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Abstract:

An experimental and numerical study of friction-induced vibration and noise of a system composed of an elastic ball sliding over a groove-textured surface was performed. The experimental results showed that the impact between the ball and the edges of the grooves may significantly suppress the generation of high frequency components of acceleration and reduce the friction noise. Groove-textured surfaces with a specific dimensional parameter showed a good potential in reducing squeal. To model and understand this noise phenomenon, both the complex eigenvalue and dynamic transient analysis were performed. The dynamic transient analysis for the cases of groove-textured surface with/without filleted edges validated the role of the impact between the ball and the groove edges. Furthermore, a self-excited vibration model with three degrees of freedom was proposed to capture the basic features of the friction system. A small contact angle between the ball and the groove edges, corresponding to the relatively small groove width used in this study, would not cause any instability of the system.
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1. Introduction

When two bodies are in sliding contact with friction, friction-induced vibrations can occur. These vibrations generated by friction are responsible for different noises [1]. Friction noise has been classified into two categories, in relation to the frequency of noise occurrence: (a) low frequency noise, usually termed chatter; (b) high frequency noise (usually＞1000 Hz), called squeal [1-4]. Although no precise definition of chatter and squeal has gained complete acceptance, it is generally agreed that squeal is a sustained, high frequency noise, which is considered a more serious problem and sound pollution by modern industry and the general public compared with low frequency chatter.

Friction noise has been widely studied in the past, Kinkaid et al. [1], Ibrahim [2] and Papinniemi et al. [3] presented a comprehensive review of vibration caused by friction. Akay [4] gave an overview of friction acoustics. Up to present, several possible mechanisms of squeal generation were reported in the literature [5-11] and six of them are briefly commented on here. Mills [5] showed that friction-induced instabilities could occur when the friction coefficient decreased with relative velocity. This hypothesis attributed unstable friction-induced vibration to a stick–slip phenomenon. Spurr [6] put forward the sprag-slip model and highlighted the importance of contact kinematics in the instability condition in terms of the angle of incidence at contact with a constant friction coefficient. North [7] showed that friction-induced vibration was due to coalescence of two natural frequencies of the system. Rhee et al. [8] hypothesized that squeal was attributed to an effect of “local hammering” between the contact surfaces which excited a mode of the structure. Ouyang et al. [9] put forward an analytical-numerical combined approach for analysing disc brake vibration and squeal, and took the disc brake vibration and squeal as a moving load problem. Chen et al. [10] reported that the time delay between the dynamic normal and friction forces was an excitation source, which provided the energy for the friction system to initiate or sustain squealing vibration. However, it may be concluded that there is no single theory that can explain all squeal phenomena.
Generation of squeal is known to be influenced by many factors, such as stiffness and damping of a friction system, contact conditions and friction parameters, etc. Among them, surface topography is considered to play a key role in the generation of squeal [1, 12-13]. The influence of surface topography on the characteristic of squeal noise has been widely studied in the last decades [14-22]. Massi et al. [14] investigated brake squeal by using experimental tribological analysis, they found that there were several cracks and material exfoliations on the surface layer of the pad material after squeal events, while the contact surfaces without squeal after braking were smooth and compact. Hammerström et al. [15] found that grit blasting of a disc had significant influence on squeal propensity, and a spiral shaped modiﬁcation of the brake disc surface topography tended to reduce squeal strongly. Eriksson et al. [16-17] investigated the relationship between brake pad surface topography and the occurrence of squeal noise and they found that the size of surface plateaus had a great influence on generating squeal noise, and the pads with many small contact plateaus tended to generate strong squeal noise than pads with relatively large plateaus. Eadie et al. [18] found that squeal could be avoided by change of the friction characteristics using a ‘third body’. Sherif et al. [19] investigated the effect of surface topography on squeal generation and proposed the concept of ‘squeal index’ to describe the establishment and vanishing of squeal. Rusli and Okuma [20] suggested that unstable mode coupling occurred and squeal was generated when the structure’s dynamic parameters and the contact parameters made the stiffness matrix asymmetric. Vayssière et al. [21] found that the relative angle θ between the surfaces of the disk and pin had a significant effect on squeal instability. 
The above studies showed that the microscopic topography of contact surface had a strong influence on the generation of squeal. However, there remain questions on why squeal is generated in certain topographical conditions but vanishes in other conditions, and how surface irregularities affect the generation of squeal, considering the random distribution of asperities and wear debris. There is very limited information in the literature on the physical background of this phenomenon. Moreover, the complicated frictional contact surface with many uncertain factors made it difficult to ensure the repeatability of experiments. 
Recently, finite element analysis has been widely used in numerical studies of friction-induced noise. This method plays an important role in understanding friction noise, which can also be used to interpret test results, prepare for upfront DoE (design of experiment), simulate structural modifications and explore innovative ideas [23-25]. There are typically two different analysis methodologies available to predict friction-induced noise using the finite element method, which are complex eigenvalue analysis and dynamic transient analysis [26]. The linear complex eigenvalue analysis permits detection of the stability limit of the system, by analysing its eigenvalues and eigenvectors around the steady sliding state [27-30]. Liles [27] explained that the complex eigenvalue analysis allowed all unstable modes to be found in one run for one set of operating conditions. AbuBakar and Ouyang [28] studied both the wear of the friction material and brake squeal by experimental study and complex eigenvalue analysis, and found that the unstable frequency predicted in the stability analysis had a good agreement with the squeal frequency recorded in the experiment. Fan et al. [29] studied squeal generation on ceramic hip endoprosthesis by using the complex eigenvalue method, and they found that friction caused a self-excited vibration of the ceramic hip endoprosthesis when the friction coefficient was above a critical value. However, the non-linear effects of contact with friction are usually not negligible when instability occurs and thus to study the evolution of the vibration of the system during instability, the transient dynamic analysis that takes into account the non-linear aspect of contact with friction is preferred. This methodology allows determination of displacements, velocities, accelerations and the forces during system vibrations [31-33]. Nagy et al. [31] computed the variation of displacement of brake system in time domain by using dynamic transient analysis, and concluded that the relation between contact force and friction coefficient played an important role in squeal generation. Meziane et al. [32] showed that non-linear analysis could provide the complete spectrum of vibration which was important for estimating the acoustical behavior of the vibration that occurred under certain contact conditions. Recently, several researchers have performed both types of analyses in their numerical study of the friction-induced vibration and found that they were complementary. Massi et al [34] and AbuBakar et al. [35] used both the complex eigenvalue analysis and dynamic transient analysis to predict disc brake squeal. They found that the complex eigenvalue analysis permitted detection of the stability limit of the system, and dynamic transient analysis was able to predict true unstable frequencies (those found in experiments), on condition that the system model was correct. Therefore, complex eigenvalue analysis and dynamic transient analysis are complementary methods to study the generation of squeal.
In this work, the effect of surface topography on the characteristics of squeal noise was studied by using groove-textured surfaces with good geometric repeatability. An experimental study on the influence of groove-textured surface on friction noise properties in a ball-on-flat reciprocating sliding configuration was performed. Subsequently, a numerical study was conducted to simulate the experimental process, where the complex eigenvalue analysis was used to validate the model created by the finite element software (ABAQUS), and the dynamic transient analysis was used to investigate the evolution of squeal vibration in the time domain. The non-linear aspect of a frictional contact was taken into account to understand the physics behind the friction-induced unstable vibration. Based on both the experimental and numerical results, the effect of groove-textured surface on friction-induced vibration and noise was discussed. Moreover, a self-excited vibration model with three degrees of freedom was proposed to further investigate the effect of groove-textured surface on the friction-induced vibration and noise.
2.  Experimental procedure and numerical modeling
2.1 Experimental procedure
An experimental setup was designed for squeal reproduction and analysis. It consists of a sphere reciprocating sliding on a flat surface, housed in a tribological testing system and attached to a signal acquisition and analysis system, as shown in Fig. 1. A flat specimen (1) is fixed to the lower holder (2) which is mounted on the reciprocating sliding device (3). A ball specimen (4) is fixed to the upper holder (5) which is held by chuck with a strain-gauge force sensor (6) attached. To start the test, the moving stage (7) moves down slowly to allow the upper holder to go through the horizontal bracket (8), and then brings the ball into contact with the flat specimen with a constant normal compressive load. The upper holder is in close sliding fit with the horizontal bracket which connects to the mounting frame (9) through two piezoelectric force sensors (10). Then, the flat specimen is driven into reciprocating sliding against the ball specimen. A three-dimensional acceleration sensor (11) mounted on the upper holder measures the vibration of the friction system, and a microphone (12) located near the friction interface measures the noise signal. The friction force, vibration acceleration and noise signals are synchronously measured and analyzed during the tribological test. More information about the experimental details can be seen in [36].
The ball was a 10 mm diameter chromium steel ball bearing (AISI 52100, HV0.05 510 kg/mm2, E=210 GPa, ~0.02 μm in Ra). Compacted graphite iron (~3.5 wt % C, ~2.5 wt % Si and ~1.5 wt % Mn) with microhardness of HV0.03 240 kg/mm2 and elastic modulus (E) of 158 GPa was used as the flat specimen material. Several flat specimens were cut from the brake discs of a train to the size of 10 mm×10 mm×20 mm, and were polished to a surface roughness of approximately 0.04 μm Ra. Groove-textured surfaces with different groove widths of ~125 μm and ~250 μm, pitch ~500 μm and depth of ~100 μm were manufactured on the flat specimens by electromachining. The shape and parameters of the groove-textured surface are shown in Fig. 2. In addition, optical images of the groove-textured surfaces are presented to illustrate the external dimension, as shown in Fig. 3. Thereafter, abbreviation T-500-125 was used to represent the groove-textured surface having pitch of 500 μm and groove width of 125 μm, and T-500-250 having pitch of 500 μm and groove width of 250 μm.
The tribological parameters are as follows: normal load of 20 N, sliding displacement of 4 mm at frequency of 1 Hz, testing time of 1500 s corresponding to 1500 cycles. The normal force was detected by a strain-gauge force sensor, which is mounted on a servo controlled vertical carriage. Therefore, the normal load can well be kept constant at 20 N during the sliding and is not affected by the system deflection. The tests were conducted under atmospheric conditions with controlled relative humidity of 60%±10% RH and at room temperature of around 25 ℃. The surfaces of the ball and flat specimens were cleaned with acetone before testing, and were always changed for each test.
2.2. Numerical model
Fig. 4(a) shows the simplified finite element model of the experimental system presented in Fig. 1. The geometry of the numerical model was created according to the geometry of the experimental setup, which included a flat specimen (active specimen), a ball (passive specimen) and a ball holder. There is always frictional contact between the two specimens (passive and active). All the material parameters of the parts used in the numerical calculation reflect those of the real experimental setup. The load and boundary conditions of the finite element model are shown in Fig. 4(b): the bottom of the active specimen is fixed in the x- and y-directions, and the velocity boundary condition is applied on it in the z-direction. The normal load is applied on the top of the ball holder in the y-direction. All the constraint conditions were consistent with the real experimental setup except the part of threaded connection, which was simulated by a tie constraint.
3. Experimental results and discussion
Equivalent continuous A-weighted sound pressure level during each 100-s test duration was evaluated for the smooth surface and different groove-textured surfaces, as shown in Fig. 5. Any noise signal that had a dominant frequency of over 1 KHz and sound pressure level of above ~66 dB was taken as a squeal event [37], no squeal was found for any of the surfaces in the initial stage, considering that the background sound pressure level during testing is about 63-65 dB (Leq). With the increase of testing time, the squeal level of the specimens with a smooth surface and T-500-125 groove-textured surface significantly increased. However, no squeal can be detected on the specimen of T-500-250 groove-textured surface throughout the whole test, which showed that a certain surface texture had a great potential in squeal suppression.
Fig. 6 shows the time-frequency analysis of sound pressure throughout the test for the three surfaces. No high frequency squeal can be found at the beginning for all of the three surfaces. However, the smooth and T-500-125 surfaces generated loud noise after a certain number of cycles, and the squeal with a dominant frequency of 1538 Hz lasted to the whole test duration of 1500 s, as shown in Fig. 6(a, b). For the T-500-250 surface, no high frequency squeal can be found throughout the test, as shown in Fig. 6(c).
The time history records of friction force and accelerations were analyzed to further investigate the effect of groove-textured surface on the squeal generation. Fig. 7 shows the time history records of friction force and acceleration in the friction direction at different durations of 100 s to 101 s and 1499 s to 1500 s, which correspond to the initial stage without squeal generation and the steady stage in which squeal generation was steady, respectively. In the initial stage, no significant high-frequency fluctuations can be observed from the friction force and acceleration signals of any of the three surfaces. However, about 8 cycles of wave-like fluctuations can be found in the friction force curves for these two groove-textured surfaces within half a sliding cycle (one stroke), corresponding to the number of grooves within the sliding travel of 4 mm, suggesting that the friction force changed significantly when the ball slid across the grooves. 
In the steady stage, squeal was found to occur within half cycle for both the smooth surface and T-500-125 groove-textured surface, where both the friction force and acceleration signals showed visible continuous high-frequency fluctuations. In contrast, nearly no high-frequency fluctuations can be observed in the friction force and vibration acceleration signals of the T-500-250 groove-textured surface without squeal, and 8 cycles of wave-like fluctuations could still be observed within the half cycle of the friction force curve. This change of friction force is related to the change of friction contact conditions when the ball slides across the grooves. Therefore, the wave-like fluctuations of the friction force caused by ball sliding across the grooves is thought to play a crucial role in exciting and suppressing the generation of continuous high-frequency fluctuations of friction force and accelerations, and consequently the generation of squeal.
Observation of the worn surface morphologies was performed to further illustrate the dynamical behavior induced by ball sliding across the grooves and the resulting vibration and noise properties. For the smooth surface, in the beginning, the wear was mild and the friction coefficient was low, and no squeal could be found in this period. With the increase of sliding cycles, the wear increased significantly and wear morphologies became complicated, corresponding to a much higher friction coefficient, which caused the occurrence of growing vibration and the emission of squeal. For the T-500-125 and T-500-250 surfaces, in the beginning, the impact between the ball and the edges of the grooves was found to be able to significantly suppress the generation of high frequency components of acceleration and reduce the emission of squeal. However, the groove edges of T-500-125 were smoothed by repeated impact with increasing number of cycles (Fig. 8(a)), which resulted in the weakening and disappearance of impact between the ball and the edges of the grooves and consequently the occurrence of squeal. In contrast, the groove edges of the T-500-250 surface remained nearly unaffected despite wear (Fig. 8(b)), and the persistent impact between the ball and the edges of the grooves still could suppress the occurrence of squeal.

Moreover, the wear morphologies were observed by using SEM, as shown in Fig. 9. The groove width of T-500-125 was found to become smaller after the test (Fig. 9(a)), while that of the T-500-250 showed only smaller changes (Fig 9(b)). Observation of the edges of the grooves at a higher magnification reveals that the T-500-125 suffered much more severe impact deformation and detachment as compared with the T-500-250, as shown in Fig 9(c, d). The degradation mechanism of the edges can be described as a gradual process of reduction in materials due to repeated impact loading.
4. Validation of the finite element model
4.1 Complex eigenvalue analysis
Complex eigenvalue analysis was conducted to validate the finite element model, by comparing the dominant frequency of squeal between numerical study and experimental test. This numerical method computes the system’s complex eigenvalues in which friction causes asymmetric terms in the stiffness matrix. The real and imaginary parts of the complex eigenvalues are the decay rates and frequencies of the system, respectively. In order to perform the complex eigenvalue analysis using ABAQUS 6.10, the methodology of the complex eigenvalue analysis is described briefly. A complex eigenvalue problem is solved using the subspace projection method in ABAQUS, thus a natural frequency extraction analysis must be performed first in order to determine the projection bases [38]. The governing equation of the system is:
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 is the mass matrix, which is symmetric and usually positive definite. 
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 is the damping matrix, which can include friction-induced damping effects as well as material damping contribution. 
[image: image4.wmf][

]

K

 is the stiffness matrix, which is asymmetric due to friction. The eigenvalue equation of Eq. (1) can be written as follows:
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where 
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is the eigenvalue, and 
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 is the corresponding eigenvector. Because the eigenvalue extraction is performed at a deformed configuration, the stiffness matrix 
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 becomes a pure imaginary number, and the eigenvalue problem can be written as follows:
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where 
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 is a frequency of the system. This symmetric eigenvalue problem is solved using the subspace iteration eigen-solver. The next step is that the original matrices are projected in the subspace of real eigenvectors 
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Now the reduced eigenvalue problem is expressed in the following form:
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This problem is solved using the QZ method for a generalised unsymmetrical eigenvalue problem. Finally, the eigenvectors of the original system are recovered in the following manner:
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where 
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 is the approximation of the ith eigenvector of the original system. 
The general solution of Eq. (5) is:
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 is the ith eigenvalue of Eq. (5) and j is the imaginary unit. From Eq. (7), it is seen that when the real part of an eigenvalue is positive, the nodal displacement 
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 will increase with time, which means the vibration of the system is growing and the system will become unstable.
The effective damping ratio (ζ) is a parameter to measure the propensity of self-excited vibration. It is defined as [38]:
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If the effective damping ratio is negative, the system is unstable and has a tendency to radiate squeal. Hence, the complex eigenvalue analysis is the preferred method in the vibration and noise research community, and the complex eigenvalue analysis can provide rapid solutions of unstable vibration.
4.2 Complex eigenvalue analysis results and discussion
Since friction is the main cause of instability, which causes the stiffness matrix in Eq. (2) to become asymmetric, complex eigenvalue analysis has been undertaken to assess the stability under different friction coefficients [22]. In the complex eigenvalue analysis, the contact formulation was small sliding with a penalty method, and the friction formulation was the simple Coulomb’s law. Structural damping was ignored in complex eigenvalue analysis.  Spelsberg-Korspeter et al [39-40] analysed the non-linear equations of motion with time-periodic coefficients by using the Floquet theory in combination with normal form theory for the corresponding expansion of the Poincare’ map. Unlike their rotating disc which leads to time-periodic coefficients in the equations of motion, the present model under complex eigenvalue analysis has a finite size with only a few groove features, which does not lead to time-period coefficients in the equations of motion. As a result, the Floquet theory does not apply to the present model.
Fig. 10 shows the complex eigenvalues in the cases of the ball sliding on smooth and groove-textured surfaces, versus the friction coefficient (μ). In a certain range of friction coefficient, relatively higher friction coefficient value was found to tend to facilitate merging of two adjacent modes to form an unstable complex mode for both the smooth and groove-textured surfaces in the frequency domain considered (<10 kHz). For the smooth surface, a negative effective damping ratio appeared when the friction coefficient increased to 0.45, suggesting that the friction system has become unstable. The friction coefficient of 0.45 was found to be the critical value for the generation of unstable vibration at the dominant frequency of 2070 Hz. Whilst for the groove-textured surface two adjacent modal frequencies started to merge and formed a complex conjugate pair when the friction coefficient increased to 0.16, which indicated that the friction coefficient of 0.16 is the critical value for the generation of unstable vibration at the dominant frequency of 1563 Hz in this particular case. More information about the complex eigenvalue analysis results about groove-textured surface can be seen in [30]. 
In Fig. 10 the growth rates for the smooth surface increase monotonically while the growth rates for the T-500-125 groove-textured surface increase at first and then decay with increasing friction coefficient. To demonstrate this phenomenon, the mode coalescences of the ball on smooth/groove systems were illustrated in Fig. 11. For the smooth surface, two adjacent modal frequencies started to merge toward each other with increasing friction coefficient, which indicated that the system would generate unstable vibration, and the monotonical growth of the growth rates demonstrated that the system had a stronger tendency to generate unstable vibration. For the groove-textured surface, two adjacent modal frequencies started to merge toward each other, but consequently separated with each other with increasing friction coefficient. This suggested that the system had a strong tendency to generate unstable vibration at first, but consequently this tendency became weakened.
It is worth noting that the dominant unstable frequency value found by the complex eigenvalue analysis had a small discrepancy from the dominant frequency of squeal (about 1538 Hz) measured in the experimental test [36]. The discrepancy between the numerical and experimental results was probably due to the required simpliﬁcations and approximations necessary for the construction of the numerical model. Especially when the threaded connection was set to a tie constraint, it would lead to a relatively higher value of frequency for neglecting the flexibility at contact. The relatively higher dominant frequency for the smooth surface can mainly be attributed to its higher contact stiffness compared with the groove-textured surface. Overall, the numerical model created in this work can be used to reveal the effect of groove-textured surface on the friction vibration and noise.
5. Dynamic transient analysis and discussion
The aim of this section is to simulate the vibration behavior of the friction system in time domain by the explicit dynamic finite element code ABAQUS/Explicit, and to extend insight into the effect of groove-textured surface on friction-induced vibration and noise. This dynamic analysis procedure is based on the implementation of an explicit central-difference time integration rule together with the use of diagonal lumped mass matrices. This method is able to evaluate the normal and tangential contact stresses over the contact region and to determine whether the contact surfaces stick, slide or separate locally [35]. The friction between the ball and groove-textured surface can be fully considered in the analysis process.  
5.1 Finite element equation of dynamic transient analysis
In the process of dynamic transient analysis, the equation of motion is as follows [35]:
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At the beginning of the increment, accelerations are computed as follows:
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The velocity and the displacement of the body are expressed in the following equations:
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where superscripts 
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It can be found that the 
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 is very small. That is why the explicit dynamic transient analysis needs a long computing time. In this study, the stable time increment is set at 5×10-8 s.
5.2 Time domain results and discussion
For the transient analysis, the contact formulation was kinematic method and the sliding formulation was ﬁnite sliding. The time history of normal load and the velocity of the groove-textured surface were used for describing operating conditions of the finite element model, as shown in Fig. 12. In the first stage, a normal load was applied gradually until it reached a prescribed value of 
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=0.005 s, a sinusoidally varying velocity is applied to the groove-textured surface to make it slide. In the dynamic transient analysis, the element type used is C3D8R (8-node linear brick, reduced integration), the diameter of the wear scar on the ball counterface is about 500 μm which is close to the measured one [36], the refined contact areas on both the groove-textured surfaces and ball counterface are shown in Fig. 13. Table 1 lists the characteristics of the mesh. The contact formulation was finite sliding with the method of Lagrange multipliers. The friction formulation was a penalty method. In this study, a constant friction coefficient (μ) of 0.5 was set, which was obtained from experimental measurement. The observation point of the acceleration was located on the surface of the ball holder, which was the same as experimental study. Although the contact geometry and third body had been proved to have effect on squeal initiation, and introducing the third body or surface roughness in the finite element analysis can help us capture better in the stability analysis of squeal [28, 41], the main aim of this study is to investigate the effect of groove-textured surface on the squeal instability. The irregularities caused by the grooves on the contact surfaces could be considered macroscopic features, which are on a higher level as compared with the surface roughness or a third body. Therefore, the effect of surface roughness or a third body is not considered in this work. In addition, this analysis is performed in the absence of material damping and thermal effect.
Fig. 14 shows the simulation results of acceleration in the friction direction in time domain. A significant continuous high-frequency fluctuation with exponential growth was found to start and develop from 0.2 s to 0.35 s for the smooth surface, which was consistent with the evolution of squeal observed in the experimental measurement for the smooth surface, as shown in Fig. 7. This phenomenon indicates that the friction system became unstable and generated squeal in this duration. While for T-500-125 and T-500-250 groove-textured surfaces in this period of time, no continuous high-frequency fluctuation can be found in the numerical analysis. Instead, about 8 quasi-periodic oscillations in the vibration curve were observed, which was also in good agreement with the experimental results, confirming the dynamic behavior of the ball sliding across the grooves within the sliding travel.
By combing the results of experimental test and numerical simulation, it can be concluded that the groove-textured surface could significantly interrupt the continuous contact of the friction surfaces when the ball slid across the edges of the groove-textured surface. The impact between the ball and the edges may disrupt the self-excited vibration of the friction system, and thus suppress the generation of high frequency components of the acceleration, and finally significantly reduce the friction noise.
Considering the fact that the groove edges of T-500-125 were smoothed by repeated impacts with the increase of sliding cycles, which may result in the weakening and disappearance of impact between the ball and the edges of the grooves and consequently the occurrence of squeal, the groove edges of the T-500-125 surface were modified by introducing fillets, to simulate the case of the edges being smoothed. Accordingly, by comparing with the dynamic behavior of T-500-125 surface without fillets, it would be clear how the impacts between the ball counterface and the edges affect the self-excited vibration of the friction system and consequently the friction noise. Fig. 15 shows the finite element model of the groove-textured surface with a fillet radius of 20 μm. The value of the radius was determined by the experimental measurement of the edges after the testing time of 1500 s. In the transient analysis, the groove-textured surface moved along the direction as indicated by the arrow, and the ball relatively slid across 8 grooves with filleted edges. The simulation results of the vibration in time domain was shown in Fig. 16. A strong oscillation with exponential growth was found to start and develop over a period of time, suggesting that the friction system became unstable and generated squeal. 
To further investigate the phenomena that the suppression of high-frequency vibration may mainly be attributed to the impacts between the ball and the edges of the grooves. The frictional dissipation energies of smooth, T-500-125, and T-500-125 with fillet edges surfaces were calculated, as shown in Fig. 17. The frictional dissipation energy of the T-500-125 surface was found to increase each time when there was impact between the ball and the edges of the grooves. The energy loss during impact led to the system showing low tendency to generate unstable vibration. While for the smooth surface and T-500-125 with fillet edges, the frictional dissipation energy was so low that the system had enough energy to generate unstable vibration.
From the experimental test and numerical simulation results for T-500-125 groove-textured surface shown above, it was found that there was no squeal generation at the beginning of the experimental test (100 s to 101 s) (Fig. 7(c)) while there was significant squeal generation at the end of the test (1499 s to 1500 s) (Fig. 7(d)), corresponding to the situations of with/without impact between the edge of the groove-textured surface and the ball counterface, respectively. This phenomenon was supported by the numerical simulation results when the cases of groove-textured surface with/without fillet edge (Fig. 14(b) and Fig. 16) were compared. Therefore, it can be concluded that the existence of impact between the edge and the ball counterface may disrupt the self-excited vibration of the friction system and suppress the generation of squeal.
6. A three degrees-of-freedom system for ball sliding on groove-textured surface
It is generally acknowledged that the existence of irregularities on the contact surfaces will cause unstable friction behavior and consequent instability of a friction system [12, 14, 20, 21]. However, the existence of grooves in the authors’ previous studies was found to disrupt the self-excited vibration of the friction system and suppress squeal noise instead of causing the instability of friction system. To further investigate this phenomenon, a self-excited vibration model with three degrees of freedom was proposed, as shown in Fig. 18. This model is developed based on the minimal model of the mode coupling analysis by Hoffman [42]. It is meant to capture the basic features of the friction system under this investigation and explore what essential mathematical elements must be included, and is not intended to reproduce quantitatively the experimental results [43]. So the system parameters used in the simulation bear some resemblance to their true values but were not made to fit them. A groove-textured surface with constant velocity is pushed with a constant normal force Fn against a ball modelled as a point mass m1. The ball m1 is supported by two liner springs, whose stiffness coefficients are denoted by K1 and K2, and two viscous dampers whose coefficients are C1 and C2. Normal compressive load P is applied to the mass in the Y direction. The contact stiffness between the m1 and the edge of groove is modeled using a spring K3. Point O denotes the contact point. Fn and Ff represent the normal force and friction force, respectively, which are working at point O as depicted in Fig.18. To take into account sliding friction a Coulomb-type friction force Ff with a constant friction coefficient μ, is assumed. The inclined contact angle (θ) changes with the variation of the relative contact position between the ball and the groove-textured surface during vibration. According to this arrangement, this model can be used to study how the contact inclined angle influences the vibration and noise.
It is assumed that the mass of the groove-textured surface is much larger than mass m1 of the ball. Accordingly, the groove-textured surface does not show any significant change in displacement due to its large inertia in the Y direction. The friction force is approximated as 
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where 
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 represent the displacement of the ball in the Y direction. Fn and Ff can be expressed in terms of the contact spring’s deformation state as:


[image: image52.wmf]3112

(cossinsin)

n

Fkyxx

qqq

=´--

,                                   (17)


[image: image53.wmf]3112

(cossinsin)

f

Fkyxx

mqqq

=´--

.                                 (18)
Setting 
[image: image54.wmf]1

m

=
[image: image55.wmf]2

m

=1, 
[image: image56.wmf]1

k

=1, 
[image: image57.wmf]2

k

=2 and 
[image: image58.wmf]3

k

=3. The friction coefficient (
[image: image59.wmf]m

) is kept a constant value of 0.3, and the normal load (P) is 20 N. The damping of the system is neglected.

In this study, Simulink package of MATLAB is used to implement numerical simulations. In the Simulink simulation model, solver ode4 and integration time step of 0.0001 s are taken to perform the related simulations.
The simulation results of acceleration (scope 1) are given in Fig. 19. They showed the acceleration signals of the ball in the normal direction in the time domain, and the effect of the change of θ on squeal generation. The inclined contact angle was found to have a significant influence on the instability of system, and the system became unstable when it exceeded a certain magnitude. Fig. 20 shows a plot of the limit cycle amplitude versus the inclination angle θ. No considerable change in the acceleration amplitude was observed when the inclined contact angle was below 20 degrees, suggesting that the system was stable. However, the acceleration amplitude exhibited an increasing tendency when the inclined contact angle was increased to 30 degrees. The increasing tendency was found to become more significant at a higher angle of 60 degrees, which indicated that the system became unstable and squeal might occur. 
The simulation results above showed that the inclined contact angle had a significant effect on the generation of unstable vibration, and a lower angle would not cause the instability of friction system. The equation of the contact angle can be expressed as
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wR

q

=

, where w represents the width of groove, and a smaller groove width determines a lower inclined contact angle. Considering that the radius of the ball is much larger than the width of the groove in the experimental study, the small inclined contact angle between the ball and the groove would not cause any continuous strong impact and instability of the system during the sliding process. Therefore, the simulation results allow to exclude the variation of the contact (boundary) conditions as the origin of the system stability, supporting the hypothesis of the role of impact, i.e. to address the phenomenon that the impact would disrupt the self-excited vibration of the friction system and suppress squeal, instead of causing the instability of friction system.

7. Conclusions
In this study, an experimental study was performed to investigate the influence of groove-textured surface on friction noise properties, and a numerical study was consequently conducted to simulate the experimental process. From both the experimental and numerical results, conclusions can be made as follows:
(1) Groove-textured surfaces with a specific dimensional parameter (T-500-250) showed good potential in reducing and suppressing squeal in the experimental test, which may be mainly attributed to that the impact behavior between the ball and the edge of the groove-textured surface would disrupt the self-excited vibration of the friction system, and suppress the generation of high frequency components of the acceleration. No impact behavior can be found at the end of the test for T-500-125 groove-textured surface, which resulted in its significantly different squeal propensity compared with the T-500-250 groove-textured surface.
(2) The numerical model created in this work can be efficiently used to reveal the effect of groove-textured surface on the friction vibration and noise. The dynamic transient analysis for the cases of groove-textured surface with/without filleted edges further validates the role of impact between the ball and the groove edges, i.e. the existence of impact would disrupt the self-excited vibration of the friction system and suppress generation of squeal.
(3) A self-excited vibration model with three degrees of freedom was proposed to capture the basic features of the friction system under this investigation. The inclined contact angle was found to have a significant influence on the instability of the system. The relatively small groove width used in this study implies a low inclined contact angle, which would not cause any continuous strong impact and instability of the system during the sliding process.
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Table 1 Mesh features of the finite element model.
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Fig. 1. Schematic view of the experimental setup.
Fig. 2. Profile and parameters of groove-textured surface.
Fig. 3. Optical images of the groove-textured surfaces of T-500-125 (a) and T-500-250 (b).

Fig. 4. Model of the experimental system: (a) finite element model; (b) load and boundary conditions of the finite element model.
Fig. 5. Equivalent sound pressure level for the smooth surface and different groove-textured surfaces.
Fig. 6. Time-frequency analysis of sound pressure of smooth surface (a), T-500-125 (b) and T-500-250 (c)

Fig. 7. Time history records of friction force from100 s to 101 s (a) and from 1499 s to 1500 s (b), acceleration in the friction direction from100 s to 101 s (c) and from1499 s to 1500 s (d).

Fig. 8. Optical images of the T-500-125 (a) and T-500-250 (b) surfaces after the test.

Fig. 9. SEM images of the T-500-125 and T-500-250 surfaces after the test.

Fig. 10. Results of complex eigenvalues and unstable modes in the cases of the ball sliding on smooth (a) and T-500-125 groove-textured surfaces (b), versus the friction coefficient (μ).
Fig. 11. frequency coalescence of the ball on smooth/groove systems

Fig. 12. Time history of the normal load and the velocity of the active specimen in the dynamic transient analysis.
Fig. 13. Mesh of the contact areas on the ball counterface (a), smooth surface (b), T-500-250 (c) and T-500-250 (d).
Fig. 14. Numerical results of tangential vibration acceleration of smooth surface (a), T-500-125 (b) and T-500-250 (c) in time domain.
Fig. 15. The finite element model in the case of ball sliding on the groove-textured surface with filleted edges.
Fig. 16. Numerical results of tangential acceleration of T-500-125 with filleted edges.
Fig. 17. The frictional dissipation energies of the smooth, T-500-125 and T-500-125 with fillet edges surfaces.

Fig. 18. Three-degree of freedom model.
Fig. 19. Simulation results at different inclined contact angles (θ) of 10 degrees (a), 20 degrees (b), 30 degrees (c), 35 degree (d), 40 degree (e), 45 degree (f) and 60 degrees (g).
Fig. 20. A plot of the limit cycle amplitude versus the inclination angle theta.
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