[bookmark: _GoBack]A New Method of Updating Mass and Stiffness Matrices Simultaneously with No Spillover
JUN YANG
Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China
HUAJIANG OUYANG
University of Liverpool, Liverpool L69 3GH, UK
JIA-FAN ZHANG
Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China (jfz@whpu.edu.cn)
Abstract: A method for updating mass and stiffness matrices without spillover is presented, which requires the knowledge of only the few eigenpairs to be updated of the original undamped model. The finite element model updating problem with symmetric preserving and no spillover is formulated as a semi-definite programming problem, which can be efficiently solved by existing semi-definite programming algorithms. Numerical examples show that, using the presented updating method, the updated model accurately reproduces the “measured” modal data, while keeping the symmetry of mass and stiffness matrices and avoiding spillover.
Keywords: Finite element model updating, direct matrix updating, partially prescribed spectral information, without spurious modes
1. INTRODUCTION
[bookmark: OLE_LINK1][bookmark: OLE_LINK37][bookmark: OLE_LINK4][bookmark: OLE_LINK5][bookmark: OLE_LINK2][bookmark: OLE_LINK19][bookmark: OLE_LINK20]Updating a finite element model to match measured modal data is important in design, construction and maintenance of engineering structures and mechanical systems. Due to the limitations of available computational methods to handle distributed parameter systems, the finite element method is generally used to discretize such systems to form finite element models. However, accurate geometric and material properties must be used in order for the finite element models to be predictable. Basically, finite element model updating (FEMU) is to incorporate the measured modal data into the finite element model to produce an improved finite element model with modal properties that closely match the experimental modal data. Then the updated model may be considered a better dynamic representation of the structure. Because of the importance of this problem, there now exists a relatively large quantity of works published in this field. Most of the works prior to 1995 are contained in the book by Friswell and Mottershead (1995), which conducted a comprehensive review on papers published before 1995. Some of the more recent results can be found in review articles (Datta, 2002; Dascotte, 2007; Datta, 2009; Mottershead et al., 2011) and references therein. The existing methods of FEMU can be classified as working in the frequency domain or the time domain. They have also been classified by other researchers into the following three classes: (i) Direct matrix updating methods, (ii) Iterative methods using modal data, and (iii) Methods using frequency response data, and some of them have been widely used and successfully applied to FEMU for a variety of structures.
[bookmark: OLE_LINK3][bookmark: OLE_LINK27]Baruch, Berman and Nagy are the first advocates of the direct matrix updating methods. Assuming that the mass matrix was correct in his proposed method, Baruch (1978) used Lagrange multipliers to update the stiffness matrix by minimizing the discrepancy between the updated and analytical stiffness matrices. Berman (1979) introduced a formulation that modified the mass matrix and assumed that the measured modes were exact. Subsequently, Berman and Nagy (1983) combined the mass matrix adjustment procedure with the stiffness matrix adjustment procedure of Baruch (1978) to establish the so-called analytical model improvement (AMI) procedure. However, for the updated stiffness matrix, two additional constraint equations were included. Wei (1990) introduced an approach that could update the mass and stiffness matrices simultaneously using the measured eigenvector matrix as the reference. The effects due to mass and stiffness interaction were clearly determined from the corrected mass and stiffness matrices. Additionally, Kuo et al. (2006) recently proposed a direct method which seemed more efficient and reliable.
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]The iterative updating methods use the sensitivity of the parameters to update the model. They are usually posed as an optimization problem, and allow a number of model parameters to be systematically adjusted with respect to the measured modal data (natural frequencies and mode shapes) in order to minimize the objective function defined. The optimal solution is obtained using sensitivity-based optimization methods. Because of the nonlinear relationship between the vibration data and the physical parameters, an iterative optimization process is performed. There are a number of works that extensively discussed and demonstrated the results obtained from model updating using the optimization methods (Mottershead et al., 2011; Bakir et al., 2007; Charbel et al., 1993; Shahverdi et al., 2009). In a class of model updating methods using measured frequency response functions (FRF), the FE models are updated based on the fully damped response along a frequency axis and not on an estimated set of modal data. Most of the FRF-based model updating techniques relied on expression the system matrices as a polynomial of system parameters (Friswell et al., 1990; Imregun et al., 1995; Esfandiari et al., 2010). Arora (2011) conducted a detailed comparison of two approaches, i.e. a direct method, which used modal data, and an iterative method, which uses FRF data and was also a parameter-based method. They were evaluated with the objective that the frequency response functions (FRFs) obtained from updated FE models were able to predict the measured FRFs accurately. The updated results had shown that the iterative method gave 20% better matching of FRFs with the experimental data and also the predictions of the iterative method was better than the direct method beyond the considered frequency range. The FE model updating can also be performed with computational intelligence algorithms, such as neural networks, genetic algorithms, particle-swarm optimization, simulated annealing, and so on (Atalla et al., 1998; Marwala, 2010). It is worthwhile to note that Papadimitriou et al. (2000) presented a statistical methodology for optimally locating the sensors in structural model updating. The method could extract from the measured data the most information about the parameters of the model used to represent structural behavior.
In spite of these developments mentioned above, there are still some unsolved issues with the FEMU problem. For example, these existing methods may reproduce the given set of measured data while keeping symmetry of updated matrices; however, they cannot guarantee that extra, spurious modes are not introduced into the frequency range of interest after updating (Friswell and Mottershead, 1995). When updating a model, it is desirable to match only the measured modal data without tampering with the other unmeasured modal data in the original model. Such an updating method is known to have no spillover. In the last few years, Carvalho and Datta, and their collaborators (2007), Mao and Dai (2012) respectively developed two novel methods to solve the problem with only the stiffness matrix updated, and with both the stiffness and mass matrices updated, for the undamped model. However, the updating method proposed in Mao and Dai (2012) cannot reproduce the measured data accurately for a numerical example in their paper. Additionally, Chu et al. (2007, 2008) presented a complete theory on when model updating of damped systems with no spillover is possible.
The purpose of this paper is to propose a new method of updating mass and stiffness matrices simultaneously avoiding spillover and preserving symmetry. A matrix equation is formulated for updating mass and stiffness matrices, which requires the knowledge of only the few eigenpairs to be updated of the original undamped model. Setting the residual norm of this matrix equation as the objective function, the FEMU problem is posed as an optimization problem, which is solved by semi-definite programming (SDP) techniques. The presented updating method is shown to reproduce the measured data accurately for those numerical examples in Mao and Dai (2012), while avoiding spillover. The remainder of this paper is organized as follows. A necessary and sufficient condition for no spillover updating is established in Section 2. The outline of SDP techniques and some relevant software packages are discussed, and then the FEMU problem is formulated as SDP problems in Section 3. Three numerical examples are presented to illustrate the efficiency of the proposed method in Section 4. Finally, some conclusions are drawn in Section 5.
2. A NECESSARY AND SUFFICIENT CONDITION FOR NO SPILLOVER UPDATING
Consider an n-degree-of-freedom undamped vibration system that is modelled by the following set of second-order ordinary differential equations:

 (1)

where is displacement vector, are mass and stiffness matrices, respectively. In general, is symmetric and positive definite, and is symmetric and positive semi-definite, denoted by, , where is the transpose operation. For the sake of convenience, the model is simply denoted by.

It is well known that if is a fundamental solution of Eq. (1), then the natural frequency and the mode shape vectormust satisfy the following generalized eigenvalue equation:

 (2)

where is the square of the ith natural frequency, called the ith eigenvalue, andis the corresponding ith mode shape, called the ith eigenvector. Eq. (2) can be written in a compact representation as follows:

 (3)

where and be eigenvalue and eigenvector matrices of the analytical model. Letandbe a set of p eigenvalues and eigenvectors measured from an experimental structure. Mathematically, the model updating problem may be formulated as follows (Mao and Dai, 2012):

Problem FEMU: Given an analytical modeland a set of its associated eigenpairs with, and another set of measured eigenpairs from an experimental or a real-life structure have been obtained, update the analytical model to of the same structure such that:

1) ≥ 0.

2) The subset is replaced by as p eigenpairs of the updated model.

3) The remaining (unknown) n-p eigenpairs of the updated model stay the same as those of the original model.
For convenience, the following partitions and notation are used:

, , , ,

,, and , ,

and assume that the eigenvector matrix X of the analytical modelsatisfies the normalization condition. Moreover, the following assumptions are made in this paper:

(A1) (an empty set);

(A2) ;
(A3) All the above-mentioned eigenvalues are distinct.

The FEMU problem, as stated above, concerns finding symmetric corrective matricesand such that the following eigen-matrix equations of the updated model hold simultaneously:

 (4)

 (5)

A necessary and sufficient condition will be firstly established forandto satisfy Eq. (4). Before that, two lemmas have to be introduced below.

Lemma 2.1 (Sylvester’s law of nullity) (Abadir et al., 2005). For any two matrices, and, if, then, denotes the rank of a matrix.
Lemma 2.2. If the rank of a matrix A is zero, i.e., r (A) = 0, then matrix A is a null matrix, i.e., A=0.
With assumptions (A1) to (A3) and the above two lemmas, Theorem 2.1 can be stated below.

Theorem 2.1 (No spillover updating). The real symmetric corrective matricesandsatisfy Eq. (4), if and only if andsatisfy the following matrix Eq. (6a) or (6b).

 (6a)

 (6b)
Proof: Necessity:

 Using the normalization of the eigenvector matrix X of the analytical model, it is easy to show thatand. Partition of the left-hand side of the previous matrix equation, that is,, leads to

 (7)

As, one can get,and . So it follows that

 (8)
From Eqs. (7) and (8), one can derive

 	 (9)

 (10)
It follows from Eqs. (9) - (10) that

 (11)

Moreover, subtracting the eigen-matrix equationof from Eq. (4) yields

 (12)
When Eq. (12) is used in Eq. (11), Eq. (6a) results (end of proof of the necessity).

In addition, multiplying Eq. (6a) on the right by, the matrix equation (6b) is obviously obtained.

[bookmark: OLE_LINK9]Sufficiency: Suppose matrix equation (6a) holds. It follows from Eq. (11) that. Letand. Because all modes ofare orthogonal to one another, that is, X2 contains n-p orthogonal modes, obviously. Lemma 2.1 dictates that. Therefore one can conclude that. It can immediately be inferred from lemma 2.2 that the matrix formulation (12) is valid. Then it is easy to verify that

This completes the proof. □

Note that andsatisfying Eq. (6a) or Eq. (6b) ensure that the eigenvalues and corresponding eigenvectors of the original analytical model are not affected by updating. Now, letandbe in a specific form as follows:

, (13)

where, are real symmetric matrices to be determined. Substituting (13) into Eq. (6b) and Eq. (5), it is easy to show that the following two matrix equations can be obtained.

 (14)

 (15)

[bookmark: OLE_LINK32]Here it is worthwhile to note that (i) determination of andthat satisfy Eqs. (4) and (5) so as to solve the FEMU problem is now equivalently transformed to solve Eqs. (14) and (15) to determine and; (ii) Eq. (14) works exclusively with only a small number of finite element frequencies and mode shapes that need to be updated in the analytical model, in contrast to Eq. (4) that involves a large number of the unmeasured frequencies and mode shapes of .

In what follows the procedure to determineand, the FEMU problem is posed as an SDP problem based on Eqs. (14) and (15).
3. FORMULATIN THE FEMU PROBLEM AS AN SDP PROBLEM
The SDP is an extension of linear programming with a linear objective function in a sense that in addition to linear constraints, the additional constraint that the matrix be positive semi-definite (note that this additional constraint cannot be expressed as a linear one) must be imposed, that is (Helmberg, 2002),

 (16)

where X is a variable matrix, C, A1, …, Am are given symmetric matrices, and is the trace operator. The SDP unifies several convex optimization problems (e.g., linear and quadratic programming), and many primal-dual interior-point methods for linear and quadratic programming have been naturally extended to solve SDPs (Nesterov et al., 1994), where the number of arithmetic operations required by the algorithms is bounded by a polynomial of the problem size. This extension thus admits theoretically efficient solution procedures based on iterating interior points that either follow the central path or decrease a potential function. As a result, SDPs are not much harder to solve than ordinary linear and quadratic programming problems. In recent years, SDP has received increasing attention for its various fields of applications, such as nonlinear and time-varying system analysis, controller synthesis, optimal statistical model designs, and structural optimization (Todd, 2001; Boyd et al., 2004; Ohsaki et al., 1999), due to its versatility to model and solve problems arising in many areas. Examples of converting these problems into the standard primal problem (16) or its dual can be found in Todd (2001) and Boyd et al. (2004). More recently, Lin et al. (2010) described some applications of SDP techniques to quadratic inverse eigenvalue problems (QIEPs). They claimed that unlike other numerical methods, the SDP approach presented a unified, efficient, and tractable scheme for solving QIEPs.
 There are now many software packages for solving SDP problems of a certain size, and three commonly used ones among them are SDPA (Yamashita et al.,2010), SDPT3 (Tütüncü et al. 2003), and SeDuMi (Sturm, 1999). There are also a number of interfaces that facilitate the use of SDP software. One of them, called YALMIP (Lofberg, 2004), is used to implement numerical examples in this paper. YALMIP is a free MATLAB-based toolbox that serves as a convenient interface for multiple external optimization solvers, and supports a large number of optimization classes, such as linear, quadratic, second order cone, semi-definite, mixed integer conic, geometric, local and global polynomial, multiparametric, bilevel and robust programming. The YALMIP commands unify and facilitate the different formats in SDP software. When applied to QIEPs, it makes the description of various structural constraints, such as positive definiteness, nonnegativity, sparsity patterns, and prescribed entries of the coefficient matrices, extremely simple and offers via the well established SDP theory and algorithms a reliable and conclusive answer within the specified numerical tolerance (Lin et al., 2010).
 The FEMU problem in this paper may be formulated as an SDP problem in two forms.
Formulation 1: Min

where and are some preselected weight factors, andis Frobenius norm. Note that J is a convex but nonlinear function inand. This objective function can be easily rewritten as a second-order Lorentz cone programming problem via the YALMIP commands.

 Formulation 2: Min

Subject to

 Substituting and, obtained by the SDP optimization computation above, into Eq. (13) for symmetric corrective matrices and, then one could optimally accomplish model updating with no spillover and symmetry preserved.
4. NUMERICAL EXAMPLES
Three numerical examples are given to show the application of the above-established method for solving the FEMU problem. All codes are run in MATLAB 7.11 on a personal computer with 2.4 GHz CPU and 2.0 GB physical memory.

[bookmark: OLE_LINK55][bookmark: OLE_LINK56]Example 4.1 (Example 4.1 in Mao and Dai (2012)). Consider the original analytical model as follows:

Taking p=3, the computed modal data are, and

[bookmark: OLE_LINK6][bookmark: OLE_LINK7]

The ‘measured’ modal data are taken as, and

 From Formulation 1 of the SDP optimization with weight factors, the updated mass and stiffness matrices are given as follows:

It is easy to calculate, . Another indicator showing the accuracy of no spillover is.
 From Formulation 2 of the SDP optimization, the updated mass and stiffness matrices are given as follows:

It is easy to calculate,,.
Remark: The results show that the measured modal data are accurately matched, and the updated model has no spillover using two SDP formulations, which have similar accuracy to that in Mao and Dai (2012).
Example 4.2 (Example 4.2 in Mao and Dai (2012)). The matrices Ma and Ka of the original model are

[bookmark: OLE_LINK53][bookmark: OLE_LINK54]

[bookmark: OLE_LINK57]

Taking p=2, the computed modal data are, and

The ‘measured’ modal data are taken as, and

 From Formulation 1 of the SDP optimization with weight factors, the updated mass and stiffness matrices are given as follows:

[bookmark: OLE_LINK60]

It is easy to calculate, .

From Formulation 1 with weight factors, the updated mass and stiffness matrices are not listed for the sake of saving space. It is found, in this situation, that,, and the match with the measured modal data is improved further.
From Formulation 2, the updated mass and stiffness matrices are given as follows:

It is easy to calculate, .
Remark: The results show that the updated model matches the measured modal data accurately, and has no spillover using two SDP formulations. However, for the same example in Mao and Dai (2012), their method can update the model to avoid spillover, but cannot reproduce the measured data accurately.
Example 4.3. Here matrices Ma and Ka are

 Taking p=2, the first two eigenpairs andof are taken as the computed modal data. The measured modal data are taken as, and, where matrix T is taken as

 From Formulation 1 with weight factors, it is easy to calculate, ; for weight factors, , ; for weight factors, , . The computational times using the SDP algorithm are respectively 4.56, 6.79, and 7.92 seconds.

From Formulation 2, it is easy to calculate,. The computational time using the SDP algorithm in this case is 8.55 seconds.
It should be pointed out that most existing SDP algorithms can only efficiently solve problems with up to a thousand linear constraints and matrices of a thousand or so in dimension, because they fail to exploit the sparsity of the underlying problem. Additionally, the algorithms fail to maintain physical connectivity between the elements of the mass and stiffness matrices. How to maintain the physical feasibility of the updated matrices is a subject for further investigation.
5. CONCLUSIONS
A direct mass and stiffness matrices updating method is presented in this paper. Based on a matrix equation that the corrective mass and stiffness matrices should satisfy for no spillover updating, the finite element model updating problem is formulated as a semi-definite programming (SDP) optimization problem, which can be solved using the well established SDP algorithms and an efficient and tractable scheme. The updated mass and stiffness matrices are naturally symmetric, and are also positive definite or positive semi-definite, due to the characteristics of the SDP algorithm itself. Numerical experiments indicate that the presented method produces accurate results.
REFERENCES
Abadir, K.M., Magnus, J.R., 2005, Econometric Exercises, Volume 1: Matrix Algebra, Cambridge University Press, New York.
Arora, V., 2011, “Comparative study of finite element model updating methods,” Journal of Vibration and Control, 17(13), 2023–2039.
Atalla, M.J., Inman, D.J., 1998, “On model updating using neural networks,” Mechanical Systems and Signal Processing, 12(1), 135–161.
Bakir, P. G., Reynders, E., De Roeck, G., 2007, “Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm,” Journal of Sound and Vibration, 305(1-2), 211–225.
Baruch, M., 1978, “Optimization procedure to correct stiffness and flexibility matrices using vibration tests,” AIAA Journal, 16(11), 1208–1210.
Berman, A., 1979, “Mass matrix correction using an incomplete set of measured modes,” AIAA Journal, 17(8), 1147–1148.
Berman, A. and Nagy, E.J., 1983, “Improvement of a large analytical model using test data,” AIAA Journal, 21(8), 1168–1173.
Boyd, S., Vandenberghe, L., 2004, Convex Optimization, Cambridge University Press, Cambridge.
Carvalho, J., Datta, B. N., Gupta, A., and Lagadapati, M., 2007, “A direct method for model updating with incomplete measured data and without spurious modes,” Mechanical Systems and Signal Processing, 21(2), 2715–2731.
Charbel, F., Francois, M. H., 1993, “Updating finite element dynamic models using an element-by-element sensitivity methodology,” AIAA Journal, 31(9), 1702–1711.
Chu, M. T., Datta, B. N., Lin, W.W., and Xu, S.F., 2008, “Spillover phenomenon in quadratic model updating,” AIAA Journal, 46(2), 420–428.
Chu, M. T., Lin, W. W., Xu, S.F., 2007, “Updating quadratic models with no spillover effect on unmeasured spectral data,” Inverse Problems, 23(1), 243–256.
Dascotte, E., 2007, “Model updating for structural dynamics: past, present and future,” in Proceedings of the International Conference on Engineering Dynamics (ICED), Carvoeiro, Algarve, Portugal, pp. 151–164.
Datta, B. N., 2002, “Finite-element model updating, eigenstructure assignment, and eigenvalue embedding techniques for vibrating systems,” Mechanical Systems and Signal Processing, 16(1), 83–96.
Datta, B.N., Sokolov,V., 2009, “Quadratic inverse eigenvalue problems, active vibration control and model updating,” Computational and Applied Mathematics, 8(2),170–191.
Esfandiari, A., Bakhtiari-Nejad, F., Sanayei, M., and Rahai, A., 2010, “Structural finite element model updating using transfer function data,” Computers and Structures, 88, 54–64.
Friswell, M. I., and Mottershead, J. E., 1995, Finite element model updating in structural dynamics, Kluwer Academic, Dordrecht, The Netherlands.
Friswell, M. I., Penny J.E.T., 1990, “Updating model parameters from frequency domain data via reduced order models,” Mechanical Systems and Signal Processing, 4(5), 377–391.
Helmberg, C., 2002, “Semidefinite programming,” European Journal of Operational Research, 137(1), 461–482.
Imregun, M., Visser, W.J., and Ewins, D.J., 1995, “Finite element model updating using frequency response function data-I. theory and initial investigation,” Mechanical Systems and Signal Processing, 9(2), 187–202.
Imregun, M., Visser, W.J., and Ewins, D.J., 1995, “Finite element model updating using frequency response function data -II. case study on a medium size finite element mode,” Mechanical Systems and Signal Processing, 9(2), 203–213.
Kuo, Y. C., Lin, W. W., and Xu, S. F., 2006, “New methods for finite element model updating problems,” AIAA Journal, 44(6), 1310–1316.
Lin, M. M., Dong, B., Chu, M. T., 2010, “Semi-definite programming techniques for structured quadratic inverse eigenvalue problems,” Numerical Algorithms, 53, 419–437.
Lofberg, J., 2004, “YALMIP: A toolbox for modeling and optimization in MATLAB,” IEEE International Symposium on Computer Aided Control Systems Design, Taipei, 2004, pp. 284–289.
Mao, X., Dai, H., 2012, “Finite element model updating with positive definiteness and no spill-over,” Mechanical Systems and Signal Processing, 28(1), 387–398.
Marwala, T., 2010, Finite-element-model updating using computational Intelligence techniques, applications to structural dynamics, Springer-Verlag, London.
Mottershead, J. E., Link, M., Friswell, M. I., 2011, “The sensitivity method in finite element model updating: a tutorial,” Mechanical Systems and Signal Processing, 25(7), 2275–2296.
Nesterov, Y., Nemirovskii, A., 1994, Interior-point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied Mathematics, Vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
Ohsaki, M., Fujisawa, K., Katoh, N., and Kanno, Y., 1999, “Semidefinite programming for topology optimization of truss under multiple eigenvalue constraints,” Computer Methods in Applied Mechanics and Engineering, 180(1-2), 203–217.
Papadimitriou, C., Beck, J. L., and Au, S. K., 2000, “Entropy-based optimal sensor location for structural model updating,” Journal of Vibration and Control, 6(5), 781–800.
Shahverdi, H., Mares, C., Wang, W., and Mottershead, J. E., 2009, “Clustering of parameter sensitivities: examples from a helicopter airframe model updating exercise,” Shock and Vibration, 16(1), 75–88.
Sturm, J.F., 1999, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, 11-12, 625–653.
Todd, M.J., 2001, “Semidefinite optimization,” Acta Numerica, 10, 515–560.
Tütüncü, R.H., Toh, K.C., Todd, M.J., 2003, “Solving semidefinite-quadratic-linear programs using SDPT3,” Mathematical Programming, 95, 189–217.
Wei, F.-S., 1990, “Analytical dynamic model improvement using vibration test data,” AIAA Journal, 28(1), 175–177.
Wei, F.-S., 1990, “Mass and stiffness interaction effects in analytical model modification,” AIAA Journal, 28(9), 1686–1688.
Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K, 2010, “A high-performance software package for semidefinite programs: SDPA 7,” Research Report B-460, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo.
oleObject1.bin

image42.wmf
(

)

(

)

222

aa

MXKX

MK

DL=+D

+

oleObject51.bin

image43.wmf
(

)

(

)

1

11

aa

Y

MYK

MK

DS=+D

+

oleObject52.bin

oleObject53.bin

oleObject54.bin

image44.wmf
nm

AR

´

Î

oleObject55.bin

image45.wmf
ms

BR

´

Î

oleObject56.bin

image2.wmf
()

n

tR

Î

q

image46.wmf
0

AB

=

oleObject57.bin

image47.wmf
()()

rArBm

+£

oleObject58.bin

oleObject59.bin

oleObject60.bin

oleObject61.bin

oleObject62.bin

image48.wmf
1T11T

11

111

Δ

()

Δ

()

aaaa

KMXXMMKMXX

---L =0

oleObject63.bin

oleObject2.bin

image49.wmf
T1T

11

111

Δ

()

Δ

()

naaaa

KIXXMMMKXXM

-

---L =0

oleObject64.bin

oleObject65.bin

image50.wmf
1T

a

XXM

-

=

oleObject66.bin

image51.wmf
T1

a

XXM

-

=

oleObject67.bin

image52.wmf
TT1

1122

a

XXXXM

-

=

+

oleObject68.bin

image53.wmf
T1T

2211

a

XXMXX

-

=-

image3.wmf
,

nn

aa

MKR

´

 Î

oleObject69.bin

image54.wmf
aa

KXMX

L

=

oleObject70.bin

image55.wmf
1

aa

MKXX

-

L

=

oleObject71.bin

image56.wmf
1TT

aa

MKXXXX

-

L

=

oleObject72.bin

image57.wmf
11TT

111222

aaa

MKMXXXX

--

L+L

=

oleObject73.bin

image58.wmf
T11T

222111

aaa

XXMKMXX

--

L-L

=

oleObject3.bin

oleObject74.bin

image59.wmf
(

)

T1T

2211

a

KXXKMXX

-

D=D-

oleObject75.bin

image60.wmf
(

)

T11T

222111

aaa

MXXMMKMXX

--

DLD-L

=

oleObject76.bin

image61.wmf
(

)

(

)

(

)

T1T11T

222211111

aaaa

KXMXXKMXXMMKMXX

D-DL=D--D-L

oleObject77.bin

image62.wmf
222

aa

KXMX

L

=

oleObject78.bin

oleObject79.bin

image4.wmf
a

M

image63.wmf
222

0

KXMX

DDL

=

-

oleObject80.bin

image64.wmf
a

M

oleObject81.bin

image65.wmf
(

)

T

2222

0

KXMXX

D-DL=

oleObject82.bin

image66.wmf
(

)

()

222

nnp

AKXMXR

´-

=D-DLÎ

oleObject83.bin

image67.wmf
T()

2

npn

BXR

-´

Î

=

oleObject84.bin

oleObject4.bin

oleObject85.bin

image68.wmf
(

)

(

)

T

2

rBrXnp

=-

=

oleObject86.bin

image69.wmf
(

)

(

)

T

2222

rKXMXrXnp

D-DL+£-

oleObject87.bin

image70.wmf
(

)

222

0

rKXMX

D-DL=

oleObject88.bin

image71.wmf
(

)

(

)

222

aa

KXMX

KM

+DDL

+

=

oleObject89.bin

oleObject90.bin

image5.wmf
a

K

oleObject91.bin

image72.wmf
1

,,

pn

ll

+

K

oleObject92.bin

image73.wmf
1

,,

pn

+

¼

xx

oleObject93.bin

oleObject94.bin

oleObject95.bin

oleObject96.bin

image74.wmf
aa

MMM

Y

D

=

oleObject97.bin

oleObject5.bin

image75.wmf
aa

KM

FM

D=

oleObject98.bin

image76.wmf
Y

oleObject99.bin

image77.wmf
nn

R

F

´

Î

oleObject100.bin

image78.wmf
TT

11111

()()

aaaaaa

XXMKMXXM

FMMY

---L =0

oleObject101.bin

image79.wmf
(

)

(

)

111

0

aaaaaa

MMYY

MYKMFM

S-+=

+

oleObject102.bin

image6.wmf
0

aa

M

M

T

=>

oleObject103.bin

oleObject104.bin

oleObject105.bin

image80.wmf
F

oleObject106.bin

oleObject107.bin

oleObject108.bin

oleObject109.bin

oleObject110.bin

image81.wmf
(

)

Min

trCX

oleObject6.bin

image82.wmf
(

)

,

Subject to1,2,,

i

i

im

Ab

trX

=

=

K

oleObject111.bin

image83.wmf
0

X

³

oleObject112.bin

image84.wmf
()

tr

×

oleObject113.bin

image85.wmf
(

)

(

)

2

2

TT

11111111

()()

aaaaaaaaaaaa

F

F

XXMKMXXMMMYY

J

FMMYMYKMFM

ab

---LS-+

=

+

+

oleObject114.bin

image86.wmf
a

oleObject115.bin

image7.wmf
0

aa

K

K

T

=³

image87.wmf
b

oleObject116.bin

image88.wmf
F

 ×

oleObject117.bin

oleObject118.bin

oleObject119.bin

image89.wmf
2

TT

11111

()()

aaaaaa

F

XXMKMXXM

J

FMMY

---L

=

oleObject120.bin

image90.wmf
(

)

(

)

111

0

aaaaaa

MMYY

MYKMFM

S-+=

+

oleObject121.bin

oleObject7.bin

oleObject122.bin

oleObject123.bin

oleObject124.bin

oleObject125.bin

oleObject126.bin

image91.wmf
1.560.660.540.3900

0.660.360.390.2700

0.540.393.1200.540.39

0.390.2700.720.390.27

000.540.393.120

000.390.2700.72

a

M

-

-

-

--

=

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject127.bin

image92.wmf
1218121800

1836181800

12182401218

18180721818

001218240

001818072

a

K

-

-

-

--

=

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject128.bin

image93.wmf
(

)

1

Λ

diag0.036346,1.4365,11.4697

=

image8.wmf
T

()

×

oleObject129.bin

image94.wmf
1

0.5636 0.5669 0.5662

 0.0862 0.3014 0.5000

0.3082 0.2401 0.3714

 0.0820 0.1864 0.0798

0.0933 0.3344 0.4212

 0.0566 0.1111 0.1045

X

--

-

--

=

--

-

éù

êú

êú

êú

êú

êú

êú

ëû

oleObject130.bin

image95.wmf
(

)

1

Σ

diag0.0383,1.4565,11.6697

=

oleObject131.bin

image96.wmf
1

0.2475 0.2231 0.4952

 0.2494 0.0872 0.4370

 0.3418 0.3281 0.3434

 0.0764 0.0740 0.0514

 0.1837 0.0401 0.3101

0.1129 0.0725 0.0995

Y

--

=

--

--

éù

êú

êú

êú

êú

êú

êú

ëû

oleObject132.bin

image97.wmf
1.0

ab

==

oleObject133.bin

image98.wmf
1.27630.48670.31790.32880.05500.1337

0.48670.25570.11640.23420.04290.0784

0.31790.11640.77750.19640.41410.0340

0.32880.23420.19640.72270.48230.3017

0.05500.04290.41410.48233.53260.0172

0.13

M

--

=

370.07840.03400.30170.01720.6669

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject8.bin

oleObject134.bin

image99.wmf
16.115119.542210.188618.04806.61380.0905

19.542236.509218.049818.07292.91110.1757

10.188618.049815.96770.31376.842419.7443

18.048018.07290.313771.719619.560417.923

8

6.61382.91116.842419.560425.8

K

-

-

-

--

=

3890.2580

0.09050.175719.744317.92380.258071.7151

-

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject135.bin

image100.wmf
111

Σ

3.2552e010

F

MYKY

-=-

oleObject136.bin

image101.wmf
222

Λ

9.6996e011

F

MXKX

-=-

oleObject137.bin

image102.wmf
TT

11111

()()3.7443e-011

aaaaaa

F

XXMKMXXM

FMMY

---L=

oleObject138.bin

image103.wmf
1.43810.55690.21880.37410.04990.1322

0.55690.28660.07240.25560.04520.0783

0.21880.07240.82700.15650.35670.0320

0.37410.25560.15650.73860.48050.3021

0.04990.04520.35670.48053.54330.0301

0.13

M

--

=

220.07830.03200.30210.03010.6698

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

image9.wmf
{

}

,

aa

MK

oleObject139.bin

image104.wmf
16.493919.681310.121617.99736.83330.0902

19.681336.572618.009717.99492.98920.2052

10.121618.009716.09340.25897.007219.7648

17.997317.99490.258971.921919.602517.767

3

6.83332.98927.007219.602526.4

K

-

-

-

--

=

2590.1323

0.09020.205219.764817.76730.132371.9404

-

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject140.bin

image105.wmf
111

Σ

3.4437e010

F

MYKY

-=-

oleObject141.bin

image106.wmf
222

Λ

4.1245e013

F

MXKX

-=-

oleObject142.bin

image107.wmf
TT

11111

()()2.3774e-013

aaaaaa

F

XXMKMXXM

FMMY

---L=

oleObject143.bin

image108.wmf
1.29400000

01.2940000

001.294000

0001.29400

00001.2940

a

M

=

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject9.bin

oleObject144.bin

image109.wmf
1188.5196.600642.4

196.6626.30555.60

001188.5196.6546.1

0555.6196.6626.3196.6

642.40546.1196.64019.1

a

K

-

-

=

--

--

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject145.bin

image110.wmf
(

)

1

Λ

diag3297.1,23.648

=

oleObject146.bin

image111.wmf
1

0.21010.2048

0.02161.0000

0.18170.1400

0.06710.9997

1.00000.0631

X

--

-

=

-

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject147.bin

image112.wmf
(

)

1

Σ

diag3297.6,23.148

=

oleObject148.bin

image113.wmf
1

0.21840.1893

0.01661.0000

0.17680.1529

0.10550.9933

1.00000.1355

Y

--

=

-

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

image10.wmf
()

it

te

w

=

qx

oleObject149.bin

oleObject150.bin

image114.wmf
1.29390.00020.00020.00010.0010

0.00021.29570.00030.00170.0004

0.00020.00031.29390.00040.0007

0.00010.00170.00041.29550.0008

0.00100.00040.00070.00081.2896

M

--

=

-

--

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject151.bin

image115.wmf
1200.4165.00.1033.8665.5

165.0625.326.7543.4148.5

0.1026.71180.2221.0519.2

33.8543.4221.0651.4342.0

665.5148.5519.2342.03975.6

K

-

--

=

--

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject152.bin

image116.wmf
111

Σ

1.0253e009

F

MYKY

-=-

oleObject153.bin

image117.wmf
222

Λ

1.0613e010

F

MXKX

-=-

oleObject154.bin

oleObject10.bin

image118.wmf
1.005,1.007

ee

ab

=+ =+

oleObject155.bin

image119.wmf
111

Σ

2.8121e011

F

MYKY

-=-

oleObject156.bin

image120.wmf
222

Λ

1.1405e010

F

MXKX

-=-

oleObject157.bin

image121.wmf
0.00060.00020.0009

0.00060.00060.0001

0.00060.00060.00050.0008

0.00020.00060.00050.0008

0.00090.00010.00080.0008

1.29430.0005

0.00051.2951

1.2947

1.2950

1.2902

M

--

-

=

--

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject158.bin

image122.wmf
1201.0165.40.000334.1665.9

165.4626.126.2544.3148.7

0.000326.21181.1221.7519.4

34.1544.3221.7652.2342.0

665.9148.7519.4342.03977.4

K

--

=

--

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

oleObject159.bin

image11.wmf
w

image123.wmf
111

Σ

1.2383e009

F

MYKY

-=-

oleObject160.bin

image124.wmf
222

Λ

5.7886e013

F

MXKX

-=-

oleObject161.bin

image125.wmf
40

4040

21000

12000

00200

,

00121

00011

aa

MIK

´

-

-

= =

--

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

èø

L

L

L

MMOMMM

L

L

oleObject162.bin

image126.wmf
(

)

1

Λ

diag0.0015,0.0135

=

oleObject163.bin

image127.wmf
1

X

oleObject164.bin

oleObject11.bin

oleObject165.bin

image128.wmf
(

)

1

Σ

diag0.002,0.02

=

oleObject166.bin

image129.wmf
11

YXT

=

oleObject167.bin

image130.wmf
11

12

T

=

æö

ç÷

èø

oleObject168.bin

oleObject169.bin

image131.wmf
111

Σ

2.6226e009

F

MYKY

-=-

oleObject170.bin

image12.wmf
x

image132.wmf
222

Λ

5.7120e012

F

MXKX

-=-

oleObject171.bin

image133.wmf
1.003,1.005

ee

ab

=+ =+

oleObject172.bin

image134.wmf
111

Σ

1.3057e010

F

MYKY

-=-

oleObject173.bin

image135.wmf
222

Λ

1.3642e011

F

MXKX

-=-

oleObject174.bin

image136.wmf
1.003,1.007

ee

ab

=+ =+

oleObject175.bin

oleObject12.bin

image137.wmf
111

Σ

2.1066e012

F

MYKY

-=-

oleObject176.bin

image138.wmf
222

Λ

1.0491e012

F

MXKX

-=-

oleObject177.bin

image139.wmf
111

Σ

1.9314e009

F

MYKY

-=-

oleObject178.bin

image140.wmf
222

Λ

1.4246e014

F

MXKX

-=-

oleObject179.bin

image13.wmf
(

)

0,1,2,,

aiai

KMin

l

-= =

x

K

oleObject13.bin

image14.wmf
2

ii

lw

=

oleObject14.bin

image15.wmf
i

w

oleObject15.bin

image16.wmf
i

x

oleObject16.bin

image17.wmf
aa

KXMX

L

=

oleObject17.bin

image18.wmf
(

)

1

1

Λ

diag,,,,

pp

n

llll

+

 ,

KK

=

oleObject18.bin

image19.wmf
(

)

11

,, ,,,

ppn

X

+

¼

xxxx

K

=

oleObject19.bin

oleObject20.bin

image20.wmf
(

)

1

,

p

mm

 ,

K

oleObject21.bin

image21.wmf
(

)

1

,,

p

yy

K

oleObject22.bin

image22.wmf
(

)

pn

<<

oleObject23.bin

oleObject24.bin

image23.wmf
(

)

(

)

1,2,,

,

ii

ip

l

 =

x

K

oleObject25.bin

image24.wmf
pn

 <<

oleObject26.bin

image25.wmf
(

)

(

)

1,2,,

,

ii

ip

m

 =

y

K

oleObject27.bin

oleObject28.bin

image26.wmf
{

}

,

MK

oleObject29.bin

image27.wmf
0,

aa

MMKKKK

MM

TT

=+D> ==+D

=

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

image28.wmf
{

}

,

aa

MK

oleObject35.bin

image29.wmf
(

)

12

Λ

diag,

LL

=

oleObject36.bin

image30.wmf
(

)

12

,

XXX

=

oleObject37.bin

image31.wmf
(

)

11

Λ

diag,,

p

ll

K

=

oleObject38.bin

image32.wmf
(

)

21

Λ

diag,,

pn

ll

+

K

=

oleObject39.bin

image33.wmf
(

)

11

,,

p

X

xx

K

=

oleObject40.bin

image34.wmf
(

)

21

,,

pn

X

+

¼

xx

=

oleObject41.bin

image35.wmf
(

)

11

diag,

p

mm

S ,

K

=

oleObject42.bin

image36.wmf
(

)

11

,,

p

Y

yy

K

=

oleObject43.bin

oleObject44.bin

image37.wmf
an

XI

XM

T

=

image1.wmf
()()0

aa

tt

MK

+=

qq

&&

oleObject45.bin

image38.wmf
(

)

(

)

11

,,,,

ppn

llll

+

Ç

=Æ

KK

oleObject46.bin

image39.wmf
(

)

(

)

11

,,,

ppn

mmll

+

Ç

 ,=Æ

KK

oleObject47.bin

image40.wmf
M

D

oleObject48.bin

image41.wmf
K

D

oleObject49.bin

oleObject50.bin

