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Abstract
[bookmark: OLE_LINK3][bookmark: OLE_LINK14]This paper studies wave propagation in fluid-conveying single-walled carbon nanotube (SWCNT) under temperature and magnetic fields. The SWCNT is modelled as a Timoshenko beam based on the theory of nonlocal elasticity, where the nano-scale effects are only included in bending moment and shear force through a nonlocal parameter. The governing equations of motion are derived based on nonlocal Timoshenko beam theory. Wave analysis is carried out to get the equations of the dispersion characteristics of wave propagation. Numerical results confirm the validity of present model by comparing the results in reduced cases with those reported in the published literature. The dispersion curves of wave propagation show that the initial stress plays a very important role on the shear and flexural frequencies of fluid-conveying SWCNT. Meanwhile, the influences of the nonlocal parameter, fluid velocity, flow density, temperature change and magnetic field on the critical stress of fluid-conveying SWCNT are discussed. This study may be useful for the design of smart nano-devices for delivery of drugs to cells, carrying gases, and other applications of nano-beam devices.
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1. Introduction 
Owing to their tremendous mechanical and physical properties, carbon nanotubes (CNTs) have received considerable attention from engineers and researchers [1]. With the advancement of the nano-technology, CNTs are now one of the most promising components in nano-electromechanical systems (NEMS) [2, 3]. As manufacturing methods improve, more and more carbon nano-devices [4-8] have come into use, such as nano-shafts, nano-gears, and nano-torsional paddle oscillators. Due to low weight and high frequency, CNTs have a wide range of applications in nano-sensors, nano-resonators and so on. The smaller a nano-resonator, the higher sensitivity it exhibits, which can be used to design gigahertz and terahertz devices for detection of atoms mass and molecules [9]. Because of their perfectly hollow cylindrical geometry and ultrahigh strength [10-13], CNTs have promising applications for gas storage [14], fluid transport, drug delivery, etc. Thus, the analysis of mechanical and physical properties of fluid-filled CNTs has become a subject of primary interest in recent research. In order to obtain a good understanding of fluid-filled CNTs and to design a new nano-device, it is very important to build accurate theoretical models and analyse for their properties (e.g. frequencies).
[bookmark: OLE_LINK1]The challenges of controlled experiments at nano-scale, and the time consuming nature of molecular dynamic (MD) simulations, make continuum mechanics modelling widely used to study the static and dynamic behaviour of CNTs. The results from continuum mechanics theories have been shown to be in good agreement with atomistic approach and other approaches [15, 16]. Although beam and shell theories have been applied to study these small nano-structures, they are found to be inadequate. Being scale free, and without the interatomic forces and other effects, the size-independent classical continuum theories cannot capture these effects. The theory of nonlocal elasticity, which overcomes those drawbacks of classical theory of elasticity, was first proposed and extensively investigated by Eringen [17, 18]. The theory of nonlocal elasticity assumes that the stress state at a given reference point is a function of the strain field at every point in a body. This is in accordance with the atomic theory of lattice dynamics and experimental observations on phonon dispersion. 
Since then, the theory of nonlocal elasticity has been widely applied to many problems involving CNTs, such as bending, buckling, vibration and wave propagation. Reddy [19] derived equations of motion of various beam theories of CNTs, including the Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam theories based on the nonlocal differential constitutive relations of Eringen; and he presented analytical solutions for bending, buckling and vibration. Ghavanloo and Fazelzadeh [20] studied flexural vibration of CNTs in viscous fluid; and they discussed the nonlocal effect on the vibration and instability of fluid-conveying CNTs. Narendar and Gopalakrishnan [21] took into account the effects of shear deformation and rotary inertia; they studied the terahertz wave propagation in fluid-conveying SWCNT, and their results showed that there were band gaps in both flexural and shear wave modes, once the nonlocal effect had been considered. Several authors have modified the theory of nonlocal elasticity to improve its validity. Kiani [22] established a nonlocal Rayleigh beam model for SWCNT conveying viscous fluids flow.
The unique properties of CNTs have provided an unprecedented opportunity for NEMS. NEMS devices may work in complex physical environments, such as in magnetic field, temperature field and so on. In fact, it has been shown both experimentally and theoretically that CNTs can work [3, 22-29] in extraordinarily high thermal and electrical conductivities. Murmu and Mccarthy [30, 31] studied the influence of longitudinal magnetic fields on vibration of DWCNTs based on a nonlocal approach. Benzair et al. [32] discussed the thermal effect on wave characteristics of SWCNT; in which the exact nonlocal Timoshenko beam solution was presented.
As mentioned in [3, 22-29], nano-structures often undergo complex physical environments. Due to thermal stress, surface effect, mismatch between the material properties of CNTs or initially external axial load, and so on, CNTs acting as basic elements of nano-structures are sometimes subjected to initial stress [33-40]. Heireche et al. [33] used a nonlocal beam theory to investigate sound wave propagation in SWCNT with initial axial loading; and they discussed the small scale (nonlocal) effect, transverse shear deformation and rotary inertia on wave characteristics. Considering the effect of van der Waals pressure, Chen et al. [34] applied Euler-Bernoulli beam theory to study wave propagation in multi-walled carbon nanotubes (MWCNTs). Song et al. [35] introduced a nonlocal theory of elasticity to study wave characteristic of SWCNT. Murmu and Adhikari [36] developed a nonlocal Euler-Bernoulli beam theory to study the vibration of initially pre-stressed coupled nanobeam systems; and their results showed that the pre-load affected the frequency. Cai and Wang [37]  investigated the influence of initial stress on the transverse wave propagation in MWCNTs using Timoshenko laminated beam models. Selim et al.[39] discussed wave propagation in CNTs under initial compressive stress based on Flügge shell equations of motion. After that work, Selim studied the effect of initial compression stresses on torsional vibration of SWCNT. Recently, He [40] took into account the nonlocal scale effect on wave characteristic of SWCNT with initial stress; his results showed that the group velocity of dilatation wave at higher frequency was sensitive to initial stress.
Although a plenty of studies have been done to investigate dynamic behaviour (including wave propagation) of CNTs, there is little research into fluid-conveying CNTs. To design a nano-pipe, it is crucial to know the mechanical properties of fluid-filled CNTs, because the transport characteristics are sensitive to vibrational mode of CNTs [13].
[bookmark: OLE_LINK12]A literature survey on the subject shows that there are few studies that take into account the important effect of fluid flow when investigating the free vibration characteristics of CNTs with initial stress. Herein, the object of the present work is to consider both the influences of fluid flow and initial stress on CNTs, and to study wave propagation in SWCNT modelled as a Timoshenko beam. Meanwhile, the effects of thermal and magnetic fields on the critical stress are analysed. The paper is organized as follows: in section 2, the theory of nonlocal elasticity is explained. In section 3, the governing equations of motion are derived based on nonlocal Timoshenko beam theory, and wave analysis is performed in section 4. In section 5, numerical analysis is carried out and the obtained numerical results are discussed. Concluding remarks are given in Section 6.
2. Nonlocal Timoshenko theory


For a one-dimensional homogeneous, linear elastic material without body force, the nonlocal stress tensor  at a point  is defined as [41]

                                                                           (1)















where  is the classic, macroscopic stress tensor at point ,  is the nonlocal modulus or attenuation function incorporating the constitutive equations of the nonlocal effects at the reference points  produced by the local strain at the source point ,  is the Euclidean distance between  and ,  is the fourth-order elasticity tensor and  denotes the ‘double-dot product’, is the strain tensor,  is defined as small scale factor where  is a material constant which could be obtained by experiment or through other continuum models,  is an internal characteristic length (e.g., lattice parameter, C-C bond length, granular distance, etc. ), and  is an external characteristic length (e.g., crack length, wave length, etc.). As it is difficult to get the analytical solution of Eq. (1), where a spatial integral is involved, a simplified differential equation is used to replace the integral constitutive equation as follows [19]

                                                                                                                      (2)

where  is the Laplace operator. The one-dimensional nonlocal constitutive relations are defined as [42]

                                                                                                                               (3)






where ,, and are the axial strain (along the -axis), shear strain, Young’s modulus and shear modulus, respectively. The classical (local) constitutive relations are obtained by setting .
3. Equations of motion based on nonlocal Timoshenko beam model
Fig.1 shows a fluid-conveying SWCNT modelled as a Timoshenko beam, where the shear center and the centroid are coincident. 

Figure 1 Geometry of fluid-conveying SWCNT
According to Timoshenko beam theory [43, 44], the strains are given by

                                                                                                                                                (4)








where and  are the axial strain (along the -axis) and shear strain, respectively.  and  are the axial and transverse displacements in terms of the spatial coordinate  and time  at the neutral axis of the beam, and  is the rotation of the cross-section.
The equations of motion of a Timoshenko beam can be expressed as [45]

                    (5a)

                                                                                                                     (5b)









where  is the cross sectional area, is the mass density, and  is the second moment of the area of the cross section of SWCNT.  is the induced axial thermal force.  is the magnetic field permeability, and  is the magnetic flux vector component in the  direction. Herein, it is assumed that the magnetic permeability of SWCNT is equal to the magnetic permeability of the surrounding medium.  is the initial axial force.  is either -1 (in tension) or 1 (in compression).
The initial axial force is

                                                                                                                                                              (6)

where  is the initial axial stress of nano-beam, which is always positive .
The bending moment and transverse shear force are defined as following

                                                                                                                        (7)

According to the thermal theory of elasticity,  for a beam constrained at two ends is [46]

[bookmark: OLE_LINK6]                                                                                                                                 (8)




where is the Poisson’s ratio, is the coefficient of the thermal expansion in the  direction and represents the temperature change over the length of the beam.
Using Eqs. (3-4) and (6), the nonlocal Timoshenko constitutive relations are expressed as

                                                                                                             (9-a)

                                                                                                     (9-b)

where is the shear correction factor, depending on the shape of the cross-section of beam.
Substituting Eqs. (5-8) into Eqs. (9a-9c), the governing equations of fluid-conveying SWCNT subjected to magnetic and temperature fields with initial stress can be obtained as

                             (10-a)

                                              (10-b)                           
[bookmark: OLE_LINK10]4. Wave analysis 
Harmonic waves in an infinitely long beam can be given by [47, 48],

                                                       (11)




[bookmark: OLE_LINK11]where  is the amplitude of the transverse wave , is the amplitude of the rotation of the cross section of the nano-beam due to bending deformation of SWCNT, and  is the excitation frequency; and .
Substitution of Eq. (11) into Eqs. (10a-10b) leads to the following two equations

            (12a)

                                    (12b) 



Multiplying each side of the above two equations with   and, respectively, and finally integrating the resultant equations over the domain. Eqs. (12a-12b) can be expressed as 

[bookmark: OLE_LINK8][bookmark: OLE_LINK13]             (13a)

    (13b)                 
Eqs. (13a-13b) can be rewritten in the matrix form

                                                                                                                                               (14)

where ,

.

By setting the determinant of the coefficient matrix  equal to zero, the characteristic equation is obtained as follows

                                                                                                                     (15)
where



Neglecting the effect of initial stress on the vibration of carbon nanotubes, and letting, the critical fluid velocity can be easily obtained as

                                 (16)
Introducing a dimensionless initial stress

                                                                                                                                                  (17)
Defining new variables, 

                                                                                                                             (18)
As reported in [49], there would be at most two wave modes for the vibration of single-Timoshenko-beam model. The wave model with higher phase velocity is related to shear wave, while the wave model with lower phase velocity is related to flexural wave. Thus, the solutions for the frequencies with initial stress can be obtained

[bookmark: OLE_LINK4]                                                                                                                   (19)
It must be said that the value of vibration frequency should be positive. Hence, there should be some conditions the existence of solutions of Eq. (19), which are.

                                                                                                                      (20)






From Eq.(15) and Eq.(18), it can be seen that when the nano-beam is subjected to initial tensile stress,   and  are positive at subcritical speeds, so there are two wave speeds. However, when the nano-beam is subjected to initial compressive stress,   and  depend on the value of the initial stress. The critical initial stresses are the lowest initial stresses only above which wave can propagate. They can be obtained (from   and  being zero) as                               

                                       (21)

                                        (22)
If the magnetic and temperature fields are neglected, and there is no fluid in the nanotube, the present model reduce to the same governing equations of motion in [33].
5. Numerical Results and Discussions
In the following section, some numerical examples are presented. Based on the formulations obtained above, the wave properties of fluid-conveying SWCNT are analysed. 
5.1 Parameters used


The material and geometric properties of SWCNT are given in Table 1 and Table 2 [30, 49] and the length of nanotubes is 50 nm. The shear modulus is calculated as.
Table 1. Material and geometry properties Ⅰ
	

	

	

	

	

	

	

	


	

	

	

	

	

	

	

	




Table 2. Material and geometry properties Ⅱ
	

	

	

	

	


	

	

	

	

	


	

	

	

	

	







[bookmark: OLE_LINK5]As stated in [21], a conservative estimate of the nonlocal parameter was  for SWCNT if the measured frequency is assessed to be greater than 10 THz. Reference [21] discussed terahertz wave characteristics of SWCNT. It is thought that the nonlocal parameter range of is still valid. In this manuscript, terahertz wave propagation in fluid-conveying SWCNT is studied and hence the value of the nonlocal parameter  is taken to range from 0 to 2.0 nm.

5.2 Comparison 









In order to validate the formulations of the present model, a comparison is made with the results of the well-established model by Heireche et al in [47], in which there is no fluid in the nanotube. Fig. 2 shows the differences in the critical stress of SWCNT based on Heireche’s model and the present model. Except the small scale (nonlocal) effect, there is no other effect on SWCNT in this example, as represented by. It can be seen that the critical stress of both Heireche’s model and the present model with fluid flow decreases with the increase of nonlocal parameter, and the trend of the critical stress  is similar to that of the critical stress, which means that dynamical properties, such as frequency, phase velocity etc., of nanotubes based on classical beam theories are over estimated. The nonlocal parameter has a ‘‘softening’ effect [50], as the internal and external characteristics lengths, such as distance between the C-C bonds, wave length and so on, are taken into account. Especially at a higher mode number , the nonlocal effect on the critical stress is significant and cannot be ignored. Meanwhile, as the mode number  increases, the values of the critical stress  and  decrease, which can be explained in Eqs. (21-22). The similar trend of critical stresses and the same governing equations of motion of SWCNT of the present model in the reduced case as that of Heireche’s model, confirm the validity and accuracy of the present model.


In addition, it is very interesting to note that critical stress  of the present model is greater than that of Heireche’s model and critical stress  of the present model is smaller than that of Heireche’s model. From the numerical results of Fig. 2, it is easy to find that the fluid flow can affect the critical stress, and the fluid flow has been taken into account in the present model,

Figure 2 Comparison the critical stresses as a function of the vibration mode with and without fluid
5.3 Effects of fluid velocity and density







In order to highlight the effect of fluid flow on the critical stresses of SWCNT, in this subsection, the influences of the fluid velocity and density on the critical stresses are studied using Eqs. (21-22) proposed in this paper.  Herein, only the nonlocal effect has been taken into account. Fig.3 depicts the critical stresses as a function of the vibration mode of SWCNT for different values of fluid velocity. It can be clearly seen that the fluid velocity has a smaller influence on the critical stress of fluid-conveying SWCNT .Compared with Heireche’s model, without fluid flow in SWCNT, the fluid flow has a strong effect on critical stress  at a lower vibrational modes, i.e., . However, the influences of fluid flow on critical stress of SWCNT are greater at higher vibrational modes, i.e.,. As the values of fluid velocity increase, the values of critical stress  decrease, which is opposite to those of critical stress.






In Fig.4, the effect of fluid density at V=1000 m/s with the small effect of 1.0 nm on the critical stresses of SWCNT is shown.  It can be observed from Fig. 4 that with an increase of the flow density, the values of critical stressincrease, and the values of critical stress  decrease. Similar phenomena like those in Fig.3 can be found in Fig.4 where the fluid density is shown to have a greater influence on critical stress  at a lower vibrational modes, i.e., , and critical stress of SWCNT at higher vibrational modes, i.e., .

Figure 3 Critical stresses for different values of flow velocity with the small effect

[bookmark: OLE_LINK17]Figure 4 Critical stresses for different values of flow density with the small effect
5.4 Temperature Effects on the critical initial stresses



To see how temperature change affects the critical stresses of fluid-conveying SWCNTs, the critical stresses are shown in Fig. 5, with the scale coefficient nm, and the fluid velocity at 1000 m/s, as illustrated in Fig.5 (where the coefficient of thermal expansion is K-1, implying the SWCNT is subjected to a low or room temperature field). It can be found that the critical stresses increase with the increase of temperature change at the same fluid velocity. This means that the nano-beam will be stiffer when it works under the low or room field [32, 46]. It can be found in Eqs. (21-22), and these two equations show that the critical stresses can be affected by the temperature change represented by. 
Meanwhile, it also can be found that the critical stresses decrease if the fluid velocity increases, which means that the fluid flow can make the nanotube more flexible [10, 12].

Figure 5 Critical stresses as a function of fluid velocity for different values of temperature with the small effect
5.5 Effect of longitudinal magnetic field 




Another interesting study is carried out to investigate the influence of the longitudinal magnetic field on the critical stresses of fluid-conveying SWCNTs. The parameters used here are: nm,  m/s, K-1 and  K. The results are shown in Fig. 6. As can be seen from this figure, the longitudinal magnetic field has a significant effect on the critical stresses. At the same fluid velocity, the greater the magnetic flux, the greater the critical stresses, implying that the longitudinal magnetic field flux makes the nanotube stiffer [30]. In addition, with the increase of fluid velocity, the critical stresses decrease a similar conclusion from Fig. 5, which can be explained in Eqs. (21-22).

Figure 6 Critical stresses as a function of fluid velocity for different values of magnetic field with the small effect
5.6 Initial stress effects on the frequencies of fluid-conveying SWCNT






In this subsection, the effect of initial stress on frequencies of SWCNTs is studied. The dispersion curves are plotted in Figs. 7 and 8. Fig.7 shows the frequencies as a function of fluid velocity, including the effects of the small effect, magnetic and temperature fields, in other words, nm, K-1,  K and A/m. It is clearly noticed in Fig.7 that as the critical stress increases, the frequencies of shear waves and flexural waves of fluid-conveying SWCNT decrease, which is a similar phenomenon reported in [35, 47] ; meanwhile, with the increase of fluid velocity, the frequencies of shear waves and flexural waves decrease, implying that the fluid can make nanotube more flexible. Furthermore, it is very interesting to find that the flexural frequency reduces to zero at the dimensionless initial stress when the fluid velocity is 800 m/s. Herein, 800 m/s is the critical flow velocity of the system at the dimensionless initial stress, which can be found in Eq. (22). At this critical flow speed, the frequency becomes zero and the nanotube becomes unstable. A similar phenomenon was reported before in [25].






Fig. 8 presents the shear and flexural frequencies of fluid-conveying SWCNT as a function of the vibrational mode. nm,  m/s,  K-1,  K and A/m are taken. As seen from Fig. 8, the shear and flexural frequencies increase with the increase of the vibrational mode, though the vibrational mode has a smaller influence on the shear frequency, which can be explained in Eqs. (21-22). In addition, with an increase of the dimensionless initial stress (in compression), both the shear frequency and the flexural frequency decrease [37]. This can be explained in Eqs. (21-22).

Figure 7 Frequencies as a function of fluid velocity for different values of initial stress 

Figure 8 Frequencies as a function of the vibrational mode for different values of initial stress
6. Conclusions
[bookmark: _GoBack]The main objective of the present study is to establish a theoretical model for wave propagation in a fluid-conveying SWCNT, which is subjected to temperature and magnetic fields with an initial axial stress, based on Timoshenko beam theory. The small scale effect, representing lattice spacing between individual atoms, is found to have a significant influence on the mechanical properties and dynamical behaviour of CNTs. The effects of the fluid velocity and density, the temperature and longitudinal magnetic fields are investigated. The curves from Figs.2-6 obtained from numerical simulation reveal that the above effects play a very important role on the critical stress of fluid-conveying SWCNTs. Meanwhile, with the increase of the critical stress, both the shear and flexural frequencies decrease; the nonlocal parameter can soften a nanotube, and temperature change in low or room temperature and magnetic flux stiffen fluid-conveying SWCNTs. The results obtained here may be useful for designing high-sensitivity and high-frequency nano-scale devices.
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