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Abstract

Random Vibration of Systems with Singular Matrices

by

Vasileios C. Fragkoulis

In the area of stochastic engineering dynamics, a flourishing field of research
has been connected to assessing the reliability of systems subjected to stochastic exci-
tations. In particular, the development of analytical and numerical methodologies for
the response statistics determination of multi-degree-of-freedom (MDOF) systems with
potentially singular matrices are of high interest. These singular matrices can appear
naturally in the systems governing equations of motion, for instance due to coupling of
electro-mechanical equations in energy harvesting applications, or they are related to
FEM modeling; they also appear due to a redundant degrees-of-freedom (DOF) mod-
eling of the systems equation of motion. In the later case, for reasons pertaining to a
less labor intensive formulation of the systems governing equations of motion, espe-
cially in case of large-scale MDOF systems, and/or from a computational efficiency
perspective, the system governing equations of motion are derived by utilizing a redun-
dant DOFs modeling. This results in equations of motion with singular mass, damping
and stiffness matrices. Taking also into account that the classical state and frequency
domain analysis methodologies for deriving the system stochastic response, have been
developed ad hoc for the case of systems with non-singular matrices, the necessity for
developing a framework for treating systems with singular matrices arises.

A novel Moore-Penrose (M-P) generalized matrix inverse based framework is
developed for circumventing the difficulties arising from the redundant DOFs modeling
of the systems governing equations of motion. The standard time and frequency domain
analysis treatments have been extended to account for linear systems with singular ma-
trices. A M-P based solution framework for the systems mean vector and covariance
matrix is determined, first by solving the equations derived after the application of the
standard state-variable formulation. By following a frequency domain analysis the cor-
responding mean vector and covariance matrices are derived. In the latter case, a M-P
based expression is obtained for the system frequency response function (FRF) matrix,
and subsequently utilizing the relationship that connects the impulse response function
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of the system excitation to the corresponding of its response, a M-P solution for the
system response power spectrum is derived.

Next, the classical statistical linearization approximate methodology is gener-
alized to account for nonlinear systems with singular matrices. Adopting a redundant
DOFs modeling for the derivation of the systems governing equations of motion, and
relying on the concept of the M-P generalized matrix inverse, the extended time and
frequency domain analysis treatment are applied for deriving the response statistics of
systems subjected to stochastic excitations. Working on the time domain, a family of
optimal and response dependent equivalent linear matrices is derived. Extending a clas-
sical excitation-response relationship of the random vibration theory, and taking into
account the aforementioned family of matrices, results in an iterative determination of
the system response mean vector and covariance matrix. It is proved that setting the ar-
bitrary element in the M-P solution for the equivalent linear matrices equal to zero yields
a mean square error at least as low as the error corresponding to any non-zero value of
the arbitrary element. The M-P based frequency domain analysis treatment also yields
an iterative determination of the system response mean vector and covariance matrix.
The generalization of a widely utilized formula that facilitates the application of statis-
tical linearization is also given.
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Notations

The following notations and abbreviations are found throughout this thesis:

DOFs Degrees-of-freedom
M-P Moore-Penrose
FRF Frequency response function matrix
SVD Singular value decomposition
pdf Probability density function
MND Multivariate normal distribution
Cm×n Class of the m× n complex matrices
A(j,k,...,l) (j, k, . . . , l)−inverse of the m× n matrix A
A+ The Moore-Penrose generalized inverse of the m× n matrix A
AT Transpose of the m× n matrix A
A∗ Conjugate transpose of the m× n matrix A
E[ ] Expectation operator
q n vector of the (generalized) displacements of a system
Q n vector containing the n (generalized) forces corresponding to q
M n× n mass matrix
C n× n damping matrix
K n× n stiffness matrix
h(t) Impulse response matrix of an n−DOFs system
wη(t, τ) Covariance matrix of the n vector η(t)
x l vector of the displacements of a system - redundant DOFs modeling
Qx l vector of external forces corresponding to x
Mx l × l mass matrix - redundant DOFs modeling
Cx l × l damping matrix - redundant DOFs modeling
Kx l × l stiffness matrix - redundant DOFs modeling
Qc
x(t) Additional forces due to the presence of constraints

w l vector of virtual displacements due to the presence of constraints
M̄x Augmented mass matrix - redundant DOFs modeling
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C̄x Augmented damping matrix - redundant DOFs modeling
K̄x Augmented stiffness matrix - redundant DOFs modeling
hx(t) Generalized impulse response matrix - redundant DOFs modeling
⊗ Kronecker product
λ′is Eigenvalues of a matrix
σ′is Singular values of a matrix
α(ω) FRF matrix of an n−DOFs system
Sq(ω) Power spectrum matrix of the system response (n−DOFs system)
SQ(ω) Power spectrum matrix of the system excitation (n−DOFs system)
αx(ω) FRF matrix - redundant DOFs modeling
Sx(ω) Power spectrum matrix of the system response - redundant DOFs modeling
SQx

(ω) Power spectrum matrix of the system excitation - redundant DOFs modeling
Φ Nonlinear n vector function of the coordinate vector q and its derivatives
ε Error vector of the statistical linearization method
‖.‖2 Euclidean norm

x̂ 3n vector defined as x̂ =
[
x ẋ ẍ

]T
, where x an n vector

Me Equivalent mass matrix - statistical linearization methodology
Ce Equivalent damping matrix - statistical linearization methodology
Ke Equivalent stiffness matrix - statistical linearization methodology
Φx Nonlinear vector - redundant DOFs modeling
M̄e Equivalent augmented mass matrix - statistical linearization - redundant DOFs
C̄e Equivalent augmented damping matrix - statistical linearization - redundant DOFs
K̄e Equivalent augmented stiffness matrix - statistical linearization - redundant DOFs
Φ̄x Augmented nonlinear vector - redundant DOFs modeling
meT

i∗ ith row of Me - statistical linearization methodology (M̄e - redundant DOFs)
ceTi∗ ith row of Ce - statistical linearization methodology (C̄e - redundant DOFs)
keTi∗ ith row of Ke - statistical linearization methodology (K̄e - redundant DOFs)
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Chapter 1

Introduction

1.1 Motivation and objectives

Random vibration analysis of dynamical systems, and particularly the dynamic analysis
focusing on determining the response and reliability statistics of stochastically excited
vibrating systems, has been a field of great interest and extensive study during the last
decades. The engagement of Stochastic Calculus has, in general, been dictated by the
inherent randomness in a wide range of complex and time-evolving natural phenomena,
which has motivated the modeling and study of systems with stochastic parameters
and initial/boundary conditions. Several random vibration methodologies have been
developed over the past six decades, for quantifying the uncertain behavior of complex
dynamical structural and mechanical systems, with varying degrees of success; see Refs
[48, 61, 73, 60] for some indicative books, and Refs [72, 83, 57, 54] for some recently
developed techniques such as the ones based on path integrals.

One of the major challenges in the direction of dynamic system analysis re-
lates to the modeling of governing equations of motion for complex nonlinear systems.
The formulation of the equations of motion of a multi-degree-of-freedom (MDOF) dy-
namic system is performed by utilizing the minimum number of (generalized) coordi-
nates [58]. By doing so, the arising mass, damping and stiffness matrices of the system
are not only non-singular but also symmetric and positive definite [80, 91, 16]. This
characteristic actually facilitates the ensuing analysis, which via a number of solution
techniques/methodologies (e.g. Ref. [91]) yields the derivation of closed forms for the
system response statistics. In the field of multibody system dynamics, the smallest
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possible number of coordinates is also utilized for reasons including computational effi-
ciency. Indeed, it can be argued that forming the multibody system equations of motion
in terms of the independent degrees of freedom can ideally increase computational per-
formance [40, 8, 27].

To elaborate further, depending on the complexity of the system under con-
sideration, utilizing the minimum number of independent coordinates for formulating
the equations of motion can be burdensome [93, 66]. Difficulties arise either in terms
of the effort required for formulating the equations of motion, or in terms of the com-
putation efficiency of the ensuing methodologies/techniques for the system stochastic
response determination. For example, several approaches for generating the equations
of motion [94], such as the ones relying on the computation of Lagrange multipliers
[74, 85], require the application of constraints that are functionally independent. Ver-
ifying the above requirement is not a straightforward task, especially for large-scale
complex systems. In case of large-scale multibody systems the disclosed difficulties in
formulating the system governing equations of motion are magnified, as the complexity
of the equations grows rapidly with increasing the number of constituent bodies and/or
the number of degrees-of-freedom (DOFs) [85, 75, 92, 93, 66]. In fact, in many cases
the choice of modeling utilizing the minimum number of DOFs/coordinates relates to
excessive computational cost (e.g. [40, 8, 27, 28]). Employing the minimum number of
DOFs can lead to limited flexibility regarding the form and nature of the constraints the
system might be subjected to. Specifically, altering a constraint might require a com-
plete remodeling of the multibody system. The degree of simplicity and the amount of
effort required for deriving the governing equations of motion, especially for complex
multibody systems, become key factors of the overall modeling approach in terms of as-
sessing the performance of a methodology for obtaining the system equations of motion
[92].

1.1.1 Utilization of redundant DOFs for Formulating the governing
equations of motion of MDOF systems

Taking into account the challenges associated with formulating the governing equations
of motion for MDOF systems, and working towards circumventing them, an alternative
approach for deriving the system equations of motion is proposed. It can be argued that
modeling by utilizing more than the minimum number of DOFs overcomes some of the
barriers identified in Section 1.1, which are set by the standard approach, i.e. modeling
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with the minimum number of coordinates, and provides the modeler with enhanced
flexibility [93].

Any complex multibody system can be decomposed into its constituent parts
for each of which the equations of motion can be obtained readily [111, 110]. A number
of constraint equations which, in essence, connect the individual subsystems, also arise
[112]. The equations of motion of the decomposed subsystems along with the constraint
equations can be used to form the composite system equations of motion in a less labor-
intensive manner. However, due to the redundant coordinates modeling scheme, and
particularly due to the fact that the extra utilized DOFs are not independent with each
other, singular mass, damping and stiffness matrices can arise in the system equations
of motion [59, 75, 114]. As a result, although it can be argued that in many cases (in
particular when relatively complex systems are considered) the latter ”unconventional”
modeling can be advantageous from a computational efficiency perspective (e.g. Refs
[111], [66]), the presence of singular matrices renders inapplicable all the standard time
and frequency domain techniques for determining the systems response statistics [91,
63].

It is deemed appropriate to mention that utilizing redundant coordinates is
not the only reason for the appearance of singular matrices in the system equations of
motion. Singularities may arise, for instance, in certain applications such as in the ro-
tational motion of rigid bodies even if the minimum number of generalized coordinates
are employed [114, 75, 113]. Besides the case where theoretically non-singular, but
numerically ill-conditioned matrices may appear [51], singular matrices are naturally
met in the formulation of the equations of motion of a certain class of smart structures.
In this class of vibrating systems, the system mechanical equation of motion is coupled
with the electrical equation yielding a differential-algebraic system of equations with
a singular mass matrix [118, 51, 50]. A concise presentation of the topic is provided
for completeness in Section 1.2. Note that some of the structural systems considered
herein are related to the so-called descriptor systems described, in general, by a set of
differential-algebraic equations; a more detailed presentation of the topic can be found
in Refs [45], [77], [49], [46], [14], [19], [33], [62], [120], [32], [44].

1.2 Systems with singular matrices

In general, as also mentioned in Section 1.1, the mass, damping and stiffness matri-
ces obtained by modeling the system governing equations of motion by utilizing the
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minimum number of coordinates are not only singular, but also symmetric and positive
definite [16]. In the redundant DOFs modeling approach presented in Section 1.1.1,
singular matrices arise in the systems governing equations of motion. Systems gov-
erning equations with singular matrices often appear in a wide range of applications in
physical sciences and engineering. The significance of these problems has implied the
development of several techniques for manipulating systems with singular matrices.

The definition of ill-conditioned algebraic systems of equations follows. A
linear system of algebraic equations is called ill-conditioned, if the system coefficient
matrix is ”almost” singular, i.e. its condition number is very large [10, 69]. Depending
on the application that is examined, among the numerical treatments followed for effi-
ciently manipulating ill-conditioned linear systems is to neglect the small terms of the
ill-conditioned matrices by setting them equal to zero. This practice potentially yield
singular matrices in the system governing equations [51]. Systems with large condition
number are treated, in essence, the way systems with singular matrices are; although
this is not always true (theoretically non-singular, but numerically ill-conditioned co-
efficient matrices). Extra care is required in manipulating such systems. The problem
consists in that the obtained solution of the system under consideration is not robust,
meaning that a small change in the system input can result tremendous change in its
output. This, in turn, results inaccurate general solution to the original system [87].
Further steps regarding the regularization of the system are required, although it is gen-
erally agreed that the resulting regularized system will provide acceptable but not exact
solutions [10, 11]. The vital significance of the regularization processes employed in
solving ill-conditioned systems also becomes manifest from the fact that, as far as prac-
tical applications are concerned, the input of the system is obtained from experimental
measurements, and as such, includes an inherent error due to the devices employed in
recording the measurements. Considering the aforementioned, it is obvious that the
solution of ill-conditioned systems can be problematic.

The necessity to efficiently manipulate ill-conditioned linear systems of alge-
braic equations is vital in diverse engineering applications. Some identical examples
where such systems appear include the following. Ill-conditioned matrices arise when
the analysis of large-scale constrained mechanical systems is considered, and particu-
larly, when a generalized coordinates partitioning treatment aiming at an order reduc-
tion is followed [65]. Ill-conditioned systems appear when solving inverse problems.
In general, such problems are ill-posed, and thus, the corresponding linear systems are
ill-conditioned [89]. A first example is found when solving an inverse problem aim-
ing at reconstructing the external loads acting on a structure [106]; this is significant
considering the ability to derive external loads, e.g. earthquakes acting on a structure.
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Ill-conditioned systems also appear when solving an inverse problem for identifying the
external forces acting on structures [107]. Ill-posed systems of equations, which in turn
yield ill-conditioned matrices, are related to inverse problems regarding the detection
and identification of cracks in structures [87]. Ill-conditioned matrices are met in appli-
cations of motion simulation, which is either based on the kinematics or dynamics of
biological as well as mechanical systems [64, 104]. Following closely Ref. [64], it is
noted that in such cases, although the systems matrix of inertias cannot be singular, it
can be extremely ill-conditioned, implying variate system accelerations. Ill-conditioned
systems of equations also appear in power engineering applications, for example when
load-flow problems are under consideration [105].

Regardless of the presence of ill-conditioned matrices in the linear system
under consideration, another category of problems where singular matrices appear is
that of energy harvesting, an emerging field of research with momentous real world
applications. Energy harvesters can be described as devices of varying physical di-
mensions which utilize the ambient energy (usually arising from vibrating systems) for
either powering themselves, or other connected to them devices. Considering the fast
rising field of nanotechnology, which is included among the most impactful technolo-
gies over the next years, and particularly its applications aiming at the development
of nano-sensors, the development of nano-scale energy harvesting devices becomes an
emerging field of diverse potential applications. They can be utilized, for instance, for
powering wireless sensor systems attached to engineering structures (e.g. buildings,
bridges), which, in turn, monitor and transmit information regarding the current state of
the structure. Regarding the presence of singular matrices in energy harvesting applica-
tions, they can naturally appear in the coupled governing equations of the electrical and
mechanical system of harvesters, in problems such as powering low power electronic
devices (e.g. wireless sensors) [5].

The appearance of singular matrices in the system equations of motion is also
related to the dynamic analysis of a particular class of non viscously damped systems.
In general, utilizing non-viscously damped models for describing the system damping
forces constitutes a generalization of the standard viscous modeling approach. This is
either dictated by reasons related to mathematical rigor of the utilized model, or/and
by reasons related to modern composite materials analysis and design [117, 6, 67].
Indicatively, a general model for describing a non-viscously damped system is the so-
called exponential damping model, in which the damping depends on the past history
of motion via convolution integrals over kernel functions [117, 115]. For the analysis
of linear systems with exponential damping, as well as linear systems with combined
viscous and non-viscous (exponential) damping, a state space method and its extended
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version, respectively, can be utilized [115, 6]. The state space method is based on the
introduction of a set of internal variables and for the particular case when the damping
coefficient matrices of the system are rank deficient, singular matrices appear in the state
space formulation. A more detailed presentation can be found in Refs [3, 2, 115, 6, 4].

Further applications where singular matrices naturally appear in the systems
governing equations include the so-called smart structures, i.e. able to expand and re-
gain their original position via a set of piezoelectrical elements attached to them (usually
refer to beams). When formulating the governing equations of motion for such kind of
vibrating systems, the system mechanical equation of motion is coupled with the elec-
trical equation yielding a differential-algebraic system of equations with singular mass
matrix; see Refs [118, 51, 9] for more details. Finally, some typical applications where
systems with singular matrices appear, include dynamic system controlling [1], power
electric systems analysis [19], and problems related to the hydrodynamics of planing
ships [116].

1.3 Organization of the thesis

This thesis consists of five chapters followed by the list of published results and the
cited publications list. A list of figures is included after the table of contents.

Chapter 1 comprises the introduction of the thesis where the motivation and
objectives of the herein presented work are included. The problem of formulating the
governing equations of motion for MDOF systems is discussed and a number of diffi-
culties and limitation pertaining to the classical modeling analysis are presented. An
unconventional approach based on utilizing redundant coordinates for formulating the
equations of motion is provided, which in turn, addresses some of the aforementioned
problems.

In chapter 2 a concise presentation of some mathematical tools utilized in the
ensuing analysis is given. Taking into account the objective of this thesis, i.e. the treat-
ment of singular matrix MDOF (linear and nonlinear) systems subjected to stochastic
excitation, the concept of the generalized inverse of a singular matrix is analyzed. The
analysis focuses on the Moore-Penrose (M-P) generalized inverse matrix, a potent math-
ematical tool utilized for addressing problems related to singular matrices. A number of
properties and results regarding the application of M-P inverses, are provided. The con-
cept of multivariate normal distribution is discussed. Taking into account the concept
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of the M-P generalized inverses, the particular case of multivariate normal distribution
of random vectors with singular covariance matrices is also scrutinized.

Chapter 3 focuses on the stochastic response determination of MDOF systems
with singular matrices. The system governing equations of motion are formulated by
adopting the aforementioned, redundant DOFs, modeling yielding systems with singu-
lar mass, damping and stiffness matrices. As a result, the standard time and frequency
domain analysis methodologies cannot be utilized for treating these unconventional sys-
tems. Exploiting the concept of M-P generalized matrix inverse for circumventing the
associated to singular matrices difficulties, first a generalization of the standard time
domain analysis methodology is proposed. As in the classical case, given a system sub-
jected to stochastic excitation, the covariance matrix of the system response is derived
by either solving a Lyapunov equation or by applying a complex modal analysis. In the
latter case, it is noted that although impossible to derive a decoupled system of equa-
tions, an application of the singular value decomposition yields a solution for the system
response statistics. Next, relying on the M-P inverse theory, the response statistics of
singular matrix systems subjected to stochastic excitations are derived by applying a
frequency domain analysis treatment. A M-P based frequency response function ma-
trix is obtained, and subsequently, the system response power spectrum is determined
by utilizing the standard relationship that connects the impulse response function of
the system excitation to the corresponding function of its response. Pertinent numer-
ical examples are included for validating the generalization of the proposed time and
frequency domain analysis methodologies.

In chapter 4 the aforementioned solution framework is generalized to account
for nonlinear systems. A generalization of the versatile statistical linearization approxi-
mate methodology to account for nonlinear systems with singular matrices is presented.
Relying on the concept of the M-P generalized matrix inverse, a family of optimal and
response dependent equivalent linear matrices is derived. This set of equations in con-
junction with a linear system generalized excitation response relationship (depending on
either a time or frequency domain analysis treatment is followed), leads to an iterative
determination of the system response mean vector and covariance matrix. It is proved
that setting the arbitrary element in the M-P solution for the equivalent linear matrices
equal to zero yields a mean square error at least as small as the error corresponding to
any non-zero value of the arbitrary element. The validity of the proposed techniques
is demonstrated by pertinent numerical examples including several linear and nonlinear
systems with singular matrices.
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Finally, chapter 5 includes the concluding remarks and discusses potential
future work based on the herein presented results.



Chapter 2

Mathematical prerequisites

2.1 Generalized matrix inverse theory

A common situation in many engineering applications is to seek for solutions to linear
systems of algebraic equations, given by

Ax = b, (2.1)

where A is a rectangular m × n matrix, x an n vector and b is an m vector. In the
particular case when m = n and A is invertible, the system defined in Eq. (2.1) has a
unique solution, given by

x = A−1b, (2.2)

where A−1 is the inverse matrix of A. On the contrary, in the general case when A
is an arbitrary m × n matrix, deriving a solution to Eq. (2.1) is not a straightforward
procedure. A solution can be found by utilizing the notion of the generalized inverse of
a matrix.

It can be proved that for any m × n matrix A, there exists a unique n × m

matrix, denoted by A+, such that the following four identities

AA+A = A, (2.3)

A+AA+ = A+, (2.4)

(AA+)∗ = AA+, (2.5)

(A+A)∗ = A+A, (2.6)

9
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hold true; A∗ denotes the conjugate transpose of the matrix A. The matrix A+ is
called the Moore-Penrose (M-P) generalized inverse of the m × n matrix A, and the
expressions given by Eqs. (2.3)-(2.6) represents the so-called M-P equations. If A is
non-singular, its inverse, A−1, satisfies the M-P equations, and thus, A+ = A−1.

In general, several kind of generalized inverses can be defined for a given
m×nmatrix A, and each one efficiently serves different purposes. The rationale behind
the definition of the generalized inverse of A lies in which, or how many, of the four
M-P equations are satisfied by the particular matrix. An n×mmatrix Z which satisfies,
for instance, Eq. (2.3) is called an (1)−inverse of A, whereas if Eq. (2.3) and Eq. (2.5)
are both satisfied, the matrix Z is referred to as the (1, 3)−inverse of A. Under the scope
of the present thesis the utilization of generalized inverses is connected to solving linear
systems of algebraic equations with singular matrices. More specifically, the solution
of the algebraic system of Eq. (2.1), where either A is a singular m ×m, or an m × n
matrix, is sought. In this particular case, the (1)-inverse of A is proved to be the most
appropriate choice.

Definition 2.1. Let Cm×n denotes the class of m × n complex matrices. For any
A ∈ Cm×n, let Aj,k,...,l ∈ Cn×m denote a matrix such that the (j), (k), . . . , (l) of the M-P
equations, Eqs. (2.3)-(2.6), hold true. Then, A(j,k,...,l) is called the (j, k, . . . , l)−inverse
of A.

Theorem 2.2 ([13]). Let A ∈ Cm×n, B ∈ Cp×q and D ∈ Cm×q. Then the matrix

equation

AXB = D (2.7)

is consistent if, and only if for some A(1), B(1),

AA(1)DB(1)B = D, (2.8)

in which case the general solution is

X = A(1)DB(1) + Y −A(1)AYBB(1), (2.9)

for arbitrary Y ∈ Cn×p.

In the particular case of algebraic systems described by Eq. (2.1), Theorem 2.2
takes the form given in the following corollary.

Corollary 2.3 ([13]). Let A ∈ Cm×n and b be anm vector. Then, Eq. (2.1) is consistent

if, and only if for some A(1),

AA(1)b = b, (2.10)
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in which case the general solution of Eq. (2.1) is

x = A(1)b+ (I−A(1)A)y, (2.11)

where y is an arbitrary n vector.

If the M-P inverse of the matrix A is utilized instead of its (1)−inverse, ancil-
lary identities arise (i.e. Eqs. (2.5)-(2.6)), which greatly facilitates the ensuing analysis.
The M-P inverse of any m × n matrix A, which can be determined by employing var-
ious techniques and methodologies such as a number of recursive formulae (e.g. [18],
[47]), provides a tool for solving equations of the form defined in Eq. (2.1). For a sin-
gular square matrix A, i.e. detA = 0, utilizing the M-P inverse and taking into account
Corollary 2.3, Eq. (2.1) yields

x = A+b+ (I−A+A)y, (2.12)

where y is an arbitrary n vector. A more detailed presentation of the topic can be found
in Refs [13, 18, 12, 81].

2.1.1 Miscellaneous results

In this subsection, a number of useful for the ensuing analysis results are provided for
completeness. Further, some properties/identities regarding the M-P generalized matrix
inverse are provided in the form of corollary without its proof. The proofs of the iden-
tities are derived as a straightforward outcome of the M-P equations, Eqs. (2.3)-(2.6),
and can be found in Refs [13, 18].

Suppose that A is an m× n matrix where, without loss of generality, m < n

and rank(A) < n, i.e. A is not a full rank matrix. Then, A can be decomposed in the
product of a full column rank matrix and a full row rank matrix.

Lemma 2.4 ([13]). Let A ∈ Cm×n, such that rank(A) = r > 0. Then, there exist a

set of matrices F ∈ Cm×r, with rank(F) = r, and G ∈ Cr×n, with rank(G) = r, such

that

A = FG. (2.13)

The factorization given in Eq. (2.13) is referred to as the full rank factorization
of a matrix A and it will be proved of vital significance in the ensuing analysis, as it is
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connected to the following theorem for deriving an explicit formula for the M-P inverse
of A [13, 84].

Theorem 2.5 ([13]). Let A be an m× n matrix, with rank(A) = r > 0, and let A has

the full rank factorization given in Eq. (2.13). Then, the M-P inverse of A is given by

A+ = G∗(F∗AG∗)−1F∗. (2.14)

A theorem that proves the existence of the M-P inverse, A+, of an m × n

matrix A, as well as some general properties of A+ follow.

Theorem 2.6 ([13]). For any finite matrix A of complex elements,

A(1,4)AA(1,3) = A+ (2.15)

Corollary 2.7. Let A ∈ Cm×n, A+ denote its M-P inverse and λ ∈ C. The following

properties hold true.

(i) (A+)+ = A

(ii) (A∗)+ = (A+)∗

(iii) (AT)+ = (A+)T

(iv) A+ = (A∗A)+A∗ = A∗(AA∗)+

(v) λ+ =


1
λ

, if λ 6= 0

0 , if λ = 0
(vi) (λA)+ = λ+A+

(vii) if D = diag(d1, d2, . . . , dn), then, D+ = diag(d+
1 , d

+
2 , . . . , d

+
n )

(viii) (UAV)+ = V∗A+U∗ where U,V unitary matrices

(ix) (AB)+ = B+A+

2.2 Multivariate normal distribution

Assume that x is a random variable that follows the normal distribution, x ∼ N(µ, σ2),
with mean and variance given by µ and σ2, respectively. The probability density func-
tion (pdf) of x is given by [79]

f(x) = 1√
2πσ

exp
{

(x− µ)2

2σ2

}
, ∞ < x <∞. (2.16)
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Next, let U = (x1, x2, . . . , xp) be a random vector with mean vector µ and covariance
matrix Σ. The multivariate normal distribution (MND) is defined as a generalization
of the (univariate) normal distribution with pdf given by Eq. (2.16). For the random
vector U that follows the MND with mean vector µ and covariance matrix Σ, namely
U ∼ Np(µ,Σ), it can be proved that there is a p× r matrix B such that [88]

U − µ = BG and BBT = Σ, (2.17)

where G ∼ Nm(0, I) and m = rankΣ = p; details on how B is determined are
provided in Section 2.2.1. In this case, the p−dimension pdf of U is given by

p(U) = ((2π)k|Σ|)− 1
2 exp(−1

2(U − µ)TΣ−1(U − µ)). (2.18)

In case when rankΣ = k < p, the matrix Σ is singular, and Eq. (2.18) cannot
be employed in determining the p−dimension pdf of U . To bypass this problem, let
M(Σ) be the vector space spanned by the columns of the matrix Σ and B be a p × k
matrix of orthonormal column vectors belonging to M(Σ). Further, let N be a p×(p−k)
matrix of rank p− k such that

NTΣ = 0. (2.19)

Utilizing the transformation

X = BTU , Z = NTU , (2.20)

the mean as well as the covariance matrix of the random vector Z are given by

E(Z) = NTµ (2.21)

and
cov(Z,Z) = NTΣN, (2.22)

respectively, so that
Z = NTµ with probability 1. (2.23)

The corresponding expectation and covariance matrix ofX , are

E[X] = BTµ (2.24)

and
cov(X,X) = BTΣB, (2.25)



Chapter 2. Mathematical prerequisites 14

respectively. Assuming that λ1, λ2, . . . , λk are the non-zero eigenvalues of Σ, it can be
proved that the determinant of the covariance matrix defined in Eq. (2.25) satisfies the
relationship [103, 52]

|BTΣB| = λ1λ2 . . . λk. (2.26)

Combining Eq. (2.18) with Eq. (2.20) and manipulating yields [52]

p(X) = ((2π)k|BTΣB|)− 1
2 exp

{
−1

2(X −BTµ)T(BTΣB)−1(U −BTµ)
}
.

(2.27)
Taking into account the transformation defined in Eq. (2.20), the distribution of U is
determined via the corresponding distributions of the random vectors Z,X , i.e. utiliz-
ing Eq. (2.23) and Eq. (2.27), respectively. Denoting by α the expression included in
the exponential of Eq. (2.27) and manipulating results

α = −1
2(BTU −BTµ)T(BTΣB)−1(BTU −BTµ)

= −1
2(U − µ)TΣ(1)(U − µ), (2.28)

where
Σ(1) = B(BTΣB)−1BT (2.29)

denotes the (1)−inverse of the matrix Σ. It is noted that Eq. (2.28) holds true for any
particular choice of (1)−inverse matrix Σ(1), and thus, taking into account that the set
of (1)−inverse matrices includes the set of M-P matrix inverses as a subset [102, 88],
Eq. (2.28) also holds true for the uniquely defined M-P inverse Σ+; for more details
see Refs [103, 102]. Combining Eqs. (2.26) and (2.28) with Eq. (2.27), the pdf ofX is
written as

p(X) = ((2π)kλ1λ2 . . . λn)− 1
2 exp

{
−1

2(U − µ)TΣ+(U − µ)
}
, (2.30)

whereas combining Eqs. (2.20) and (2.23) yields

NTU = NTµ with probability 1. (2.31)

The pdf of U is specified by Eq. (2.30) and Eq. (2.31), where the former is interpreted
as the density on the hyperplane NTU = NTµ. A more detailed presentation of the
topic can be found in Refs [88, 102].
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2.2.1 Further analysis of the results regarding singular matrices

For the determination of the matrix B of Eq. (2.20), the concept of full rank factoriza-
tion of a matrix that is analyzed in Section 2.1.1, is employed. Assuming that the full
rank factorization of the p× p matrix Σ is

Σ = BBT, (2.32)

where B ∈ Cp×r with rank(B) = r and G = BT, and taking into account Eq. (2.14),
the M-P inverse of Σ takes the form

Σ+ = B(BTΣB)−1BT. (2.33)

Combining Eq. (2.33) with Eq. (2.29), Eq. (2.30) is derived; λ1, λ2, . . . , λn denote the
eigenvalues of Σ.

2.3 Summary

Chapter 2 comprises a brief introduction to the mathematical tools which are required
for developing the forthcoming theoretical framework. Definitions and critical results
pertaining the generalized matrix inverse theory, are presented. Particular emphasis is
given to the Moore-Penrose generalized matrix inverse. A brief discussion on the mul-
tivariate normal distribution, and particularly the case of probability density functions
with singular covariance matrices, is also included.





Chapter 3

Stochastic response of linear systems
with singular matrices

3.1 Classical Approach

3.1.1 Time domain analysis

Following closely Ref. [91], the general form of the equations of motion of a lumped-
parameter n degree-of-freedom (n−DOF) system is

Mq̈ + Cq̇ + Kq = Q(t), (3.1)

where M,C,K are symmetric n× n matrices, representing the mass, the damping and
the stiffness of the system, respectively. The symbol q stands for an n vector containing
the n (generalized) displacements of the system, and Q is an n vector containing the n
(generalized) forces corresponding to q.

The equations of motion for the n−DOF system of Eq. (3.1) can be cast into
the state variable form by defining a 2n vector,

z(t) =
q
q̇

 . (3.2)

Next, taking into account Eq. (3.2), Eq. (3.1) can be written, equivalently, in the form

ż = Gz + f , (3.3)

The results presented in this chapter are published in:

Fragkoulis et al. 2015, ASCE J. Eng. Mech., Kougioumtzoglou et al. 2017, J. Sound Vibr.
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where

G =
 0 I
−M−1K −M−1C

 , (3.4)

and

f =
 0
M−1Q

 . (3.5)

Note that in deriving Eqs. (3.4) and (3.5) it is assumed that the mass matrix
M is non-singular, since systems with singular mass matrices are not common in a
standard formulation of the system equations of motion in classical dynamics. In fact,
when the minimum number of coordinates is utilized for formulating the equations of
motion, the mass matrices are not only non-singular, but also symmetric and positive
definite [80, 91].

The response of the system of Eq. (3.3) can be determined by utilizing the
convolution integral

q(t) =
∫ t

0
h(τ)Q(t− τ)dτ, (3.6)

where h(t) represents the impulse response matrix of the system, given by

h(t) = b(t)M−1. (3.7)

In Eq. (3.7), b(t) is obtained by the relationship

exp(Gt) =
a(t) b(t)
c(t) d(t)

 , (3.8)

where all the sub-matrices are n× n; see Ref. [91] for a more detailed presentation.

Statistical moments of the response of the linear MDOF system of Eq. (3.1)
can be determined readily by direct manipulation of the state variable form of the equa-
tion of motion, i.e. Eq. (3.3). Denoting

mz = E[z(t)], (3.9)

and taking expectations on Eq. (3.3), yields

ṁz = Gmz +mf . (3.10)

Eq. 3.10 can be solved to findmz as a function of time. For a zero-mean excitation, the
solution formz is given in the form
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mz = exp(Gt)mz(0), (3.11)

wheremz → 0, as t→∞. Considering Eq. (3.3) and Eq. (3.10), the relationship

λ̇ = Gλ+ η(t), (3.12)

is obtained, where the 2n vectors λ(t) and η(t) are given by

λ(t) = z(t)−mz(t) (3.13)

and
η(t) = f(t)−mf (t), (3.14)

respectively. Taking into account the covariance matrix

V = E
{

[z(t)−mz(t)][z(t)−mz(t)]T
}
, (3.15)

and considering Eqs. (3.12)-(3.15) yields

V̇ = GV + VGT + S, (3.16)

where
S(t) =

∫ t

0
exp(G(t− τ))

[
wη(t, τ) + wT

η (t, τ)
]
dτ. (3.17)

In Eq. (3.17), wη(t, τ) is the covariance matrix for the 2n vector η(t) defined in
Eq. (3.15). For the specific case where the elements of η(t) are modeled as station-
ary white-noises, Eq. (3.17) implies

wη(t, τ) = Dδ(t− τ), (3.18)

where D is a real, symmetric, non-negative matrix of constants. Substituting Eq. (3.18)
into Eq. (3.17), Eq. (3.16) becomes

V̇ = GV + VGT + D. (3.19)
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3.2 A redundant coordinates modeling for formulating
the systems governing equations of motion

An inherent assumption made for the mass, damping and stiffness matrices of any
n−DOF system is that they all are non-singular (Section 1.1.1). Formulating the system
equations of motion by utilizing a redundant coordinates modeling scheme, which can
be advantageous in cases of complex multi-body systems, results singular mass, damp-
ing and stiffness matrices (Section 1.1.1). In such cases, the complex multi-body system
can be decomposed into its constituent parts for each of which either the equations of
motion are known, or they can be readily obtained. These equations can then be used to
form the equations of motion of the overall composite system in a less labor-intensive
manner [110, 112].

Considering that the governing equation of motion for the n−DOFs system of
Eq. (3.1) (where q stands for an n vector containing the n (generalized) displacements
of the system) is formed by utilizing more than the minimum coordinates, an l−DOF
system of the form

Mxẍ+ Cxẋ+ Kxx = Qx(t), (3.20)

is derived. In Eq. (3.20), x is the l vector of the coordinates (l > n), Qx is the l vector
of external forces, and Mx,Cx and Kx are the mass, damping and stiffness matrices,
respectively, corresponding to the system of Eq. (3.20). Next, consider the case where
the system of Eq. (3.20) is subjected to m constraints of the form

A(x, ẋ, t)ẍ = b(x, ẋ, t), (3.21)

where A is an m× l matrix and b is an m vector.

In general, while the unconstrained system becomes constrained, additional
forces arise to ensure that the constraints are satisfied [112, 109, 108, 53]. Eq. (3.20)
becomes

Mxẍ+ Cxẋ+ Kxx = Qx(t) +Qc
x(t), (3.22)

where the l vector Qc
x(t) denotes the additional aforementioned forces. The presence

of constraints yields virtual displacements, described by the l vector w, which is any
non-zero vector satisfying the condition

Aw = 0, (3.23)
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and at any instant of time t can be expressed as

wTQc
x = wTN . (3.24)

The l vectorN describes the nature of the non-ideal constraints and can be obtained by
experimentation and/or observation. By employing the M-P inverse, A+, of the matrix
A, Eq. (3.23) is rewritten as

w = (I−A+A)y, (3.25)

or, equivalently,
w = Ãy, (3.26)

where
Ã = I−A+A (3.27)

and y is an arbitrary l vector. Substituting Eq. (3.25) into Eq. (3.24), yields

ÃQc
x = ÃN . (3.28)

Pre-multiplying Eq. (3.22) by Ã, and considering Eq. (3.28), the expression

Ã {Mxẍ+ Cxẋ+ Kxx} = Ã(Qx +N ), (3.29)

is obtained. Without loss of generality and for facilitating the ensuing analysis, the m
vector b of the constrained Eq. (3.21), can be assumed to be of the form

b = F − Eẋ− Lx. (3.30)

Considering Eqs. (3.21) and (3.30) together with Eq. (3.29) implies

M̄xẍ =
Ã(Qx +N )

F

−
ÃCxẋ

Eẋ

−
ÃKxx

Lx

 (3.31)

or, equivalently

M̄xẍ =
Ã(Qx +N + S)

b

 , (3.32)

where the m vector b and the (m+ l)× l matrix M̄x are given by Eq. (3.30) and

M̄x =
ÃMx

A

 , (3.33)
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respectively; the l vector S in Eq. (3.32) is given by

S = −Cxẋ−Kxx. (3.34)

Employing Eq. (2.12), the M-P solution to Eq. (3.32) is

ẍ = M̄+
x

Ã(Qx +N + S)
b

+ (I− M̄+
xM̄x)y, (3.35)

where M̄+
x denotes the l × (l +m) M-P inverse matrix of M̄x.

In order to simplify the M-P solution of Eq. (3.35), the following lemma is
provided.

Lemma 3.1 ([113]). Assume that M̄x is the (m + l) × l matrix defined in Eq. (3.33).

Then, the relationship

M̄+
x

(Qx + A+z) +N + S
b

 = M̄+
x

Qx +N + S
b

 , (3.36)

holds true, for any m vector z.

Proof. Taking into account Corollary (2.7), the expression

M̄+
x = (M̄T

xM̄x)+M̄T
x , (3.37)

holds true for the M-P inverse of the augmented mass matrix M̄+
x of Eq. (3.33).

Expanding the left hand side in Eq. (3.36) yields

M̄+
x

(Qx + A+z) +N + S
b

 = (M̄T
xM̄x)+M̄T

x

(Q+A+z) +N + S
b

 . (3.38)

Considering the fourth M-P equation which is given by the expression (A+A)∗ = A+A
(see also Eq. (2.6)), Eq. (3.33) implies

M̄T
x =

[
Mx(I−A+A) AT

]
. (3.39)

Combining Eq. (3.38) with Eq. (3.39) and manipulating, the expression

M̄+
x

(Qx + A+z) +N + S
b

 = M̄+
x

Qx +N + S
b

 , (3.40)
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arises, which proves Lemma 3.1.

Taking into account Lemma 3.1 and assuming that the m vector z is given by

z = −A(Qx +N + S), (3.41)

Eq. (3.36) yields

M̄+
x

Ã(Qx +N + S)
b

 = M̄+
x

Qx +N + S
b

 . (3.42)

Taking into consideration Eq. (3.42), Eq. (3.35) degenerates to the form

ẍ = M̄+
x

Qx +N + S
b

+ (I− M̄+
xM̄x)y. (3.43)

The preceding analysis is for the general case, where the constraints are con-
sidered to be non-ideal. Nevertheless, assuming in the ensuing analysis that the con-
straints are ideal, i.e. N = 0, Eq. (3.43) becomes

ẍ = M̄+
x

Qx + S
b

+ (I− M̄+
xM̄x)y (3.44)

which, considering Eq. (3.34), can be written as

ẍ = M̄+
x

[
−C̃xẋ− K̃xx+ Q̃x

]
+ (I− M̄+

xM̄x)y. (3.45)

In Eq. (3.45), the (m+ l)× l matrices C̃x, K̃x and the (m+ l) vector Q̃x are given by

C̃x =
Cx

E

 , (3.46)

K̃x =
Kx

L

 (3.47)

and

Q̃x =
Qx

F

 , (3.48)

respectively.
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It is noted that the simplified expression for the response acceleration given by
Eq. (3.45) facilitates significantly (e.g. Ref. [41]) an efficient state variable formulation
of the original equations of motion. Overall, the augmented system of equations can be
concisely written in the alternative form

M̄xẍ+ C̄xẋ+ K̄xx = Q̄x(t) (3.49)

where M̄x, C̄x and K̄x denote the (m+ l)× l augmented mass, damping and stiffness
matrices and Q̄x denotes the (m+ l) augmented excitation vector. The augmented mass
matrix is given by Eq. (3.33), whereas the augmented damping and stiffness matrices
are given by

C̄x =
ÃCx

E

 (3.50)

and

K̄x =
ÃKx

L

 , (3.51)

respectively. The (m+ l) vector Q̄x is given by

Q̄x =
ÃQx

F

 . (3.52)

3.3 Derivation of the response statistics for linear sys-
tems with singular matrices

3.3.1 Time domain analysis methodology

3.3.1.1 Moore-Penrose state variable formulation

In a similar manner as in the standard state-variable formulation included in Section 3.1.1,
the augmented system of Eq. (3.49) can be cast into the state variable form by defining
a 2l vector,

p(t) =
x
ẋ

 . (3.53)

Taking into account Eqs. (3.45) and (3.53), Eq. (3.49) becomes

ṗ = Gxp+ fx, (3.54)
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where the matrix of the system equations of motion state variable form is given by

Gx =
 0 I
−M̄+

x K̄x −M̄+
x C̄x

 , (3.55)

and the corresponding excitation vector by

fx =
 0
M̄+

x Q̄x + (I− M̄+
xM̄x)y

 . (3.56)

Setting fx = 0, Eq. (3.54) becomes homogeneous and its general solution is given by

p(t) = exp(Gxt)p(0), (3.57)

where the 2l × 2l matrix exp(Gxt) represents the transition matrix for the system.

Based on the solution of the homogeneous equation, the response to a non-
zero forcing, fx, is given by

p(t) = exp(Gxt)p(0) +
∫ t

0
exp[Gx(t− τ)]fx(τ)dτ, (3.58)

which, under the assumption that p(0) = 0, becomes

p(t) =
∫ t

0
exp(Gxτ)fx(t− τ)dτ. (3.59)

Eq. (3.59) is a convolution integral between the input fx(t) and the output p(t). Defin-
ing

exp(Gxt) =
ax(t) bx(t)
cx(t) dx(t)

 , (3.60)

Eq. (3.59) yields

x(t)
ẋ(t)

 =
∫ t

0

ax(τ) bx(τ)
cx(τ) dx(τ)

 0
H(t− τ)

 dτ, (3.61)

where
H(t− τ) = M̄+

x Q̄x(t− τ) + (I− M̄+
xM̄x)y(t− τ). (3.62)

Taking into account Eqs. (3.61) and (3.62) yields

x(t) =
∫ t

0
bx(τ)H(t− τ)dτ. (3.63)
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It is deemed appropriate to make two remarks. As noted also in Ref. [112]
the expression of Eq. (3.45) for the response acceleration vector is not unique. As
shown in Eq. (3.63), the response displacement vector x(t) is not unique, as well.
Due to the fact that, in general, for systems of the form of Eq. (3.1) a unique response
displacement/acceleration vector is experimentally observed, it is reasonable to apply
conditions so that the system response is uniquely defined. As shown in Ref. [112], in
case that the (m+ l)× l matrix M̄x has full rank, i.e. rank(M̄x) = l, yields

M̄+
x = (M̄T

xM̄x)−1M̄T
x , (3.64)

so that
(I− M̄+

xM̄x) = 0. (3.65)

Eq. (3.63) can be equivalently written as

x(t) =
∫ t

0
hx(τ)Q̄x(t− τ)dτ, (3.66)

where
hx(t) = bx(t)M̄+

x (3.67)

can be considered as the uniquely defined ”generalized” impulse response matrix. Con-
sidering next the expression derived in case M̄x has full rank, ie. Eq. (3.65), Eq. (3.49)
and Eq. (3.56) become

ẍ = M̄+
x (−C̄xẋ− K̄xx+ Q̄x) (3.68)

and

fx =
 0
M̄+

x Q̄x

 , (3.69)

respectively.

For the determination of the system response statistical moments, in a similar
manner as in Section 3.1.1, taking expectations on Eq. (3.54) yields an equation for the
system response mean vector in the form

ṁx = Gxmx +mfx
. (3.70)

The corresponding equation for the system response covariance matrix becomes

V̇x = GxVx + VxGT
x + Sx, (3.71)
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where
Sx =

∫ t

0
exp(Gx(t− τ))

[
wηx

(t, τ) + wT
ηx

(t, τ)
]
dτ. (3.72)

For the case where the elements of ηx are regarded to be stationary white
noises, Eq. (3.71) becomes

V̇x = GxVx + VxGT
x + Dx, (3.73)

where Dx is a real, symmetric, non-negative matrix of constants and Gx,fx are given
by Eq. (3.55) and Eq. (3.69), respectively. Focusing on the system stationary response,
i.e.

V̇x = 0, (3.74)

Eq. (3.73) becomes
GxVx + VxGT

x + Dx = 0. (3.75)

Eq. (3.75) is a Lyapunov equation which is a special case of the Sylvester equation of
the form

AX + XB + Q = 0. (3.76)

The Sylvester Eq. (3.76) has a unique solution if and only if the matrices A and −B
have no common eigenvalues [15]. A sufficient condition for Eq. (3.75) to have a unique
solution is none of the eigenvalues of the matrix Gx are equal to zero or, equivalently,
the rows of Gx are linearly independent with each other (for more details see Ref. [22]).
However, due to the fact that more than the minimum number of coordinates are used
for the system modeling, most likely the rows of Gx will not be linearly independent;
thus, a special treatment is needed for solving Eq. (3.75).

Eq. (3.75) can be rewritten as

(I2l ⊗Gx + Gx ⊗ I2l)vecVx = vec(−Dx), (3.77)

where vecVx and vec(−Dx) are (2l)2 vectors formed by stacking all columns of Vx

and−Dx respectively, on top of one another; also, I2l⊗Gx and Gx⊗I2l denote the Kro-
necker products of the pairs of matrices I2l,Gx and Gx, I2l, respectively. Equivalently,
Eq. (3.77) is expressed in the form

Wv = d, (3.78)
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where W is a (2l)2 × (2l)2 matrix, and the vectors v and d are given by

v = vec(Vx) (3.79)

and
d = vec(−Dx), (3.80)

respectively. Involving Eq. (2.12) for the M-P inverse of a matrix, the general solution
to Eq. (3.78) is

v = W+d+ (I(2l)2 −W+W)y, (3.81)

where y is an arbitrary (2l)2 vector.

3.3.1.2 Moore-Penrose state variable formulation – a numerical example

As a numerical example of the M-P state variable formulation that is proposed in
Section 3.3.1.1, consider the system of two rigid masses m1 and m2 in Figure 3.1. The
masses move horizontally as a result of an applied random force Q2(t). Let the mass
m1 be connected to the foundation by a linear spring and a linear damper with coef-
ficients k1 and c1, respectively. A mass m2 is connected to m1 by a linear spring and
a linear damper with coefficients k2 and c2, respectively. Q2(t) is a white-noise pro-
cess with a correlation function wQ2(t) = 2πS0δ(τ), where S0 is the (constant) power
spectrum value for Q2(t). Note in passing that the white noise excitation assumption
is introduced in this example only to simplify the related calculations. It is emphasized
that the herein developed framework can readily handle excitations with arbitrary auto-
correlation function forms; see Eq. (3.71) and Eq. (3.72). q1, q2 are the generalized
displacements, shown in Figure 3.1.     

 

FIGURE 3.1: A two degree-of-freedom linear structural system under stochastic exci-
tation.
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The equations of motion governing the system in Figure 3.1 can be written in
the matrix form of Eq. (3.1), where the matrices M,C and K are given by (see also
Ref. [91])

M =
m1 0

0 m2

 , C =
c1 + c2 −c2

−c2 c2

 , K =
k1 + k2 −k2

−k2 k2

 . (3.82)

The coordinates and system excitation vectors are given by

x =
q1

q2

 (3.83)

and

Q =
 0
Q2(t)

 , (3.84)

respectively. Eq. (3.19) is formed; thus, obtaining a system of algebraic equations to
be solved for the 16 unknowns of matrix V (in reality there are 10 unknowns due to
symmetry). Focusing on the stationary system response, i.e. V̇ = 0, and considering
the parameters values m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1 and
S0 = 10−3, numerical solution of the Lyapunov Eq. (3.19) yields

V =


0.0438 0.0690 0.0000 −0.0012
0.0690 0.1132 0.0012 0.0000
0.0000 0.0012 0.0188 0.0251
−0.0012 0.0000 0.0251 0.0441

 . (3.85)

Consider next the system of two massesm1 andm2 of the system in Figure 3.1
modeled as a multi-body one, and consisting of two separate subsystems as shown in
Figure 3.2; see also Ref. [112]. The two sub-systems are related based on the constraint

x2 = x1 + d, (3.86)

where d is the length of mass m1. The ”unconstrained” equations of motion are derived
by treating the three coordinates (x̄1, x2 and x̄3) as independent with each other. The
equation of motion of the composite system is derived by including the constraint of
Eq. (3.86), or, equivalently written as

x2 = x̄1 + l10 + d, (3.87)

where l10 is the unstretched length of the spring k1.
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FIGURE 3.2: A three degree-of-freedom linear structural system under stochastic ex-
citation.

The total kinetic and potential energies for the two sub-systems are

T = 1
2m1 ˙̄x2

1 + 1
2m2(ẋ2 + ˙̄x3)2 (3.88)

and
V = 1

2k1x̄
2
1 + 1

2k2x̄
2
3, (3.89)

respectively. By forming the Lagrangian function

L(x̄1, x2, x̄3, ˙̄x1, ẋ2, ˙̄x3) = T − V , (3.90)

and utilizing the Euler-Lagrange equations [68], yields

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
− ∂F

∂ẋi
= Q, (3.91)

where
F (x̄i, ˙̄xi) = −1

2ci
˙̄x2
i (3.92)

is the damping force (i = 1, 3) and Q the external excitation. Manipulating Eq. (3.91)
yields

m1 ¨̄x1 + c1 ˙̄x1 + k1x̄1 = 0, (3.93)

m2ẍ2 +m2 ¨̄x3 = Q3, (3.94)

m2ẍ2 +m2 ¨̄x3 + c2 ˙̄x3 + k2x̄3 = Q3, (3.95)
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where

x̄1 = x1 − l10 (3.96)

and

x̄3 = x3 − l20. (3.97)

In Eqs. (3.96)-(3.97), l10, l20 denote the unstretched lengths of the springs k1 and k2.

The matrix form for the equations of motion takes the form given in Eq. (3.20),
where

Mx =


m1 0 0
0 m2 m2

0 m2 m2

 , Cx =


c1 0 0
0 0 0
0 0 c2

 , Kx =


k1 0 0
0 0 0
0 0 k2

 , (3.98)

Qx =


0
Q3

Q3

 (3.99)

and

x =


x̄1

x2

x̄3

 . (3.100)

Differentiating the constraint of Eq. (3.87) the two sub-systems are subject to,
yields

[
1 −1 0

] 
¨̄x1

ẍ2

¨̄x3

 = 0. (3.101)

The m× l matrix A and the m vector b in Eq. (3.21) take the form

A =
[
1 −1 0

]
(3.102)

and
b = 0, (3.103)

respectively. As in the previous example, assume that m1 = m2 = m = 1, c1 = c2 =
c = 0.1, k1 = k2 = k = 1 and Q3 is a white noise excitation with power spectrum
amplitude S0 = 10−3. Note that rank(M̄x) = 3, i.e. the 4× 3 matrix M̄x has full rank.
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Hence, Eq. (3.33) becomes

M̄x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 , (3.104)

whereas Eqs. (3.50)-(3.52) become

C̄x =


0.1 0 0
0 0 0
0 0 0.1
0 0 0

 , K̄x =


1 0 0
0 0 0
0 0 1
0 0 0

 , Q̄x =


0.5w(t)
0.5w(t)
w(t)

0

 . (3.105)

The M-P inverse of the matrix M̄x is

M̄+
x =


1 1 −1 0
1 1 −1 −1
−1 −1 2 1

 . (3.106)

Substituting Eq. (3.106) into Eq. (3.55) yields

Gx =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 1 −0.1 0 0.1
−1 0 1 −0.1 0 0.1
1 0 −2 0.1 0 −0.2


. (3.107)

Focusing on the stationary system response, i.e. V̇x = 0, and considering that Q3 is a
white-noise excitation, the matrix Dx in Eq. (3.75), takes the form

Dx =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2π10−3


, (3.108)
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whereas the Lyapunov Eq. (3.75) becomes

GxVx + VxGT
x = −Dx. (3.109)

Note that due to the fact that not all rows of Gx are linearly independent with each
other (compare the fourth and the fifth rows), the solution of Eq. (3.109) is not unique.
Following the Kronecker product approach described in Eqs. (3.77)-(3.81) yields

Vx =



0.0438 0.0438 0.0252 0 0 −0.0012
0.0438 y1 0.0252 0 0 −0.0012
0.0252 0.0252 0.0190 0.0012 0.0012 0

0 0 0.0012 0.0188 0.0188 0.0063
0 0 0.0012 0.0188 0.0188 0.0063

−0.0012 −0.0012 0 0.0063 0.0063 0.0127


. (3.110)

Note also that almost all the elements of the matrix (I(2l)2 −W+W) in Eq. (3.81)
are zero. Interestingly, the only non-zero one is the element in the diagonal in the
position (2,2) corresponding to the additional auxiliary DOF x2. The only element of
Vx affected is the element Vx(2, 2) = E(x2

2). Hence, the presence of the arbitrary
vector y does not affect, in essence, the calculated Vx.

Comparing Eqs. (3.85) and (3.110), the variance E[q2
1] as well as the variance

E[q̇2
1] obtained in the first example, coincide with the respective ones in the second one,

i.e E[x̄2
1] and E[ ˙̄x2

1]. Taking expectations in the equation that connects the two reference
systems, that is

x̄3 = q2 − q1, (3.111)

and utilizing Eq. (3.85) yields

E[x̄2
3] = E[q2

2] + E[q2
1]− 2E[q1q2]

= 0.0190 (3.112)

and

E[ ˙̄x2
3] = E[q̇2

2] + E[q̇2
1]− 2E[q̇1q̇2]

= 0.0127, (3.113)

which are indeed in agreement with the corresponding values in Eq. (3.110). It can be
readily verified that the rest of the elements of the matrix given by Eq. (3.110) are also
in agreement with the respective ones of Eq. (3.85).
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3.3.1.3 Complex modal analysis

In the standard formulation of the linear random vibration theory, computing the ”com-
plex modal matrix” whose columns are the eigenvectors, or ”complex modes” of matrix
G of Eq. (3.4) facilitates not only the efficient evaluation of exp(Gt) in Eq. (3.8), and
thus, of the system impulse response matrix of Eq. (3.7), but also plays an instrumental
role in decoupling the original coupled system of equations (Eq. (3.1)); see for example
Refs [91, 38, 60, 16]. In this section it is shown that a similar treatment of the system
of Eq. (3.49) does not yield in general a decoupling of the equations of motion. How-
ever, a singular value decomposition treatment of matrix Gx of Eq. (3.55) facilitates
the efficient computation of the system response statistics.

Let λ1, λ2, . . . , λ2l be the eigenvalues of the 2l × 2l matrix Gx given by
Eq. (3.55), so that the first r of them are non zero and the remaining 2l− r are equal to
zero. The eigen-decomposition of Gx yields

GxT = Tηx, (3.114)

where ηx is the diagonal matrix given by

ηx = diag(λ1, λ2, . . . , λr, 0, 0, . . . , 0), (3.115)

and
T = [v1 v2 . . .v2l] (3.116)

is the 2l ”complex modal matrix” formed by the eigenvectors of Gx. Due to the pres-
ence of zero eigenvalues, the eigenvectors are not linearly independent, which means
that the matrix T is singular. The singular value decomposition (SVD) of Gx, yields

Gx = UηxΨ∗, (3.117)

where the matrix ηx is 2l × 2l diagonal of the form

ηx = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0). (3.118)

In Eq. (3.118),
σj =

√
λj, (3.119)

for j = 1, 2, . . . , 2l, denote the singular values of the matrix Gx. The 2l × 2l matrix
Ψ =

[
ψ1,ψ2, . . . ,ψ2l

]
is unitary, i.e. ΨΨ∗ = Ψ∗Ψ = I, where ”∗” denotes the conju-

gate transpose and ψj is an eigenvector corresponding to each singular value σj for j =
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1, 2, . . . , 2l. U =
[
u1,u2, . . . ,u2l

]
is a 2l × 2l unitary matrix, i.e. UU∗ = U∗U = I,

and each one of the 2l−vectors uj is equal to

uj =
Gxψj

σj
, (3.120)

for j = 1, 2, . . . , 2l.

To determine the impulse response matrix, hx(t), of Eq. (3.67) the matrix
exp(Gxt) of Eq. (3.60) has to be evaluated first.

The transformation
p = Ψzx, (3.121)

is used and the state variable form of Eq. (3.54) becomes

żx = Ψ∗GxΨzx + Ψ∗fx. (3.122)

Taking into consideration Eq. (3.117), Eq. (3.122) can be rewritten as

żx = Ψ∗Uηxzx + gx, (3.123)

where
gx = Ψ∗fx. (3.124)

It is critical to note that due to the form of Eq. (3.123) the equations of motion
cannot be decoupled. Unlike a standard complex modal analysis (e.g. Ref. [91]) utiliz-
ing the minimum number of degrees of freedom, the formulation herein yields a matrix
Gx with some of its eigenvalues being zero. As a result, not all the eigenvectors forming
the ”complex modal matrix” T are linearly independent with each other; thus, leading
to inability to perform a standard eigenvalue decomposition of Gx (see Eq. (3.114)).
In other words, the matrix Ψ∗U in Eq. (3.123) cannot be a unitary matrix rendering
the system of coupled equations of Eq. (3.123) an uncoupled one. Overall, in contrast
to a standard analysis/modeling where a complex modal analysis yields an uncoupled
system of equations, this is not possible when utilizing more than the minimum number
of degrees-of-freedom. Nevertheless, it is shown in the ensuing analysis that relying on
an SVD of the matrix Gx greatly facilitates the numerical computation of the system
response statistics.
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Proceeding with the analysis, Eq. (3.54) has been cast into Eq. (3.123), which
has the general solution

zx(t) = exp(Ψ∗Uηxt)zx(0) +
∫ t

0
exp(Ψ∗Uηx(t− τ))gx(τ)dτ. (3.125)

Under the assumption that the system is initially at rest, Eq. (3.125) becomes

zx(t) =
∫ t

0
Hx(s)gx(t− s)ds, (3.126)

where Hx(t) is given by
Hx(t) = exp(Ψ∗Uηxt). (3.127)

Once zx is computed, the 2l vector p can be determined by using the transformation
given by Eq. (3.121).

Taking expectation on Eq. (3.123), then taking into account Eq. (3.124) and
considering the stationary response, i.e. ṁzx

= 0, the equation

ηxmzx = −U∗mfx , (3.128)

arises. Taking into account Eq. (2.12), Eq. (3.128) has the general solution

mzx
= −η+

xU∗mfx
+ (I2l − η+

xηx)y. (3.129)

In Eq. (3.129), η+
x is the M-P inverse of ηx and y is an arbitrary 2l vector. Also, using

Eq. (3.121), the expression

mp = −Ψη+
xU∗mfx

+ Ψ(I2l − η+
xηx)y, (3.130)

is obtained, where U,Ψ are the SVD unitary matrices. Regarding the determination of
the Moore-Penrose inverse of the 2l × 2l matrix ηx, this is given by

σj =

 σ−1
j , if σj 6= 0

0 , if σj = 0
; (3.131)

see Corollary 2.7.

The covariance matrices of the transformed state vector zx and the 2l vector
gx given by Eq. (3.126) and Eq. (3.124), respectively, can be easily related as follows.
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Defining the covariance matrix of zx as

wzx
(τ) = E [(zx(τ)−mzx

)(zx(t+ τ)−mzx
)∗] (3.132)

and the covariance matrix of gx as

wgx
(τ) = E [(gx(τ)−mgx

)(gx(t+ τ)−mgx
)∗] , (3.133)

and considering Eq. (3.126), the covariance input-output relationship is given by

wzx
(τ) =

∫ ∞
0

∫ ∞
0

Hx(s1)wgx
(τ + s1 − s2)H∗x(s2) ds1ds2, (3.134)

where Hx(t) is given by Eq. (3.127).

As far as the determination of the elements of Hx(t) is concerned, the Cayley-
Hamilton theorem can be employed yielding [82]

Hx(t) = exp(Ψ∗Uηxt)

=
r−1∑
k=0

αk(Ψ∗Uηx)k. (3.135)

The coefficients αk, k = 1, 2, . . . , r − 1 can be found by solving the following system
of linear equations

exp(λi) =
r−1∑
k=0

αkλ
k
i , (3.136)

where i = 1, 2, . . . , r and λi are the eigenvalues of the matrix Ψ∗Uηx. Using the
obtained formula for the determination of the elements of Hx(t), the elements of the
covariance matrix wzx

, can be determined.

After determining the covariance matrix wzx
, by utilizing the transformation

given by Eq. (3.121), the covariance matrix wp can be determined as well. In this
regard,

wp(τ) = Ψwzx
(τ)Ψ∗. (3.137)

Similarly, using Eq. (3.124), the matrices of gx(t) and fx(t) are related via the formula

wgx
(τ) = Ψ∗wfx

(τ)Ψ. (3.138)

Assuming that fx is a zero-mean white noise vector process (and thus, the
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response mean vector processes in Eqs. (3.129)-(3.130) yield zero values) with correla-
tion function

wfx
(t, τ) = Dxδ(t− τ), (3.139)

where Dx is a real, symmetric, non-negative matrix of constants, the covariance matrix
of gx is given by

wgx
(τ) = Ψ∗DxΨδ(t− τ). (3.140)

Note that Hx(t) can be determined by other alternative more elegant methods
than by using the Cayley-Hamilton theorem (see Ref. [29, 70, 23]). In this regard,
setting

R = Ψ∗Uηx, (3.141)

the determination of the impulse response function is equivalent to the determination of
the matrix exp(Rt), which can be determined as a finite polynomial in R, with analytic
functions of t as coefficients. Once the eigenvalues of R are known, i.e. µ1, µ2, . . . , µs,
it might be more convenient to express exp(Rt) in terms of polynomials in (R − µiI).
In the following analysis, the equations systems arising for determining the coefficient
functions, are proven to be triangular, and thus, can be readily solved; see Ref. [23] for
more details.

As a first step for the determination of exp(Rt), assume that the matrix R is
in its Jordan form, µ1, µ2, . . . , µs are its s distinct eigenvalues, and mi, i = 1, 2, . . . , s
is the algebraic multiplicity of each eigenvalue µi. Assume that

MR(x) =
s∏
j=1

(x− µj)mj , (3.142)

is the minimal polynomial of R (i.e. the monic polynomial P of least degree such that
P (R) = 0). For r ≥ 0, s ≥ 1 and 1 ≤ k ≤ s, let

Hs(r) =
{

(a1, a2, . . . , as) ∈ Ns : ai ≥ 0 and
s∑
i=1

ai = r

}
(3.143)

and

H(k)
s (r) = {(a1, a2, . . . , as) ∈ Hs(r) : ak = 0} . (3.144)

The exponential of matrix Rt is equal to

exp(Rt) =
s∑

k=1

mk−1∑
r=0

fk,r(t)(R − µkI)r
 s∏
j=1,j 6=k

(R − µjI)mj , (3.145)
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where the coefficient functions fk,0(t), fk,1(t), . . . , fk,mk−1(t) satisfy the equation

i∑
r=0

fk,r(t)
∑

a∈H(k)
s (i−r)

s∏
j=1,j 6=k

(
mj

aj

)
(µk − µj)mj−aj = exp(µkt)

ti

i! , (3.146)

for i = 0, 1, . . . ,mk−1 and each k = 1, 2, . . . , s. It is noted that in case when the matrix
R defined in Eq. (3.141) has district eigenvalues, the system given by Eq. (3.146) is
especially simple. Nevertheless, the herein presented framework is also valid when the
matrix R has repeated eigenvalues [23].

3.3.1.4 Complex modal analysis – a numerical example

Consider the multi-body system presented as an example in the Moore-Penrose state-
variable formulation Section 3.3.1.2, where the matrix Gx is given by Eq. (3.107). The
system consists of two separate subsystems of masses m1 and m2, respectively, related
based on the constraint given by Eq. (3.86).

Determining the SVD of Gx, the unitary matrices U,Ψ, as well as the diag-
onal matrix of the singular values ηx, are found to be equal to

U =



−0.0214 0.8204 0 −0.5692 −0.0507 0
0 0 1 0 0 0

0.0309 0.5685 0 0.8213 −0.0351 0
0.4695 −0.0326 0 −0.0177 −0.5274 0.7071
0.4695 −0.0326 0 −0.0177 −0.5274 −0.7071
−0.7468 −0.0410 0 0.0281 −0.6632 0


, (3.147)

Ψ =



−0.5660 0.0242 0 0.0638 0.8216 0
0 0 0 0 0 1

0.8168 0.0168 0 −0.0921 0.5693 0
−0.0638 0.8216 0 −0.5660 −0.0242 0

0 0 1 0 0 0
0.0921 0.5693 0 0.8168 −0.0168 0


(3.148)

and
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ηx =



2.9784 0 0 0 0 0
0 1.0015 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0.9944 0 0
0 0 0 0 0.4768 0
0 0 0 0 0 0


, (3.149)

respectively.

Utilizing Eq. (3.141), the matrix R is given by

R =



−0.1827 −0.0017 0 0.9912 −0.0131 0
−0.1176 −0.0208 0 0.0015 −0.3875 0
1.3984 −0.0326 0 −0.0176 −0.2515 0
−2.6207 −0.0150 0 −0.0785 −0.1159 0
0.0035 1.0006 0 0 −0.0180 0

0 0 −1 0 0 0


, (3.150)

which has the following six eigenvalues; that is,

λ1 = −0.1309 + 1.6127i,

λ2 = −0.1309− 1.6127i,

λ3 = −0.0191 + 0.6177i, (3.151)

λ4 = −0.0191− 0.6177i,

λ5 = 0, λ6 = 0

and its minimal polynomial has the form

MR(x) = (x− λ1)(x− λ2)(x− λ3)(x− λ4)x2. (3.152)

Taking into consideration the analysis provided in Eqs. (3.143)-(3.146), the matrix
exponential exp(Rt) is decomposed in the form

exp(Rt) = p1 exp(λ1t) + p2 exp(λ2t) + p3 exp(λ3t) + p4 exp(λ4t) + p5t+ p6,

(3.153)

where the coefficients pi are given by
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p1 = b2b3b4

a12a13a14λ2
1
R2, (3.154)

p2 = b1b3b4

a21a23a24λ2
2
R2, (3.155)

p3 = b1b2b4

a31a32a34λ2
3
R2, (3.156)

p4 = b1b2b3

a41a42a43λ2
4
R2, (3.157)

p5 = b1b2b3b4

a51a52a53a54
R (3.158)

and

p6 =
{

I− (a52a53a54 + a51a53a54 + a51a52a54 + a51a52a53)
a51a52a53a54

R
}
. (3.159)

The expressions aij for i, j = 1, 2, . . . , 5 and bk for k = 1, 2, 3, 4 are defined, in turn,
by

aij = λi − λj, (3.160)

for i, j = 1, 2, . . . , 5, and
bk = R − λkI, (3.161)

for k = 1, 2, 3, 4.

Hx(t) (see Eq. (3.127)) is conveniently expressed in terms of the eigenvalues
of R and, thus, it can be easily determined. Following closely the example presented
in the Moore-Penrose state-variable formulation (Section 3.3.1.2), assuming that the
excitation Q2(t) is modeled as a white noise process, and employing Eqs. (3.134) and
(3.140), the covariance matrix wzx

, can be determined in an efficient manner.

Using the decomposition of Hx(t) obtained in Eq. (3.153), the double integral
of Eq. (3.134), can be decomposed, and simplified in the form
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Hxwgx
H∗x =

4∑
i=1

eλit

{
4∑
j=1

eλ̄jspiΨ∗DxΨp∗j + spiΨ∗DxΨp∗5 + piΨ∗DxΨp∗6

}
δ

+
2∑
i=1

t2−i

{
4∑
j=1

eλ̄jsp4+iΨ∗DxΨp∗j + sp4+iΨ∗DxΨp∗5 + p4+iΨ∗DxΨp∗6

}
δ,

(3.162)

where Ψ is the SVD unitary matrix. The matrices pr, r = 1, 2, . . . , 6 are given by
Eqs. (3.154)-(3.159) and the matrix Dx by

Dx =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2π10−3


, (3.163)

respectively; see also Eq. (3.108).

Evaluating the matrices pi(Ψ∗DxΨ)p∗j , i, j = 1, 2, . . . , 6, it is noted that

pi(Ψ∗DxΨ)p∗5 = pi(Ψ∗DxΨ)p∗6 = 0, (3.164)

for i = 1, 2, 3, 4, and

p5(Ψ∗DxΨ)p∗j = p6(Ψ∗DxΨ)p∗j = 0, (3.165)

for j = 1, 2, . . . , 6. Taking into consideration Eq. (3.164) and Eq. (3.165), Eq. (3.162)
takes a much simpler form, which being substituted in Eq. (3.134), yields

wzx =
4∑
i=1

4∑
j=1

Ii,j, (3.166)

where

Ii,j(τ) =
∫ ∞

0

∫ ∞
0

eλiteλ̄jspi(Ψ∗DxΨ)p∗jδ(τ + t− s)dtds (3.167)

or, equivalently,

Ii,j(τ) = −pi(Ψ∗DxΨ)p∗j
eλ̄jτ

λi + λ̄j
, (3.168)



Chapter 3. Stochastic response of linear systems with singular matrices 43

for i, j = 1, 2, 3, 4. Eq. (3.166) yields

wzx(τ) = −
4∑
i=1

4∑
j=1

eλ̄jτ

λi + λ̄j
pi(Ψ∗DxΨ)p∗j (3.169)

and for τ = 0, Eq. (3.169) becomes

wzx
(0) = −

4∑
i=1

4∑
j=1

pi(Ψ∗DxΨ)p∗j
λi + λ̄j

=



0.0035 0.0011 0.0004 0.0006 −0.0029 0.0043
0.0011 0.0227 0.0190 −0.0008 0.0011 −0.0008
0.0004 0.0190 0.0188 −0.0056 0.0001 0
0.0006 −0.0008 −0.0056 0.0086 −0.0009 0.0005
−0.0029 0.0011 0.0001 −0.0009 0.0593 −0.0504
0.0043 −0.0008 0 0.0005 −0.0504 0.0438


.

(3.170)

Using Eq. (3.137), the covariance matrix of p becomes

wp(0) =



0.0438 0.0438 0.0252 0 0 −0.0012
0.0438 0.0438 0.0252 0 0 −0.0012
0.0252 0.0252 0.0190 0.0012 0.0012 0

0 0 0.0012 0.0188 0.0188 0.0063
0 0 0.0012 0.0188 0.0188 0.0063

−0.0012 −0.0012 0 0.0063 0.0063 0.0127


, (3.171)

which is in total agreement with the respective results determined via the solution of
the Lyapunov equation (see Eq. (3.110)). It is deemed necessary to mention that in
contrast to the matrix calculated in Eq. (3.110), the covariance matrix obtained by Eq.
(3.171) does not have any arbitrary elements y. This is due to the fact that the solution
of Eq. (3.109), was based on the M-P inverse Eq. (2.12), whereas no such concept was
invoked for determining Eq. (3.171) via a complex modal analysis treatment. Thus, it
can be argued that there is additional merit in utilizing a ”generalized” complex modal
analysis for treating systems with singular matrices.

3.3.2 Frequency domain analysis methodology

In this section, the response of linear systems with singular matrices subject to stochastic
excitation is determined by applying a frequency domain analysis treatment. The herein
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developed frequency domain response analysis methodology can be construed as an
alternative to the Moore-Penrose time domain technique developed in Section 3.3.1;
see also Ref. [41].

3.3.2.1 Standard linear systems with non-singular matrices

Some elements of the frequency domain stochastic response analysis of systems with
standard non-singular matrices are provided in the following for completeness. The
statistics of the system response, q(t), to an external excitation,Q(t), are determined in
the frequency domain by utilizing input-output relationships, involving the frequency
response function (FRF) matrix α(ω) [91]. Specifically, consider the equations of mo-
tion of an n−DOF linear system given by Eq. (3.1). Utilizing generalized coordinates
for formulating the system equations of motion yields mass, damping and stiffness ma-
trices that are not only non-singular, but also symmetric and positive definite. To deter-
mine the system FRF matrix α(ω), consider an excitation of the form

Q(t) = Q0 exp(iωt), (3.172)

where ω denotes the frequency andQ0 is an amplitude vector. Considering the response
displacement vector to be of the form

q(t) = α(ω)Q(t), (3.173)

whereα(ω) is the n×n FRF matrix and substituting Eqs. (3.172)-(3.173) into Eq. (3.1)
yields

α(ω) = R−1, (3.174)

where
R = −ω2M + iωC + K. (3.175)

A spectral excitation-response (input-output) relationship can be determined
by utilizing the FRF matrix of Eq. (3.174) in the form

Sq(ω) = α(ω)SQ(ω)αT∗(ω), (3.176)

where Sq(ω) and SQ(ω) are the system response and excitation power spectrum matri-
ces, respectively, Q(t) represents an arbitrary stationary stochastic vector process, and
αT∗(ω) denotes the conjugate transpose of α(ω); see Ref. [91] for a more detailed pre-
sentation. System response second-order statistics can be readily determined based on
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Eq. (3.176). For instance, utilizing Eq. (3.176) the response displacement and velocity
moments E [q2

i (t)] and E [q̇2
i (t)] are given by

E
[
q2
i (t)

]
=
∫ ∞
−∞

Sqiqi(ω)dω (3.177)

and
E
[
q̇2
i (t)

]
=
∫ ∞
−∞

ω2Sqiqi(ω)dω, (3.178)

respectively.

3.3.2.2 Linear systems with singular matrices

As described in Section 3.2, it can be argued that there are cases where utilizing more
than the minimum number (redundant) DOFs for formulating the equations of motion
of a complex dynamical system can be advantageous, especially from a computational
efficiency perspective; see Refs [41, 93] for a detailed discussion. Following the redun-
dant coordinates modeling scheme presented in Section 3.2, the n−DOF system of Eq.
(3.1) can be alternatively described by Eq. (3.49), where the augmented mass, damping
and stiffness matrices for the system are defined in Eq. (3.33) and Eqs. (3.50)-(3.51),
respectively. Note, however, that due to the utilization of additional/redundant DOFs,
the augmented mass, damping and stiffness matrices are singular.

Focusing on the frequency domain, the problem of determining the FRF ma-
trix of a system with singular mass, damping and stiffness matrices is considered. The
system of Eq. (3.49) is excited by a harmonic force of the form defined in Eq. (3.172).
The system response is given by

x(t) = αx(ω)Q̄x(t), (3.179)

where αx(ω) is the l × (m + l) FRF matrix. Eq. (3.179) is differentiated twice with
respect to time and the obtained expressions, along with Eq. (3.179), are substituted in
Eq. (3.49) yielding

Rxαx(ω) = I. (3.180)

In Eq. (3.180) the (m+ l)× l matrix Rx is given by

Rx = −ω2M̄x + iωC̄x + K̄x. (3.181)
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The M-P inverse of the matrix Rx is employed for solving Eq. (3.180).
Specifically, utilizing Eq. (2.12), the FRF matrix takes the form

αx(ω) = R+
x + (I−R+

xRx)Y, (3.182)

where R+
x is the l× (m+ l) M-P inverse of Rx and Y is an arbitrary l× (m+ l) matrix.

It is noted that the presence of the arbitrary matrix Y on the right hand side of
Eq. (3.182) yields a non-unique solution for the FRF matrix. Nevertheless, depending
on the rank of Rx, a uniquely defined FRF matrix can be derived. Specifically, taking
into account the full rank factorization of a matrix (see Lemma 2.4), it is readily seen
that if Rx has full rank, its M-P inverse takes the form

R+
x = (R∗xRx)−1R∗x (3.183)

(see Eq. (2.14)) and taking into account Eq. (3.183), the expression

I−R+
xRx = 0, (3.184)

holds true. Combining Eq. (3.184) with Eq. (3.182), the FRF matrix is uniquely defined
as

αx(ω) = R+
x . (3.185)

Following Ref. [91] the standard spectral excitation-response relationship of
Eq. (3.176) is generalized and given in the form

Sx(ω) = αx(ω)SQ̄x
(ω)αT∗

x (ω), (3.186)

where Sx(ω) and SQ̄x
(ω) are the system response and excitation power spectrum ma-

trices, respectively. System response second-order statistics can be readily determined
based on Eq. (3.186). For instance, utilizing Eq. (3.186) the response displacement and
velocity moments E [x2

i (t)] and E [ẋ2
i (t)] are given as

E
[
x2
i (t)

]
=
∫ ∞
−∞

Sxixi(ω)dω (3.187)

and
E
[
ẋ2
i (t)

]
=
∫ ∞
−∞

ω2Sxixi(ω)dω, (3.188)

respectively.

It is deemed appropriate to note the evaluation of the FRF matrixαx(ω) of Eq.
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(3.185) can be simplified in many cases by circumventing the computation of the M-P
inverse of Rx of Eq. (3.181). In the context of generalizing the classical modal analysis
treatment to account for systems with singular matrices, it was shown recently in Ref.
[78] that the problem of determining the natural frequencies of the augmented system
given by Eq. (3.49) is related to solving an eigenvalue problem for the l × l matrix
M̄+

x K̄x and determining the l × l modal matrix, Ψ̄. Considering the transformation

x = Ψ̄p, (3.189)

the system governing equation of motion Eq. (3.49) becomes

Lp̈+ Dṗ+ Np = P . (3.190)

In Eq. (3.190), L,N denote the l × l diagonal matrices given by

L = Ψ̄−1M̄+
xM̄xΨ̄ (3.191)

and
N = Ψ̄−1M̄+

x K̄xΨ̄, (3.192)

respectively, whereas the l vector P has the form

P = Ψ̄−1M̄+
x Q̄x. (3.193)

The l × l matrixD is given by

D = Ψ̄−1M̄+
x C̄xΨ̄ (3.194)

and, in general, is not a diagonal matrix; see Ref. [78] for a more detailed presentation.
Nevertheless, in many cases, and based on a reasonable assumption of light damping
(e.g. Refs [91, 24]), a satisfactory approximation can be obtained by neglecting the
off-diagonal elements of D; thus, yielding a diagonal D matrix. In this regard, the FRF
matrix of the system of Eq. (3.190) is given by

Λ(ω) = R−1
Λ , (3.195)

where
RΛ = −ω2L + iωD + N. (3.196)
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Considering Eqs. (3.189) and (3.193), as well as the relation

p = Λ(ω)P , (3.197)

leads to
x = Ψ̄Λ(ω)Ψ̄−1M̄+

x Q̄, (3.198)

which, combined with Eq. (3.179), yields

αx(ω) = Ψ̄Λ(ω)Ψ̄−1M̄+
x . (3.199)

The FRF matrix obtained in Eq. (3.199) can be further simplified if taken into
account that the FRF matrix Λ(ω) is diagonal. Eq. (3.199) yields

αx(ω) =
{

l∑
k=1
x(k)y(k)α

′

k(ω)
}

M̄+
x , (3.200)

where x(k),y(k), k = 1, 2, . . . , l correspond to the k− th column of the modal matrix Ψ̄
and to the k− th row of Ψ̄−1, respectively; α′k(ω), k = 1, 2, . . . , l is the k− th diagonal
element of the matrix Λ(ω).

Eq. (3.200) is a rather useful series expression for αx(ω), which circumvents
the potentially cumbersome numerical evaluation of the M-P inverse indicated in Eq.
(3.185). Also, in many applications, the series may be truncated to only the first few
terms, with little loss of accuracy [91].

3.3.2.3 Frequency domain analysis of linear systems with singular matrices – a
numerical example

As a numerical example, the 3-DOF linear system of rigid masses shown in Figure 3.3,
is considered. The first mass m1 is attached to the foundation by a linear spring and a
linear damper with coefficients k1 and c1, respectively. It is also connected to the other
two masses m2 and m3 by two linear springs with coefficients k2 and k4. The mass
m2 is connected to the third mass by a linear spring with coefficient k3 and a linear
damper with damping coefficient c2. The system is excited by a stochastic force Q3(t)
applied on mass m3 and modeled as a white-noise process with a correlation function
wQ3(t) = 2πS0δ(t). The value S0 stands for the (constant) power spectrum value of
Q3(t). The generalized displacements of the masses m1,m2 and m3 due to the applied
force, are denoted by q1, q2 and q3, respectively.
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FIGURE 3.3: A three degree-of-freedom linear system under stochastic excitation.

Following a standard Newtonian, or Lagrangian approach [58], the linear sys-
tem equations of motion have the form given by Eq. (3.1), where the 3 × 3 mass,
damping and stiffness matrices are given by

M =


m1 0 0
0 m2 0
0 0 m3

 , (3.201)

C =


c1 0 0
0 c2 −c2

0 −c2 c2

 (3.202)

and

K =


k1 + k2 + k4 −k2 −k4

−k2 k2 + k3 −k3

−k4 −k3 k3 + k4

 , (3.203)

respectively. The displacement vector is given as

q =


q1

q2

q3

 , (3.204)

whereas the excitation vectorQ(t) is given by

Q =


0
0
Q3

 . (3.205)

The parameters values in this example are m1 = m3 = 2,m2 = 1, c1 = c2 = 0.1 and
k1 = k2 = k3 = k4 = 1, and S0 = 10−3. Considering next Eqs. (3.176)-(3.177), the
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stationary covariance matrix of the system response displacement is given by

Vq =


0.0493 0.0623 0.0644
0.0623 0.0805 0.0846
0.0644 0.0846 0.0916

 , (3.206)

whereas the stationary covariance matrix of the system response velocity is

Vq̇ =


0.0106 0.0110 0.0086
0.0110 0.0142 0.0131
0.0086 0.0131 0.0170

 . (3.207)

To demonstrate the herein developed frequency domain based methodology
for systems with singular matrices, the system shown in Figure 3.3 is decomposed into
several separate systems, which are treated independently. As it is seen in Figure 3.4,
the number of modeling coordinates used for deriving the system equations of motion
is increased by two. The coordinates vector of the redundant DOFs system becomes

x =



x̄1

x2

x̄3

x4

x̄5


, (3.208)

where x̄1, x̄3 and x̄5 correspond to the displacements of the masses m1,m2 and m3 and
the coordinates x2, x4 correspond to the additional DOFs.

The sub-systems are related via two constraint equations, namely

x1 + d = x2 (3.209)

and
x2 + x3 + d = x4, (3.210)

where d is the physical length of the masses (same for m1,m2 and m3). The constraint
equations can also be written as

x̄1 + l1,0 + d = x2 (3.211)

and
x2 + x̄3 + l3,0 + d = x4, (3.212)
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FIGURE 3.4: A three degree-of-freedom linear system under stochastic excitation uti-
lizing redundant coordinates.

where l1,0 is the unstretched length of the mass m1, and l3,0 is the unstretched length of
m3.

To derive the system equations of motion, the total kinetic energy of the sys-
tem is given by

T = 1
2m1 ˙̄x2

1 + 1
2m2(ẋ2 + ˙̄x3)2 + 1

2m3(ẋ4 + ˙̄x5)2 (3.213)

and the total potential energy by

V = 1
2k1x̄

2
1 + 1

2k2x̄
2
3 + 1

2k3x̄
2
5 + 1

2k4(−x2 + x4 + x̄5)2. (3.214)

The standard variational formulation [58] involving the Lagrangian function

L(x, ẋ) = T − V (3.215)

leads to the Euler-Lagrange equations, and thus, to the system equations of motion of
the form of Eq. (3.49). The mass, damping and stiffness matrices become

Mx =



m1 0 0 0 0
0 m2 m2 0 0
0 m2 m2 0 0
0 0 0 m3 m3

0 0 0 m3 m3


, (3.216)
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Cx =



c1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 c2


(3.217)

and

Kx =



k1 0 0 0 0
0 k4 0 −k4 −k4

0 0 k2 0 0
0 −k4 0 k4 k4

0 −k4 0 k4 k3 + k4


, (3.218)

respectively. Differentiating twice with respect to time Eqs. (3.211)-(3.212), the 2 × 5
matrix A defined in Eq. (3.21) takes the form

A =
1 −1 0 0 0

0 1 1 −1 0

 , (3.219)

whereas the 2 vector b becomes

b =
0

0

 . (3.220)

Next, the 7 × 5 augmented mass, damping and stiffness matrices given by Eq. (3.33)
and Eqs. (3.50)-(3.51), are determined. Taking into account Eq. (3.21) and Eq. (3.30),
and substituting the parameters values yield

M̄x =



0.8 0.2 0.2 0.4 0.4
0.8 0.2 0.2 0.4 0.4
−0.4 0.4 0.4 0.8 0.8
0.4 0.6 0.6 1.2 1.2
0 0 0 2 2
1 −1 0 0 0
0 1 1 −1 0


, (3.221)

C̄x =



0.04 0 0 0 0
0.04 0 0 0 0
−0.02 0 0 0 0
0.02 0 0 0 0

0 0 0 0 0.1
0 0 0 0 0
0 0 0 0 0


(3.222)
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and

K̄x =



0.4 0.2 −0.2 −0.2 −0.2
0.4 0.2 −0.2 −0.2 −0.2
−0.2 −0.6 0.6 0.6 0.6
0.2 −0.4 0.4 0.4 0.4
0 −1 0 1 2
0 0 0 0 0
0 0 0 0 0


. (3.223)

Employing Eq. (3.52), the augmented excitation vector is given by

Q̄x =



0.2Q3

0.2Q3

0.4Q3

0.6Q3

Q3

0
0


. (3.224)

To determine the system response statistics via the herein developed frequency
domain methodology, the 7 × 5 matrix Rx is obtained via Eq. (3.181). Utilizing Eq.
(3.185) the FRF matrix αx(ω) is determined. It is noted that Eq. (3.185) is utilized
instead of Eq. (3.182) as the 7 × 5 matrix Rx has full rank, i.e. rank(Rx) = 5, and
thus, the FRF matrix is uniquely defined. Combining Eq. (3.186) with Eq. (3.187), the
covariance matrix of the system response displacement is given by

Vx̄ =



0.0493 0.0493 0.0130 0.0623 0.0021
0.0493 0.0493 0.0130 0.0623 0.0021
0.0130 0.0130 0.0052 0.0182 0.0019
0.0623 0.0623 0.0182 0.0805 0.0040
0.0021 0.0021 0.0019 0.0040 0.0030


(3.225)

and combining Eq. (3.186) with Eq. (3.188), the covariance matrix of the system
response velocity is determined to be

V ˙̄x =



0.0106 0.0106 0.0004 0.0110 −0.0024
0.0106 0.0106 0.0004 0.0110 −0.0024
0.0004 0.0004 0.0028 0.0032 0.0013
0.0110 0.0110 0.0032 0.0142 −0.0011
−0.0024 −0.0024 0.0013 −0.0011 0.0050


. (3.226)
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For the comparison of the results obtained by the standard and the herein
proposed methodology, the matrices given by Eqs. (3.225)-(3.226) are compared to
those given by Eqs. (3.206)-(3.207). Indicatively, it is seen that the variances E[q2

1] and
E[q̇2

1] coincide with their counterparts, i.e. E[x̄2
1] and E[ ˙̄x2

1]. Considering the equations
that connect the reference systems depicted in Figure 3.4, i.e.

x̄3 = q2 − q1 (3.227)

and
x̄5 = q3 − q2, (3.228)

yields

E[x̄2
3] = E[q2

1] + E[q2
2]− 2E[q1q2]

= 0.0052 (3.229)

and

E[x̄2
5] = E[q2

2] + E[q2
3]− 2E[q2q3]

= 0.0030. (3.230)

The variances computed in Eqs. (3.229)-(3.230) are equal to the corresponding ones in
positions (3, 3) and (5, 5) of matrix Vx̄. The same agreement for the response velocity
variances can be readily verified by comparing Eq. (3.207) with Eq. (3.226).

As noted in Section 3.2, the FRF matrix αx(ω) can be alternatively deter-
mined without computing the M-P inverse of the matrix Rx in Eq. (3.181). Instead,
a generalized modal analysis approach can be employed. Following closely Ref. [78],
the modal matrix for the system in Figure 3.4 is computed as

Ψ̄ =



0.1740 0.4880 0.5151 0.0000 −0.0000
0.1740 0.4880 0.5151 −0.1305 0.8116
−0.6401 −0.3004 0.1517 0.3601 0.1281
−0.4661 0.1877 0.6668 −0.8507 0.5554
0.5590 −0.6310 0.0413 0.3601 0.1281


. (3.231)

Utilizing the transformation of Eq. (3.189) and taking into account Eq. (3.191), Eq. (3.192)
and Eq. (3.194), the system equation of motion of Eq. (3.190) arises. Also, the 5 × 5
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diagonal FRF matrix of Eq. (3.195) becomes

Λ(ω) ≈



1
−ω2+0.1162iω+2.5726 0 0 0 0

0 1
−ω2+0.0703iω+1.7620 0 0 0

0 0 1
−ω2+0.0135iω+0.1655 0 0

0 0 0 1
−ω2 0

0 0 0 0 1
−ω2


.

(3.232)

Combining Eq. (3.199), or Eq. (3.200), with Eqs. (3.231)-(3.232), the FRF matrix
is determined, and thus, the covariance matrix of the system response displacement is
given by

Vx =



0.0492 0.0492 0.0132 0.0624 0.0020
0.0492 0.0492 0.0132 0.0624 0.0020
0.0132 0.0132 0.0050 0.0182 0.0019
0.0624 0.0624 0.0182 0.0806 0.0039
0.0020 0.0020 0.0019 0.0039 0.0032


, (3.233)

which is in agreement with Eq. (3.225) obtained via utilizing the M-P inverse of Rx.

3.4 Summary

In chapter 3, adopting a redundant coordinates modeling for deriving the systems gov-
erning equations of motion and utilizing the M-P generalized matrix inverse of a singu-
lar matrix, a time as well as a frequency domain methodology is developed for stochas-
tic response determination of MDOF linear structural systems with singular matrices.
Following the time domain methodology, a complex modal analysis treatment, in con-
junction with an SVD of the system transition matrix, is developed for deriving the
linear system response statistics. The difference with the standard complex modal anal-
ysis framework - minimum DOFs modeling - is that a decoupling of the equations of
motion cannot be achieved by utilizing a redundant DOFs modeling approach. For the
frequency domain methodology, a M-P FRF is determined for linear systems with sin-
gular matrices. A series expansion of the M-P FRF that serves as an alternative for
circumventing the potentially cumbersome numerical evaluation of the M-P inverse is
also presented. The theoretical framework is validated by pertinent numerical examples.
The obtained results are in total agreement with these derived by following a standard
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analysis (in time and frequency domain), where the minimum number of coordinates is
utilized in deriving the systems governing equations of motion.



Chapter 4

Stochastic response of nonlinear
systems with singular matrices

4.1 Nonlinear systems stochastic response determination

The study of nonlinear engineering systems subjected to stochastic excitation has flour-
ished during the last decades, yielding the development of research fields such as that
of nonlinear stochastic dynamics. This upward trend is driven by the fact that most
physical phenomena such as wind, earthquakes, ocean waves, explosive vibration etc.,
apart from their nonlinear nature, enclose an inherent uncertainty efficiently described
by Stochastic Calculus. The necessity of first understanding the impact of the aforemen-
tioned phenomena in everyday life, and then managing that impact in terms of designing
systems/structures that are capable of manipulating, or resisting to that impact, yielded
the development of several analytical and numerical methodologies/techniques, which
formulate the stochastic behavior of such systems.

Diverse mathematical tools have been developed for encountering the critical
problem of deriving the nonlinear system response statistics, yielding several approx-
imate and analytical approaches [72]. Some of the most frequently employed follow.
The most versatile among the available methodologies for efficiently deriving the non-
linear system response statistics is, undoubtedly, the application of the Monte Carlo
simulation (MCS) method [86]. The reason for this wide spread of the MCS method
is the small number of nonlinear problems retaining an exact solution. However, the
excessive computational cost related to its application, especially in case of large-scale
complex multibody systems, renders the MCS solution scheme a burdensome option.

The results presented in this chapter are published in:

Fragkoulis et al. 2016, ASCE J. Eng. Mech., Kougioumtzoglou et al. 2017, J. Sound Vibr.
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Therefore, a number of approximate methodologies have been developed throughout
the years as alternative techniques to MCS method. Among them, another well es-
tablished technique for determining the (MDOF) nonlinear system response statistics,
capable of addressing several random vibration problems, is the stochastic averaging
method [90, 121]. The recently derived analytical techniques based on the utilization of
the Wiener path integral framework [21], constitute one more approach for determining
the nonlinear (MDOF) system response statistics [56]. Relying on the concept of the
most probable trajectory, an approximate expression for the probability density function
of nonlinear system response is derived. The method is extended to account for linear
and nonlinear oscillators endowed with fractional derivatives elements [30]. Finally,
a widely accepted technique for approximately deriving the nonlinear system response
statistics, is the statistical linearization methodology. Among all methods quoted herein,
the statistical linearization methodology is the most straightforward in its implementa-
tion and readily applied to multibody system modeling for a wide range of nonlineari-
ties. This last method is concisely presented in Section 4.2; a more detailed presentation
can be found in Ref. [91].

4.2 Statistical linearization approximate methodology

In Chapter 3, the standard time and frequency domain methodology techniques of the
random vibration theory for the stochastic response determination of linear systems (e.g.
Refs. [91], [60], [63]), are generalized to account for the case of linear systems with
singular matrices. As also noted in Section 4.1, most mathematical models derive from
applications involve nonlinear systems. Therefore, the analysis and results obtained in
Chapter 3, are extended to account for nonlinear systems with singular matrices. In this
context, a generalized statistical linearization approximate methodology, which plays
an instrumental role in the ensuing analysis (Chapter 4), is also proposed [41, 55]. A
brief introduction to the classical statistical linearization methodology follows.

4.2.1 Classical method

Statistical linearization has been one of the most versatile approximate methodologies
for determining the stochastic response of nonlinear structural and mechanical systems
efficiently [91, 98, 20, 25, 26, 99, 100, 71]. The main objective of the methodology re-
lates to the replacement of the original nonlinear system with an ”equivalent linear” one
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by appropriately minimizing the error vector corresponding to the difference between
the two systems. The rationale behind this procedure is that closed form analytical ex-
pressions exist for the response statistics of a linear system, and thus, the response statis-
tics of the equivalent linear system can be used as an approximation for the response
statistics of the original nonlinear system. According to the standard implementation of
the methodology, the minimization criterion relates typically to the mean square error,
whereas the Gaussian assumption for the system response probability density functions
is commonly adopted [91]. Note, that although more sophisticated implementations
of the statistical linearization that relax the aforementioned assumptions and/or em-
ploy various other minimization criteria exist [98], these versions typically lack versa-
tility. One of the reasons for the wide utilization of the standard statistical linearization
methodology has been, undoubtedly, its versatility in addressing a wide range of non-
linear behaviors. In particular, the Gaussian response assumption in conjunction with
the mean square error minimization criterion facilitates the derivation of closed form
expressions for the equivalent linear elements (e.g. stiffness, damping coefficients, etc.)
as functions of the response statistics.

Taking into consideration the general form of the equation of motion of a
lumped-parameter n degree of freedom system given by Eq. (3.1), the general form of
the equation of motion of a nonlinear MDOF vibratory system is given by

Mq̈ + Cq̇ + Kq + Φ(q, q̇, q̈) = Q(t). (4.1)

In Eq. (4.1), M,C,K denote the n × n mass, damping and stiffness matrices of the
system, Φ is a nonlinear n vector function of the generalized coordinate vector q and
its derivatives, andQ denotes the n vector system excitation.

In general, the presence of the nonlinear term Φ in Eq. (4.1) hinders the
derivation of an exact solution for the system response. An exact solution can only be
derived under an assumption including a small number of DOFs, n, and also considering
restrictions for the nonlinear term, Φ as well as the system response vector, q [91]. An
approximate solution for the system response statistics is sought. As aforementioned,
the idea of the method lies in the replacement of the non-linear term of Eq. (4.1) with
auxiliary linear ones (for which the exact analytic formula for the solution is known)
yielding the formulation of the so-called equivalent linear system. A concise description
of the method follows; see Ref. [91] for a more detailed presentation.
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The equivalent linear system is firstly defined. The nonlinear vector Φ in Eq.
(4.1) is replaced by equivalent mass, damping and stiffness matrices yielding

(M + Me)q̈ + (C + Ce)q̇ + (K + Ke)q = Q(t), (4.2)

where Me,Ce and Ce denote the n × n equivalent matrices. The difference between
the original and the equivalent linear system is formed, defining the error vector

ε = Φ(q, q̇, q̈)−Meq̈ −Ceq̇ −Keq. (4.3)

The objective of the method is to minimize ε in some statistical sense, for every q
belonging to a certain class of functions of the independent variable t [91, 101]. Among
several criteria, the mean square minimization criterion

E
[
εTε

]
= minimum, (4.4)

is employed. In Eq. (4.4), the Euclidean norm of the error ε, i.e. εTε = ‖ε‖2
2, is utilized.

The solution of Eq. (4.4) corresponds to determining the elements of Me,Ce and Ke

or, equivalently the equivalent linear system of Eq. (4.2), which in turn, constitutes an
efficient approximation of the original nonlinear system of Eq. (4.1).

4.2.2 Minimization criteria

The mean square minimization criterion utilized in deriving the elements of the equiv-
alent linear system of Eq. (4.2), is the most widely used criterion in the literature. The
reason for this happening is that the criterion is straightforward in its implementation
and can confront a wide range of nonlinearities [91]. Nevertheless, several different
criteria have been developed throughout the last decades. Some of them are immedi-
ately derived from the classical minimization criterion and are summarized as follows.
For example, by slightly alternating the classical case and particularly by requiring that
the difference between the original nonlinear system and its linear correspondent is or-
thogonal to the system response, a novel minimization criterion arises [35]. A detailed
circumstantial review of the available criteria is found in Refs [96, 97]; further reviews
are included in Refs [35, 26].

Following closely Ref. [96], a general discretization of the minimization crite-
ria include, among others, the so-called energy criteria, the spectral density criteria and
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the probability density criteria. In the first category, i.e. the energy based minimiza-
tion criteria, either the system potential energy or its the energy dissipation function is
minimized. The mean square difference is formed, for instance, in terms of the orig-
inal nonlinear system potential energy and the corresponding of its equivalent linear
counterpart [34, 119]. Alternatively, the mean square value of the nonlinear system po-
tential energy is set equal to the corresponding energy of the linear counterpart [36].
A similar rationale is followed if the system energy dissipation function is chosen in-
stead of its potential energy [37]. Many generalizations of these two criteria also exist;
see Ref. [96] for more details. As for the spectral density criteria, they are related to
applying the linearization technique in frequency domain. The original nonlinear sys-
tem is replaced by an equivalent linear one, that is described by random coefficients
with a known probability density function. These random coefficients are, in turn, de-
scribed by a conditional probability expression and for their derivation, this expression
is set equal to a corresponding conditional probability of the original nonlinear system
[17, 96]. The probability density criteria are based on determining the coefficients of the
equivalent linear system by employing a probabilistic metric in the probability density
space criterion [96, 95].

4.2.3 Modeling the nonlinear systems governing equations of mo-
tion with redundant coordinates

The redundant coordinates modeling presented in Section 3.2 can be followed for de-
riving the governing equations of motion of nonlinear systems. In this section a concise
presentation of the technique in case of nonlinear systems is given for completeness.

Following a redundant DOFs modeling scheme, the n−DOF nonlinear system
of Eq. (4.1) is construed as a collection of sub-systems modeled separately, yielding an
overall l−DOF system (l ≥ n) with governing equations of motion given by

Mxẍ+ Cxẋ+ Kxx+ Φx(x, ẋ, ẍ) = Qx(t), (4.5)

where x stands for an l−DOF vector of coordinates (l ≥ n), Qx is the l vector of the
external forces and Mx,Cx and Kx are the l× l mass, damping and stiffness matrices,
respectively. The augmented nonlinear vector for the l−DOF system is given by the
l vector Φx(x, ẋ, ẍ).

As in the case of linear systems, additional constraint equations which are
given by Eq. (3.21) and connect the aforementioned subsystems, arise. The constraint
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equations imply a number of additional forces,Qc
x(t), and thus, Eq. (4.5) is transformed

into
Mxẍ+ Cxẋ+ Kxx+ Φx(x, ẋ, ẍ) = Qx(t) +Qc

x(t), (4.6)

Moreover, virtual displacements appear due to the additional forces Qc
x(t); these dis-

placements satisfy the condition given in Eq. (3.23) and at any instant of time t can be
expressed as in Eq. (3.24). Taking into account that in the case of nonlinear systems,
the (m+ l) vector S becomes

S = −Φx −Cxẋ−Kxx, (4.7)

and following the arguments stated in Section 3.2 (Eqs. (3.26)-(3.45)), the correspond-
ing to Eq. (3.44) expression takes the form

ẍ = M̄+
x

[
−C̃xẋ− K̃xx− Φ̃x + Q̃x

]
+ (I− M̄+

xM̄x)y. (4.8)

In Eq. (4.8), the (m + l) × l matrices C̃x, K̃x and the (m + l) vector Q̃x are identical
with those defined in Section 3.2 (see Eqs. (3.46)-(3.47)), whereas the (m + l) vector
Φ̃x is given by

Φ̃x =
Φx

0

 ; (4.9)

also, M̄+
x denotes the M-P inverse of the matrix M̄x that is defined in Eq. (3.33).

The augmented equations of motion of nonlinear systems, derived via a re-
dundant coordinates modeling scheme are given by

M̄xẍ+ C̄xẋ+ K̄xx+ Φ̄x(x, ẋ, ẍ) = Q̄x(t), (4.10)

where the (m + l) × l augmented mass, damping and stiffness matrices, M̄x, C̄x and
K̄x, are defined in Eqs. (3.33), (3.50) and Eq. (3.51), respectively. The (m+ l) vector
Q̄x is defined in Eq. (3.52), whereas the (m+ l) nonlinear vector Φ̄x is given by

Φ̄x =
ÃΦx

0

 ; (4.11)

Ã denotes the l × l matrix of Eq. (3.27). A more detailed presentation on the construc-
tion of the equations of motion for a nonlinear system with singular matrices can be
found in Ref. [42].
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4.3 Generalized statistical linearization approximate
methodology

The statistical linearization approximate methodology is generalized to account for the
nonlinear system with singular matrices of Eq. (4.10). To account for singular matrices,
a generalization of a formula [91, 7, 39] based on a Gaussian response assumption
and related to the expectation of the derivatives of the nonlinear function Φ̄x is proved
[55, 43].

Following closely Ref. [91], an equivalent linear system is sought in the form

(M̄x + M̄e)ẍ+ (C̄x + C̄e)ẋ+ (K̄x + K̄e)x = Q̄x(t), (4.12)

where M̄e, C̄e and K̄e denote the equivalent linear (m + l) × l mass, damping and
stiffness matrices, respectively, to account for the nonlinearity of the original system.

The error vector, ε, between the nonlinear and the equivalent linear system is
defined as

ε = Φ̄x(x, ẋ, ẍ)− M̄eẍ− C̄eẋ− K̄ex. (4.13)

The mean square error is chosen to be minimized (see Eq. (4.4)) for determining the
equivalent linear matrices. This yields the equations

∂

∂mij

E[εTε] = 0, (4.14)

∂

∂cij
E[εTε] = 0 (4.15)

and
∂

∂kij
E[εTε] = 0, (4.16)

where me
ij, c

e
ij and keij are the (i, j) elements of the matrices M̄e, C̄e and K̄e, respec-

tively. Combining Eq. (4.13) with Eq. (4.4), the minimization criterion can be equiva-
lently written as

m+l∑
i=1

D2
i = minimum, (4.17)

where

D2
i = E


Φ̄i,x −

l∑
j=1

(me
ijẍj + ceijẋj + keijxj)

2
 , (4.18)
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for i = 1, 2, . . . , (m+ l) and

Φ̄x =
[
Φ̄i,x(x, ẋ, ẍ)

]T
, (4.19)

for i = 1, 2, . . . , (m+ l). Due to the form of the expression in Eq. (4.17), the minimiza-
tion criterion can be equivalently written as

D2
i = minimum, (4.20)

for i = 1, 2, . . . , (m+ l). Minimizing Eq. (4.20) yields the equations

E
[
Φ̄i,xx̂] = E[x̂x̂T

] 
keTi∗

ceTi∗

meT
i∗

 , (4.21)

for i = 1, 2, . . . , (m+ l). The 3l vector x̂ of Eq. (4.21) is defined as

x̂ =


x

ẋ

ẍ

 (4.22)

andmeT
i∗ , c

eT
i∗ and keTi∗ correspond to the ith row of M̄e, C̄e and K̄e, respectively.

The determination of the equivalent linear elements in Eq. (4.21) requires the
inversion of E[x̂x̂T]. The question arises whether this 3l × 3l matrix E[x̂x̂T] which
appears in Eq. (4.21), is singular or not. As proved in Ref. [101], a necessary and
sufficient condition for E[x̂x̂T] to be singular is that at least one of the components of
the 3l vector x̂ defined in Eq. (4.22), can be expressed as a linear combination of the
remaining components. Note that in the formulation herein it is assumed a priori that
the elements of the coordinates vector x are not independent with each other as more
than the minimum coordinates are utilized in forming the equations of motion. It is
anticipated that some of the elements of x̂ are linearly dependent. The matrix E[x̂x̂T]
in Eq. (4.21) is singular.

In order to simplify further Eq. (4.21) the following proposition is introduced,
which can be construed as a generalization of the theorem proved in Ref. [7].

Proposition 4.1 ([55]). Let the 3l vector x̂ be a zero mean jointly Gaussian random

vector and Φ̄x : R3l → R3l be a smooth multivariate function. Then, the expression

E[x̂x̂T]+E[Φ̄i,xx̂] = E[∇Φ̄x(x̂)], (4.23)
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where E[x̂x̂T]+ denotes the M-P inverse matrix of E[x̂x̂T], holds true.

Proof. Taking into account the definition of the expected value and assuming that the
joint Gaussian pdf of x̂ is denoted by p(x̂), the expression

E[∇Φ̄x(x̂)] =
∫ ∞
−∞

. . .
∫ ∞
−∞
∇Φ̄x(x̂)p(x̂)dx̂T, (4.24)

holds true. As noted in Section 4.3, the matrix E[x̂x̂T] is singular. Considering a
multivariate Gaussian distribution with a singular covariance matrix E[x̂x̂T] [52, 88,
102], the pdf of x̂ is given by

p(x̂) = ((2π)k|BTE[x̂x̂T]B|)− 1
2 exp

{
−1

2 x̂
TE[x̂x̂T]+x̂

}
. (4.25)

In Eq. (4.25), the M-P inverse of the matrix E[x̂x̂T] has the form

E[x̂x̂T]+ = B(BTE[x̂x̂T]B)−1BT, (4.26)

and B satisfies the relationship

|BTE[x̂x̂T]B| = λ1λ2 . . . λρ, (4.27)

where λi, i = 1, 2, . . . , ρ denote the non-zero eigenvalues of the singular matrix E[x̂x̂T]
[52].

Following closely Ref. [7], the right hand side of Eq. (4.24) is integrated by
parts yielding

E[∇Φ̄x(x̂)] = r −
∫ ∞
−∞

. . .
∫ ∞
−∞

Φ̄i,x∇p(x̂)dx̂T, (4.28)

where r is a 3l vector with

ri =
∫ ∞
−∞

. . .
∫ ∞
−∞

{
Φ̄i,xp(x̂)|xi=+∞

xi=−∞

} 3l∏
j=1
i 6=j

dxj, i = 1, 2, . . . , 3l. (4.29)

Without loss of generality, the quantity in the brackets in Eq. (4.29) is assumed next to
be zero at xi = ±∞. This is further substantiated by the form of Φ̄x ordinarily met in
practice; see also Ref. [7]. Eq. (4.28) becomes

E[∇Φ̄x(x̂)] = −
∫ ∞
−∞

. . .
∫ ∞
−∞

Φ̄i,x∇p(x̂)dx̂T. (4.30)
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Note that applying the nabla operator to Eq. (4.25) yields

∇p(x̂) = −1
2p(x̂)∇

(
x̂TE[x̂x̂T]+x̂

)
(4.31)

and noticing that∇
(
x̂TE[x̂x̂T]+x̂

)
= 2E[x̂x̂T]+x̂, Eq. (4.31) becomes, equivalently,

∇p(x̂) = −p(x̂)E[x̂x̂T]+x̂. (4.32)

Considering Eq. (4.32), Eq. (4.30) takes the form

E[∇Φ̄x(x̂)] = E[x̂x̂T]+
∫ ∞
−∞

. . .
∫ ∞
−∞

Φ̄i,xx̂p(x̂)dx̂T (4.33)

or, equivalently,

E[x̂x̂T]+E[Φ̄i,xx̂] = E[∇Φ̄x(x̂)], (4.34)

which proves Eq. (4.23).

For the singular matrix E[x̂x̂T] of Eq. (4.21), the M-P inverse matrix on the
left hand side of Eq. (4.23) is also singular, and thus, taking into account Eqs. (2.3)-(2.6)
and Eq. (2.12), Eq. (4.23) has the following M-P type solution

E[Φ̄i,xx̂] = E[x̂x̂T]E[∇Φ̄x(x̂)] +
{
I− E[x̂x̂T]E[x̂x̂T]+

}
w, (4.35)

where w is an arbitrary 3l vector.

For w = 0 a particular solution for E[Φ̄i,xx̂] is obtained in the form

E[Φ̄i,xx̂] = E[x̂x̂T]E[∇Φ̄x(x̂)]. (4.36)

Eq. (4.36) was utilized in Ref. [42], and can be construed as a direct generalization
of the standard relationship for non-singular matrices [91, 7]. The step of arbitrarily
choosing the solution of Eq. (4.36) for E[Φ̄i,xx̂] corresponding to w = 0 can be cir-
cumvented by directly treating Eq. (4.23). Eqs. (4.21) and (4.23) are pre-multiplied by
E[x̂x̂T]+ and E[x̂x̂T], respectively, yielding
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E[x̂x̂T]


keTi∗

ceTi∗

meT
i∗

 = E[x̂x̂T]E



∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ


, (4.37)

for i = 1, 2, . . . , (m+ l).

Likewise for the determination of the equivalent linear elements in Eq. (4.37)
the inversion of E[x̂x̂T] is required, and since E[x̂x̂T] is singular, its M-P inverse is em-
ployed for determining an expression for the elements me

ij, c
e
ij and keij of the equivalent

linear augmented matrices. Considering Eq. (2.12), Eq. (4.37) is written in the form


keTi∗

ceTi∗

meT
i∗

 = E[x̂x̂T]+E[x̂x̂T]E



∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ


+ g(y), (4.38)

for i = 1, 2, . . . , (m+ l), where the 3l vector

g(y) = (I− E[x̂x̂T]+E[x̂x̂T])y, (4.39)

is the arbitrary part of the M-P inverse based general solution of Eq. (4.37). It is deemed
important to note that when the minimum number of coordinates, n, is utilized, E[x̂x̂T]
is a non-singular matrix yielding

E[x̂x̂T]+ = E[x̂x̂T]−1. (4.40)

In that case, the vector x̂ of Eq. (4.22) becomes

x̂ =
[
q q̇ q̈

]T
(4.41)

and combining Eq. (4.39) with Eq. (4.40), Eq. (4.38) takes the well-established form


keTi∗

ceTi∗

meT
i∗

 = E



∂Φi,q

∂q
∂Φi,q

∂q̇
∂Φi,q

∂q̈

 , (4.42)
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for i = 1, 2, . . . , n. Eq. (4.42) represents the celebrated expressions for determining
the elements of the equivalent linear mass, damping and stiffness matrices in the stan-
dard formulation of the statistical linearization methodology [91]. When formulating
the system equations of motion by employing additional degrees-of-freedom, E[x̂x̂T]
is singular and the generalized version of Eq. (4.42) (i.e. Eq. (4.38)) needs to be con-
sidered. Regarding Eq. (4.38), it can be readily seen that a critical step for the practical
implementation of the generalized statistical linearization methodology is the choice
of the arbitrary element y. It is proved in the following proposition that the solution
obtained by setting the arbitrary element y equal to zero is not only intuitively the sim-
plest but it is also at least as good (in the sense of minimizing the mean square error,
where the error ε is defined in Eq. (4.13)) as any other solution obtained by selecting
an arbitrary non-zero value for y. Setting y = 0, Eq. (4.38) becomes


keTi∗

ceTi∗

meT
i∗

 = E[x̂x̂T]+E[x̂x̂T]E



∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ


, (4.43)

for i = 1, 2, . . . , (m+ l).

Assume next that (me
ij, c

e
ij, k

e
ij) is the set of parameters arising from solving

Eq. (4.43) and corresponding to the equivalent matrices M̄e, C̄e and K̄e. Selecting an
arbitrary vector y = y0 6= 0 in Eq. (4.39), a different set of parameters, (m′eij, c

′e
ij, k

′e
ij),

corresponding to matrices M̄
′

e, C̄
′

e, K̄
′

e, is obtained via Eq. (4.38); see also Ref. [101].

Proposition 4.2 ([42]). Let D2
i (me

ij, c
e
ij, k

e
ij) and D2

i (m
′e
ij, c

′e
ij, k

′e
ij) denote the errors as

defined in Eq. (4.18) corresponding to the parameters valuesme
ij, c

e
ij, k

e
ij andm

′e
ij, c

′e
ij, k

′e
ij ,

respectively. Then,

D2
i (me

ij, c
e
ij, k

e
ij) ≤ D2

i (m
′e
ij, c

′e
ij, k

′e
ij), (4.44)

for i = 1, 2, . . . , (m+ l) and j = 1, 2, . . . , l .

Proof. It is seen from Eq. (4.18) that the quantity D2
i (me

ij, c
e
ij, k

e
ij) is a quadratic poly-

nomial with respect to the parameters me
ij, c

e
ij and keij . Therefore, its mixed partial

derivatives concerning me
ij, c

e
ij, k

e
ij of order higher that two vanish. Taking into account
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Eq. (4.38), the two sets of parameters are connected via the expressions

m
′e
ij = me

ij + gm,i(y0), (4.45)

c
′e
ij = ceij + gc,i(y0), (4.46)

k
′e
ij = keij + gk,i(y0), (4.47)

where the terms gm,i(y0), gc,i(y0), gk,i(y0), i = 1, 2, . . . ,m+ l, represent the arbitrary el-
ements as defined in Eq. (4.39). Considering a Taylor’s expansion around (me

ij, c
e
ij, k

e
ij),

yields

D2
i (m

′e
ij, c

′e
ij, k

′e
ij) = D2

i (me
ij, c

e
ij, k

e
ij)

+
l∑

j=1
( ∂D

2
i

∂me
ij

gm,i(y0) + ∂D2
i

∂ceij
gc,i(y0) + ∂D2

i

∂keij
gk,i(y0))

+ 1
2E


 l∑
j=1

(gm,i(y0)ẍj + gc,i(y0)ẋj + gk,i(y0)xj)
2
 ,

(4.48)

for i = 1, 2, . . . ,m+l, where the terms gm,i(y0), gc,i(y0) and gk,i(y0) denote the distance
between the two sets of parameters.

Taking into account Eqs. (4.14)-(4.16), the necessary conditions for minimiz-
ing Eq. (4.20) are

∂D2
i

∂me
ij

= 0, (4.49)

∂D2
i

∂ceij
= 0 (4.50)

and
∂D2

i

∂keij
= 0. (4.51)

Utilizing Eqs. (4.49)-(4.51), the first sum on the right hand side of Eq. (4.48) is zero
and Eq. (4.48) takes the form

D2
i (m

′e
ij, c

′e
ij, k

′e
ij) = D2

i (me
ij, c

e
ij, k

e
ij) + 1

2E
{
J2
i

}
, (4.52)

for i = 1, 2, . . . ,m+ l, where

Ji =
l∑

j=1
(gm,i(y0)ẍj + gc,i(y0)ẋj + gk,i(y0)xj). (4.53)
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Taking into account that E {J2
i } ≥ 0, for all i = 1, 2, . . . ,m + l, Eq. (4.52) proves the

argument stated in Eq. (4.44).

Based on Eq. (4.44), utilizing Eq. (4.43) yields equivalent linear elements
corresponding to an error that is at least as small (in a mean square sense) as any other
obtained by utilizing a non-zero y vector in Eq. (4.38).

It is noted that comparing the standard Eq. (4.42) with its generalized coun-
terpart Eq. (4.43) the equivalent linear matrices in Eq. (4.43) have typically a more
complex structure than their counterparts in Eq. (4.42). Due to the fact that in Eq.
(4.43) the product E[x̂x̂T]+E[x̂x̂T] does not yield a unitary matrix, the equivalent lin-
ear matrices are anticipated to have many more non-zero components than in the case
of utilizing Eq. (4.42). This observation is further highlighted in the numerical ex-
ample section. Additionally, the determination of the equivalent linear matrices in Eq.
(4.43) requires the knowledge of the response covariance matrix E[x̂x̂T]. An additional
system of equations is needed that relates the two sets of unknowns, i.e. the response
covariance matrix and the equivalent linear elements. Focusing on the linearized sys-
tem of Eq. (4.12), generalized excitation-response relationships can be employed. As
seen in Sections 3.3.1 and 3.3.2, the standard state-variable formulation, the complex
modal analysis as well as the classical frequency domain analysis were generalized for
treating systems with singular matrices and determining the augmented system response
covariance matrix [41, 55]. These approaches are included in the following subsections.

4.3.1 State variable formulation and analysis

The first step of the state variable formulation consists in deriving the state variable form
of the system equations of motion. Considering the M-P inverse of the M̄x+M̄e matrix,
the augmented equivalent linear system of Eq. (4.12) can be cast in the corresponding
of Eq. (3.54) form, i.e.

ṗ = Gxp+ fx, (4.54)

where the state vector p is given by Eq. (3.53) and the 2l × 2l matrix Gx (see also
Eq. (3.55)) is given by

Gx =
 0 I
−(M̄x + M̄e)+(K̄x + K̄e) −(M̄x + M̄e)+(C̄x + C̄e)

 . (4.55)
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The 2l vector fx (see also Eq. (3.56)) is given by

fx =
 0

(M̄x + M̄e)+Q̄x

 . (4.56)

For zero initial conditions (i.e. p(0) = 0), the solution of the state variable
form of the augmented system equation of motion is

p(t) =
∫ t

0
exp(Gxτ)fx(t− τ)dτ, (4.57)

where the 2l×2l transition matrix exp(Gxt) has a block form which is similar to that of
Eq. (3.60). Taking into account Eq. (4.57) and the block form of the transition matrix,
the response displacement vector, x, is

x(t) =
∫ t

0
hx(τ)Q̄x(t− τ)dτ, (4.58)

where
hx(t) = bx(t)(M̄x + M̄e)+ (4.59)

can be construed as the uniquely defined ”generalized” impulse response matrix; see
also the arguments followed in deriving Eqs. (3.58)-(3.63).

In deriving Eq. (4.58) arguments for neglecting the arbitrary term associated
with the M-P inverse of the M̄x + M̄e matrix have been employed. These relate to
uniquely defining a response acceleration vector (see also Eq. (4.8)) as suggested by
experimental observations [112]; a detailed discussion of the topic can be found in
Section 3.3.1.1.

Similar to the linear case described in Section 3.3.1.1, manipulating Eq. (4.54)
and taking expectations yields the equation for the system response covariance matrix
in the following, corresponding to Eq. (3.71), form

V̇x = GxVx + VxGT
x + Sx, (4.60)

where the state matrix Gx is in the present case given by Eq. (4.55). Following similar
arguments to those stated in Section 3.3.1.1, and focusing on stationary white noise
excitation and stationary system response, a Lyapunov equation for determining the
covariance matrix of the system response is obtained (see Eq. (3.75)). As highlighted in
Ref. [41], the Lyapunov equation does not have a unique solution due to the form of the
augmented matrix Gx of Eq. (4.55). Nevertheless, recasting it in a form that utilizes the
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Kronecker product, it has been shown that a solution for the response covariance matrix
can be provided; see Eqs. (3.77)-(3.81) for more details.

4.3.2 Complex modal analysis

Focusing on a complex modal analysis treatment, due to the form of the matrix Gx

of Eq. (4.55), its eigenvectors that correspond to its zero eigenvalues are linearly de-
pendent. A standard eigen-decomposition analysis cannot be performed as is the case
for modeling using generalized coordinates. The singular value decomposition (SVD)
method can be applied for Gx yielding a corresponding to Eq. (3.117) expression, i.e.

Gx = UηxΨ∗. (4.61)

As in Section 3.3.1.3, the diagonal 2l × 2l matrix ηx is given by

ηx = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0). (4.62)

where the singular values σj, j = 1, 2, . . . , 2l of the matrix Gx are given by Eq. (3.119),
whereas the 2l × 2l matrices U =

[
u1,u2, . . . ,u2l

]
and Ψ =

[
ψ1,ψ2, . . . ,ψ2l

]
are

unitary; ψj is the eigenvector corresponding to the singular value σj (j = 1, 2, . . . , 2l)

whereas uj is equal to uj =
Gxψj

σj
.

Utilizing the SVD of Eq. (4.61), Eq. (4.54) can be alternatively written as

żx = Ψ∗Uηxzx + gx, (4.63)

where gx and p are given by Eq. (3.124) and Eq. (3.121), respectively. Eq. (4.57)
becomes

zx(t) =
∫ t

0
Hx(s)gx(t− s)ds, (4.64)

where
Hx(t) = exp(Ψ∗Uηxt). (4.65)

As pointed out in Section 3.3.1.3 (see also Ref. [41]), a complex modal anal-
ysis does not result in uncoupling the coupled system of Eq. (4.63). The product Ψ∗U
does not yield a unitary matrix as in the case of utilizing the minimum number of co-
ordinates, and thus, Hx(t) is not diagonal. Nevertheless, relying on a SVD of matrix
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Gx facilitates significantly the numerical computation of the system response statis-
tics. Considering Eq. (4.64) and manipulating yields the covariance matrix wzx

of the
response vector zx in the form

wzx
(τ) =

∫ ∞
0

∫ ∞
0

Hx(s1)wgx
(τ + s1 − s2)H∗x(s2) ds1ds2. (4.66)

The relationship p = Ψzx (see also Eq. (3.121)) can be used for determining the
covariance matrix of the response vector p in the form

wp(τ) = Ψwzx
(τ)Ψ∗; (4.67)

a more detailed presentation of how Eqs. (4.66)-(4.67) are derived can be found in
Section 3.3.1.3.

4.3.3 Frequency domain analysis

Consider that a redundant coordinates modeling formulation is followed for deriving
the governing equations of motion of an n−DOF nonlinear system. The augmented
form of the nonlinear system equations of motion are given by Eq. (4.10), and the aug-
mented nonlinear vector Φ̄x is given by Eq. (4.11); see Section 4.2.3 for more details.
Following the generalized version of the statistical linearization methodology presented
in Section 4.3, an equivalent to Eq. (4.10) linear system is sought in the form given by
Eq. (4.12).

Comparing Eqs. (3.49) and (4.12), the FRF matrix of the equivalent linear
system of Eq. (4.12) is given by

αe(ω) = R+
e , (4.68)

where R+
e denotes the M-P inverse of the matrix

Re = −ω2(M̄x + M̄e) + iω(C̄x + C̄e) + (K̄x + K̄e). (4.69)

Without loss of generality, it has been assumed in Eq. (4.68) that the Re matrix has
full rank. In a different case, the generalized expression of the FRF matrix arising from
solving Eq. (3.180), i.e. Eq. (3.182), should be considered. The response statistics are
determined via applying Eqs. (3.187)-(3.188). The generalized statistical linearization
methodology presented in Section 4.3 is followed.
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As in the application of the time domain analysis, determining the equiva-
lent linear matrices in Eq. (4.37) requires knowledge of the response covariance matrix
E[x̂x̂T]. The herein derived frequency domain input-output Eq. (3.186) is utilized as
the additional set of equations required for relating the covariance matrix and the equiv-
alent linear matrices. The developed generalized statistical linearization methodology
can be construed as the frequency domain alternative to the time-domain methodology
presented in Section 4.3.1 (see also Ref. [42]).

4.3.4 Mechanization of the generalized statistical linearization
methodology

Depending on either the generalized statistical linearization scheme presented in Sec-
tion 4.3 is used in conjunction with a time or frequency domain analysis treatment, a
coupled nonlinear system has to be solved for determining the system response covari-
ance matrix as well as the elements of the equivalent linear matrices M̄e, C̄e and K̄e.
In both time and frequency domain approaches, Eq. (4.43) constitutes the first equation
of the coupled nonlinear system.

Based on a modeling utilizing more than the minimum number of DOFs, in
conjunction with a time domain analysis treatment, Eqs. (4.43) and (4.60) (or, alterna-
tively, Eq. (4.43) and Eqs. (4.66)-(4.67) if a complex modal analysis is employed) con-
stitute a coupled nonlinear system of equations to be solved for determining the system
response covariance matrix and the equivalent linear elements. Utilizing a frequency
domain approach, the equivalent linear matrices M̄e, C̄e and K̄e as well as the system
response covariance matrix are determined by solving the coupled nonlinear system
comprised of Eqs. (3.187)-(3.188) and Eq. (4.43).

For the solution of the coupled system, any appropriate standard numerical
optimization scheme can be applied [76]. The following iterative procedure can be
utilized as an alternative straightforward approach.

The first step consists of selecting initial values for the equivalent linear ma-
trices, M̄e, C̄e and K̄e, which are set equal to null matrices. Following the selection of
an appropriate convergence criterion, the following two steps are repeated successively.

• If a time domain analysis treatment is followed, the system response covariance
matrix is determined via Eq. (4.60) (or, alternatively via Eqs. (4.66)-(4.67)). In
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a similar manner, the corresponding covariance matrix for the frequency domain
analysis is computed via Eq. (3.187) and Eq. (3.188).

• Combining Eq. (4.43) with the system response covariance matrix obtained in the
previous step (depending on either a time or frequency domain analysis treatment
is followed), updated values for the equivalent linear matrices are calculated.

The iterative method stops when convergence is attained.

4.4 Numerical Examples

4.4.1 Generalized statistical linearization in conjunction with a time
domain analysis treatment

As a numerical example the system of two rigid masses m1 and m2 shown in Figure 4.1
is considered. It is assumed that the mass m1 is connected to the ground by a nonlinear
spring of the linear-plus-cubic type and by a linear damper with coefficient c1. A mass
m2 is connected tom1 by a linear spring and a linear damper with coefficients k2 and c2,
respectively. The applied random force Q2(t) is modeled as a white-noise process with
a correlation function wQ2(t) = 2πS0δ(t), where S0 is the (constant) power spectrum
value of Q2(t). q1, q2 are the generalized displacements, as shown in Figure 4.1.

FIGURE 4.1: A two degree-of-freedom nonlinear structural system under stochastic
excitation.

Utilizing generalized coordinates the equations of motion governing the sys-
tem in Figure 4.1 can be written in the matrix form of Eq. (4.1), where the matrices
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M,C and K are given by (see also Ref. [91])

M =
m1 0

0 m2

 , C =
(c1 + c2) −c2

−c2 c2

 (4.70)

and

K =
(k1 + k2) −k2

−k2 k2

 , (4.71)

respectively; the coordinate vector q and the excitation vectorQ(t) are given by

q =
q1

q2

 (4.72)

and

Q =
 0
Q2(t)

 , (4.73)

whereas the nonlinear function Φ takes the form

Φ(q, q̇, q̈) =
ε1k1q

3
1

0

 . (4.74)

Taking into account the fact that the minimum number of DOFs are utilized in modeling
the system equations of motion, i.e. E[q̂q̂T]+ = E[q̂q̂T]−1, Eq. (4.42) yields

Ke =
3ε1k1σ

2
q1 0

0 0

 . (4.75)

Focusing on the stationary system response, i.e. V̇ = 0, a standard statistical
linearization procedure in conjunction with a complex modal analysis treatment (e.g.
Ref. [91]) for the values m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1 and
S0 = 10−3, is applied. Regarding the numerical implementation, convergence based on
the criterion ∣∣∣∣∣K

j+1
e −Kj

e

Kj
e

∣∣∣∣∣ > 10−5, (4.76)

where the j index denotes the j − th iteration, is satisfied after eight iterations. The
initial value K0

e has been set equal to zero. By applying a complex modal analysis
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treatment, the eigenvalues of the system after the last iteration are

λ1 = −0.1308− 1.6389i , λ2 = −0.1308 + 1.6389i,

λ3 = −0.0192− 0.6422i , λ4 = −0.0192 + 0.6422i, (4.77)

whereas the corresponding eigenvectors are

vT1 =
[
−0.0357− 0.4466i 0.0188 + 0.2626i 0.7366 −0.4328− 0.0036i

]
,

vT2 =
[
−0.0357 + 0.4466i 0.0188− 0.2626i 0.7366 −0.4328 + 0.0036i

]
,

vT3 =
[
−0.4260− 0.0014i −0.7255 0.0090− 0.2736i 0.0139− 0.4659i

]
,

vT4 =
[
−0.4260 + 0.0014i −0.7255 0.0090 + 0.2736i 0.0139 + 0.4659i

]
.

(4.78)

The obtained covariance matrix of the system response is given by

V =


0.0386 0.0639 0 −0.0010
0.0639 0.1102 0.0010 0

0 0.0010 0.0178 0.0252
−0.0010 0 0.0252 0.0462

 . (4.79)

Consider next that the system of two massesm1 andm2 depicted in Figure 4.1
is modeled as a multi-body one, consisting of two separate subsystems as shown in
Figure 4.2; see also Ref. [41]. The two subsystems are related based on the constraint

x2 = x1 + d, (4.80)

where d is the length of mass m1. The ”unconstrained” equations of motion are de-
rived by treating the three coordinates (x̄1, x2 and x̄3) as independent with each other.
The equation of motion of the composite system is derived by including the constraint
defined in Eq. (4.80), or, equivalently

x2 = x̄1 + l1,0 + d, (4.81)

where l1,0 is the unstretched length of the spring k1. Based on a Lagrangian formulation
of the equations of motion, Eq. (4.5) is formed [41]. The 3 × 3 matrices Mx,Cx and
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FIGURE 4.2: A three degree-of-freedom nonlinear structural system under stochastic
excitation.

Kx become

Mx =


m1 0 0
0 m2 m2

0 m2 m2

 , Cx =


c1 0 0
0 0 0
0 0 c2

 , Kx =


k1 0 0
0 0 0
0 0 k2

 , (4.82)

whereas the 3 vectors Φx andQx become

Φx(x, ẋ, ẍ) =


ε1k1x̄

3
1

0
0

 , Qx =


0
Q3

Q3

 . (4.83)

The coordinates vector is given by

x =


x̄1

x2

x̄3

 (4.84)

where the variables x̄1 and x̄3 are defined as

x̄1 = x1 − l1,0 (4.85)

and
x̄3 = x3 − l2,0, (4.86)
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respectively. In Eq. (4.85), l2,0 is the unstretched length of the spring k2. Differentiating
the constraint of Eq. (4.81), the two sub-systems are subject to, yields

[
1 −1 0

] 
¨̄x1

ẍ2

¨̄x3

 = 0. (4.87)

The matrix A and the vector b of Eq. (3.21) take the form

A =
[
1 −1 0

]
(4.88)

and
b = 0, (4.89)

respectively. Utilizing Eqs. (3.49), (4.82), (4.83) and (4.88), the new augmented equa-
tion of motion can be determined. Taking into account Eq. (3.33) and Eqs. (3.51)-
(3.52), the linear equivalent augmented mass, damping and stiffness matrices are given
by

M̄x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 (4.90)

and

C̄x =


0.05 0 0
0.05 0 0

0 0 0.1
0 0 0

 , K̄x =


0.5 0 0
0.5 0 0
0 0 1
0 0 0

 , (4.91)

respectively. The vectors Q̄x and Φ̄x are given by

Q̄x =


0.5w(t)
0.5w(t)
w(t)

0

 , Φ̄x =


0.5ε1k1x̄

3
1

0.5ε1k1x̄
3
1

0
0

 . (4.92)
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Applying Eq. (4.43) for determining the equivalent linear stiffness matrix K̄e yields

keT1∗ =


r(1, 1) r(1, 2) r(1, 3)
r(2, 1) r(2, 2) r(2, 3)
r(3, 1) r(3, 2) r(3, 3)




3
2ε1k1σ

2
x̄1

0
0

 , (4.93)

keT2∗ =


r(1, 1) r(1, 2) r(1, 3)
r(2, 1) r(2, 2) r(2, 3)
r(3, 1) r(3, 2) r(3, 3)




3
2ε1k1σ

2
x̄1

0
0

 , (4.94)

keT3∗ =


r(1, 1) r(1, 2) r(1, 3)
r(2, 1) r(2, 2) r(2, 3)
r(3, 1) r(3, 2) r(3, 3)

E


0
0
0

 = 0, (4.95)

and

keT4∗ =


r(1, 1) r(1, 2) r(1, 3)
r(2, 1) r(2, 2) r(2, 3)
r(3, 1) r(3, 2) r(3, 3)

E


0
0
0

 = 0, (4.96)

where r(i, j), i, j = 1, 2, . . . , 9 denotes the element of the matrix

r = E[x̂x̂T ]+E[x̂x̂T ], (4.97)

in position (i, j). Considering Eq. (4.93), the equivalent linear matrix K̄e can be con-
cisely written as

K̄e = 3
2ε1k1σ

2
x̄1


r(1, 1) r(2, 1) r(3, 1)
r(1, 1) r(2, 1) r(3, 1)

0 0 0
0 0 0

 . (4.98)

Comparing Eqs. (4.75) and (4.98) it is noted that although the general form
of the equivalent linear stiffness matrices is similar, the equivalent linear matrix of Eq.
(4.98) has more non-zero elements. This is due to the presence of matrix r which, unlike
the generalized coordinates modeling case, is not unitary. Employing Eq. (4.55), the
matrix Gx takes the form

Gx =
 0 I
−M̄+

x (K̄x + K̄e) −M̄+
x C̄x

 , (4.99)
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where the M-P inverse of M̄x is found by Eq. (3.33) to be equal to

M̄+
x =


1 1 −1 0
1 1 −1 −1
−1 −1 2 1

 . (4.100)

As in the case of the covariance matrix obtained in Eq. (4.79) for the 2−DOF
system, a complex modal analysis treatment is utilized for deriving the covariance ma-
trix of the system response. To be consistent with the previously obtained result, the
convergence criterion and error are the same as those utilized for deriving Eq. (4.79).
Convergence is reached after eight iterations. Employing Eqs. (4.61)-(4.65), the eigen-
values of the matrix Ψ∗Uηx, where Ψ,U,ηx are defined in Eq. (4.61), after the last
iteration are

λ1 = −0.1308− 1.6389i, λ2 = −0.1308 + 1.6389i, (4.101)

λ3 = −0.0192− 0.6422i, λ4 = −0.0192 + 0.6422i (4.102)

and
λ5 = λ6 = 0, (4.103)

whereas the corresponding eigenvectors are

v1 =



−0.0145− 0.4629i
−0.0432− 0.0020i
0.4009 + 0.0278i

0.7540
0.0051− 0.0227i
−0.0343 + 0.2281i


,v2 =



−0.0145 + 0.4629i
−0.0432 + 0.0020i
0.4009− 0.0278i

0.7540
0.0051 + 0.0227i
−0.0343− 0.2281i


, (4.104)

v3 =



−0.0308 + 0.0028i
0.0006− 0.4181i
−0.0177− 0.3418i
−0.0060− 0.0025i

0.6740
0.5027− 0.0111i


,v4 =



−0.0308− 0.0028i
0.0006 + 0.4181i
−0.0177 + 0.3418i
−0.0060 + 0.0025i

0.6740
0.5027 + 0.0111i


(4.105)

and
vT

5 = vT
6 =

[
0 0 0 0 0 1

]
. (4.106)
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After determining the eigenvalues and eigenvectors of the matrix Ψ∗Uηx,
Eq. (4.66) evaluated at τ = 0 takes the form

wzx
(0) = −

4∑
i=1

4∑
j=1

pi(Ψ∗DxΨ)p∗j
λi + λ̄j

, (4.107)

where λi, i = 1, 2, 3, 4 are given by Eq. (4.101) and Dx is a real, symmetric, non-
negative matrix of constants given by

Dx =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2π10−3


. (4.108)

In Eq. (4.107), the expressions pi, i = 1, 2, 3, 4 denote 6×6 matrices defined in terms of
the matrix Ψ∗Uηx, as well as the eigenvalues calculated in Eq. (4.101). For example,
p1 is defined as (see Ref. [41] for more details)

p1 = (Ψ∗Uηx − λ2I)(Ψ∗Uηx − λ3I)(Ψ∗Uηx − λ4I)(Ψ∗Uηx)2

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)λ2
1

. (4.109)

Employing Eq. (4.67), the covariance matrix of the system response is given by

wp(0) =



0.0386 0.0386 0.0253 0 0 −0.0010
0.0386 0.0386 0.0253 0 0 −0.0010
0.0253 0.0253 0.0210 0.0010 0.0010 0

0 0 0.0010 0.0178 0.0178 0.0074
0 0 0.0010 0.0178 0.0178 0.0074

−0.0010 −0.0010 0 0.0074 0.0074 0.0136


. (4.110)

Comparing Eqs. (4.79) and (4.110), the variance E[q2
1] as well as E[q̇2

1] ob-
tained for the system examined in Figure 4.1, coincide with the respective ones for
the system of Figure 4.2, i.e E[x̄2

1] and E[ ˙̄x2
1]. Taking expectations in the equation that

connects the two reference systems, that is x̄3 = q2 − q1, and utilizing Eq. (4.79) yields

E[x̄2
3] = E[q2

2] + E[q2
1]− 2E[q1q2]

= 0.0210 (4.111)
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and

E[ ˙̄x2
3] = E[q̇2

2] + E[q̇2
1]− 2E[q̇1q̇2]

= 0.0136, (4.112)

which are indeed in agreement with the corresponding values in Eq. (4.110). It can be
readily verified that the rest of the elements of the matrix given in Eq. (4.110) are also in
agreement with the respective ones of Eq. (4.79). Alternatively, the response covariance
matrix Vx can be obtained by utilizing a state variable formulation in conjunction with
the Lyapunov equation of Eq. (3.75); see Ref. [41] for more details.

4.4.2 Generalized statistical linearization in conjunction with a
frequency domain analysis treatment

4.4.2.1 2-DOF nonlinear system with singular matrices

The 2−DOF nonlinear system examined in Section 4.4.1 by following a time domain
analysis, is examined herein by applying a frequency domain analysis treatment. As-
sume that the massm1 is connected to the foundation by a nonlinear spring of the linear-
plus-cubic type and by a linear damper with coefficient c1. The massm2 is connected to
m1 by a linear spring and a linear damper with coefficients k2 and c2, respectively. The
system is excited by a random force Q2(t) which is modeled as a white-noise process
with a correlation function wQ2(t) = 2πS0δ(t), where S0 is the (constant) power spec-
trum value of Q2(t). The generalized displacements are given by q1 and q2 (see Figure
4.1).

As in case of the system depicted in Figure 4.1, the system equations of mo-
tion are written in the matrix form of Eq. (4.1), where the matrices M,C and K are
given by Eq. (4.70), whereas the coordinate vector q and the excitation vector Q are
defined in Eqs. (4.72) and (4.73), respectively. The nonlinear function Φ takes the form
given by Eq. (4.74), and utilizing Eq. (4.42), the equivalent linear stiffness matrix has
the form of Eq. (4.75).

The standard statistical linearization procedure is applied. The parameters
values used are m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1, and S0 =
10−3. The value of the power spectrum for the excitation is S0 = 10−3. As in previous
case, convergence is attained after eight iterations, subject to the criterion defined in
Eq. (4.76) for the same initial value, i.e. K0

e = 0. At the end of the iterative solution
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procedure, the covariance matrix of the system response displacement is determined as

Vq =
0.0386 0.0639

0.0639 0.1102

 , (4.113)

whereas the covariance matrix of the system response velocity is

Vq̇ =
0.0178 0.0252

0.0252 0.0458

 . (4.114)

Utilizing a redundant coordinates modeling scheme, the three coordinates
x̄1, x2 and x̄3 shown in Figure 4.2 are considered. The constraint equation x2 = x1 + d

(see Eq. (4.80)), with d being the length of mass m1, serves to connect the two sub-
systems of mass m1 and mass m2 (Figure 4.2). Differentiating Eq. (4.80) twice with
respect to time, the constraint equation is written in the matrix form of Eq. (3.21), i.e.
Aẍ = b, where A and b are, in turn, given by Eq. (4.88) and Eq. (4.89), respectively.
The augmented mass, damping and stiffness matrices of the system can be determined
(see Eqs. (4.90)-(4.91)). The augmented excitation vector and the nonlinear vector of
the system are given by Eq. (4.92). Note in passing that the variable x̄1 in Eq. (4.92)
corresponds to the displacement of the first mass and is defined as x̄1 = x1− l1,0, where
l1,0 is the unstretched length of the spring k1.

The generalized statistical linearization methodology is applied. Following
the algorithm described in Section 4.3.4, Eq. (4.43) is utilized for determining the equiv-
alent linear stiffness matrix, K̄e, yielding the same expression as in Eq. (4.98). Once
again, it is noted that due to the presence of the non-unitary matrix r of Eq. (4.97), the
augmented matrix K̄e has more non-zero elements than the equivalent stiffness matrix
Ke (compare Eqs. (4.75) and (4.98)). The same convergence criterion as the one em-
ployed in deriving the covariance matrix of system response displacement and velocity,
i.e. Eq. (4.113) and Eq. (4.114), is used, whereas convergence is reached after eight
iterations. Noticing that in this case the 4 × 3 matrix Re, has full rank, and thus, Eq.
(3.185) is used for determining the FRF matrix αx(ω), the covariance matrix of the
system response displacement is determined to be

Vx̄ =


0.0386 0.0386 0.0253
0.0386 0.0386 0.0253
0.0253 0.0253 0.0210

 , (4.115)
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whereas the system response velocity covariance matrix is computed as

V ˙̄x =


0.0178 0.0178 0.0074
0.0178 0.0178 0.0074
0.0074 0.0074 0.0132

 . (4.116)

Comparing the results, it is seen that the variance E[q2
1] in Eq. (4.113) coin-

cide with the variance E[x̄2
1] in Eq. (4.115). Similarly, the variances E[q̇2

1] and E[ ˙̄x2
1] in

Eq. (4.114) and Eq. (4.116), coincide with each other. Taking into account the expres-
sion x̄3 = q2 − q1 that relates the two reference systems yields

E[x̄2
3] = E[q2

2] + E[q2
1]− 2E[q1q2]

= 0.0210 (4.117)

and

E[ ˙̄x2
3] = E[q̇2

2] + E[q̇2
1]− 2E[q̇1q̇2]

= 0.0132, (4.118)

which agree with the corresponding values in Eqs. (4.115)-(4.116).

It should be noted that the herein obtained results are in total agreement with
the ones obtained when the problem is solved by following an alternative time-domain
methodology presented in Section 4.4.1; see also Refs. [41, 42].

4.4.2.2 3-DOF nonlinear system with singular matrices

In this example, nonlinearities are considered in the system studied in Section 3.3.2.3.
As seen in Figure 4.3, it is assumed that the damping force connecting mass m1 with
the foundation is given by c1q̇1(1 + ε |q̇1|).

The system mass, damping and stiffness matrices, as well as the system coor-
dinates and the vector of the excitation force are given by Eqs. (3.201)-(3.203) and Eqs.
(3.204)-(3.205), respectively. The nonlinear vector Φ of Eq. (4.1) takes the form

Φ =


ε1c1q̇1 |q̇1|

0
0

 . (4.119)
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FIGURE 4.3: A three degree-of-freedom nonlinear system under stochastic excitation.

Following the standard statistical linearization approach [91], the equivalent linear damp-
ing matrix of the system becomes

Ce = 4ε1c1√
2π

√
E[q̇2

1]


1 0 0
0 0 0
0 0 0

 . (4.120)

Regarding the numerical implementation of the iterative solution scheme, the
convergence criterion is given by

∣∣∣∣∣C
j+1
e −Cj

e

Cj
e

∣∣∣∣∣ > 10−5, (4.121)

where j denotes the j − th iteration and C0
e is set equal to zero. After eight iterations,

the covariance matrices of the system response displacement and velocity are given by

Vq =


0.0379 0.0477 0.0491
0.0477 0.0616 0.0646
0.0491 0.0646 0.0702

 (4.122)

and

Vq̇ =


0.0084 0.0085 0.0063
0.0085 0.0110 0.0099
0.0063 0.0099 0.0133

 , (4.123)

respectively.

Utilizing the redundant coordinates modeling, the system presented in Figure
4.3 is decomposed as seen in Figure 4.4 and the augmented nonlinear vector of Eq.
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FIGURE 4.4: A three degree-of-freedom nonlinear system under stochastic excitation
utilizing redundant coordinates.

(4.11) becomes

Φ̄x =



0.4ε1c1 ˙̄x1

∣∣∣ ˙̄x1

∣∣∣
0.4ε1c1 ˙̄x1

∣∣∣ ˙̄x1

∣∣∣
−0.2ε1c1 ˙̄x1

∣∣∣ ˙̄x1

∣∣∣
0.2ε1c1 ˙̄x1

∣∣∣ ˙̄x1

∣∣∣
0
0
0


. (4.124)

The equivalent damping matrix Ce is obtained by applying the generalized
statistical linearization methodology; that is, Eq. (4.43) yields

C̄e = 0.8ε1c1√
2π

√
E[ ˙̄x2

1]



2r(6, 6) 2r(7, 6) 2r(8, 6) 2r(9, 6) 2r(10, 6)
2r(6, 6) 2r(7, 6) 2r(8, 6) 2r(9, 6) 2r(10, 6)
−r(6, 6) −r(7, 6) −r(8, 6) −r(9, 6) −r(10, 6)
r(6, 6) r(7, 6) r(8, 6) r(9, 6) r(10, 6)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

(4.125)
whereas the iterative solution procedure using the convergence criterion defined in
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Eq. (4.121) (i.e. the same criterion as in Eqs. (4.122)-(4.123)), yields the response co-
variance matrices

Vx̄ =



0.0379 0.0379 0.0098 0.0477 0.0014
0.0379 0.0379 0.0098 0.0477 0.0014
0.0098 0.0098 0.0041 0.0139 0.0016
0.0477 0.0477 0.0139 0.0616 0.0029
0.0014 0.0014 0.0016 0.0029 0.0027


(4.126)

and

V ˙̄x =



0.0084 0.0084 0.0001 0.0085 −0.0022
0.0084 0.0084 0.0001 0.0085 −0.0022
0.0001 0.0001 0.0025 0.0026 0.0010
0.0085 0.0085 0.0026 0.0110 −0.0012
−0.0022 −0.0022 0.0010 −0.0012 0.0046


. (4.127)

Taking into account the equations that connect the reference systems, i.e. Eqs.
(3.227)-(3.228), it can be readily verified that the covariance matrices in Eqs. (4.122)-(4.123)
are in total agreement with the corresponding covariance matrices in Eqs. (4.126)-(4.127).

4.5 Summary

In chapter 4 the standard statistical linearization approximate methodology for deter-
mining the stochastic response of nonlinear dynamic systems is generalized to account
for systems with singular matrices. Based on the concept of the M-P inverse of a singu-
lar matrix and utilizing theoretical results pertaining to random vectors that follow the
multivariate normal distribution with singular covariance matrix, the general expression
of the random vibration theory that relates the stochastic system excitation to its re-
sponse is derived. The generalized version of the statistical linearization methodology
is applied in conjunction with a time as well as a frequency domain analysis treatment.
A coupled system of nonlinear algebraic equations yielding the system response mean
vector and covariance matrix, is constructed and solved. The employment of the M-P
generalized matrix inverse implies a family of solutions for determining the equivalent
mass, damping and stiffness matrices of the linearized system. A proposition for deriv-
ing a unique solution out of the family of solutions is also given along with its proof.
The theoretically obtained results for systems with singular matrices are validated by
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pertinent numerical examples and are compared with the results derived by utilizing the
standard statistical linearization methodology.





Chapter 5

Concluding remarks and future
research

5.1 Conclusion

This chapter consists of the main conclusions of the thesis, including remarks regard-
ing the techniques/methodologies utilized, the numerical implementations executed as
well as the results obtained. Also, potential directions for future research related to the
derived results are identified.

Chapter 1 comprises an introduction to the thesis, including the motivation
and objectives this research work is intended to meet. The case of systems with gov-
erning equations of motion having singular mass, damping and stiffness matrices has
been discussed. Application examples of such systems, including, but not limited to, the
utilization of additional/redundant coordinates in formulating the equations of motion,
ill-conditioned systems and modeling the equations of motion of smart materials has
been presented. The organization of forthcoming results has been included in a separate
section.

In Chapter 2, some critical mathematical results for the herein presented work
has been provided. The main elements of the generalized matrix inverse theory has been
presented. Particular attention has been given in analyzing the concept of the Moore-
Penrose (M-P) generalized matrix inverse, which prevails in the herein presented work.
Several pertain to the forthcoming analysis results and properties of the M-P matrix in-
verses has been included. Some results regarding the multivariate normal distribution,
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and particularly the case of probability density functions with singular covariance ma-
trices, has been given. The latter is decisively connected to the proof of a proposition
required in generalizing the standard statistical linearization approximate methodology.

In Chapter 3, certain concepts and relationships of the linear random vibration
theory have been modified and generalized to account for structural systems with singu-
lar matrices. Adopting a redundant (generalized) coordinates modeling for deriving the
systems governing equations of motion, singular mass, damping and stiffness matrices
appeared. Relying on the M-P inverse of a singular matrix, the standard time domain
analysis methodology has been extended to account for systems with singular matrices.
By applying a state variable formulation as well as a complex modal analysis treatment,
the mean vector and covariance matrix of linear systems with singular matrices have
been determined. It has been shown that applying a complex modal analysis treatment,
unlike the standard system modeling case, does not lead to decoupling of the equations
of motion. Nevertheless, relying on a singular value decomposition of the system tran-
sition matrix facilitates significantly the efficient computation of the system response
statistics. The standard frequency domain analysis methodology has been also extended
to account for linear systems with singular matrices. Aiming at the determination of the
linear system response power spectrum, a M-P frequency response function (FRF) has
been determined. A series expansion for the M-P FRF which circumvents the poten-
tially cumbersome numerical evaluation of the M-P inverse, has been presented as well.
Validation of the theoretically obtained results has been provided by pertinent examples
of 2− and 3−DOFs systems, referring to the time and frequency domain approaches,
respectively.

Chapter 4 comprises a generalization of the standard statistical linearization
approximate methodology for determining the stochastic response of nonlinear dynamic
systems to account for systems with singular matrices. Relying on the M-P generalized
matrix inverse, and taking into account the form of the probability density function for
a random vector following the multivariate normal distribution with singular covariance
matrix, a extension of a general expression of the random vibration theory relating the
stochastic system excitation to its response has been derived. A family of optimal and
response dependent equivalent linear matrices has been obtained, and after combining
them with the aforementioned result, a coupled system of nonlinear algebraic equations,
has been constructed and solved, yielding the derivation of the system response mean
vector and covariance matrix. It has been noted that the utilization of the M-P gener-
alized matrix inverse yields an expression for determining the statistical linearization
equivalent linear matrices which includes an arbitrary part. This implies a family of so-
lutions for the equivalent linear matrices of the method. A proposition has been proved
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showing that the solution obtained by setting the arbitrary part in the M-P expression
equal to zero is at least as good (in a mean square error minimization sense) as any other
solution corresponding to a non-zero value. This proof greatly facilitates the practical
implementation of the technique as it promotes the utilization of the intuitively simplest
solution among a family of possible solutions. Validation of the proposed methodology
has been done by pertinent examples including 2− and 3−DOFs nonlinear systems.

The results presented in this thesis propose a novel theoretical framework for
deriving the stochastic response of linear and nonlinear systems with singular matrices.
These singularities are potentially caused by adopting an unconventional formulation of
the systems equations of motion that is based on a redundant coordinates modeling. Re-
lying on the concept of M-P generalized matrix inverse, the barriers set by the presence
of singular matrices in the systems governing equations of motion are circumvented.

5.2 Future research

A potential future extension of the present research work lies in the direction of stochas-
tic dynamics with fractional derivatives aiming at the still challenging problem of as-
sessing the reliability analysis of multi degree-of-freedom systems endowed with frac-
tional derivative terms (FMDOF). Apart from the fact that Fractional Calculus has
proved itself in recent years as an essential and potent mathematical modeling tool (e.g.
applications in viscoelasticity, control theory, biophysics), the merit of potential exten-
sion stems from the lack of methods/techniques for manipulating FMDOF systems. A
recently proposed state variable formulation for the stochastic response derivation of
linear SDOF systems with fractional derivative elements [31], can be potentially ex-
tended to SDOF systems with singular matrices. An extension to FMDOF systems with
singular matrices may also be considered as future work.

Further future work may be connected to introducing uncertainties in the
herein proposed framework. The study of MDOF systems with stochastic coefficient,
singular matrices, appears interesting, and to the best of the author’s knowledge has
not yet been addressed in the literature. The herein developed state variable framework
for solving equations with singular matrices can be utilized in engineering applications
where coupled systems of governing equations yield singular matrices.
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