Joint modelling of multivariate longitudinal and time-to-event data

Graeme L. Hickey¹, Pete Philipson², Andrea Jorgensen¹, Ruwanthi-Kolamunnage-Dona¹

¹Department of Biostatistics, University of Liverpool, UK ²Mathematics, Physics and Electrical Engineering, University of Northumbria, UK

> graeme.hickey@liverpool.ac.uk Funded by MRC Const MR/M013227/1

> > 13th November 2017

Why use a joint model?

Interest lies with

- adjustment of inferences about longitudinal measurements for possibly outcome-dependent drop-out
- adjustment of inferences about the time-to-event distribution conditional on intermediate and/or error prone longitudinal measurements
- the joint evolution of the measurement and event time processes
- biomarker surrogacy
- dynamic prediction

Motivation for *multivariate* joint models

- Clinical studies often repeatedly measure *multiple* biomarkers or other measurements **and** an event time
- Research has predominantly focused on a single event time and single measurement outcome
- Ignoring correlation leads to bias and reduced efficiency in estimation
- Harnessing all available information in a single model is advantageous and should lead to improved model predictions

Clinical example

Primary biliary cirrhosis Bile ducts in liver Liver Gallbladder Normal bile ducts in liver Inflammation and scar tissue destroy bile ducts in live

Primary biliary cirrhosis (PBC) is a chronic liver disease characterized by inflammatory destruction of the small bile ducts, which eventually leads to cirrhosis of the liver and death

Figure source: https://www.medgadget.com

Clinical example

- Consider a subset of 154 patients randomized to placebo treatment from Mayo Clinic trial (Murtaugh et al. 1994)
- Multiple biomarkers repeatedly measured at intermittent times, of which we consider 3 clinically relevant ones:
 - serum bilirunbin (mg/dl)
 - erum albumin (mg/dl)
 - oprothrombin time (seconds)

Objective 1

 Determine if longitudinal biomarker trajectories are associated with death

Objective 1

 Determine if longitudinal biomarker trajectories are associated with death

Objective 2

 Dynamically predict the biomarker trajectories and time to death for a new patient

Objective 1

 Determine if longitudinal biomarker trajectories are associated with death

Objective 2

 Dynamically predict the biomarker trajectories and time to death for a new patient

Objective 3

Wrap it all up into a freely available software package

Data

For each subject $i = 1, \ldots, n$, we observe

- y_i = (y_{i1}^T,..., y_{iK}^T) is a K-variate continuous outcome vector, where each y_{ik} denotes an (n_{ik} × 1)-vector of observed longitudinal measurements for the k-th outcome type: y_{ik} = (y_{i1k},..., y_{in_{ik}k})^T
- Observation times t_{ijk} for j = 1,..., n_{ik}, which can differ between subjects and outcomes
- (*T_i*, δ_i), where *T_i* = min(*T_i*^{*}, *C_i*), where *T_i*^{*} is the true event time, *C_i* corresponds to a potential right-censoring time, and δ_i is the failure indicator equal to 1 if the failure is observed (*T_i*^{*} ≤ *C_i*) and 0 otherwise

Longitudinal sub-model

Following Henderson et al. (2000) for the univariate case

$$y_i(t) = \mu_i(t) + W_{1i}(t) + \varepsilon_i(t),$$

- $\varepsilon_i(t)$ is the model error term, which is i.i.d. $N(0, \sigma^2)$ and independent of $W_{1i}(t)$
- $\mu_i(t) = x_i^{\top}(t)\beta$ is the mean response
- x_i(t) is a p-vector of (possibly) time-varying covariates with corresponding fixed effect terms β
- $W_{1i}(t)$ is a zero-mean *latent* Gaussian process

Longitudinal sub-model

We can extend it to K-separate sub-models (with k = 1, ..., K)

$$y_{i\mathbf{k}}(t) = \mu_{i\mathbf{k}}(t) + W_{1i}^{(\mathbf{k})}(t) + \varepsilon_{i\mathbf{k}}(t),$$

- $\varepsilon_{ik}(t)$ is the model error term, which is i.i.d. $N(0, \sigma_k^2)$ and independent of $W_{1i}^{(k)}(t)$
- $\mu_{ik}(t) = x_{ik}^{\top}(t)\beta_k$ is the mean response
- x_{ik}(t) is a p_k-vector of (possibly) time-varying covariates with corresponding fixed effect terms β_k
- $W_{1i}^{(k)}(t)$ is a zero-mean *latent* Gaussian process

Time-to-event sub-model

$$\begin{aligned} \lambda_i(t) &= \lim_{dt\to 0} \frac{P(t \leq T_i < t + dt \mid T_i \geq t)}{dt} \\ &= \lambda_0(t) \exp\left\{ v_i^\top(t) \gamma_v + W_{2i}(t) \right\}, \end{aligned}$$

- $\lambda_0(\cdot)$ is an unspecified baseline hazard function
- v_i(t) is a q-vector of (possibly) time-varying covariates with corresponding fixed effect terms γ_ν
- $W_{2i}(t)$ is a zero-mean *latent* Gaussian process, independent of the censoring process

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t) = z_{ik}^{\top}(t)b_{ik}$$
 for $k = 1, \dots, K$

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t) = z_{ik}^{\top}(t)b_{ik}$$
 for $k = 1, ..., K$

Three sources of correlation:

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t) = z_{ik}^{\top}(t)b_{ik}$$
 for $k = 1, \dots, K$

Three sources of correlation:

• Within-subject correlation between longitudinal measurements: $b_{ik} \sim N(0, D_{kk})$

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t) = z_{ik}^{\top}(t)b_{ik}$$
 for $k = 1, \dots, K$

Three sources of correlation:

- Within-subject correlation between longitudinal measurements:
 b_{ik} ~ N(0, D_{kk})
- Petween longitudinal outcomes correlation: cov(b_{ik}, b_{il}) = D_{kl} for k ≠ l

Following Laird and Ware (1982):

$$W_{1i}^{(k)}(t) = z_{ik}^{ op}(t)b_{ik}$$
 for $k = 1, \dots, K$

Three sources of correlation:

- Within-subject correlation between longitudinal measurements:
 b_{ik} ~ N(0, D_{kk})
- Between longitudinal outcomes correlation: cov(b_{ik}, b_{il}) = D_{kl} for k ≠ l

③ Correlation between sub-models¹: $W_{2i}(t) = \sum_{k=1}^{K} \gamma_{yk} W_{1i}^{(k)}(t)$

¹Extends model proposed Henderson et al. (2000)

Association structure: alternatives

Many other proposals for association structures in the literature:

- Current value parameterisation: $W_{2i}(t) = \gamma_y \{\mu_i(t) + W_{1i}(t)\}$
- Random effects parameterisation: $W_{2i}(t) = \gamma_{y1}^{\top} b_i$
- Bivariate distribution: $(W_{1i}, W_{2i}) \sim N(0, \Omega)$
- Random-slopes parameterisation: W_{2i}(t) = γ_{y1} {μ_i(t) + W_{1i}(t)} + γ_{y2} ∂/∂t {μ_i(t) + W_{1i}(t)}

 ...

We can re-write the longitudinal sub-model as

$$y_i \mid b_i, \beta, \Sigma_i \sim N(X_i\beta + Z_ib_i, \Sigma_i), \text{ with } b_i \mid D \sim N(0, D),$$

where
$$\beta = (\beta_1^{\top}, \dots, \beta_K^{\top}), b_i = (b_{i1}^{\top}, \dots, b_{iK}^{\top})^{\top}$$
, and
 $X_i = \begin{pmatrix} X_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_{iK} \end{pmatrix}, \quad D = \begin{pmatrix} D_{11} & \cdots & D_{1K} \\ \vdots & \ddots & \vdots \\ D_{1K}^{\top} & \cdots & D_{KK} \end{pmatrix}$
 $Z_i = \begin{pmatrix} Z_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & Z_{iK} \end{pmatrix}, \quad \Sigma_i = \begin{pmatrix} \sigma_1^2 I_{n_{i1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_K^2 I_{n_{iK}} \end{pmatrix}$

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where
$$\theta = (\beta^{\top}, \operatorname{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$$

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where $\theta = (\beta^{\top}, \operatorname{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$, and

$$f(y_i \mid b_i, \theta) = \left(\prod_{k=1}^{K} (2\pi)^{-\frac{n_{ik}}{2}}\right) |\Sigma_i|^{-\frac{1}{2}}$$
$$\exp\left\{-\frac{1}{2}(y_i - X_i\beta - Z_ib_i)^{\top}\Sigma_i^{-1}(y_i - X_i\beta - Z_ib_i)\right\}$$

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where
$$\theta = (\beta^{\top}, \operatorname{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$$
, and

$$f(T_i, \delta_i \mid b_i; \theta) = \left[\lambda_0(T_i) \exp\left\{v_i^\top \gamma_v + W_{2i}(T_i, b_i)\right\}\right]^{\delta_i} \\ \exp\left\{-\int_0^{T_i} \lambda_0(u) \exp\left\{v_i^\top \gamma_v + W_{2i}(u, b_i)\right\} du\right\}$$

The observed data likelihood is given by

$$\prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} f(y_i \mid b_i, \theta) f(T_i, \delta_i \mid b_i, \theta) f(b_i \mid \theta) db_i \right)$$

where
$$\theta = (\beta^{\top}, \operatorname{vech}(D), \sigma_1^2, \dots, \sigma_K^2, \lambda_0(t), \gamma_v^{\top}, \gamma_y^{\top})$$
, and

$$f(b_i | \theta) = (2\pi)^{-\frac{r}{2}} |D|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}b_i^{\top} D^{-1} b_i\right\},$$

with $r = \dim(b_i)$

Estimation

Multiple approaches have been considered over the years:

- Markov chain Monte Carlo (MCMC)
- Direct likelihood maximisation (e.g. Newton-methods)
- Generalised estimating equations
- EM algorithm (treating the random effects as missing data)

• . . .

EM algorithm (Dempster et al. 1977)

E-step. At the *m*-th iteration, we compute the expected log-likelihood of the *complete* data conditional on the *observed* data and the current estimate of the parameters.

$$\begin{aligned} Q(\theta \mid \hat{\theta}^{(m)}) &= \sum_{i=1}^{n} \mathbb{E} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\}, \\ &= \sum_{i=1}^{n} \int_{-\infty}^{\infty} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\} f(b_i \mid T_i, \delta_i, y_i; \hat{\theta}^{(m)}) db_i \end{aligned}$$

EM algorithm (Dempster et al. 1977)

E-step. At the *m*-th iteration, we compute the expected log-likelihood of the *complete* data conditional on the *observed* data and the current estimate of the parameters.

$$\begin{aligned} Q(\theta \mid \hat{\theta}^{(m)}) &= \sum_{i=1}^{n} \mathbb{E} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\}, \\ &= \sum_{i=1}^{n} \int_{-\infty}^{\infty} \Big\{ \log f(y_i, T_i, \delta_i, b_i \mid \theta) \Big\} f(b_i \mid T_i, \delta_i, y_i; \hat{\theta}^{(m)}) db_i \end{aligned}$$

M-step. We maximise $Q(\theta | \hat{\theta}^{(m)})$ with respect to θ . namely,

$$\hat{ heta}^{(m+1)} = rg\max_{ heta} \, Q(heta \, | \, \hat{ heta}^{(m)})$$

M-step: closed form estimators

$$\begin{aligned} \hat{\lambda}_{0}(t) &= \frac{\sum_{i=1}^{n} \delta_{i} I(T_{i} = t)}{\sum_{i=1}^{n} \mathbb{E} \left[\exp \left\{ v_{i}^{\top} \gamma_{v} + W_{2i}(t, b_{i}) \right\} \right] I(T_{i} \ge t)} \\ \hat{\beta} &= \left(\sum_{i=1}^{n} X_{i}^{\top} X_{i} \right)^{-1} \left(\sum_{i=1}^{n} X_{i}^{\top} (y_{i} - Z_{i} \mathbb{E}[b_{i}]) \right) \\ \hat{\sigma}_{k}^{2} &= \frac{1}{\sum_{i=1}^{n} n_{ik}} \sum_{i=1}^{n} \left\{ (y_{ik} - X_{ik} \beta_{k})^{\top} (y_{ik} - X_{ik} \beta_{k} - 2Z_{ik} \mathbb{E}[b_{ik}]) \right. \\ &+ \operatorname{trace} \left(Z_{ik}^{\top} Z_{ik} \mathbb{E}[b_{ik} b_{ik}^{\top}] \right) \right\} \\ \hat{D} &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[b_{i} b_{i}^{\top} \right] \end{aligned}$$

M-step: non-closed form estimators

There is no closed form update for $\gamma = (\gamma_v^\top, \gamma_y^\top)$, so use a one-step Newton-Raphson iteration

$$\hat{\gamma}^{(m+1)} = \hat{\gamma}^{(m)} + I\left(\hat{\gamma}^{(m)}\right)^{-1} S\left(\hat{\gamma}^{(m)}\right),$$

where

$$S(\gamma) = \sum_{i=1}^{n} \left[\delta_{i} \mathbb{E} \left[\tilde{v}_{i}(T_{i}) \right] - \int_{0}^{T_{i}} \lambda_{0}(u) \mathbb{E} \left[\tilde{v}_{i}(u) \exp\{ \tilde{v}_{i}^{\top}(u)\gamma\} \right] du \right]$$

$$I(\gamma) = -\frac{\partial}{\partial \gamma} S(\gamma)$$

with $ilde{v}_i(t) = \left(v_i^{ op}, z_{i1}^{ op}(t)b_{i1}, \dots, z_{iK}^{ op}(t)b_{iK}\right)$ a (q + K)-vector

MCEM algorithm

- E-step requires calculating several multidimensional integrals of form $\mathbb{E}\left[h(b_i) \mid T_i, \delta_i, y_i; \hat{\theta}\right]$
- Gauss-quadrature can be slow if dim(b_i) is large ⇒ might not scale well as K increases
- Instead, we use the Monte Carlo Expectation-Maximization (MCEM; Wei and Tanner 1990)
- M-step updates remain the same

Monte Carlo E-step

Conventional EM algorithm: use quadrature to compute

$$\mathbb{E}\left[h(b_i) \mid T_i, \delta_i, y_i; \hat{\theta}\right] = \frac{\int_{-\infty}^{\infty} h(b_i) f(b_i \mid y_i; \hat{\theta}) f(T_i, \delta_i \mid b_i; \hat{\theta}) db_i}{\int_{-\infty}^{\infty} f(b_i \mid y_i; \hat{\theta}) f(T_i, \delta_i \mid b_i; \hat{\theta}) db_i},$$

$$\begin{split} h(\cdot) &= & \text{any known fuction,} \\ b_i \,|\, y_i, \theta &\sim & N\left(A_i\left\{Z_i^\top \Sigma_i^{-1}(y_i - X_i\beta)\right\}, A_i\right), \text{ and} \\ A_i &= & \left(Z_i^\top \Sigma_i^{-1} Z_i + D^{-1}\right)^{-1} \end{split}$$

Monte Carlo E-step

MCEM algorithm E-step: use Monte Carlo integration to compute

$$\mathbb{E}\left[h(b_i) \mid T_i, \delta_i, y_i; \hat{\theta}\right] \approx \frac{\frac{1}{N} \sum_{d=1}^{N} h\left(b_i^{(d)}\right) f\left(T_i, \delta_i \mid b_i^{(d)}; \hat{\theta}\right)}{\frac{1}{N} \sum_{d=1}^{N} f\left(T_i, \delta_i \mid b_i^{(d)}; \hat{\theta}\right)}$$

$$\begin{split} h(\cdot) &= \text{ any known fuction,} \\ b_i \mid y_i, \theta &\sim N\left(A_i\left\{Z_i^\top \Sigma_i^{-1}(y_i - X_i\beta)\right\}, A_i\right), \text{ and} \\ A_i &= \left(Z_i^\top \Sigma_i^{-1} Z_i + D^{-1}\right)^{-1} \\ b_i^{(1)}, b_i^{(2)}, \dots, b_i^{(N)} &\sim b_i \mid y_i, \theta \text{ a Monte Carlo draw} \end{split}$$

Speeding up convergence

- Monte Carlo integration converges at a rate of O(N^{-1/2}), which is independent of K and r = dim(b_i)
- EM algorithm convergences linearly
- Can we speed this up?

Speeding up convergence

- Monte Carlo integration converges at a rate of O(N^{-1/2}), which is independent of K and r = dim(b_i)
- EM algorithm convergences linearly
- Can we speed this up?
 - Antithetic variates
 - Quasi-Monte Carlo

Variance reduction

Instead of directly sampling from the MVN distribution for $b_i | y_i; \theta$, we apply a variance reduction technique

Antithetic simulation

Sample $\Omega \sim N(0, I_r)$ and obtain the *pairs*

$$A_i \left\{ Z_i^{\top} \Sigma_i^{-1} (y_i - X_i \beta) \right\} \pm C_i \Omega,$$

where C_i is the Cholesky decomposition of A_i such that $C_i C_i^{\top} = A_i$

Negative correlation between the N/2 pairs \Rightarrow smaller variance in the sample means than would be obtained from N independent simulations

Convergence

In standard EM, convergence usually declared at (m + 1)-th iteration if one of the following criteria satisfied

• Relative change:
$$\Delta_{\text{rel}}^{(m+1)} = \max\left\{\frac{|\hat{\theta}^{(m+1)} - \hat{\theta}^{(m)}|}{|\hat{\theta}^{(m)}| + \epsilon_1}\right\} < \epsilon_0$$

• Absolute change:
$$\Delta_{\text{abs}}^{(m+1)} = \max\left\{|\hat{\theta}^{(m+1)} - \hat{\theta}^{(m)}|\right\} < \epsilon_2$$

for some choice of $\epsilon_0,\ \epsilon_1,\mbox{ and }\ \epsilon_2$

In MCEM framework, there are 2 complications to account for

spurious convergence declared due to random chance

- spurious convergence declared due to random chance
 - \Rightarrow **Solution**: require convergence for 3 iterations in succession

Convergence

- spurious convergence declared due to random chance
 Solution: require convergence for 3 iterations in succession
- estimators swamped by Monte Carlo error, thus precluding convergence

Convergence

- spurious convergence declared due to random chance
 Solution: require convergence for 3 iterations in succession
- estimators swamped by Monte Carlo error, thus precluding convergence
 - \Rightarrow **Solution**: increase Monte Carlo size *N* as algorithm moves closer towards maximizer

Dynamic MC size

- Using large *N* when far from maximizer = computationally inefficient
- Using small N when close to maximizer = unlikely to detect convergence
- **Solution** (proposed by Ripatti et al. 2002): after a 'burn-in' phase, calculate the *coefficient of variation* statistic

$$\mathsf{cv}(\Delta_{\mathsf{rel}}^{(m+1)}) = \frac{\mathsf{sd}(\Delta_{\mathsf{rel}}^{(m-1)}, \Delta_{\mathsf{rel}}^{(m)}, \Delta_{\mathsf{rel}}^{(m+1)})}{\mathsf{mean}(\Delta_{\mathsf{rel}}^{(m-1)}, \Delta_{\mathsf{rel}}^{(m)}, \Delta_{\mathsf{rel}}^{(m+1)})},$$

and increase N to $N + \lfloor N/\delta \rfloor$ if $cv(\Delta_{rel}^{(m+1)}) > cv(\Delta_{rel}^{(m)})$ for some small positive integer δ

Quasi-Monte Carlo

- Replaces the (pseudo-)random sequence by a deterministic one
- Quasi-random sequences yield smaller errors than standard Monte Carlo integration methods

• Convergence is
$$O\left(\frac{(logN)^r}{N}\right)$$

• Research on-going...

Quasi-Monte Carlo

Key: OMC = ordinary Monte Carlo; AMC = antithetic Monte Carlo; QMC = quasi-Monte Carlo

Standard error estimation

Method 1: Bootstrap

Conceptually simple + theoretically superior (Hsieh et al. 2006)... but computationally slow!

Standard error estimation

Method 1: Bootstrap

 $\label{eq:conceptually simple + theoretically superior (Hsieh et al. 2006)... \\ but computationally slow!$

Method 2: Empirical information matrix approximation

Following McLachlan and Krishnan (2008), $SE(\theta) \approx I_e^{-1/2}(\hat{\theta})$, where

$$I_e(\theta) = \sum_{i=1}^n s_i(\theta) s_i^{\top}(\theta) - \frac{1}{n} S(\theta) S^{\top}(\theta),$$

 $S(\theta) = \sum_{i=1}^{n} s_i(\theta)$ is the score vector for $\theta_{-\lambda_0(t)}$ (baseline hazards a profiled out of the likelihood)

joineRML

Alternative options

- Pre-2017: none!
- 2017-onwards:
 - joineRML: discussed today
 - stjm: a new extension to the Stata package² written by Michael Crowther
 - megenreg: similar to stjm, but can handle other models
 - **rstanarm**: development branch that absorbs package written by Sam Brilleman³
 - JMbayes: a new extension⁴ to the R package written by Dimitris Rizopoulos

³github.com/sambrilleman/rstanjm

⁴github.com/drizopoulos/JMbayes

²Crowther MJ. Joint Statistical Meeting. Seattle; 2015.

LIVERPOOL

Proposed model for PBC data

Longitudinal sub-model

Time-to-event sub-model

$$\begin{array}{lll} \lambda_i(t) &=& \lambda_0(t) \exp\left\{\gamma_v \text{age} + W_{2i}(t)\right\},\\ W_{2i}(t) &=& \gamma_{\text{bil}}(b_{0i,1} + b_{1i,1}t) + \gamma_{\text{alb}}(b_{0i,2} + b_{1i,2}t) + \gamma_{\text{pro}}(b_{0i,3} + b_{1i,3}t). \end{array}$$

Example code


```
data(pbc2)
placebo <- subset(pbc2, drug == "placebo")</pre>
fit.pbc <- mjoint(</pre>
   formLongFixed = list(
       "bil" = log(serBilir) ~ year,
       "alb" = albumin ~ year,
       "pro" = (0.1 * \text{ prothrombin})^{-4} vear),
   formLongRandom = list(
       "bil" = ~ year | id,
       "alb" = ~ year | id,
       "pro" = ~ year | id),
   formSurv = Surv(years, status2) ~ age,
   data = placebo,
   timeVar = "year",
   control = list(tol0 = 0.001, burin = 400))
```

Results

Parameter	Estimate	SE	95% CI
$\beta_{0,1}$	0.5541	0.0858	(0.3859, 0.7223)
$\beta_{1,1}$	0.2009	0.0201	(0.1616, 0.2402)
$\beta_{0,2}$	3.5549	0.0356	(3.4850, 3.6248)
$\beta_{1,2}$	-0.1245	0.0101	(-0.1444, -0.1047)
$\beta_{0,3}$	0.8304	0.0212	(0.7888, 0.8719)
$\beta_{1,3}$	-0.0577	0.0062	(-0.0699, -0.0456)
γ_{v}	0.0462	0.0151	(0.0166, 0.0759)
$\gamma_{\tt bil}$	0.8181	0.2046	(0.4171, 1.2191)
$\gamma_{\texttt{alb}}$	-1.7060	0.6181	(-2.9173, -0.4946)
$\gamma_{ t pro}$	-2.2085	1.6070	(-5.3582, 0.9412)

Results

Parameter	Estimate	SE	95% CI
$\beta_{0,1}$	0.5541	0.0858	(0.3859, 0.7223)
$\beta_{1,1}$	0.2009	0.0201	(0.1616, 0.2402)
$\beta_{0,2}$	3.5549	0.0356	(3.4850, 3.6248)
$\beta_{1,2}$	-0.1245	0.0101	(-0.1444, -0.1047)
$\beta_{0,3}$	0.8304	0.0212	(0.7888, 0.8719)
$\beta_{1,3}$	-0.0577	0.0062	(-0.0699, -0.0456)
γ_{v}	0.0462	0.0151	(0.0166, 0.0759)
$\gamma_{\tt bil}$	0.8181	0.2046	(0.4171, 1.2191)
$\gamma_{\texttt{alb}}$	-1.7060	0.6181	(-2.9173, -0.4946)
$\gamma_{\tt pro}$	-2.2085	1.6070	(-5.3582, 0.9412)

Results

Effect of multivariate inference over univariate joint model:

Parameter	Model	Estimate	95% CI
$\gamma_{\tt bil}$	UV	1.2182	(0.9789, 1.6130)
$\gamma_{\texttt{bil}}$	MV	0.8181	(0.4171, 1.2191)
$\gamma_{\texttt{alb}}$	UV	-3.0770	(-4.4865, -2.3466)
$\gamma_{\texttt{alb}}$	MV	-1.7060	(-2.9173, -0.4946)
$\gamma_{\tt pro}$	UV	-7.2078	(-10.5410, -5.3917)
$\gamma_{ t pro}$	MV	-2.2085	(-5.3582, 0.9412)

 $\label{eq:UV} UV = univariate joint model (fitted with joineR package); \ MV = multivariate joint model$

Dynamic prediction

- So far we have only discussed inference from joint models
- How we can use them for prediction?
- Predict what?
 - Failure probability at time u > t given longitudinal data observed up until time t
 - Ongitudinal trajectories at time u > t given longitudinal data observed up until time t

Dynamic prediction: example

Bivariate joint model

We will consider the PBC data again (as above) with K = 2 biomarkers only: serurm bilirubin (log-transformed) and albumin (untransformed), since prothrombin time was non-significant in the trivariate model

Dynamic prediction: survival

For a new subject i = n + 1, we want to calculate

$$P[T_{n+1}^* \ge u \mid T_{n+1}^* > t, \mathbf{y}_{n+1}; \theta] = \mathbb{E}\left[\frac{S_{n+1}(u \mid \mathcal{W}_{2,n+1}(u, b_{n+1}; \theta); \theta)}{S_{n+1}(t \mid \mathcal{W}_{2,n+1}(t, b_{n+1}; \theta); \theta)}\right]$$

where $W_{2i}(t, b_i; \theta) = \{W_{2i}(s, v_i; \theta); 0 \le s < t\}$ and the expectation is taken with respect to the distribution

$$p(b_{n+1} | T_{n+1}^* > t, \mathbf{y}_{n+1}; \theta)$$

Dynamic prediction: survival

Rizopoulos (2011) proposed two estimators for this:

A first-order approximation

$$P[T_{n+1}^* \ge u \mid T_{n+1}^* > t, \boldsymbol{y}_{n+1}; \theta] \approx \frac{S_{n+1}\left(u \mid \mathcal{W}_{2,n+1}(u, \hat{b}_{n+1}; \hat{\theta}_{mle}); \hat{\theta}_{mle}\right)}{S_{n+1}\left(t \mid \mathcal{W}_{2,n+1}(t, \hat{b}_{n+1}; \hat{\theta}_{mle}); \hat{\theta}_{mle}\right)},$$

where \hat{b}_{n+1} is the mode of $p(b_{n+1} \mid T^*_{n+1} > t, y_{n+1}; \theta)$

2 A simulated scheme

• Draw
$$\theta^{(I)} \sim N(\hat{\theta}_{mle}, V(\hat{\theta}_{mle}))$$

• Draw $b_{n+1}^{(I)} \sim p(b_{n+1} | T_{n+1}^* > t, y_{n+1}; \theta)$ [Metropolis-Hastings]
• Calculate $\frac{S_{n+1}(u | W_{2,n+1}(u, b_{n+1}^{(I)}; \theta^{(I)}); \theta^{(I)})}{S_{n+1}(t | W_{2,n+1}(t, b_{n+1}^{(I)}; \theta^{(I)}); \theta^{(I)})}$
• Repeat Steps 1-3 $I = 2, ..., L$ times

Example code


```
# New patient
nd <- subset(placebo, id == "11") # patient 11
# First-order prediction (default)
pred1 <- dynSurv(fit.pbc, nd[1:5, ])</pre>
pred1
plot(pred1)
# Simulated prediction
pred2 <- dynSurv(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)</pre>
pred2
plot(pred2)
```

UNIVERSITY OF LIVERPOOL

Dynamic predicton: survival

Dynamic prediction: longitudinal

For a new subject i = n + 1, we want to calculate

$$\mathbb{E}\left[y_{n+1}(u) \mid T_{n+1}^* > t, \boldsymbol{y}_{n+1}; \theta\right] = X_{n+1}^{\top}(u)\beta + Z_{n+1}^{\top}(u)\mathbb{E}[b_{n+1}],$$

Dynamic prediction: longitudinal

Again, we can use the same estimation proposals:

1 A first-order approximation

$$\mathbb{E}[y_{n+1}(u) \mid T_{n+1}^* > t, \mathbf{y}_{n+1}; \theta] \approx X_{n+1}^{\top}(u)\hat{\beta} + Z_{n+1}^{\top}(u)\hat{b}_{n+1},$$

where \hat{b}_{n+1} is the mode of $p(b_{n+1} \mid T^*_{n+1} > t, \mathbf{y}_{n+1}; \theta)$

A simulated scheme

• Draw $\theta^{(l)} \sim N(\hat{\theta}_{mle}, V(\hat{\theta}_{mle}))$ • Draw $b_{n+1}^{(l)} \sim p(b_{n+1} | T_{n+1}^* > t, y_{n+1}; \theta)$ [Metropolis-Hastings] • Calculate $X_{n+1}^{\top}(u)\beta^{(l)} + Z_{n+1}^{\top}(u)b_{n+1}^{(l)}$ • Repeat Steps 1-3 $l = 2, \dots, L$ times

Example code


```
# First-order prediction (default)
pred1 <- dynLong(fit.pbc, nd[1:5, ])
pred1
plot(pred1)
# Simulated prediction
pred2 <- dynLong(fit.pbc, nd[1:5, ], type = "simulated", scale = 2)
pred2
plot(pred2)</pre>
```

Dynamic predicton: longitudinal

Open challenges

- How can we incorporate high-dimensional K? E.g. K = 10?
- Data reduction techniques: can we project high-dimensional *K* onto a lower order plane?
- Speed-up calculations using approximations (e.g. Laplace approximations)

References

Murtaugh, Paul A et al. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. *Hepatology* 20(1), pp. 126–134.

Henderson, R et al. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1(4), pp. 465-480.

Laird, NM and Ware, JH (1982). Random-effects models for longitudinal data. Biometrics 38(4), pp. 963-74.

Dempster, AP et al. (1977). Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1), pp. 1-38.

Wei, GC and Tanner, MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J Am Stat Assoc 85(411), pp. 699–704.

Ripatti, S et al. (2002). Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Life Dat Anal 8(2002), pp. 349–360.

Hsieh, F et al. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* 62(4), pp. 1037–1043.

McLachlan, GJ and Krishnan, T (2008). The EM Algorithm and Extensions. Second. Wiley-Interscience.

Rizopoulos, Dimitris (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67(3), pp. 819–829.