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Abstract 

This paper considers a vibration control problem for a multi-span beam under moving masses by using boundary control method. The vibration of the multi-span beam under active control is governed by both a partial differential equation (PDE) and several ordinary differential equations (ODEs) which are derived from Hamilton’s principle. In order to suppress its vibration, boundary control strategy is proposed based on Lyapunov’s direct method. The closed-loop system stability of the multi-span beam with the proposed boundary control is proved.  It can avoid spill-over effects which may occur in those popular methods that discretise the system model through modal expansion, as it directly acts on the PDE-ODEs of the system model in control design.  Moreover, the sensors and actuators in the proposed boundary control strategy can be easily placed, as they are installed at the boundary of the system. The external excitations applied in simulation are a rectangular impulse, a moving mass and two moving masses, respectively. Numerical results demonstrate the effectiveness of the proposed method and good control performance in suppressing vibration of moving mass problems. This investigation has wide applications in engineering, notably, train-bridge dynamic interaction in high-speed railways. 
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1 Introduction

Moving mass/load problems have received considerable attention in the literature, as they are very common in engineering and daily life, such as vehicle-bridge interaction, train-track interaction, overhead cranes, friction-loaded discs and turbine discs, gears, shafts, etc. 
 ADDIN EN.CITE 

(Pesterev and Bergman, 1998; Sun, 2001; Lee and Yhim, 2004; Stancioiu et al., 2009; Liu et al., 2010; Ouyang, 2011; Han et al., 2012)
. Vehicle-bridge interaction is a typical example, and has been intensively researched in civil engineering 
 ADDIN EN.CITE 

(Marchesiello et al., 1999; Au et al., 2001; Wang et al., 2003; Yang et al., 2004)
. For example,  the dynamics of multi-span bridges subjected to excitation of a multi-degree of freedom moving vehicle was studied by Marchesiello et al. (1999)
. Moving mass/load problems are self-excited vibration or parametric excitation problems and they were the focus of the works by 
 ADDIN EN.CITE 

Sung (2002) and Abdel-Rohman (2005).
  Fryba(1999)
 studied many simple moving-load problems and provided their analytic solutions in his monograph.  Ouyang (2011) reviewed a number of moving-load problems recently.
Flexible structures, such as robotic arms and bridges, are usually modelled as beam-type structures as Euler-Bernoulli beams or Timoshenko beams De Queiroz and Rahn, 2002()
. Railway bridges excited by a travelling train also can be approximated as beams subjected to a moving mass/load 
 ADDIN EN.CITE 

(Azizi et al., 2012)
. Vibration control of beams subjected to a moving load is an important issue, and has been a subject of interest in many research fields in the last few decades, due to the increasing speed of moving mass and structural flexibility 
 ADDIN EN.CITE 

(Mallik et al., 2006; Chuang et al., 2012; Ghayesh et al., 2012)
.  Independent modal space control is an important method in vibration control of flexible structures. Optimal control Qiu et al., 2007(; Stancioiu and Ouyang, 2015)
, adaptive control 
 ADDIN EN.CITE 

(Landau et al., 2005; Basu and Nagarajaiah, 2008)
, and intelligent control Xu et al., 2003()
 were developed to suppress vibration of structures in independent modal space. The most commonly used method in vibration control of a beam subjected to a moving mass seems to be optimal control in modal space 
 ADDIN EN.CITE 

(Sung, 2002; Nikkhoo, 2014; Stancioiu and Ouyang, 2015)
. It assumes that the whole controlled states can be completely known from measured or estimated data. However, sometimes it may not be possible to install all sensors to obtain the full states Yang et al., 1995()
. One way to overcome this problem is to use a truncated model which has a limited numbers of modes, but this can lead to spill-over phenomenon  Do and Pan, 2008()
. 
Vibration control of beam-type structures is an interesting and challenging research topic as the dynamic model of beams is described by partial differential equations (also called distributed parameter or infinite dimensional systems). There are mainly three control methods for the distributed parameter systems: modal control, distributed control and boundary control De Queiroz, 2000()
. As mentioned above, the main disadvantage of modal control is that high order vibration modes which are neglected during the discretisation process may be excited. Distributed control tries to use a number of sensors and actuators to control the whole structure. However, the cost of distributed control is too high to be adopted for large structures. The aforementioned two control methods also can be classified as an in-domain control method. Boundary control directly tackles the partial differential equations in control design (the spill-over effects are avoided) and only needs relatively a few sensors and actuators De Queiroz, 2000(; Krstic and Smyshlyaev, 2008)
. Moreover, boundary control is considered to be physically more realistic, as the actuation and sensing are implemented only at the boundaries. For a bridge, it is expensive or even impossible to install actuators within a span; so locating actuators at the boundary and supports should be cheaper and more convenient.
Since boundary control is more practical and seems more efficient than modal control and distributed control, it has been under development for several decades 
 ADDIN EN.CITE 

(Morgul, 1992; Lee and Mote, 1996; Krstic et al., 2008; Krstic and Smyshlyaev, 2008; Ge et al., 2010
; Dogan and Morgul, 2012)
. Canbolat et al. (1998)
 studied boundary control of a cantilevered flexible Euler-Bernoulli beam. Morgül (1992)
 stabilised a cantilever Timoshenko beam by applying a dynamic boundary control at the free end of the beam. 
 ADDIN EN.CITE 

He et al. (2013)
 developed a boundary output-feedback control of a Timoshenko beam, whose varying disturbance was dealt with by a boundary disturbance observer.  Do and Pan (2008)
 presented a boundary controller to reduce transverse motion of flexible marine risers driven by a hydraulic system at the top end of the risers. He et al. (2014) proposed an integral-barrier Lyapunov function based control to suppress undesirable vibration of a flexible crane system with boundary output constraint. A technical overview of the design and analysis of active boundary controllers for distributed parameter systems was given by De Queiroz and Rahn (2002)
. In the aforementioned papers of boundary control of beam systems, only single-span beams were considered. To the author’s knowledge, there has not been a published work in the open literature that presents Lyapunov-based boundary control of a multi-span beam subjected to a moving mass, even though this is a common problem in engineering and daily life. This is the topic of the current paper.
Compared with single-span beams, vibration control of amulti-span beam subjected to moving masses is a more complex problem 
 ADDIN EN.CITE 

(Marchesiello et al., 1999; Stancioiu et al., 2011)
. Actually, multi-span beams are commonly used in engineering, such as serial manipulators and multi-span bridges. The dynamic behaviour of multi-span beams subjected to moving masses has long been studied Ariaei et al., 2013()
; however, there are few studies on the vibration control of multi-span beams subjected to moving masses. Recently, Nikkhoo (2014)
 developed a linear classical optimal control algorithm for the vibration control of single-span and multi-span beams by using a number of piezoelectric actuators. However, the information of the moving mass such as velocity and the arrival time of the moving mass must be known beforehand in the proposed optimal control, which is not convenient or very realistic in real applications. 
In this paper, a Lyapunov-based boundary control of a multi-span Euler-Bernoulli beam system is proposed. Prior knowledge of the moving mass is not required in this proposed method. The dynamics of the multi-span beam is derived from Hamilton’s principle, and the stability of the closed-loop system is analysed by Lyapunov’s direct method. In the simulation, three types of external excitations, which are a rectangular impulse, a moving mass and two moving masses, are considered. The modal expansion theorem is used to solve the equations of motion of the closed loop multi-span beam system. The supports of multi-span beam are assumed as linear springs with very high stiffness. Simulation results illustrate the effectiveness of the proposed boundary controller for a multi-span beam system. The main contributions of this paper are (1) the development of Lyapunov-based boundary control for a multi-span beam (while most boundary controllers are designed for a single span beam) and (2) the extension of this control strategy to moving load problems, which are nonstationary and usually do not lead to very effective solutions. 
2 Model of a multi-span beam
In this paper, a three-span beam system is considered. Needless to say, it is easy to extend the proposed method to beams with any number of spans. For a multi-span beam system shown in Fig. 1, let x and t denote the independent spatial and time variables, respectively. The boundary of both sides of the multi-span beam system is a simple support. w(x,t) is the transverse displacement of the Euler-Bernoulli beam system at position x and time t. 
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is the density of the beam, A is its cross-sectional area, E is the Young’s modulus, and I is the second moment of area of the beam.  J1 and J2 denote the second moments of inertia of the actuators which are assumed to be rigid and considered to be a part of the system, respectively. L is the total length of the multi-span beam; 
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 denote the locations of the actuators (see Fig. 1), respectively. 
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 denote the boundary control torques applied to the positions of 
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 by the actuators, respectively.  In this paper, the actuators’ size is neglected as it is much smaller than the beam, which means that 
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Fig. 1. The multi-span beam system with actuators at intermediate supports.

Remark 1:For the sake of convenience, notations 
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The total kinetic energy of the multi-span beam system 
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is given by
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where
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The potential energy 
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(2)
Note that gravity is not considered in (2), as it only contributes to a small deflection excluded from the vibration displacement.

The total virtual work done by the boundary control forces is given by 
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Where 
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 denotes the variation operator.

It should be noted that the moving mass is not considered in the control design. Hence prior knowledge of the moving mass is not required.
Applying Hamilton’s principle below
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(4)
and then making some integral and algebraic manipulations, equations (5) and (8) can be derived.
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(5)
Since the multi-span beam is simply supported, its boundary conditions are given by 
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while the actuators’ dynamics can be described by the following equation


[image: image27.wmf]()()()

tt

ttt

+

Jz=u

h











(8)
where 
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It should be noted that vibration the multi-span beam under control is governed by PDE (5) and ODEs (8). To reduce the notational complexity in most of the following derivations, some symbols will be simplified, such as w(x, t) and w(L, t) will be denoted simply as w and w(L), respectively.
3 Boundary control design


The control objective is to suppress the vibration of the multi-span beam system governed by PDE (5) and ODEs (8), which is to force the beam’s displacement 
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where
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where 
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 is a positive control gain.
Differentiating 
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 with respect to time, and multiplying that with 
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 and then substituting equation (8), the following equation is obtained


[image: image41.wmf]1112

2122

()()

()()

xxtxxt

xxtxxt

wLwL

wLwL

a

-

éù

=-+

êú

-

ëû

J

ξ

Jzu

&






(16)
By considering the Lyapunov function which is given by equation (19), the model-based boundary control input vector of the multi-span beam system is proposed as
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(17)
where Kp and Ki are positive definite diagonal control gain matrixes.
Then the closed-loop dynamics of the multi-span beam system can be obtained as follows:
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In fact, (18) is a set of linear differential equations, and the solution of (18) can be expressed as 
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 where the decreasing rate 
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 depends on the control gain matrix Kp and Ki. Then it is easy to choose the control parameters Kp and Ki to achieve a suitable control performance and control effort.

4 Stability analysis
In this section, the closed-loop stability of the multi-span system is analysed by using Lyapunov’s direct method. For the convenience of the stability analysis, the following properties are presented.

Property 1 (De Queiroz, 2000): If the potential energy of the system given in (2) is bounded
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Property 2 (De Queiroz, 2000): If the kinetic energy of the system given in (1) is bounded
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To prove the stability of the multi-span system, the Lyapunov functional candidate is defined as
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where 
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If control gain kp is selected to satisfy the following condition
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it is obvious that Lyapunov functional candidate given by (19) is positive-definite.
Differentiating Lyapunov functional candidate (19) with respect to time and using the closed-loop dynamics of the multi-span system (18), one obtains
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where 
[image: image63.wmf]i1

1

p1

/20

0/1/2

kJ

kJ

éù

=

êú

-

ëû

Q

,
[image: image64.wmf]i2

2

p2

/20

0/1/2

kJ

kJ

éù

=

êú

-

ëû

Q

.  It is easy to see that matrixes 
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Considering the first term of (23)
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and using (5), then one derives
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After integrating the above by parts and using boundary condition (6), then it becomes
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Differentiating (2) with respect to time and substituting (26) into that, then
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where boundary condition (7) has been used.
It should be noted that 
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, as the rigid actuators’ size is small and can be neglected.
Finally, upon the application of equations (13)-(15), equation (27) can be rewritten as
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where 
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Substituting (28) into (23), equation (29) can be obtained:
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It is clear that 
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where 
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 are positive constants. From (19) and (30), it can be seen that the system’s total energy is either decreasing or constant, and then the closed-loop system is considered to be stable Slotine and Li, 1991()
. It should be noticed that only when 
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is guaranteed and the closed-loop system is asymptotically stable. However，if 
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 are zero, actually the vibration of the system is already suppressed. So asymptotic stability is actually achieved by using the proposed control strategy.
Remark 2: From (19) and (30), it can be stated that V(t) is bounded 
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. From the aforementioned rationale, it can be seen that all internal signals (wxxand wxt) involved in the control input in (17) are bounded 
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Remark 3: The Lyapunov-based boundary control design is to find a Lyapunov function candidate and propose a suitable control input, and then analyse the stability of the closed-loop system. However, the Lyapunov function may not be unique for the system, so often an iterative process to find the Lyapunov function and control input is used De Queiroz, 2000()
. Sometimes people give the Lyapunov function first to design the controller. Sometimes people determine a suitable controller in simulation or experimentation, and then try to establish a Lyapunov function to prove the stability of the closed loop system.
5 Numerical Simulations

In this section, the performance of the boundary control of a multi-span beam system is demonstrated by numerical simulation of a 3-span beam, which is believed to sufficiently validate the proposed control strategy for vibration of a beam with any number of spans. The modal expansion method is used in the simulation instead of the finite-difference method or the finite element method, as it is much simpler to solve the moving mass problem by the analytical method of modal expansion. The multi-span beam is treated as a one-span beam supported with very high-stiffness linear springs at the intermediate supports, as illustrated in Fig. 2. The support springs k are high enough so that the transverse displacements at the supports are effectively zero. In this regard, the model of the multi-span beam under a moving mass can be described as:
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(31)
where c is the damping of the beam, u is the mass’ travelling speed which is considered constant in this paper, and v is the vertical displacement of the moving mass m and when there is no separation between the mass and the beam, 
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.  is the Dirac delta function. By using modal expansion, equation (31) can be express as
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where 
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 is the beam’s mode shape vector, 
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 is the location of the ith actuator, 
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 is the additional moment introduced by the inertia of the ith actuator, 
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 is the support force given by the ith spring, and 
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is the vector of the modal coordinates. The time-invariant terms which depend on the properties of the beam can be expressed as 
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and the time dependent terms introduced by the moving mass are
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The PDE in (31) in the physical coordinates is now transformed to a matrix ODE (32) in the modal coordinates. More details about the model of the moving mass system can be found in Ouyang (2011)
.  In the simulation, the first 5 vibration modes are considered. The parameters of the multi-span beam system are listed in Table1.
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Fig. 2. The multi-span beam with high stiffness linear springs as the supports.

Table 1. Parameters of the multi-span beam system
	Parameter
	Description
	value

	EI
	Flexural rigidity
	3.66Nm2
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	Mass per unit length
	0.22kg/m

	J1
	Inertia of the first actuator
	0.1kgm2

	J2
	Inertia of the second actuator
	0.1kgm2

	L1
	Length of the first span
	0.333m

	L2-L1
	Length of the second span
	0.333m

	L
	Length of beam
	1m

	k
	Stiffness of the support spring
	100000N/m

	c
	The damping of the beam
	0.001


Case 1:Impulse excitation

In this case, a rectangular pulse of intensity of 5Nm lasting for a short time interval of 0.1s is applied, which is meant to represent an ideal impulse. This impulse acts at the midpoint of the second span. The impulsive excitation starts at 0.1s. The parameters of the proposed controller are set as 
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. These gains satisfy equation (30) and thus guarantee an asymptotically stable system. The rest of this section aims to show through numerical simulation that these gains indeed lead to effective vibration suppression. 
The deflections of the beam at different positions are given in Fig. 3. Comparing the simulation results, it can be observed that the vibration of the multi-span beam system can be suppressed greatly, which indicates that the proposed boundary control is able to stabilise the multi-span beam system. The corresponding boundary control inputs 
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 and 
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 are shown in Fig. 4.     
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Fig. 3. Comparison of the deflections of the beam under the rectangular impulse.
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Fig. 4. The required control torques of the proposed control under the rectangular impulse.

Case 2:A single movingmass excitation

The vibration of the multi-span beam system under a moving mass is studied in this case. The moving mass is 1.2kg, and its velocity is 0.8 m/s. For comparison, a standard damping control law is also simulated and given by 
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where 
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k

 is the positive control gain, and is set as 
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k

=50 in this case.

The comparison of deflections of the multi-span beam under a moving mass at the moving coordinate is shown in Fig. 5 (the vertical dotted lines denote the intermediate supports of the multi-span beam).  One can see that while both the proposed boundary control and damping control can reduce the deflection of the multi-span beam under a moving mass, the proposed control clearly exhibits a better performance. The deflection in the second span is smaller than the other spans, because there are actuators at both ends of the second span, while there is one actuator at only one end of the first span and the third span. The other end of the first span and the third span is simple supported and does not have an actuator. The time history of the deflections of the multi-span beam is given in Fig. 6, which also shows that the proposed control gives the smallest deflection. The corresponding boundary control inputs 
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 and 
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 of the proposed control and the damping control are compared in Fig. 7. It can be seen that although the magnitudes in the control torques in both control strategies are similar, the proposed boundary control has a better performance.         
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Fig. 5. Comparison of the deflections of the multi-span beam under a moving mass at the moving coordinate.
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Fig. 6. Time history of the deflections of the multi-span beam under a moving mass.
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Fig. 7. Comparison of the required control torques under a moving mass.
Case 3: a two-moving mass excitation

In this case, two moving masses are considered: the second mass gets onto the beam just as the first mass leaves the beam. Both moving masses are 1.2kg, and their velocity is 2.5 m/s. The parameters of the proposed controller are the same as in the previous case. The control performance is shown in Fig. 8. It can be seen that the deflection range of the multi-span beam at the second moving coordinate is quite different from that at the first moving coordinate when there is no control: the former is greater than the latter, which indicates that excitation of a bridge as a result of traffic flow would cause its deflection to increase. However, it is founded that the same vibration level of the multi-span beam at both moving coordinates is obtained when the proposed boundary control is applied. The same conclusion can be made about the time history of the mid-span deflections of the multi-span beam, as shown in Fig. 9. The required control torques of the proposed control in this case are given in Fig. 10. From this case, it can be seen that a good control performance is achieved by the proposed control method while there is no requirement of prior knowledge of the moving mass. 

Fig. 5 indicates that the proposed control has a better performance than a simple damping control. Fig. 8 shows that the performances of the proposed control and the damping control are similar. It can be concluded that overall it seems that the proposed control works better than damping control in low speed range. The main reason is that damping is more effective in dealing with high velocity vibration (but ineffective when velocity is low).
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Fig. 8. Comparison of the deflections of the multi-span beam under two moving masses at moving coordinates.
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Fig. 9. Time history of the deflections of the multi-span beam under two moving masses.
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Fig. 10. The required control torques of the proposed control under two moving masses.

6 Conclusions

This paper addresses the vibration control problem of a multi-span beam under moving masses, whose background includes real applications such as vehicle-bridge interaction. The dynamic model of a multi-span beam system described by a partial differential equation (PDE) and ordinary differential equations (ODEs) is derived from Hamilton’s principle. The boundary control strategy, which directly tackles the hybrid PDE-ODEs model, is designed with the objective of suppressing the vibration. The stability of the closed-loop system is guaranteed by Lyapunov’s direct method. The main advantages of the proposed boundary control are that it is designed on the basis of the original PDE-ODEs model with no need of the finite element or finite difference discretisation of the system, and thus the spill-over problem is avoided. It also has the convenience of easy installation of sensors and actuators in real applications, compared with the in-domain control method. Three external excitations including a rectangular impulse, a moving mass and two moving masses are tested in the simulation and they serve to validate the proposed control strategy. If the vibration excited by these can be contained then vibration by other types of excitations should be. It is shown that the proposed boundary controls can significantly reduce the vibration of the multi-span beam subject to the external excitations. Moreover, prior knowledge of the moving mass is not used in the design of the proposed controller, which is convenient in practical applications.
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