the interval variable I

ia ; m
ia  denotes 

the midpoint of the interval variable I
ia ; ia∆  denotes the maximum deviation width 

of the interval variable I
ia ; I

ia∆  denotes the deviation interval of the interval 

variable I
ia . 
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The expectation ( ( ))R Iµ A a  and variance 2 ( ( ))R Iσ A a  of the interval random 

vector ( )R IA a  can be expressed as 

 1 1( ( )) ( ( ), , ( ), , ( ))R I R I R I R I
n n L LA A Aµ µ= … …A a a a a  (23) 

 2 2
1 1( ( )) ( ( ), , ( ), , ( ))R I R I R I R I

n n L LA A Aσ σ= … …A a a a a  (24) 

With respect to the interval random vector ( )R IA a , the structural–acoustic 

dynamic stiffness matrix Z is interval random matrix, the external excitation vector F 

and the interpolation coefficient vector C are interval random vectors. Thus, the 

frequency response of sound pressure ( ( ))c R IP A a  at any point c in the exterior field 

is also an interval random vector and can be expressed as 

 1( ( )) ( ( )) ( ( )) ( ( ))c R I R I R I R IP −=A a C A a Z A a F A a  (25) 

3.2. Matrix perturbation analysis for the exterior acoustic field with interval random 

parameters 

The interval variables related to the interval random parameters ( )R IA a  are 

firstly regarded as constant. The first-order Taylor expansion of the interval random 

matrix ( ( ))R IZ A a  at the expectation of the interval random vector ( )R IA a  can be 

expressed as 

1

( ( ( )))( ( )) ( ( ( ))) ( ( ( )))
RL R I

R I R I R R I R R
n n nR

n n

A A
A

µµ µ
=

∂
= + − = + ∆

∂∑ Z A aZ A a Z A a a Z Z  (26) 

 
1

( ( ( )))( ( ( ))), ( ( ( )))
RL R I

R R I R R R I
n n nR

n n

A A
A

µµ µ
=

∂
= ∆ = −

∂∑ Z A aZ Z A a Z a  (27) 

where ZR and ΔZR are the mean value and deviation of the structural–acoustic 

dynamic stiffness matrix Z with considering the related interval variables of the 

interval random variable ( )R IA a  are constant. 
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Similarly, the first-order Taylor expansion of the interval random external 

excitation vector F and the interpolation coefficient vector C can also be expressed as 

1

( ( ( )))( ( )) ( ( ( ))) ( ( ( )))
RL R I

R I R I R R I R R
n n nR

n n

A A
A

µµ µ
=

∂
= + − = + ∆

∂∑ F A aF A a F A a a F F  (28) 

 
1

( ( ( )))( ( ( ))), ( ( ( )))
RL R I

R R I R R R I
n n nR

n n

A A
A

µµ µ
=

∂
= ∆ = −

∂∑ F A aF F A a F a  (29) 

1

( ( ( )))( ( )) ( ( ( ))) ( ( ( )))
RL R I

R I R I R R I R R
n n nR

n n

A A
A

µµ µ
=

∂
= + − = + ∆

∂∑ C A aC A a C A a a C C  (30) 

 
1

( ( ( )))( ( ( ))), ( ( ( )))
RL R I

R R I R R R I
n n nR

n n

A A
A

µµ µ
=

∂
= ∆ = −

∂∑ C A aC C A a C a  (31) 

where RF  and R∆F  are the mean value and deviation of F with considering the 

related interval variables of the interval random variable ( )R IA a  are constant, RC  

and R∆C  are the mean value and deviation of C with considering the related interval 

variables of the interval random variable ( )R IA a  are constant.  

Substituting Eqs. (26), (28) and (30) into Eq. (25), Eq. (25) can be transformed 

into 

 1( ( )) ( )( ) ( )c R I R R R R R RP −= + ∆ + ∆ + ∆A a C C Z Z F F  (32) 

 (ZR +ΔZR)–1 can be expanded through Neumann series if the spectral radius of 

(ZR)–1ΔZR is less than 1 [41]. 

 ( ) ( ) ( )( )1 1 11

1
( )

r
R R R R R R

r

∞− − −−

=

+ ∆ = + −∆∑Z Z Z Z Z Z  (33) 

By substituting Eq. (33) into Eq. (32), we can obtain 
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( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 1 1 1

1

1 1 1 1

1

1 1 1 1

1 1

( ( ))
r

c R I R R R R R R R R R R R

r
r

R R R R R R R R R R R

r
r r

R R R R R R R R R R

r r

P
∞− − − −

=

∞ − − − −

=

∞ ∞− − − −

= =

= + −∆ + ∆

             + ∆ −∆ + ∆ + ∆ ∆

             + −∆ ∆ + ∆ −∆ ∆

∑

∑

∑ ∑

A a C Z F C Z Z Z F C Z F

C Z Z Z F C Z F C Z F

C Z Z Z F C Z Z Z F

  (34) 

For most engineering problems, the improvement of accuracy through higher 

order perturbation terms is rather small when compared with the increase of the 

computational effort. Therefore, only the first-order perturbation term is reserved and 

Eq. (34) can be rewritten as 

 
( ) ( ) ( )
( ) ( )

1 1 1

1 1

( ( ))c R I R R R R R R R R R

R R R R R

P
− − −

− −

= + ∆ + ∆

                     − ∆

A a C Z F C Z F C Z F

C Z Z Z F
 (35) 

Substituting Eqs. (27), (29) and (31) into Eq. (35), we can obtain the frequency 

response vector 

( ) ( )

( )

( )

1 1

1

1

1

1

1

( ( ( )))( ( )) ( ( ( )))

( ( ( ))) ( ( ( )))

( ( ( ))) ( ( ( )))

R

R

L R I
c R I R R R R R I R R

n n nR
n n

L R I
R R R R I

n n nR
n n
L R I

R R R R I
n n nR

n n

P A A
A

A A
A

A A
A

µ µ

µ µ

µ µ

− −

=

−

=

−

=

∂
= + −

∂

∂
                     + −

∂

∂
                     − −

∂

∑

∑

C A aA a C Z F a Z F

F A aC Z a

Z A aC Z a ( ) 1R
R R−

∑ Z F

(36) 

Based on the random moment method, the expectation ( ( ))R IU A a  of the 

frequency response vector ( ( ))c R IP A a  can be expressed as 

 ( ) 1
( ( )) ( ( ( )))R I c R I R R RU Pµ

−
= =A a A a C Z F  (37) 

As all the random parameters are independent of each other, the covariance 

between different random parameters equate to zero. Therefore, the variance 

( ( ))R IV A a  of the frequency response vector ( ( ))c R IP A a  can be expressed as 



 15 

 
( ) ( )

( ) ( )

2

1 1

1

2
1 1 2

( ( ))= ( ( ( )))

( ( ( ))) ( ( ( )))

( ( ( ))) ( ( ))

R

R I c R I

L R I R I
R R R R

R R
n n n

R I
R R R R R I

R
n

V P

A A

A

σ

µ µ

µ σ

− −

=

− −

 ∂ ∂
= + ∂ ∂

∂
 − ∂ 
          

∑

A a A a

C A a F A aZ F C Z

Z A aC Z Z F A a

 (38) 

Considering the interval variables related to the interval random variables 

( )R IA a , the expectation ( ( ))R IU A a  and variance ( ( ))R IV A a  are interval vectors. 

The expectation ( ( ))R IU A a  and the variance ( ( ))R IV A a  can be expanded through 

the first-order Taylor series at the midpoint of the interval variables  

 
1

( ( ( )))( ( )) ( ( ( )))
nl R m

R I R m I
lI

l l

UU U a
a

µµ
=

∂
= + ∆

∂∑ A aA a A a  (39) 

 
1

( ( ( )))( ( )) ( ( ( )))
nl R m

R I R m I
lI

l l

VV V a
a

µµ
=

∂
= + ∆

∂∑ A aA a A a   (40) 

As ( ( ))R IU A a  and ( ( ))R IV A a  may be an implicit function of the interval 

variables I
na , the central difference method is adopted to compute the first derivative 

of ( ( ))R IU A a  and ( ( ))R IV A a . The process to obtain the derivative of ( ( ))R IU A a  

is simple, which can be expressed as 

 ( ( ( ))) ( ( ( )))( ( ( )))
2

R m R mR m
l l

I
l l

U UU
a a

µ δ µ δµ
δ

+ − −∂
=

∂
A a a A a aA a  (41) 

where l la aδ ≤ ∆  is the variation of the interval variable I
la , lδ a  is the variation 

vector associated with laδ  and can be expressed as 

 (0, , , ,0)l laδ δ= … …a  (42) 

As the impact of neglecting the higher order terms of Taylor expansion is 

unpredictable, the first-order Taylor expansion is limited to the hybrid uncertain 

problems with small variation ranges of the interval variables. Thus, we just discuss 
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the interval random variables whose distribution parameters are interval variables 

with small variation ranges. For interval variables with small variation ranges, laδ  

can be replaced by la∆  approximately and (0, , , ,0)l la∆ = … ∆ …a . Then, Eq. (41) 

can be rewritten as 

 ( ( ( ))) ( ( ( )))( ( ( )))
2

R m R mR m
l l

I
l l

U UU
a a

µ µµ + ∆ − − ∆∂
=

∂ ∆
A a a A a aA a  (43) 

Substituting Eq. (43) into Eq. (39), one gets 

1

( ( ( ))) ( ( ( )))( ( )) ( ( ( )))
2

nl R m R m
R I R m Il l

l
l l

U UU U a
a

µ µµ
=

+ ∆ − − ∆
= + ∆

∆∑ A a a A a aA a A a  (44) 

It is apparent that ( ( ))R I I
lU a∂ ∂∆A a  is a constant vector which is not involved 

with the interval variable I
la∆ . Therefore, ( ( ))R IU A a  is a monotonic function 

associated with I
la∆  . 

The vertex ˆla∆  of the interval variable I
la∆  can be defined as 

 { }ˆ ˆ ˆ ˆ: r , 1, ,I
l l l l l l l na a a a a a a l l∆ = ∆ ∈ ∆ ∆ = −∆  ο  ∆ = ∆   = …  (45) 

For each interval variable I
la , ˆ ˆrl l l la a a a∆ = −∆  ο  ∆ = ∆  is determined by 

( ( ))R I I
lU a∂ ∂∆A a . If the sign of ( ( ))R I I

lU a∂ ∂∆A a  is positive, ˆl la a∆ = ∆  is used 

for obtaining the maximum value of the expectation ( ( ))R IU A a  and ˆl la a∆ = −∆  is 

used for calculating the minimum value of the expectation ( ( ))R IU A a , and vice 

versa. Through judging the sign of ( ( ))R I I
lU a∂ ∂∆A a , the vertices that lead to the 

maximum or the minimum values of the expectation ( ( ))R IU A a  can be determined. 

Here, let ˆmax∆α  denotes the vertex combination that can be used to compute the 

maximum value of the expectation ( ( ))R IU A a , and ˆmin∆α  denotes the vertex 

combination for calculating the minimum value of the expectation ( ( ))R IU A a .  
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Substituting ˆmin∆α  and ˆmax∆α  into Eq. (44), the lower and upper bounds of the 

expectation ( ( ))R IU A a  can be expressed as 

 ,
1

( ( ( ))) ( ( ( ))) ˆ( ( ( )))
2

nl R m R m
R m l l

lower l min
l l

U UU U a
a

µ µµ
=

+ ∆ − − ∆
= + ∆

∆∑ A a a A a aA a  (46) 

,
1

( ( ( ))) ( ( ( ))) ˆ( ( ( )))
2

nl R m R m
R m l l

upper l max
l l

U UU U a
a

µ µµ
=

+ ∆ − − ∆
= + ∆

∆∑ A a a A a aA a  (47) 

Similarly, the lower and upper bounds of the variance ( ( ))R IV A a  can be 

expressed as  

 ,
1

( ( ( ))) ( ( ( ))) ˆ( ( ( )))
2

nl R m R m
R m l l

lower l min
l l

V VV V a
a

µ µµ
=

+ ∆ − − ∆
= + ∆

∆∑ A a a A a aA a  (48) 

 ,
1

( ( ( ))) ( ( ( ))) ˆ( ( ( )))
2

nl R m R m
R m l l

upper l max
l l

V VV V a
a

µ µµ
=

+ ∆ − − ∆
= + ∆

∆∑ A a a A a aA a  (49) 

On the basis of the lower and upper bounds of the variance ( ( ))R IV A a , the 

interval of standard variance ISD  can be obtained as 

 ( ) ( )1 21 2 ,I
lower upperSD V V =   

 (50) 

3.3. Derivation of integrating subinterval technique for the exterior acoustic field with 

interval random parameters 

When comes to the situation that the interval range of the interval random 

uncertainty is not relative small, due to the complicated perturbation formulation, the 

high-order series Taylor expansions are hard to implement here. With regard to this 

issue, the subinterval technique [42-44] is herein introduced to guarantee the accuracy 

of the presented method. Assuming that the number of the subintervals for the interval 

parameter I
ia  is Ni, the subinterval can be defined as 

 , 2( 1) / , 2 / ,  1, 2,...,
i

I L L
r i i i i i i i i i i ia a r a N a r a N r N = + − ∆ + ∆ =      (51) 
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where ,i

I
r ia  (i=1, 2, …, L) is the rith subinterval of the ith interval parameter I

ia ; L is 

the total number of the intervals. 

According to the permutation and combination theory, there are N1N2…NL 

combinations of subinterval random variables produced. Each subinterval random 

variable combination can be expressed as 

 ( )1 1 ,1 , ,( ) , , , , ,  1, 2, , ,  1, 2, ,
i L i L

R I R I I I
r r r r r i r L i ia a a r N i L= … … = =
 

 A a A   (52) 

For these subinterval random variable combinations, the subinterval random 

variable dynamic equilibrium equation of the exterior field can be rewritten as 

 
1 1 1 1

1( ( )) ( ( )) ( ( )) ( ( ))
i L i L i L i L

c R I R I R I R I
r r r r r r r r r r r rP −=
       

A a C A a Z A a F A a     (53) 

By applying the presented hybrid uncertain analysis method in these subinterval 

random variable combinations, the subinterval expectation vector 
1

( ( ))
i L

R I
r r rU
 

A a  

and subinterval variance vector 
1

( ( ))
i L

R I
r r rV
 

A a  of the frequency response can be 

obtained. 

By employing the following interval union operation, the interval expectation 

( ( ))R IU A a  and the interval variance ( ( ))R IV A a  of the frequency response can be 

obtained. 

 
( ) ( )

1

1 1

1,

1, 1,

( ( )) ( ( ))

min ( ( )) , max ( ( ))

i L

i i

i L i L
i i i i

R I R I
r r r

r N

R I R I
lower r r r upper r r rr N r N

U U

U U

=

= =

=

 =   

 



   

 



A a A a

A a A a
   (54) 

 
( ) ( )

1

1 1

1,

1, 1,

( ( )) ( ( ))

min ( ( )) , max ( ( ))

i L

i i

i L i L
i i i i

R I R I
r r r

r N

R I R I
lower r r r upper r r rr N r N

V V

V V

=

= =

=

 =   

 



   

 



A a A a

A a A a
   (55) 

where the subscript lower and upper stand for the lower and upper bounds of the 

interval, respectively.  
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The presented method is deduced in the standard coupled FEM/BEM framework. 

Thus, it can be effectively used to practical engineering problems whose analytical 

solutions could not be acquired. Obviously, the computational cost of the presented 

method is relevant to the number of interval variables, and it will increase 

exponentially when combining the subinterval technique to improve the accuracy. 

However, as the number of interval variables involved in the interval random vector 

of the exterior acoustic system is modest, the consumed time for the prediction of the 

exterior acoustic problem with interval random variables is acceptable. Furthermore, 

the computational burden of the presented method is very small compared with the 

Monte Carlo method. As a result, the proposed method can be considered as an 

efficient way to predict the frequency response of the exterior acoustic problem with 

interval random variables. 

4. Numerical examples 

A square flexible shell model of dimensions 0.4×0.4 m is depicted in Fig. 2. The 

shell is excited by a unit of normal harmonic point force at the middle point. The four 

vertices are set to be fixed. The number of elements of the shell structure is 36 and the 

acoustic interface is discretized by the same elements. The damping coefficients are 

assumed as α=0.5 and β=0.1. The density of air is ρf =1.184 kg/m3, and the sound 

speed of air is c =343.4 m/s. The Poisson’s ratio of the shell is ν =0.3.  

Due to the manufacturing/construction tolerances, the Young’s modulus, the 

density and the thickness of the shell are assumed as interval random variables and 

follow the normal distribution. The symbol α is used to denote the uncertain level of 
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interval variables. The expectations of the density of the shell is ( )sµ ρ =2700 kg/m3. 

The interval of the expectations of the Young’s modulus and the thickness of the shell 

are ( )IEµ =71[(1-α), (1+α)] GPa and ( )Itµ =5[(1-α), (1+α)] mm, respectively. The 

interval of the standard variance of the Young’s modulus, the density and the 

thickness of the shell are ( )IEσ =1.42[(1-α), (1+α)] GPa, ( )I
sσ ρ =54[(1-α), (1+α)] 

kg/m3 and ( )Itσ =0.1[(1-α), (1+α)] mm, respectively. Simulations of this square 

flexible shell are carried out by MATLAB R2009a on a 2.93GHz Core(TM)2 CPU 

E7500. 

 

0.4m
0.

4m

F=1eiωt

 
Fig. 2 A square flexible shell model 

Assume that the uncertain level of interval variables are α =5%. The lower and 

upper bounds of expectation and standard variance of the frequency response 

amplitude at the points vertically above the midpoint of the squared shell obtained by 

the present method and Monte Carlo method are plotted in Fig. 3 for frequency 50 Hz, 

Fig. 4 for frequency 100 Hz and Fig. 5 for frequency 150 Hz. The vertical distances 

from these points to the midpoint of the squared shell are from 0.2 m to 2.2 m with a 

step of 0.1 m. The results obtained by the Monte Carlo method are used as the 
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reference solutions. In the implement of Monte Carlo method, the total number of the 

samples is 107, in which the sample size of interval variables subjected to 

corresponding bound combination is 103 and the sample size of random parameters 

associated with normal distribution is 104. When the sample size is 107, the intervals 

of the expectation and the standard variance of the frequency response amplitude at 

the point vertically above the midpoint of the squared shell with the distance of 1 m at 

the frequency 100 Hz are [0.0005927, 0.0008884] and [3.4266×10-5, 6.36254×10-5], 

respectively. However, when the sample size is 109, in which the sample size of 

interval variables subjected to corresponding bound combination is 104 and the 

sample size of random parameters associated with normal distribution is 105, the 

intervals of the expectation and the standard variance are [0.0005930, 0.0008879] and 

[3.36543×10-5, 6.29727E×10-5], respectively. It can be found out that the results of 

the Monte Carlo method have been only changed little with the sample size increasing 

exponentially. Thus, considering the computational cost, the sample size of Monte 

Carlo method is set to 107. From Figs. 3 to 5, we can see that the lower and upper 

bounds of expectations and standard variances of the frequency response amplitudes 

at the points vertically above the midpoint of the shell obtained by the present method 

match the bounds yielded by Monte Carlo method well. It indicates that the accuracy 

of the proposed method is good, when it is used to calculate the intervals of 

expectation and standard variance of the frequency response amplitude of the exterior 

acoustic system with interval random variables. 
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Fig. 3 The lower and upper bounds of expectation and standard variance of the frequency response 
amplitude vertically above from the midpoint of the shell (f = 50 Hz): (a) expectation and (b) 

standard variance. 
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(b) 

Fig. 4 The lower and upper bounds of expectation and standard variance of the frequency response 
amplitude vertically above from the midpoint of the shell (f = 100 Hz): (a) expectation and (b) 

standard variance. 
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Fig. 5 The lower and upper bounds of expectation and standard variance of the frequency response 
amplitude vertically above from the midpoint of the shell (f = 150 Hz): (a) expectation and (b) 

standard variance. 

The relative errors of the lower and upper bounds of the expectation and standard 
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variance of the frequency response amplitude at the points above the midpoint of the 

squared shell with the distances from 0.2 m to 2.2 m are shown in Table 1 for 

frequency 150 Hz. The symbols “LB” and “UB” denote the lower bound and upper 

bound, respectively. From Table 1, we can see that the relative errors of the proposed 

method are acceptable compared with the Monte Carlo method whose computational 

cost is excessive. The main cause of the relative errors is that the effects of neglecting 

the higher order terms of Taylor series and the higher order terms of Neumann series 

are unpredictable and uncontrollable. The other reason for the relative errors is the 

impacts derived from the central difference method for the non-linear function, in 

which the differential of interval variables is replaced by the maximum deviation 

width of interval variable approximately. Furthermore, we can find from Table 1 that 

the relative errors of the bounds of standard variances are larger than that of the 

bounds of expectations. The reason is that the number of interval variables associated 

with the standard variance is more than the number of interval variables associated 

with the expectation. In this case, the interval variables associated with the 

expectation are ( )IEµ  and ( )Itµ ; whereas, the interval variables associated with 

the standard variance are ( )IEµ , ( )Itµ , ( )IEσ , ( )I
sσ ρ  and ( )Itσ . 

Spontaneously, the relative errors of standard variance with 5 interval variables are 

larger than the relative errors of expectation with 2 interval variables. 

Table 1 Bounds of the expectation and standard variance of the frequency response amplitude 
vertically above from the midpoint of the shell (f = 150 Hz) 

Distance 
above from 

the 
midpoint(m) 

Bounds 

Expectation (Pa) 
Relative 
errors  

Standard Variance (Pa) 
Relative 
errors  Referenced 

solution 
Numerical 
solution 

Referenced 
solution 

Numerical 
solution 
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0.2 
LB 0.005726 0.005556 2.97% 0.0003309 0.0003065 7.37% 

UB 0.00858 0.008352 2.66% 0.0006142 0.0005719 6.89% 

0.3 
LB 0.003863 0.003748 2.98% 0.0002232 0.0002068 7.35% 
UB 0.005788 0.005634 2.66% 0.0004143 0.0003858 6.88% 

0.4 
LB 0.00284 0.002755 2.99% 0.0001641 0.000152 7.37% 
UB 0.004255 0.004141 2.68% 0.0003046 0.0002836 6.89% 

0.5 
LB 0.002218 0.002152 2.98% 0.0001282 0.0001187 7.41% 
UB 0.003324 0.003236 2.65% 0.000238 0.0002216 6.89% 

0.6 
LB 0.00181 0.001756 2.98% 0.0001046 0.00009687 7.39% 
UB 0.002712 0.00264 2.65% 0.0001941 0.0001808 6.85% 

0.7 
LB 0.001524 0.001478 3.02% 0.00008806 0.00008156 7.38% 
UB 0.002283 0.002222 2.67% 0.0001634 0.0001522 6.85% 

0.8 
LB 0.001314 0.001274 3.04% 0.00007591 0.0000703 7.39% 
UB 0.001968 0.001916 2.64% 0.0001409 0.0001312 6.88% 

0.9 
LB 0.001153 0.001119 2.95% 0.00006663 0.00006171 7.38% 
UB 0.001728 0.001682 2.66% 0.0001237 0.0001152 6.87% 

1 
LB 0.001027 0.0009963 2.99% 0.00005934 0.00005496 7.38% 
UB 0.001539 0.001498 2.66% 0.0001101 0.0001026 6.81% 

1.1 
LB 0.0009251 0.0008976 2.97% 0.00005346 0.00004951 7.39% 
UB 0.001386 0.001394 0.58% 0.00009923 0.00009239 6.89% 

1.2 
LB 0.0008415 0.0008165 2.97% 0.00004863 0.00004504 7.38% 
UB 0.001261 0.001227 2.70% 0.00009026 0.00008404 6.89% 

1.3 
LB 0.0007716 0.0007486 2.98% 0.00004459 0.0000413 7.38% 
UB 0.001156 0.001125 2.68% 0.00008276 0.00007706 6.89% 

1.4 
LB 0.0007123 0.0006911 2.98% 0.00004116 0.00003812 7.39% 
UB 0.001067 0.001039 2.62% 0.0000764 0.00007114 6.88% 

1.5 
LB 0.0006614 0.0006417 2.98% 0.00003822 0.0000354 7.38% 
UB 0.0009911 0.0009646 2.67% 0.00007094 0.00006605 6.89% 

1.6 
LB 0.0006172 0.0005989 2.97% 0.00003567 0.00003304 7.37% 
UB 0.0009249 0.0009002 2.67% 0.0000662 0.00006164 6.89% 

1.7 
LB 0.0005786 0.0005613 2.99% 0.00003343 0.00003097 7.36% 
UB 0.0008669 0.0008438 2.66% 0.00006205 0.00005778 6.88% 

1.8 
LB 0.0005444 0.0005282 2.98% 0.00003146 0.00002914 7.37% 
UB 0.0008158 0.000794 2.67% 0.00005839 0.00005437 6.88% 

1.9 
LB 0.000514 0.0004988 2.96% 0.00002971 0.00002751 7.40% 
UB 0.0007703 0.0007497 2.67% 0.00005514 0.00005134 6.89% 

2.0 
LB 0.0004869 0.0004724 2.98% 0.00002814 0.00002606 7.39% 
UB 0.0007296 0.0007101 2.67% 0.00005222 0.00004863 6.87% 

2.1 
LB 0.0004624 0.0004487 2.96% 0.00002672 0.00002475 7.37% 
UB 0.0006929 0.0006745 2.66% 0.0000496 0.00004618 6.90% 

2.2 
LB 0.0004403 0.0004272 2.98% 0.00002545 0.00002357 7.39% 

UB 0.0006598 0.0006422 2.67% 0.00004723 0.00004397 6.90% 

Computational efficiency is an important factor to evaluate the performances of 
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numerical methods. The computational time of the Monte Carlo method with 107 

samples to calculate the bounds of the expectation and the standard variance of the 

frequency response amplitude at the points vertically above the midpoint of the 

squared shell is 13,527,394 s when the frequency is 150 Hz. Whereas, the 

computational time of the presented method is 179 s. Namely, the computational cost 

of the present method is much less than that of Monte Carlo method when they are 

used to predict the bounds of the expectation and the standard variance of the 

frequency response amplitude of the exterior acoustic system with interval random 

variables.  

In order to investigate the effect of the uncertain levels of interval variables on 

the computational accuracy of the proposed method, the relative errors of the bounds 

of expectation and standard variance at the points vertically above the midpoint of the 

squared shell with the distance of 1m and 2m are listed in Tables 2 and 3. The 

considered uncertain levels of interval variables are 1%, 3%, 5% and 7%, respectively. 

The considered frequency is 100 Hz. From tables 2 and 3, we can see that the relative 

errors of the bounds of expectation and standard variance show an increasing trend 

with the increase in the uncertain levels. The relative errors of the proposed method 

are acceptable when the uncertain levels reach 5%. However, when the uncertain level 

exceed 5%, the bounds of standard variance obtained by the proposed method deviate 

far from the bounds obtained by Monte Carlo method, and the corresponding errors 

are unacceptable. Nonetheless, the present method can be used to predict the intervals 

of expectation and standard variance of the response of the exterior acoustic field with 
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interval random variables when the uncertain levels of the interval variables are small.  

Table 2 Bounds of the expectation and standard variance of the frequency response amplitude 
vertically above from the midpoint of the shell with the distance of 1m (f = 100 Hz) 

Uncertain 
level 

Bounds 
Expectation (Pa) 

Relative 
errors  

Standard Variance (Pa) 
Relative 
errors  Referenced 

solution 
Numerical 
solution 

Referenced 
solution 

Numerical 
solution 

1% 
LB 0.0006923 0.0006912 0.16% 0.00004269 0.00004275 0.14% 
UB 0.000753 0.0007487 0.57% 0.00004974 0.00004821 3.08% 

3% 
LB 0.0006406 0.0006334 1.12% 0.00003776 0.00003727 1.30% 
UB 0.0008169 0.0008064 1.29% 0.00005661 0.00005369 5.16% 

5% 
LB 0.0005928 0.0005751 2.99% 0.00003427 0.00003173 7.41% 
UB 0.0008885 0.0008647 2.68% 0.00006363 0.00005924 6.90% 

7% 
LB 0.0005497 0.0005158 6.17% 0.00003051 0.00002607 14.55% 
UB 0.0009677 0.000924 4.52% 0.00007216 0.00006489 10.07% 

 
Table 3 Bounds of the expectation and standard variance of the frequency response amplitude 

vertically above from the midpoint of the shell with the distance of 2m (f = 100 Hz) 

Uncertain 
level 

Bounds 
Expectation (Pa) 

Relative 
errors  

Standard Variance (Pa) 
Relative 

errors  Referenced 
solution 

Numerical 
solution 

Referenced 
solution 

Numerical 
solution 

1% 
LB 0.0003184 0.0003179 0.16% 0.00001963 0.00001966 0.15% 
UB 0.0003463 0.0003443 0.58% 0.00002287 0.00002217 3.06% 

3% 
LB 0.0002946 0.0002913 1.12% 0.00001737 0.00001714 1.32% 
UB 0.0003757 0.0003709 1.28% 0.00002603 0.00002469 5.15% 

5% 
LB 0.0002726 0.0002645 2.97% 0.00001576 0.00001459 7.42% 
UB 0.0004086 0.0003977 2.67% 0.00002926 0.00002724 6.90% 

7% 
LB 0.0002528 0.0002372 6.17% 0.00001403 0.00001199 14.54% 
UB 0.000445 0.0004249 4.52% 0.00003319 0.00002984 10.09% 

 

To guarantee the accuracy of the present method for the hybrid uncertain exterior 

acoustic problem, the sub-interval analysis technique is herein adopted. Through 

dividing the interval variable into several sub-intervals, the uncertain level of each 

sub-interval can be decreased, and the accuracy of the present method can be ensured. 

To demonstrate the effectiveness of combining the subinterval technique with the 

proposed method, cases with two subintervals and four subintervals are calculated. 
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The considered uncertain level of the interval variables is set to 10%. The considered 

frequency is 100 Hz. The relative errors of the bounds of expectation and standard 

variance at the points vertically above the midpoint of the squared shell with the 

distance of 1m and 2m are listed in Tables 4 and 5. The symbol N stands for the 

number of the subintervals and all of the interval random variables are divided into N 

subinterval random variables. It can be seen from tables 4 and 5 that the relative errors 

of the bounds of expectation and standard variance decrease with increasing 

subinterval number, which means that the accuracy of presented method can be 

improved by integrating it with the subinterval technique. Besides, the results 

obtained by integrating four subintervals match the reference solutions very well. 

Although the computational cost increase exponentially when combining the 

subinterval technique, but it is still relative small compared with the Monte Carlo 

method. 

Table 4 Bounds of the expectation and standard variance of the frequency response amplitude 
vertically above from the midpoint of the shell with the distance of 1m with different subintervals 

Number of 
subintervals 

Bounds 
Expectation (Pa) 

Relative 
errors  

Standard Variance (Pa) 
Relative 
errors  Referenced 

solution 
Numerical 
solution 

Referenced 
solution 

Numerical 
solution 

N=0 
LB 0.0004922 0.0004243 13.80% 0.00002569 0.00001727 32.78% 
UB 0.001104 0.001016 7.97% 0.00008749 0.00007370 15.76% 

N=2 
LB 0.0004922 0.0004790 2.68% 0.00002569 0.00002395 6.77% 
UB 0.001104 0.001071 2.99% 0.00008749 0.00008106 7.35% 

N=4 
LB 0.0004922 0.0004891 0.63% 0.00002569 0.00002510 2.30% 
UB 0.001104 0.001089 1.36% 0.00008749 0.00008363 4.41% 

 
Table 5 Bounds of the expectation and standard variance of the frequency response amplitude 

vertically above from the midpoint of the shell with the distance of 2m with different subintervals 

Number of 
subintervals 

Bounds 
Expectation (Pa) Relative 

errors  

Standard Variance (Pa) Relative 
errors  Referenced Numerical Referenced Numerical 
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solution solution solution solution 

N=0 
LB 0.0002264 0.0001951 13.83% 0.00001182 0.00000794 32.83% 
UB 0.0005076 0.0004671 7.98% 0.00004024 0.00003389 15.78% 

N=2 
LB 0.0002264 0.0002203 2.69% 0.00001182 0.00001101 6.85% 
UB 0.0005076 0.0004925 2.97% 0.00004024 0.00003728 7.36% 

N=4 
LB 0.0002264 0.0002249 0.66% 0.00001182 0.00001154 2.37% 
UB 0.0005076 0.0005010 1.30% 0.00004024 0.00003846 4.42% 

 

5. Conclusions 

In this paper, a hybrid uncertain analysis technique is proposed for the hybrid 

uncertain exterior acoustic field prediction, in which the uncertain parameters are 

modeled as the random variables whose distribution parameters are expressed as 

interval variables instead of precise value due to lacking sufficient information. Since 

the limited information of the distribution parameters of random variables can be well 

reflected by the interval variables, the proposed method can be considered as a 

valuable alternative method of stochastic method for epistemic uncertain problems. In 

the proposed method, the expectation and variance of response vector can be obtained 

by using the matrix perturbation theory and the random moment method with 

considering the related interval variables of the interval random variable are constant. 

Afterward, on the basis of the linear monotonicity of the expectation and variance of 

the response vector with respect to the interval variables, the lower and upper bounds 

of expectation and variance of the response vector can be computed through the 

vertex method. The numerical results on a square flexible shell verify the 

effectiveness of the proposed method for the hybrid uncertain exterior acoustic field 

prediction with interval random parameters. Furthermore, the subinterval technique is 

herein introduced and investigated to guarantee the accuracy of the presented method. 
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As a result, good effects are achieved by integrating the subinterval technique with the 

presented method. Thus, the present approaches can be considered as an effective 

engineering method to quantify the effects of interval random uncertainty on the 

response of the exterior acoustic field. 
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