Joint modelling of multivariate longitudinal and time-to-event data

Graeme L. Hickey ${ }^{1}$, Pete Philipson ${ }^{2}$, Andrea Jorgensen ${ }^{1}$, Ruwanthi-Kolamunnage-Dona ${ }^{1}$

${ }^{1}$ Department of Biostatistics, University of Liverpool, UK
${ }^{2}$ Mathematics, Physics and Electrical Engineering, University of Northumbria, UK graeme.hickey@liverpool.ac.uk

13th November 2017

Joint modelling

Joint modelling

Joint modelling

Joint modelling

Why use a joint model?

Interest lies with

- adjustment of inferences about longitudinal measurements for possibly outcome-dependent drop-out
- adjustment of inferences about the time-to-event distribution conditional on intermediate and/or error prone longitudinal measurements
- the joint evolution of the measurement and event time processes
- biomarker surrogacy
- dynamic prediction

Motivation for multivariate joint models

- Clinical studies often repeatedly measure multiple biomarkers or other measurements and an event time
- Research has predominantly focused on a single event time and single measurement outcome
- Ignoring correlation leads to bias and reduced efficiency in estimation
- Harnessing all available information in a single model is advantageous and should lead to improved model predictions

Clinical example

Primary biliary cirrhosis

Primary biliary cirrhosis (PBC) is a chronic liver disease characterized by inflammatory destruction of the small bile ducts, which eventually leads to cirrhosis of the liver and death

Figure source: https://www.medgadget.com

Clinical example

- Consider a subset of 154 patients randomized to placebo treatment from Mayo Clinic trial (Murtaugh et al. 1994)
- Multiple biomarkers repeatedly measured at intermittent times, of which we consider 3 clinically relevant ones:
(1) serum bilirunbin ($\mathrm{mg} / \mathrm{dl}$)
(2) serum albumin ($\mathrm{mg} / \mathrm{dl}$)
(3) prothrombin time (seconds)

Objective 1

(1) Determine if longitudinal biomarker trajectories are associated with death

Objective 1

(1) Determine if longitudinal biomarker trajectories are associated with death

Objective 2

(1) Dynamically predict the biomarker trajectories and time to death for a new patient

Objective 1

(1) Determine if longitudinal biomarker trajectories are associated with death

Objective 2

(1) Dynamically predict the biomarker trajectories and time to death for a new patient

Objective 3

(1) Wrap it all up into a freely available software package

For each subject $i=1, \ldots, n$, we observe

- $y_{i}=\left(y_{i 1}^{\top}, \ldots, y_{i K}^{\top}\right)$ is a K-variate continuous outcome vector, where each $y_{i k}$ denotes an $\left(n_{i k} \times 1\right)$-vector of observed longitudinal measurements for the k-th outcome type:
$y_{i k}=\left(y_{i 1 k}, \ldots, y_{i n_{i k} k}\right)^{\top}$
- Observation times $t_{i j k}$ for $j=1, \ldots, n_{i k}$, which can differ between subjects and outcomes
- $\left(T_{i}, \delta_{i}\right)$, where $T_{i}=\min \left(T_{i}^{*}, C_{i}\right)$, where T_{i}^{*} is the true event time, C_{i} corresponds to a potential right-censoring time, and δ_{i} is the failure indicator equal to 1 if the failure is observed ($T_{i}^{*} \leq C_{i}$) and 0 otherwise

Longitudinal sub-model

Following Henderson et al. (2000) for the univariate case

$$
y_{i}(t)=\mu_{i}(t)+W_{1 i}(t)+\varepsilon_{i}(t)
$$

where

- $\varepsilon_{i}(t)$ is the model error term, which is i.i.d. $N\left(0, \sigma^{2}\right)$ and independent of $W_{1 i}(t)$
- $\mu_{i}(t)=x_{i}^{\top}(t) \beta$ is the mean response
- $x_{i}(t)$ is a p-vector of (possibly) time-varying covariates with corresponding fixed effect terms β
- $W_{1 i}(t)$ is a zero-mean latent Gaussian process

Longitudinal sub-model

We can extend it to K-separate sub-models (with $k=1, \ldots, K$)

$$
y_{i k}(t)=\mu_{i k}(t)+W_{1 i}^{(k)}(t)+\varepsilon_{i k}(t)
$$

where

- $\varepsilon_{i k}(t)$ is the model error term, which is i.i.d. $N\left(0, \sigma_{k}^{2}\right)$ and independent of $W_{1 i}^{(k)}(t)$
- $\mu_{i k}(t)=x_{i k}^{\top}(t) \beta_{k}$ is the mean response
- $x_{i k}(t)$ is a p_{k}-vector of (possibly) time-varying covariates with corresponding fixed effect terms β_{k}
- $W_{1 i}^{(k)}(t)$ is a zero-mean latent Gaussian process

Time-to-event sub-model

$$
\begin{aligned}
\lambda_{i}(t) & =\lim _{d t \rightarrow 0} \frac{P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)}{d t} \\
& =\lambda_{0}(t) \exp \left\{v_{i}^{\top}(t) \gamma_{v}+W_{2 i}(t)\right\},
\end{aligned}
$$

where

- $\lambda_{0}(\cdot)$ is an unspecified baseline hazard function
- $v_{i}(t)$ is a q-vector of (possibly) time-varying covariates with corresponding fixed effect terms γ_{v}
- $W_{2 i}(t)$ is a zero-mean latent Gaussian process, independent of the censoring process

Correlation

Following Laird and Ware (1982):

$$
W_{1 i}^{(k)}(t)=z_{i k}^{\top}(t) b_{i k} \text { for } k=1, \ldots, K
$$

Correlation

Following Laird and Ware (1982):

$$
W_{1 i}^{(k)}(t)=z_{i k}^{\top}(t) b_{i k} \text { for } k=1, \ldots, K
$$

Three sources of correlation:

Correlation

Following Laird and Ware (1982):

$$
W_{1 i}^{(k)}(t)=z_{i k}^{\top}(t) b_{i k} \text { for } k=1, \ldots, K
$$

Three sources of correlation:
(1) Within-subject correlation between longitudinal measurements:

$$
b_{i k} \sim N\left(0, D_{k k}\right)
$$

Correlation

Following Laird and Ware (1982):

$$
W_{1 i}^{(k)}(t)=z_{i k}^{\top}(t) b_{i k} \text { for } k=1, \ldots, K
$$

Three sources of correlation:
(1) Within-subject correlation between longitudinal measurements: $b_{i k} \sim N\left(0, D_{k k}\right)$
(2) Between longitudinal outcomes correlation: $\operatorname{cov}\left(b_{i k}, b_{i l}\right)=D_{k l}$ for $k \neq 1$

Correlation

Following Laird and Ware (1982):

$$
W_{1 i}^{(k)}(t)=z_{i k}^{\top}(t) b_{i k} \text { for } k=1, \ldots, K
$$

Three sources of correlation:
(1) Within-subject correlation between longitudinal measurements:

$$
b_{i k} \sim N\left(0, D_{k k}\right)
$$

(2) Between longitudinal outcomes correlation: $\operatorname{cov}\left(b_{i k}, b_{i l}\right)=D_{k l}$ for $k \neq 1$
(3) Correlation between sub-models ${ }^{1}: W_{2 i}(t)=\sum_{k=1}^{K} \gamma_{y k} W_{1 i}^{(k)}(t)$
${ }^{1}$ Extends model proposed Henderson et al. (2000)

Association structure: alternatives

Many other proposals for association structures in the literature:

- Current value parameterisation: $W_{2 i}(t)=\gamma_{y}\left\{\mu_{i}(t)+W_{1 i}(t)\right\}$
- Random effects parameterisation: $W_{2 i}(t)=\gamma_{y 1}^{\top} b_{i}$
- Bivariate distribution: $\left(W_{1 i}, W_{2 i}\right) \sim N(0, \Omega)$
- Random-slopes parameterisation:

$$
W_{2 i}(t)=\gamma_{y 1}\left\{\mu_{i}(t)+W_{1 i}(t)\right\}+\gamma_{y 2} \frac{\partial}{\partial t}\left\{\mu_{i}(t)+W_{1 i}(t)\right\}
$$

Likelihood

We can re-write the longitudinal sub-model as

$$
\begin{gathered}
y_{i} \mid b_{i}, \beta, \Sigma_{i} \sim N\left(X_{i} \beta+Z_{i} b_{i}, \Sigma_{i}\right), \text { with } b_{i} \mid D \sim N(0, D), \\
\text { where } \beta=\left(\beta_{1}^{\top}, \ldots, \beta_{K}^{\top}\right), b_{i}=\left(b_{i 1}^{\top}, \ldots, b_{i K}^{\top}\right)^{\top}, \text { and } \\
X_{i}=\left(\begin{array}{ccc}
X_{i 1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & X_{i K}
\end{array}\right), \quad D=\left(\begin{array}{ccc}
D_{11} & \cdots & D_{1 K} \\
\vdots & \ddots & \vdots \\
D_{1 K}^{\top} & \cdots & D_{K K}
\end{array}\right) \\
Z_{i}=\left(\begin{array}{ccc}
Z_{i 1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & Z_{i K}
\end{array}\right), \quad \Sigma_{i}=\left(\begin{array}{ccc}
\sigma_{1}^{2} I_{n_{i 1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{K}^{2} I_{n_{i K}}
\end{array}\right)
\end{gathered}
$$

Likelihood

The observed data likelihood is given by

$$
\prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} f\left(y_{i} \mid b_{i}, \theta\right) f\left(T_{i}, \delta_{i} \mid b_{i}, \theta\right) f\left(b_{i} \mid \theta\right) d b_{i}\right)
$$

where $\theta=\left(\beta^{\top}, \operatorname{vech}(D), \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \lambda_{0}(t), \gamma_{v}^{\top}, \gamma_{y}^{\top}\right)$

Likelihood

The observed data likelihood is given by

$$
\prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} f\left(y_{i} \mid b_{i}, \theta\right) f\left(T_{i}, \delta_{i} \mid b_{i}, \theta\right) f\left(b_{i} \mid \theta\right) d b_{i}\right)
$$

where $\theta=\left(\beta^{\top}, \operatorname{vech}(D), \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \lambda_{0}(t), \gamma_{v}^{\top}, \gamma_{y}^{\top}\right)$, and

$$
\begin{aligned}
f\left(y_{i} \mid b_{i}, \theta\right)= & \left(\prod_{k=1}^{K}(2 \pi)^{-\frac{n_{i k}}{2}}\right)\left|\Sigma_{i}\right|^{-\frac{1}{2}} \\
& \exp \left\{-\frac{1}{2}\left(y_{i}-X_{i} \beta-Z_{i} b_{i}\right)^{\top} \Sigma_{i}^{-1}\left(y_{i}-X_{i} \beta-Z_{i} b_{i}\right)\right\}
\end{aligned}
$$

Likelihood

The observed data likelihood is given by

$$
\prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} f\left(y_{i} \mid b_{i}, \theta\right) f\left(T_{i}, \delta_{i} \mid b_{i}, \theta\right) f\left(b_{i} \mid \theta\right) d b_{i}\right)
$$

where $\theta=\left(\beta^{\top}, \operatorname{vech}(D), \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \lambda_{0}(t), \gamma_{v}^{\top}, \gamma_{y}^{\top}\right)$, and

$$
\begin{aligned}
f\left(T_{i}, \delta_{i} \mid b_{i} ; \theta\right)= & {\left[\lambda_{0}\left(T_{i}\right) \exp \left\{v_{i}^{\top} \gamma_{v}+W_{2 i}\left(T_{i}, b_{i}\right)\right\}\right]^{\delta_{i}} } \\
& \exp \left\{-\int_{0}^{T_{i}} \lambda_{0}(u) \exp \left\{v_{i}^{\top} \gamma_{v}+W_{2 i}\left(u, b_{i}\right)\right\} d u\right\}
\end{aligned}
$$

Likelihood

The observed data likelihood is given by

$$
\prod_{i=1}^{n}\left(\int_{-\infty}^{\infty} f\left(y_{i} \mid b_{i}, \theta\right) f\left(T_{i}, \delta_{i} \mid b_{i}, \theta\right) f\left(b_{i} \mid \theta\right) d b_{i}\right)
$$

where $\theta=\left(\beta^{\top}, \operatorname{vech}(D), \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}, \lambda_{0}(t), \gamma_{v}^{\top}, \gamma_{y}^{\top}\right)$, and

$$
f\left(b_{i} \mid \theta\right)=(2 \pi)^{-\frac{r}{2}}|D|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} b_{i}^{\top} D^{-1} b_{i}\right\},
$$

with $r=\operatorname{dim}\left(b_{i}\right)$

Estimation

Multiple approaches have been considered over the years:

- Markov chain Monte Carlo (MCMC)
- Direct likelihood maximisation (e.g. Newton-methods)
- Generalised estimating equations
- EM algorithm (treating the random effects as missing data)
- ...

EM algorithm (Dempster et al. 1977)

E-step. At the m-th iteration, we compute the expected log-likelihood of the complete data conditional on the observed data and the current estimate of the parameters.

$$
\begin{aligned}
Q\left(\theta \mid \hat{\theta}^{(m)}\right) & =\sum_{i=1}^{n} \mathbb{E}\left\{\log f\left(y_{i}, T_{i}, \delta_{i}, b_{i} \mid \theta\right)\right\} \\
& =\sum_{i=1}^{n} \int_{-\infty}^{\infty}\left\{\log f\left(y_{i}, T_{i}, \delta_{i}, b_{i} \mid \theta\right)\right\} f\left(b_{i} \mid T_{i}, \delta_{i}, y_{i} ; \hat{\theta}^{(m)}\right) d b_{i}
\end{aligned}
$$

EM algorithm (Dempster et al. 1977)

E-step. At the m-th iteration, we compute the expected log-likelihood of the complete data conditional on the observed data and the current estimate of the parameters.

$$
\begin{aligned}
Q\left(\theta \mid \hat{\theta}^{(m)}\right) & =\sum_{i=1}^{n} \mathbb{E}\left\{\log f\left(y_{i}, T_{i}, \delta_{i}, b_{i} \mid \theta\right)\right\} \\
& =\sum_{i=1}^{n} \int_{-\infty}^{\infty}\left\{\log f\left(y_{i}, T_{i}, \delta_{i}, b_{i} \mid \theta\right)\right\} f\left(b_{i} \mid T_{i}, \delta_{i}, y_{i} ; \hat{\theta}^{(m)}\right) d b_{i}
\end{aligned}
$$

M-step. We maximise $Q\left(\theta \mid \hat{\theta}^{(m)}\right)$ with respect to θ. namely,

$$
\hat{\theta}^{(m+1)}=\underset{\theta}{\arg \max } Q\left(\theta \mid \hat{\theta}^{(m)}\right)
$$

M-step: closed form estimators

$$
\begin{aligned}
& \hat{\lambda}_{0}(t)=\frac{\sum_{i=1}^{n} \delta_{i} l\left(T_{i}=t\right)}{\sum_{i=1}^{n} \mathbb{E}\left[\exp \left\{v_{i}^{\top} \gamma_{v}+W_{2 i}\left(t, b_{i}\right)\right\}\right] I\left(T_{i} \geq t\right)} \\
& \hat{\beta}=\left(\sum_{i=1}^{n} x_{i}^{\top} x_{i}\right)^{-1}\left(\sum_{i=1}^{n} x_{i}^{\top}\left(y_{i}-z_{i} \mathbb{E}\left[b_{i}\right]\right)\right) \\
& \hat{\sigma}_{k}^{2}=\frac{1}{\sum_{i=1}^{n} n_{i k}} \sum_{i=1}^{n}\left\{\left(y_{i k}-X_{i k} \beta_{k}\right)^{\top}\left(y_{i k}-X_{i k} \beta_{k}-2 z_{i k} \mathbb{E}\left[b_{i k}\right]\right)\right. \\
&\left.\quad \quad+\operatorname{trace}\left(z_{i k}^{\top} z_{i k} \mathbb{E}\left[b_{i k} b_{i k}^{\top}\right]\right)\right\} \\
& \hat{D}= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[b_{i} b_{i}^{\top}\right] \quad
\end{aligned}
$$

M-step: non-closed form estimators

There is no closed form update for $\gamma=\left(\gamma_{v}^{\top}, \gamma_{y}^{\top}\right)$, so use a one-step Newton-Raphson iteration

$$
\hat{\gamma}^{(m+1)}=\hat{\gamma}^{(m)}+I\left(\hat{\gamma}^{(m)}\right)^{-1} S\left(\hat{\gamma}^{(m)}\right)
$$

where

$$
\begin{aligned}
S(\gamma) & =\sum_{i=1}^{n}\left[\delta_{i} \mathbb{E}\left[\tilde{v}_{i}\left(T_{i}\right)\right]-\int_{0}^{T_{i}} \lambda_{0}(u) \mathbb{E}\left[\tilde{v}_{i}(u) \exp \left\{\tilde{v}_{i}^{\top}(u) \gamma\right\}\right] d u\right] \\
I(\gamma) & =-\frac{\partial}{\partial \gamma} S(\gamma)
\end{aligned}
$$

with $\tilde{v}_{i}(t)=\left(v_{i}^{\top}, z_{i 1}^{\top}(t) b_{i 1}, \ldots, z_{i K}^{\top}(t) b_{i K}\right)$ a $(q+K)$-vector

MCEM algorithm

- E-step requires calculating several multidimensional integrals of form $\mathbb{E}\left[h\left(b_{i}\right) \mid T_{i}, \delta_{i}, y_{i} ; \hat{\theta}\right]$
- Gauss-quadrature can be slow if $\operatorname{dim}\left(b_{i}\right)$ is large \Rightarrow might not scale well as K increases
- Instead, we use the Monte Carlo Expectation-Maximization (MCEM; Wei and Tanner 1990)
- M-step updates remain the same

Monte Carlo E-step

Conventional EM algorithm: use quadrature to compute

$$
\mathbb{E}\left[h\left(b_{i}\right) \mid T_{i}, \delta_{i}, y_{i} ; \hat{\theta}\right]=\frac{\int_{-\infty}^{\infty} h\left(b_{i}\right) f\left(b_{i} \mid y_{i} ; \hat{\theta}\right) f\left(T_{i}, \delta_{i} \mid b_{i} ; \hat{\theta}\right) d b_{i}}{\int_{-\infty}^{\infty} f\left(b_{i} \mid y_{i} ; \hat{\theta}\right) f\left(T_{i}, \delta_{i} \mid b_{i} ; \hat{\theta}\right) d b_{i}},
$$

where

$$
\begin{aligned}
h(\cdot) & =\text { any known fuction, } \\
b_{i} \mid y_{i}, \theta & \sim N\left(A_{i}\left\{Z_{i}^{\top} \Sigma_{i}^{-1}\left(y_{i}-X_{i} \beta\right)\right\}, A_{i}\right), \text { and } \\
A_{i} & =\left(Z_{i}^{\top} \Sigma_{i}^{-1} Z_{i}+D^{-1}\right)^{-1}
\end{aligned}
$$

Monte Carlo E-step

MCEM algorithm E-step: use Monte Carlo integration to compute

$$
\mathbb{E}\left[h\left(b_{i}\right) \mid T_{i}, \delta_{i}, y_{i} ; \hat{\theta}\right] \approx \frac{\frac{1}{N} \sum_{d=1}^{N} h\left(b_{i}^{(d)}\right) f\left(T_{i}, \delta_{i} \mid b_{i}^{(d)} ; \hat{\theta}\right)}{\frac{1}{N} \sum_{d=1}^{N} f\left(T_{i}, \delta_{i} \mid b_{i}^{(d)} ; \hat{\theta}\right)}
$$

where

$$
\begin{aligned}
h(\cdot) & =\text { any known fuction, } \\
b_{i} \mid y_{i}, \theta & \sim N\left(A_{i}\left\{Z_{i}^{\top} \Sigma_{i}^{-1}\left(y_{i}-X_{i} \beta\right)\right\}, A_{i}\right), \text { and } \\
A_{i} & =\left(Z_{i}^{\top} \Sigma_{i}^{-1} Z_{i}+D^{-1}\right)^{-1}
\end{aligned}
$$

$$
b_{i}^{(1)}, b_{i}^{(2)}, \ldots, b_{i}^{(N)} \sim b_{i} \mid y_{i}, \theta \text { a Monte Carlo draw }
$$

Speeding up convergence

- Monte Carlo integration converges at a rate of $O\left(N^{-1 / 2}\right)$, which is independent of K and $r=\operatorname{dim}\left(\boldsymbol{b}_{i}\right)$
- EM algorithm convergences linearly
- Can we speed this up?

Speeding up convergence

- Monte Carlo integration converges at a rate of $O\left(N^{-1 / 2}\right)$, which is independent of K and $r=\operatorname{dim}\left(\boldsymbol{b}_{i}\right)$
- EM algorithm convergences linearly
- Can we speed this up?
(1) Antithetic variates
(2) Quasi-Monte Carlo

Variance reduction

Instead of directly sampling from the MVN distribution for $b_{i} \mid y_{i} ; \theta$, we apply a variance reduction technique

Antithetic simulation

Sample $\Omega \sim N\left(0, I_{r}\right)$ and obtain the pairs

$$
A_{i}\left\{Z_{i}^{\top} \Sigma_{i}^{-1}\left(y_{i}-X_{i} \beta\right)\right\} \pm C_{i} \Omega
$$

where C_{i} is the Cholesky decomposition of A_{i} such that $C_{i} C_{i}^{\top}=A_{i}$
Negative correlation between the $N / 2$ pairs \Rightarrow smaller variance in the sample means than would be obtained from N independent simulations

Convergence

In standard EM, convergence usually declared at $(m+1)$-th iteration if one of the following criteria satisfied

- Relative change: $\Delta_{\text {rel }}^{(m+1)}=\max \left\{\frac{\left|\hat{\theta}^{(m+1)}-\hat{\theta}^{(m)}\right|}{\left|\hat{\theta}^{(m)}\right|+\epsilon_{1}}\right\}<\epsilon_{0}$
- Absolute change: $\Delta_{\mathrm{abs}}^{(m+1)}=\max \left\{\left|\hat{\theta}^{(m+1)}-\hat{\theta}^{(m)}\right|\right\}<\epsilon_{2}$ for some choice of $\epsilon_{0}, \epsilon_{1}$, and ϵ_{2}

Convergence

In MCEM framework, there are 2 complications to account for

Convergence

In MCEM framework, there are 2 complications to account for
(1) spurious convergence declared due to random chance

Convergence

In MCEM framework, there are 2 complications to account for
(1) spurious convergence declared due to random chance \Rightarrow Solution: require convergence for 3 iterations in succession

Convergence

In MCEM framework, there are 2 complications to account for
(1) spurious convergence declared due to random chance \Rightarrow Solution: require convergence for 3 iterations in succession
(2) estimators swamped by Monte Carlo error, thus precluding convergence

Convergence

In MCEM framework, there are 2 complications to account for
(1) spurious convergence declared due to random chance \Rightarrow Solution: require convergence for 3 iterations in succession
(2) estimators swamped by Monte Carlo error, thus precluding convergence
\Rightarrow Solution: increase Monte Carlo size N as algorithm moves closer towards maximizer

Dynamic MC size

- Using large N when far from maximizer $=$ computationally inefficient
- Using small N when close to maximizer $=$ unlikely to detect convergence

Solution (proposed by Ripatti et al. 2002): after a 'burn-in' phase, calculate the coefficient of variation statistic

$$
\operatorname{cv}\left(\Delta_{\mathrm{rel}}^{(m+1)}\right)=\frac{\operatorname{sd}\left(\Delta_{\mathrm{rel}}^{(m-1)}, \Delta_{\mathrm{rel}}^{(m)}, \Delta_{\mathrm{rel}}^{(m+1)}\right)}{\operatorname{mean}\left(\Delta_{\mathrm{rel}}^{(m-1)}, \Delta_{\mathrm{rel}}^{(m)}, \Delta_{\mathrm{rel}}^{(m+1)}\right)}
$$

and increase N to $N+\lfloor N / \delta\rfloor$ if $\operatorname{cv}\left(\Delta_{\text {rel }}^{(m+1)}\right)>\operatorname{cv}\left(\Delta_{\text {rel }}^{(m)}\right)$ for some small positive integer δ

Quasi-Monte Carlo

- Replaces the (pseudo-)random sequence by a deterministic one
- Quasi-random sequences yield smaller errors than standard Monte Carlo integration methods
- Convergence is $O\left(\frac{(\log N)^{r}}{N}\right)$
- Research on-going. . .

Quasi-Monte Carlo

Key: $\mathrm{OMC}=$ ordinary Monte Carlo; $\mathrm{AMC}=$ antithetic Monte Carlo; $\mathrm{QMC}=$ quasi-Monte Carlo

Standard error estimation

Method 1: Bootstrap

Conceptually simple + theoretically superior (Hsieh et al. 2006)... but computationally slow!

Standard error estimation

Method 1: Bootstrap

Conceptually simple + theoretically superior (Hsieh et al. 2006)... but computationally slow!

Method 2: Empirical information matrix approximation

Following McLachlan and Krishnan (2008), $\operatorname{SE}(\theta) \approx I_{e}^{-1 / 2}(\hat{\theta})$, where

$$
I_{e}(\theta)=\sum_{i=1}^{n} s_{i}(\theta) s_{i}^{\top}(\theta)-\frac{1}{n} S(\theta) S^{\top}(\theta),
$$

$S(\theta)=\sum_{i=1}^{n} s_{i}(\theta)$ is the score vector for $\theta_{-\lambda_{0}(t)}$ (baseline hazards a profiled out of the likelihood)

joineRML

Version 0.3.0 available on CRAN
https://cran.r-project.org/web/packages/joineRML/

Developmental version available on GitHub
https://github.com/graemeleehickey/joineRML

Rich collection of associated methods

* associated with additional plot methods

getVarCov()	print()
vcov()	summary()
fixef()	plot()
ranef()*	sigma()
AIC()	coef()
BIC()	update()
confint()	baseHaz()
formula()	residuals()
sampleData()	fitted()
dynSurv()*	logLik()
dynLong()*	bootSE()

Alternative options

- Pre-2017: none!
- 2017-onwards:
- joineRML: discussed today
- stjm: a new extension to the Stata package ${ }^{2}$ written by Michael Crowther
- megenreg: similar to stjm, but can handle other models
- rstanarm: development branch that absorbs package written by Sam Brilleman ${ }^{3}$
- JMbayes: a new extension ${ }^{4}$ to the R package written by Dimitris Rizopoulos

[^0]
Proposed model for PBC data

Longitudinal sub-model

$$
\begin{aligned}
\log (\text { serBilir }) & =\left(\beta_{0,1}+b_{0 i, 1}\right)+\left(\beta_{1,1}+b_{1 i, 1}\right) \text { year }+\varepsilon_{i j 1}, \\
\text { albumin } & =\left(\beta_{0,2}+b_{0 i, 2}\right)+\left(\beta_{1,2}+b_{1 i, 2}\right) \text { year }+\varepsilon_{i j 2}, \\
(0.1 \times \text { prothrombin })^{-4} & =\left(\beta_{0,3}+b_{0 i, 3}\right)+\left(\beta_{1,3}+b_{1 i, 3}\right) \text { year }+\varepsilon_{i j 3}, \\
b_{i} & \sim N_{6}(0, D), \text { and } \varepsilon_{i j k} \sim N\left(0, \sigma_{k}^{2}\right) \text { for } k=1,2,3 ;
\end{aligned}
$$

Time-to-event sub-model

$$
\begin{aligned}
\lambda_{i}(t) & =\lambda_{0}(t) \exp \left\{\gamma_{v} \text { age }+W_{2 i}(t)\right\} \\
W_{2 i}(t) & =\gamma_{\mathrm{bil}}\left(b_{0 i, 1}+b_{1 i, 1} t\right)+\gamma_{\mathrm{alb}}\left(b_{0 i, 2}+b_{1 i, 2} t\right)+\gamma_{\mathrm{pro}}\left(b_{0 i, 3}+b_{1 i, 3} t\right)
\end{aligned}
$$

Example code

```
data(pbc2)
placebo <- subset(pbc2, drug == "placebo")
fit.pbc <- mjoint(
    formLongFixed = list(
    "bil" = log(serBilir) ~ year,
    "alb" = albumin ~ year,
    "pro" = (0.1 * prothrombin)^-4 ~ year),
    formLongRandom = list(
        "bil" = ~ year | id,
        "alb" = ~ year | id,
        "pro" = ~ year | id),
    formSurv = Surv(years, status2) ~ age,
    data = placebo,
    timeVar = "year",
    control = list(tol0 = 0.001, burin = 400))
```

Parameter	Estimate	SE	$\mathbf{9 5 \% ~ C I}$
$\beta_{0,1}$	0.5541	0.0858	$(0.3859,0.7223)$
$\beta_{1,1}$	0.2009	0.0201	$(0.1616,0.2402)$
$\beta_{0,2}$	3.5549	0.0356	$(3.4850,3.6248)$
$\beta_{1,2}$	-0.1245	0.0101	$(-0.1444,-0.1047)$
$\beta_{0,3}$	0.8304	0.0212	$(0.7888,0.8719)$
$\beta_{1,3}$	-0.0577	0.0062	$(-0.0699,-0.0456)$
γ_{v}	0.0462	0.0151	$(0.0166,0.0759)$
$\gamma_{\text {bil }}$	0.8181	0.2046	$(0.4171,1.2191)$
$\gamma_{\text {alb }}$	-1.7060	0.6181	$(-2.9173,-0.4946)$
$\gamma_{\text {pro }}$	-2.2085	1.6070	$(-5.3582,0.9412)$

Parameter	Estimate	SE	$\mathbf{9 5 \% ~ C I}$
$\beta_{0,1}$	0.5541	0.0858	$(0.3859,0.7223)$
$\beta_{1,1}$	0.2009	0.0201	$(0.1616,0.2402)$
$\beta_{0,2}$	3.5549	0.0356	$(3.4850,3.6248)$
$\beta_{1,2}$	-0.1245	0.0101	$(-0.1444,-0.1047)$
$\beta_{0,3}$	0.8304	0.0212	$(0.7888,0.8719)$
$\beta_{1,3}$	-0.0577	0.0062	$(-0.0699,-0.0456)$
γ_{v}	0.0462	0.0151	$(0.0166,0.0759)$
$\gamma_{\text {bil }}$	0.8181	0.2046	$(0.4171,1.2191)$
$\gamma_{\text {alb }}$	-1.7060	0.6181	$(-2.9173,-0.4946)$
$\gamma_{\text {pro }}$	-2.2085	1.6070	$(-5.3582,0.9412)$

Results

Effect of multivariate inference over univariate joint model:

Parameter	Model	Estimate	$\mathbf{9 5 \% ~ C I}$
$\gamma_{\text {bil }}$	UV	1.2182	$(0.9789,1.6130)$
$\gamma_{\text {bil }}$	MV	0.8181	$(0.4171,1.2191)$
$\gamma_{\text {alb }}$	UV	-3.0770	$(-4.4865,-2.3466)$
$\gamma_{\text {alb }}$	MV	-1.7060	$(-2.9173,-0.4946)$
$\gamma_{\text {pro }}$	UV	-7.2078	$(-10.5410,-5.3917)$
$\gamma_{\text {pro }}$	MV	-2.2085	$(-5.3582,0.9412)$

$U V=$ univariate joint model (fitted with joineR package); $M V=$ multivariate joint model

Dynamic prediction

- So far we have only discussed inference from joint models
- How we can use them for prediction?
- Predict what?
(1) Failure probability at time $u>t$ given longitudinal data observed up until time t
(2) Longitudinal trajectories at time $u>t$ given longitudinal data observed up until time t

Dynamic prediction: example

Bivariate joint model

We will consider the PBC data again (as above) with $K=2$ biomarkers only: serurm bilirubin (log-transformed) and albumin (untransformed), since prothrombin time was non-significant in the trivariate model

Dynamic prediction: survival

For a new subject $i=n+1$, we want to calculate

$$
P\left[T_{n+1}^{*} \geq u \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right]=\mathbb{E}\left[\frac{S_{n+1}\left(u \mid \mathcal{W}_{2, n+1}\left(u, b_{n+1} ; \theta\right) ; \theta\right)}{S_{n+1}\left(t \mid \mathcal{W}_{2, n+1}\left(t, b_{n+1} ; \theta\right) ; \theta\right)}\right]
$$

where $\mathcal{W}_{2 i}\left(t, b_{i} ; \theta\right)=\left\{W_{2 i}\left(s, v_{i} ; \theta\right) ; 0 \leq s<t\right\}$ and the expectation is taken with respect to the distribution

$$
p\left(b_{n+1} \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right)
$$

Dynamic prediction: survival

Rizopoulos (2011) proposed two estimators for this:
(1) A first-order approximation

$$
P\left[T_{n+1}^{*} \geq u \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right] \approx \frac{S_{n+1}\left(u \mid \mathcal{W}_{2, n+1}\left(u, \hat{b}_{n+1} ; \hat{\theta}_{\mathrm{mle}}\right) ; \hat{\theta}_{\mathrm{mle}}\right)}{S_{n+1}\left(t \mid \mathcal{W}_{2, n+1}\left(t, \hat{b}_{n+1} ; \hat{\theta}_{\mathrm{mle}}\right) ; \hat{\theta}_{\mathrm{mle}}\right)}
$$

where \hat{b}_{n+1} is the mode of $p\left(b_{n+1} \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right)$
(2) A simulated scheme
(1) Draw $\theta^{(I)} \sim N\left(\hat{\theta}_{\text {mle }}, V\left(\hat{\theta}_{\text {mle }}\right)\right)$
(2) Draw $b_{n+1}^{(1)} \sim p\left(b_{n+1} \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right)$ [Metropolis-Hastings]
(3 Calculate $\frac{S_{n+1}\left(u \mid \mathcal{W}_{2, n+1}\left(u, b_{n+1}^{(I)} ; \theta^{(l)}\right) ; \theta^{(l)}\right)}{S_{n+1}\left(t \mid \mathcal{W}_{2, n+1}\left(t, b_{n+1}^{(1)} ; \theta^{(1)}\right) ; \theta^{(l)}\right)}$
(4) Repeat Steps $1-3 I=2, \ldots, L$ times

Example code

```
# New patient
nd <- subset(placebo, id == "11") # patient 11
# First-order prediction (default)
pred1 <- dynSurv(fit.pbc, nd[1:5, ])
pred1
plot(pred1)
# Simulated prediction
pred2 <- dynSurv(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2
plot(pred2)
```


Dynamic predicton: survival

For a new subject $i=n+1$, we want to calculate

$$
\mathbb{E}\left[y_{n+1}(u) \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right]=X_{n+1}^{\top}(u) \beta+Z_{n+1}^{\top}(u) \mathbb{E}\left[b_{n+1}\right],
$$

Dynamic prediction: longitudinal

Again, we can use the same estimation proposals:
(1) A first-order approximation

$$
\mathbb{E}\left[y_{n+1}(u) \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right] \approx X_{n+1}^{\top}(u) \hat{\beta}+Z_{n+1}^{\top}(u) \hat{b}_{n+1}
$$

where \hat{b}_{n+1} is the mode of $p\left(b_{n+1} \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right)$
(2) A simulated scheme
(1) Draw $\theta^{(I)} \sim N\left(\hat{\theta}_{\text {mle }}, V\left(\hat{\theta}_{\text {mle }}\right)\right)$
(2) Draw $b_{n+1}^{(I)} \sim p\left(b_{n+1} \mid T_{n+1}^{*}>t, \boldsymbol{y}_{n+1} ; \theta\right)$ [Metropolis-Hastings]
(3) Calculate $X_{n+1}^{\top}(u) \beta^{(I)}+Z_{n+1}^{\top}(u) b_{n+1}^{(I)}$
(4) Repeat Steps 1-3 $I=2, \ldots, L$ times

Example code

```
# First-order prediction (default)
pred1 <- dynLong(fit.pbc, nd[1:5, ])
pred1
plot(pred1)
# Simulated prediction
pred2 <- dynLong(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2
plot(pred2)
```

Dynamic predicton: longitudinal

Open challenges

- How can we incorporate high-dimensional K? E.g. $K=10$?
- Data reduction techniques: can we project high-dimensional K onto a lower order plane?
- Speed-up calculations using approximations (e.g. Laplace approximations)

Hickey et al. BMC Medical Research Methodoiogy (2016) 16:117 DOI 10.1186/512874-016-0212-3

BMC Medical Research Methodology Open Access
(1) CrosMMark

Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues

Graeme L. Hickey ${ }^{1 *}$, Pete Philipson ${ }^{2}$, Andrea Jorgensen ${ }^{1}$ and Ruwanthi Kolamunnage-Dona ${ }^{1}$

References

Murtaugh, Paul A et al. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology 20(1), pp. 126-134.

Henderson, R et al. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1(4), pp. 465-480.

Laird, NM and Ware, JH (1982). Random-effects models for longitudinal data. Biometrics 38(4), pp. 963-74.

Dempster, AP et al. (1977). Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1), pp. 1-38.

Wei, GC and Tanner, MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J Am Stat Assoc 85(411), pp. 699-704.

Ripatti, S et al. (2002). Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Life Dat Anal 8(2002), pp. 349-360.

Hsieh, F et al. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics 62(4), pp. 1037-1043.

McLachlan, GJ and Krishnan, T (2008). The EM Algorithm and Extensions. Second. Wiley-Interscience.
Rizopoulos, Dimitris (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67(3), pp. 819-829.

[^0]: ${ }^{2}$ Crowther MJ. Joint Statistical Meeting. Seattle; 2015.
 3 github.com/sambrilleman/rstanjm
 4 github.com/drizopoulos/JMbayes

