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Abstract. The Moran process, as studied by Lieberman, Hauert and
Nowak [10], is a stochastic process modeling the spread of genetic mu-
tations in populations. In this process, agents of a two-type population
(i.e. mutants and residents) are associated with the vertices of a graph.
Initially, only one vertex chosen uniformly at random (u.a.r.) is a mutant,
with fitness r > 0, while all other individuals are residents, with fitness 1.
In every step, an individual is chosen with probability proportional to its
fitness, and its state (mutant or resident) is passed on to a neighbor which
is chosen u.a.r. In this paper, we introduce and study for the first time a
generalization of the model of [10] by assuming that different types of in-
dividuals perceive the population through different graphs defined on the
same vertex set, namely GR = (V,ER) for residents and GM = (V,EM )
for mutants. In this model, we study the fixation probability, namely the
probability that eventually only mutants remain in the population, for
various pairs of graphs.
In particular, in the first part of the paper, we examine how known results
from the original single-graph model of [10] can be transferred to our
2-graph model. In that direction, by using a Markov chain abstraction,
we provide a generalization of the Isothermal Theorem of [10], that gives
sufficient conditions for a pair of graphs to have fixation probability equal
to the fixation probability of a pair of cliques; this corresponds to the
absorption probability of a birth-death process with forward bias r.
In the second part of the paper, we give a 2-player strategic game view of
the process where player payoffs correspond to fixation and/or extinction
probabilities. In this setting, we attempt to identify best responses for
each player. We give evidence that the clique is the most beneficial graph
for both players, by proving bounds on the fixation probability when one
of the two graphs is complete and the other graph belongs to various
natural graph classes.
In the final part of the paper, we examine the possibility of efficient
approximation of the fixation probability. Interestingly, we show that
there is a pair of graphs for which the fixation probability is exponentially
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small. This implies that the fixation probability in the general case of an
arbitrary pair of graphs cannot be approximated via a method similar
to [2]. Nevertheless, we prove that, in the special case when the mutant
graph is complete, an efficient approximation of the fixation probability
is possible through an FPRAS which we describe.

Keywords: Moran process, fixation probability, evolutionary dynamics

1 Introduction

The Moran process [13] models antagonism between two species whose critical
difference in terms of adaptation is their relative fitness. A resident has relative
fitness 1 and a mutant relative fitness r > 0. Many settings in Evolutionary
Game Theory consider fitness as a measure of reproductive success; for examples
see [3, 7, 14]. A generalization of the Moran process by Lieberman et al [10]
considered the situation where the replication of an individual’s fitness depends
on some given structure, i.e. a directed graph. This model gave rise to an extensive
line of works in Computer Science, initiated by Mertzios et al. in [11].

In this work we further extend the model of [10] to capture the situation
where, instead of one given underlying graph, each species has its own graph that
determines their way of spreading their offsprings. As we will show, due to the
process’ restrictions only one species will remain in the population eventually.
Our setting is by definition an interaction between two players (species) that
want to maximize their probability of occupying the whole population.

This strategic interaction is described by an 1-sum bimatrix game, where each
player (resident or mutant) has all the strongly connected digraphs on n nodes
as her pure strategies. The resident’s payoff is the extinction probability and the
mutant’s payoff is the fixation probability. The general question that interests
us is: what are the pure Nash equilibria of this game (if any)? To gain a better
understanding of the behaviour of the competing graphs, we investigate the best
responses of the resident to the clique graph of the mutant.

This model and question is motivated by many interesting problems from
various, seemingly unrelated scientific areas. Some of them are: idea/rumor
spreading, where the probability of spreading depends on the kind of idea/rumor;
computer networks, where the probability that a message/malware will cover a
set of terminals depends on the message/malware; and also spread of mutations,
where the probability of a mutation occupying the whole population of cells
depends on the mutation. Using the latter application as an analogue for the
rest, we give the following example to elaborate on the natural meaning of this
process.

Imagine a population of identical somatic resident cells (e.g. biological tissue)
that carry out a specific function (e.g. an organ). The cells connect with each
other in a certain way; i.e., when a cell reproduces it replaces another from a
specified set of candidates, that is, the set of cells connected to it. Reproduction
here is the replication of the genetic code to the descendant, i.e. the hardwired
commands which determine how well the cell will adapt to its environment,
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what its chances of reproduction are and which candidate cells it will be able to
reproduce on.

The changes in the information carried by the genetic code, i.e. mutations,
give or take away survival or reproductive abilities. A bad case of mutation is
a cancer cell whose genes force it to reproduce relentlessly, whereas a good one
could be a cell with enhanced functionality. A mutation can affect the cell’s
ability to adapt to the environment, which translates to chances of reproduction,
or/and change the set of candidates in the population that should pay the price
for its reproduction.

Now back to our population of resident cells which, as we said, connect with
each other in a particular way. After lots of reproductions a mutant version of it
shows up due to replication mistakes, environmental conditions, etc. This mutant
has the ability to reproduce in a different rate, and also, to be connected with a
set of cells different than the one of its resident version. For the sake of argument,
we study the most pessimistic case, i.e. our mutant is an extremely aggressive
type of cancer with increased reproduction rate and maximum unpredictability;
it can replicate on any other cell and do that faster than a resident cell. We
consider the following motivating question: Supposing this single mutant will
appear at some point in time on a random cell equiprobably, what is the best
structure (network) of our resident cells such that the probability of the mutant
taking over the whole population is minimized?

The above process that we informally described captures the real-life process
remarkably well. As a matter of fact, a mutation that affects the aforementioned
characteristics in a real population of somatic cells occurs rarely compared to
the time it needs to conquer the population or get extinct. Therefore, a second
mutation is extremely rare to happen before the first one has reached one of
those two outcomes and this allows us to study only one type of mutant per
process. In addition, apart from the different reproduction rate, a mutation can
lead to a different “expansionary policy” of the cell, something that has been
overlooked so far.

2 Definitions

Each of the population’s individuals is represented by a label i ∈ {1, 2, ..., n} and
can have one of two possible types: R (resident) and M (mutant). We denote
the set of nodes by V , with n = |V |, and the set of resident(mutant) edges by
ER(EM ). The node connections are represented by directed edges; A node i has
a type R(M) directed edge (ij)R((ij)M ) towards node j if and only if when i is
chosen and is of type R(M) then it can reproduce on j with positive probability.
The aforementioned components define two directed graphs; the resident graph
GR = (V,ER) and the mutant graph GM = (V,EM ). A node’s type determines
its fitness; residents have relative fitness 1, while mutants have relative fitness
r > 0.

Our process works as follows: We start with the whole population as residents,
except for one node which is selected uniformly at random to be mutant. We con-
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sider discrete time, and in each time-step an individual is picked with probability
proportional to its fitness, and copies itself on an individual connected to it in
the corresponding graph (GR or GM ) with probability determined by the (weight
of the) connection. The probability of i (given that it is chosen) reproducing
on j when i is resident(mutant) is by definition equal to some weight wRij(w

M
ij ),

thus
∑n
j=1 w

R
ij =

∑n
j=1 w

M
ij = 1 for every i ∈ V . For GR, every edge (ij)R has

weight wRij > 0 if (ij)R ∈ ER, and wRij = 0 otherwise. Similarly for GM . For

each graph we then define weight matrices WR =
[
wRij
]

and WM =
[
wMij

]
which

contain all the information of the two graphs’ structure. After each time-step
three outcomes can occur: (i) a node is added to the mutant set S ⊆ V , (ii) a
node is deleted from S, or (iii) S remains the same. If both graphs are strongly
connected the process ends with probability 1 when either S = ∅ (extinction) or
S = V (fixation). An example is shown in Figure 1.
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Fig. 1. The 2 graphs combined; the edges of the resident graph are blue and the edges
of the mutant graph are red. The respective weight matrices capture all the structure’s
information, including the weights to each edge. For example, the resident behaviour
for node 1 (if chosen) is to reproduce only on node 2, while its mutant behaviour is to
reproduce equiprobably on either 2 or 3.

We denote by f(S) the probability of fixation given that we start with the
mutant set S. We define the fixation probability to be f = 1

n

∑
u∈V f ({u}) for

a fixed relative fitness r. We also define the extinction probability to be equal
to 1− f . In the case of only one graph G (i.e. GR = GM = G), which has been
the standard setting so far, the point of reference for a graph’s behaviour is the
fixation probability of the complete graph (called Moran fixation probability)
fMoran =

(
1− 1

r

)
/
(
1− 1

rn

)
. G is an amplifier of selection if f > fMoran and

r > 1 or f < fMoran and r < 1 because it favors advantageous mutants and
discourages disadvantageous ones. G is a suppressor of selection if f < fMoran

and r > 1 or f > fMoran and r < 1 because it discourages advantageous mutants
and favors disadvantageous ones.

An undirected graph is a graph G for which wij ∈ E if and only if wji ∈ E. An
unweighted graph is a graph with the property that for every i ∈ V : wij = 1

deg(i)

for every j with incoming edge from i, where deg(i) is the outdegree of node i.
In the sequel we will abuse the term undirected graph to refer to an undirected
unweighted graph.

In what follows we will use special names to refer to some specific graph
classes. The following graphs have n vertices which we omit from the notation
for simplicity.
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– CL as a shorthand for the Clique or complete graph Kn.
– UST as a shorthand for the Undirected Star graph K1,n−1.
– UCY as a shorthand for the Undirected Cycle or 2-regular graph Cn.
– CId: as a shorthand for the Circulant graph Cin(1, 2, .., d/2) for even d.

Briefly this subclass of circulant graphs is defined as follows. For even degree
d, the graph CId (see Fig. 2) has vertex set {1, 2, · · · , n}, and each vertex i
is connected to vertices {(i− 1± k) mod n+ 1 : k = 1, . . . , d/2}.
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Fig. 2. The classes of 4-regular, 6-regular and 8-regular undirected graphs CI4, CI6
and CI8. Here the number of vertices is 12, 12 and 15 respectively.

By “Resident Graph vs Mutant Graph” we refer to the process with GR =
Resident Graph and GM = Mutant Graph and by fGR,GM

we refer to the fixation
probability of that process.

We note that in this paper, we are interested in the asymptotic behavior of
the fixation probability in the case where the population size n is large. Therefore,
we employ the standard asymptotic notation with respect to n; in particular,
r is almost always treated as a variable independent of n. Furthermore, in the
rest of the paper, by GR and GM we mean graph classes {(GR)n}n≥3 and
{(GM )n}n≥3 respectively, and we will omit the n since we only care about the
fixation probability when n→∞.

3 Our Results

In this paper, we introduce and study for the first time a generalization of
the model of [10] by assuming that different types of individuals perceive the
population through different graphs defined on the same vertex set, namely
GR = (V,ER) for residents and GM = (V,EM ) for mutants. In this model, we
study the fixation probability, i.e. the probability that eventually only mutants
remain in the population, for various pairs of graphs.
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In particular, in Section 5 we initially prove a tight upper bound (Theorem 1)
on the fixation probability for the general case of an arbitrary pair of digraphs.
Next, we prove a generalization of the Isothermal Theorem of [10], that provides
sufficient conditions for a pair of graphs to have fixation probability equal to the fix-

ation probability of a clique pair, namely fMoran
def
= fCL,CL =

(
1− 1

r

)
/
(
1− 1

rn

)
;

this corresponds to the absorption probability of a simple birth-death process with
forward bias r. It is worth noting that it is easy to find small counterexamples of
pairs of graphs for which at least one of the two conditions of Theorem 2 does
not hold and yet the fixation probability is equal to fMoran; hence we do not
prove necessity.

In Section 6 we give a 2-player strategic game view of the process where player
payoffs correspond to fixation and/or extinction probabilities. In this setting, we
give an extensive study of the fixation probability when one of the two underlying
graphs is complete, providing several insightful results. In particular, we prove
that, the fixation probability fUST,CL when the mutant graph is the clique on n
vertices (i.e. GM = CL) and the resident graph is the undirected star on n vertices
(i.e. GR = UST ) is 1− O(1/n), and thus tends to 1 as the number of vertices
grows, for any constant r > 0. By using a translation result (Lemma 1), we can
show that, when the two graphs are exchanged, then fCL,UST → 0. However,

using a direct proof, in Theorem 4 we show that in fact fCL,UST ∈ O
(
rn−1

(n−2)!

)
,

i.e. it is exponentially small in n, for any constant r > 0. In Theorem 6, we also
provide a lower bound on the fixation probability in the special case where the
resident graph is any undirected graph and the mutant graph is a clique.

Furthermore, in Subsection 6.3, we find bounds on the fixation probability
when the mutant graph is the clique and the resident graph belongs to various
classes of regular graphs. In particular, we show that when the mutant graph is
the clique and the resident graph is the undirected cycle, then 1 − 1

r − o(1) ≤
fUCY,CL ≤ 1

e1/r−o(1) , for any constant r > 2. A looser lower bound holds for

smaller values of r. This in particular implies that the undirected cycle is quite
resistant to the clique. Then, we analyze the fixation probability by replacing
the undirected cycle by 3 increasingly denser circulant graphs and find that, the
denser the graph, the smaller r is required to achieve a 1− 1/r asymptotic lower
bound. We also find that the asymptotic upper bound stays the same when the
resident graphs become denser with constant degree, but it goes to 1− 1/r when
the degree is ω(1). In addition, by running simulations (which we do not analyse
here) for the case where the resident graph is the strongest known suppressor,
i.e. the one in [5], and the mutant graph is the clique, we get fixation probability
significantly greater than fMoran for up to 336 nodes and values of fitness r > 2.
All of our results seem to indicate that the clique is the most beneficial graph (in
terms of player payoff in the game theoretic formulation). However, we leave this
fact as an open problem for future research.

Finally, in Section 7 we consider the problem of efficiently approximating the
fixation probability in our model. We point out that Theorem 4 implies that the
fixation probability cannot be approximated via a method similar to [2]. However,
when we restrict the mutant graph to be complete, we prove a polynomial (in
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n) upper bound for the absorption time of the generalized Moran process when
r > 2c (1 + o(1)), where c is the maximum ratio of degrees of adjacent nodes in
the resident graph. The latter allows us to give a fully polynomial randomized
approximation scheme (FPRAS) for the problem of computing the fixation
probability in this case.

4 Previous Work

So far the bibliography consists of works that consider the same structure for both
residents and mutants. This 1-graph setting was initiated by P.A.P. Moran [13]
where the case of the complete graph was examined. Many years later, the setting
was extended to structured populations on general directed graphs by Lieberman
et al. [10]. They introduced the notions of amplifiers and suppressors of selection,
a categorization of graphs based on the comparison of their fixation probabilities
with that of the complete graph. They also found a sufficient condition (in fact [4]
corrects the claim in [10] that the condition is also necessary) for a digraph to
have the fixation probability of the complete graph, but a necessary condition is
yet to be found.

Since the generalized 1-graph model in [10] was proposed, a great number
of works have tried to answer some very intriguing questions in this framework.
One of them is the following: which are the best unweighted amplifiers and
suppressors that exist? Dı́az et al. [2] give the following bounds on the fixation
probability of strongly connected digraphs: an upper bound of 1− 1

r+n for r > 0,

a lower bound of 1
n for r > 1 and they show that there is no positive polynomial

lower bound when 0 < r < 1. An interesting problem that was set in [10] is
whether there are graph families that are strong amplifiers or strong suppressors
of selection, i.e. families of graphs with fixation probability tending to 1 or to 0
respectively as the order of the graph tends to infinity and for r > 1. Galanis et
al. [4] find an infinite family of strongly-amplifying directed graphs, namely the
“megastar” with fixation probability 1−O(n−1/2 log23 n), which was later proved
to be optimal up to logarithmic factors [6].

While the search for optimal directed strong amplifiers was still on, a restricted
version of the problem had been drawing a lot of attention: which are the tight
bounds on the fixation probability of undirected graphs? The lower bound in the
undirected case remained 1

n , but the upper bound was significantly improved

by Mertzios et al. [12] to 1 − Ω(n−3/4), when r is independent of n. It was
again improved by Giakkoupis [5] to 1 − Ω

(
1
εn
−1/3 log n

)
for r ≥ 1 + ε where

0 < ε ≤ 1, and finally by Goldberg et al. [6] to 1 − Ω(n−1/3) where they also
find a graph which shows that this is tight. While the general belief was that
there are no undirected strong suppressors, Giakkoupis [5] showed that there is a
class of graphs with fixation probability O(r2n−1/4 log n), opening the way for a
potentially optimal strong suppressor to be discovered.

Extensions of [10] where the interaction between individuals includes a bima-
trix game have also been studied. Ohtsuki et al. in [15] considered the generalized
Moran process with two distinct graphs, where one of them determines possible
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pairs that will play a bimatrix game and yield a total payoff for each individual,
and the other determines which individual will be replaced by the process in
each step. Two similar settings, where a bimatrix game determines the indi-
viduals’ fitness, were studied by Ibsen-Jensen et al. in [8]. In that work they
prove NP-completeness and #P-completeness on the computation of the fixation
probabilities for each setting.

5 Markov Chain Abstraction and the Generalized
Isothermal Theorem

This generalized process with two graphs we propose can be modelled as an
absorbing Markov chain [14]. The states of the chain are the possible mutant
sets S ⊆ V (2n different mutant sets) and there are two absorbing states, namely
〈∅〉 and 〈V 〉. In this setting, the fixation probability is the average absorption
probability to 〈V 〉, starting from a state with one mutant. Since our Markov
chain contains only two absorbing states, the sum of the fixation and extinction
probabilities is equal to 1.

Transition probabilities. In the sequel we will denote by X + y the set
X ∪ {y} and by X − y the set X \ {y}. We can easily deduce the boundary
conditions from the definition: f(∅) = 0 and f(V ) = 1. For any other arbitrary
state 〈S〉 of the process we have:

f(S) =
∑

i∈S,j /∈S

r

F (S)
wMij · f(S + j) +

∑
j /∈S,i∈S

1

F (S)
wRji·f(S − i)+

+

 ∑
i∈S,j∈S

r

F (S)
wMij +

∑
i/∈S,j /∈S

1

F (S)
wRij

 ·f(S), (1)

where F (S) = |S|r + |V | − |S| is the total fitness of the population in state 〈S〉.
By eliminating self-loops, we get

f(S) =

∑
i∈S,j /∈S r · wMij · f(S + j) +

∑
j /∈S,i∈S w

R
ji · f(S − i)∑

i∈S,j /∈S r · wMij +
∑
j /∈S,i∈S w

R
ji

. (2)

We should note here that, in the general case, the fixation probability can be
computed by solving a system of 2n linear equations using this latter relation.
However, bounds are usually easier to be found and special cases of resident and
mutant graphs may have efficient exact solutions.

Using the above Markov chain abstraction and stochastic domination argu-
ments we can prove the following general upper bound on the fixation probability:

Theorem 1. For any pair of digraphs GR and GM with n = |V |, the fixation
probability fGR,GM

is upper bounded by 1− 1
r+n , for r > 0. This bound is tight

for r independent of n.
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Proof. We refer to the proof of Lemma 4 of [2], as our proof is essentially the same.
Briefly, we find an upper bound on the fixation probability of a relaxed Moran
process that favors the mutants, where we assume that fixation is achieved when
two mutants appear in the population. In their work the resident and mutant
graphs are the same and undirected, but this does not change the probabilities
of the first mutant placed u.a.r. to be extinct or replicated in our model. Finally,
we note that this result is tight, by Theorem 3. ut

We now prove a generalization of the Isothermal Theorem of [10].

Theorem 2 (Generalized Isothermal Theorem). Let GR(V,ER),
GM (V,EM ) be two directed graphs with vertex set V and edge sets ER
and EM respectively. The generalized Moran process with 2 graphs as described
above has the Moran fixation probability if:

1.
∑
j 6=i w

R
ji =

∑
j 6=i w

M
ji = 1, ∀i ∈ V , that is, WR and WM are doubly

stochastic, i.e. GR and GM are isothermal (actually one of them being
isothermal is redundant as it follows from the second condition), and

2. for every pair of nodes i, j ∈ V : wRij + wRji = wMij + wMji .

Proof. It suffices to show that in every state S of the Markov chain of the
process with 0 < |S| < |V | mutants, the probability to go to a state with |S|+ 1
mutants is r times the probability to go to a state with |S| − 1 mutants (ch.6

in [14]). In our setting, by (1) these probabilities are
(
r ·
∑
i∈S
∑
j /∈S w

M
ij

)
/F

and
(∑

i/∈S
∑
j∈S w

R
ij

)
/F respectively. So, to establish the theorem, it suffices

to show that its hypotheses hold if and only if relation (3) holds.

∑
i/∈S

∑
j∈S

wRij =
∑
i/∈S

∑
j∈S

wMji , ∀∅ ⊂ S ⊂ V. (3)

Consider all the states where only one node i is resident, i.e. S = V \ {i}.
Then from relation (3) we get the following set of equations that must hold:

∑
j 6=i

wMji =
∑
j 6=i

wRij = 1, ∀i ∈ V. (4)
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Similarly, for all the states where S = {i} we get from relation (3):∑
j 6=i

wRji =
∑
j 6=i

wMij = 1, ∀i ∈ V. (5)

Now, (for general S) the two parts of (3) are:∑
i/∈S

∑
j∈S

wRij = |V | − |S| −
∑
i/∈S

∑
j /∈S

wRij (6)

and
∑
i/∈S

∑
j∈S

wMji = |V | − |S| −
∑
i/∈S

∑
j /∈S

wMji , (using (4)). (7)

Thus, by relation (3) it must be:
∑
i/∈S

∑
j /∈S

wRij =
∑
i/∈S

∑
j /∈S

wMji , ∀∅ ⊂ S ⊂ V.

(8)

Now, consider all the states where only two nodes i and j are resident, i.e.
S = V \ {i, j}. Then from relation (8) we get the following set of relations that
must hold:

wRij + wRji = wMij + wMji , ∀i, j ∈ V. (9)

To prove the other direction of the equivalence we show that the sets of relations
(4),(9) suffice to make (3) true. If (9) is true, then (8) is obviously true. And, by
using (4), the left-hand side of (6) and (7) are equal, thus (3) is true. ut

Observe that when GR = GM we have the isothermal theorem of the special
case of the generalized Moran process that has been studied so far.

6 A Strategic Game View

In this section we study the aforementioned process from a game-theoretic point
of view. Consider the strategic game with 2 players; residents (type R) and
mutants (type M), so the player set is N = {R,M}. The action set of a player
k ∈ N consists of all possible strongly connected graphs4 Gk(V,Ek) that she can
construct with the available vertex set V . The payoff for the residents (player R)
is the probability of extinction, and the payoff for the mutants (player M) is the
probability of fixation. Of course, the sum of payoffs equals 1, so the game can
be reduced to a zero-sum game.

The natural question that emerges is: what are the pure Nash equilibria of
this game (if any)? For example, for fixed r > 1, if we only consider two actions
for every player, namely the graphs CL and UST , then from our results from
Subsection 6.1, when n→∞, we get fCL,UST → 0, fUST,CL → 1 and from [1,14],
fCL,CL → 1 − 1/r and fUST,UST → 1 − 1/r2. Therefore, we get the following
bimatrix game:

4 We assume strong connectivity in order to avoid problematic cases where there is
neither fixation nor extinction.
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Player M

CL UST

Player R
CL 1/r , 1− 1/r 1 , 0

UST 0 , 1 1/r2 , 1− 1/r2

which has a pure Nash equilibrium, namely (CL,CL). Trying to understand
better the behaviour of the two conflicting graphs, we put some pairs of them
to the test. The main question we ask in this work is: what is the best response
graph GR of the residents to the Clique graph of the mutants? In the sequel,
we will use the abbreviations pl-R and pl-M for the resident and the mutant
population, respectively.

In the proofs of this paper we shall use the following fact from [14]:

Fact 1 In a birth-death process with state space {0, 1, . . . , n}, absorbing states
0, n and backward bias at state k equal to γk, the probability of absorption at n,
given that we start at i is

fi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑n−1
j=1

∏j
k=1 γk

.

6.1 Star vs Clique

The following result implies (since (n− 4)!−1/(n−2) → 0 as n→∞) that when
the mutant graph is complete and the resident graph is the undirected star, the
fixation probability tends to 1 as n goes to infinity.

Theorem 3. If pl-R has the UST graph and pl-M has the CL graph for r >
(n− 4)!−1/(n−2), then the payoff of pl-M (fixation probability) is lower bounded

by
1− 1

n

1+ 1
r(n−2)

+ 1
r2(n−3)

> 1− 1
n −

1
r(n−2) −

1
r2(n−3) .

Proof. We will find a lower bound to the fixation probability of our process P ,
by finding the fixation probability of a process P ′ that is dominated by (has at
most the fixation probability of) P . Here is P ′: Have the undirected star graph
GR(V,ER) for the residents and the clique graph GM (V,EM ) for the mutants.
We start with a single mutant on a node uniformly at random from the vertex set.
If that node is the central one of GR, then at the next time step it is attacked by
a resident with probability 1 and the process ends with the residents occupying
the vertex set. If the initial mutant node is a leaf, then the process continues
with the following restriction: whenever a mutant node is selected to reproduce
on the central node of GR, instead it reproduces on itself, unless all leaves of GR
are mutants. P ′ can be modelled as the following Markov chain:
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0,0 0,1 0,2 0,n− 2 0,n− 1

p0,20,1

p0,10,2

1,0

p0,10,1

1,n− 1

Fig. 3. The Markov chain for process P ′.

In Figure 3 we denote by 〈c, l〉 the state of process P ′ that has c mutants at
the center of GR (star graph) and l mutants at the leaves of GR. We also denote
by f1,0 the fixation probability given that the initial mutant node of process P ′

is the center of GR, and by f0,1 the fixation probability given that the initial
mutant node is a leaf of GR. Now, the exact fixation probability f ′ of process P ′

is:

f ′ =
1

n
f1,0 +

(
1− 1

n

)
f0,1 =

(
1− 1

n

)
f0,1 , since f1,0 = 0.

Now, for a state 〈0, i〉 where 1 ≤ i ≤ n− 1, the probability of going to state
〈0, i− 1〉 in the next step is:

p0,i−10,i =
1

ir + n− i
· i

n− 1
.

For a state 〈0, i〉 where 1 ≤ i ≤ n−2 the probability of going to state 〈0, i+1〉
in the next step is:

p0,i+1
0,i =

ir

ir + n− i
· n− i− 1

n− 1

and p0,i+1
0,i =

(n− 1)r

(n− 1)r + 1
· 1

n− 1
when i = n− 1

and the probability of remaining to state 〈0, i〉 is: p0,i0,i = 1− p0,i−10,i − p0,i+1
0,i . In

our case, where we want the fixation probability given that we start from state
〈0, 1〉, by using Fact 1, we get the following:

f0,1 =
1

1 +
∑n−1
j=1

∏j
k=1 γk

(10)

From the transition probabilities of our Markov chain, we can see that:
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γk =
1

r
· 1

n− k − 1
, for 1 ≤ k ≤ n− 2

and γk =
1

r
, for k = n− 1.

So, from (10) we get:

f0,1 =
1

1 + 1
r(n−2) + 1

r2(n−2)(n−3) + 1
r3(n−2)(n−3)(n−4) + · · ·+ 1

rn−2(n−2)(n−3)···1 + 1
rn−1(n−2)(n−3)···1

≥ 1

1 + 1
r(n−2) + 1

r2(n−2)(n−3) · (n− 2)
, for r > (n− 4)!−1/(n−2)

=
1

1 + 1
r(n−2) + 1

r2(n−3)

and for the required fixation probability we get:

f ′ =
1− 1

n

1 + 1
r(n−2) + 1

r2(n−3)

→ 1 as n→∞.

This completes the proof of Theorem 3. ut

It is worth noting that, since the game we defined in Subsection 6 is 1-sum,
we immediately can get upper (resp. lower) bounds on the payoff of pl-R, given
lower (resp. upper) bounds on the payoff of pl-M.

Now we give the following lemma that connects the fixation probability of a
process with given relative fitness, resident and mutant graphs, with the fixation
probability of a “mirror” process where the roles between residents and mutants
are exchanged.

Lemma 1. fGR,GM
(r) ≤ 1− fGM ,GR

( 1
r ) .

Proof. We denote by fSGR,GM
(r) the probability of fixation when our population

has a set of mutants S with relative fitness r > 0, resident graph GR and mutant
graph GM . We first prove the following:

Claim. fSGR,GM
(r) = 1− fV \SGM ,GR

( 1
r ) .

Proof. The probability of fixation for a mutant set S and mutant graph GM is
the same as the probability of extinction of the resident set V \ S, i.e. one minus
the probability of the set V \ S conquering the graph. Thus, if we exchange the
labels of residents and mutants, the relative fitness of the new residents is 1 and
the relative fitness of the new mutants is 1/r, the new resident graph is GM , the
new mutant graph is GR and the new mutant set is V \ S. ut
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We can now prove Lemma 1 as follows: By the above Claim we have

f
{u}
GR,GM

(r) = 1− fV \{u}GM ,GR
( 1r ) for every u ∈ V . Since f

{v}
GM ,GR

( 1r ) ≤ fV \{u}GM ,GR
( 1r ) for

every v 6= u, we get that f
{u}
GR,GM

(r) ≤ 1− f{v}GM ,GR
( 1
r ). Averaging over all nodes

in V we get the required inequality. ut

This result provides easily an upper bound on the fixation probability of a
given process when a lower bound on the fixation probability is known for its
“mirror” process. For example, using Theorem 3 and Lemma 1 we get an upper
bound 1

n + 1
r(n−2) + 1

r2(n−3) for r > 0 on the fixation probability of CL vs UST ;

this immediately implies that the probability of fixation in this case tends to 0.
However, as we subsequently explain, a more precise lower bound is necessary to
reveal the approximation restrictions of the particular process.

Theorem 4. If pl-R has the CL graph and pl-M has the UST graph for r > 0,

then the payoff of pl-M (fixation probability) is upper bounded by rn−1

(n−2)! .

Proof. In order to show this, we give a pair of graphs that yields fixation probabil-

ity upper bounded by an o
(
rn−1

(n−2)!

)
function. Have the Clique graph GR(V,ER)

for the residents and the Undirected Star graph GM (V,EM ) for the mutants; we
will call this process P . We will find an upper bound of its fixation probability
by considering the following process P ′ that favors the mutants. Here is P ′: Have
the aforementioned graphs. We start with a single mutant on the central node of
GM . If a mutant is selected to reproduce on a mutant, it reproduces according
to the exact same rules of P . If a resident is selected to reproduce on a resident,
it also reproduces according to the exact same rules of P . If a resident is selected
to reproduce on a mutant, it reproduces according to the exact same rules of
P , unless that mutant is the central one; then the resident reproduces on itself,
unless all leaves of GM are residents.

The corresponding Markov chain has n+1 = |V |+1 states. A state 〈i〉, where
i ∈ {0, 1, 2, ..., n} is the number of mutants and the only absorbing states are 〈0〉
and 〈n〉. For state 〈1〉 the probability of going to state 〈0〉 in the next step is:

p01 =
n− 1

r + n− 1
· 1

n− 1
=

1

r + n− 1
.

For a state 〈i〉, where i ∈ {2, 3, ..., n − 1}, the probability of going to state
〈i− 1〉 in the next step is:

pi−1i =
n− i

ir + n− i
· i− 1

n− 1
.

For a state 〈i〉, where i ∈ {1, 2, ..., n − 1}, the probability of going to state
〈i+ 1〉 in the next step is:

pi+1
i =

r

ir + n− i
· n− i
n− 1

,
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and the probability of staying to state 〈i〉 in the next step is: pii = 1−pi−1i −p
i+1
i .

In our case, where we want the fixation probability given that we start from state
〈1〉, by using Fact 1 we get the following:

f1 =
1

1 +
∑n−1
j=1

∏j
k=1 γk

(11)

From the transition probabilities of our Markov chain, we can see that:

γ1 =
1

r

and γk =
1

r
· (k − 1) , for 2 ≤ k ≤ n− 1.

So, from (11) we get:

f1 =
1

1 + 1
r1 + 1

r2 1 + 1
r3 2 + 1

r4 3! + · · ·+ 1
rn−1 (n− 2)!

≤ rn−1

(n− 2)!

∈ o
(

1

an

)
, where a > 1 is constant.

This completes the proof of Theorem 4. ut

This bound shows that, not only there exists a graph that suppresses selection
against the UST (which is an amplifier in the 1-graph setting), but it also does
that with great success. In fact for any mutant with constant r arbitrarily large,
its fixation probability is less than exponentially small.

In view of the above, the following result implies that the fixation probability
in our model cannot be approximated via a method similar to [2].

Theorem 5 (Bounds on the 2-graphs Moran process). There is a pair
of graphs GR, GM such that the fixation probability fGR,GM

is o
(

1
an

)
, for some

constant a > 1, when the relative fitness r is constant. Furthermore, there is
a pair of graphs G′R, G

′
M such that the fixation probability fG′R,G′M is at least

1−O
(
1
n

)
, for constant r > 0.

Proof. See Theorem 3 and proof of Theorem 4. ut

6.2 Arbitrary Undirected Graphs vs Clique

The following result is a lower bound on the fixation probability.
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Theorem 6. When pl-R has an undirected graph for which wRxy/w
R
yx ≤ c for

every (xy) ∈ ER and pl-M has the CL graph, the payoff of pl-M (fixation proba-

bility) is lower bounded by

[
1−( c

r )
log n

1− c
r

(1 + o(1)) +
( 2c

r )
log n−( 2c

r )
n

1− 2c
r

]−1
, for r > 0.

In particular, for r > 2c the lower bound tends to 1− c
r as n→∞.

Proof. Notice that, given the number of mutants at a time-step is i := |S|,
the probability that a resident becomes mutant is pi+1

i = ir
ir+n−i ·

n−i
n−1 , and

the probability that a mutant becomes resident pi−1i is upper bounded by
min{i,n−i}
ir+n−i max

(xy)∈ER

wR
xy

wR
yx

. That is because the maximum possible number of resident-

to-mutant edges in GR at a step with i mutants is achieved when either every
mutant has edges in GR only towards residents, or every resident has edges in
GR only towards mutants; and the most extreme case is when every one of the
min{i, n− i} nodes has sum of weights of incoming edges equal to the maximum

ratio of degrees of adjacent nodes in GR, i.e. c := max
(xy)∈ER

wR
xy

wR
yx

.

This means that the number of mutants in our given process P of an undirected
graph vs Clique stochastically dominates a birth-death process P ′ that is described
by the following Markov chain: A state 〈i〉, where i ∈ {0, 1, 2, ..., n} is the number
of mutants on the vertex set and the only absorbing states are 〈0〉 and 〈n〉. Using

Fact 1, we get: f1 = 1/
(

1 +
∑n−1
j=1

∏j
k=1 γk

)
, where γi = pi−1i /pi+1

i . From the

aforementioned transition probabilities of our Markov chain we have:

γk ≤

{
c
r ·

n−1
n−k , for k ∈ {1, 2, ..,

⌊
n
2

⌋
}

c
r ·

n−1
k , for k ∈ {

⌊
n
2

⌋
+ 1, .., n− 1}

Now we can calculate a lower bound on the fixation probability of P ′ using the
fact that n−1

n−2 = 1 + 1
n−2 ,

n−1
n−3 = 1 + 2

n−3 , · · · ,
n−1

n−logn+1 = 1 + logn−2
n−logn+1 :

f1 =
1[∑logn−1

j=0

(
c
r

)j]
(1 + o(1)) +

(
c
r

)logn (n−1)log n

(n−1)···(n−logn) + · · ·+
(
c
r

)n−1 (n−1)n−1

[(n−1)·····(n
2 +1)]

2·(n
2 )

≥ 1

1−( c
r )

log n

1− c
r

(1 + o(1)) +
(
2c
r

)logn∑n−logn−1
j=0

(
2c
r

)j , (γk is upper bounded by
2c

r
)

=
1

1−( c
r )

log n

1− c
r

(1 + o(1)) +
(
2c
r

)logn 1−( 2c
r )

n−log n

1− 2c
r

.

ut
From the theorem above it follows that if GR is undirected regular then the

fixation probability of GR vs CL is lower bounded by 1 − 1/r for r > 2 and
n→∞, which equals fMoran (defined in Section 2).

Also, by Lemma 1 and the above theorem, when GR = CL, GM is an
undirected graph with wMxy/w

M
yx ≤ c for every (xy) ∈ EM , and relative fitness

r < 1
2c , then the upper bound of the fixation probability tends to c

r as n→∞.
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6.3 Circulant Graphs vs Clique

In this subsection we give bounds for the fixation probability of CId vs CL.
We first prove the following result that gives an upper bound on the fixation
probability when GR is the CId graph as described in Section 2 and GM is the
complete graph on n vertices.

Theorem 7. When mutants have the CL graph, if residents have a CId graph
and d ∈ Θ(1), then the payoff of pl-M (fixation probability) is upper bounded by[
e

1
r − 1

rn
1
n!

1
1− 1

r

]−1
for r > 1 and

[
e

1
r − 1

rn
1
n! − o(1)

]−1
for r ≤ 1. In particular,

for constant r > 0 the upper bound tends to e−
1
r . If d ∈ ω(1), then the upper

bound is
(
1− 1

r

) [
1− 1

rg(n) − o(1)
]−1

, for r > 0, where g(n) is a function of n
such that g(n) ∈ ω(1) and g(n) ∈ o(d). The bound improves as g(n) is picked
closer to Θ(d) and, in particular, for r > 1 it tends to 1− 1

r .

Proof. We will bound from above the payoff of the mutant (i.e. the fixation
probability) of our process P , by finding the fixation probability of a process
P ′ that dominates (has at least the fixation probability of) P . The dominating
process P ′ is the least favorable for the residents. Here is P ′: Have the CId graph
for the residents, as defined in Section 2 in the more general case where the
number of its vertices does not concern us, and the clique graph for the mutants.
We start with a single mutant on a node (w.l.o.g. we give it label j = 1) uniformly
at random from the vertex set. Throughout the process, if a resident is selected
to reproduce on a resident, it reproduces according to the exact same rules of
P . If a mutant is selected to reproduce on a mutant, it reproduces according to
the exact same rules of P . However, if a mutant is selected to reproduce on a
resident, it obeys to the following restriction: it can only reproduce on a resident
that is connected to the maximum number of mutants possible (equiprobably,
but it does not really matter due to the symmetry of the produced population).
If a resident is selected to reproduce on a mutant when the number of mutants is
i ∈ {1, 2, ..., n− 1}, then the last among the i mutants that was inserted becomes
resident, thus preserving the minimality of the probability of the residents to hit
the mutants (see Figure 4).

It is easy to see that process P ′ allocates the mutants in a chain-like formation
that allows residents to “hit” the mutants with the smallest possible number of
resident edges. In other words, if we consider the mutant set S and the resident
set V \ S, in every step of the process the number of resident edges on the cut
(S, V \ S) of GR is minimum. This process is the worst the residents could deal
with.

Due to the symmetry that our process P ′ brings on the population instances,
the corresponding Markov chain has n + 1 = |V | + 1 states, as every state
with the same number of mutants can be reduced to a single one. A state 〈i〉,
where i ∈ {0, 1, 2, ..., n} is the number of mutants and the only absorbing states
are 〈0〉 and 〈n〉. After careful calculations we get that, for a state 〈i〉, where
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Fig. 4. Three instances of process P ′. Only the resident graph GR = CId is shown.
White nodes are residents and black nodes are mutants. Here d = 6 and n = 12.

i ∈ {1, 2, ..., n− 1}, the probability of going to state 〈i− 1〉 in the next step is:

pi−1i =


1

ir+n−i · i
(
1− i−1

d

)
, for i ∈ {1, 2, .., d2 + 1}

1
ir+n−i ·

1
2 ·
(
d
2 + 1

)
, for i ∈ {d2 + 2, .., n− d

2}
1

ir+n−i ·
[
1
2 ·
(
d
2 + 1

)
− 1

d ·
(
i− n+ d

2

) (
i− n+ d

2 + 1
)]
, for i ∈ {n− d

2 + 1, .., n− 1}

the probability of going to state 〈i+ 1〉 in the next step is:

pi+1
i =

ir

ir + n− i
· n− i
n− 1

.

and the probability of staying to state 〈i〉 in the next step is: pii = 1−pi−1i −pi+1
i .

In our case, where we want the fixation probability given that we start from state
〈1〉, by using Fact 1 we get the following:

f1 =
1

1 +
∑n−1
j=1

∏j
k=1 γk

(12)

If ddd is constant: from the transition probabilities of our Markov chain, we can
see that:

γk ≥
1

r
· n− 1

k(n− k)
, for 1 ≤ k ≤ n− 1.

So, from (12) we get:
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f1 =
1

1 + 1
r
n−1
n−1 + 1

r2
(n−1)2

2(n−1)(n−2) + 1
r3

(n−1)3
3!(n−1)(n−2)(n−3) + · · ·+ 1

r(n−1)

(n−1)(n−1)

[(n−1)!]2

≤ 1

1 + 1
r + 1

r2
1
2 + 1

r3
1
3! + · · ·+ 1

r(n−1)
1

(n−1)!

=
1

e
1
r −

[
1
rn

1
n! + 1

r(n+1)
1

(n+1)! + · · ·
]

=
1

e
1
r − 1

rn
1
n!

[
1 + 1

r
1

n+1 + 1
r2

1
(n+1)(n+2) + · · ·

]
≤ 1

e
1
r − 1

rn
1
n!

[
1 + 1

r + 1
r2 + · · ·

] , for r > 1, or ≤ 1

e
1
r − 1

rn
1
n! − o(1)

, for constant r ≤ 1

=
1

e
1
r − 1

rn
1
n!

1
1− 1

r

, for r > 1, or =
1

e
1
r − 1

rn
1
n! − o(1)

, for constant r ≤ 1

→ 1

e
1
r

as n→∞.

If d ∈ ω(1) and d ∈ O(n)d ∈ ω(1) and d ∈ O(n)d ∈ ω(1) and d ∈ O(n): take a function g(n) ∈ ω(1) and g(n) ∈ o(d). Then,
from the transition probabilities of our Markov chain and (12) we get:

f1 ≤
1

1 +
∑d/2+1
j=1

∏j
k=1 γk

≤ 1

1 +
∑g(n)
j=1

∏j
k=1 γk

≤ 1

1 + 1
r + 1

r2

(
1− 1

d

)
+ 1

r3

(
1− 1

d

) (
1− 2

d

)
+ · · ·+ 1

rg(n)−1

(
1− 1

d

) (
1− 2

d

)
· · ·
(

1− g(n)−2
d

)
≤ 1[

1 + 1
r + 1

r2 + 1
r3 + · · ·+ 1

rg(n)−1

]
− o(1)

=
1

1− 1

rg(n)

1− 1
r

− o(1)

→ 1− 1

r
when r > 1 as n→∞.

This completes the proof of Theorem 7. ut

We also show that our upper bound becomes tighter as d increases. In
particular, we prove the following lower bounds:

Theorem 8. When mutants have the CL graph, if residents have the
UCY (degree d=2) or a graph of the class CId for degree d=4,6 or
8, then the payoff of pl-M (fixation probability) is lower bounded by[

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
( c

r )
log n−( c

r )
n

1− c
r

]−1
, where c = d+2

d for r > 0. In partic-

ular, for r > c the lower bound tends to 1− 1
r as n→∞.
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Proof. We prove one by one each of the cases: UCY vs CL, CI4 vs CL, CI6 vs
CL and CI8 vs CL.
UCY vs Clique. We will bound from below the payoff of the mutant (i.e.
the fixation probability) of our process P , by finding the fixation probability
of a process P ′′ that is dominated by (has at most the fixation probability of)
P . The dominated process P ′′ is the most favorable for the residents. Here is
P ′′: Have the undirected 2-regular graph GR(V,ER) for the residents and the
clique graph GM (V,EM ) for the mutants. Note the way we have numbered the
nodes in Figure 5. We start with a single mutant on a node (w.l.o.g. we give it
label j = 1) uniformly at random from the vertex set. Throughout the process,
if a resident is selected to reproduce on a resident, it reproduces according to
the exact same rules of P . If a mutant is selected to reproduce on a mutant,
it reproduces according to the exact same rules of P . However, if a mutant is
selected to reproduce on a resident, it obeys the following restrictions:

– When the number of mutants is i ∈ {1, 2, ...,
⌊
n
2

⌋
}, when a resident is chosen

to die, the resident with the smallest odd label j becomes mutant.
– When the number of mutants is i ∈ {

⌊
n
2

⌋
+ 1, ..., n − 1}, then the resident

that is chosen to die, dies.

If a resident is selected to reproduce on a mutant when the number of mutants is
i ∈ {1, 2, ..., n− 1}, then the last among the i mutants that was inserted becomes
resident, thus preserving the maximality of the probability of the residents to hit
the mutants (see Figure 5).

It is easy to see that the first
⌊
n
2

⌋
mutants in process P ′′ are allocated in

such a way, so that a mutant is always connected to two residents. Thus, the
edges going from residents to mutants are maximized. This is the least favorable
allocation for the mutants.

A state 〈i〉, where i ∈ {0, 1, 2, ..., n} is the number of mutants on the vertex
set and the only absorbing states are 〈0〉 and 〈n〉. For a state 〈i〉, where i ∈
{1, 2, ...,

⌊
n
2

⌋
}, the probability of going to state 〈i− 1〉 in the next step is:
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Fig. 5. Three instances of process P ′′. Only the resident graph GR = UCY is shown.
White nodes are residents and black nodes are mutants.
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pi−1i =
i

ir + n− i
,

the probability of going to state 〈i+ 1〉 in the next step is:

pi+1
i =

ir

ir + n− i
· n− i
n− 1

.

and the probability of staying to state 〈i〉 in the next step is: pii = 1− pi−1i −
pi+1
i .

For a state 〈i〉, where i ∈ {
⌊
n
2

⌋
+ 1, ..., n− 1}, the probability of going to state

〈i− 1〉 in the next step is:

pi−1i =
n− i

ir + n− i
,

the probability of going to state 〈i+ 1〉 in the next step is:

pi+1
i =

ir

ir + n− i
· n− i
n− 1

.

and the probability of staying to state 〈i〉 in the next step is: pii = 1−pi−1i −p
i+1
i .

In our case, where we want the fixation probability given that we start from state
〈1〉, by using Fact 1, we get the following:

f1 =
1

1 +
∑n−1
j=1

∏j
k=1 γk

(13)

From the transition probabilities of our Markov chain, we can see that:

γk ≤
1

r
· n− 1

n− k
, for 1 ≤ k ≤

⌈n
2

⌉
and γk =

1

r
· n− 1

k
, for

⌈n
2

⌉
+ 1 ≤ k ≤ n− 1.
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So, from (13) we get:

f1 =
1

1 + 1
r + 1

r2
(n−1)2

(n−1)(n−2) + · · ·+ 1

r
n
2
−1

(n−1)
n
2
−1

(n−1)·····(n
2 +1)

+ 1

r
n
2

(n−1)
n
2

(n−1)·····(n
2 )

+ · · ·+ 1
rn−1

(n−1)n−1

[(n−1)·····(n
2 +1)]

2·(n
2 )

and since
n− 1

n− 2
= 1 +

1

n− 2
,

n− 1

n− 3
= 1 +

2

n− 3
, · · · , n− 1

n− log n+ 1
= 1 +

log n− 2

n− log n+ 1
,

=
1[

1 + 1
r + 1

r2 + · · ·+ 1
rlog n−1

]
(1 + o(1)) + 1

rlog n

(n−1)log n

(n−1)···(n−logn) + · · ·+ 1
rn−1

(n−1)n−1

[(n−1)·····(n
2 +1)]

2·(n
2 )

≥ 1

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
(
2
r

)logn [
1 + 2

r +
(
2
r

)2
+ · · ·+

(
2
r

)n−logn−1] , since γk is upper bounded by
2

r

=
1

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
(
2
r

)logn 1−( 2
r )

n−log n

1− 2
r

→ 1− 1

r
when r > 2 as n→∞.

CI4 vs Clique. We will bound from below the payoff of the mutant (i.e. the
fixation probability) of our process P , by finding the fixation probability of a
process P ′′ that is dominated by P . The dominated process P ′′ is the most
favorable for the residents. Here is P ′′: Have the CI4 graph for the residents
and the clique graph for the mutants. Note the way we have numbered the
nodes in Figure 2. We start with a single mutant on a node (w.l.o.g. we give it
label j = 1) uniformly at random from the vertex set. Throughout the process,
if a resident is selected to reproduce on a resident, it reproduces according to
the exact same rules of P . If a mutant is selected to reproduce on a mutant,
it reproduces according to the exact same rules of P . However, if a mutant is
selected to reproduce on a resident, it obeys the following restrictions:

– When the number of mutants is i ∈
{

1, 2, ...,
⌊
n
3

⌋}
, when a resident is chosen

to die, the resident with the smallest label j = 3m + 1 for some m ∈ N
becomes mutant.

– When the number of mutants is i ∈
{⌊

n
3

⌋
+ 1, ...,

⌊
2n
3

⌋}
, when a resident is

chosen to die, the resident with the smallest label j = 3m+ 2 for some m ∈ N
becomes mutant.

– When the number of mutants is i ∈
{⌊

2n
3

⌋
+ 1, ..., n− 1

}
, then the resident

that is chosen to die, dies.

If a resident is selected to reproduce on a mutant when the number of mutants is
i ∈ {1, 2, ..., n− 1}, then the last among the i mutants that was inserted becomes
resident, thus preserving the maximality of the probability of the residents to
hit the mutants (see Figure 6). Using these rules we have put the mutants
to the worst possible allocation, i.e. the probability that they get attacked by
residents is maximum in every step of the process. In other words, for every
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Fig. 6. Three instances of process P ′′. Only the resident graph GR = CI4 is shown.
White nodes are residents and black nodes are mutants.

k ∈ {1, 2, ..., n − 1} we have maximized the quotient γk as defined in Fact 1.
Consequently, we get the following values of γk:

– γk ≤ 1
r
n−1
n−k , for k ∈

{
1, 2, ...,

⌈
n
3

⌉}
,

– γk ≤ 1
r
n
3

n−1
k(n−k) , for k ∈

{⌈
n
3

⌉
+ 1, ...,

⌈
2n
3

⌉}
,

– γk = 1
r
n−1
k , for k ∈

{⌈
2n
3

⌉
+ 1, ..., n− 1

}
.

As in the Undirected Cycle vs Clique case, using now the fact that γk is upper
bounded by 3

2r , we get:

f1 ≥
1[

1 + 1
r + 1

r2 + · · ·+ 1
rlog n−1

]
(1 + o(1)) +

(
3
2r

)logn [
1 + 3

2r +
(

3
2r

)2
+ · · ·+

(
3
2r

)n−logn−1]
=

1

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
(

3
2r

)logn 1−( 3
2r )

n−log n

1− 3
2r

→ 1− 1

r
when r >

3

2
as n→∞.

CI6 vs Clique. We will bound from below the payoff of the mutant (i.e.
the fixation probability) of our process P , by finding the fixation probability of
a process P ′′ that is dominated by P . The dominated process P ′′ is the most
favorable for the residents. Here is P ′′: Have the CI6 graph for the residents
and the clique graph for the mutants. Note the way we have numbered the
nodes in Figure 2. We start with a single mutant on a node (w.l.o.g. we give it
label j = 1) uniformly at random from the vertex set. Throughout the process,
if a resident is selected to reproduce on a resident, it reproduces according to
the exact same rules of P . If a mutant is selected to reproduce on a mutant,
it reproduces according to the exact same rules of P . However, if a mutant is
selected to reproduce on a resident, it obeys the following restrictions:

– When the number of mutants is i ∈
{

1, 2, ...,
⌊
n
4

⌋}
, when a resident is chosen

to die, the resident with the smallest label j = 4m + 1 for some m ∈ N
becomes mutant.
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Fig. 7. Three instances of process P ′′. Only the resident graph GR = CI6 is shown.
White nodes are residents and black nodes are mutants.

– When the number of mutants is i ∈
{⌊

n
4

⌋
+ 1, ...,

⌊
2n
4

⌋}
, when a resident is

chosen to die, the resident with the smallest label j = 4m+ 3 for some m ∈ N
becomes mutant.

– When the number of mutants is i ∈
{⌊

2n
4

⌋
+ 1, ...,

⌊
3n
4

⌋}
, when a resident

is chosen to die, the resident with the smallest label j = 4m + 2 for some
m ∈ N becomes mutant.

– When the number of mutants is i ∈
{⌊

3n
4

⌋
+ 1, ..., n− 1

}
, then the resident

that is chosen to die, dies.

If a resident is selected to reproduce on a mutant when the number of mutants is
i ∈ {1, 2, ..., n− 1}, then the last among the i mutants that was inserted becomes
resident, thus preserving the maximality of the probability of the residents to
hit the mutants (see Figure 7). Using these rules we have put the mutants
to the worst possible allocation, i.e. the probability that they get attacked by
residents is maximum in every step of the process. In other words, for every
k ∈ {1, 2, ..., n − 1} we have maximized the quotient γk as defined in Fact 1.
Consequently, we get the following values of γk:

– γk ≤ 1
r
n−1
n−k , for k ∈

{
1, 2, ...,

⌈
n
4

⌉}
,

– γk ≤ 1
r
n/6+k/3

k
n−1
n−k , for k ∈

{⌈
n
4

⌉
+ 1, ...,

⌈
2n
4

⌉}
,

– γk ≤ 1
r
n/2−k/3

k
n−1
n−k , for k ∈

{⌈
2n
4

⌉
+ 1, ...,

⌈
3n
4

⌉}
,

– γk = 1
r
n−1
k , for k ∈

{⌈
3n
4

⌉
+ 1, ..., n− 1

}
.
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Fig. 8. Three instances of process P ′′. Only the resident graph GR = CI8 is shown.
White nodes are residents and black nodes are mutants.

As in the Undirected Cycle vs Clique case, using now the fact that γk is upper
bounded by 4

3r , we get:

f1 ≥
1[

1 + 1
r + 1

r2 + · · ·+ 1
rlog n−1

]
(1 + o(1)) +

(
4
3r

)logn [
1 + 4

3r +
(

4
3r

)2
+ · · ·+

(
4
3r

)n−logn−1]
=

1

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
(

4
3r

)logn 1−( 4
3r )

n−log n

1− 4
3r

→ 1− 1

r
when r >

4

3
as n→∞

CI8 vs Clique. We will bound from below the payoff of the mutant (i.e. the
fixation probability) of our process P , by finding the fixation probability of a
process P ′′ that is dominated by P . The dominated process P ′′ is the most
favorable for the residents. Here is P ′′: Have the CI8) graph for the residents
and the clique graph for the mutants. Note the way we have numbered the
nodes in Fig.2. We start with a single mutant on a node (w.l.o.g. we give it
label j = 1) uniformly at random from the vertex set. Throughout the process,
if a resident is selected to reproduce on a resident, it reproduces according to
the exact same rules of P . If a mutant is selected to reproduce on a mutant,
it reproduces according to the exact same rules of P . However, if a mutant is
selected to reproduce on a resident, it obeys the following restrictions:

– When the number of mutants is i ∈
{

1, 2, ...,
⌊
n
5

⌋}
, when a resident is chosen

to die, the resident with the smallest label j = 5m + 1 for some m ∈ N
becomes mutant.

– When the number of mutants is i ∈
{⌊

n
5

⌋
+ 1, ...,

⌊
2n
5

⌋}
, when a resident is

chosen to die, the resident with the smallest label j = 5m+ 3 for some m ∈ N
becomes mutant.
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– When the number of mutants is i ∈
{⌊

2n
5

⌋
+ 1, ...,

⌊
3n
5

⌋}
, when a resident

is chosen to die, the resident with the smallest label j = 5m + 4 for some
m ∈ N becomes mutant.

– When the number of mutants is i ∈
{⌊

3n
5

⌋
+ 1, ...,

⌊
4n
5

⌋}
, when a resident

is chosen to die, the resident with the smallest label j = 5m + 2 for some
m ∈ N becomes mutant.

– When the number of mutants is i ∈
{⌊

4n
5

⌋
+ 1, ..., n− 1

}
, then the resident

that is chosen to die, dies.

If a resident is selected to reproduce on a mutant when the number of mutants is
i ∈ {1, 2, ..., n− 1}, then the last among the i mutants that was inserted becomes
resident, thus preserving the maximality of the probability of the residents to hit
the mutants (see Figure 8).

Using these rules we have put the mutants to the worst possible allocation,
i.e. the probability that they get attacked by residents is maximum in every step
of the process. In other words, for every k ∈ {1, 2, ..., n− 1} we have maximized
the quotient γk as defined in Fact 1. Consequently, we get the following values of
γk:

– γk ≤ 1
r
n−1
n−k , for k

{
1, 2, ...,

⌈
n
5

⌉}
,

– γk ≤ 1
r
n/10+k/2

k
n−1
n−k , for k ∈

{⌈
n
5

⌉
+ 1, ...,

⌈
2n
5

⌉}
,

– γk ≤ 1
r
3n/10
k

n−1
n−k , for k ∈

{⌈
2n
5

⌉
+ 1, ...,

⌈
3n
5

⌉}
,

– γk ≤ 1
r
3n/5−k/2

k
n−1
n−k , for k ∈

{⌈
3n
5

⌉
+ 1, ...,

⌈
4n
5

⌉}
,

– γk = 1
r
n−1
k , for k ∈

{⌈
4n
5

⌉
+ 1, ..., n− 1

}
.

As in the Undirected Cycle vs Clique case, using now the fact that γk is upper
bounded by 5

4r , we get:

f1 ≥
1[

1 + 1
r + 1

r2 + · · ·+ 1
rlog n−1

]
(1 + o(1)) +

(
5
4r

)logn [
1 + 5

4r +
(

5
4r

)2
+ · · ·+

(
5
4r

)n−logn−1]
=

1

1−( 1
r )

log n

1− 1
r

(1 + o(1)) +
(

5
4r

)logn 1−( 5
4r )

n−log n

1− 5
4r

→ 1− 1

r
when r >

5

4
as n→∞

This completes the proof of Theorem 8. ut

By the above two theorems, we get the following:

Corollary 1. If GR = UCY (or GR is one of CI4, CI6 and CI8), GM = CL,
and r > 2 (respectively r > 3

2 , r > 4
3 and r > 5

4), then fGR,GM
tends to a constant

as n→∞.

Finally, we note that, by Lemma 1 and the above Corollary, when the resident
graph is complete (i.e. GR = CL), the mutant graph is UCY (or one of CI4,
CI6, CI8), and the relative fitness satisfies r < 1

2 (respectively r < 2
3 , r < 3

4 and
r < 4

5 ), then the fixation probability is upper bounded by a constant, as n→∞.
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7 An Approximation Algorithm

Here we present a fully polynomial randomized approximation scheme (FPRAS)5

for the problem UndirectedVsClique of computing the fixation probability in
the Moran process when the residents have an undirected graph and the mutants

have the clique graph with r > 2c
(

1 + 2
n−5

)
, where c is the maximum ratio

of the degrees of adjacent nodes in the resident graph. The following result is
essential for the design of a FPRAS; it gives an upper bound (which depends
on c, r and is polynomial in n) on the expected absorption time of the Moran
process in this case.

Theorem 9. Let GR(V,ER) be an undirected graph of order n, for which
wRxy/w

R
yx ≤ c for every (xy) ∈ ER. Let GM (V,EM ) be the clique graph of

order n. For r ≥ 2c
(

1 + 2
n−5

)
and any S ⊆ V , the absorption time τ of the

Moran process “GR vs GM” satisfies:

E[τ |X0 = S] ≤ r

r − c
n(n− |S|).

In particular, E[τ ] ≤ r
r−cn

2.

Proof. We use the following potential function:

φ(S) = |S|

for any possible mutant set S ⊆ V . We first prove the following intermediate
result which states that the number of mutants (potential) strictly increases

in expectation when r ≥ 2c
(

1 + 2
n−5

)
, where c := max

(xy)∈ER

(
wRxy/w

R
yx

)
, i.e. the

maximum ratio of the degrees of adjacent nodes in the resident graph. We first
prove the following lemma:

Lemma 2. Let (Xi)i≥0 be a Moran process when the resident graph is a general

undirected graph and the mutant graph is the clique. If r ≥ 2c
(

1 + 2
n−5

)
, where

c := max
(xy)∈ER

(
wRxy/w

R
yx

)
, then

E [φ(Xi+1)− φ(Xi)|Xi = S] ≥
(

1− c

r

) 1

n
> 0.

5 An FPRAS for a function f that maps problem instances to numbers is a randomized
algorithm with input X and parameter ε > 0, which is polynomial in |X| and ε−1 and
outputs a random variable g, such that Pr{(1−ε)f(X) ≤ g(X) ≤ (1+ε)f(X)} ≥ 3

4
[9].
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Proof. By F (S) we denote the total fitness |S|r+ |V |− |S| of a state with mutant

set S. For r ≥ 2c
(

1 + 2
n−5

)
and ∅ ⊂ S ⊂ V we have:

E [φ(Xi+1)− φ(Xi)|Xi = S] =

=
1

F (S)

 ∑
xy∈EM

x∈S,y∈V \S

r · wMxy · (φ(S + y)− φ(S)) +
∑

yx∈ER

x∈S,y∈V \S

wRyx · (φ(S − x)− φ(S))



=
1

F (S)

 ∑
xy∈EM

x∈S,y∈V \S

r · wMxy −
∑

yx∈ER

x∈S,y∈V \S

wRyx


≥ 1

F (S)

[
r

n− 1
· |S|(n− |S|)− c ·min{|S|, n− |S|}

]
,

where we used the fact that wMxy = 1
n−1 for every (xy) ∈ EM , and∑

yx∈ER

x∈S,y∈V \S

wRyx ≤ c ·min{|S|, n− |S|} as in the proof of Theorem 6.

The maximum value of F (S) is rn, and the minimum of the function in the

last brackets is r − c for r ≥ 2c
(

1 + 2
n−5

)
. This completes the proof of Lemma

2. ut

The expected absorption time can be bounded using martingale techniques.
In particular, we employ the following theorem (Theorem 6 of [2]), which was
used to bound the absorption time of the process with a single undirected graph.

Theorem 9.A ([2]) Let (Yi)i≥0 be a Markov chain with state space Ω, where
Y0 is chosen from some set I ⊆ Ω. If there are constants k1, k2 > 0 and a
non-negative function ψ : Ω → R such that:

– ψ(S) = 0 for some S ∈ Ω,
– ψ(S) ≤ k1 for all S ∈ I and
– E[ψ(Yi)− ψ(Yi+1)|Yi = S] ≥ k2 for all i ≥ 0 and all S with ψ(S) > 0,

then E[τ ] ≤ k1/k2, where τ = min{i : ψ(Yi) = 0}.

We can now prove Theorem 9 as follows: Let (Yi)i≥0 be the process that
behaves identically to the Moran process (Xi)i≥0 except that, if Yj = ∅ then
Yj+1 = {x}, where x is a vertex chosen uniformly at random. Setting τ ′ =
min{i : Yi = V }, we have E[τ |X0 = S] ≤ E[τ ′|Y0 = S]. Putting ψ(Y ) =
φ(V )−φ(Y ) = n−φ(Y ), k1 = ψ(S) ≤ n, k2 = (1−c/r)/n satisfies the conditions
of Theorem 9.A - the third condition follows from Lemma 2 for ∅ ⊂ Yi ⊂ V and
E[ψ(Yi)− ψ(Yi+1)|Yi = ∅] = 1

n · n = 1 > k2. The result follows from Theorem
9.A. ut
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For our algorithm to run in time polynomial in the length of the input, r
must be encoded in unary.

Theorem 10. There is an FPRAS for UndirectedVsClique, for r >

2c
(

1 + 2
n−5

)
.

Proof. We present the following algorithm. First, we find the constant c by
checking every edge of the resident graph and exhaustively finding the maximum
ratio of adjacent nodes’ degrees in O(n3) time. If and only if our r is greater than

2c
(

1 + 2
n−5

)
, we simulate the Moran process where residents have some given

undirected graph and mutants have the clique graph. We compute the proportion
of simulations that reached fixation for N =

⌈
2ε−2 ln 16

⌉
simulation runs with

maximum number T =
⌈
8rn2N(r − c)−1

⌉
of steps each. In case of simulations

that do not reach absorption in the T -th step, the simulation stops and returns
an error value.

Also, each transition of the Moran process can be simulated in O(1) time.
This is possible if we keep track of the resident and mutant nodes in an array, thus
choose the reproducing node in constant time. Further, we can pick the offspring
node in constant time by running a breadth-first search for each graph before the
simulations start, storing the neighbours of each node for the possible node types
(resident and mutant) in arrays. Hence the total running time is O(n3 +NT ),
which is polynomial in n and ε−1 as required by the FPRAS definition.

Now, we only have to show that the output of our algorithm computes the
fixation probability to within a factor of 1 ± ε with probability at least 3/4.
Essentially, the proof is the same as in [2] with modifications needed for our
setting. For i ∈ {1, 2, ..., N}, let Yi be the indicator variable, where Yi = 1 if the
i-th simulation of the Moran process reaches fixation and Yi = 0 otherwise. We
first calculate the bounds on the probability of producing an output of error
ε in the event where all simulation runs reach absorption within T steps. The
output of our algorithm is then g = 1

N

∑N
i=1 Yi while the required function is the

fixation probability f . Using Hoeffding’s inequality we get:

Pr{|g − f | > εf} ≤ 2e−2ε
2f2N ≤ 2e−f

2 ln 16/4 <
1

8

where the latter inequality is because f ≥ 1− c/r > 1/2 due to Theorem 6.

Now, by using Theorem 9 and Markov’s inequality, the process reaches
absorption within t steps with probability at least 1− ε, for any ε ∈ (0, 1) and
any t ≥ r

r−cn
2 1
ε . Therefore, the event that any individual simulation has not

reached absorption within T steps, happens with probability at most 1/(8N). By
taking the union bound, the event of a simulation run not reaching absorption
within T steps happens with probability at most 1/8. Thus, the probability of
producing an output g as required, is at least 3/4. ut



30 T. Melissourgos, S. Nikoletseas, C. Raptopoulos and P. Spirakis

References
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