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Why use a joint model?

Interest lies with

adjustment of inferences about longitudinal measurements for
possibly outcome-dependent drop-out

adjustment of inferences about the time-to-event distribution
conditional on intermediate and/or error prone longitudinal
measurements

the joint evolution of the measurement and event time processes

biomarker surrogacy

dynamic prediction
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Introduction Model Estimation Software & Example revisited Prediction References

Motivation for multivariate joint models

Clinical studies often repeatedly measure multiple biomarkers or
other measurements and an event time

Research has predominantly focused on a single event time and
single measurement outcome

Ignoring correlation leads to bias and reduced efficiency in
estimation

Harnessing all available information in a single model is
advantageous and should lead to improved model predictions

GL. Hickey Joint modelling of multivariate data 4 / 48



Introduction Model Estimation Software & Example revisited Prediction References

Clinical example

Figure source: https://www.medgadget.com

Primary biliary cirrhosis (PBC)
is a chronic liver disease char-
acterized by inflammatory de-
struction of the small bile ducts,
which eventually leads to cirrho-
sis of the liver and death
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Clinical example

Consider a subset of 154 patients randomized to placebo
treatment from Mayo Clinic trial (Murtaugh et al. 1994)
Multiple biomarkers repeatedly measured at intermittent times,
of which we consider 3 clinically relevant ones:

1 serum bilirunbin (mg/dl)
2 serum albumin (mg/dl)
3 prothrombin time (seconds)
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Objective 1
1 Determine if longitudinal biomarker trajectories are associated

with death

Objective 2
1 Dynamically predict the biomarker trajectories and time to death

for a new patient

Objective 3
1 Wrap it all up into a freely available software package
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Data

For each subject i = 1, . . . , n, we observe

yi = (y>i1 , . . . , y>iK ) is a K -variate continuous outcome vector,
where each yik denotes an (nik × 1)-vector of observed
longitudinal measurements for the k-th outcome type:
yik = (yi1k , . . . , yinikk)>

Observation times tijk for j = 1, . . . , nik , which can differ
between subjects and outcomes

(Ti , δi ), where Ti = min(T ∗i ,Ci ), where T ∗i is the true event
time, Ci corresponds to a potential right-censoring time, and δi

is the failure indicator equal to 1 if the failure is observed
(T ∗i ≤ Ci ) and 0 otherwise
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Longitudinal sub-model

Following Henderson et al. (2000) for the univariate case

yi (t) = µi (t) + W1i (t) + εi (t),

where

εi (t) is the model error term, which is i.i.d. N(0, σ2) and
independent of W1i (t)

µi (t) = x>i (t)β is the mean response

xi (t) is a p-vector of (possibly) time-varying covariates with
corresponding fixed effect terms β

W1i (t) is a zero-mean latent Gaussian process
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Longitudinal sub-model

We can extend it to K -separate sub-models (with k = 1, . . . ,K )

yik(t) = µik(t) + W (k)
1i (t) + εik(t),

where

εik(t) is the model error term, which is i.i.d. N(0, σ2
k) and

independent of W (k)
1i (t)

µik(t) = x>ik (t)βk is the mean response

xik(t) is a pk -vector of (possibly) time-varying covariates with
corresponding fixed effect terms βk

W (k)
1i (t) is a zero-mean latent Gaussian process
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Time-to-event sub-model

λi (t) = lim
dt→0

P(t ≤ Ti < t + dt |Ti ≥ t)
dt

= λ0(t) exp
{

v>i (t)γv + W2i (t)
}
,

where

λ0(·) is an unspecified baseline hazard function

vi (t) is a q-vector of (possibly) time-varying covariates with
corresponding fixed effect terms γv

W2i (t) is a zero-mean latent Gaussian process, independent of
the censoring process
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Correlation

Following Laird and Ware (1982):

W (k)
1i (t) = z>ik (t)bik for k = 1, . . . ,K

Three sources of correlation:
1 Within-subject correlation between longitudinal measurements:

bik ∼ N(0,Dkk)
2 Between longitudinal outcomes correlation: cov(bik , bil ) = Dkl

for k 6= l
3 Correlation between sub-models: W2i (t) =

∑K
k=1 γykW (k)

1i (t)
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Correlation

Following Laird and Ware (1982):

W (k)
1i (t) = z>ik (t)bik for k = 1, . . . ,K

Three sources of correlation:
1 Within-subject correlation between longitudinal measurements:

bik ∼ N(0,Dkk)
2 Between longitudinal outcomes correlation: cov(bik , bil ) = Dkl

for k 6= l
3 Correlation between sub-models1: W2i (t) =

∑K
k=1 γykW (k)

1i (t)

1Extends model proposed Henderson et al. (2000)
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Association structure: alternatives

Many other proposals for association structures in the literature:

Current value parameterisation: W2i (t) = γy {µi (t) + W1i (t)}

Random effects parameterisation: W2i (t) = γ>y1bi

Bivariate distribution: (W1i ,W2i ) ∼ N(0,Ω)

Random-slopes parameterisation:
W2i (t) = γy1 {µi (t) + W1i (t)}+ γy2

∂
∂t {µi (t) + W1i (t)}

. . .

GL. Hickey Joint modelling of multivariate data 14 / 48
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Likelihood

We can re-write the longitudinal sub-model as

yi | bi , β,Σi ∼ N(Xiβ + Zi bi ,Σi ), with bi |D ∼ N(0,D),

where β = (β>1 , . . . , β>K ), bi = (b>i1, . . . , b>iK )>, and

Xi =


Xi1 · · · 0

... . . . ...
0 · · · XiK

 ,

Zi =


Zi1 · · · 0

... . . . ...
0 · · · ZiK

 ,

D =


D11 · · · D1K

... . . . ...
D>1K · · · DKK



Σi =


σ2

1Ini1 · · · 0
... . . . ...
0 · · · σ2

K IniK
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Likelihood

The observed data likelihood is given by

n∏
i=1

(∫ ∞
−∞

f (yi | bi , θ)f (Ti , δi | bi , θ)f (bi | θ)dbi

)

where θ = (β>, vech(D), σ2
1, . . . , σ

2
K , λ0(t), γ>v , γ>y )

GL. Hickey Joint modelling of multivariate data 16 / 48
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Likelihood

The observed data likelihood is given by

n∏
i=1

(∫ ∞
−∞

f (yi | bi , θ)f (Ti , δi | bi , θ)f (bi | θ)dbi

)

where θ = (β>, vech(D), σ2
1, . . . , σ

2
K , λ0(t), γ>v , γ>y ), and

f (yi | bi , θ) =
( K∏

k=1
(2π)−

nik
2

)
|Σi |−

1
2

exp
{
−1

2(yi − Xiβ − Zi bi )>Σ−1
i (yi − Xiβ − Zi bi )

}
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Likelihood

The observed data likelihood is given by

n∏
i=1

(∫ ∞
−∞

f (yi | bi , θ)f (Ti , δi | bi , θ)f (bi | θ)dbi

)

where θ = (β>, vech(D), σ2
1, . . . , σ

2
K , λ0(t), γ>v , γ>y ), and

f (Ti , δi | bi ; θ) =
[
λ0(Ti ) exp

{
v>i γv + W2i (Ti , bi )

}]δi

exp
{
−
∫ Ti

0
λ0(u) exp

{
v>i γv + W2i (u, bi )

}
du
}
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Likelihood

The observed data likelihood is given by

n∏
i=1

(∫ ∞
−∞

f (yi | bi , θ)f (Ti , δi | bi , θ)f (bi | θ)dbi

)

where θ = (β>, vech(D), σ2
1, . . . , σ

2
K , λ0(t), γ>v , γ>y ), and

f (bi | θ) = (2π)−
r
2 |D|−

1
2 exp

{
−1

2b>i D−1bi

}
,

with r = dim(bi )
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Estimation

Multiple approaches have been considered over the years:

Markov chain Monte Carlo (MCMC)

Direct likelihood maximisation (e.g. Newton-methods)

Generalised estimating equations

EM algorithm (treating the random effects as missing data)

. . .

GL. Hickey Joint modelling of multivariate data 17 / 48
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EM algorithm (Dempster et al. 1977)

E-step. At the m-th iteration, we compute the expected
log-likelihood of the complete data conditional on the observed data
and the current estimate of the parameters.

Q(θ | θ̂(m)) =
n∑

i=1
E
{

log f (yi ,Ti , δi , bi | θ)
}
,

=
n∑

i=1

∫ ∞
−∞

{
log f (yi ,Ti , δi , bi | θ)

}
f (bi |Ti , δi , yi ; θ̂(m))dbi

M-step. We maximise Q(θ | θ̂(m)) with respect to θ. namely,

θ̂(m+1) = arg max
θ

Q(θ | θ̂(m))

GL. Hickey Joint modelling of multivariate data 18 / 48
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M-step: closed form estimators

λ̂0(t) =
∑n

i=1 δi I(Ti = t)∑n
i=1 E

[
exp

{
v>i γv + W2i (t, bi )

}]
I(Ti ≥ t)

β̂ =
( n∑

i=1
X>i Xi

)−1( n∑
i=1

X>i (yi − ZiE[bi ])
)

σ̂2
k = 1∑n

i=1 nik

n∑
i=1

{
(yik − Xikβk)>(yik − Xikβk − 2ZikE[bik ])

+trace
(

Z>ik ZikE[bikb>ik ]
)}

D̂ = 1
n

n∑
i=1

E
[
bi b>i

]

GL. Hickey Joint modelling of multivariate data 19 / 48



Introduction Model Estimation Software & Example revisited Prediction References

M-step: non-closed form estimators

There is no closed form update for γ = (γ>v , γ>y ), so use a one-step
Newton-Raphson iteration

γ̂(m+1) = γ̂(m) + I
(
γ̂(m)

)−1
S
(
γ̂(m)

)
,

where

S(γ) =
n∑

i=1

[
δiE [ṽi (Ti )]−

∫ Ti

0
λ0(u)E

[
ṽi (u) exp{ṽ>i (u)γ}

]
du
]

I(γ) = − ∂

∂γ
S(γ)

with ṽi (t) =
(

v>i , z>i1(t)bi1, . . . , z>iK (t)biK
)

a (q + K )–vector

GL. Hickey Joint modelling of multivariate data 20 / 48
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MCEM algorithm

E-step requires calculating several multidimensional integrals of
form E

[
h(bi ) |Ti , δi , yi ; θ̂

]
Gauss-quadrature can be slow if dim(bi ) is large ⇒ might not
scale well as K increases

Instead, we use the Monte Carlo Expectation-Maximization
(MCEM; Wei and Tanner 1990)

M-step updates remain the same

GL. Hickey Joint modelling of multivariate data 21 / 48
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Monte Carlo E-step

Conventional EM algorithm: use quadrature to compute

E
[
h(bi ) |Ti , δi , yi ; θ̂

]
=
∫∞
−∞ h(bi )f (bi | yi ; θ̂)f (Ti , δi | bi ; θ̂)dbi∫∞
−∞ f (bi | yi ; θ̂)f (Ti , δi | bi ; θ̂)dbi

,

where

h(·) = any known fuction,

bi | yi , θ ∼ N
(

Ai
{

Z>i Σ−1
i (yi − Xiβ)

}
,Ai
)
, and

Ai =
(

Z>i Σ−1
i Zi + D−1

)−1

b(1)
i , b(2)

i , . . . , b(N)
i ∼ bi | yi , θ a Monte Carlo draw

GL. Hickey Joint modelling of multivariate data 22 / 48
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Monte Carlo E-step

MCEM algorithm E-step: use Monte Carlo integration to compute

E
[
h(bi ) |Ti , δi , yi ; θ̂

]
≈

1
N
∑N

d=1 h
(

b(d)
i

)
f
(

Ti , δi | b(d)
i ; θ̂

)
1
N
∑N

d=1 f
(

Ti , δi | b(d)
i ; θ̂

)
where

h(·) = any known fuction,

bi | yi , θ ∼ N
(

Ai
{

Z>i Σ−1
i (yi − Xiβ)

}
,Ai
)
, and

Ai =
(

Z>i Σ−1
i Zi + D−1

)−1

b(1)
i , b(2)

i , . . . , b(N)
i ∼ bi | yi , θ a Monte Carlo draw
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Speeding up convergence

Monte Carlo integration converges at a rate of O(N−1/2), which
is independent of K and r = dim(bi )

EM algorithm convergences linearly
Can we speed this up?

1 Antithetic variates
2 Quasi-Monte Carlo

GL. Hickey Joint modelling of multivariate data 23 / 48
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Variance reduction

Instead of directly sampling from the MVN distribution for bi | yi ; θ,
we apply a variance reduction technique

Antithetic simulation
Sample Ω ∼ N(0, Ir ) and obtain the pairs

Ai
{

Z>i Σ−1
i (yi − Xiβ)

}
± Ci Ω,

where Ci is the Cholesky decomposition of Ai such that Ci C>i = Ai

Negative correlation between the N/2 pairs ⇒ smaller variance in the
sample means than would be obtained from N independent
simulations

GL. Hickey Joint modelling of multivariate data 24 / 48



Introduction Model Estimation Software & Example revisited Prediction References

Convergence

In standard EM, convergence usually declared at (m + 1)-th iteration
if one of the following criteria satisfied

Relative change: ∆(m+1)
rel = max

{
|θ̂(m+1)−θ̂(m)|
|θ̂(m)|+ε1

}
< ε0

Absolute change: ∆(m+1)
abs = max

{
|θ̂(m+1) − θ̂(m)|

}
< ε2

for some choice of ε0, ε1, and ε2

GL. Hickey Joint modelling of multivariate data 25 / 48
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Convergence

In MCEM framework, there are 2 complications to account for

1 spurious convergence declared due to random chance
⇒ Solution: require convergence for 3 iterations in succession

2 estimators swamped by Monte Carlo error, thus precluding
convergence
⇒ Solution: increase Monte Carlo size N as algorithm moves
closer towards maximizer

GL. Hickey Joint modelling of multivariate data 26 / 48
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Dynamic MC size

Using large N when far from maximizer = computationally
inefficient

Using small N when close to maximizer = unlikely to detect
convergence

Solution (proposed by Ripatti et al. 2002): after a ‘burn-in’ phase,
calculate the coefficient of variation statistic

cv(∆(m+1)
rel ) = sd(∆(m−1)

rel ,∆(m)
rel ,∆

(m+1)
rel )

mean(∆(m−1)
rel ,∆(m)

rel ,∆
(m+1)
rel )

,

and increase N to N + bN/δc if cv(∆(m+1)
rel ) > cv(∆(m)

rel ) for some
small positive integer δ

GL. Hickey Joint modelling of multivariate data 27 / 48
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Quasi-Monte Carlo

Replaces the (pseudo-)random sequence by a deterministic one

Quasi-random sequences yield smaller errors than standard
Monte Carlo integration methods

Convergence is O
(

(logN)r

N

)
Research on-going. . .

GL. Hickey Joint modelling of multivariate data 28 / 48
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Quasi-Monte Carlo
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Key: OMC = ordinary Monte Carlo; AMC = antithetic Monte Carlo; QMC = quasi-Monte Carlo
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Standard error estimation

Method 1: Bootstrap
Conceptually simple + theoretically superior (Hsieh et al. 2006). . .
but computationally slow!
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Standard error estimation

Method 1: Bootstrap
Conceptually simple + theoretically superior (Hsieh et al. 2006). . .
but computationally slow!

Method 2: Empirical information matrix approximation

Following McLachlan and Krishnan (2008), SE(θ) ≈ I−1/2
e (θ̂), where

Ie(θ) =
n∑

i=1
si (θ)s>i (θ)− 1

n S(θ)S>(θ),

S(θ) =
∑n

i=1 si (θ) is the score vector for θ−λ0(t) (baseline hazards a
profiled out of the likelihood)
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joineRML

+

getVarCov()
vcov()
fixef()
ranef()*
AIC()
BIC()
confint()
formula()
sampleData()
dynSurv()*
dynLong()*

print()
summary()
plot()
sigma()
coef()
update()
baseHaz()
residuals()
fitted()
logLik()
bootSE()

Rich	collection	of	associated	methods
*	associated	with	additional	plot	methods

mjoint()

Version	0.3.0	available	on	CRAN
https://cran.r-project.org/web/packages/joineRML/

Developmental	version	available	on	
GitHub
https://github.com/graemeleehickey/joineRML

Parallel	
Computing+
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Alternative options

Pre-2017: none!
2017-onwards:

joineRML: discussed today
stjm: a new extension to the Stata package2 written by Michael
Crowther
megenreg: similar to stjm, but can handle other models
rstanarm: development branch that absorbs package written by
Sam Brilleman3

JMbayes: a new extension4 to the R package written by Dimitris
Rizopoulos

2Crowther MJ. Joint Statistical Meeting. Seattle; 2015.
3github.com/sambrilleman/rstanjm
4github.com/drizopoulos/JMbayes
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Proposed model for PBC data

Longitudinal sub-model

log(serBilir) = (β0,1 + b0i,1) + (β1,1 + b1i,1)year + εij1,

albumin = (β0,2 + b0i,2) + (β1,2 + b1i,2)year + εij2,

(0.1× prothrombin)−4 = (β0,3 + b0i,3) + (β1,3 + b1i,3)year + εij3,

bi ∼ N6(0,D), and εijk ∼ N(0, σ2
k ) for k = 1, 2, 3;

Time-to-event sub-model

λi (t) = λ0(t) exp {γv age + W2i (t)} ,

W2i (t) = γbil(b0i,1 + b1i,1t) + γalb(b0i,2 + b1i,2t) + γpro(b0i,3 + b1i,3t).
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Example code

data(pbc2)
placebo <- subset(pbc2, drug == "placebo")
fit.pbc <- mjoint(

formLongFixed = list(
"bil" = log(serBilir) ˜ year,
"alb" = albumin ˜ year,
"pro" = (0.1 * prothrombin)ˆ-4 ˜ year),

formLongRandom = list(
"bil" = ˜ year | id,
"alb" = ˜ year | id,
"pro" = ˜ year | id),

formSurv = Surv(years, status2) ˜ age,
data = placebo,
timeVar = "year",
control = list(tol0 = 0.001, burin = 400))
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Results

Parameter Estimate SE 95% CI
β0,1 0.5541 0.0858 (0.3859, 0.7223)
β1,1 0.2009 0.0201 (0.1616, 0.2402)
β0,2 3.5549 0.0356 (3.4850, 3.6248)
β1,2 -0.1245 0.0101 (-0.1444, -0.1047)
β0,3 0.8304 0.0212 (0.7888, 0.8719)
β1,3 -0.0577 0.0062 (-0.0699, -0.0456)
γv 0.0462 0.0151 (0.0166, 0.0759)
γbil 0.8181 0.2046 (0.4171, 1.2191)
γalb -1.7060 0.6181 (-2.9173, -0.4946)
γpro -2.2085 1.6070 (-5.3582, 0.9412)
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Results

Effect of multivariate inference over univariate joint model:

Parameter Model Estimate 95% CI
γbil UV 1.2182 (0.9789, 1.6130)
γbil MV 0.8181 (0.4171, 1.2191)
γalb UV -3.0770 (-4.4865, -2.3466)
γalb MV -1.7060 (-2.9173, -0.4946)
γpro UV -7.2078 (-10.5410, -5.3917)
γpro MV -2.2085 (-5.3582, 0.9412)

UV = univariate joint model (fitted with joineR package); MV =
multivariate joint model
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Dynamic prediction

So far we have only discussed inference from joint models

How we can use them for prediction?
Predict what?

1 Failure probability at time u > t given longitudinal data observed
up until time t

2 Longitudinal trajectories at time u > t given longitudinal data
observed up until time t
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Dynamic prediction: example

Bivariate joint model
We will consider the PBC data again (as above) with K = 2
biomarkers only: serurm bilirubin (log-transformed) and albumin
(untransformed), since prothrombin time was non-significant in the
trivariate model
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Dynamic prediction: survival

For a new subject i = n + 1, we want to calculate

P[T ∗n+1 ≥ u |T ∗n+1 > t, yn+1; θ] = E
[

Sn+1 (u |W2,n+1(u, bn+1; θ); θ)
Sn+1 (t |W2,n+1(t, bn+1; θ); θ)

]
,

where W2i (t, bi ; θ) = {W2i (s, vi ; θ); 0 ≤ s < t} and the expectation is
taken with respect to the distribution

p(bn+1 |T ∗n+1 > t, yn+1; θ)
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Dynamic prediction: survival

Rizopoulos (2011) proposed two estimators for this:

1 A first-order approximation

P[T ∗n+1 ≥ u |T ∗n+1 > t, yn+1; θ] ≈
Sn+1

(
u |W2,n+1(u, b̂n+1; θ̂mle); θ̂mle

)
Sn+1

(
t |W2,n+1(t, b̂n+1; θ̂mle); θ̂mle

) ,
where b̂n+1 is the mode of p(bn+1 |T ∗n+1 > t, yn+1; θ)

2 A simulated scheme

1 Draw θ(l) ∼ N(θ̂mle,V (θ̂mle))
2 Draw b(l)

n+1 ∼ p(bn+1 |T ∗n+1 > t, yn+1; θ) [Metropolis-Hastings]

3 Calculate
Sn+1
(

u |W2,n+1(u,b(l)
n+1;θ(l));θ(l)

)
Sn+1
(

t |W2,n+1(t,b(l)
n+1;θ(l));θ(l)

)
4 Repeat Steps 1–3 l = 2, . . . , L times
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Example code

# New patient
nd <- subset(placebo, id == "11") # patient 11

# First-order prediction (default)
pred1 <- dynSurv(fit.pbc, nd[1:5, ])
pred1
plot(pred1)

# Simulated prediction
pred2 <- dynSurv(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2
plot(pred2)
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Dynamic predicton: survival
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Dynamic prediction: longitudinal

For a new subject i = n + 1, we want to calculate

E
[
yn+1(u) |T ∗n+1 > t, yn+1; θ

]
= X>n+1(u)β + Z>n+1(u)E[bn+1],
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Dynamic prediction: longitudinal

Again, we can use the same estimation proposals:

1 A first-order approximation

E [yn+1(u) |T ∗n+1 > t, yn+1; θ] ≈ X>n+1(u)β̂ + Z>n+1(u)b̂n+1,

where b̂n+1 is the mode of p(bn+1 |T ∗n+1 > t, yn+1; θ)

2 A simulated scheme

1 Draw θ(l) ∼ N(θ̂mle,V (θ̂mle))
2 Draw b(l)

n+1 ∼ p(bn+1 |T ∗n+1 > t, yn+1; θ) [Metropolis-Hastings]
3 Calculate X>n+1(u)β(l) + Z>n+1(u)b(l)

n+1
4 Repeat Steps 1–3 l = 2, . . . , L times
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Example code

# First-order prediction (default)
pred1 <- dynLong(fit.pbc, nd[1:5, ])
pred1
plot(pred1)

# Simulated prediction
pred2 <- dynLong(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2
plot(pred2)
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Dynamic predicton: longitudinal
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Open challenges

How can we incorporate high-dimensional K? E.g. K = 10?

Data reduction techniques: can we project high-dimensional K
onto a lower order plane?

Speed-up calculations using approximations (e.g. Laplace
approximations)
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