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Abstract: Two dynamic models of a wheelset-track system on a tight curved track 

and on a straight track are established. Both the transient dynamic and complex 

eigenvalue analyses are performed to study the unstable transient dynamics and 

stability of the wheelset-track system. It is assumed that in the models creep forces 

between wheels and rails are saturated, that is, approximately equal to the normal 

forces multiplied by the dynamic coefficients of friction. The simulation results 

demonstrate that the saturated creep force can induce self-excited vibration of the 

wheelset-track system. The normal contact force between the wheel and rail 

fluctuates at the same frequency as the wheel and rail vibrate when the self-excited 

vibration occurs. And the fluctuation frequency of the normal contact force falls 

into the range of 60-500 Hz, which corresponds to the frequency range of rail 

corrugation. This phenomenon indicates that the self-excited vibration of the 

wheelset-track system may be a main cause of rail corrugation occurrence. 

Parameter sensitivity analysis shows that the stiffness and damping of the rail 

fastener have important influences on the oscillation amplitude of the normal 

contact force. Bringing the friction coefficient below a certain level and increasing 

the damping of the rail fastener can suppress rail corrugation. 

Key words: Railway wheelset-track; Self-excited vibration; Rail corrugation; 

Saturated creep force; Transient dynamics. 

 

1. Introduction 

Rail corrugation is an elusive problem in railway industry. Its formation and 

development cause fierce vibrations of the structures of both railway vehicle and track. 

These fierce vibrations in turn cause reduction of the operational life of structural 

components and the comfort of the passengers. Nowadays, grinding is generally used to 

remove rail corrugation of all types of rails all over the world. However, the cost of 



grinding is very high. Eliminating or suppressing corrugation is still the best solution. 

Rail corrugation has been observed and studied for over 100 years, and many efforts 

have been made to understand the formation mechanisms of various types of 

corrugation. According to the review of published papers on rail corrugations [1-4], the 

generation mechanisms of rail corrugation can be roughly grouped into two major 

schools of thought.  

The first school of thought believes that in railway lines, the original rail head is 

discontinuous. When a wheel rolls over a rail, the uneven properties of the rail head can 

induce fluctuations of contact forces between the wheel and rail. These fluctuating 

contact forces cause different wear rates of rail surfaces to generate corrugation. Knothe 

and his group [5, 6] made a detailed investigation into the material wear situation at 

different positions in a sleeper bay in terms of receptance and the pinned–pinned mode. 

Muller [7] and Nielsen [8] used a nonlinear contact mechanics filter to explain the 

independence of wave length of the short pitch corrugation. Jin et al. [9] investigated 

the effect of track irregularities on initiation and evolution of rail corrugation. In their 

study the effect of periodical variation of sleeper support on rail corrugation on a curved 

track was analyzed by including a vertical track irregularity due to the periodically 

passing of sleepers. Xie and Iwnicki [10, 11] established a three-dimensional contact 

model and a time-domain wheel-track vertical interaction model to calculate wear over 

the railhead. 

The second school of thought believes that rail corrugation is caused by the 

instability of wheel-rail systems. The researchers who accept this school of thought are 

fewer than those who accept the first school of thought. However, the impact of this 

school of thought continues to date. Clark et al. [12, 13] studied the effect of the stick-

slip phenomenon on rail corrugation. Brockley [14] earlier investigated rail corrugation 

from the view point of friction-induced vibration and derived a formula expressing the 

relation between corrugation wear and friction-induced vibration. Ishida et al. [15] 

found that fluctuation of the lateral or vertical forces might lead to stick-slip between 

rail and wheel and wear took place to form corrugation. Wu and Thompson [16] studied 

rail corrugation from the view point of micro-slip. Chen et al. [17] studied the formation 

mechanism of rail corrugation from the viewpoint of saturated-creep-force-induced self-

excited vibration of a wheelset-track system. In their study, a finite element model of a 

wheelset-track system was established and analyzed using the complex eigenvalue 

method. Kurzeck et al. [18, 19] established a friction coupling model of a vehicle-track 



system with three degree of freedom. They studied the effect of friction induced 

vibration of a vehicle-track system on rail corrugation. A comparison between the 

numerical results and the measurement results was carried out in their publications. 

However, up to now, the generation mechanism of rail corrugation is still not fully 

understood. 

In this paper, two elastic vibration models of a wheelset-track system are 

established. Transient dynamic and complex eigenvalue analyses are performed by 

using the ABAQUS software. The simulation results demonstrate that when creep 

forces between the wheelset and rail become saturated, that is, equal to the normal 

forces multiplied by the dynamic coefficient of friction, these saturated creep forces can 

induce self-excited vibration of the wheelset-track system. And the normal contact force 

between the wheel and rail fluctuates when self-excited vibration occurs. The 

fluctuating normal contact force can induced the wear-type rail corrugation. 

Furthermore, some forms of rail corrugation can be explained by using the simulation 

results of this paper, such as why short pitch corrugation generally occurs on low rail of 

a tight curved track and why a low friction coefficient can eliminate rail corrugation [20, 

21]. 

 

2. Finite element modeling of a wheelset-track system 

2.1 Model of wheel-rail contact 

Field measurement data demonstrate that when a train travels on a tight curved 

track, the leading wheelsets of both the front and rear trucks have positive angles of 

attack and the trailing wheelsets have positive or negative angles of attack mainly 

depending on running speed as shown in Fig. 1a [22]. The directions of lateral creep 

forces are fixed when the wheelsets have positive angles of attack. Fig. 1b shows the 

contact points and directions of lateral creep forces between the wheel and rail when a 

train negotiates a tight curved track [22]. It can be found that the contact point between 

the outer wheel of the wheelset and high rail shift to the flange root for wheel and to the 

gauge corner for rail, whilst the contact point between the inner wheel and low rail is 

roughly kept in the vicinity of the center of rail top for rail. When a train negotiates a 

tight curved track, the lateral creep force between the leading wheelset and rail probably 

becomes saturated [22]. In this case, the lateral creep force equals the normal force 

multiplied by the dynamic friction coefficient. And the longitudinal creep force is much 

lower than the lateral creep force if the wheelset is unpowered. Fig. 2a shows the 



wheelset positions when the vehicle travels on a straight track. In that case, the lateral 

displacement of wheelset is low. Therefore, the contact points between the wheel and 

rail are easily determined by contact geometry calculation as shown in Fig. 2b. When 

trains are accelerated by large longitudinal traction forces or are braked by brake forces, 

the creep forces between the wheel and rail become generally saturated and hence are 

also approximately equal to normal forces multiplied by the dynamic coefficient of 

friction. 

(a)

 

  

 

(b)

 

  

Fig. 1 Model of wheel-rail contact on a tight curved track: (a) wheelset positions; (b) 

positions of contact points and directions of lateral creep forces. 
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Fig. 2 Model of wheel-rail contact on a straight track: (a) wheelset positions; (b) 

positions of contact points and directions of lateral creep forces. 

 

In the present paper, contact geometry parameters of the wheelset on a curved 

track are determined by curve negotiation calculation using the NUCARS package [23]. 

The parameters of wheelset and rail are presented as follows. The present model 

considers a wheelset and a curved track with 1435+2mm gauge and 300m radius. The 

rail cant is αt = 1/40, and the sleeper pitch ls = 600 mm. It is assumed that the speed of 

the vehicle running on a curved track is v = 70km/h. According to the NUCARS 

simulation results, when the vehicle negotiates the curved track at a speed of 70km/h, 

the contact angles are δL = 36.41° and δR = 1.52°. The angle of attack of the leading 

wheelset is yw = 0.30°. The suspension forces are FSVL = 103,200N, FSVR = 91,800N, 

FSLL = 7640N, and FSLR = 7640N. Stiffnesses of the rail fastener are set to KRV = 

7.8×10
7
N/m and KRL = 2.947×10

7
N/m. Damping values of the rail fastener are set to 
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CRV = 5.0×10
4
Ns/m and CRL = 5.2×10

4
Ns/m. Combined support stiffness of the sleeper 

and roadbed are set to KSV = 8.9×10
7
N/m and KSL = 5.0×10

7
N/m. Combined damping 

values of the sleeper and roadbed are set to CSV = 8.98×10
4
Ns/m and CSL = 

4.0×10
4
Ns/m. On a straight track, it is assumed that the contact angles are δL = 4.26° 

and δR = 4.26°, and suspension forces FSVL = 100,000N, FSVR = 100,000N, FSLL = 0N, 

and FSLR = 0N. The stiffnesses and damping values of the rail fastener on a straight 

track are the same as that on the curved track. Combined support stiffnesses of the 

sleeper and roadbed on a straight track are set to KSV = 1.2×10
8
N/m and KSL = 

6.0×10
7
N/m. Combined damping values of the sleeper and roadbed are set to CSV = 

1.0×10
5
Ns/m and CSL = 1.0×10

5
Ns/m. 

 

2.2 Finite element model of a wheelset-track system 

There are two distinct contact conditions for the low (right) and high (left) rails as 

shown in Fig. 1 and 2. Therefore, two different finite element models of the wheelset-

track system were established as shown in Fig. 3. Fig. 3a shows the finite element 

model of the wheelset-track system. In the finite element models, the total length of the 

rail is L = 36m, and the end effects of the rail are ignored and hinged–hinged constraints 

are applied. The rail mass per length is 60kg/m. On the contact interfaces between the 

rails and sleepers, the coordinates of the rail nodes are the same as the sleeper nodes. 

The rail node and the sleeper node which have the same coordinate constitute a pair of 

nodes. These node pairs are connected by the lateral and vertical springs and the lateral 

and vertical dampers as shown in Fig. 3b. There is a pad at each rail-sleeper contact 

interface represented by a spring and a damper. In the initial state, the length of the 

spring is zero. The node pairs can be separated when the springs are stretched. It also 

can be approached when the springs are compressed. Therefore, the rail foot and 

sleepers can separate or approach when the vibration occurs. The stiffness and damping 

values of the rail fastener are evenly distributed on every node. The sleepers are 

supported by a group of lateral and vertical springs and a group of lateral and vertical 

dampers at the bottom of sleepers (Fig. 3b). The number of lateral or vertical springs in 

each group of springs is the same as the number of nodes on the sleeper bottoms. The 

contact details between the wheel and rail on a tight curved track and on a straight track 

are shown in Fig. 3c and d. A wheel with worn tread profile of a freight car of nominal 

diameter 840mm is analyzed. Density of the wheel and rail materials is ρ = 7800kg/m
3
. 

Young's modulus of both is E = 2.1×10
11

Pa. Poisson's ratio of both is γ = 0.3. The track 



under this investigation is the double-block non-ballasted track. Density of the sleeper is 

ρ = 2800kg/m
3
. Young's modulus of the sleeper is E = 1.9×10

11
Pa. Poisson's ratio of the 

sleeper is γ = 0.3. The measurement points of the vibration acceleration are located on 

the contact surface of the rail. 

 

2.3 Finite element equations of the transient dynamic analysis 

When a vehicle negotiates a tight curved track or a wheelset undergoes a large 

traction force or brake force on a straight track, the creep force between the wheel and 

rail probably becomes saturated [22]. In the present work, the creep forces between the 

wheels and rails are always assumed to be saturated. In this case, the creep forces are 

similar to friction forces and approximately equal to the normal forces multiplied by the 

dynamic coefficient of friction. In this paper, the Abaqus/Standard finite element solver 

is applied to obtain the transient dynamic response of the wheelset-track system. The 

calculation process is introduced briefly as follows. 

In the Abaqus/Standard analysis procedure, the friction forces are governed by 

Coulomb’s friction law. The friction stresses can be expressed in the form [24, 25]: 

el

isi k γτ =                                                                                                                          (1) 

where critcritsk γτ /=  is the current stiffness, pcrit µτ =  is the critical stress, µ  is the 

friction coefficient, p  is the contact pressure, critγ is referred to as the allowable 

maximum elastic slip. It is set to 0.5% of the average length of all contact elements in 

the model, el

iγ  is defined as the reversible relative tangential motion from the point of 

zero frictional stress. 

Since critτ  may be dependent on contact pressure and slip rate at the contact point, 

sk  may change during the analysis. The behavior remains elastic as long as the 

equivalent stress ( eqτ ) does not exceed the critical stress ( critτ ). In this case, the relative 

tangential motion el

iγ  can be written in the form: 

( ) ( ) i

el

i

el

i ttt γγγ ∆+=∆+                                                                                                   (2) 

where t∆  is the time increment, iγ∆  is the slip increment in direction i. 

Consistent linearization of Eq. (1) yields: 

( )( )dpppdkd critiisi ∂∂++= // µµττγτ                                                                           (3) 
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(b)
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(d)

  

Fig. 3 Finite element model of the wheelset-track system: (a) an overview of the 

wheelset-track system model; (b) details of the contact interfaces between the rails and 

sleepers; (c) contact details between the wheel and rail on a tight curved track; (d) 

contact details between the wheel and rail on a straight track. 

 



The contributions from the contact pressure are in Eq. (3) nonsymmetric. Since the 

slip rate is zero, derivatives with respect to the slip velocity are not needed.  

If the equivalent frictional stress exceeds the critical stress, slip must be taken into 

consideration so that the condition criteq ττ = is maintained in this situation. Let the 

starting situation be characterized by the elastic slip el

iγ . Let the elastic slip at the end of 

the increment be el

iγ  and the slip increment be sl

iγ∆ . Consistency requires that: 

sl

i

el

i

el

ii γγγγ ∆+−=∆                                                                                                       (4) 

The frictional stress at the end of the increment follows from the elasticity relation, 

( ) el

icritcrit

el

isi k γγτγτ /== . And the slip increment is related to the stress at the end of 

the increment with the backward difference approach. 

( ) sl

eqcriti

sl

i γττγ ∆=∆ /                                                                                                        (5) 

With these equations and the critical stress equality criteq ττ =  it is possible to solve 

for el

iγ , sl

iγ∆ , and iτ . Elimination of el

iγ and sl

iγ∆ from the Eq. (4) yields,  

( ) ( ) sl

eqcriti

el

icritcritii γττγγττγ ∆+−=∆ //  

( ) ( )( ) crit

sl

eqcriti

el

ii τγγγγτ ∆+∆+= /                                                                                    (6) 

It is convenient to define the elastic predictor strain, i

el

i

pr

i γγγ ∆+= , which 

simplifies the expression for the frictional stress to 

( )( ) crit

sl

eqcrit

pr

ii τγγγτ ∆+= /                                                                                               (7) 

Substitution in the critical stress equality yields  

crit

pr

eq

sl

eq γγγ −=∆                                                                                                              (8) 

where ( ) ( )2

2

2

1

prprpr

eq γγγ += . 

Substitution in the expression for iτ  and introduction of the normalized slip 

direction pr

eq

pr

iin γγ /=  furnishes the final result: 

critii n ττ =                                                                                                                         (9) 

Here critτ  is a function of the slip rate, which is obtained from tsl

eq

sl

eq ∆∆= /γγ& . For 

the iterative solution scheme this equation must be linearized. Some straightforward 

algebraic manipulation yields  

( ) ( ) criti

pr

j

pr

eqcritjicrit

pr

eq

pr

ii dndnndd τγγττγγτ +−= //  



( )( ) ( ) ( )( )sl

eq

sl

eqcritcriti

pr

j

pr

eqcritjiij ddppndnn γγττγγτδ &&∂∂+∂∂+−= ///                         (10) 

With the expression for the equivalent slip the final result is  

( )( ) ( ) ( )( ) jeqjiij

pr

eqcritjiiji dtpnndpppndnnd γγµµµγγτδτ &∂∂∆+∂∂++−= ////           (11) 

In Eq. (11), the first term is generated by the friction forces acting in the direction 

perpendicular to the direction of slip. The second term yields the asymmetric 

contribution to the stiffness matrix. This term is essential to capture the phenomenon of 

the friction induced self-excited vibration. The third term exists if the friction 

coefficient depends on velocity. Both the first and third terms contribute to the damping 

matrix. 

Friction is a typical nonlinear problem. A nonlinear dynamic analysis in 

Abaqus/Standard uses implicit time integration to calculate the transient dynamic 

response of a system [26, 27]. To discuss the dynamic procedure further, the inertia 

force in the overall equilibrium equation is examined. The body force at a point ( f ) can 

be written as an externally prescribed body force ( F ) and an inertia force:  

uF-ρf &&=                                                                                                                        (12) 

where ρ  is the current density of the material at this point, and u is the displacement of 

the point. The body force term in the virtual work equation is  

∫∫ ∫ ⋅−⋅=⋅
VV V

vdVuvdVFvdVf δρδδ &&                                                                            (13) 

where u&&  is the acceleration field. When implicit integration is used, the equilibrium 

equations are written at the end of a time step (at time tt ∆+ ), and u&& is calculated from 

the time integration operator. The interpolator approximates the displacement at a point 

as 

NN uNu =                                                                                                                      (14) 

where 
NN is interpolation vector, and it is not displacement dependent, 

Nu is nodal 

displacement vector, so that 

NN uNu &&&& =                                                                                                                      (15) 

With this interpolation assumption, the inertia force-related term is 

( ) M

V

MN
udVNN &&∫ ⋅− ρ                                                                                                     (16) 

that is, the consistent mass matrix times the accelerations of the nodal variables. 

The finite element approximation to equilibrium is 

0=−+ NNMNM PIuM &&                                                                                                 (17) 



where ∫ ⋅=
V

MNNM
dVNNM ρ  is the consistent mass matrix, NI  is the internal force 

vector and the effect of friction force is contained in this term, and NP  is the external 

force vector. 

The implicit integration operator replaces the actual equilibrium equation Eq. (17) 

with a balance of inertia forces at the end of the time step and a weighted average of the 

static forces at the beginning and end of the time step: 

( )( ) ( ) 0|||||1| =+−−−++ ∆+∆+∆+∆+ tt

N

t

N

t

N

tt

N

tt

N

tt

MNM LPIPIuM αα&&                         (18) 

where tt

NL ∆+|  is the sum of all Lagrange multiplier forces associated with degree of 

freedom N . In the Newmark scheme the formulae for displacement and velocity 

integration are:  

( )( )ttttttt uututuu ∆+∆+ +−∆+∆+= ||2/1||| 2
&&&&& ββ                                                            (19) 

( )( )tttttt uutuu ∆+∆+ +−∆+= ||1|| &&&&&& γγ                                                                                (20) 

with 

( ) 4/1 2αβ −= , αγ −= 2/1  and 03/1 ≤≤− α  

In the implicit dynamic analysis procedure, two factors should be considered when 

selecting the maximum allowable time step size: the rate of variation of the applied 

loading and the typical period of vibration of the structure. In general, a maximum 

increment versus period ratio 10/1/ <∆ Tt  is a good rule of thumb for obtaining 

reliable results. As known, the frequencies of rail corrugation always fall in the range 

60-500Hz [1-4]. Therefore, the maximum increment of the implicit time integration is 

set to 0.00005s (20000Hz).  

In the present work, two finite element analysis methods are applied to study the 

dynamic response of the wheelset-track system by using Abaqus/Standard. One is the 

dynamic transient analysis. Its calculation process is described above. The other is the 

complex eigenvalue analysis, Ouyang [28] and Chen et al. [17] made a detailed 

description of the calculation process of this method in their publications.  

To perform the dynamic transient analysis of the wheelset track system, two main 

steps are required as follows: 

Step 1: nonlinear static analysis of the wheelset track system for applying the 

suspension force on the wheelset. 

Step 2: nonlinear implicit dynamic analysis of the wheelset track system for 

calculating the transient dynamic response. 



In the dynamic transient analysis, the element type is C3D8R (8-node linear brick, 

reduced integration), the contact formulation is kinematic method, the sliding 

formulation is finite sliding and the friction formulation is the penalty method. 

To perform the complex eigenvalue analysis, four main steps are required as 

follows: 

Step 1: The same as the transient analysis. 

Step 2: nonlinear static analysis to impose the sliding speed on the wheelset. 

Step 3: normal mode analysis to extract natural frequency without the friction 

coupling. 

Step 4: complex eigenvalue analysis that incorporates the effect of friction 

coupling. 

In the complex eigenvalue analysis, the element type is C3D8I (8-node linear brick, 

incompatible modes). The contact formulation is finite sliding with the penalty method. 

The friction formulation is the penalty method. 

 

3. Results and discussion 

3.1 Relations between the self-excited vibration of the wheelset-track system and the 

corrugation wear of the rail 

This section presents the results of the transient dynamic simulations when the 

wheelset negotiates a tight curved track. In the transient dynamic analysis, the initial 

translational and rotational velocities of the wheelset are 70km/h and 46.296rad/s 

(corresponding to the nominal wheel diameter of 840mm). When the wheelset travels 

on the rail, only the suspension forces are applied on the wheelset without any other 

external excitations. This is different from the conventional vehicle dynamics analysis. 

Under these conditions, self-excited vibration of the wheelset and the rail may arise. 

Under the dry and clean conditions, the friction coefficient between the wheel and rail 

always larger than 0.3[29]. Therefore, when the effect of saturated creep force is 

considered on the wheel rail system, the friction coefficient is set to 0.45. Such results 

are compared with the results when there is no friction (the friction coefficient is taken 

to be zero), in order to reveal the influence of friction between wheel and rail. 

Fig. 4 shows the vibration accelerations of the rail surface in the normal direction. 

From Fig. 4a, it is found that the oscillation amplitude of vibration accelerations on the 

low rail surface increase significantly when friction coefficient µ becomes 0.45. Fig. 4b 

shows that the vibration accelerations on the high rail increase slightly when friction 



coefficient becomes µ =0.45. A comparison between the vibration accelerations of the 

low and the high rails is shown in Fig. 4c. It can be found that the oscillation amplitude 

of vibration accelerations on the low rail surface is obviously greater than that on the 

high rail surface. This simulation result demonstrates that the self-excited vibration 

probably takes place on the low rail. Fig. 5 shows the variations of the normal contact 

forces in time domain. The normal contact force is the sum of normal contact pressure 

in the contact zone in the direction perpendicular to the contact surface. When the 

wheelset negotiates a curved track, the contact point between the outer wheel of the 

wheelset and high rail is at the flange root of the wheel, and the contact point between 

the inner wheel and low rail is at the center of the wheel tread (Fig. 3c). These contact 

differences lead to the average normal load of around 110 kN on low rail and 80 kN on 

high rail. The normal contact forces between the wheels and rails when the friction 

coefficient µ = 0 are shown in Fig. 5a. It can be found that the oscillation amplitude of 

normal contact forces is very small. Fig. 5b shows the normal contact forces between 

the wheels and rails when friction coefficient µ increases to 0.45. Comparing Fig. 5b 

with Fig. 5a, it can be found that with the increase of the friction coefficient µ, the 

oscillation amplitude of normal contact force on the low rail significantly increases. The 

oscillation amplitude of normal contact force on the high rail increase slightly when µ 

becomes 0.45. It can be observed that the variations of the normal contact forces are 

consistent with the changes of the vibration accelerations. This phenomenon 

demonstrates that the friction induced self-excited vibration of the wheelset-track 

system can lead to fluctuation of the normal contact force. 

To further analyze the correlation between the self-excited vibrations and the 

fluctuation of the normal contact force, the power spectral density (PSD) analyses is 

made. Fig. 6 shows the PSD results of unstable vibration accelerations on the rail 

surface in the normal direction. The unstable vibration on the low rail is characterized 

by one main frequency of 407.71Hz as shown in Fig. 6a. The unstable vibration on the 

high rail is characterized by one main frequency of 415.03Hz (Fig. 6b), which is slightly 

different from the main vibration frequency of the low rail. Fig. 7 shows the PSD of the 

normal contact force. The main vibration frequencies of the normal contact force on low 

and high rails are 407.71Hz (Fig. 7a) and 415.03Hz (Fig. 7b), respectively. It can be 

found that the main unstable vibration frequencies of the normal contact forces are the 

same as the frequencies of unstable vibration accelerations. This phenomenon also 



demonstrates that the oscillation of normal contact force is induced by self-excited 

vibration of the wheel and rail. 

 

(a)

  

(b)

  

(c)

 

Fig. 4. Vibration acceleration of the rail surface: (a) low rail surface with different 

friction coefficient; (b) high rail surface with different friction coefficient; (c) a 

comparison between the high rail and low rail surfaces. 
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Fig. 5. Normal contact force between the wheel and rail: (a) friction coefficient µ = 0; 

(b) µ = 0.45. 

 

In the railway research community, it is generally accepted that fluctuating friction 

work results in undulant wear of rails [7, 30]. Therefore, the friction work rate approach 

is useful in studying corrugation formation in relation to the self-excited vibration. 

Brockley [14] developed a wear equation of rails. A modified version of this equation 

expressed in terms of wear volume per unit of time is 

)( CHKw −=  

where w  is wear volume per unit of time, K  is the wear constant, H  is the friction 

work rate (H = FV), F is the creep force, V is the relative velocity and C  is the 

durability friction work rate. 

When the lateral creep force F is saturated, F = µN, where µ is the friction 

coefficient between the wheel and rail and N is the normal contact force. Lateral 

velocity of the wheelset vV ×=ψ , where ψ  is the angle of attack of the wheelset and 

v  is the forward speed of the wheelset. In the transient dynamics simulation process ψ , 
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v  and µ are set to constant. From Figs. 4 and 5, it is found that when self-excited 

vibration occurs, normal contact forces between the wheels and rails fluctuate at the 

same frequencies. Therefore it can be concluded that friction work rate H  fluctuates 

when self-excited vibration occurs. According to Brockley [14], such a fluctuating 

friction work rate can result in rail corrugation. 

 

(a)

   

(b)

 

 

Fig. 6. PSD of the vibration acceleration of the rail surface shown in Fig. 4: (a) low rail; 

(b) high rail. 

 

In the present work, the vibration frequency of the normal contact force on the low 

rail is 407.71Hz, and on the high rail is 415.03Hz. The wave length of the 

corresponding rail corrugation are lLow= 47.7mm on the low rail and lHigh = 46.8mm on 

the high rail (forward speed of the vehicle v = 70km/h), which is a short wave length 

corrugation. Furthermore, from Fig. 5b, it can be found that the oscillation amplitude of 

the normal contact force on the low rail is significantly greater than that on the high rail. 
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It may be inferred that a short wave length rail corrugation on tight curves most 

probably takes place on the low rail.  

 

(a)

   

(b)

 

 

Fig. 7. PSD of the normal contact force shown in Fig. 5b: (a) low rail; (b) high rail. 

 

 

Fig. 8. Short pitch corrugation on the low rail of the curved track in Beijing metro: wave 

length of the rail corrugation lLow≈ 0.046m. 
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In railway lines, severe corrugations usually occur on curved tracks, especially on 

the low rail [31]. Fig. 8 shows short pitch corrugations on the low rail of the curved 

track with a radius of 300m in Beijing metro. The average running speed of the 

measured section is about 70 km/h. It can be found that the wave length of the 

corrugation is about 46mm. The simulation result is very close to the measured result. 

 

3.2 Mode shapes of unstable vibrations on a tight curve 

Finite element complex eigenvalue analysis is thought to be an effective method 

available to predict unstable propensity of friction sliding systems [28]. In the present 

work, finite element complex eigenvalue analysis is also applied to study stability of the 

wheelset-track system due to the saturated creep force coupling. For the wheelset-track 

system shown in Fig. 3, the complex eigenvalue analysis shows that there is one 

unstable mode when friction coefficient µ = 0.45. Fig. 9 shows the unstable mode shape. 

It is seen that self-excited vibration probably takes place on the low rail and the wheel. 

This is consistent with the transient dynamic analysis results. The complex eigenvalue 

analysis predicts that the unstable frequency of the wheelset-track system is 463.69Hz 

as shown in Fig. 10. The wave length of rail corrugation on the low rail lLow= 41.9mm 

when forward speed of the vehicle v = 70km/h. Comparing the dynamic analysis result 

with the complex eigenvalue analysis result, it can be found that the difference between 

the unstable vibration frequencies (407.71Hz and 463.69Hz) is approximately 10%. 

This is because the complex eigenvalue analysis and the transient dynamic analysis use 

different methods to solve the motion equation of the friction system. The complex 

eigenvalue analysis calculates the general solution of the equations of motion by using 

the subspace projection method. This is a frequency domain approach. One the other 

hand, the transient dynamic analysis uses the implicit time integration to calculate the 

dynamic response of the friction system in the time domain. The two approaches are 

known to produce different results that should not be far away from each other, which is 

confirmed the above results of frequencies. 

Based on the transient dynamic simulation results, the complex eigenvalue analysis 

results and the measured data on Beijing metro, it can be concluded that self-excited 

vibration induced by the saturated creep force is probably responsible for rail 

corrugation. And the self-excited vibration induced short wave length rail corrugation 

most probably takes place on the low rail when the wheelset negotiates a tight curved 

track. 



 

Fig. 9. Mode shape of unstable vibration on a tight curve track, µ = 0.45, unstable 

vibration frequency fR = 463.69Hz, damping ratio ζ = -0.02163. 

 

 

Fig. 10. Unstable frequency of vehicle travelling on a tight curve track, µ = 0.45, fR = 

463.69Hz, ζ = -0.02163. 

 

3.3 Transient dynamic analysis of the self-excited vibration of the wheelset-track 

system on a straight track 

Trains undergo very large longitudinal traction forces or brake forces when they 

are accelerated or are braked. If these longitudinal traction forces or brake forces 

become saturated, that is, equal to the normal forces multiplied by the dynamic 

coefficient of friction, these saturated creep forces also can induce self-excited vibration 

of the wheelset-track system. In the transient dynamic simulation process, the initial 

translational and rotational velocities of the wheelset are 120km/h and 79.3651rad/s (the 

nominal diameter of the wheelset is 840mm). A translational acceleration of 0.55m/s
2
 is 

applied on the wheelset to simulate the speed up process of the vehicle. There is no  
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(a)

 

 

(b)
 

 

  

 (c)
 

 

Fig. 11. Transient dynamic simulation results of the wheelset-track system on a straight 

track: (a) vibration accelerations on the left and right rail surface; (b) variation of the 

vibration acceleration on the left rail surface; (c) variation of the normal contact force. 

 

external excitation applied on the wheelset and the track. Fig. 11 shows the transient 

dynamic simulation results of the wheelset-track system on a straight track. When the 

wheelset travels on a straight track, the contact conditions between the wheelset and the 

rails are exactly symmetrical. Therefore, the vibration response of the left and the right 
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rails are almost the same as shown in Fig. 11a. Fig. 11b shows the vibration 

accelerations of the left rail when friction coefficient µ = 0 and 0.45. It is seen that the 

self-excited vibration of the rail can be induced by the saturated creep force. Fig. 11c 

shows the variation of the normal contact force between the wheelset and the left rail. It 

can be found that the oscillation amplitude of the normal contact force on the left rail 

increase significantly when there is friction at the wheelset-rail interface. The main 

unstable vibration frequency of rail surface and the normal contact force is 471.19Hz as 

shown in Fig. 12a and b. The wave length of corrugation on tangent tracks is evaluated 

to be l = 70.7mm at the speed of 120km/h.  

 

(a) 

  

(b)

 

 

Fig. 12. PSD of the transient dynamic simulation results: (a) PSD of the vibration 

acceleration shown in Fig. 11b; (b) PSD of the normal contact force shown in Fig. 11c. 

 

3.4 Mode shapes of unstable vibrations on a straight track 

The complex eigenvalue analysis shows that there are two unstable frequencies 

(264.74Hz and 448.49Hz) when the wheelset travels on a straight track. The mode 
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shapes of unstable vibrations are shown in Fig. 13. From Fig. 13a, it is seen that self-

excited vibration most probably takes place on the wheel. From Fig. 13b, it is seen that 

self-excited vibration also probably takes place on the rail. It is found that the mode 

shown in Fig. 13b has a damping ratio of ζ = -0.0052. This damping ratio is the larger 

one (in absolute value) in these two damping ratios of unstable modes and suggests that 

the mode shown in Fig. 13b occurs more easily. The vibration frequency of this 

unstable mode is 448.49Hz (Fig. 14). It is fairly close to the frequency from the 

transient dynamic analysis (471.19Hz). The wave length of corrugation on tangent 

tracks is evaluated to be l = 125.9mm for the unstable frequency fR = 264.74Hz at a 

speed of 120km/h and l = 74.3mm for the unstable frequency fR = 448.49Hz at a speed 

of 120km/h. 

(a)

 

(b)

 

Fig. 13. Mode shape of unstable vibration on a straight track, µ = 0.45: (a) fR = 

264.74Hz, ζ = -0.0035; (b) fR = 448.49Hz, ζ = -0.0052. 



 

Fig. 14. Unstable frequencies of vehicle travelling on straight track, µ = 0.45, fR = 

264.74Hz and 448.49Hz; ζ = -0.0035 and -0.0052. 

 

(a)

 

(b)

 

Fig. 15 Evolution of the vibration accelerations on the rail surfaces at different friction 

coefficient: (a) Low rail; (b) High rail. 
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3.5 Parameter sensitivity analysis 

In this section, the dynamic transient simulations are performed for the parameter 

sensitivity analysis of the wheelset track system. Because severe corrugations usually 

occur on curved tracks, the parameter sensitivity analysis is focused on the curved track 

model. 

 

(a)

 

(b)

 

Fig. 16 Variation details of the vibration accelerations on the rail surfaces with different 

friction coefficient: (a) Low rail; (b) High rail. 

 

3.5.1 Effect of friction coefficient on self-excited vibration of the wheelset-track system 

on a tight curve 

The friction coefficient has a significant effect on self-excited vibration of the 

wheelset-track system. Fig. 15 shows the evolution of the vibration accelerations on the 

low (Fig. 15a) and high (Fig. 15b) rail surfaces with different friction coefficient µ. It is 

seen that with the increase of the friction coefficient, the oscillation amplitude of the 
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vibration accelerations increase significantly. Fig. 16 shows the variation details of the 

vibration accelerations on the low (Fig. 16a) and high (Fig. 16b) rail surfaces. When the 

friction coefficient increases from 0 to 0.15, the oscillation amplitude of the vibration 

accelerations increase slightly. When the friction coefficient increases from 0.15 to 0.3 

or from 0.3 to 0.45, the oscillation amplitude of the vibration accelerations increase 

significantly. This phenomenon indicates that the friction induced self-excited vibration 

of the wheelset-track system is inconspicuous when the friction coefficient at a low 

level. And when the friction coefficient reaches a larger value, the self-excited 

vibrations of the wheelset-track system will become obvious. Keeping the friction 

coefficient at a low level may help to eliminate rail corrugation. Fig. 17 shows the 

variation of the self-excited vibration frequencies with different friction coefficient. It 

can be observed that with increasing friction coefficient, the frequency corresponding to 

the self-excited vibration decreases slightly. This suggests that the friction coefficient 

has a little influence on the frequency of self-excited vibration.  

 

 

Fig. 17 Vibration frequency variation with friction coefficient. 

 

3.5.2 Influence of damping of the rail fastener 

In the present work, the dynamic transient simulations are performed for different 

levels of damping of the rail fastener. Because severe corrugations usually occur on 

curved tracks, the parameter sensitivity analysis is focused on the curved track model. 

The simulation results show that the rail fastener damping has a significant effect on 

self-excited vibration when the wheelset negotiates a curved track. Fig. 18 shows the 

variation of the normal contact force at several different levels of rail fastener damping 

on a curved track. It can be found that with the increase of the rail fastener damping 

(from half of its normal value increase to its normal value) the oscillation amplitude of 
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the normal contact forces on low (Fig. 18a) and high (Fig. 18b) rails significantly 

decreases. This result suggests that rail fastener damping can reduce the oscillation 

amplitude of normal contact force between the wheel and rail. Increasing the damping 

of the rail fastener may help to suppress rail corrugation. However, the oscillation 

amplitude of normal contact force decrease slightly when the rail fastener damping 

increase to two times its normal value. This phenomenon demonstrates that the rail 

fastener damping cannot eliminate all self-excited vibrations of the wheelset-track 

system. 

 

(a) 

 

 

(b)

 

 

Fig. 18. Variation of the normal contact force with rail fastener damping on curved 

track, (a) low rail; (b) high rail. 

 

3.5.3 Influence of the stiffness of the rail fastener 

Fig. 19 shows the variation of the normal contact force at several different levels of 

rail fasteners stiffness on a curved track. It can be found that the stiffness of the rail 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

100

125

150

 

 C
RV

=3.0×10
4
Ns/m, C

RL
=3.2×10

4
Ns/m      C

RV
=4.0×10

4
Ns/m, C

RL
=4.2×10

4
Ns/m

 C
RV

=5.0×10
4
Ns/m, C

RL
=5.2×10

4
Ns/m      C

RV
=7.0×10

4
Ns/m, C

RL
=7.2×10

4
Ns/m

N
o

rm
a
l 

co
n
ta

ct
 f

o
rc

e 
(k

N
)

Time (s)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

70

80

90

 

 C
RV

=3.0×10
4
Ns/m, C

RL
=3.2×10

4
Ns/m      C

RV
=4.0×10

4
Ns/m, C

RL
=4.2×10

4
Ns/m

 C
RV

=5.0×10
4
Ns/m, C

RL
=5.2×10

4
Ns/m      C

RV
=7.0×10

4
Ns/m, C

RL
=7.2×10

4
Ns/m

N
o
rm

al
 c

o
n

ta
c
t 

fo
rc

e 
(k

N
)

Time (s)



fastener has a small influence on the oscillation amplitude of the normal contact force. 

Fig. 19a shows the variation of the normal contact force on the low rail. It is seen that 

with the increase of the rail fastener stiffness, the oscillation amplitude of normal 

contact force decreases slightly. Fig. 19b shows the variation of the normal contact 

force on the high rail. It also can be observed that the rail fastener stiffness has a small 

influence on the normal contact force on the high rail.  

 

(a) 

 

(b)

 

 

Fig. 19. Variation of the normal contact force with rail fastener stiffness on curved 

track, (a) low rail; (b) high rail. 

 

4. Conclusions 

This paper presents a numerical study of wear-type rail corrugation based on 

saturated creep force-induced self-excited vibration of a wheelset-track system. Two 

finite element models consisting of a wheelset, rails, sleepers and support springs and 

dampers are established and analyzed using the transient dynamic and complex 
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eigenvalue methods. In the models, it is assumed that creep forces between wheels and 

rails are saturated when the wheelset negotiates a sharp curve, or travels on a straight 

track during acceleration or braking. The following conclusions can be drawn. 

(1) The saturated creep forces between the wheel and rail can induce self-excited 

vibration of the wheelset-track system. When the self-excited vibration occurs, normal 

contact force between the wheel and rail fluctuates at the same frequency. Such a 

fluctuating normal contact force can result in rail corrugation. 

(2) The dynamic transient and complex eigenvalue analyses results show that the 

self-excited vibration induced short wave length rail corrugation on tight curves most 

probably takes place on the low rail.  

(3) The parameter sensitivity analysis shows that the friction coefficient and rail 

fastener damping have significant effect on the self-excited vibration induced rail 

corrugation. The stiffness of rail fastener has a small influence on the self-excited 

vibration induced rail corrugation. 
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