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Abstract

This thesis is mainly concerned with two broad topics: i) the impact of country ETF’s premiums

and discounts over feedback trading; ii) modelling high-frequency realized volatility on liquid assets.

Out of the first topic, it investigates whether feedback trading exists in US-listed country ETFs

and whether it varies with their observed/forecast premiums and discounts by using a sample of

twenty country ETFs for the 2000-2016 window, it shows that feedback trading is present in several

of them, particularly those targeting Asia Pacific markets. For the second topic, it analyses the

forecastability and tradability of realized volatility on financial markets, specifically, major stock

indices and their tradable derivatives are used to help decision makers in taking better hedging or

trading positions in the short term. This thesis also extends the study on energy commodities which

do not have their own (implied) volatility futures to trade. A heterogenous autoregressive model

including jumps is used to model realized volatility, additionally, recurrent neural networks and a

hybrid model are also added to the toolbox. It has been noticed, that the linear heterogeneous

autoregressive model produces on average the most stable results.
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Chapter 1

Introduction and Outline

My thesis is mainly concerned with, potentially, unearthing anomalies and inefficiencies on financial

markets using advanced modelling and analysis methods. With this relatively broad topic, I will

mainly deal with two subtopics:

• Investigating the impact of country ETFs’ premiums and discounts over feedback trading.

• Modelling high-frequency realized volatility on liquid assets.

For the first topic, a sample of twenty country ETFs for the 2000-2016 window is used to study

whether feedback trading exists in these US-listed country ETFs and whether it varies with their

observed/forecasted premiums and discounts. It is assessed whether the findings hold before and

after the outbreak of the 2008 financial crisis, given earlier evidence on the effect of crises over

investors’ feedback trading internationally. It further explores whether the presence of feedback

trading varies with the size of an ETF’s observed/forecast premium/discount. Given that this

study entails both observed and forecast premium/discount values, it also tests whether successful

premium/discount forecasts are associated with feedback trading patterns in the sample’s ETFs.

Country ETFs targeting Asia Pacific markets are found to be more prone to feedback trading

(compared to those targeting European and Latin American markets).
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For the second topic, it analyses the forecastability and tradability of realized volatility on

financial markets by applying the Heterogeneous Autoregressive model of Realized Volatility. In

Chapter 3, it analyses the forecastability and tradability of volatility on the S&P500 index and

the liquid SPY ETF, VIX index and VXX ETN. Even though there is already a huge array of

literature on forecasting high frequency volatility, most publications only evaluate the forecast in

terms of statistical errors. In practice, this kind of analysis is only a minor indication of the actual

economic significance of the forecast that has been developed. For this reason, in my approach, it

also includes a test of the forecast through trading an appropriate volatility derivative. As a method

parametric and artificial intelligence models are used. This study also combines these models in

order to achieve a hybrid forecast. It reports that the results of all three model types are of similar

quality. However, it has been observed that artificial intelligence models are able to achieve these

results with a shorter input time frame and the errors are uniformly lower comparing with the

parametric one. Similarly, the chosen models do not appear to differ much while the analysis of

trading efficiency is performed. Finally, it has been noticed that Sharpe ratios tend to improve for

the longer forecast horizon.

In Chapter 4, it specifically looks at major stock indices and their tradable derivatives to help

decision makers in taking better hedging or trading positions in the short term. As Chapter 3

shows promising results on the S&P500 index and the corresponding Volatility Index VIX it is a

sensible step to check, whether these results can be reproduced or improved on other assets. It

has been made a point to specifically account for trading efficiency by looking at tradable assets

and not just assuming the theoretical index data. Computation effort to build realistic models is

significant and different model variants have been checked, including the presence of jumps in the
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intraday realized volatility. For the assets in this study the results are encouraging with Sharpe

ratios that are better than a buy and hold investment.

As numerous studies have been applied to the task of forecasting daily implied volatility on large

stock indices, in Chapter 5, it extends the research on volatility in two ways: firstly, it analyses

energy commodities which do not have their own (implied) volatility futures to trade. This means,

that a good forecast of implied volatility cannot directly be exploited. Rather, a good forecast

would have to be linked to a corresponding trade in the underlying. Secondly, instead of focusing

on daily implied volatility this chapter targets high frequency intraday realized volatility. Arguably,

this brings us closer to modelling the true volatility process. A heterogeneous autoregressive model

including jumps is used to model realized volatility. While this model is refreshingly simple and

straightforward to estimate, it features all the stylized facts of volatility and does a good job at

this task. Furthermore, recurrent neural networks and a hybrid model are added to the toolbox of

useful models. It has been noticed, that the linear heterogeneous autoregressive model produces

on average the most stable results. However, the non-linear models are able to produce attractive

out-of-sample results if care is taken to build the model properly and especially on short look-back

intervals.

Due to the cumulative nature of my thesis (based on academic papers), the research questions

dealt with in my thesis are twofold:

• Are actual/forecast tracking errors (premium/discounts) of country ETFs related to their

feedback trading?

• Is high-frequency realized volatility predictive and economically exploitable for future realized

volatility?
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Ultimately, a focus on predictivity can be seen. Nevertheless, I place my thesis in the realm

of market anomalies / inefficiencies, because any exploitable predictivity could be regarded as a

market anomaly

The remainder of this thesis is structured as follows. The next section detail the first aspect

of my two main research areas; that is investigating the impact of country ETF’s premiums and

discounts over feedback trading. The following three sections present the second aspect of my main

research areas, which are modelling realized volatility. I highlight the importance of both problems

and put them in the context of today’s research. The sixth section discusses limitations of my work

and outlines potential future research. Finally, the last section wraps up the thesis and summarizes

the work.
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Chapter 2

The impact of country ETF’s
premiums and discounts over
feedback trading

2.1 Introduction

Research (Deville (2008)) on exchange traded funds (ETFs, hereafter) has denoted the presence

of significant deviations of US country ETFs’ prices from their underlying net asset value (NAV,

hereafter), leading these ETFs to document substantial premiums and discounts. This has been

fundamentally attributed to the non-synchronicity in trading between these ETFs (traded in the

US) and their underlying benchmark portfolios’ stocks. As the US market and the markets of these

ETFs’ underlying benchmarks are not simultaneously open for trading, the deviations of these

ETFs’ prices from their NAVs cannot be arbitraged away real-time, thus raising the possibility of

their exploitation via ad hoc designated trading strategies, whose profitability has been confirmed

in several studies (Cherry (2004); Jares and Lavin (2004); Engle and Sarkar (2006); Ackert and

Tian (2008)). Considering that such strategies are essentially feedback in style, a question arising

is whether US country ETFs’ premiums/discounts give rise to distinct feedback trading patterns

in these ETFs’ trading process.

This issue is addressed by drawing on a sample of twenty US-listed country ETFs targeting
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a series of markets in the Americas, Asia Pacific and Europe by investigating whether they ac-

commodate feedback trading and whether the latter’s presence varies with these ETFs’ observed

price-deviations from their NAVs. What is more, it controls for the possibility that feedback traders

condition their trades on predicted (rather than observed) premium/discount values by examining

whether feedback trading in US country ETFs varies with their forecast price-deviations from their

NAVs. It further assesses whether these findings hold before and after the outbreak of the 2008

financial crisis, given earlier evidence on the effect of crises over investors’ feedback trading inter-

nationally. Moreover, it explores whether the presence of feedback trading varies with the level

of an ETF’s observed/forecast price-deviations from their NAV; given that this study entails both

observed and forecast premium/discount values, it also tests whether successful premium/discount

forecasts are associated with feedback trading patterns in the sample’s ETFs.

Overall, these results reveal that feedback traders are active in several US-listed country ETFs,

with their presence being sensitive to the time period examined (pre versus post 2008 crisis) and

the sign and level of the (observed and forecast) price-deviations of each ETF from its NAV (i.e.,

premiums and discounts); it also has been found very little evidence in support of feedback trading

patterns emerging upon the realization of successful premium/discount forecasts. As a general

observation, feedback traders are active the most in those ETFs targeting Asia Pacific markets,

with little (no) evidence of their presence documented in ETFs targeting markets in Europe (the

Americas). These findings are attributed to the noise trading often encountered in Asia Pacific

markets, leading ETFs investing there to exhibit feedback trading either due to them mirroring

(given their tracking nature) these markets’ price trends, or due to these ETFs’ investors choosing

to feedback trade as a rational response to these markets’ noise trading levels. It is also possible
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that the results are due to the lack of overlapping trading sessions between the US and Asia Pacific

markets leading these ETFs’ NAVs to be known and possibly used as reference points - before the

start of trading in the US.

This research contributes to the extant ETF literature by showcasing that the widely docu-

mented premiums/discounts of US-listed country ETFs are related to feedback trading, particu-

larly for those ETFs targeting markets in Asia pacific region. Although the literature has mainly

focused on country ETFs’ actual premiums/discounts, it has been demonstrated that forecast pre-

miums/discounts are associated with feedback trading as much as actual ones, thus demonstrating

that forecasting country ETFs’ price-deviations from their NAVs (irrespective of forecasts’ success)

can be used to attain insight into behavioural patterns in their trading. Furthermore, the evi-

dence presented here is of key interest to country ETFs’ investors (in particularly those targeting

Asia Pacific markets, in view of these results), as it allows them insight into the trading dynamics

associated with these ETF’s premiums/discounts that can be used to inform their trades. If an

investor trading such an ETF discovers, for example, that it accommodates feedback trading for

specific observed/forecast premiums/discounts, they can develop a strategy that takes into account

the anticipate feedback trading contingent upon the realization of a certain (observed or forecast)

premium/discount by that ETF.

The rest of this chapter is organized as follows: the next section presents a review of the litera-

ture on feedback trading and ETFs, while section 2.3 introduces the data utilized with descriptive

statistics and delineates the methodology employed. Section 2.4 presents and discusses the results

and section 2.5 concludes by summarizing the study’s main findings and outlining their implications.
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2.2 Feedback trading and ETFs

Feedback trading is an umbrella term encompassing any trading strategy based on the identification

of patterns in historical market data. Feedback traders believe that prices exhibit inertia (Farmer

(2002)), are characterized by trends of a repetitive (and, hence, predictable) nature that can be

profitably exploited via ad hoc trading rules. The prevalence of feedback trading in the market

can amplify existing price trends, leading prices to depart from fundamentals (De Long et al.

(1990)) and enhance serial correlation (Cutler et al. (1990)) and excess volatility (Farmer (2002);

Farmer and Joshi (2002)) in the return-generation process. Feedback traders are distinguished into

positive and negative feedback traders and their conduct can be motivated by a notably wide array

of factors, both rational, as well as behavioural.

From a rational perspective, rational speculation (De Long et al. (1990)) can lead informed

investors to exploit their superior informational foresight by entering positions in stocks prior to the

release of news, in order to launch price trends in the market and profitably exploit them. Investors

also engage in feedback trading believing they can extract useful information form historical prices

when the information risk of their investments is high. This is the case, for example, when investing

in small capitalization stocks, about which little information normally available (Lakonishok et al.

(1992); Wermers (1999); Sias (2004); Voronkova and Bohl (2005)) and foreign stocks (given the

perceived information superiority of overseas markets’ indigenous traders, (see Brennan and Cao

(1997); Lin and Swanson (2008)). Style investing (see Bennett et al. (2003)) is a key driver of

feedback trading, since several investment styles popular among institutional investors, including

momentum and contrarian strategies, (see Galariotis (2014) for an excellent review on both), are

based on historical prices. Technical analysis, (see e.g. Fong and Yong (2005)) is another key
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expression of feedback trading, while the latter can also be driven by traditional trading practices,

including portfolio insurance (Kodres (1994)), stop-loss orders (Osler (2005)), and margin trading

(Watanabe (2002); Hirose et al. (2009)). Professional reasons are conductive to feedback trading as

well, with fund managers often buying stocks with positive recent performance in order to generate

a positive impression as regards their skills (Lakonishok et al. (1992)).

From a behavioural perspective, investors resort to feedback trading primarily due to observa-

tional learning : prices provide a statistical summary of market activity (Holmes and Kallinterakis

(2014)) that indirectly allows them insight into the trades of other market participants, without

the need to actively monitor the latter (Hirshleifer and Teoh (2003); Hirshleifer et al. (2011)).

The representativeness heuristic can motivate trend-chasing (Barberis et al. (1998)), since it can

prompt investors to buy (sell) a stock after only a few days of positive (negative) performance.

This can be further reinforced by the availability bias (Barberis and Thaler (2003)), according to

which more (less) recent events are more (less) easily retrievable by human memory and enjoy a

higher (lower) weight in decison-making. Anchoring (Barberis and Thaler (2003)) is also relevant

here, since using reference points in trading is very common among feedback-style strategies.

Empirical evidence on feedback trading overall confirms its presence internationally across sev-

eral markets, asset classes and investor types. As far as studies using micro data are concerned,

positive feedback trading has been found to be popular among US fund managers, with its magni-

tude being greater in more recent studies (Sias (2004); Froot and Teo (2008); Choi and Sias (2009))

compared to older ones (Lakonishok et al. (1992); Grinblatt et al. (1995); Wermers (1999)). US

retail investors engage less in positive feedback trading compared to their institutional counterparts

(Nofsinger and Sias (1999)), while the sign of feedback trading of retail investors in Germany varies
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with the order-type they employ (Dorn et al. (2008)). Walter and Weber (2006) report significant

positive feedback trading among German mutual funds; conversely, (Kremer and Nautz (2013))

show that German funds are contrarian traders, similar to UK funds (Wylie (2005)). Choe et al.

(1999) report significant positive feedback trading for overseas investors in South Korea prior to the

Asian crisis, with this feedback trading largely dissipating following the crisis’ outbreak. On the

other hand, Kim and Wei (2002a,b) find that foreign institutional investors exhibit more positive

feedback trading in the South Korea market in the aftermath (as opposed to before) the Asian

crisis’ outbreak, while Bowe and Domuta (2004) report very limited evidence of feedback trading

for foreign and domestic investors in Indonesia before, during and after the Asian crisis. Hung

et al. (2010) find that mutual funds tend to negative feedback trade in Taiwan, while Feng and

Seasholes (2004) detect no evidence of feedback trading among retail investors in China. Finally,

the global study by Choi and Shiba (2015) presents evidence indicating the prevalence of positive

feedback trading among institutional investors internationally. Turning now to studies using ag-

gregate data, significant positive feedback trading has been documented for equity (Sentana and

Wadhwani (1992); Koutmos (1997); Koutmos and Saidi (2001); Watanabe (2002); Koutmos et al.

(2006); Bohl and Siklos (2008); Schuppli and Bohl (2010); Chau and Deesomsak (2015)), currency

(Aguirre and Saidi (1999); Laopodis (2005)) and energy (Chau et al. (2015)) markets, while futures

markets offer limited evidence of feedback trading presence (Antoniou et al. (2005); Chau et al.

(2008)).

The availability of feedback trading opportunities can be seen as evidence going against Eugene

Fama’s 1960s Efficient Market Hypothesis (EMH). EMH, roughly, states that all information that

is currently available is reflected in current prices. There are, however, different variants of EMH,
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namely the weak, semi-strong and strong form efficiency. Specifically, weak form efficiency assumes

that only all past publicly available information only is already subsumed in the current price.

Insofar, we might not necessarily assume that feedback trading opportunities violate weak-form

efficiency as the numbers we base our computations on are not necessarily readily publicly available

(although this remains, of course, open to debate). Additionally, as also outlined elsewhere, the

availability of a theoretical feedback trading opportunity does not necessarily signify that excess

returns can be earned on a risk-adjusted basis. Several market restrictions (including spreads,

liquidity, short selling restrictions, and more) can make the opportunity unprofitable.

When discussing any type of active trading strategy, it is useful to also assess the tax impli-

cations. Insofar, feedback trading is not different from any other active trading strategy. If we

consider the amount of activity, feedback trading will be at the higher frequency end of the range

as it is expected to potentially trade every day. Profits of such a strategy will, typically, be small.

The trader will hope to recoup a share of the premium or discount through the trading activity.

Considering the small potential profits, feedback trading will be sensitive to any kind of stamp duty

(Tobin tax like) transaction tax. A prime example for this might be found in the Irish market,

where a 1 percent tax is levied on stock transactions. A stamp duty following the Irish model would

pretty much wipe out any potential gain from a feedback trading strategy. An explanation of these

mechanics can be found in Bond et al. (2005)

To a lesser extent, capital gains taxes will also have to be considered. However, the effect will

be more mitigated as gains and losses can, typically, compensate each other when considering the

tax levied. Additionally, most institutional traders will be able to design their trading in a way

that avoids paying capital gains taxes.
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Exchange traded funds have gained in popularity during the 1990s. They were designed as a

low-cost and more flexible alternative to mutual funds. Indeed, ETFs, typically feature low total

expense ratios, because they are, by design, a passive investment. (Some very new ETFs are hybrid,

featuring elements of active management. These ETFs are omitted from the discussion here.) The

line of thought that pervades most ETFs, is that ”markets cannot be beaten consistently”. With

this as a mantra, pure index tracking strategies make sense. Indeed, if we believe, that we cannot,

for example, consistently beat the S&P500 index on a risk-adjusted basis, then an investor could,

just as well, invest in a low-cost S&P500 index ETF. The performance of ETFs has been very

satisfying in the sense that most liquid ETFs manage to track their index with a low error. Insofar,

their performance is satisfying to investors, because they get exactly what they ask for, for minimal

costs. Of course, if the belief is that an active manager can perform better than the market, then

it might be worth paying a premium for (hopefully) getting a better risk-adjusted return than the

market can deliver. We will not discuss the relative merits of these arguments in the context of

this short introduction on ETFs. All in all it can be said, that ETFs are nowadays very popular

as an index tracking tool among investors. There low fees and (typically) high liquidity make

them attractive to retail and institutional investors alike who use ETFs to implement their market

views. In the US, the world’s largest ETF market, there exist 1,716 ETFs of multiple types with a

combined value of just over USD 2.524 trillion, while the number of ETFs globally amounts to 3,259

with a combine market value of USD 3.306 trillion. ETFs also possess other attractive properties,

including instant exposure, transparency, dividend-treatment, risk management, and tax-efficiency,

which have been delineated in a series of studies (Gastineau (2001); Kostovetsky (2003); Deville

(2008)) and which help explain the wide popularity ETFs have been enjoying among both retail
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and institutional investors (Charteris et al. (2014)).

Evidence on the behaviour of ETF-traders has indicated that they subscribed to feedback-style

strategies. Drawing on high frequency data from US ETFs during the internet bubble, Madura

and Richie (2004) demonstrate the presence of intraday overreaction patterns in their trading dy-

namics that correct themselves within the same day, thus presenting profitable opportunities to

traders with intraday horizons. Chau et al. (2011) find that the US’ three largest ETFs (”Spiders”;

”Cubes”; ”Diamonds”) are characterized by significant positive feedback trading, whose presence

grows more pronounced during bullish sentiment periods. Chen et al. (2012) show that US insti-

tutional investors negative feedback trade when investing in ETFs, while Charteris et al. (2014)

report limited evidence of feedback trading among ETFs traded in emerging markets.

A factor capable of encouraging feedback trading in ETFs is their tracking error, namely the

deviations between their market price and their net asset value, which can be either positive or neg-

ative. The presence of large premiums/discounts in an ETF implies inefficiency in its pricing and, as

such, would be expected to be arbitraged away, particularly given the in-kind creation/redemption

mechanism discussed previously. However, for arbitrage to be feasible in this case it is necessary

for the ETF and its portfolio’s underlying assets to be traded simultaneously. This is not the

case, though, for the specific category of country ETFs, which are listed predominantly in the US

and invest in equities in overseas markets, whose trading times are in the vast majority of cases,

thus rendering arbitrage a technical impossibility. In view of country ETFs’ substantial premi-

ums/discounts (Harper et al. (2006); Deville (2008); Blitz and Huij (2012)), it is reasonable to

expect that investors will attempt to exploit this pricing inefficiency by employing strategies based

on these ETFs’ historical premium/discount pattern; indeed, evidence to date (Cherry (2004); Jares
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and Lavin (2004); Engle and Sarkar (2006); Ackert and Tian (2008)) has confirmed the profitability

of such strategies. Being based on historical ETF prices and their deviations from NAVs, these

strategies are essentially feedback in style and, although this suggests that they can potentially

give rise to distinct feedback trading patterns in country ETFs, the latter has not been empirically

assessed to date. This study contributes to the literature by examining this issue drawing on a sam-

ple of twenty US country ETFs and produces results indicating that these ETFs’ (observed and

forecast) premiums/discounts are associated with feedback trading, particularly for those ETFs

targeting Asia Pacific markets. The next section provides a detailed presentation of the ETFs

included in the sample with detailed descriptive statistics, while also introducing the methodology

utilized for the empirical investigation.

2.3 Data - Methodology

The data includes daily observations of the closing prices and net asset values of twenty iShares

MSCI ETFs, which are presented in Table 2.1 (panel A). The data covers the period between June

20th, 2000 and April 27th, 2016 and has been obtained from Thomson-Reuters DataStream (closing

prices) and Black Rock iShares (NAVs), with the observations from both databases matched. The

choice of June 20th, 2000 as the starting date of the sample coincides with the launch-date of the

iShares MSCI Taiwan ETF (the ETF with the latest launch date out of all twenty ETFs) and the

reason for this is that it aimed at including in the sample all US-listed country ETFs launched

before 2001 in order to have a sufficiently long pre crisis window when testing for the effect of

the 2008 crisis over the results. The names of the ETF will for some include the denomination

capped. This is just an indication of how ETF portfolios are set up. For some countries the market

capitalization of individual companies is so large that just this single company would significantly
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skew the returns of the ETF. In this case, the weight of a single company may be capped. This is

indicated in the name of the ETF.

Table 2.1 (panel B) provides a series of descriptive statistics (mean; standard deviation; skew-

ness; kurtosis; Jarque-Bera normality test, Ljung-Box test statistic for returns and squared returns

for the ten lags) pertaining to the log-differenced returns of the sample ETFs. Sixteen (four)

ETFs exhibit negative (positive) skewness, while all twenty ETFs presents us with rather large

Jarque-Bera test-statistics and leptokurtosis in their returns’ distribution. To gauge whether these

departures from normality are the product of temporal dependencies in the series’ structures, the

Ljung-Box portmanteau test are applied on the first and second moment of all ETFs’ returns. All

Ljung-Box test-statistics on ETFs’ returns are significant (at least at the 5 percent level), indicating

the presence of significant autocorrelations in the ETFs’ return distributions; this, however, is not

in itself evidence in support of feedback trading, since dependencies in the first moment of returns

can also be due to market inefficiencies, such as thin trading. In view of the documented (see

e.g. Farmer (2002)) ability of feedback traders to accentuate volatility in capital markets, it tests

for higher moment temporal dependencies by calculating the Ljung-Box test-statistics for squared

returns. As the results indicate, all of these test-statistics are significant (at the 1 percent level)

and always higher in value than the Ljung-Box test-statistics calculated previously for returns, thus

confirming the presence of time-varying volatility in the ETFs. The presence of significant first-

and second- order temporal dependencies in financial time series in well-established in the litera-

ture (Bollerslev et al. (1994)) and in the next section it will investigate whether they are related to

feedback trading.

Panel C presents some statistics on each ETF’s percentage price deviations from its net asset
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value contingent on their sign (premiums, if the sign is positive; discounts, if it is negative). The

average percentage deviation of ETFs’s prices from their NAVs is positive, denoting that US-listed

country ETFs traded on average at a premium during the full sample period, with almost all ETFs1

having traded on average at a premium over the entire sample period. On average, the sample ETFs

traded 55.5% (44.5%) of the time at a premium (discount), with emerging county ETFs tending to

trade more often at a discount compare to developed country ETFs. The results, broadly, show that

on average we observe a premium for most ETFs. The notable exception are two emerging markets

ETFs which on average exhibit a discount. (While still other emerging markets ETFs also exhibit a

premium.) This is only a rough observation and a more detailed analysis on the causes shall be left

for future work. However, there is a plausible reason, why this might be the case, at least for some

of the emerging market ETFs (Two emerging markets show this behaviour in our sample.) Indeed,

traders in some emerging market ETFs may, rightly, assume that the shares hold within the ETF

are illiquid and difficult to trade. Insofar there may be some insecurity as to whereas the displayed

prices of the individual shares could be fully realized should the ETF issuer have to sell them. This

might lead to a discount to NAV in this ETF. On the other hand the premium in the developed

market ETFs (and some emerging market ETFs) is slightly less pronounced. However, we might

explain a small premium by the added convenience to be able to buy an index portfolio, instead

of individual shares. Indeed, if an investor wanted to replicate a large index portfolio substantial

transaction costs might be incurred. This argument, of course, also holds for the emerging market

ETFs. However it seems that the pricing insecurity for the emerging markets would be a stronger

effect for two ETFs in our sample and lead to the average discount.

To empirically address the research questions of this study, it relys on the model developed

1The sole exception here is the iShares MSCI Austria Capped ETF, which traded on average at a discount.
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by Sentana and Wadhwani (1992), which assumes the interaction of two groups of traders in the

market. The first group consists of rational speculators who maximize their expected utility based

on a mean-variance framework, as reflected in their demand function below:
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Table 2.1: Sample Statistics

Panel A: List of sample ETFs

iShares MSCI Australia ETF iShares MSCI Malaysia ETF
iShares MSCI Austria Capped ETF iShares MSCI Mexico Capped ETF
iShares MSCI Belgium Capped ETF iShares MSCI Netherlands ETF
iShares MSCI Brazil Capped ETF iShares MSCI Singapore ETF
iShares MSCI Canada ETF iShares MSCI South Korea Capped ETF
iShares MSCI France ETF iShares MSCI Spain Capped ETF
iShares MSCI Germany ETF iShares MSCI Sweded ETF
iShares MSCI Italy Capped ETF iShares MSCI Switzerland Capped ETF
iShares MSCI HongKong ETF iShares MSCI Taiwan ETF
iShares MSCI Japan ETF iShares MSCI United Kingdom ETF

Panel B: Descriptive Statistics

ETF Mean(%) Standard Skewness Kurtosis Jarque-Bera LB(10) Lb2(10)
Deviation

iShares MSCI Australia ETF 0.0197 0.0182 -0.1430 12.1400 12350*** 56.22*** 3417.3***
iShares MSCI Austria Capped ETF 0.0141 0.0182 -0.6369 11.6014 11174*** 7.57** 2514.5***
iShares MSCI Belgium Capped ETF 0.0129 0.0164 -0.5508 9.9403 7298*** 5.58** 2407.8***
iShares Brazil Capped ETF -0.0879 0.0201 -0.2495 9.4194 6857*** 31.13*** 2837.0***
iShares MSCI Canada ETF 0.0242 0.0148 -0.4438 9.4130 6194*** 13.60** 3524.7***
iShares MSCI France ETF 0.0082 0.0174 -0.2503 9.1038 5543*** 37.29*** 2077.4***
iShares MSCI Germany ETF 0.0171 0.0177 -0.0643 10.9100 9244*** 26.33*** 1699.8***
iShares MSCI Hong Kong ETF 0.0243 0.0167 0.1328 12.2000 12518*** 113.56*** 3501.4***
iShares MSCI Italy Capped ETF -0.0104 0.0189 -0.3989 9.0500 5501*** 26.01*** 1435.3***
iShares MACI Japan ETF 0.0110 0.0144 0.1420 11.8631 11622*** 39.87*** 2223.4***
iShares MSCI Malaysia ETF -0.0861 0.0203 -0.2649 22.2801 78469*** 28.33*** 506.0***
iShares MSCI Mexico Capped ETF 0.0326 0.0198 -0.0259 11.7451 16134*** 27.6*** 1443.0***
iShares MSCI Netherlands ETF 0.0103 0.0168 -0.4216 9.8133 6965*** 24.12*** 2614.5***
iShares MSCI Singapore ETF 0.0220 0.0168 0.0757 10.6823 8726*** 95.56*** 2866.9***
iShares MSCI South Korea Capped ETF 0.0248 0.0226 0.0954 2.2247 14234*** 61.08*** 2684.0***
iShares MSCI Spain Capped ETF 0.0080 0.0189 -0.3589 9.9694 7254*** 27.20*** 1302.5***
iShares MSCI Sweden ETF 0.0262 0.0207 -0.2652 9.9811 5328*** 42.87*** 2784.1***
iShares MSCI Switzerland Capped ETF 0.0243 0.0140 -0.3752 9.0499 5492*** 42.27*** 2278.8***
iShares MSCI Taiwan ETF 0.0805 0.0266 -0.0931 7.5724 3476*** 53.05*** 1497.0***
iShares MSCI United Kingdom ETF 0.0102 0.0173 -0.1121 9.3547 7654*** 30.12*** 1789.0***

Panel C: Statistics on percentage price deviation from NAV

Average price Average Average % of days % of days
deviation (%) premium (%) discount(%) when ETF when ETF

trades at trades at
premium discount

iShares MSCI Australia ETF 0.1284 0.7660 -0.8398 0.6036 0.3964
iShares MSCI Austria Capped ETF -0.0029 0.0057 -0.0066 0.5318 0.4682
iShares MSCI Belgium Capped ETF 0.0734 0.5676 -0.5664 0.5647 0.4353
iShares MSCI Brazil Capped ETF 0.0357 0.7200 -0.6100 0.5503 0.4497
iShares MSCI Canada ETF 0.0669 0.3694 -0.2924 0.5445 0.4555
iShares MSCI France ETF 0.0537 0.5073 -0.5170 0.5577 0.4423
iShares MSCI Germany ETF 0.0475 0.4930 -0.5199 0.5607 0.4393
iShares MSCI Hong Kong ETF 0.0277 0.7404 -0.8570 0.5541 0.4459
iShares MSCI Italy Capped ETF 0.0534 0.5435 -0.5608 0.5566 0.4434
iShares MSCI Japan ETF 0.0799 0.8182 -0.8490 0.5576 0.4424
iShares MSCI Malaysia ETF 0.4426 2.1700 -1.5300 0.4782 0.5218
iShares MSCI Mexico Capped ETF 0.0542 0.5700 -0.6500 0.4899 0.5101
iShares MSCI Netherlands ETF 0.0504 0.5091 -0.5494 0.5670 0.4330
iShares MSCI Singapore ETF 0.0286 0.7259 -0.8846 0.5673 0.4327
iShares MSCI South Korea Capped ETF 0.0391 1.0100 -1.0500 0.5322 0.4678
iShares MSCI Spain capped ETF 0.0486 0.5465 -0.5737 0.5559 0.4441
iShares MSCI Sweden ETF 0.1058 0.6634 -0.6576 0.5784 0.4216
iShares MSCI Switzerland Capped ETF 0.1585 0.5495 -0.4815 0.6221 0.3779
iShares MSCI Taiwan ETF 0.1622 1.1300 -0.9900 0.5418 0.4582
iShares MSCI United Kingdom ETF 0.0544 0.5028 -0.5531 0.5592 0.4408
1The table above contains a series of information on the sample ETFs used in our study. The list of the twenty ETFs employed here is
outlined in panel A. Panel B presents a series of descriptive statistics on the log-difference returns of our twenty ETFs; these statistics
include the mean, standard deviation, skewness, kurtosis, Jarque-Bera normality test-statistics and Ljung-Box test-statistics at ten lags for
the return- and squared return-series of the twenty ETFs. *,**,*** represent significance at the 10%, 5% and 1% levels, respectively. Panel
C contains summary statistics on the observed percentage price deviations of each ETF from its NAV; these statistics include the average
price deviation (%), the average premium (%), the average discount (%) and the percentage of days for which an ETF has traded at a
premium/discounts.
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Qt =
Et−1(rt − α)

θσ2t
, (2.3.1)

In Equation 2.3.1 above, Et−1(rt) is the expectation in period t − 1 of the ETF’s return, rt, in

period t, α is the risk-free return, θ is the time-invariant coefficient of risk-aversion and σ2t is the

conditional variance (proxying for risk) at period t.

The second group comprises of feedback traders, who trade on the premises of historical prices,

which means they buy (sell) after the price increase (decrease), their demand function is reflected

as follows:

Yt = γrt−1, (2.3.2)

As Equation 2.3.2 suggests, feedback traders base their trades on the previous period’s return, with

the direction of their trades varying, depending on whether they positive (i.e., if γ > 0, in which

case, they buy if rt−1 > 0 and sell if rt−1 < 0) or negative (i.e., if γ < 0, in which case, they buy if

rt−1 < 0 and sell if rt−1 > 0) feedback trade. For the market to be in equilibrium, all shares must

be held, in which case:

Qt + Yt = 1, (2.3.3)

It follows from equation 2.3.1 and 2.3.2 that we obtain:

Et−1(rt) = α+ θσ2t − θγσ2t rt−1, (2.3.4)

To estimate Equation 2.3.4 we convert the expected return, Et−1(rt) into a realized one (rt), by

assuming the latter’s rational expectation rt = Et−1(rt) + εt, where εtis a stochastic error term:

rt = α+ θσ2t − θγσ2t rt−1 + εt, (2.3.5)

As Equation 2.3.5 shows, the first-order return-autocorrelation interacts both with risk (σ2t ), and
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feedback trading (the first-order autocorrelation sign will be positive if γ < 0 and negative if

γ > 0). However, autocorrelation can be the results of both inefficiencies in the market (such as,

for example, thin trading) as well as feedback traders and Equation 2.3.5 does not allow us to

disentangle between the two possibilities. To that end, Sentana and Wadhwani (1992) suggested

the following ad hoc empirical specification of Equation 2.3.5:

rt = α+ θσ2t + (ψ0 + ψ1σ
2
t )rt−1 + εt, (2.3.6)

Equation 2.3.6 distinguishes between the part of autocorrelation due to market inefficiencies (denote

by ψ0) and that due to feedback trading (denote by ψ1). With ψ1 = −θγ, significantly positive

(negative) values for ψ1 will denote the presence of negative (positive) feedback trading.

To asses the interaction of feedback trading with the observed premiums/discounts of the sample

ETFs, this study employs Chau et al. (2011)’s empirical extension of the Sentana and Wadhwani

(1992) model:

rt = α0Dt−1 + α1(1−Dt−1) + θ0Dt−1σ
2
t + θ1(1−Dt−1)σ

2
t +Dt−1(ψ0,0 + ψ1,0σ

2
t )rt−1

+(1−Dt−1)(ψ0,1 + ψ1,1σ
2
t )rt−1 + εt, (2.3.7)

The term ”Dt−1” in Equation 2.3.7 is a dummy variable assuming the value of unity if the ETF has

posted a discount in period t−1, zero otherwise2. Equation 2.3.7 allows all terms of Equation 2.3.6

to shift with the observed lagged premiums/discounts of the ETF and permits us to gauge how

feedback trading manifests itself when the ETF’s price exhibits a positive (the case of a premium)

2Given the daily frequency of our data, both the closing prices and NAVs employed are day-end observations;
as a result, it is not possible for the feedback trader of Equation 2.3.7 to trade on the contemporaneous (period t)
premium/discount, since he cannot observe it until the session is over (this would have been the case only if we were
working on the premises of real-time data), hence we rely on lagged premiums/discounts. This is further supported
by the fact that feedback traders in the Sentana and Wadhwani (1992) framework base their trades on the previous
day’s returns, not the contemporaneous ones (which, given the daily frequency of our data could not be traded on
anyway, since that are day-end ones)
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or negative (the case of a discount) deviation from its NAV in period t− 1 3.

The conditional variamce σ2t in all of above equations follows a GJR-GARCH (1,1) Glosten et

al. (1993) process as:

σ2t = ω + βε2t−1 + λσ2t−1 + δIt−1ε
2
t−1, (2.3.8)

In Equation 2.3.8, the parameter δ reveals whether volatility responds asymmetrically to positive

versus negative shocks. It−1 is a dummy variable, assuming the value of unity if the lagged shock

is negative, zero otherwise; significantly positive estimates for the δ denote that volatility is higher

following negative (compared to positive) shocks.

Given country ETFs’ documented wide premium and discounts, it is possible that feedback

traders condition their feedback trading on forecast premiums/discounts when trading these ETFs.

To explore this possibility, it assesses the interaction between forecast premiums/discounts and

feedback trading, by first assuming that the dynamics of ETFs’ percentage price deviations from

their NAV follow a standard Ornstein-Uhlenbeck (OU) process4, as follows:

dXt = −ρ(Xt − µ)dt+ ξdWt, (2.3.9)

Xt represents the percentage price deviation of the ETF from its NAV, ρ is the speed of mean

reversion, Wt is a standard Brownian motion (on some probability space), and µ is the long term5

equilibrium level of the ETF’s percentage price deviation from its NAV. The solution of equation

2.3.9 is provided by

Xi+1 = Xie
−ρt + µ(1− e−ρt) + ξ

√
1− eρt

2ρ
N0,1, (2.3.10)

3Equation 2.3.7 combines the possibility of NAV-deviations interacting with feedback trading both additively and
multiplicatively. As Chau et al. (2011) showed, the additive version of this interaction assumes the following feedback
trading function: Yt = γrt−1+κDt in which case the combined function of rational and feedback traders becomes: rt =
α0Dt+α1(1−Dt)+θ0Dtσ2

t+θ1(1−Dt)σ2
t+(ψ0,1+ψ1,1σ

2
t )rt−1+εt The multiplicative version of this interaction assumes

the following feedback trading function: Yt = [γDt + κ(1−Dt)]rt−1, in which case the combined function of rational
and feedback traders assumes the following form: rt = α+θσ2

t +Dt(ψ0,0+ψ1,0σ
2
t )rt−1+(1−Dt)(ψ0,1+ψ1,1σ

2
t )rt−01+εt

4Applications of the OU-process in finance include Bormetti et al (2010); Griffin (2010)
5The long term equilibrium is equivalent here to a window of 252 days (i.e. a year’s observations)
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where t denotes the fixed time steps an N0,1 is the standard normal distributions. Then the pa-

rameters are estimated using maximum likelihood method, with the conditional probability density

function derived as follows:

f(Xi+1|Xi;µ, ρ, ξ) =
1√
2πξ̂2

exp

(
−
(
xi − xi−1e−ρt − µ(1− e−ρt)

)2
2ξ̂2

)
(2.3.11)

with ξ̂2 = ξ2 1−e
−2ρt

2ρ . The log-likelihood fuction of a set of observations (X0, X1, ..., Xn) can be

derived as:

L(µ, ρ, ξ̂) =
n∑
i=1

lnf(Xi+1|Xi;µ, ρ, ξ̂) = −n
2
ln(2π)− nln(ξ̂2)− (2.3.12)

1

2ξ̂2

n∑
i=1

(
Xi −Xi−1e

−ρt − µ(1− eρt)
)2
,

Algebraically, the following equations are derived from the above:

µ =

∑n
i=1(Xi −Xi−1e

−ρt)

n(1− e−ρt)
(2.3.13)

ρ = −1

t
ln

∑n
i=1(Xi − µ)(Xi−1 − µ)∑n

i=1(Xi−1 − µ)2
, (2.3.14)

ξ̂2 =
1

n

n∑
i=1

[
(Xi − µ− e−ρt)(Xi−1 − µ)

]2
. (2.3.15)

To gauge whether the forecast premiums/discounts generated from the OU-process affect feedback

trading in the sample ETFs, we employ equation 2.3.16, a close variant of Equation 2.3.7:

rt = α0Dt + α1(1−Dt) + θ0Dtσ
2
t + θ1(1−Dt)σ

2
t +Dt(ψ0,0 + ψ1,0σ

2
t )rt−1

+(1−Dt)(ψ0,1 + ψ1,1σ
2
t )rt−1 + εt, (2.3.16)

In the above equation, ”Dt” is equal to one, if the OU-process forecasts a discount for the day t, zero

otherwise. Finally, to test whether these findings hold in view of the outbreak of the 2008 global

financial crisis, the sample period is split into a pre (June 20th, 2000 - August 31st, 2008) and a post
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(September 1st, 20086 - April 27th, 2016) crisis-outbreak period and repeat all of the estimations

for both sub periods. This partition in our sample window is motivated mainly by the fact that the

outbreak of financial crises has been found (Choe et al. (1999); Kim and Wei (2002a); Charteris

et al. (2014)) to produce changes in the market’s directional trend, form upward to downward;

with feedback traders extrapolating from historical price trends,any such groundbreaking shift in

the market’s direction is bound to affect their trading pattern. Additionally, the fact that crisis-

periods encompass extreme price movements is expected to lead to wilder swings of country ETFs’

prices and, quite possibly, amplify their deviations from their NAVs, given that arbitrage is harder

to practice during extreme market periods.

2.4 Results - Discussion

The discussion is began with the presentation of the results from equation 2.3.6, i.e., the original

Sentana and Wadhwani (1992) model. The estimates outlined in Table 2.2 indicate that several

US-listed country ETFs exhibit inefficiencies in their returns, as demonstrated by the significantly7

negative (positive) values of the first-order autocorrelation coefficient ψ0 for eight (two) ETFs. ψ1

assumes significantly negative values for six ETFs (iShares MSCI Australia ETF; iShares MSCI

Hong Kong ETF; iShares MSCI Japan ETF; iShares MSCI Malaysia ETF; iShares MSCI Singapore

ETF; iShares MSCI Taiwan ETF), denoting the presence of positive feedback trading in their

dynamics. Although the above indicate that the majority (fourteen) of the sample’s US-listed

country ETFs accommodates no feedback trading, it is worth noting that the above six ETFs

6The choice of September 2008 as the cut-off point in our sample window is motivated by the groundbreaking
events that took place in the US during that month (including the bankruptcy of Lehman Brothers and the US
government’s decision to place mortgage providers Freddie Mac and Fannie May into conservatorship) and which
changed the landscape of the US financial system in the post 2008 years

7In the interest of brevity, any reference to statistical significance in this section shall pertain to estimated coeffi-
cients, whose p-value are less than 0.1
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are all targeting markets in the Asia Pacific region, thus suggesting that feedback trading is more

pronounced for country ETFs investing in markets whose trading times do not overlap with those of

the US at all.8 A key issue regarding several Asia Pacific markets is that retail investors command

a substantial fraction of their turnover (Chou et al. (2011)), thus amplifying noise trading (Barber

et al. (2007, 2009); Kuo et al. (2015)). As a result, the feedback trading documented for country

ETFs targeting markets in that region may be due either to these ETFs mirroring these markets’

performance or to these ETFs’ investors opting for feedback trading as a rational strategy given

the noise levels of these markets.9 The large time difference between the Asia Pacific region and

the US further facilitates feedback trading in those ETFs, since US investors trading them will

be aware of their underlying benchmarks’ NAV for the day well before trading in the US had

started, possibly choosing to use these NAVs as reference points. As per the structure of their

conditional variance, the significant (at the 1 percent level) λ values indicate that contemporaneous

volatility is significantly related to lagged volatility, thus denoting its persistence. The volatility of

most (seventeen) ETFs responds significantly to news (as the significant β values indicate), with

this response being asymmetric in all cases, since the coefficient δ is always significantly positive.

Overall, the structure of the conditional variance of this study’s ETFs reflects similar properties

to that reported in prior studies on ETFs’ feedback trading (Chau et al. (2011); Charteris et al.

(2014)).

8The solo ETF in our sample focusing on an Asia Pacific market and not exhibiting any feedback trading is the
iShares MSCI South Korea Capped ETF.

9The selection of feedback trading as a strategy by investors of country ETFs targeting Asia Pacific markets in
this case can be motivated either by rational speculative reasons (to exploit the noise trading patterns in Asia Pacific
markets’ equity returns via those ETFs) or informational reasons (noise trading renders the public pool of information
poorer and feedback trading has been shown - Brennan and Cao (1997) to be an option when trading in markets
with informational uncertainty)
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Table 2.2: Maximum likelihood estimation from the original Sentana and Wadhwani
(1992) model

AU AT BE BR CA FR DE HK IT JP
α 0.0085 0.0483 0.0203 -0.0058 0.0351 0.0053 0.0309 0.0350 0.0172 -0.0157

(0.07926) (0.1606) (0.4629) (0.9042) (0.1811) (0.8531) (0.2976) (02471) (0.5990) (0.6380)
θ 0.0047 -0.0050 0.0044 0.0024 -0.0015 0.0062 0.0005 -0.0019 -0.0043 0.0179

(0.7292) (0.7149) (0.7963) (0.8088) (0.9304) (0.6266) (0.9632) (0.8988) (0.7321) (0.3784)
ψ0 -0.0079 0.0188 -0.0563 0.0447 0.0168 -0.0728 -0.0442 -0.0201 -0.1014 -0.0369

(0.7131) (0.3821) (0.0040) (0.0398) (0.4332) (0.0011) (0.0434) (0.3402) (0.0000) (0.1084)
ψ1 -0.0067 -0.0040 0.0010 -0.0028 -0.0033 -0.0007 -0.0027 -0.0109 0.0008 -0.0120

(0.0411) (0.1850) (0.7977) (0.1569) (0.5052) (0.8610) (0.5269) (0.0054) (0.8387) (0.0551)
ω 0.0355 0.0363 0.0370 0.0681 0.0159 0.0293 0.0340 0.0310 0.0273 0.0578

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0198 0.0082 0.0211 0.0122 0.0232 0.0083 0.0134 0.0278 0.0248 0.0436

(0.0144) (0.1047) (0.0031) (0.0382) (0.0045) (0.1523) (0.0040) (0.0000) (0.0000) (0.0001)
λ 0.9252 0.9385 0.9075 0.9290 0.9290 0.9274 0.9251 0.9100 0.9255 0.8815

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0753 0.0703 0.1040 0.0881 0.0738 0.1006 0.0907 0.0730 0.0792 0.0819

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ML MX NL SG SK SP SW CH TW UK
α 0.0151 0.0144 0.0194 -0.0070 -0.0014 0.0348 -0.0116 0.0315 0.0291 0.0212

(0.6672) (0.6490) (0.4895) (0.7957) (0.9685) (0.2981) (0.7297) (0.2357) (0.3886) (0.6543)
θ 0.0096 0.0030 -0.0005 0.0082 0.0082 -0.0046 0.0117 0.0008 -0.0046 0.0043

(0.6539) (0.8086) (0.9693) (0.5457) (0.4100) (0.7108) (0.2157) (0.9640) (0.7011) (0.6548)
ψ0 -0.0020 0.0430 -0.0398 -0.0464 0.0227 -0.0550 -0.0256 -0.0741 -0.0039 -0.0573

(0.9407) (0.0341) (0.0560) (0.0278) (0.3115) (0.0138) (0.2327) (0.0009) (0.8674) (0.1004)
ψ1 -0.0321 -0.0048 -0.0048 -0.0083 -0.0028 -0.0020 -0.0047 -0.0069 -0.0101 -0.0016

(0.0001) (0.1374) (0.2616) (0.0485) (0.2469) (0.6028) (0.1008) (0.2945) (0.0079) (0.6592)
ω 0.0148 0.0418 0.0276 0.0158 0.0252 0.0320 0.0403 0.0250 0.0197 0.0352

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0289 0.0014 0.0130 0.0235 0.0283 0.0114 0.0115 0.0275 0.0246 0.0184

(0.0000) (0.7802) (0.0527) (0.0001) (0.0001) (0.0394) (0.1240) (0.0000) (0.0002) (0.0005)
λ 0.9509 0.9209 0.9229 0.9344 0.9376 0.9283 0.9288 0.9163 0.9392 0.9842

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0249 0.1245 0.1004 0.0704 0.0555 0.0979 0.0896 0.0780 0.0603 0.0912

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1The table presents the estimates from the set of the following equations for the full sample period (20/6/2000 - 27/4/2016):

rt = α+ θσ2
t + (ψ0 + ψ1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

ETFs apear in the table with the following abbreviations: AU (iShares MSCI Australia ETF), AT (iSharse MSCI Austria Capped
ETF), BE (iShares MSCI Belgium Capped ETF), BR (iShares MSCI Brazil Capped ETF), CA (iShares MSCI Canada ETF),
FR (iShares MSCI France ETF), DE (iShares MSCI Germany ETF), HK (iShares MSCI Hong Kong ETF), IT (iShares MSCI
Italy Capped ETF), JP (iShares MSCI Japan ETF), ML (iShares MSCI Malaysia ETF), MX (iShares MSCI Mexico Capped
ETF), NL (iShares MSCI Netherlands ETF), SG (iShares MSCI Singapore ETF), SK (iShares MSCI South Korea Capped ETF),
SP (iShares MSCI Spain Capped ETF), SW (iShares MSCI Sweden ETF), CH (iShares MSCI Switzerland ETF), TW (iShares
MSCI Taiwan ETF), UK (iShares MSCI United Kingdom ETF). Parentheses include p-values.

We now turn to assessing whether feedback trading varies in its presence in US-listed country

ETFs with the sign of the observed lagged percentage price deviation of an ETF from its NAV. Table

3 presents the results from the estimation of equation 2.3.7 for the sample’s ETFs. The estimations,

overall, reveal a rather limited presence of feedback trading contingent upon the realization of a

lagged premium or discount. More specifically, two ETFs exhibit positive feedback trading when a

premium is observed on the previous day, while the iShares MSCI Belgium Capped ETF (iShares
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MSCI Malaysia ETF) exhibits negative (positive) feedback trading in the presence of a lagged

discount. Again here, it is interesting to note that three of those four ETFs are targeting Asia Pacific

markets, with some of these ETFs exhibiting some of the largest average premiums/discounts for

the sample period. Several ETFs exhibit inefficiencies in their return-generating process irrespective

of the presence of lagged premiums or discounts, as their significant ψ0,0 and ψ0,1 values indicate.

When a discount has materialized on the previous day, ψ0,0 is significantly positive (negative) for

one (two) ETFs; conversely, the realization of a lagged premium is found to be associated with

some cases of significant first-order autocorrelation, as it yields significantly positive (negative) ψ0,1

values for five (two) ETFs. Regarding the volatility’s structure, it appears highly persistent and

asymmetric for all twenty ETFs, in line with results reported previously.

Table 2.4 presents the estimates from equation 2.3.16, controlling for the presence of a predicted

(as opposed to observed) premium or discount. Significantly positive feedback trading exists for

predicted premiums for three ETFs (iShares MSCI Hong Kong ETF, iShares MSCI Singapore ETF;

iShares MSCI Taiwan ETF) and for predicted discounts for the iShares MSCI Malaysia ETF and

the iShares MSCI Taiwan ETF; significant negative feedback trading is reported for the iShares

MSCI France ETF and the iShares MSCI Spain Capped ETF for predicted discounts. Once more,

the results show that feedback trading tends to be more prevalent among country ETFs investing

in Asia Pacific markets, with evidence on its presence among country ETFs targeting European

markets being limited. The majority of ETFs exhibit significant first-order autocorrelation for

predicted discounts, with several of them doing so for predicted premiums as well, thus confirming

the presence of widespread inefficiencies in their returns’ structure. Again here, volatility appears

highly persistent and asymmetric across all twenty ETFs.
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Table 2.3: Maximum likelihood estimation from the Sentana and Wadhwani (1992)
model controlling for observed premiums/discounts

AU AT BE BR CA FR DE HK IT JP
α0 0.0628 0.1554 0.0723 0.1500 0.0972 0.0540 0.0649 0.1205 0.1556 0.0109

(0.2661) (0.0021) (0.0924) (0.0638) (0.0204) (0.2307) (0.1982) (0.0278) (0.0046) (0.8459)
α1 -0.0186 -0.0311 0.0108 -0.1404 0.0207 -0.0442 0.0073 -0.0098 -0.0780 -0.0076

(0.6649) (0.5743) (0.7898) (0.0262) (0.5381) (0.2820) (0.8646) (0.8131) (0.0817) (0.8876)
θ0 -0.0042 0.0094 0.0560 0.0040 0.0017 0.0138 -0.0072 0.0144 0.0188 0.0419

(0.8591) (0.6061) (0.0051) (0.7982) (0.9472) (0.5154) (0.4024) (0.6008) (0.3541) (0.1998)
θ1 0.0082 -0.0256 -0.0505 -0.0043 -0.0060 0.0044 -0.0072 -0.0191 -0.0232 -0.0214

(0.6878) (0.3302) (0.0398) (0.7519) (0.7861) (0.8254) (0.7166) (0.3993) (0.2186) (0.5605)
ψ0,0 0.0116 0.0279 -0.0249 0.0312 0.0025 -0.0814 -0.0170 0.0280 -0.0531 -0.0122

(0.7536) (0.3960) (0.4559) (0.3633) (0.9403) (0.0210) (0.6342) (0.4355) (0.1672) (0.7363)
ψ1,0 -0.0086 -0.0008 0.0082 -0.0024 0.0017 -0.0359 -0.0001 -0.0098 0.0027 -0.0097

(0.1250) (0.8188) (0.0929) (0.4460) (0.8416) (0.6537) (0.9829) (0.1804) (0.6727) (0.2978)
ψ0,1 -0.0006 0.0559 -0.0355 0.0871 0.0592 -0.0359 -0.0053 0.0054 -0.0602 -0.0255

(0.9844) (0.0911) (0.2433) (0.0028) (0.0416) (0.2539) (0.1731) (0.8586) (0.0878) (0.5160)
ψ1,1 -0.0073 -0.0057 0.0020 -0.0030 -0.0085 -0.0056 -0.0053 -0.0109 -0.0018 -0.0068

(0.1402) (0.4820) (0.8072) (0.3239) (0.1995) (0.4230) (0.4598) (0.0589) (0.7903) (0.6544)
ω 0.0365 0.0427 0.0360 0.0620 0.0154 0.0296 0.0347 -0.0109 0.0269 0.0596

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0201 0.0179 0.0195 0.0145 0.0253 0.0082 0.0133 0.0297 0.0234 0.0426

(0.1351) (0.0019) (0.1351) (0.0058) (0.0019) (0.1758) (0.0438) (0.0000) (0.0001) (0.0000)
λ 0.9250 0.9280 0.9108 0.9332 0.9292 0.9270 0.9254 0.9174 0.9270 0.8792

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0751 0.0684 0.0751 0.0802 0.0698 0.1008 0.0913 0.0734 0.0787 0.0860

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ML MX NL SG SK SP SW CH TW UK
α0 0.1071 0.0646 0.0903 -0.0220 -0.1115 0.1439 0.0036 0.0411 0.0263 0.0658

(0.0348) (0.1691) (0.0416) (0.6532) (0.0300) (0.0173) (0.9513) (0.3735) (0.6135) (0.7654)
α1 -0.0566 -0.0265 -0.0122 0.0085 0.0391 -0.0135 0.0393 0.0628 -0.0130 0.0098

(0.2335) (0.6250) (0.7642) (0.8182) (0.4640) (0.7631) (0.0372) (0.0960) (0.7860) (0.8539)
θ0 0.0104 0.0339 0.0192 0.0280 0.0420 0.0063 -0.0123 0.0749 0.0259 -0.0089

(0.7196) (0.0684) (0.3642) (0.2261) (0.0020) (0.7691) (0.4534) (0.0123) (0.1613) (0.7643)
θ1 -0.0275 0.0440 -0.0219 -0.0178 -0.0152 -0.0276 -0.0043 -0.0621 -0.0338 -0.0067

(0.3588) (0.0662) (0.3411) (0.4074) (0.3155) (0.1450) (0.7519) (0.0345) (0.0415) (0.7654)
ψ0,0 0.0189 0.0561 -0.0068 -0.0500 -0.0543 -0.0018 -0.0198 -0.0161 -0.0139 -0.0124

(0.6022) (0.0503) (0.8423) (0.1568) (0.0896) (0.5074) (0.5788) (0.6934) (0.7013) (0.7634)
ψ1,0 -0.0213 -0.0013 -0.0024 -0.0076 0.0029 -0.0018 -0.0022 -0.0027 -0.0056 -0.0076

(0.0298) (0.7648) (0.6839) (0.2613) (0.3442) (0.7475) (0.6128) (0.8116) (0.3219) (0.4562)
ψ0,1 0.0023 0.0884 -0.0244 -0.0326 0.0026 -0.0288 -0.0079 -0.0793 0.0581 -0.0073

(0.9521) (0.0110) (0.4215) (0.3101) (0.9409) (0.3851) (0.7981) (0.0170) (0.0878) (0.1348)
ψ1,1 -0.0023 -0.0026 -0.0053 -0.0057 -0.0034 -0.0008 -0.0041 -0.0030 -0.0106 -0.0034

(0.8627) (0.7457) (0.4823) (0.4394) (0.4772) (0.9065) (0.3599) (0.8170) (0.0685) (0.4265)
ω 0.0202 0.0422 0.0268 0.0161 0.0224 0.0317 0.0411 0.0249 0.0198 0.0316

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0347 0.0022 0.0134 0.0243 0.0179 0.0124 0.0138 0.0285 0.0252 0.0045

(0.0000) (0.6819) (0.0499) (0.0001) (0.0003) (0.0000) (0.0069) (0.0059) (0.0002) (0.0143)
λ 0.9397 0.9208 0.9237 0.9338 0.9458 0.9281 0.9272 0.9158 0.9391 0.9321

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0314 0.1221 0.0986 0.0696 0.0603 0.0968 0.0879 0.0773 0.0604 0.0527

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1The table presents the estimates from the set of the following equations for the full sample period (20/6/2000 - 27/4/2016):

rt = α0Dt−1 + α1(1 −Dt−1) + θ0Dt−1σ
2
t + θ1(1 −Dt−1)σ2

t +Dt−1(ψ0,0 + ψ1,0σ
2
t )rt−1 + (1 −Dt−1)(ψ0,1 + ψ1,1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Dt is a dummy variable assuming the value of unity if the ETF has posted a discount in period t − 1, zero otherwise. ETFs
apear in the table with the following abbreviations: AU (iShares MSCI Australia ETF), AT (iSharse MSCI Austria Capped
ETF), BE (iShares MSCI Belgium Capped ETF), BR (iShares MSCI Brazil Capped ETF), CA (iShares MSCI Canada ETF),
FR (iShares MSCI France ETF), DE (iShares MSCI Germany ETF), HK (iShares MSCI Hong Kong ETF), IT (iShares MSCI
Italy Capped ETF), JP (iShares MSCI Japan ETF), ML (iShares MSCI Malaysia ETF), MX (iShares MSCI Mexico Capped
ETF), NL (iShares MSCI Netherlands ETF), SG (iShares MSCI Singapore ETF), SK (iShares MSCI South Korea Capped ETF),
SP (iShares MSCI Spain Capped ETF), SW (iShares MSCI Sweden ETF), CH (iShares MSCI Switzerland ETF), TW (iShares
MSCI Taiwan ETF), UK (iShares MSCI United Kingdom ETF). Parentheses include p-values.
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Table 2.4: Maximum likelihood estimation from the Sentana and Wadhwani (1992)
model controlling for forecast premiums/discounts

AU AT BE BR CA FR DE HK IT JP
α0 -0.3744 -0.3312 -0.2536 -0.0613 -0.1928 -0.2856 -0.3288 -0.3196 -0.3390 -0.4218

(0.0000) (0.0000) (0.0000) (0.3823) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
α1 0.1146 0.2537 0.1205 0.0297 0.2189 0.1580 0.2449 0.2459 0.2631 0.1625

(0.0042) (0.0000) (0.0010) (0.6605) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0019)
θ0 -0.2115 -0.0761 -0.1077 0.0015 -0.0758 -0.0874 -0.0537 -0.2215 -0.0883 -0.1276

(0.0000) (0.0049) (0.0000) (0.9164) (0.0030) (0.0003) (0.0049) (0.0000) (0.0003) (0.0001)
θ1 0.2429 0.1167 0.1647 0.0050 0.0591 0.0249 0.0747 0.2135 0.0790 0.2501

(0.0000) (0.0000) (0.0000) (0.7415) (0.0150) (0.0000) (0.0006) (0.0000) (0.0000) (0.0000)
ψ0,0 -0.0403 -0.0769 -0.0844 0.0373 0.0302 -0.1549 -0.0892 -0.1093 -0.1687 -0.1179

(0.1669) (0.0025) (0.0022) (0.2715) (0.2913) (0.0000) (0.0018) (0.0002) (0.0000) (0.0001)
ψ1,0 0.0010 0.0052 0.0064 -0.0014 0.0069 0.0130 0.0024 -0.0021 0.0083 -0.0030

(0.8875) (0.1961) (0.3121) (0.6599) (0.3778) (0.0622) (0.7065) (0.8283) (0.2249) (0.7663)
ψ0,1 -0.0607 0.0076 -0.0477 0.0540 -0.0321 -0.0371 -0.0472 -0.0793 -0.1049 -0.0650

(0.0290) (0.8091) (0.1381) (0.0618) (0.2606) (0.2410) (0.1462) (0.0025) (0.0007) (0.0247)
ψ1,1 -0.0108 -0.0044 -0.0035 -0.0037 0.0002 -0.0014 -0.0010 -0.0162 0.0051 -0.0178

(0.1166) (0.5447) (0.7039) (0.1716) (0.9733) (0.8567) (0.8980) (0.0320) (0.3988) (0.1328)
ω 0.0224 0.0298 0.0275 0.0602 0.0122 0.0265 0.2736 0.0170 0.0201 0.0399

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0245 0.0167 0.0259 0.0150 0.0157 0.0176 0.0154 0.0247 0.0280 0.0535

(0.0000) (0.0019) (0.0000) (0.0096) (0.0059) (0.0000) (0.0019) (0.0000) (0.0000) (0.0001)
λ 0.9382 0.9350 0.9186 0.9314 0.9370 0.9228 0.9262 0.9382 0.9279 0.8942

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0483 0.0668 0.0804 0.0827 0.0760 0.0924 0.0896 0.0536 0.0727 0.0476

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ML MX NL SG SK SP SW CH TW UK
α0 0.0008 0.0372 -0.3122 -0.3625 -0.0313 -0.3783 0.3342 -0.2761 0.0332 -0.3167

(0.9800) (0.6775) (0.0000) (0.0000) (0.5246) (0.0000) (0.0000) (0.0000) (0.4964) (0.0000)
α1 -0.0161 -0.0036 0.1702 0.1929 0.0041 0.2549 0.1457 0.1247 0.0077 0.1874

(0.6169) (0.9736) (0.0007) (0.0000) (0.9390) (0.0000) (0.0007) (0.0002) (0.8715) (0.0000)
θ0 0.0072 -0.0009 -0.0997 -0.1521 0.0067 -0.0735 -0.0883 -0.1684 -0.0041 -0.0637

(0.5924) (0.9654) (0.0000) (0.0000) (0.6023) (0.0000) (0.0000) (0.0030) (0.8097) (0.0009)
θ1 -0.0025 0.0133 0.1391 0.1752 0.0145 0.0958 0.1220 0.1790 -0.0015 0.0537

(0.7950) (0.4547) (0.0000) (0.0000) (0.3996) (0.0000) (0.0000) (0.0000) (0.9287) (0.0001)
ψ0,0 -0.0178 0.0372 -0.0917 -0.1256 -0.0228 -0.1895 0.0977 -0.0965 -0.0007 -0.1145

(0.5970) (0.2100) (0.0007) (0.0000) (0.3456) (0.0000) (0.0001) (0.0029) (0.9839) (0.0428)
ψ1,0 -0.0241 -0.0036 0.0017 -0.0040 -0.0025 0.0161 0.0027 -0.0045 -0.0097 0.0101

(0.0162) (0.4762) (0.7859) (0.6163) (0.3808) (0.0098) (0.6007) (0.7131) (0.0677) (0.2398)
ψ0,1 -0.0113 0.0558 -0.0280 -0.0872 -0.0175 -0.0383 -0.0167 -0.0458 0.0098 -0.0541

(0.6849) (0.0697) (0.3738) (0.0023) (0.6010) (0.2143) (0.5842) (0.1777) (0.7755) (0.3217)
ψ1,1 -0.0016 -0.0058 -0.0034 -0.0156 -0.0039 -0.0007 -0.0066 -0.0091 -0.0110 -0.0023

(0.5990) (0.2695) (0.6900) (0.0482) (0.4439) (0.9027) (0.2282) (0.5459) (0.0508) (0.3478)
ω 0.0063 0.0534 0.0225 0.0092 0.0260 0.0216 0.0307 0.0198 0.0209 0.0539

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0234 0.0024 0.0231 0.0310 0.0216 0.0116 0.0060 0.0345 0.0227 0.0236

(0.0000) (0.1538) (0.0002) (0.0001) (0.0013) (0.0000) (0.0034) (0.0059) (0.0002) (0.0002)
λ 0.9611 0.9088 0.9212 0.9400 0.9401 0.9356 0.9384 0.9218 0.9382 0.9349

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0351 0.1456 0.0878 0.0513 0.0612 0.0894 0.0859 0.0568 0.0653 0.0328

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1The table presents the estimates from the set of the following equations for the full sample period (20/6/2000 - 27/4/2016):

rt = α0Dt + α1(1 −Dt) + θ0Dtσ
2
t + θ1(1 −Dt)σ

2
t +Dt(ψ0,0 + ψ1,0σ

2
t )rt−1 + (1 −Dt)(ψ0,1 + ψ1,1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Dt is a dummy variable assuming the value of unity if a discount was forecast for the ETF for day t, zero otherwise. ETFs
apear in the table with the following abbreviations: AU (iShares MSCI Australia ETF), AT (iSharse MSCI Austria Capped
ETF), BE (iShares MSCI Belgium Capped ETF), BR (iShares MSCI Brazil Capped ETF), CA (iShares MSCI Canada ETF),
FR (iShares MSCI France ETF), DE (iShares MSCI Germany ETF), HK (iShares MSCI Hong Kong ETF), IT (iShares MSCI
Italy Capped ETF), JP (iShares MSCI Japan ETF), ML (iShares MSCI Malaysia ETF), MX (iShares MSCI Mexico Capped
ETF), NL (iShares MSCI Netherlands ETF), SG (iShares MSCI Singapore ETF), SK (iShares MSCI South Korea Capped ETF),
SP (iShares MSCI Spain Capped ETF), SW (iShares MSCI Sweden ETF), CH (iShares MSCI Switzerland ETF), TW (iShares
MSCI Taiwan ETF), UK(iShares MSCI United Kingdom ETF). Parentheses include p-values.

To test whether the results reported in Tables 2.2−2.4 hold when controlling for the outbreak of

the 2008 financial crisis, all of the above tests prior to (20/6/2000 -31/8/2008) and after (1/9/2008

- 27/4/2016) the crisis’ outbreak are repeated and it reports the results in Tables 2.5− 2.7. Table

2.5 and 2.6 present the estimates from the original Sentana and Wadhwani (1992) model (equation
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2.3.6) pre and post crisis’ outbreak, respectively. As the results indicate, feedback trading appears

scant within each of the two sub periods, significant positive feedback trading exists in only three

ETFs (iShares MSCI Malaysia ETF; iShares MSCI Singapore ETF; iShares MSCI Sweden ETF)

before and two (iShares MSCI Australia ETF; iShares MSCI Hong Kong ETF) after the crisis’ out-

break. Again here, the presence of feedback trading in country ETFs targeting Asia Pacific markets

is confirmed, with four of the above mentioned five ETFs investing in markets from that region.

Overall, the varying presence of feedback trading prior to and after the events of September 2008 is

in line with the results reported on emerging markets’ ETFs by Charteris et al. (2014) and confirms

prior evidence (Antoniou et al. (2005); Laopodis (2005); Schuppli and Bohl (2010); Chau and Dee-

somsak (2015)) on the sensitivity of feedback trading to periods characterized by different market

conditions. The presence of autocorrelation in the ETFs’ structure is also confirmed, yet, much like

with feedback trading, surfaces less frequently within each sub period (for six ETFs pre and five

post crisis); as for the structure of the ETFs’ volatility, it remains highly persistent and asymmetric

10 during both sub periods. Table 2.7 presents the results on the feedback coefficients (ψ1,0; ψ1,1)

form the tests conditioning feedback trading on the lagged/predicted discounts/premiums before

and after the crisis’ outbreak. Results suggest limited evidence in favour of feedback trading, the

latter being mostly detected among country ETFs targeting Asia Pacific markets.

10No asymmetry is detected for the volatility of the iShares MSCI Malaysia ETF pre crisis, as δ is found to be
significantly negative there.
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Table 2.5: Maximum likelihood estimation from the original Sentana and Wadhwani
(1992) pre crisis’ outbreak

AU AT BE BR CA FR DE HK IT JP
α 0.0387 0.1940 0.0207 0.0563 0.1365 0.0257 0.1070 0.0919 0.0390 -0.0023

(0.5844) (0.0326) (0.6449) (0.6092) (0.0431) (0.0563) (0.0354) (0.1424) (0.4716) (0.9642)
θ 0.0189 -0.0571 0.0242 0.0102 -0.0392 0.0212 -0.0171 -0.0190 0.0091 0.0146

(0.6437) (0.3030) (0.3677) (0.6368) (0.4502) (0.4708) (0.5482) (0.5353) (0.8223) (0.7401)
ψ0 0.0122 -0.0311 -0.1004 0.0893 0.0459 -0.0829 -0.0951 -0.0637 -0.1132 0.0262

(0.8265) (0.8167) (0.0040) (0.0774) (0.4316) (0.0479) (0.0174) (0.2303) (0.0138) (0.6709)
ψ1 -0.0318 -0.0258 0.0058 -0.0108 -0.0422 -0.0001 0.0034 -0.0244 -0.0049 -0.0413

(0.1094) (0.3251) (0.5903) (0.1162) (0.1884) (0.9927) (0.7703) (0.1602) (0.8287) (0.1740)
ω 0.0470 0.0760 0.0545 0.2273 0.0504 0.0237 0.0291 0.0190 0.0319 0.0209

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0041) (0.0000) (0.0050)
β 0.0085 0.0136 0.0019 -0.0009 0.0257 -0.0009 0.0205 0.0302 0.0131 0.0462

(0.5653) (0.0093) (0.1248) (0.9182) (0.0708) (0.9250) (0.0040) (0.0003) (0.1884) (0.0001)
λ 0.9297 0.9328 0.8906 0.9854 0.8983 0.9439 0.9287 0.9468 0.9232 0.9345

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0609 0.0700 0.1101 0.1173 0.0746 0.0775 0.0660 0.0285 0.0771 0.0161

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ML MX NL SG SK SP SW CH TW UK
α 0.0104 0.0673 0.0319 0.0009 0.1004 0.0822 0.0237 0.0727 0.0598 0.0946

(0.8609) (0.3192) (0.4637) (0.9889) (0.3105) (0.1350) (0.6837) (0.1322) (0.3418) (0.2389)
θ 0.0126 -0.0001 0.0045 0.0275 -0.0063 -0.0008 0.0151 -0.0127 -0.0090 -0.0058

(0.6931) (0.9980) (0.8713) (0.3851) (0.8062) (0.9822) (0.5173) (-0.0127) (0.5337) (0.8547)
ψ0 -0.0343 0.0542 0.0136 0.0206 -0.0267 -0.0829 -0.0372 -0.1329 -0.0410 -0.0568

(0.3994) (0.2624) (0.2471) (0.7167) (0.6626) (0.5148) (0.3673) (0.0008) (0.2670) (0.5789)
ψ1 -0.0268 -0.0164 -0.0068 -0.0524 -0.0070 -0.0289 -0.0251 0.0018 -0.0072 -0.0158

(0.0371) (0.2669) (0.6059) (0.0040) (0.5705) (0.6028) (0.0093) (0.9090) (0.1126) (0.5479)
ω 0.0080 0.1101 0.0229 0.0335 0.0583 0.0273 0.0355 0.0244 0.0398 0.0457

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0320 -0.0209 0.0012 0.0182 0.0260 0.0048 -0.0005 0.0241 0.0365 0.0180

(0.0000) (0.0649) (0.8905) (0.0979) (0.0084) (0.2720) (0.9643) (0.0595) (0.0002) (0.1690)
λ 0.9691 0.8907 0.9319 0.9379 0.9369 0.9383 0.9452 0.9271 0.9324 0.9457

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ -0.0076 0.1749 0.0876 0.0558 0.0458 0.0759 0.0780 0.0594 0.0494 0.0568

(0.0623) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0011) (0.0000) (0.0000)
1The table presents the estimates from the set of the following equations pre crisis’ outbreak (20/6/2000 - 31/8/2008):

rt = α+ θσ2
t + (ψ0 + ψ1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Table 2.6: Maximum likelihood estimation from the original Sentana and Wadhwani
(1992) model post crisis’ outbreak

AU AT BE BR CA FR DE HK IT JP
α -0.0302 -0.0373 0.0127 -0.0641 0.0058 -0.0357 -0.0235 0.0082 -0.0973 -0.0357

(0.4500) (0.4113) (0.7252) (0.2034) (0.8396) (0.4040) (0.5611) (0.8096) (0.1214) (0.3541)
θ 0.0007 0.0006 -0.0042 -0.0006 -0.0041 0.0076 0.0069 0.0047 0.0141 0.0232

(0.9610) (0.9642) (0.8044) (0.9571) (0.8077) (0.6010) (0.6161) (0.7780) (0.3693) (0.3232)
ψ0 0.0082 0.0285 -0.0301 0.0388 0.0252 -0.0519 -0.0129 0.0398 -0.0651 -0.506

(0.7692) (0.2999) (0.2539) (0.1659) (0.3587) (0.0891) (0.6487) (0.1391) (0.0690) (0.0897)
ψ1 -0.0059 -0.0027 -0.0004 -0.0016 -0.0016 -0.0017 -0.0041 -0.0110 -0.0008 -0.0101

(0.0822) (0.3755) (0.9163) (0.4544) (0.7483) (0.6979) (0.3890) (0.0092) (0.8646) (0.1332)
ω 0.0273 0.0344 0.0247 0.0343 0.0079 0.0453 0.0416 0.0378 0.1083 0.0842

(0.0000) (0.0000) (0.0000) (0.0003) (0.0022) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
β 0.0206 0.0275 0.0244 0.0114 0.0028 0.0237 0.0104 0.0263 0.0399 0.0324

(0.0338) (0.0010) (0.0065) (0.1449) (0.7569) (0.0074) (0.2155) (0.0003) (0.0000) (0.0003)
λ 0.9235 0.9350 0.9139 0.9452 0.9419 0.9019 0.9179 0.9004 0.8886 0.8449

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0939 0.0736 0.1057 0.0946 0.0990 0.1217 0.1128 0.1048 0.0918 0.1420

(0.0000) (0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000) (0.0309) (0.0000) (0.0000)

ML MX NL SG SK SP SW CH TW UK
α -0.0003 -0.0374 0.0032 -0.0252 -0.0456 -0.0955 -0.0522 .0098 0.0432 -0.0679

(0.9918) (0.2835) (0.9348) (0.3704) (0.2179) (0.1018) (0.2311) (0.7603) (0.4636) (0.1674)
θ 0.0026 0.0080 -0.0003 0.0010 0.0085 0.0130 0.0121 0.0046 0.0326 0.0057

(0.9086) (0.5588) (0.9855) (0.9484) (0.4426) (0.3886) (0.3196) (0.8299) (0.4045) (0.3789)
ψ0 -0.0277 0.0521 -0.0264 -0.0112 -0.0019 -0.0281 -0.0311 -0.0364 0.0735 -0.0179

(0.4243) (0.0667) (0.3291) (0.6692) (0.9472) (0.3869) (0.2803) (0.2052) (0.0871) (0.5439)
ψ1 -0.0010 -0.0018 -0.0047 -0.0069 -0.0027 -0.0019 -0.0032 -0.0088 -0.0336 -0.0018

(0.9245) (0.6501) (0.3050) (0.1304) (0.2917) (0.6400) (0.2955) (0.2177) (0.1054) (0.4279)
ω 0.0224 0.0271 0.0324 0.0095 0.0219 0.0842 0.0459 0.0245 0.0392 0.0569

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)
β 0.0144 -0.0125 0.0296 0.0095 0.0089 0.0306 -0.0357 0.0323 -0.0133 0.0158

(0.0963) (0.0649) (0.0048) (0.1783) (0.3041) (0.0002) (0.0034) (0.0007) (0.0550) (0.0579)
λ 0.9285 0.9313 0.9048 0.9407 0.9399 0.8961 0.9041 0.9075 0.9349 0.9459

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
δ 0.0927 0.1404 0.1089 0.0925 0.0860 0.1098 0.0966 0.0915 0.1047 0.0935

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1The table presents the estimates from the set of the following equations post crisis’ outbreak (1/9/2008 - 27/4/2016):

rt = α+ θσ2
t + (ψ0 + ψ1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1
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Table 2.7: Estimates from the feedback coefficients of the extended Sentana and Wad-
hwani (1992) model accounting for actual (lagged) and forecast premiums/discounts

Pre crisis’ outbreak Post crisis’ outbreak
ψ1,0 ψ1,1 ψ1,0 ψ1,1

Actual Forecast Actual Forecast Actual Forecast Actual Forecast
discount discount premium premium discount discount premium premium

iShares MSCI Australia ETF -0.0173 0.0732 -0.0375 -0.0095 -0.0099 0.0007 -0.0079 -0.0104
(0.6247) (0.0913) (0.3039) (0.7747) (0.0763) (0.9150) (0.1161) (0.1734)

iShares MSCI Austria Capped ETF 0.0322 -0.0164 -0.0884 0.0113 -0.0019 0.0032 -0.0052 -0.0062
(0.3661) (0.7002) (0.1802) (0.7600) (0.5985) (0.4397) (0.5391) (0.4221)

iShares MSCI Belgium Capped ETF 0.0320 0.0084 0.0038 0.0027 0.0038 0.0066 -0.0005 -0.0126
(0.0786) (0.5320) (0.8477) (0.9004) (0.4730) (0.4152) (0.9565) (0.2760)

iShares MSCI Brazil Capped ETF -0.0099 -0.0014 0.0008 -0.0186 -0.0019 -0.0003 -0.0024 -0.0031
(0.2805) (0.8430) (0.9534) (0.0761) (0.5627) (0.9348) (0.4306) (0.2904)

iShares MSCI Canada ETF -0.0441 0.0406 -0.0490 -0.0257 0.0025 0.0028 -0.0066 0.0017
(0.4292) (0.4399) (0.3146) (0.5091) (0.7683) (0.7556) (0.3458) (0.8175)

iShares MSCI France ETF -0.0040 0.0365 -0.0079 -0.0204 0.0022 0.0087 -0.0086 -0.0151
(0.8468) (0.0843) (0.7337) (0.4350) (0.7557) (0.2853) (0.2699) (0.1333)

iShares MSCI Germany ETF -0.0110 0.0142 0.1137 0.0078 0.0031 0.0011 -0.0097 -0.0051
(0.5305) (0.3944) (0.5509) (0.6203) (0.6586) (0.8753) (0.1857) (0.5943)

iShares MSCI Hong Kong ETF -0.0412 0.0011 -0.0199 0.0089 -0.0070 -0.0045 -0.0117 -0.0177
(0.1501) (0.9715) (0.4672) (0.7547) (0.3783) (0.6533) (0.0611) (0.0285)

iShares MSCI Italy Capped ETF -0.0657 0.0500 0.0512 0.0041 0.0064 0.0093 -0.0052 0.0010
(0.1055) (0.1603) (0.1625) (0.9109) (0.3689) (0.2544) (0.5188) (0.8738)

iShares MSCI Japan ETF 0.0064 0.0093 -0.0052 0.0010 -0.0109 -0.0050 -0.0044 -0.0103
(0.3689) (0.2544) (0.5188) (0.8738) (0.2634) (0.5839) (0.7966) (0.2755)

iShares MSCI Malaysia ETF 0.0140 -0.0007 -0.0007 -0.0338 -0.0313 -0.0284 -0.0012 -0.0010
(0.4918) (0.9649) (0.9868) (0.3025) (0.0476) (0.0807) (0.9245) (0.9401)

iShares MSCI Mexico Capped ETF -0.0155 -0.0168 -0.0166 -0.0246 -0.0007 0.0016 -0.0049 -0.0045
(0.4566) (0.4325) (0.5048) (0.3663) (0.8910) (0.7806) (0.5819) (0.4677)

iShares MSCI Netherlands ETF -0.0150 -0.0085 -0.0026 0.0048 -0.0022 0.0028 -0.0082 -0.0275
(0.4641) (0.6645) (0.8848) (0.8104) (0.7482) (0.7789) (0.3536) (0.4279)

iShares MSCI Singapore ETF -0.0922 -0.0507 -0.0306 -0.0695 -0.0055 -0.0047 -0.0050 -0.0143
(0.0062) (0.1356) (0.2732) (0.0419) (0.4777) (0.5735) (0.5283) (0.1070)

iShares MSCI South Korea Capped ETF -0.0001 -0.0046 -0.0040 -0.0205 -0.0194 -0.0022 -0.0536 -0.0029
(0.9945) (0.8027) (0.7552) (0.2719) (0.3608) (0.4798) (0.0532) (0.5559)

iShares MSCI Spain Capped ETF -0.0414 0.0081 -0.0016 -0.0338 -0.0036 0.0102 -0.0091 -0.0120
(0.2734) (0.8141) (0.9593) (0.2021) (0.6066) (0.1725) (0.2374) (0.1815)

iShares MSCI Sweden ETF -0.0242 -0.0300 -0.0231 -0.0227 -0.0009 0.0046 -0.0021 -0.0065
(0.1241) (0.1335) (0.0918) (0.1060) (0.8369) (0.3723) (0.6628) (0.2768)

iShares MSCI Switzerland Capped ETF 0.0085 -0.0216 0.0283 -0.0062 0.0006 0.0023 -0.0076 -0.0230
(0.7133) (0.3921) (0.3105) (0.8295) (0.9626) (0.8669) (0.5681) (0.1639)

iShares MSCI Taiwan ETF -0.0106 -0.0171 -0.0084 -0.0038 -0.0039 -0.0064 -0.0144 -0.0119
(0.4263) (0.2220) (0.4331) (0.7465) (0.5629) (0.2826) (0.0569) (0.0642)

iShares MSCI United Kingdom ETF -0.0210 0.0246 0.1269 0.0097 0.0028 0.0046 -0.0047 -0.0068
(0.5987) (0.3589) (0.5985) (0.6298) (0.6035) (0.8309) (0.1907) (0.5097)

1The table presents the feedback coefficient estimates when feedback trading is conditioned upon actual lagged/forecast (ψ1,0) and premiums (ψ1,1) based on
estimates from the following set of equations before(20/6/2000 - 31/8/2008) and after the crisis’ outbreak (1/9/2008 - 27/4/2016):
Actual(lagged) premiums/discounts:

rt = α0Dt−1 + α1(1 −Dt−1) + θ0Dt−1σ
2
t + θ1(1 −Dt−1)σ2

t +Dt−1(ψ0,0 + ψ1,0σ
2
t )rt−1 + (1 −Dt−1)(ψ0,1 + ψ1,1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Forecast premiums/discounts

rt = α0Dt + α1(1 −Dt) + θ0Dtσ
2
t + θ1(1 −Dt)σ

2
t +Dt(ψ0,0 + ψ1,0σ

2
t )rt−1 + (1 −Dt)(ψ0,1 + ψ1,1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Parentheses include p-values.

As an additional robustness test, it assessed the effect of various lagged (forecast) premium11

and discount12 levels over feedback trading by setting the variable Dt−1(Dt) equal to one for each

of these levels in equation 2.3.7(2.3.16) and re-estimating it for the full sample period and the two

sub periods (pre-/post-crisis). The estimates reveal the presence of positive feedback trading across

11The premium-levels tested for are: +25%; +0.5%; +0.75%
12The discount-levels tested for are: -0.25%; -0.5%; -0.75%
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several premium/discount levels for country ETFs targeting Asia Pacific markets (particularly for

the full sample period and post crisis’ outbreak), while several ETFs targeting European markets

also furnished us with evidence of (positive and negative) feedback trading.

Overall, this study has shown that feedback traders are active in several US-listed country

ETFs, with their presence being sensitive to the time period examined and the sign and level of

the (observed and forecast) percentage deviations of each ETF’s price from its NAV. The fact that

country ETFs targeting Asia Pacific markets are some susceptible to feedback trading, both in its

conditional and unconditional versions, raises interesting issues for those investing in these ETFs.

Considering the relatively limited evidence of feedback trading for country ETFs targeting markets

with complete or partial overlap of trading sessions with the US, it is likely that the time difference

involved contributes to this. US investors of ETFs targeting Asia Pacific markets are faced with

a non-synchronicity of these ETFs’ prices with their NAVs as these ETFs never trade real-time

with their underlying benchmarks: they begin their trading in the US with their NAV of the day

already known. Although it is possible that this foments feedback tendencies among their clientele,

the validity of the latter can only be confirmed using real-time micro data.

An issue of interest to country ETFs’ investors, however, that we can examine in the context

of this study, is whether there exists a relationship between successful predictions of these ETFs’

premiums/discounts and their feedback trading. If, for example, successfully predicted discounts

in an ETF are accompanied by significant positive feedback trading, this would suggest that the

predictive model (in this case, the Ornstein-Uhlenbeck process) is capable of, indirectly, offering

insight into that ETF’s trading dynamics as well. This is a rather interesting issue and, to that

end, the dummy Dt in equation 2.3.16 is set to equal to 1 for those days when the predicted sign
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of the ETF’s percentage price deviation from its NAV equals the actual one13, zero otherwise, and

estimate the equation for all twenty ETFs for the full sample period, prior to and after the crisis’

outbreak. Results from the feedback coefficients of interest (ψ1,1;ψ1,1) are presented in Table 2.8

and indicate that successful premium/discount predictions are accompanied by signifiant feedback

trading on very few occasions: ψ1,0 is significantly positive for the iShares MSCI Belgium Capped

ETF for the full sample period and significantly negative for the iShares MSCI Austria Capped ETF

pre crisis’ outbreak, the iShares MSCI Singapore ETF pre crisis’ outbreak and the iShares Taiwan

ETF for the full sample period. The significance of ψ1,1 (reflective of unsuccessful predictions) is

linked with more (eight) cases of feedback trading significance, while the majority of coefficients

reported in Table 2.8 are insignificant, thus showcasing the absence of a widespread relationship

between between successful predications of country ETFs’ premium/discounts and their feedback

trading.

2.5 Conclusion

This study investigate whether feedback traders are active in US-listed country ETFs and whether

their presence is affected by the significant premiums and discounts that have been documented

for these ETFs in the literature. Drawing on a sample of twenty ETFs from that category for

the 2000-2016 period it reports significant feedback trading for several of them, with its presence

varying with these ETFs’ observed/forecast premiums/discounts and the level of the latter, as well

as before and after the 2008 crisis’ outbreak. Country ETFs targeting Asia Pacific markets are

found to be more prone to feedback trading (compared to those targeting European and Latin

American markets) and it has been discussed how this might be related to the noise trading often

13This is the case when the Ornstein-Uhlenbeck process predicts a discoun (premium) for the day t and the ETF
posts a discount (premium) on day t
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encountered in these markets, as well as the non-synchronicity in trading times between them and

their underlying benchmarks.

The previously cited study Charteris et al. (2014) is a precursor to the present work and a

strong motivation for the present study. This study differs from Charteris et al. (2014) in the data

employed. A much larger sample of country ETFs is taken, both emerging markets and developed

markets. Also, an OU process is used to model the premium/discount process. A test on the

impact of the magnitude of the lagged returns was initially carried out for the emerging markets

sample only. But, as this is not the main focus of the study and the amount of data is considerable,

this was left for future research. We add to Charteris et al. (2014) among other by comparing

emerging and developed markets.

From a research perspective these findings bear important implications, as they offer novel

insights into country ETFs’ trading activity, by demonstrating how these ETFs’ extensively docu-

mented wide premiums and discounts can be related to feedback trading. The evidence presented

here is also of key relevance to investors, particularly those focusing on country ETFs, as it could

be used to inform their trading strategies, by prompting them to utilize the relationship between

feedback trading and country ETFs’ premiums/discounts when trading those ETFs
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Table 2.8: Estimates from the feedback coefficients of the extended Sentana and Wad-
hwani (1992) model accounting for successful premiums/discounts forecast

Full Period Pre crisis’ outbreak Post crisis’ outbreak
ψ1,0 ψ1,1 ψ1,0 ψ1,1 ψ1,0 ψ1,1

iShares MSCI Australia ETF 0.0037 -0.0076 0.0320 -0.0202 0.0008 -0.0071
(0.5266) (0.1101) (0.3432) (0.5102) (0.8939) (0.1294)

iShares MSCI Austria Capped ETF -0.0002 -0.0034 -0.0793 0.1293 0.0001 -0.0059
(0.9575) (0.5496) (0.0315) (0.0139) (0.9857) (0.3252)

iShares MSCI Belgium Capped ETF 0.0099 -0.0060 0.0152 0.0103 0.0071 -0.0092
(0.0929) (0.4033) (0.3352) (0.5828) (0.3579) (0.2495)

iShares MSCI Brazil Capped ETF -0.0019 -0.0040 -0.0073 -0.0141 -0.0009 -0.0023
(0.6275) (0.1338) (0.4052) (0.1825) (0.8259) (0.4115)

iShares MSCI Canada -0.0027 0.0005 -0.0133 -0.0247 0.0021 -0.0001
(0.7254) (0.9345) (0.7926) (0.5337) (0.7838) (0.9843)

iShares MSCI France ETF 0.0091 -0.0032 0.0005 0.0040 0.0093 -0.0047
(0.2978) (0.5627) (0.9794) (0.8672) (0.3539) (0.4131)

iShares MSCI Germany ETF 0.0043 -0.0035 -0.0011 0.0094 0.0057 -0.0064
(0.5812) (0.5542) (0.9461) (0.6171) (0.5129) (0.2966)

iShares MSCI Hong Kong ETF -0.0084 -0.0104 -0.0153 -0.0015 -0.0092 -0.0114
(0.1725) (0.1123) (0.5503) (0.9583) (0.1898) (0.0922)

iShares MSCI Italy Capped ETF -0.0013 0.0062 -0.0104 0.0128 -0.0049 0.0052
(0.8517) (0.2337) (0.7887) (0.6646) (0.5184) (0.3735)

iShares MSCI Japan ETF -0.0134 -0.0041 -0.0470 0.0073 0.0164 -0.0004
(0.2498) (0.6769) (0.2866) (0.8641) (0.1774) (0.9962)

iShares MSCI Malaysia ETF -0.0192 -0.0374 0.0017 -0.0463 -0.0023 -0.0409
(0.1536) (0.0379) (0.9399) (0.1134) (0.8653) (0.0938)

iShares MSCI Mexico Capped ETF -0.0018 -0.0062 -0.0169 -0.0120 0.0034 -0.0052
(0.7313) (0.2380) (0.3844) (0.5533) (0.6044) (0.3568)

iShares MSCI Netherlands ETF -0.0002 -0.0047 -0.0040 -0.0040 -0.0021 -0.0050
(0.9743) (0.4531) (0.8588) (0.8253) (0.7773) (0.4610)

iShares MSCI Singapore ETF -0.0091 -0.0048 -0.0642 -0.0650 -0.0066 -0.0051
(0.1848) (0.4626) (0.0133) (0.0707) (0.3871) (0.4514)

iShares MSCI South Korea Capped ETF -0.0017 -0.0036 -0.0072 -0.0039 -0.0005 -0.0046
(0.5956) (0.3959) (0.6479) (0.8397) (0.8704) (0.3011)

iShares MSCI Spain Capped ETF 0.0013 0.0014 -0.0344 -0.0139 0.0005 0.0014
(0.8349) (0.7882) (0.2290) (0.6832) (0.9445) (0.7928)

iShares MSCI Sweden ETF -0.0022 -0.0074 -0.0108 -0.0218 0.0016 -0.0069
(0.8787) (0.0625) (0.5012) (0.0936) (0.7797) (0.1009)

iShares MSCI Switzerland Capped ETF 0.0074 -0.0512 -0.0041 0.0316 0.0094 -0.0233
(0.4897) (0.1467) (0.8294) (0.2489) (0.4728) (0.0207)

iShares MSCI Taiwan ETF -0.0133 -0.0075 -0.0094 -0.0057 -0.0199 -0.0489
(0.0334) (0.1491) (0.1884) (0.3655) (0.4563) (0.1218)

iShares MSCI United Kingdom ETF 0.0057 -0.0078 -0.0036 0.0089 0.0059 -0.0069
(0.5983) (0.5087) (0.9891) (0.6398) (0.5109) (0.2590)

1The table presents the feedback coefficient estimates from the set of following equations for the full sample period (20/6/2000 - 27/4/2016), before (20/6/2000 -
31/8/2008) and after the crisis’ outbreak (1/9/2008 - 27/4/2016):

rt = α0Dt + α1(1 −Dt) + θ0Dtσ
2
t + θ1(1 −Dt)σ

2
t +Dt9(ψ0,0 + ψ1,0σ

2
t )rt−1 + (1 −Dt)(ψ0,1 + ψ1,1σ

2
t )rt−1 + εt,

σ2
t = ω + βε2t−1 + λσ2

t−1 + δIt−1ε
2
t−1

Dt is a dummy variable assuming the value of unity in the predicted sign of the ETF’s percentage price deviation from its NAV for day t, equals the actual one,
zero otherwise. Parentheses include p-values.
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Chapter 3

Forecasting and Trading high
Frequency Volatility on Large Index

3.1 Introduction

Volatility plays central roles in asset pricing and allocation, and in risk management, e.g. value-at-

risk and expected shortfall. Modelling and forecasting volatility is important for econometricians,

statisticians and practitioners, and for that reason it has gained much interest in the financial and

economic literature, however the application of traditional Generalized AutoRegressive Conditional

Heteroskedasticity (GARCH) and Stochastic Volatility (SV) models are not appropriately suited

for applications where high frequency data has been used. In response to the increasing availability

of those financial data, Andersen and Bollerslev (1998) proposed that the daily volatility, which is

normally treated as a latent variable in various parametric models, now can be approximated using

intraday data, and their new measure was called Realized Volatility (RV).

Undoubtedly, high frequency data contains more information of the daily transaction, and are

useful not only in measuring volatility, but also in direct model estimation and forecast evaluation,

therefore, by increasing the sampling frequency, the RV is considered as a very good proxy of the true

volatility under the assumption of no market microstructure noise. However, a higher frequency

leads inevitably to a larger microstructure noise, thus Hansen and Lunde (2006) suggested a 5-
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min sampling frequency which is now commonly used to compute RV in order to trade off the

bias-variance problem.

Many recent studies focusing on high frequency data evaluate the performance of various models

of RV. The parametric model termed Heterogeneous AutoRegressive model of Realized Volatility

(HAR-RV) is the commonly used for prediction of RV, which has a simple structure and also

considers the long memory property. Additionally, an alternative model which allowing jumps or

discontinuities in the estimation of RV is proposed by Andersen et al. (2007a), which referred as

HAR-RV-J in this thesis. Their empirical studies show that incorporating the jumps to the HAR

model increase the accuracy of forecasting performance.

The HAR families have been developed to capture certain features of volatility, however, the

errors in prediction by using the parametric models are often argued by researchers. This is be-

cause the linear models are often based on certain distribution assumptions and the microstructure

noise can arise by bid-ask bounce, asynchronous trading, and price discreteness (Barunik and

Krehlik (2016)). Artificial Neural Network (ANN) models offer a potential improvement to earlier

approaches because ANNs have the ability to tolerate data with errors and also find nonlinear

associations between the parameters of the model.

This chapter compares the HAR-RV-J with a Recurrent Neural Network (RNN) and the hybrid

HAR-RV-J-RNN model to forecast volatility, thereby analysing the forecastability. The applica-

tion of machine learning is increasing in the volatility literature, however the studies also on hybrid

models which incorporate parametric model and neural network by using high frequency data are

limited, therefore this study is also contributed on this gap. What is more, most of the published

papers evaluate the volatility forecasting performance of certain models by using traditional statis-
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tical accuracy criteria, e.g. mean square error, mean absolute error and mean absolute percentage

error. However, the practitioners select appropriate models base on financial rather than statistical

criteria. Therefore, the intuitively appealing idea of this chapter is to investigate the power of

forecasting models from both a statistical and economic point of view. In order to do so, a realistic

volatility trading strategy is applied by using the first volatility futures ETNs to be issued were

Barclays iPath S&P 500 VIX short-term (Ticker: VXX), launched at the beginning of 2009, which

tracks the performance of S&P 500 VIX short-term futures index. To the best of our knowledge,

this is the first attempt to apply this trading strategy based on the new approach of volatility

forecasting for high frequency data.

This chapter is organised as follows. The Section 3.2 gives a brief literature on volatility

modelling, forecasting and trading. The Section 3.3 discusses the volatility forecasting models

including HAR-RV-J, RNN, and hybrid models. The Section 3.4 presents dataset employed in the

empirical study. The Section 3.5 compares the estimation and forecasting results of the models and

also introduces the volatility trading strategies. Moreover, it provides detailed trading results and

the discussion of their applications. Section 3.6 concludes the whole discussion.

3.2 Literature Research

The development of volatility research has had at least three notable stages. The first stage is

GARCH model which was proposed by Bollerslev (1986), see also Bollerslev et al. (1994) and

Engle and Patton (2001). The second stage is the so called SV model which contributed to the

contemporaneous development in Bayesian statistical analysis using the Markov Chain Monte Carlo

procedure, see Taylor (1986) and Harvey et al. (1994), also the recent work of Lux and Moreles-Arias

(2013). The third stage was followed by the work of Andersen and Bollerslev (1998) and Barndorff-
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Nielsen and Shephard (2001), who proposed the use of the sum of the squared intradaily returns

at different sampling frequencies as a proxy measure for the corresponding daily volatility. This

measure provides a consistent estimator of the latent volatility under an ideal market condition.

Barndorff-Nielsen and Shephard (2002a), Andersen et al. (2003) among others, have established

some theoretical foundations for RV construction via high frequency data.

Since GARCH-type models were constructed to describe daily data, in high-frequency data

environment, they are not suitable to solve this problem. Hansen et al. (2012) considered the so

called realized GARCH (RGARCH) model by introducing a measure function to link the latent

variances to realized volatility. HAR model became widely used to forecast realized volatility

because this model easily capture the long memory property in contrast to RGARCH model.

Andersen et al. (2007a) built on the theoretical results of realized variation measures constructed

from high frequency returns by involving the so called bipower variation measures. Their study

pointed out that volatility jump component is essential and significant jumps were associated with

specific macroeconomic news announcements; see also the recent work of Borovkova and Mahakena

(2015). In this context, Corsi (2009) found that HAR-RV model is able to reproduce the same

volatility persistence observed in the empirical data as well as many from the other main stylized

facts of financial data, in spite of its simplicity and the fact that it does not formally belong to the

class of long-memory models.

Following Andersen’s and his co-authors’ works, Celik and Ergin (2014) found that the hetero-

geneous autoregressive model allowing for discontinuities was the best among high frequency based

on the volatility forecasting models. They use Turkey index futures data and proved the superiority

of high frequency data based volatility forecasting model over traditional GARCH model. More-
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over, Papavassiliou (2016) confirmed the significance of discontinuous jumps in forecasting volatility

by studying individual stocks and demonstrated the importance of using high frequency data in

model-free, non-parametric financial econometric procedures. For detailed analysis of dynamics of

jumps can also be found in Fan and Wang (2007); Lee and Hannig (2010); Lee (2012); Prokopczuk

et al. (2015); Borovkova and Mahakena (2015); Boudt and Zhang (2015); Sevi (2014); Bajgrowicz

et al. (2016), among others.

Linear models, which are based on restrictive distribution assumptions, have been developed

to capture certain properties of volatility, however, changes in market conditions and many mir-

costructure noise lead to complex patterns which cannot be captured. Other tools used in the

study of return volatility are ANNs. The application of ANNs to modelling economic conditions

has been expanding rapidly the last decades, see for instance Dunis and Huang (2002); Bildirici

and Ersin (2009); Hajizadeh et al. (2012); Kotkatvuori-Ornberg (2016). Recent studies on stock

markets price forecast using ANNs can also be found by Jammazi and Aloui (2012); Panella et

al. (2012); Papadimitriou et al. (2014), among others. Kristjanpoller and Minutolo (2015) applied

a hybrid ANN-GARCH model to forecast the gold price volatility and concluded that the overall

forecasting performance was improved as compared to a GARCH method alone. However, their

study focused on daily returns for forecasting the daily volatility, and used daily squared returns

which are calculated from closing prices and therefore cannot capture price fluctuations during

day. In high-frequency data context, Barunik and Krehlik (2016) proposed an ANN approach that

incorporates realized measures with generalised regression to capture the complex patterns hidden

in linear models, and evaluated multiple-step-ahead volatility forecasts of energy markets using sev-

eral popular high frequency measures and forecasting models, concluding that this newly proposed
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methodology yields both statistical and economic gains.

However, it seems that in the literature most papers evaluate forecasting performance by using

traditional statistical accuracy criteria, seldom has applied the forecasting results to volatility

products trading. Since the financial crisis exchange-traded products have been developed rapidly

and become more popular among investors. Carr and Lee (2009) provided an extensive literature

on volatility derivatives. Zhang et al. (2010) explored the relationship between the VIX index and

VIX futures and showed that the VIX and VIX futures are high correlated by establishing a mean-

reverting variance model. The study of Fassas and Siriopoulos (2012) showed that VIX futures

prices can be used as an efficient and unbiased estimator for the spot VIX. More recently, Alexander

et al. (2015) overviewed the recent developments in the volatility exchange-traded products that

are related to implied volatility.

To summarise, the ANN models continue to provide more accurate forecasting performance,

nonetheless, there are still room for improving upon the existing models. In the following sections,

the specific methodology is presented and empirical data are used to test the model.

3.3 Methodology

3.3.1 The HAR-RV-J Model

We consider an n-dimensional price process defined on a complete probability space, (Ω,F , P ),

evolving in continuous time over the interval [0, T ], where T denotes a positive integer. Following

closely the setup of Andersen et al. (2003, 2007a)’s work, let pt denote a logarithmic asset price

at time t, and incorporating also the theoretical framework of Back (1991), the continuous-time

semimartingale jump diffusion process used in asset pricing is as follows:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T, (3.3.1)
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where µ(t) is a continuous and locally bounded variation process, σ(t) is a positive and cadlag

stochastic volatility process, W (t) is a standard Brownian motion, q(t) a counting process with

dq(t) = 1 corresponding to a jump at time t and dq(t) = 0 otherwise with jump intensity λ(t),

and κ(t) refers the size of the corresponding discrete jumps in the logarithmic price process. The

quadratic variation for the cumulative return process, r(t) = p(t)− p(0), is given by:

[r, r]t =

∫ t

0
σ2(s)ds+

∑
0<s≤t

κ2(s). (3.3.2)

In the absence of jumps, the quadratic variation [r, r]t is equal to integrated volatility
∫ t
0 σ

2(s)ds,

see Andersen and Bollerslev (1998); Andersen et al. (2001, 2003, 2006); Barndorff-Nielsen and

Shephard (2001, 2002a,b).

Let denote the sampled δ−period returns rt,δ = p(t) − p(t − δ), then define the daily RV by

summing the corresponding 1/δ high frequency intradaily squared returns:

RVt+1(δ) =

1/δ∑
j=1

r2t+j∗δ,δ. (3.3.3)

By the theory of quadratic variation, see Back (1991); Andersen et al. (2003), the realized

variation converges uniformly in probability to the increment of the quadratic variation process as

the sampling frequency of the underlying returns go to infinity, that is

RVt+1(δ) ∼
∫ t+1

t
σ2(s)ds+

∑
t<s≤t+1

κ2(s). (3.3.4)

Thus, in the absence of jumps the realized variation is consistent for the integrated volatility.

However, in order to separate the continuous variation and jump components, Barndorff-Nielsen

and Shephard (2004) proposed the Bipower Variation (BV), which is defined as follows:

BVt+1(δ) =
2

π

1/δ∑
j=2

|rt+j∗δ,δ||rt+(j−1)∗δ,δ|. (3.3.5)
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As δ ∼ 0, it is possible to see that:

BVt+1(δ) ∼
∫ t+1

t
σ2sds. (3.3.6)

Combining the results in Eqs. (3.3.4) and (3.3.5), the contribution to the quadratic variation

process due to jumps in the underlying process can be estimated by:

RVt+1(δ)−BVt+1(δ) ∼
∑

t<s≤t+1

κ2(s). (3.3.7)

To prevent the right hand-side of Eq. (3.3.7) from becoming negative, Andersen et al. (2007a)

imposed non-negativity truncation on the jump measurements:

Jt+1(δ) = max[RVt+1(δ)−BVt+1(δ), 0]. (3.3.8)

HAR-RV model is introduced by Corsi (2009), and it can be expressed as:

RVt+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt+1, (3.3.9)

t = 1, 2, . . . , T . RVt, RVt−5 and RVt−22 mark daily, weekly (5 business days) and monthly (22

business days) RV, respectively. Weekly and monthly RV is calculated as: RVt,t+h = h−1[RVt+1 +

RVt+2 + ... + RVt+h], h = 1, 2, . . . . Andersen et al. (2007a) proposed the new HAR-RV-J model,

in which included the jump components. Daily HAR-RV-J model is expressed as:

RVt,t+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + βJJt + εt,t+1. (3.3.10)

Logarithmic and standard deviation form of HAR-RV-J model is given by:

(RVt,t+1)
1/2 = β0 + βD(RVt)

1/2 + βW (RVt−5,t)
1/2 + βM (RVt−22,t)

1/2 + βJ(Jt)
1/2 + εt,t+1, (3.3.11)

and

log(RVt,t+1) = β0+βDlog(RVt)+βW log(RVt−5,t)+βM log(RVt−22,t)+βJ log(Jt+1)+εt,t+1. (3.3.12)
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3.3.2 Recurrent Neural Networks

ANNs are a powerful non-parametric tool used for signal filtering, recognition of patterns and inter-

polation, also, can tolerate data with errors and find nonlinear associations between the parameters

of the model, see Haykin (2007); Kristjanpoller et al. (2014); Kristjanpoller and Minutolo (2015).

In particular, as we discussed it in Section 3.2, ANNs have been applied with increasing success to

economic and financial forecasting. Most of econometric models are developed by capturing spe-

cific features of time-series, e.g. long memory, or making an assumption of functional relationship

among variables, the major advantages of ANNs is that they contain nonlinearities and incorporate

all variables.

Briefly speaking, see also Haykin (2007) among other classical books, each neural network

connects a group of input variables {x1, x2, . . . } with one or more output variables {y1, y2, . . . }

and zero, one or more hidden layers. Neurons are connected between the layers for connections

that are activated by reaching a threshold. Each layers can have a different number of neurons. A

series of weight vectors {wi,j , w2,j , . . . , wn,j} is associated with the input vectors, each node may

additionally have also a bias input θj , thus the actual outputs of the neurons in the hidden layer

is:

yi = sigmoid[
n∑
i=1

xi ∗ wi,j − θj ],

and sigmoid is the sigmoid activation function f(x) = sigmoid(x) = 1
1+e−x .

In this thesis it uses Recurrent Neural Network (RNN) models which were introduced by Elman

(1990), see also an application of RNNs in currency trading by Dunis and Huang (2002). Their

only difference from multilayer neural network is that they include a loop back from one layer,

either the output or the intermediate layer or the input layer. Figure 3.1 shows a single output
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Figure 3.1: Single output Recurrent Neural Network (RNN) model with one hidden layer

RNN model with one hidden layer and two hidden nodes.

When using ANN, generally, we have to carefully consider the topic of data pre-processing. In-

deed, for most ANN the output is limited due to the squashing function being either the hyperbolic

tangent or the logistic function. These two sigmoid squashing functions as mentioned above are the

most commonly used. While the hyperbolic tangent leads to an output in the interval ] − 1,+1[,

the logistic function has an output in the interval ]0,+1[. In the empirical application in this thesis,

it chooses the latter one, the logistic function that is better adapted to the output domain of the

numbers it analyses.

However, the generated data is typically relatively small compared to unity. The typical order

of magnitude is between 10−5 and 10−4, see Table 3.1. In this case, a simple linear transformation

is advised that makes better use of the available output range of the logistic function. To achieve

this, we simply multiply all data with 103 for the linear HAR-RV-J model inputs. As it also trains

ANN on the logarithmic deviation of the HAR-RV-J model a slightly different approach is needed.

Indeed, the logarithmic transformation will generate data in the range [−14,−5], see Table 3.1.

This also has to be transformed. An appropriate scaling factor is given by 5 × 10−2 with a shift

of +1. This simple linear transformation does not change the basic interpretation of the data but

45



makes it easier to be learned by an ANN.

The inputs to the RNN model are the same as to the linear model to allow a fair comparison.

That is, the three RV and one jump inputs are included. Also, the question is to the meta-

parameters of the neural network that have to be addressed, specifically, the size of the hidden layer

and the exact architecture. Determining the number of hidden neurons is often left to experiment,

and no single dominant method has emerged. However, taking twice the geometric mean of the

input and output layer size is an often used heuristic. Therefore in all of RNN models the number

of hidden neurons h is determined in the following way:

h = 2×
√
i× o, (3.3.13)

where i and o refer to the size of the input and output layer, respectively. Note, that in the case of

the input layer we do not take the bias neuron into account.

Upto this point the RNN looks very similar to a standard three-layer perception. However,

storing the output in a separate state layer and feeding this back into the hidden layer makes the

network state aware. Therefore, when evaluating the network, we have to be careful to store the

present state and to carry out any evaluation in sequential order of time. As the rolling-window

approach includes just one forecast per model, there is not much potential for confusion in our

specific application. Each model is trained on the rolling-window and then immediately used for

the corresponding forecast horizon. However, if the network has to be reused for several forecasts,

then this issue has to be considered. For example, if network training times were much longer, it

might make sense not to train a new model every day. In this latter case it is compulsory to store

the network state for later reuse.

The training of ANN is a topic that has been discussed intensely. The architecture of a neural
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network makes it computationally efficient and straightforward to compute the partial derivatives

of the error with respect to the network’s weights. Therefore, algorithms that make use of partial

derivatives can be used. This includes, for example, simple gradient descent and its variations.

However, computing the Hesse matrix of second order partial derivatives is much less straight-

forward and computationally intensive. Therefore, pure Newton methods are generally avoided.

However, quasi-Newton methods can be used instead. In the case of the training of an ANN our

goal is twofold. On the one hand, of course, we want to decrease the error. On the other hand,

however, we also strive at achieving a robust model. Therefore, the weight set that leads to the

absolute smallest error is not necessarily the one to be preferred, if it is just a lone minimum in a

steep valley. Rather, we would prefer minima where the neighbouring values also lead to decent

results. In the present case, all of the networks are trained using resilient backpropagation, where

it only considers the sign of the first partial derivative. This, generally, leads to a robust result.

3.3.3 Hybrid Model

The hybrid model is also designed as an RNN. However, as an additional input the forecast of the

linear model are fed to the RNN. The four basic inputs are kept. Thus, the total number of inputs

rises to five in the case of the hybrid model.

All other model parameters are kept the same. Specifically, the number of hidden neurons is

determined as above. Also, the model architecture stays identical.

The motivation of using a hybrid model stems from the desire to use each model in a way that

exploits its specific abilities. By feeding the linear forecast to the RNN it potentially removes any

linear component from the forecasting task. This should leave more room for better matching the

non-linear residual of the linear forecast error.

47



3.4 Data

The base dataset consists of tick data from Thomson Reuters Tick History (TRTH) for the S&P500

index that starts on the January, 2nd, 1996 upto June, 2nd, 2016. For the reason it has been

mentioned in Section 3.1, see Hansen and Lunde (2006), initially we aggregate it to 5 minutes data.

Thus, intraday RV is computed based on these 5 minutes blocks. To filter out any half-holidays, it

requires that a trading day has to have a complete history of data from 10am to 3.55pm in order

to be included in our computation. The regular trading hours for the index are 9.30am to 4pm.

However, as is commonly done, it excludes the first half hour of trading and the very last five

minute interval of the regular trading session to avoid any bias that may be caused by the price

determination process at the beginning of the trading day or by any rebalancing trades towards

the end of the session.

Of course, it is necessary to strike a balance between unwanted noise and making best use of

the intraday data. The specific cut-off times are debatable. However, the preliminary experiments

showed that the above procedure produced sensible results.

The tick data series from TRTH for the SPY ETF, the VIX index and the VXX ETN start on

March, 20th, 1996, January, 2nd, 1996, and January, 30th, 2009, respectively. Among these, only

the VXX series starts much later, simply, because the corresponding ETN was introduced only in

2009.

3.5 Empirical Results

Table 3.1 summarizes the distributional properties of RV and jump series. It is evident that the

realized volatility and jump are highly significant serial correlation. This can be confirmed by the

Ljung and Box (1978) statistics for up to tenth-order serial correlation. Variables have kurtosis
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greater than 3 indicating leptokurtic distribution, the distribution of logarithmic transformation

of RV are closer to normal than RV and standard deviation form of RV. This finding is consistent

with the study of Andersen et al. (2007a). Figure 3.2 provides a visual illustration of RV and jumps

for S&P500. Also consistent with earlier evidence of Andersen et al. (2007a), many of the largest

realized volatility are directly associated jumps in the underlying price process. The largest jump

occurred around 2008 when global financial crisis broke out. In the following it presents statistical

analysis of various models, it is expected the modelling to yield insight into the actual tradeability

of volatility with readily available products.

All computations are rather straightforward and can be carried out in acceptable time on a lap-

top. Our machine is a Lenovo Thinkpad W530 with an Intel Quad Core i7-3720QM CPU, running

at 3.6GHz, with 6MB Level 3 cache, and 1600MHz FSB. Due to the generally fast computation no

care was taken to parallelize the computation. Therefore, in the end, only one core was used for

all computations. As it computes daily updated rolling-window forecasts a single run through the

dataset produces 4448 single models to cover a timespan of approximately 18 years. Two years have

to be removed to account for the maximum lookback. For each of the 4448 models three variants

have to be computed for the linear model, RNN, and hybrid model. Both again are computed using

the basic variant and the log variant. Each model finally is computed for five different lookbacks

and three different forecast horizons. In total this leads to 4448× 3× 2× 5× 3 = 400320 different

models that are computed. Or, put differently, for each of our three model types 133440 models are

computed. This may sound like a lot, however all our models are comparatively small by today’s

standards and can therefore be computed quickly. The linear model has a closed form solution and

just requires linear algebra. The RNN has to be trained numerically. The computational core of an
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Table 3.1: Summary statistics for S&P500 index at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 0.7863 0.0074 -10.1053 0.4898 0.0059 0.4897
St.dev 0.0002 0.0049 1.0367 0.0001 0.0038 0.0001

Skewness 10.0472 3.3765 0.4676 10.2250 3.3436 10.2159
Kurtosis 153.3177 22.9232 3.5630 162.9341 22.7987 162.6297

Min 0.0186 0.0014 -13.1961 0.0113 0.0011 0.0113
Max 0.0041 0.0642 -5.4919 0.0027 0.0517 0.0027
LB10 15188 22354 22391 14782 22086 14790

Note: The table summarizes the distributional properties of the daily realized volatility.
RVt, RV

1/2
t and log(RVt) denote the daily realized volatility, realized standard deviation and

realized logarithmic form respectively. Jt, J
1/2
t and log(Jt+1) denote the daily jump measures

invariance, standard deviation, and logarithmic forms respectively. LB is the statistics of Ljung
and Box (1978) Q test for up to tenth-order correlation. The mean and minimum values of
RV , J , and log(J + 1) are multiplied by 104.

ANN is, however, also linear algebra with just a very small amount of computation time dedicated

to computing the non-linear squashing function. In all cases, the initial data-preprocessing time

can be neglected, as it only has to be carried out once per variant.

In total the computation times are 492 seconds for the linear models, 22217 seconds for the RNN

and 56582 seconds for the hybrid model. Adding up the numbers leads to a total computation time

of a bit more than 22 hours, for the entire model ranges. The computation could even have been

sped-up by parallelizing it, as this problem is ideally coarsely parallelizable without interdepen-

dencies which would have slowed down the computation. However, for simplicity, this was not

done presently. Looking at the numbers, this model seems very suitable for real-time applications.

Indeed, for computing a single decision (model) it only needs to carry out the computation once.

Dividing the above numbers by the number of models per variant it has been achieved computation

times of 3.7 ms per model in the linear case, 166.5 ms per model for the RNN, and, finally, 424.0

ms per model for the hybrid case.
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Figure 3.2: Daily S&P500 Realized Volatility and Jumps

Note: The top panel shows daily realized volatility and its logarithmic transformation, RVt and
log(RVt), respectively. The lower panel graphs the jump components, Jt and log(Jt + 1), respec-
tively.
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3.5.1 Statistical Errors

As a first indication with respect to the quality and robustness of the different HAR model im-

plementations, it presents and discusses the usual statistical errors like Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent Error (MAPE) for the different

types of models computed, Hyndman and Athanasopoulos (2014).1

Each group of columns in the following Tables 3.2 and 3.3 represents a forecast with the given

number of days (lookahead) described by the letter l. The first group of columns therefore stands

for a 1-day forecast, the second column group for a 2-day forecast and the third column group for a

1-week (i.e., 5 business days) forecast. Indeed, while the original HAR model limits the analysis to

a 1-day forecast, there is no specific reason to assume, that this model type would be less suitable

for forecasts several time steps into the future. For this reason it is of interest to analyse model

robustness for different forecast horizons which would allow to identify model types which might

be suitable for use in different setups.

Each group of rows in the Tables 3.2 and 3.3, furthermore, represents a different amount of

historical data used in the rolling window. Therefore, the first group of rows just makes use of the

past 22 business days (around 1 month) of data, while the last group of rows includes 504 business

days (around 2 years) of in-sample data for computing the out-of-sample forecast.

Within the groups of rows, it presents the different model types one separate rows. The first

row in the group shows the basic linear (or logarithmic) variant, while the second row presents the

RNN version (using the same inputs). Finally the third row in each group shows the results of the

hybrid model. To recall, the hybrid model is also an RNN that uses the previously mentioned four

1In Hyndman and Koehler (2006) (and references therein), there is an interesting discussion and comparison
among different measures of accuracy of univariate time series forecasts.
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inputs, and, additionally, the linear model forecast as a fifth input. The two tables, finally, present

grouped results for the basic linear version of the HAR-RV-J approach and for the logarithmic

version.

As the different forecast horizons solve different forecasting problems, it makes sense to analyse

and discuss the results depending on the forecast horizon. For the HAR base version and a 1-day

ahead forecast, it has been noticed that the RNN with just 22 days of in-sample data consistently

produces the best results, when looking at the fit (out-of-sample RMSE). This is remarkable,

because this best result is achieved with the least amount of data. The linear model manages to

come close to the RNN results, but only when using 2 years (504 business) days of in-sample data.

It appears, therefore, that the RNN is able to better extract information from a relatively small

amount of data, than the linear model. This was rather expected as the RNN has the additional

advantage of an implicit storage of state data, while the linear model only explicitly stores state as

given by the different (three) lags of RV. Now, this may seem like a trade-off between a more complex

model using less data and a simpler model using more data. However, for practical applications, we

may be limited in the amount of intraday data available. Let alone that not everyone has an easy

access to large historical database of intraday data. In practice, most paid-for data services might

only offer a 3 months historical intraday database at an affordable price. Or conversely, the user

may be tempted to collect tick data. In all these cases, the RNN provides a practical and robust

solution, that, at the worst, takes 1-month of data collection of ramp-up time. On the other hand,

having to potentially collect 2 years’ worth of data before being able to use the linear model does

not seem very practical.

When further analyse the two time steps ahead forecast, it has been noticed, again, that the
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single best fit is achieved by an RNN variant for a rolling-window length of 6 months (126 business

days). The forecast quality for the short input interval of 1 month is also not bad, but is, indeed,

just ever so slightly beaten by the linear model fit for a 2 years rolling-window length. Nevertheless,

we cannot fail to notice that in all cases the RNN performs more robustly and more consistently.

Finally, for the 5-day ahead forecast, again it has the single best fit provided by the RNN with

a rolling-window length of 22 days. The performance of the linear model for short rolling-window

lengths is abysmal. However, when adding more data the linear model performance improves. It

is almost on-par with the RNN results when considering the longest input intervals.

If consider other error measures like MAE and MAPE it has been also noticed, that the RNN

solution consistently produces excellent results, even for the shortest rolling-window length. How-

ever, for MAE and MAPE the single best solution may in some cases also be produced by the

linear model with the longest rolling-window. However, it has been noticed that in all cases the

RNN solution has a robustly low error, while the linear model produces erratic results which does

not inspire confidence in its robustness for the shorter intervals. Therefore, even when considering

MAE and MAPE there is a good deal to be said in favour of the RNN model, because the result is

among the best achievable results for all rolling-window lengths but only requires a small amount

of training data.

It has been also noticed, that the RNN model keeps its generally good forecasting performance,

even for longer forecast horizons. Indeed, we expect the effect that forecasts for longer horizons

are less good than forecasts for shorter horizons. But, the linear model worsens dramatically, while

the RNN model does not change much. As a general recommendation, it could be argued that, if a

suitable implementation is available, the RNN seems like a good choice for practical applications,
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because it produces excellent (often even best) results, for the shortest rolling window length. If,

however, plenty of data is available, and/or a linear model is preferred for whatever reasons, then

good results can also be expected in the linear model case, but a longer rolling-window interval

should be used. As in Barunik and Krehlik (2016) for the energy market volatility, the hybrid

model’s quality is often between that of the RNN and linear version. This may seem disappointing

at first sight. Indeed, the initial expectation would have been, that the RNN is able to make better

use of the linear forecast. In theory, it is expected that the hybrid model to be at least as good

as the basic RNN model. In the worst case, it can be argued that the hybrid RNN appears to

ignore all the linear forecasts by setting the corresponding weights to zero in the training process.

However, in practical applications, this is not quite so clear cut as the training process depends on

many factors. As we see here, the linear forecast does not help in improving basic RNN forecast,

although the performances are pretty close, see Table 3.2. Therefore, there does not seem to be

any compelling reason for using a hybrid model in this specific case.

When using the log variant of the HAR model, Table 3.3, the results are less clear cut. Generally,

we may find that the RNN still produces very good results, but they are on-par with the results

of the linear model. Still, the feature remains, that for all forecast horizons and all error measures

the RNN is the model that makes best use of a short dataset. With more data the linear model

improves and, even beats the RNN for very long rolling windows, but the results are pretty close.

Therefore, if data is scarce, the RNN model still provides good and robust results. However, when

a very long dataset is available, then the linear model should be preferred.
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Table 3.2: Comparison of Models I

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

t = 22, l = 1 t = 22, l = 2 t = 22, l = 5

HAR-RV-J 0.1963 0.0523 100.8305 0.2847 0.0705 152.0512 0.6694 0.1153 205.5808
RNN 0.1192 0.0398 53.9350 0.1329 0.0451 58.1954 0.1329 0.0479 64.7888
Hybrid 0.1303 0.0483 55.9974 0.1571 0.0568 61.1080 0.1564 0.0594 65.9130

t = 63, l = 1 t = 63, l = 2 t = 63, l = 5

HAR-RV-J 0.1563 0.0448 64.8351 0.1712 0.0539 88.7721 0.2544 0.0714 99.4946
RNN 0.1214 0.0433 60.5210 0.1288 0.0476 63.9215 0.1367 0.0507 69.0026
Hybrid 0.1479 0.0646 63.4334 0.1401 0.0573 65.3191 0.1381 0.0551 70.8009

t = 126, l = 1 t = 126, l = 2 t = 126, l = 5

HAR-RV-J 0.1363 0.0415 48.7744 0.1502 0.0485 58.2050 0.1933 0.0601 75.6028
RNN 0.1228 0.0445 64.1628 0.1273 0.0479 66.7512 0.1417 0.0532 71.6463
Hybrid 0.1515 0.0701 67.4231 0.1448 0.0635 70.1290 0.1482 0.0605 73.1933

t = 252, l = 1 t = 252, l = 2 t = 252, l = 5

HAR-RV-J 0.1239 0.0349 46.9789 0.1410 0.0455 52.2581 0.1651 0.0529 88.1153
RNN 0.1238 0.0471 66.9135 0.1350 0.0501 70.5627 0.1421 0.0541 73.2343
Hybrid 0.1448 0.0700 70.6262 0.1700 0.0680 72.9267 0.1548 0.0656 74.5489

t = 504, l = 1 t = 504, l = 2 t = 504, l = 5

HAR-RV-J 0.1194 0.0382 45.7595 0.1316 0.0431 50.8488 0.1522 0.0497 61.2953
RNN 0.1309 0.0508 72.4723 0.1364 0.0534 75.5360 0.1488 0.0572 80.2657
Hybrid 0.1438 0.0727 75.4535 0.1552 0.0747 76.3257 0.1635 0.0745 80.9149
Note: The table presents the comparison of forecasting performance of HAR-RV-J, RNN and hybrid models in which the daily realized
volatility, RVt, is used. t indicates the rolling window length, e.g. t = 22 denotes the length of rolling window is 1 month. l = 1, 2, 5
indicates one step forecast, two steps forecast and five steps forecast, respectively. The best results considering RMSE, MAE and
MAPE for those models for the different lengths of rolling windows and steps of forecast are highlighted in bold.

Table 3.3: Comparison of Models: II

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

t = 22, l = 1 t = 22, l = 2 t = 22, l = 5

HAR-RV-J LOG 0.0593 0.0281 5.6179 0.0633 0.0331 6.8792 0.1012 0.0456 9.2539
RNN LOG 0.0325 0.0253 5.1552 0.0338 0.0263 5.3496 0.0362 0.0281 5.7234
Hybrid LOG 0.0365 0.0287 5.8164 0.0370 0.0289 5.8884 0.0398 0.0312 6.3415

t = 63, l = 1 t = 63, l = 2 t = 63, l = 5

HAR-RV-J LOG 0.0345 0.0228 4.6061 0.0356 0.0261 5.2888 0.0537 0.0321 6.5048
RNN LOG 0.0381 0.0297 6.0166 0.0387 0.0302 6.1148 0.0400 0.0311 6.3093
Hybrid LOG 0.0418 0.0330 6.6341 0.0417 0.0327 6.5987 0.0423 0.0332 6.7356

t = 126, l = 1 t = 126, l = 2 t = 126, l = 5

HAR-RV-J LOG 0.0329 0.0246 4.4305 0.0328 0.0246 5.0191 0.0390 0.0284 5.7771
RNN LOG 0.0415 0.0323 6.5449 0.0419 0.0326 6.5984 0.0430 0.0334 6.7578
Hybrid LOG 0.0446 0.0352 7.0505 0.0444 0.0349 7.0295 0.0454 0.0354 7.1593

t = 252, l = 1 t = 252, l = 2 t = 252, l = 5

HAR-RV-J LOG 0.0276 0.0213 4.3524 0.0310 0.0239 4.8576 0.0254 0.0269 5.4719
RNN LOG 0.0457 0.0355 7.1384 0.0460 0.0358 7.1962 0.0466 0.0361 7.2589
Hybrid LOG 0.0490 0.0384 7.5772 0.0484 0.0380 7.5772 0.0494 0.0384 7.7117

t = 504, l = 1 t = 504, l = 2 t = 504, l = 5

HAR-RV-J LOG 0.0274 0.0212 4.3370 0.0303 0.0235 4.8048 0.0342 0.0264 5.3852
RNN LOG 0.0490 0.0382 7.6719 0.0388 0.0498 0.0388 0.0502 0.0390 7.8337
Hybrid LOG 0.0526 0.0414 8.2160 0.0524 0.0411 8.1993 0.0529 0.0413 8.2777
Note: The table presents the comparison of forecasting performance of HAR-RV-J, RNN and hybrid models in which the logarithmic
transformation of daily realized volatility, log(RVt), is used. t indicates the rolling window length, e.g. t = 22 denotes the length of
rolling window is 1 month. l = 1, 2, 5 indicates 1 step, 2 steps, and 5 steps forecast, respectively. The best results considering RMSE,
MAE and MAPE for those models for the different lengths of rolling windows and steps of forecast are highlighted in bold.
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3.5.2 Trading Efficiency

While modelling and forecasting RV is an interesting and instructive exercise in itself, the question

arises, to which extent the results are useful in financial applications. Or, put in other words, can

the models uncover an exploitable market inefficiency? For this reason it is useful to develop ideas

as to how a forecast of RV could actually be traded on the financial markets. Two general strategies

come to mind:

• An outright volatility trade.

• Trade the expected reaction of another asset with respect to volatility.

Since the advent of VIX futures in 2004 on the most important volatility index, a simple way

for outright volatility trading is available. The VXX ETN that mimics a 30-day constant maturity

future makes trading volatility even easier and puts it in reach of retail investors. The VXX ETN

started trading in 2009. Our basic volatility trading strategy consists of very simple elements:

• If RVt+k > RVt then go (and stay) long volatility for k time steps,

• else go (and stay) short volatility for k time steps.

In the above, RVt+k denotes the k time steps ahead RV forecast at time t, while RVt simply

denotes today’s RV. In the case k > 1, the investing capital are equally split among the number of

concurrent trades. In this case, it invests 50% of the capital on two potentially differing trades for

2-day ahead forecasts, and 20% of our capital for 5-day ahead forecasts. Note, that this may also

lead to two trades cancelling each other out. That means, if we have a signal for a long volatility

trade today (and a 2-day ahead forecast) and a signal for a short volatility trade the next day, then

the net position would be zero, because the long and the short trade cancel each other out. In the
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above strategy, even in the special case that RVt+k = RVt it goes short volatility, because going

short volatility is a long term winning strategy (although with mind boggling drawdowns, therefore

surely not advised for practical implementation). This is due to the observation that volatility

tends to go up in short (but large) spikes, and then continuously fall again.

However, we may want to limit trading in this strategy and only trade when our forecast predicts

a significant change in RV. If we assume a threshold p expressed as a percentage range, for example

p = 0.01 or p = 1%, then we can modify the above strategy to:

• If RVt+k > RVt ∗ (1 + p) then go (and stay) long volatility for k time steps,

• if RVt+k < RVt ∗ (1− p) then go (and stay) short volatility for k time steps,

• else stay out of the market (flat).

Again, investment capital is allocated equally, however still depending on the forecast horizon.

When we speak of trading volatility, we have to be careful to note that RV is, in itself, not a

tradable quantity. Also, the VIX index itself is not tradable. Strictly speaking, we can only trade

volatility derivatives with a defined maturity. The threshold p has to be determined heuristically.

However, it makes sense to set it in a way, that, at least, transaction costs are overcome if the

forecast proves to be correct.

A second variant involves trading an asset, of which it is expected that it moves in close relation

to volatility. Generally, asset returns and volatility are supposed to be negatively correlated. Indeed,

in our sample period a quick analysis of the S&P500 Index and the VIX index reveals that in around

80% of the cases, where the S&P500 Index is up, the VIX index is down and the other way round.

We would therefore expect that a trading strategy that uses a volatility forecast to trade the

S&P500 index ETF would be a sensible approach. Therefore, the following base strategy has been

58



proposed:

• If RVt+k > RVt then go (and stay) short the base index ETF for k time steps,

• else go (and stay) long the base index ETF for k time steps.

Here, again, our default case for RVt+k = RVt is to go long the base index ETF, because, on

average, and on a very long time frame, asset prices tend to go up. This argument is, of course,

debatable, but it only concerns a very minor edge case.

In a similar way, we may want to implement a threshold in order to avoid overtrading and

engaging in trades that potentially do not cover the transaction cost. Analogously this allows us

to define the following trading strategy:

• If RVt+k > RVt ∗ (1 + p) then go (and stay) short the base index ETF for k time steps,

• if RVt+k < RVt ∗ (1− p) then go (and stay) long the base index ETF for k time steps,

• else stay out of the market (flat).

The advantage of the direct volatility trade is that the asset traded (a volatility derivative)

may correspond more closely, to what is actually forecast. On the other hand, the base index

strategy can be implemented, even if there is no volatility derivative available. However, we have

to be careful to first carry out an analysis whether the implied correlation between asset returns

and changes in volatility is indeed present in the index that we want to trade. This significantly

broadens the universe of assets within reach of a volatility forecasting model.

In the above strategies the threshold approach seems appealing to limit trades and whipsaw but

introduces a new meta-parameter into the system. To avoid too much interference with the base

system, it has been estimated the threshold that it removes the 10% smallest trades (by absolute
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Table 3.4: Out-of-sample rolling window trading results for the Linear Model using a lookback of
252 days

Strategy Ann. Ret. Ann. Vol. Sharpe
h = 1

Index 5.68% 20.49% 0.28
Vol. 55.99% 108.58% 0.52

h = 2

Index 5.18% 13.95% 0.37
Vol. 58.86% 73.54% 0.80

h = 5

Index 5.57% 8.30% 0.67
Vol. 56.98% 42.60% 1.34

Table 3.5: Out-of-sample rolling window trading results for the Recurrent Neural Network (RNN)
using a lookback of 22 days

Strategy Ann. Ret. Ann. Vol. Sharpe
h = 1
Index 0.36% 1.75% 0.20
Vol. 13.28% 14.61% 0.95

h = 2

Index 5.79% 13.96% 0.41
Vol. 55.44% 73.56% 0.75

h = 5

Index 5.72% 8.30% 0.69
Vol. 55.69% 42.63% 1.31

forecast difference) in the lookback interval. Of course, it could now be argued that removing

the bottom x% trades also represents a meta-parameter and that is true. However, it makes the

meta-parameter adaptable and dependent on the actual history.

In the following, it presents trading results for the linear and RNN model. Only results for the

lookbacks are presented which seem most suitable according to the statistical evaluation. Table

4.7 shows results for the linear model with a lookback of 252 days. For this lookback, performance

seems to stabilize in the statistical evaluation. Table 3.5 presents trading results for the RNN

model using the short lookback of 22 days in the rolling window forecast.

For each model type (linear and RNN), it presents trading results for trading the index and
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the volatility derivative. As a risk adjusted measure of return, we opt for the Sharpe ratio. We are

all very well aware of the inherent limitations of the Sharpe ratio, but in this study it is still used,

as it is a good basis for comparison. And, despite, all the critics of the Sharpe ratio, mostly only

artificially constructed return series may exhibit good Sharpe ratios but otherwise disappointing

risk measures. For realistic return series, we may expect good Sharpe ratios to generally lead to

also otherwise attractive capital curves.

As it is typical, the volatility derivative trading strategies show high returns. However, volatility

is in itself a very volatile asset class, and the optically high returns are mitigated by correspondingly

high volatility of the trade returns. Therefore, it is only advised allocating a small portion of the

portfolio to a volatility strategy. It is not suitable as the only trading strategy for any but the most

risk-loving portfolios.

As expected the results between the linear and RNN model do not differ much, as the chosen

parameter sets have very similar statistical results. While the RNN model had overall better

statistical error measures (and, definitely, was able to produce these good results with a modest

amount of data) this does not translate to a clearly better trading strategy. For all forecast

horizons h, the results are pretty similar when comparing linear and RNN model. There is no

clearly dominant strategy.

We may want to put the trading results into the context of the overall Sharpe ratio for the

S&P500 index, that is often used as benchmark. For the trading period of this study this is 0.29. It

is therefore noticed that trading the index with either model improves slightly on this benchmark

for forecast horizons h = 2 and h = 5. For h = 1 performance is not attractive. We, generally,

get more attractive Sharpe ratios for trading a volatility derivative. This is expected as, in this
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latter case, we are actually trading something very similar to what is forecast and not using an

indirect correlation. Also, it has been noticed that Sharpe ratios tend to improve for the longer

forecast horizon. Here, it uses the effect to our advantage, that a potentially wrong position might

be corrected the next day by the correct forecast. It is a very crude way of diversification in time.

While Sharpe ratios of more than 1.3 for the longest horizon volatility strategies with either

model seem attractive, it is necessary to notice, that we did not yet carry out an analysis for

different time periods. The effect seems stable, but, as volatility gets more and more attention, it

seems probably that any potential inefficiency will fade quickly.

As an overall observation, it concludes that the given inputs seem to be able to produce attrac-

tive Sharpe ratios for either an index or volatility derivative trade for a forecast horizon of 1 week,

h = 5. This applies to both the linear and RNN models. As there does not seem to be any system-

atic bias towards one model type or the other the availability of data versus ease of implementation

can be the basis for the choice of which strategy to adopt. In both cases 5-minute intraday data

is necessary to operate the models. Both models train very quickly even on a standard laptop or

personal computer. Therefore, training and evaluation time are of no concern, typically. If only a

short amount of data is available the RNN model seems preferable. If a longer amount of data is

available, then, the choice is pretty much up to the availability of an implementation of one or the

other model.

An overall decision on which of the two basic model types, HAR or RNN should be chosen,

cannot be taken without further knowledge of the context. In the end, given a sufficiently large

lookback period, both models are able to achieve similar performance. This raises the question,

why the RNN model could ever preferred to the simple HAR model. As already outlined, the RNN
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model is able to realize satisfying (if not necessarily good) performance also in cases of a relatively

low amount of training data. For fast changing environments or environments where data is ex-

pensive to obtain or for newly trading assets this can be considered an advantage. Also, when

computational costs are considered, neither model represents a challenge for today’s modern com-

puting infrastructure. While estimating the HAR model is still several times faster than estimating

an RNN, both estimations are easily done in less than one second, even on a standard personal

laptop. In the context of this study only a single model estimation is needed at the close of each

day. Whether we use the HAR model or the RNN model will not impact the daily operation of

such a system

3.6 Conclusion

This chapter analyses the potential of a heterogeneous autoregressive model including jumps to

forecast realized volatility (RV). This approach computed RV based on a 20-year history of 5-

minutes intraday data for the S&P500 index. Our results show that the base HAR-RV-J model is

indeed able to provide a satisfactory forecast of RV. This outlined not only by the statistical error

measures, but also by an analysis of trading efficiency based on the SPY ETF, the VIX index and

the VXX ETN. Using our approaches attractive Sharpe Ratios can be obtained that outperform a

common benchmark.

Our analysis also includes a Recurrent Neural Network (RRN) that uses the same inputs as the

linear base HAR-RV-J model for a comparison of performance. These inputs are daily, weekly, and

monthly RVs, plus the jumps. Finally, a hybrid model is built that additionally feeds the linear

forecast to an RNN.

The results of all three model types are of similar quality. However, it has been notices that
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the RNN models are able to achieve these results with a shorter input time frame. That means,

that when historical data is scarce, we can rely on an RNN to still deliver robust performance.

Additionally, the RNN errors are uniformly low, while the errors for the linear model only reduce,

once an input time frame of 1 or 2 years is used. Finally, it has been observed that the results

between HAR-RV-J and RNNs do not differ too much, and attractive Sharpe ratios are obtained

for trading a volatility derivative. The present work is, in our view, just a starting point to analyse

the trading efficiency of intraday RV models.
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Chapter 4

An Intraday Risk Management
Support System Based on Volatility

4.1 Introduction

Modelling and forecasting financial volatility is one the most challenging task for both financial

practitioners and econometricians. An accurate volatility forecast would have to be linked to a

corresponding trade in the underlying, an analysis of volatility can provide decision support for

any regulatory body involved with trading and pricing financial assets. A long list of General-

ized AutoRegressive Conditional Heteroskedasticity (GARCH) and Stochastic Volatility (SV) type

formulations have been drastically investigated in the literatures for estimating financial market

volatility. These specific parametric models are not appropriately suited for applications when

estimated directly with intraday data, which is now available for many financial assets. In respon-

sible to more effectively exploit the information inherent in high-frequency data, Andersen and

Bollerslev (1998) suggested a new measure, Realized Volatility which has been discussed in the

previous chapter. Andersen et al. (2003) originally suggested the use of autoregressive fractionally

integrated (ARFIMA) models for capturing the highly persistent property in volatility. In contract

to ARFIMA models, long-memory heterogeneous autoregressive (HAR) models which is proposed

by Corsi (2009) have simpler structure and easier to estimate. Empirically this approach has ar-
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guably emerged as the preferred specification for modelling and forecasting realized volatility when

high frequency data are available.

Following the work of Liu et al. (2017) on realized volatility of large indices, the motivation of

this study is to investigate the trading performance of HAR type models developed by Andersen et

al. (2007a), our empirical analysis relies on 5-minute high-frequency data and corresponding realized

volatility measures for the EURO STOXX 50 index, EURO STOXX 50 Volatility (VSTOXX) index,

RUSSEL 2000 index, iShare RUSSEL 2000 index (ETF) and RUSSEL 2000 volatility index (RVX).

Over time, numerous studies have been applied to the task of forecasting daily implied volatility on

large stock indices, still the focus has largely remained with the S&P 500 index, therefore this study

contributes to the literature by comprehensively evaluating multiple-step-ahead volatility forecast

of the most popular models with different large indices, also including the implied volatility index.

Additionally, this study not only evaluate the forecasting performance by statistical errors but also

by financial criteria. Our results show that even after accounting for transaction costs the presented

models are able to produce forecasts that are useful in the context of a very simple trading strategy.

Such a strategy can be used on its own to diversify return streams. However, in the context of

risk management support there is also a second alternative that it has been outlined: it is possible

to use the forecast as a dynamic hedging tool. Indeed, indiscriminate hedging of a portfolio is,

generally, an expensive proposition. With a realized volatility forecast we can limit the hedge to

days when volatility is forecast to rise. This significantly reduces the cost of the hedge.

The rest of this chapter is structured as follows. Section 4.2 is a literature review of previous

research on volatility forecasts, especially the application of HAR models. Afterwards, it presents

the methodology. Specifically, how the different components of the HAR model (including jumps)
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come together to form a simple, yet effective modelling approach to realized volatility. Section 4.4

outlines the intraday datasets which have used to estimate our models. Section 4.5, finally, presents

results in three different ways. Firstly, it presents pure statistical error measures. Secondly, it

analyses the economic significance of our results. Thirdly, some ways to improve hedging on equity

portfolios have been suggested. The last section summarizes and discusses our results.

4.2 Literature Review

According to the literature there are diverse quantitative models and approaches have been de-

veloped and refined to address the importance of volatility forecasting on risk management, asset

pricing and asset allocation (Christoffersen and Diebold (2000)). In the high frequency environ-

ment, Heterogeneous AutoRegressive (HAR) model was is widely used for the prediction of RV,

which has a simple structure and also capture stylized facts of volatility such as long memory and

multiscaling behaviour, Corsi (2009) showed a detailed theoretical results. It is difficult to draw

clear conclusions from the existing literature of which model is the best as research designs vary

considerably in terms of countries, assets classed, time periods, forecasting horizon and forecast

evaluation methods, therefore Kourtis et al. (2016) overcome this difficulty by comparing some of

the most popular volatility models within a common framework, their study suggested that at the

daily horizon, the HAR model offered the most accurate prediction. More analysis of the basic

framework of HAR model can be found at Ma et al. (2014); Bollerslev et al. (2016). Based on

Corsi (2009)’s work, researchers have made much effort to improve this model for analysing and

forecasting realized volatility, therefore, different implementation have been applied to HAR models

(Bandi et al. (2013); Souc̆ek et al. (2013); Haugom et al. (2014); Sevi (2014); Huang et al. (2015);

Tian et al. (2017); Cubadda et al. (2017)). Andersen et al. (2007a) proposed an alternative model
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which allowing jumps or discontinuities in the estimation of RV, which referred as HAR-RV-J in

this thesis. Their empirical studies show that incorporating the jumps to the HAR model increase

the accuracy of forecasting performance. This has also been proven experimentally, see Ander-

sen et al. (2007b); Corsi et al. (2010); Celik and Ergin (2014); Liu et al. (2016); Papavassiliou

(2016). However, some researcher also argued that when jump component are zero or insignifi-

cant, the incorporation of a jump component in to HAR may lead to overfitting, see Rossi and

Sekhposyan (2011). Additionally, Prokopczuk et al. (2016) characterized the dynamics of jumps

and analysed their importance for volatility forecasting in four leading energy markets and inves-

tigated several HAR models which explicitly capture the dynamics of jumps, they establishes that

explicitly modelling jumps does not significantly improve forecast accuracy. Busch et al. (2011)

used implied volatility as an additional forecasting variable in HAR model and found that implied

volatility contained incremental information about future volatility in foreign exchange, stock, and

bond markets, for application of HAR on implied volatility, can also be found at Fernandes et al.

(2014); Psaradellis and Sermpinis (2016). Recently, by taking the time-varying property of the

HAR model’s parameter and volatility of RV, Wang et al. (2016) used a dynamic model averaging

approach and shows more accurate forecast than individual model in both statistical and economic

sense.

In the following sections, the specific methodology is presented and empirical data is used to

test the model.
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4.3 Methodology

4.3.1 Realized Volatility

We consider an n-dimensional price process defined on a complete probability space, (Ω,F , P ),

evolving in continuous time over the interval [0, T ], where T denotes a positive integer. Following

closely the setup of Back (1991); Andersen et al. (2003, 2007a)’s work, we assume that the logarithm

of asset price, p(T ), follows the continuous-time semimartingale jump diffusion model:

dp(t) = µ(t)dt+ σ(t)dW (t) + η(t)dq(t), 0 ≤ t ≤ T, (4.3.1)

The mean µ(t) is a continuous and locally bounded variation process, the instantaneous σ(t) > 0

is a cadlag stochastic volatility process, W (t) is a driving standard Brownian motion, the counting

process q(t) is normalized such that dq(t) = 1 corresponding to a jump at time t and dq(t) = 0

otherwise, η(t) refers the size of the corresponding discrete jumps in the logarithmic price process.

The probability of a jump occurring in the time interval dt is P [dNt = 1] = λtdt where λ(t)

is the jump intensity, which is possibly time-varing, but dose not allow infinite activity jumps

processes. The leverage effect is addressed in model 4.3.1 through possible dependence between

σ(t) and W (t), see Barndorff-Nielsen et al (2006a); Barndorff-Nielsen and Shephard (2006b). The

quadratic variation for the cumulative return process can be expressed as a sum of a continuous

and a discontinous componet:

QVt =

∫ t

t−1
σ2(s)ds+

∑
t−1<τi≤t

η2(τt). (4.3.2)

where 0 ≤ τ1 < τ2 < ... are jump times, In 4.3.2, quadratic variation is decomposed as integrated

volatility plus the sum of squared jumps through time τt, see Andersen and Bollerslev (1998);

Andersen et al. (2001, 2003, 2006); Barndorff-Nielsen and Shephard (2001, 2002a,b).
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Suppose that M + 1 evenly spaced intra-period observations on a trading day t, if pt,j is the

logarithmic price at time tj , then for the continuously compounded intra-period returns are rt,j =

pt,j − pt,j−1 for the jth intraday interval of day t. The realized volatility for the day t is defined

by summing the corresponding M high frequency intradaily squared returns:

RVt =

M∑
j=1

r2t,j , t = 1, ..., T (4.3.3)

By the theory of quadratic variation, see Back (1991); Andersen et al. (2003), the realized

variation converges uniformly in probability to the increment of the quadratic variation process as

the sampling frequency of the underlying returns go to infinity, that is

lim
M→∞

RVt = QVt =

∫ t

t−1
σ2(s)ds+

∑
t−1<τt≤t

η2(τt), (4.3.4)

Thus, in the absence of jumps the realized variation is consistent for the integrated volatility.

However, in order to separate the continuous variation and jump components, Barndorff-Nielsen

and Shephard (2004) proposed the Bipower Variation (BV), which is a continuous componet of

QVt:

BVt = µ−21 (
M

M − 2
)

M∑
j=2

|rt,j−1||rt,j |. (4.3.5)

where µ1 =
√

2
π is the first moment of the absolute value of a standard normal random variable. In

theory, a higher value of M improved precision of the estimators, but in practice, this also makes

them more susceptible to market microstructure noises, such as bid-ask bounces, stale prices,

measurement errors, etc., see Busch et al. (2011).

Combining the results in Eqs. (4.3.4) and (4.3.5), the contribution to the quadratic variation

process due to jumps in the underlying process can be estimated by:

RVt+1(δ)−BVt+1(δ) ∼
∑

t<s≤t+1

κ2(s). (4.3.6)
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To prevent the right hand-side of Eq. (4.3.6) from becoming negative, Andersen et al. (2007a)

imposed non-negativity truncation on the jump measurements:

Jt+1(δ) = max[RVt+1(δ)−BVt+1(δ), 0]. (4.3.7)

4.3.2 Volatility Forecasting Model

HAR-RV model is introduced by Corsi (2009), its simple structure enables it to parsimoniously

capture the long-memory property of realized volatility as it combining historical estimates of

realized volatility computed over various non-overlapping horizons:

RVt+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt+1, (4.3.8)

t = 1, 2, . . . , T . RVt, RVt−5 and RVt−22 mark daily, weekly (5 business days) and monthly (22

business days) RV, respectively. Weekly and monthly RV is calculated as: RVt,t+h = h−1[RVt+1 +

RVt+2 + ...+RVt+h], h = 1, 2, . . . .

Andersen et al. (2007a) proposed the new HAR-RV-J model, which seeks to capture the dy-

namics of jumps. Daily HAR-RV-J model is expressed as:

RVt,t+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + βJJt + εt,t+1. (4.3.9)

Logarithmic and standard deviation form of HAR-RV-J model is given by:

(RVt,t+1)
1/2 = β0 + βD(RVt)

1/2 + βW (RVt−5,t)
1/2 + βM (RVt−22,t)

1/2 + βJ(Jt)
1/2 + εt,t+1, (4.3.10)

and

log(RVt,t+1) = β0+βDlog(RVt)+βW log(RVt−5,t)+βM log(RVt−22,t)+βJ log(Jt+1)+εt,t+1. (4.3.11)
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4.4 Dataset

In contrast to previous work that modelled realized volatility on index data and used tradable

assets to actually check for the economic significance, it will also use liquid ETF data to calibrate

and test our models, thereby treating an ETF as a substitute for the index. We are well aware

of the limitations that this approach incurs, notably the fact that ETFs will have costs associated

to them which might bias the results and also include tracking errors. However, firstly, it only

uses the top liquid ETFs, which, also, tend to have very low costs associated with them. Secondly,

using ETFs is a straightforward way to test our approach on assets, where index data is not readily

available. A case in point can be found with commodity ETFs or ETNs which might track an

asset price through appropriate positions in the corresponding futures, thereby creating a constant

maturity synthethic future.

Our dataset consists of five-minute interval data trimmed down to the earliest common date.

This ensures comparability of results over all time series. It only includes liquid hours in our

computation. Especially, the highly volatile first half hour of the trading day is removed. The

last datapoint that goes into the computation is the close of the five minute bar before the actual

close price. Therefore for the typical trading day the first datapoint will be at 10h00 and the last

datapoint at 15h55. This leads to a total of, typically, 72 datapoints per day. Half-trading days

are excluded from the computation. This concerns, mostly, the days around exchange holidays.

Finally, especially in the context of intraday-data, errors in the dataset have to be taken account.

What should be considered an error is, of course, open to debate. Nevertheless, some cleaning

method has to be come up with. As we are always looking at whole days we can, without incurring

any lookahead bias, consider all datapoints in our cleaning procedure. Specifically, as the ultimate
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Table 4.1: Summary statistics for STOXX50E at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 0.0796 0.2415 -3.1274 0.0504 0.1919 0.0466
St.dev 0.1383 0.1460 1.0588 0.0897 0.1164 0.0675

Skewness 8.1769 2.5581 -0.0714 9.0537 2.6415 5.7493
Kurtosis 107.8345 15.2369 5.4801 134.7332 16.5035 57.3278

Min 2.1505e-06 0.0015 -13.0498 1.9513e-06 0.0014 1.9513e-06
Max 2.5554 1.5986 0.9382 1.8375 1.3555 1.0429

Table 4.2: Summary statistics for V2TX at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 1.0415 0.9395 -0.2705 0.6579 0.7468 1.6579
St.dev 1.2047 0.3987 0.7443 0.7446 0.3166 0.7447

Skewness 7.2627 2,3216 0.3559 6.5541 2.2153 6.5541
Kurtosis 97.5384 14.3636 3.6035 78.2062 13.0376 78.2062

Min 0.0779 0.2791 -2.5524 0.0535 0.2312 1.0535
Max 24.9652 4.9965 3.2175 14.1203 3.7577 15.1203

method will look at five-minute returns it filters out any intraday returns that deviate more than

four standard deviations from the mean. This large interval is designed to ensure that only true

errors are filtered out. Such errors may happen, for example, when missing values are filled with

zeroes or errors in the decimal point occur. The cleaning procedure replaces filtered values with

the return mean for the day.

It has to be emphasized, again, that such a procedure is only valid, if the incoming data does not

feed any online (live, just-in-time) system. In this case, it needs to use an online cleaning procedure

that has to decide immediately (i. e., when a data point comes in) whether this datapoint is valid. In

the case of an error, it needs to find a replacement value immediately. Such a procedure introduces

more complexity than our off-line cleaning.

Table 4.3: Summary statistics for RUT at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 0.0686 0.2174 -3.3447 0.0433 0.1731 0.0394
St.dev 0.1601 0.1462 1.0266 0.1004 0.1154 0.0702

Skewness 11.3601 3.6702 0.5079 12.2978 3.6530 7.1679
Kurtosis 203.3252 26.3608 3.9711 255.1476 26.8485 81.4107

Min 0.0016 0.0400 -6.4392 0.0010 0.0318 0.0010
Max 4.3795 2.0928 1.4769 3.0783 1.7545 1.4057
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Table 4.4: Summary statistics for IWM at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 0.1324 0.3095 -2.5954 0.0821 0.2442 0.0720
St.dev 0.2635 0.1912 0.9375 0.1650 0.1501 0.1053

Skewness 9.2937 3.2974 0.7630 10.4352 3.3426 5.4084
Kurtosis 137.1739 21.1086 3.9764 184.5929 22.3532 47.6530

Min 0.0064 0.0802 -5.0459 0.0038 0.0618 0.0038
Max 5.7934 2.4070 1.7567 4.1949 2.0481 1.6477

Table 4.5: Summary statistics for RVX at 5-minute frequency

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Mean 1.1854 1.0019 -0.1472 0.7504 0.7991 0.5015
St.dev 1.4144 0.4262 0.7664 0.8853 0.3344 0.3049

Skewness 10.5690 2.3517 0.1611 11.5448 2.3502 1.7962
Kurtosis 223.6934 17.4388 3.5992 266.1316 18.3848 9.4204

Min 0.0515 0.2269 -2.9664 0.0340 0.1843 0.0334
Max 37.5251 6.1258 3.6250 24.6604 4.9659 3.2449

4.5 Empirical Results

4.5.1 Forecast Evaluation

The result table shows several tendencies across the board. Firstly, errors tend to reduce when using

a longer lookback period. This is mostly in-line with the results of Liu et al. (2017). However,

previous studies showed a flattening out of the error improvement for a lookback period of around

one year, while we still clear improvements when switching from a lookback period of one year (252

days) to two years (504 days). Similarly (and not surprisingly) errors tend to increase for longer

forecast intervals. It uniformly obtains the best results for a one-day ahead forecast, l = 1. This

result also carries over to an analysis of the economic significance in the following section.

While Liu et al. (2017) only analyse one asset, namely the S&P500 the present study analyses

two different stock indices (ETFs) and their corresponding volatility as an asset class on their

own. This allows for an intra-asset class comparison. It has been noticed clearly, that the two

volatility forecasts for the Vstoxx (V2TX, Eurostoxx volatility) and the Russel (RVX, Russell 2000

volatility) show much higher errors, generally. However, this is explained by the fact that volatility
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Table 4.6: Comparison of Models

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

t = 22, l = 1 t = 22, l = 2 t = 22, l = 5

STOXX50E 0.3448 0.0693 572.6532 0.4870 0.0868 597.8710 0.6191 0.1214 861.8646
V2TX 3.6374 0.8862 103.4957 7.8930 1.1138 129.1592 7.6551 1.4234 171.8143
Russell2000 0.1816 0.0466 77.1585 0.2931 0.0598 97.1462 0.7212 0.0980 145.4468
IWM 0.3521 0.0874 69.6220 0.4515 0.1080 90.1878 0.8474 0.1733 137.6451
RVX 4.8255 0.9163 86.5296 4.5828 1.0871 105.2760 5.8713 1.4170 152.5510

t = 63, l = 1 t = 63, l = 2 t = 63, l = 5

STOXX50E 0.2149 0.0541 656.9858 0.2120 0.0600 772.0017 0.3570 0.0789 772.7852
V2TX 1.8199 0.6696 86.5409 1.7369 0.7105 95.9589 1.5600 0.8101 112.4515
Russell 0.1532 0.0404 67.1957 0.2325 0.0488 80.9854 0.3214 0.0654 85.7798
IWM 0.3002 0.0739 57.9539 0.3015 0.0837 69.3099 0.4273 0.1120 91.5067
RVX 2.1446 0.6930 75.4161 1.5555 0.7418 81.5747 1.8149 0.8652 100.3236

t = 126, l = 1 t = 126, l = 2 t = 126, l = 5

STOXX50E 0.1772 0.0500 488.6619 0.1407 0.0522 463.5794 0.1739 0.0607 608.4748
V2TX 1.3483 0.6039 78.2367 1.2188 0.6352 86.4477 1.2609 0.6727 93.2666
Russell 0.1370 0.0371 65.1924 0.2030 0.0438 77.2291 0.2007 0.0527 95.4863
IWM 0.2281 0.0668 55.2839 0.2608 0.0747 64.8087 0.3386 0.0936 80.7807
RVX 1.6360 0.6406 72.0678 1.4352 0.6850 77.4747 1.5412 0.7551 91.0955

t = 252, l = 1 t = 252, l = 2 t = 252, l = 5

STOXX50E 0.1428 0.0454 481.6909 0.1265 0.0474 484.5718 0.1367 0.0520 553.1643
V2TX 1.2421 0.5816 75.9609 1.1878 0.6129 83.8503 1.2161 0.6381 89.5973
Russell 0.1262 0.0352 64.8112 0.1686 0.0406 75.0148 0.1530 0.0449 89.0268
IWM 0.1996 0.0627 56.1966 0.2416 0.0709 65.0165 0.2603 0.0815 78.1806
RVX 1.3888 0.6116 69.3871 1.3756 0.6540 74.3515 1.4554 0.6974 84.8808

t = 504, l = 1 t = 504, l = 2 t = 504, l = 5

STOXX50E 0.1252 0.0440 501.4259 0.1212 0.0463 531.7771 0.1275 0.0494 678.1119
V2TX 1.1395 0.5723 75.4532 1.1674 0.6037 82.8873 1.1971 0.6302 89.2114
Russell 0.1133 0.0338 65.4136 0.1372 0.0380 74.4394 0.1350 0.0413 87.4047
IWM 0.1826 0.0598 55.7916 0.2118 0.0665 63.5606 0.2369 0.0765 77.6579
RVX 1.3142 0.5974 67.2449 1.3356 0.6313 72.6705 1.3840 0.6655 81.1810

indices feature themselves a much higher volatility than the corresponding underlying stock indices.

Therefore, forecast errors will naturally lead to a much higher impact on the statistical errors. This,

however, does not affect the economic significance which is similar for stock indices and volatility

indices as it will show in the following section.

4.5.2 Economic Significance

In the previous paragraphs it has been looking at statistical error measures. These might provide

a first suggestion on whether the proposed method performs well or not. However, when we model

financial markets, we are in a good position to assess the actual usefulness of new results in a,

typicially, better way than pure statistical measures normally allow. Indeed, if we assume that our
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method is a useful decision support tool we should be able to use the forecasts in the context of

a quantitative trading strategy. Such a strategy will, algorithmically and systematically, take the

forecast output and convert it into an actual trading decision. The most basic way to do this is to

find a mapping that will result in being long or short a certain asset. That is, we will buy (or sell

short) an asset. Optionally, such a strategy can be augmented by a third state, that we will call

flat. That is, the strategy is out of the market.

In the present case it forecasts the volatility of an underlying asset. This asset is a stock index

or, again, a volatility index, whose volatility is forecast (volatility of volatility). To generate our

decisions, the following heuristic based on empirical stylized facts of financial markets are used:

• When it forecasts the RV of a stock index we will assume that a rising forecast RV will lead to

a decline in the stock index. On the other hand, we will also assume that a declining forecast

RV will be associated with a rising stock index. This builds on the commonly documented

observation that rising volatility is a sign of insecurity and often associated with falling asset

prices.

• The position for a volatility index is revered. That means, a rising forecast RV (rising volatility

of volatility) will be assumed to lead to a rise in the volatility index itself.

This leads to the following basic trading strategy. It shows the rules for a stock index:

• if RVt+1 > RVt then short the asset

• if RVt+1 < RVt then go long the asset

• else stay out of the market.

These rules would be reversed for a volatility index. Furthermore, transaction costs are assumed
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of 0.1% or 10bp per roundtrip. Such transaction costs are relatively low, but justified by the high

liquidity of the assets that we are trading. Please note, that in the case of the Eurostoxx the trading

simulation is actually carried out on Eurostoxx futures, in the case of the Vstoxx, Vstox futures are

used. The Russel index is traded through the IWM ETF, and Russel volatility is traded through

the corresponding futures.

Therefore, after transaction costs it obtains the results outlined in the following tables. It

presents results for different combinations of lookbacks (training data) and look-aheads (how many

days in advancce do we forecast). We can see a clearly positive result for the one-day ahead forecast.

For the two-day and five-day ahead forecasts the results are more mixed. Nevertheless, we shouldn’t

forget that the HAR-RV-J model was initially intended to be used for one-day forecasts. Insofar,

we may expect the highest consistency for this forecast horizon.

Raw returns in themselves are not very useful in assessing the applicability of a trading strategy.

Rather, we should look at risk adjusted returns. We take a very simple measure of risk-adjusted

returns with the information ratio. We divide the annualized return by the annualized volatiliy.

Ideally, we want the returns to be high and the volatility to be low. The information ratio is similar

to the Sharpe ratio, which additionally takes current risk-free rates into account. However, these

are essentially zero currently. Our results are in-line with Liu et al. (2017) which shows similar

results for the S&P500 index. The present study analyses the usefulness of the model away from

the asset that it has most been used for. Interestingly, even with the currently presented naive

strategy, we manage to obtain acceptable risk-adjusted returns.

However, compared to studies on the S&P500 the consistency is slightly reduced for longer

forecast horizons. This is to be expected, but should nevertheless give rise to the suggestion to use
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this model mainly for one-day ahead forecasts and trading as initially intended. Two extensions

of the basic strategy, naturally arise: Firstly, we may use a thresshold, that would reduce trading

to cases where the model suggests a significant change in RV. This, of course, introduces a new

parameter and requires to define (and possibly optimize) the thresshold. Secondly, we suggest to

apply a dynamic leverage approach. Such an approach would analyse past strategy return volatility

and scale the strategy exposure up and down accordingly.

The present chapter is in many ways an extension of the work in the previous chapter with a

focus on intraday risk management. It makes sense to add the previously found modelling results on

the S&P500 to the discussion. In many ways the promising robust results on the S&P500 can also

be found in the new dataset. However, we might notice that, overall, the results are a bit less stable.

Also, on average, the trading performance might be interpreted as slightly less robust. Nevertheless,

we don’t see any reason to reject the models as a useful addition to the quantitative analyst’s toolbox

because of that. Rather, a more in-depth analysis of the circumstances, under which some model

might work better than another seems warranted. Combining this with additional results from the

following chapter (energy commodity) seems promising and is left for further research.

4.5.3 Risk Management Support

The previous section has outlined economic significance of the forecast using a trading strategy.

While this may be the most direct way to assess the usefulness as a tool for tackling financial

markets, another application is in the context of risk management decision support. Indeed, the

owner of a portfolio of risky assets will have to assess risk on a continuous basis. Portfolio managers

measure risk in different, but mostly similar, ways. One of the primary goals of successful risk

management is to mitigate downside volatility. In the context of a long equity portfolio this entails
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Table 4.7: Out-of-sample rolling window trading results for the HAR-RV-J model

Strategy Ann. Ret. Ann. Vol. Info. Ratio Ann. Ret. Ann. Vol. Info. Ratio Ann. Ret. Ann. Vol. Info. Ratio

t = 22, l = 1 t = 22, l = 2 t = 22, l = 5

STOXX50E 0.0385 0.2307 0.1669 -0.0301 0.2307 -0.1305 0.0471 0.2307 0.204
V2TX 0.4689 1.0277 0.4563 -0.3784 1.0278 -0.3682 -0.0241 1.0281 -0.0234
IWM 0.1329 0.2926 0.4541 -0.03 0.2927 -0.1025 0.0464 0.2927 0.1585
RVX 0.3691 0.9446 0.3908 0.6317 0.944 0.6692 0.2721 0.9447 0.2881

t = 63, l = 1 t = 63, l = 2 t = 63, l = 5

STOXX50E 0.0387 0.2307 0.1676 -0.0344 0.2307 -0.149 0.0829 0.2306 0.3596
V2TX 0.5404 1.0276 0.526 0.2136 1.028 0.2078 -0.0192 1.0281 -0.0187
IWM 0.0849 0.2927 0.2901 0.0121 0.2927 0.0413 0.0087 0.2927 0.0296
RVX 0.2679 0.9447 0.2836 0.6708 0.9439 0.7107 0.5465 0.9443 0.5787

t = 126, l = 1 t = 126, l = 2 t = 126, l = 5

STOXX50E 0.0483 0.2307 0.2093 -0.0419 0.2307 -0.1817 0.0525 0.2307 0.2274
V2TX 0.5785 1.0275 0.5631 0.327 1.0279 0.3181 0.2135 1.028 0.2077
IWM 0.0989 0.2926 0.3379 -0.0215 0.2927 -0.0736 -0.0124 0.2927 -0.0424
RVX 0.3674 0.9446 0.3889 0.5055 0.9443 0.5353 0.4194 0.9445 0.4441

t = 252, l = 1 t = 252, l = 2 t = 252, l = 5
STOXX50E 0.0691 0.2307 0.2995 -0.035 0.2307 -0.1518 0.1395 0.2305 0.6052
V2TX 0.4737 1.0277 0.461 0.1968 1.028 0.1915 0.1611 1.0281 0.1567
IWM 0.0945 0.2927 0.3229 -0.0169 0.2927 -0.0576 -0.0168 0.2927 -0.0572
RVX 0.2547 0.9447 0.2696 0.3307 0.9446 0.3501 0.4375 0.9448 0.4632

t = 504, l = 1 t = 504, l = 2 t = 504, l = 5
STOXX50E 0.0713 0.2307 0.3091 -0.0104 0.2307 -0.0452 0.1062 0.2306 0.4607
V2TX 0.5299 1.0276 0.5157 0.266 1.028 0.2588 0.1286 1.0281 0.1251
IWM 0.0906 0.2927 0.3096 -0.0277 0.2927 -0.0945 -0.0645 0.2927 -0.2202
RVX 0.2335 0.9448 0.2471 0.3487 0.9446 0.3692 0.3273 0.9447 0.3464

to control (or hedge) downside risk.

To achieve this aim it makes sense to consider the correlation between equity return and corre-

sponding volatility. As is well-known on the financial markets daily returns of equities tend to be

strongly negatively correlated. Or put in another way: on days where equities suffer large draw-

downs, volatility will tend to spike up. On the other hand, on days where equities exhibit positive

returns, volatility tends to go down. There is, however, an asymmetry in how this reaction will

turn out. Volatility spikes are, generally, abrupt and short-lived. In calm periods, volatility will

slowly fall.

We can use this tendency to hedge an equity portfolio by going long volatility. The long

volatility position will generally loose a bit of its value every day (negative roll-yield, or contango

of the volatility term structure). However, on days with large negative returns, volatility will

spike up and therefore provide protection against sudden drops in the equity market. While this

method is reasonably effective at hedging an equity portfolio it has one very significant drawback:

79



being long volatility is a losing proposition. For example, the most popular and most liquid long

volatility ETF (VXX) has lost more than 99% of its value since its inception. We can think of

this phenomenon as an insurance: being long volatility means we pay an insurance premium (to

the opposite party of the trade, being short) to protect ourselves against tail risk. Like for every

(well-designed) insurance we will, on average, lose money by paying the insurance premium. On

the other hand, the seller of the insurance will tend to make money.

The whole picture would change, if we only had to pay the insurance premium in times that

are perceived as risky. For this task a volatility forecast comes in handy. We would then only be

long volatility when volatility is forecast to rise. For our analysis this involves only approximately

2% of the time under consideration. We therefore only pay insurance premium during times that

are perceived as high-risk. Of course, we have to be aware that this is not as good (in terms of risk

mitigation) as having a full-time insurance. Indeed, our forecasts are far from perfect and we still

run the risk to be hit by an unforeseen event. However, preleminary studies show that this method

has the potential to cut drawdowns by around 25 percentage points. This hedge is also easy to

implement, as the only necessity is to buy the corresponding future. It is also not expensive, as,

on average, the hedge will only be active a few business days per year.

A further application in the context of risk management support may also be found in the

context of hedging specific assets against large transactions, as in Kurek (2016). Here, assuming

information leakage, an appropriate model of realized volatility could help in safeguarding non-

insider investors against block transactions.
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4.6 Discussion and Outlook

This chapter analyses the forecastability of realized volatility for the base stock market indices

Eurostoxx and Russell 2000. For the Eurostoxx we use index values and the corresponding volatility

Vstoxx. For the Russell 2000 we use index values, the corresponding ETF IWM and the volatility

index RVX. Using index data or ETFs as a base for estimating the model or evaluating the economic

signficiance both provide individual challenges.

Index data provides an unbiased assessment of the current state of the market and is, arguably,

harder to manipulate. Therefore, by calibrating our models on index data and by evaluating the

economic significance on this same index data we use the true price. On the other hand, we have

to be always aware of the fact that indices are, in themselves, not tradable assets. Only derivatives

of the index data (in the broadest sense of the word) can be used to actually perform a trade, be

it for the purpose of generating a profit or for heding purposes. Considering our other asset class,

ETF data always show tradable prices. This is of significance when we want to trade the assets.

But, we have to keep in mind, that ETF data may be subject to stronger biases than index data,

due to any of the following reasons. An obvious interference is the presence of costs. In our case

these costs are low. Additionally, the price of the ETF may be biased, especially on an intraday

basis, just because of changing demand and supply dynamics. This effect will be of very minor

importance when considering only daily ETF data. At the close of trading the issuer or special

market participants will establish a uniform price. However, during the day significant deviations

from the corresponding index may occur. Calibrating a model on this data may lead to its own

challenges.

To summarize, we show that the HAR model does a decent job at modelling realized volatility.
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Results, even as measured as economic significance, are very satisfactory. Future work will involve

extending the analysis to other assets outside the world of equities. Also, we will use different

setups of our methods and add additional methods.
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Chapter 5

Analysing and Modelling High
Frequency Realized Volatility of
Energy Commodities

5.1 Introduction

Energy prices have important effect on macro-economics and financial markets (Regnier (2007)).

The price of energy commodity are more volatile than prices of non-energy products is likely due

to the supply uncertainty (Susmel (1997); Regnier (2007); Lin and Zhu (2004); Wilson (1996)),

therefore, modelling and forecasting the volatility of energy commodities is crucial for resource

allocation, speculation, risk management, and real option valuation. The traditional GARCH-type

models where the volatility is assumed to be latent are commonly used for conditional volatility

prediction. However, jumps are generally not taken into account with these models. Recent de-

velopments in the econometrics literature have shown that it is possible to to use non-parametric

estimation of price volatility and jumps. In response to the increasing availability of high frequency

data, Andersen and Bollerslev (1998) proposed the realized volatility (RV) which defined as the

sum of squared intraday returns, this measure includes both jumps and non-jumps and allow the

volatility to be treated observable. Later Barndorff-Nielsen and Shephard (2004) proposed the

bipower variation (BV), which defined as the sum of the product of adjacent absolute intraday
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returns, that is considered as a consistent estimation of non jump component volatility. Therefore,

the discontinuous jumps can be constructed by the difference of RV and BV. Among the models of

forecasting realized volatility, the parametric model termed Heterogeneous AutoRegressive model

of Realized Volatility (HAR-RV) is commonly used as it can captures some of the volatility prop-

erties such as long memory and multiscaling in a very simple and parsimonious way (Corsi (2009)).

In this chapter we used an alternative model which is an extension of HAR-RV model incorporating

jumps or discontinuities, that is referred as HAR-RV-J (Andersen et al. (2007a))

However, the errors in prediction by using the parametric models are often argued by researchers.

This is because the linear models are often based on certain distribution assumptions and the

microstructure noise can rise by bid-ask bounce, asynchronous trading, and price discreteness.

Artificial Neural Network model is considered as an alternative non-parametric approach as it

is able to tolerant data with errors and find nonlinear associations between parameters. In this

chapter, we test the ANN against the most widely used HAR-RV-J model, and also combine the

HAR-RV-J forecast with ANN to build a hybrid model.

Our work contributes to the literature in three aspects. Firstly, we analyse energy commodities

which do not have their own (implied) volatility futures to trade. This means, that a good forecast

of implied volatility cannot directly be exploited. Rather, a good forecast would have to be linked

to a corresponding trade in the underlying. It should therefore be of interest to any regulatory body

involved with trading and pricing energy commodities, to have a good model of intraday realized

volatility. Secondly, the studies on hybrid model which incorporates linear model and neural

network to forecast energy commodities volatility are limited, also we target on high frequency

intraday realized volatility that bring us closer to the true volatility process. Thirdly, to evaluate
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the forecasting performance, we omit the traditional statistical accuracy criteria, but apply realistic

volatility trading strategy which gives the economic point of view. To the best of our knowledge,

this is the first attempt to comprehensively test this trading strategy based on the new approach

of volatility forecasting by using high frequency data in energy literature.

The remainder of this chapter is structured as follows. We begin with a compact literature

research. After this, we outline our methods and data. This includes presenting the HAR model

including jumps, recurrent neural networks and the hybrid model. Also, we touch on data prepro-

cessing and data cleaning. Finally, we present the results. The last section concludes and outlines

potential for further research.

5.2 Literature Research

The existing literature mostly focused on finding the most accurate forecasting models by consid-

ering characteristics of volatility of energy commodities which include volatility spillover (Du et al.

(2011); Lin and Tamvakis (2001); Mensi et al. (2013); Sadorsky (2012); Souc̆ek et al. (2013); Wang

et al. (2008)), jumps (Ciarreta and Zarraga (2016); Qu et al. (2016); Chevallier (2012)), leverage

effect (Charfeddine (2014); Doran and Ronn (2008)), volatility persistence (Fujihara and Mougoue

(1997); Cunado et al. (2010)), etc.. Early research used generalized autoregressive conditional het-

eroskedastic (GARCH) model (Agnolucci (2009)) and its various extensions to model volatility in

energy markets (Fong and See (2002); Hung et al. (2008); Kang et al. (2009); Sadorsky (2006)).

The advent of high frequency data which contains more intraday trading information has allowed

the volatility to be treated as an observable variable, the first attempt to apply the concept of

RV on electricity data was carried out by Chan et al. (2008), later application can also be found

by Haugom et al. (2011). The most widely used parametric model for the prediction of RV is
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called Heterogeneous AutoRegressive (HAR) model, which was developed by Corsi (2009), cap-

tures volatility persistence by the sum of the heterogeneous components in the financial markets,

this parsimonious model is considered in which volatilities are realized over different horizon. The

simple structure and superior forecasting performance made the HAR model popular for the RV

estimation, recently, different implementations have been applied to HAR model by incorporating

other exogenous variables, for example, the jump component, (Andersen et al. (2007a); Corsi et al.

(2010); Da Fonseca et al. (2016)). Sevi (2014) investigated the realized volatility forecast of crude oil

by using intraday data, they extended the HAR model by considering various components, such as

continuous and discontinuous part, leverage effects, and positive and negative returns, their results

showed that these sophisticated models including jumps and other components have not improved

better out-of-sample forecasts than the genuine model by Corsi (2009). Additionally, Prokopczuk

et al. (2016) used high-frequency data on four prominent energy markets, and investigated the

importance of jumps in energy market by employing various extended HAR models, their results

indicated that explicitly modelling jumps does not significantly improve forecast accuracy in energy

markets

Due to the development of the new techniques in artificial intelligence, non-parametric models

have been used extensively on financial forecasting. Compared to parametric models, Artificial

Neural Network (ANN) has the advantage of being able to detect non-linear relationship in the

presence of noisy information (Jammazi and Aloui (2012); Panella et al. (2012); Papadimitriou et

al. (2014)). In the literature of volatility forecasting and trading, ANN have been argued by several

researchers, see Haigh et al. (2004); Dunis and Chen (2005); Sermpinis et al. (2013); Xiao et al.

(2014); Hemanth Kumar and Patil (2015); Tung and Quek (2013). In the academic literature, the
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applications of ANN in energy market have focused mainly on the forecasting prices (Fan et al.

(2008); Xiong et al. (2008)), research using ANN to forecast volatility continued to be developed,

among the few that do, the pioneering work has been done by Barunik and Krehlik (2016), who

comprehensively evaluate multiple-step-ahead volatility forecast of energy market using HAR and

ANN models, their results indicated that ANN yields both statistical and economic gains, and

coupling ANN with high frequency data result in substantial reduction in the over-estimation

tendency. Additionally, the so called Hybrid models which combined parametric models and ANN

have been developed (Donaldson and Kamastra (1997); Bildirici and Ersin (2009); Park et al.

(2014); Lahmiri (2015)). Whereas researchers mainly apply these hybrid models on stock market

index (Kristjanpoller et al. (2014); Hajizadeh et al. (2012); Monfared and Enke (2014); Araujo et

al. (2015)), exchange rate (Dunis and Huang (2002)), and non-energy commodity (Kristjanpoller

and Minutolo (2015)).

Furthermore, a significant body of literature exists on the context of modelling volatility in the

context of trading financial assets. This includes, more generally, for example, Haigh et al. (2007).

On the other hand Herbert (1995) focus more specifically on a single energy commodity. As trading

of energy commodities mostly occurs through futures (at least if we are trading financial assets and

not the physical asset) we have to take maturity effects into account, see Serietis (1992). Another

more recent example can also be found in Walls (1999) and Weiner (2002).

5.3 Method and Data

This section firstly provides a brief overview of quadratic variation theory, detailed theoretical expla-

nation can be found in Barndorff-Nielsen and Shephard (2004). Then we introduce the competing

models. Finally, we present our dataset.
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5.3.1 The HAR Model

Let p(t) denote the logarithm of an asset price, and assume that the price process is governed by

a continuous-time stochastic volatility jump model:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)q(t), (5.3.1)

the mean µ(t) is assumed continuous and locally bounded, the instantaneous volatility σ(t) > 0 is

càdlàg, W (t) is a standard Wiener process, and q(t) is a Poisson counting process, with q(t) = 1

if there is a jump at time t and zero otherwise. κ(t) represents the corresponding size of jumps

at time t if q(t) = 1, the intensity of the arrival process for jumps, λ(t), is possibly time-varying,

but does not allow infinite activity jump processes. The leverage effect is accommodated in (5.3.1)

through possible dependence between σ(t) and W (t). The quadratic variation of the cumulative

return process is given by:

QVt =

∫ t

0
σ2(s)ds+

q(t)∑
s=1

κ2(s). (5.3.2)

In the above equation, quadratic variation is decomposed as integrated volatility plus the sum of

squared jumps at time t.

Suppose that the price is observed at discrete times j = 1, 2, ...,M within each day t = 1, 2...,

and let rt,j = pt,j − pt,j−1 be the jth continuously compounded intra-period return of day t. The

realized volatility for period t is given by the sum of squared intra-period returns,

RVt =

M∑
j=1

r2t,j , t = 1, 2, ..., T, (5.3.3)

The theory of quadratic variation indicates that the realized volatility converges uniformly in prob-

ability to the quadratic variation as the sampling frequency increase, that is: RVt → QVt for

M →∞, In reality, a higher frequency leads inevitably to a larger microstructure noise, therefore,
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five-minute sampling frequency is often chosen for a active financial markets as a bias-variance

tradeoff.

Barndorff-Nielsen and Shephard (2004) introduce a related concept known as bipower variation,

defined as the sum of the product of adjacent absolute intraday returns:

BVt = µ−21

(
M

M − i

)M−i∑
j=1

|rt,j ||rt,j+i| →
∫ t

t−1
σ2sds, M →∞ (5.3.4)

where µ1 =
√

(2/π) is the first moment of the absolute value of a standard normal random variable,

i ≥ 1 is the lag length in the multiplication of absolute intraday returns.

The quadratic variation is the sum of continuous and discontinuous components, therefore,

equation (5.3.2) can be expressed by:

RVt −BVt →
q(t)∑
j=1

κ2(s) (5.3.5)

To prevent the right hand-side of equation (5.3.5) from become negative, Andersen et al. (2007a)

imposed non-negativity truncation on the jump measurements:

Jt = max[RVt −BVt, 0]. (5.3.6)

Our benchmark econometric model is the HAR-RV-J, the simple structure of this model enables

it to parsimoniously capture the long-memory behaviour of realized volatility. This is achived by

combining historical estimates of realized volatility computed over various non-overlapping horizons.

The structure of our estimating model is as follow:

RVt,t+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + βJJt + εt,t+1. (5.3.7)
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Logarithmic and standard deviation form of HAR-RV-J model is given by:

(RVt,t+1)
1/2 = β0 + βD(RVt)

1/2 + βW (RVt−5,t)
1/2 +

βM (RVt−22,t)
1/2 + βJ(Jt)

1/2 + εt,t+1,

and

log(RVt,t+1) = β0 + βDlog(RVt) + βW log(RVt−5,t) +

βM log(RVt−22,t) + βJ log(Jt + 1) + εt,t+1.

Each component in the HAR-RV model is computed over different horizon, RVt, RVt−5 and RVt−22

mark daily, weekly (5 business days) and monthly (22 business days) RV, respectively. Weekly and

monthly RV is calculated as: RVt,t+h = h−1[RVt+1 +RVt+2 + ...+RVt+h], h = 1, 2, . . . .

5.3.2 Recurrent Neural Networks

In this chapter, we use Recurrent Neural Network (RNN) models which were introduced by Elman

(1990), see also an application of RNNs in currency trading by Dunis and Huang (2002). Their only

difference from multilayer neural network is that they include a loop back from one layer, either the

output or the intermediate layer or the input layer. Figure 5.1 shows a single output RNN model

with one hidden layer and two hidden nodes. The detailed discussion of ANN has been shown in

Chapter 3.

In our empirical application, we choose the logistic function as squashing fuction, that is better

adapted to the output domain of the numbers we analyse. However, the generated data is typically

relatively small compared to unity. The typical order of magnitude is between 10−5 and 10−4. In

this case, a simple linear transformation is advised that makes better use of the available output

range of the logistic function. To achieve this, we simply multiply all data with 103 for the linear
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Figure 5.1: Single output Recurrent Neural Network (RNN) model with one hidden layer

HAR-RV-J model inputs. This simple linear transformation does not change the basic interpreta-

tion of the data but makes it easier to be learned by an ANN. The inputs to our RNN model are

the same as to the linear model to allow a fair comparison. That is, we include the three RV and

one jump inputs. In all our RNN models we determine the number of hidden neurons h in the

following way:

h = 2×
√
i× o, (5.3.8)

where i and o refer to the size of the input and output layer, respectively. Note, that in the case of

the input layer we do not take the bias neuron into account.

5.3.3 Hybrid Model

The hybrid model is also designed as an RNN. However, as an additional input we feed the forecast

of the linear model to the RNN. We also keep our four basic inputs. Thus, the total number of

inputs rises to five in the case of the hybrid model. All other model parameters are kept the same.

Specifically, the number of hidden neurons is determined as above. Also, the model architecture

stays identical.

The hybrid model shows increased complexity. We are combining the linear HAR model in-

cluding jumps with the non-linear recurrent neural network. This recurrent network now uses five
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inputs: the four basic inputs (three lags of realized volatility and the jump component) plus the

output of the HAR model. It is, therefore, not very straightforward to set up. Such a model will

not easily be available in an analyst’s toolbox and will need to be built by hand in most cases.

The application of hybrid models is quite popular, see for example Araujo et al. (2015); Bildirici

and Ersin (2009); Donaldson and Kamastra (1997); Hajizadeh et al. (2012); Monfared and Enke

(2014); Park et al. (2014). Often, artificial neural networks are combined with models from the

GARCH family. They are applied to the domain of forecasting stock market returns or stock

market returns. We introduce models that combine a neural network with the HAR model.

5.3.4 Data

We use five minute intraday data that spans from May 2007 to May 2017. This data is collected

on the front-month future. When using future data it is important to take care of building a

continuous future series out of the independent maturities. In the present case, the front month

future is rolled over to the second month future, once the trading volume in the second month

future has overtaken the trading volume in the first month future. This insures adequate liquidity

in the asset that is modelled. Additionally, an additional analysis is provided excluding the data

from the crisis period in 2008 and 2009. Therefore the after crisis results will be presented starting

with data since 2010. The expectation is that excluding the very volatile periods in 2008 and 2009

should lead to results with better economic significance.

If we only consider returns on daily data, then rolling over the future poses a problem: naively

doing so introduces an artificial jump when the future is rolled over. However, in the present case,

this is of lesser importance. We only compute intraday five-minute returns. For any given day

these returns will be computed off the same future. No artificial return jump is introduced. We

92



might, however, argue, that the future into which we roll over behaves somehow differently than

the current front month future. Therefore, we would introduce an irregularity into the realized

volatility time series. Alternatively, progressive weighting schemes could be explored. This intro-

duces further complexity and is left to further research. It is questionable, whether such a process

would indeed improve anything. We prefer to stick with an actually tradable asset like a future as

opposed to a synthetically weighted portfolio of futures which would be much more cumbersome

to trade. Nevertheless, it has to be outlined, that such constant maturity futures are synthetically

implemented in Exchange Traded Funds. This might also be an alternative path to explore.

5.3.5 Data Preprocessing

When computing a daily realized volatility out of intraday data the question arises, what exactly

we should consider as a day. Most futures in the USA actually trade Monday till Friday, almost

round the clock. Typically, a short trading break of fiften minutes occurs in the afternoon. We

have opted to stay with the methodology adopted in previous studies. We only take data from

the liquid trading hours, which coincide with the liquid hours of the stock market. Specifically,

we take five minute data from 10am to 4pm EST. This amounts to six hours or 72 five minute

intervals. Actually, the trading day starts already at 9.30 am. However, as is usually done, we

discard the first half hour as this is quite volatile. We don’t want the first half hour volatility to

bias our volatility computation for the whole day. Days that do not include 72 five minute data-

points between 10am and 4pm are excluded. This takes care of removing half-holidays. Indeed,

otherwise, we would have to normalize volatility. It is questionable and open to further research

anyway, whether half-holidays would exhibit the same behaviour with respect to realized volatility,

as typical full trading days.
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Lastly, we have to take the possibility of errors in our intraday data into account. Due to the

sheer amount of data, it is an almost hopeless task to filter out errors manually, just by eyeballing the

numbers or the chart. Therefore we adopt the following data cleaning procedure. This procedure

takes specifically into account, that the input to the realized volatility computation is returns and

not raw prices. Therefore our data cleaning procedure acts on the raw prices:

• Sort the intraday returns by size

• Remove the smallest three and the largest three returns

• On the remaining returns, compute mean and standard deviation

• Replace all returns that are outside of five standard deviations from the mean by the mean

return.

This cleaning procedure will keep most if not all legitimate returns, but filter out obviously

wrong returns that may result from zero values in the intraday data. Note, that +Infinity and

-Infinity are valid values in our programming environment and will get filtered out in the second

step above. In the above procedure, we use the returns for an entire day. As we only compute

realized volatility at the end of the day, this procedure is valid and does not introduce a look-ahead

bias. We are not performing any kind of intraday online algorithm. Thus, taking the entire return

set doesn’t cause a problem.

5.4 Results

This section will focus on providing an economic interpretation of our results. Whereas often in

forecast exercises we present statistical error measures, this often leads to neglecting the actual

potential (or lack) of the method. For this reason we will omit any statistical error measures.
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These are available upon demand and rather put the results in the context of a risk management

strategy.

5.4.1 Crude Oil

It is useful, to first analyse, what our models are actually showing us. We will emphasize crude oil,

here. Figure 5.2 illustrates the one day realized volatility. We notice the stylized fact of volatility

clustering. This means that periods of high volatility tend to be followed by other periods of high

volatility. And periods of low volatility will, generally, be followed by periods with low volatility

again. Historically, we can identify several periods with high volatility, most notably in 2008, 2011

and around 2015. These high volatility periods in crude oil also coincide, approximately, with

periods of high volatility on the broader financial markets.

More specifically, figure 5.3 illustrates the jump component. This component, again, becomes

large when general volatility is high. Adding to this, figure 5.4 shows the corresponding (signed)

forecast errors. Not surprisingly, periods of high volatility, lead to higher forecast error.

Therefore, we have to deal with the question, how these forecasts can actually help in improving

a risky portfolio of crude oil. For this goal, we look at the information ratio as a measure of risk

adjusted return. The information ratio divides the annualized return by the annualized volatility.

We want this number to be large: a high return, paired with compartively low volatility is desirable.

This measure is related to the Sharpe ratio. In the case of the Sharpe ratio we would substract the

annualized risk free rates from the annualized return before dividing by volatility. However, firstly,

what the risk free rate is, exactly, is often open to debate. And, secondly, the risk free rate has

been essentially zero or even negative in the last few years. Therefore, just using the information

ratio gives us a good idea of what the Sharpe ratio should be, without leaving anything open to

95



discussion.

Table 5.1 shows results of the economic significance for different lookbacks and lookaheads. This

table should be interpreted as follows. The lookback outlines the trainset (in business days) on

which the model is calibrated. For example, a lookback of 252 (business) days equals to a train set

of one year, on which the model is fitted. This model is then used, with a lag of one day, to forecast

volatility. It is then trained anew each day, leading to a rolling window forecast. The lookahead of

1 day, for example, means that we are forecasting 1 day ahead. It may seem like a large amound of

work to retrain the model every day and arguments might be raised, whether this would actually

be feasible in real-time. However, estimating a single model, takes much less than one second. And

computing all numbers for the entire table 5.1 only takes a few minutes on a laptop. Therefore, all

the computational needs of the model can be easily achived without any specialized hardware or

recourse to parallel computation. Indeed, introducing an artificial lag of one-day could even prove

too much and our results are likely to be conservative. As model estimation (and evaluation) is

almost instanteneous even a same-day forecast would be achievable. Comparatively table 5.1 show

the results excluding the initial crisis period. It can be noticed that, generally, results improve

slightly. This can be interpreted as the model being better able to catch up with lower volatility

periods. However, when performing this analysis and wondering whether even better results could

be achieved, it should be kept in mind, that there are still volatile periods included in this sample.

Specifically 2011 and 2016 have proven to be quite volatile. This cannot, of course, be known in

advance.

When looking at the results of table 5.1 in more detail we should keep in mind that a pure

buy and hold position in Crude Oil would have resulted in an information ratio of 0.2. This
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means, always holding the front-month future and rolling it over, once the volume of the second-

month future becomes larger than the volume of the front-month future. In contrast to this simple

strategy, we use the volatility forecast in the following way. If volatiity is forecast to rise, we short

the asset. If volatility is forecast to go down, we buy the asset (go long). This exploits the general

tendency of asset returns to be negatively correlated to volatility. If our forecast is valuable, then

the risk adjusted return of such a strategy should be higher than just buy and hold. Of course,

as the strategy may switch positions relatively often, we should account for transaction costs.

Here, we assume that for each transaction we pay the bid-ask spread. Furthermore, we assume

fixed transaction costs of 1 basis point per trade for the brokerage commissions and exchange fees.

While this may seem low, such fees are actually achievable even for non-institutional traders at

discount brokerages. For institutional traders with direct market access these fees would be almost

neglegible. The figures shown in the table represent therefore a true walk-forward test of what

would have been achieved when following the recommendation of the forecast.

We see that, overall, the information ratio is always higher than buy-and-hold. Also, in no

case, do we get a negative result. If we would be using the strategy not for risk management but

rather for speculative purposes, we might also be interested in high annualized returns. Here we

notice that the shortest lookback produces the overall best annualized returns on average. This

is, of course, with the benefit of hindsight. We can’t possible know beforehand, which parameter

set will produce the best restuls. The interpretation of this finding is, that dynamics seem to be

shifting rapidly in the crude oil market. Therefore, short lookbacks allow for a fast adaptation

of the system to these new dynamics. Longer lookbacks, on the other hand, produce lower (but

arguably more stable) returns and information ratios.
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Another finding is also of interest: the lookahead interval plays a minor role in producing good

risk adjusted returns. While the information ratio tends to be lower for a lookahead of 5 days, this

behaviour is not very strong. Overall, the information ratios stay comparatively constant for a given

lookback over a range of lookahead intervals. This is in contrast to previous studies which show

that the forecast efficiency dinimishes markedly for multi-step forecasts. These previous studies

analyse the equity market. It would be premature to draw any strong conclusions at the present

state of research. However, one interpretation of this finding may be, that the dynamics of crude oil

exhibit a more trending behaviour in the sense, that past behaviour is a better indicator of future

performance. As the dynamics of the crude oil market may partly be driven by fundamentals which

don’t change significantly within a few days, we may observe such kind of behaviour.

The above pattern changes subtly, when we use a recurrent neural network to model realized

volatility. Table 5.3 shows the result for different lookback intervals. To conserve space, we don’t

show results for different forecast horizons as the tendency remains the same: the information

ratios stay relatively stable. However, we notice that the quality of the forecast as measured by

its economic significance increases for a longer lookback (training) interval. This is interesting,

because it shows a tendency of the network to better incorporate the past information given a

longer training horizon. It is also a contrast to previous studies on equity markets. These studies

found, that the economic significance of the forecast is essentially not sensitive to the lookback

interval. The performance was equally satisfying for long and short intervals. Conversely, table 5.4

shows results excluding the initial crisis period.

Here, however, the behaviour is different: for short intervals the results are clearly not satisfying.

They are sensibly below the average forecast quality of the basic HAR model. For the 126 days
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and 252 days lookback the results are within the average of the HAR model, but not great. On

the other hand for the long loockback interval of 504 days the resulting information ratio is clearly

attractive and above what could be achieved with the basic HAR model. However, we shall always

take such good results with a grain of salt. Specifically, the total forecast exercise is carried out

on a dataset of only ten years. Essentially, from the end of the Global Financial Crisis upto now

(May 2017) the equity markets have been predominantly in a bull market and the interest rate

environment has been one of continuous quantitative easing. Our results may therefore be subject

to data snooping: just by chance we found a specific model configuration (in this instance: using

an RNN with two years of training data) that happened to work well on crude oil in this more or

less steady market environment. The after crisis results show a similar behaviour as above. Slight,

but not substantial, improvements.

Finally, table 5.5 highlights the results of using a hybrid model to forecast one-day ahead realized

volatility. The results start with a very attractive information ratio for a lookback of 63 days. It

seems, that for this short interval the hybrid model is able to combine the advantages of both the

linear HAR model and the neural network to its advantage. Indeed, the HAR alone is also able to

produce good results on a short lookback and feeding this result into a neural network seems to

improve the performance further. However, for the longest lookback the performance deteriorates

considerably and the information ratio becomes markedly negative. This should be a warning sign

to use the hybrid model for long lookbacks. The decline in performance seems to be gradual instead

of sudden. The longer the lookback, the worse the performance is. Again, table 5.6 highlights after

crisis results.

We may attribute the above results to the general problem of overfitting. The least complex

99



Figure 5.2: One day realized volatility over time.

model, the linear HAR model, produces average results, but does so consistently for all lookbacks.

The non-linear pure recurrent neural network produces results that range from average to very

good. And, finally, the most complex hybrid model, produces results that range from terrible to

excellent. This may be an unfair treatment of the non-linear model: at least, they have domains

that perform consistently well. For the pure recurrent network these are longer lookback intervals.

For the hybrid model we should confine ourselves to shorter lookback intervals. Nevertheless, the

behaviour among the non-linear models is actually not consistent. Before using any of the model,

further research might be warranted. Also, excluding the crisis period does not improve the results

by much.

5.4.2 Natural Gas

After the extensive analysis of the results for Crude Oil we now shift our attention to another very

popular and liquidly traded energy commodity: Natural Gas. Table 5.7 shows results for different
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Figure 5.3: Jump component over time.

Figure 5.4: Forecast errors for a lookback of 252 days and a one day ahead forecast.
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lookback lookahead ann. ret. inf. ratio

63 1 0.2794 0.5408
63 2 0.4124 0.7989
63 3 0.3667 0.7101
63 4 0.3726 0.7216
63 5 0.3524 0.6825

126 1 0.2874 0.5563
126 2 0.283 0.5479
126 3 0.3694 0.7155
126 4 0.2346 0.454
126 5 0.27 0.5226
252 1 0.198 0.3831
252 2 0.2606 0.5045
252 3 0.2405 0.4655
252 4 0.2071 0.4008
252 5 0.1889 0.3656
504 1 0.2832 0.5482
504 2 0.2867 0.555
504 3 0.2498 0.4835
504 4 0.2249 0.4353
504 5 0.2615 0.5063

Table 5.1: Overview of economic significance for Crude Oil.

lookback lookahead ann. ret. inf. ratio

63 1 0.2989 0.6174
63 2 0.4574 0.8271
63 3 0.3791 0.7397
63 4 0.4013 0.7589
63 5 0.3617 0.6724

126 1 0.2784 0.5457
126 2 0.3153 0.5683
126 3 0.3898 0.7415
126 4 0.2512 0.489
126 5 0.2974 0.5485
252 1 0.2015 0.3911
252 2 0.2751 0.5415
252 3 0.2814 0.4634
252 4 0.2275 0.4484
252 5 0.2018 0.3797
504 1 0.3014 0.5633
504 2 0.2915 0.5612
504 3 0.2659 0.4931
504 4 0.2441 0.4613
504 5 0.2723 0.5132

Table 5.2: Overview of economic significance for Crude Oil after crisis
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lookback ann. ret. inf. ratio

63 0.12 0.2846
126 0.2118 0.5119
252 0.2096 0.5054
504 0.3186 1.041

Table 5.3: One step ahead forecast for Crude Oil using a Recurrent Neural Network.

lookback ann. ret. inf. ratio

63 0.1414 0.2944
126 0.2322 0.5231
252 0.2151 0.5341
504 0.3285 1.131

Table 5.4: One step ahead forecast for Crude Oil using a Recurrent Neural Network after crisis.

lookback ann. ret. inf. ratio

63 0.4921 1.1699
126 0.29 0.7013
252 0.2373 0.5721
504 -0.1972 -0.6436

Table 5.5: One step ahead forecast for Crude Oil using a Hybrid Model.

lookback ann. ret. inf. ratio

63 0.5234 1.2012
126 0.3153 0.7253
252 0.2389 0.5891
504 -0.1841 -0.6352

Table 5.6: One step ahead forecast for Crude Oil using a Hybrid Model after crisis.
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lookbacks and lookaheads using the HAR model including jumps. Just glancing at the annualized

returns and corresponding information ratios would give the impression, that the HAR model is

able to produce forecast of excellent economic significance. There is also a remarkable tendency of

improving forecasts for a longer lookahead.

However, we have to be very careful with the interpretation of such seemingly attractive results.

It is true, without doubt, that the basic HAR model is able to nicely catch-up with the underlying

volatility process of Natural Gas. But, over the last ten years, we notice that Natural Gas has

exhibited a strong mean-reverting tendency. Therefore, any simple mean-reverting strategy would

have produced attractive returns. While there is a fundamental reason for a slight mean-reversion

of the Natural Gas reason due to seasonal demand, there is no specific reason, why such a mean-

reverting tendency should persist forever. We might therefore expect a regime change. In this case,

it is not clear, if the HAR model would be able to catch up with this regime change. We would

therefore advise, to use the model only with extreme caution.

We also have another reason for caution when we look at table 5.8. This table reports one step

ahead forecasts for natural gas, where we use a recurrent neural networks. It is the exact same setup

as we used previously for crude oil. The results, here, are clearly disappointing, possibly indicating

a high degree of overfitting. In contrast to the situation with Crude Oil, the hybrid model in table

5.9 also shows no improvement. To converse space the after crisis results are omitted here as they

present to substantial added information.

5.4.3 Summary of Results

In any case, the economic resuts are encouraging. Whether realized volatility forecasts are used

for risk management purposes, for trading, or for policy decisions, there seems to be value over a
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lookback lookahead ann. ret. inf. ratio

63 1 0.3534 0.7495
63 2 0.5545 1.178
63 3 0.1224 0.2594
63 4 0.9093 1.9408
63 5 1.1651 2.4988

126 1 0.4317 0.9161
126 2 0.8469 1.8058
126 3 0.59 1.2538
126 4 0.9817 2.0979
126 5 0.9417 2.0109
252 1 0.7802 1.6619
252 2 0.9059 1.9335
252 3 0.7197 1.5319
252 4 0.733 1.5603
252 5 1.0129 2.1659
504 1 0.8915 1.9023
504 2 0.8445 1.8006
504 3 0.7801 1.6616
504 4 0.8915 1.9023
504 5 0.8915 1.9023

Table 5.7: Overview of economic significance for Natural Gas.

lookback ann. ret. inf. ratio

63 0.3512 0.7592
126 0.6891 1.485
252 0.4211 0.9126
504 0.5217 1.1083

Table 5.8: One step ahead forecast for Natural Gas using a Recurrent Neural Network.

lookback ann. ret. inf. ratio

63 0.386 0.8345
126 0.4223 0.9076
252 0.0126 0.0274
504 0.2041 0.4327

Table 5.9: One step ahead forecast for Natural Gas using a Hybrid Model.
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naive strategy.

At the same time, clearly, more research is warranted. This especially concerns the use of non-

linear models. While adequate model tuning would surely improve the economic results we have to

be very careful in using non-linear models out of the box. The present analysis shows that excluding

very volatile periods may improve model performance. However, this has also to be taken with

care as it is not possible to know the volatile periods in advance. Therefore, we cannot, realistically

exclude them. Of course, a volatility filter could be of interest here: for example, refraining from

using the model, if historical realized volatility has been higher than average over the past n days.

This introdcues a new variable and should be applied with extreme care.

Nevertheless, we have a relatively clear assessment of the basic HAR model including jumps:

this model seems, generally, to be able to produce robust results. This is irrespective of the interval

that is used to train the model and irrespective of the forecast horizon ranging from one to five

days. This is promising. Yet, as a rule, a walk-forward test on around ten years of data can only

be a first hint at potential usability as a risk management and decision support tool. Within the

last ten years we have been mostly stuck with a market regime of declining interest rates and rising

asset prices.

5.5 Conclusions

This chapter presents an analysis of the modelling of realized volatility using futures data. To

this end, we firstly use the comparatively simple HAR model including jumps. We also use more

complex models, namely a recurrent neural network and, finally, a hybrid model. This hybrid

model uses the HAR model forecast as an independent input to a neural network.

As it turns out all models are able to beat the naive benchmark of buy and hold. Most model
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instances beat the benchmark by a wide margin. The linear HAR model including jumps shows the

most consistent performance. The non-linear models are able to deliver outstanding performance in

some cases, however the overall performance is less robust. This may be taken as a clue to explore

further options with the non-linear models.

The first path to explore is to take an enxemble of models. As every model instance will

be different due to random initialization of parameters (weights) each non-linear model instance

will also produce a different output. Averaging over all these outputs might produce more stable

forecasts. However, if for every timestep in the rolling-window approach one hundred models have

to be computed, the overall time to analyse a time series will increase significantly. Nevertheless,

the whole training process of a non-linear model only takes a few minutes. Therefore using an

ensemble approach is a viable next step.

Further potential work includes more technical variations of the model building. Several meta-

parameters used by our models are taken in an ad-hoc way, just replicating best practices of the

literature. However, this does not imply that these meta-parameters are set in stone. Specifically,

it would be instructive to change the actual frequency of the data for computing realized volatility.

For example, evaluating the model on one minute data and on ten minute data. One minute data (or

even higher frequency data) would presumably introduce noise in the estimation process, notably

due to bid-ask bounce. However, the additional information contained in the higher frequency data

might be worth it. On the other hand, lower frequency data would be more smooth, but we might

loose important information. This tradeoff should be explored in more detail.
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Chapter 6

Discussion and Limitations

Even if the obtained results were very satisfying, there is, nevertheless, always room for improve-

ment, critique and further research. For our two main topics, NAV modelling and RV modelling

the challenges were of different nature and shall be discussed subsequently.

6.1 Discussion of Modelling ETF Premium

6.1.1 Problem Outline

Modelling ETF premium and discount and the accompanying potential feedback trading proved

to be a worthwhile research quest. Especially, we could analyse to which extent feedback trading

is actually present. This is a natural extension to previous work by other authors who already

analyse premium and discount for more mainstream ETF. However, our analysis is distinct from

the literature on closed-end fund premiums and discounts. In the case of closed-end funds there is

a natural arbitrage opportunity that arises when a closed-end fund is traded on exchange and the

price deviates from the supposedly well-known NAV.

The case in the present research is a slightly different one: the causes for premiums or discounts

may be mainly two-fold. On the one hand, we may have an apparent deviation from NAV because of

synchronicity issues: the ETF is trading, while the assets within the ETF are actually not trading.

Here, we have a stale NAV, that might have been computed several hours ago. The price of the
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ETF is influenced by supply and demand. And this supply and demand will be chiefly influenced

my the market participants’ perception on how the holdings of the ETF are likely to evolve. As a

direct observation is not possible, each market participant will form her own model of the holdings’

price evolution. In case of equity ETFs the price may just follow the US stock market as a leader,

although there is really no compelling reason to do so. Or, market participants may use more or

less sophisticated models to determine a likely price for the ETF. In any case, the price of the ETF

is more of an educated guess than anything else.

6.1.2 Modelling Issues

A second reason for deviations from NAV can be found in liquidity issues. It might be rational for

investors to over- or underprice the ETF compared to its NAV because of supposed better liquidity

in the ETF or in the underlying assets. This could be a very valid concern and lead to a persistent

discount or premium.

In the case of modelling ETF premium and discount it can be argued, that we didn’t imple-

ment some rather obvious extensions of our research. We were mostly concerned with modelling

the potential feedback trading, therefore describing its features. However, we didn’t venture into

analysing, whether a supposed anomaly could actually be exploited on the financial markets. There-

fore, our work is limited in the sense that it (mostly) describes stylized facts of ETF premiums

for emerging market ETFs. But there is also the question of economic significance. Or, put more

bluntly: Is there a truly exploitable anomaly that could lead to abnormal returns by those who have

a good grasp on the premium and discount mechanism of (emerging markets) ETFs? There seems

to be a truly puzzling anomaly in the domain of closed-end funds which (even after transaction

costs) offer abnormal returns to buying discounted funds and selling funds trading at a premium.
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However, it should be explored, whether similar abnormal returns could also be obtained with the

emerging markets ETFs.

The analysis of this question has to be left to future research. However, for the sake of a critical

assessment, we can already highlight a few arguments that would speak against a truly exploitable

market anomaly for emerging market ETFs. Firstly, as already outlined, premium or discounts

might be rational and not likely to go away. Secondly, most ETFs we are analysing cannot be

categorised as very liquid. In consequence, spreads might be too large to actually make a true

arbitrage transaction attractive. The comparatively low daily turnover of these ETFs may also

makes it difficult to execute large volume transaction. Additionally, if we want to engage into a

hedged transaction we would look, for example, at buying the ETF and selling the basket of con-

stituents (or vice versa, depending on the perceived discount/premium). Transacting in the ETF’s

holdings might prove difficult enough, to make such an operation financially unattractive. Spreads

and outright transaction costs might be high. On top of that, certain emerging market countries

may have short-selling restrictions, that effectively make selling the constituents impossible.

6.1.3 Financial Viability

If we wanted to analyse the financial viability of modelling feedback trading on premium or dis-

counted ETFs we might still engage in a third type of transaction. First, we will assume that the

emerging markets as a whole will show some pronounced degree of correlation. Then, it might be

tempting, to build a market neutral portfolio that would include all emerging markets ETFs. We

can long the ETFs at a discount and short the ETFs at a premium. As we have a large number

of ETFs in our analysis our portfolio would be relatively immune against external market shocks.

Again, implementing this strategy will be subject to the same caveats as outlined above.
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Another limitation is the availability of NAV data for emerging market ETFs. Generally, with

the data sources accessible to us, we were mostly limited to NAV data from the iShares series

of ETFs. This potentially introduces an issuer bias into the analysis. Indeed, with the current

dataset, it is not meaningfully possible to check, whether there might be some systematic distortion

in the recorded prices of iShares ETFs. There is no specific reason to assume that such a bias would

be present, because it would be detrimental to the issuer. However, the academic literature has

several examples of regular mispricings along the product line of a given issuer. These findings

mostly relate to more complex products, like exotic derivatives. However, a comparison among

different issuers would be relatively easy to do given access to the corresponding data and could

answer this question. This is left to further research.

Additionally, the specific selection of ETFs was, again, dictated by the availability of NAV data.

In this sense some country ETFs could just not be considered. It may be argued that the iShares

product line is well-reputed and broad. Nevertheless, extending the analysis would have been easy

with access to the data.

From a modelling perspective there is one broad line of thought that always crops up when

using a parametric approach in contrast to a non-parametric approach: How do we know, that

we have the right model? The answer is, obviously: We just cannot be sure. Each model based

approach is subject to model risk. We should be aware of this and cannot rule out, that some

other model might be a much better description of reality than what was used in this thesis. This

critique could be mitigated by using a non-parametric approach, for example Artificial Neural

Networks, Support Vector Machines or Genetic Programming. We address these concerns in our

second research area, modelling realized volatility. For the ETF premium research area we leave a
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non-parametric approach to future work.

6.2 Discussion of Modelling Realized Volatility

6.2.1 Problem Outline

Related to the modelling of Realized Volatility several limitations and, accordingly, possibilities of

extensions of our work come to mind. Firstly, when just considering the pure HAR-RV-J model

the inherent critique of model risk can be seen. HAR-RV-J is just one of many models that can be

used to model RV. The literature also considers many more complex models, although HAR-RV-J

is praised for its simplicity and accuracy. In the case of RV we try to counter this argument by

also including a model-free approach by using an artificial neural network and also a hybrid model

combining neural networks and the HAR-RV-J. The neural network does not imply any specific

functional form, rather lets the data speak for itself. This, on the other hand, raises the concern

of potential overfitting. However, the network is kept small and overfitting is controlled through

early stopping.

6.2.2 Data Availability

Another point of critique may be raised when considering the actual data used to compute RV. In

the present case we use five-minute data. This is seen as a good compromise between an adequate

level of detail, not available at lower frequencies, and a reduction of noise, that would occur at

higher frequencies. Of course, this is debatable. Arguably, qualitatively similar results could be

obtained using ten-minute or three-minute data.

Also, this raises the interesting question whether there is some optimal frequency on which to

compute RV and which parameters determine this frequency. This would imply actually determin-

ing meta-parameters of RV modelling, a task left for further research.
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6.2.3 Application Domain

Our RV modelling applications are also limited by the specific application domains. On the one

hand we model RV on very liquid, large indices and derived products. On the other hand we model

RV on energy-related assets, putting RV modelling into a more risk-focused, regulatory perspective.

In all cases we explore the economic significance of the RV forecast in addition to computing

the usual statistical error measures. However, more work could have been carried out in evaluating

the risk assessment qualities of the presented RV forecasts.
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Chapter 7

Outlook and Recommendations

7.1 Conclusions and Outlook

My thesis highlights potential market anomalies and inefficiencies using advanced methods and

datasets. Specifically, the thesis is concerned with modelling and analysing feedback trading on

ETFs and with modelling high-frequency intraday realized volatility.

However, the presented results should only be considered as one of many steps towards a more

thorough treatment of the underlying problems. In the case of ETFs a host of different future

research paths arises. These include, for example:

• Currently, the entire analysis is based on daily closing prices and net asset values. This

data will be the most common, as it is readily available. On the other hand, little analysis

has been carried out on intraday relationships and deviations of price and NAV. This is

understandable, as, typically, the intraday NAV would have to be estimated manually out of

the components of the ETF. Some providers and market participants (for example Interactive

Brokers, among others) offer intraday updates of ETF NAVs included in their normal data

feed. But, generally, this data has seen less attention. Yet, this might prove a very interesting

area for research, as premiums and discounts intraday might be much more pronounced.

• Relatedly, the question arises, what the influence of pre-hours and after-hours trading is on
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ETFs trading assets in a far-away timezone. Indeed, as the large Electronic Communication

Networks (ECNs) offer almost round-the-clock off-exchange matching facilities for most US

securities an overlap of trading hours could be observed. However, spreads outside the regular

trading hours tend to be quite significant and could cancel out any supposedly available

arbitrage opportunity. Also, data would have to be collected individually from the different

ECNs, as the data is not necessarily consolidated into a single feed.

• Additionally, the current analysis is only concerned with aggregates. That is, I don’t consider

the individual components that make up the ETFs at all. Arguably, considering and modelling

the components individually, and, ultimately, trying to forecast them, might lead to better

overall results when evaluating feedback trading.

For the realized volatility research the potential for future analysis is also significant:

• Although I evaluated several asset classes already, including equities and commodities, the

method is, in principle, applicable to any asset. Therefore, a very comprehensive analysis

might allow to single out areas, where the analysis is especially suitable and also highlight

assets, which do not lend themselves easily to such modelling. For example, a broad analysis

could include the top 100 most liquid ETFs traded in the US, or the major future markets,

or, potentially, also include bond markets. Finally, analysing all the constituents of a stock

index would also prove instructive. Such an extended analysis necessitates ample data and

still more automation in the different processing steps to be actually viable.

• Future research should also include a more detailed benchmarking of the applied HAR and

neural network model. For example, as has been outlined in the literature research, some

HAR variants also include a measure of implied market volatility (for example the VIX in the
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case of the S&P500 index) as an additional model input. On the other hand, more traditional

approaches are in existence to model volatility. Putting this into perspective, a comprehensive

comparison of different model types would be useful. Ideally, this should be coupled with a

broad analysis as outlined in the previous bullet point.

• On top of that, it might be worthwhile to try out a big data approach that includes still

other, more exotic predictors. In this case, of course, this would deviate from the premise

of building a purely autoregressive model. This tradeoff has to be weighted carefully: the

three papers on this topic show, that the basic HAR model including jumps is already able

to model volatility satisfactorily. On the other hand some predictors have been successful,

especially when applied to intraday data. This includes, for example, the release of news.

Even if the content of news is not known, just the fact that a news release is scheduled can

lead to repeatable volatility patterns. If the content of the news can somehow be forecast,

then even better assessments are possible.

• Also, modelling realized volatility around the close of each trading day seems a bit arbitrary.

An intraday analysis and forecast of realized volatility would be both a novel application and

potentially unearth new approaches in risk management. Indeed, out of my experience with

the industry I noticed, that most risk management models are only updated and evaluated

daily. However, markets are moving quickly and an intraday assessment of the probably path

of volatility would surely be welcome.

• Related to the above future research idea more research is warranted as to which kind of

intraday data should actually be used. Sticking to the literature standard, I use five minutes

data. Yet, the options are many. The highest frequency available would be to use tick
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data. While we have this data available, using tick data would require a good assessment of

market noise. Using tick data for modelling realized volatility would necessitate, especially,

a modelling of the bid-ask bounce.

Typically, one doesn’t want the bid-ask bounce to interfere with our realized volatility com-

putation. At the same time, most models assume equidistant spacing of data in time. This

is not the case, obviously, for tick data. A suggestion might be, therefore, to use an activity

or volatility based time scale. For example, realized volatility is computed every 100 ticks.

At the other end of the spectrum, we have much lower frequency data that is less noisy but

also less informative.

• At the same time the thesis has mostly been concerned with the quantitative finance aspects of

the work. However, the work on realized volatility can and should also be seen in the context of

decision support systems and from an information technology aspect. Due to my background

in mathematics, obviously, we weren’t able to carry out a usability and technology acceptance

analysis of the models we developed. Yet, in the context of an interdisciplinary study, it would

be useful to provide realized volatility forecasts to professional risk managers (and, perhaps,

traders). This would allow the evaluation of the actual usefulness in combination with human

interaction. For example, we could answer the question, whether human experts actually find

value in our methods when applied on a daily basis. As I got a good amount of industry

feedback on this project I tend to believe that the models developed have value. Yet, the

feedback is by a comparatively limited number of people. This number of people would have

to significantly extended to get a more truthful assessment.

Especially the presentation of the work on realized volatility has been well received at confer-
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ences by academics and industry participants alike. I see good potential in developing this work

further and bringing it to application in the context of risk management systems. Mostly, par-

ticipants have commented positively on the simplicity, yet effectiveness, of the model. Also, the

clarity of exposition has been mentioned as a good aspect of the work. I am very keen on pursuing

research in these areas as the topic seems to be of high interest, currently, to the community.

I see the potential of actually improving today’s risk management systems and provide a better

understanding of short-term volatility. This in turn could lead to less hasty reactions on the

financial markets and potentially avoid the mini-crashes we regularly encounter in different asset

classes. Of course, nowadays, this is still more of a vision than a reality. Yet, it seems a worthwhile

goal to pursue.

Summing up, my thesis contributes to the growing body of literature that deals with modelling

and analysing potential market anomalies in the realm of high-frequency data.

7.2 Key Recommendations

The present section intends to give actionable key recommendations for the topics discussed in my

thesis.

Related to ETF feedback trading we can notice that deviations from NAV are relatively frequent

and may provide trading opportunities of economic significance. These findings could be exploited

in the following ways. On the one hand, when purchasing ETF shares for long- term investments it

might be useful to research those ETFs which trade at a discount to NAV, if some choice is available

on the target investment goal. Conversely, the existence of premiums means that ETF investors

might want to research those ETFs with the lowest average premium (for a given investment

universe) to get a slightly better entry price.
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More to the point of the actual research carried out this thesis finds that feedback trading may

provide real opportunities with exploitable anomalies. Nevertheless, this recommendation has to

be cautioned by the fact, that true opportunities with improved risk-adjusted returns will have to

be researched thoroughly. Not every seemingly attractive deviation from NAV will result in an

actionnable trade.

Related to the work carried out on realized intraday volatility we can take away, that the

HAR model with jumps does a satisfying job of forecasting realized volatility. The inputs to the

HAR model also lead to good forecasts when employing an RNN model. The ensuing double

recommendation is to go for a pure HAR model, if enough lookback data (more than one year) is

available. If only little data is available (one or three months), then an RNN model will be a good

choice on average.

Additionally, it is recommended to use the above models in the context of risk management

or systematic trading applications. Indeed, following the forecasts of the realized volatility models

leads to improved risk-adjusted returns in terms of Sharpe ratios. Whether this will persist is up

to discussion. In any case the recommendation is to always monitor the model performance in real

time and to be aware of quickly changing market environments.
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Appendix A

Abbreviations

ETFs: Exchange Traded Funds
NAVs: Net Asset Values
EMH: Efficient Market Hypothesis
GARCH model: Generalized AutoRegressive Conditional Heteroskedasticity model
GJR-GARCH model: Glosten-Jagannathan-Runkle GARCH model
OU process: Ornstein-Uhlenbeck process
SV model: Stochastic Volatility model
RV model: Realized Volatility model
HAR-RV: Heterogeneous AutoRegressive model of Realized Volatility
HAR-RV-J: HAR-RV model with Jumps
ANN: Artificial Neural Network
RNN: Recurrent Neural Network
ETNs: Exchange Traded Notes
RGARCH model: Realized GARCH model
BV:Bipower Variation
RMSE: Root Mean Squared Error
MAE: Mean Absolute Error
MAPE: Mean Absolute Percent Error
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