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ABSTRACT 

This paper reviews some of the research that has been carried out at the University of Liverpool where 

the Flight Science and Technology Research Group has developed its Heliflight-R full-motion research 

simulator to create a simulation environment for the launch and recovery of maritime helicopters to 

ships. HELIFLIGHT-R has been used to conduct flight trials to produce simulated Ship-Helicopter 

Operating Limits (SHOLs). This virtual engineering approach has led to a much greater understanding 

of how the dynamic interface between the ship and the helicopter contributes to the pilot’s workload 

and the aircraft’s handling qualities and will inform the conduct of future real-world SHOL trials. The 

paper also describes how modelling and simulation has been applied to the design of a ship’s 

superstructure to improve the aerodynamic flow field in which the helicopter has to operate.  The 

superstructure aerodynamics also affects the placement of the ship’s anemometers and the dispersion 

of the ship’s hot exhaust gases, both of which affect the operational envelope of the helicopter, and both 

of which can be investigated through simulation.  

 

1. INTRODUCTION 

Modern combat ships, e.g. frigates and destroyers, routinely operate with maritime helicopters. The 

challenge of landing the helicopter in bad weather is acknowledged as being both demanding and 

dangerous; moreover, if the flying conditions are too difficult the helicopter will not be cleared to take 

off, and an important component of the ship’s capability will be lost [1].  The maritime helicopter is 

often regarded as one of the most important tactical systems on the ship and is used to perform a variety 

of different roles, including anti-submarine warfare, surveillance, troop-transfer and supply 

replenishment at sea. While these operations are now considered routine, the ship-helicopter dynamic 

interface still presents one of the most challenging environments in which a helicopter pilot will operate. 

As well as a restricted landing area and a pitching, rolling and heaving deck, the pilot must also contend 

with the presence of a highly dynamic airflow over the flight deck. This phenomenon, known as the 

ship’s “airwake”, is caused by the air flowing over and around the ship’s superstructure as a result of 

the combined effect of the prevailing wind and the forward motion of the ship. 

There has been considerable research into understanding the ship’s airwake and how it affects a 

helicopter’s handling qualities, particularly the use of unsteady computational fluid dynamics and 

piloted simulation of the helicopter launch and recovery. Observations of the airwake characteristics 

and their effects on flying difficulty and pilot workload have also led to research into how a ship’s 

superstructure affects the airwake. Other aerodynamic factors which affect helicopter operations are the 

accuracy of the ship’s anemometers when they are immersed in the ship’s airwake, and the dispersion 

of the ship’s exhaust gases through mixing with the turbulent airwake.  

The great majority of the research into understanding ship airwakes and how they affect a helicopter 

has been conducted through modelling and simulation; both computer-based and experimental.  The 

main purpose of this paper is to describe the contribution that the Flight Science and Technology 

Research Group at the University of Liverpool has made to the UK’s development of modelling and 

simulation of the helicopter-ship dynamic interface [e.g. 2-5]. 
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2. BACKGROUND 

As outlined above, the task of landing a helicopter to a ship in bad weather is both dangerous and 

difficult. Ship-Helicopter Operating Limits (SHOL) for a given ship and helicopter combination are 

normally determined during the ship’s First of Class Flight Trials (FOCFT) in which the ship and the 

helicopter are put to sea and test pilots perform numerous launch and recovery tasks for winds of 

different strength and direction. Figure 1 shows an example SHOL diagram where the limits of wind 

strength and direction, relative to the deck, are indicated on a polar chart.  

Figure 1 Example SHOL showing wind over deck envelope for a UK  
port-side landing manoeuvre 

The chart is for a UK standard port-side landing manoeuvre, Fig. 2, where the pilot first positions the 

helicopter parallel to and alongside the port side of the ship, matching the ship’s speed. The aircraft is 

then translated sideways across the deck, with the pilot’s eye-line at about hangar height until positioned 

above the landing spot; during a quiescent period in the ship’s motion the pilot will descend to the deck 

and land the aircraft. It can be seen for the case shown in Fig. 1, that for a headwind the helicopter is 

still able to operate with a relative wind speed up to 50 knots, while this reduces to some 20-30 knots 

for oblique winds, partly because of the complex unsteady flows being shed from the ship’s 

superstructure and partly because of the control authority required to overcome the side winds. The 

lower permissible winds from astern are because they push the helicopter towards the hangar and they 

also reduce the effectiveness of the tail rotor. The asymmetry in the SHOL is partly due to the translation 

being from the port side regardless of whether the winds are from the starboard (Green) or port (Red). 

In practice it is very difficult in a FOCFT to obtain a full range of wind over deck (WOD) conditions in 

the chosen trial period and the costly and time-consuming trails are often incomplete. While various 

techniques can be used to fill the gaps in the SHOLs, these normally err on the conservative side and 

lead to a restricted SHOL.  More recently, a method of using shore-based hover trials and ship airwake 

data to construct a “candidate flight envelope” that can be assessed in shorter at-sea trials has been 

developed to support the Dutch navy [6]. 
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Figure 2 Final stages of the recovery of a Royal Navy helicopter to a single spot frigate. 

 

Significant research into the air flow over ship superstructures and the effect on maritime helicopter 

operations began to emerge in the mid-1990s, e.g. [7]. In the US the Joint Shipboard Helicopter 

Integration Process (JSHIP) was established to support the interoperability of helicopters from the US 

Navy, Army and Air Force with a range of ships. Conducting the at-sea trials for the multiplicity of 

possible ship/helicopter combinations is prohibitively expensive and time-consuming, so a major task 

of JSHIP was to develop a high-fidelity simulation capability, including use of the NASA Ames Vertical 

Motion Simulator, to demonstrate that realistic piloted launch and recovery missions could be 

conducted for different aircraft and ship combinations and simulated SHOLs could be determined. 

Meanwhile, in 2003 the UK Ministry of Defence began funding a project to develop a simulation 

capability for predicting SHOLs using the Merlin helicopter training simulator at the Royal Navy Air 

Station in Culdrose, Cornwall [8]. The Ship/Air Interface Framework (SAIF) project, as it is called, has 

created a federated computer architecture where the different elements specific to ship operations (e.g. 

motion, visuals and airwake for different ships, and different aircraft types) could be flexibly used with 

the Merlin simulator. Having created the computer architecture with the ability to implement different 

flight models this made it possible to include the simulation of maritime unmanned vehicles that did 

not require the use of the motion base [8]. The SAIF project has conducted simulated SHOL trials for 

a Merlin operating to a Type 23 frigate and a Type 45 Destroyer [9]. 

Separately, within the UK, the Flight Science and Technology Research Group at The University of 

Liverpool was established in 2000, central to which was research into rotorcraft flight dynamics and 

control, including flight simulation using a motion-base.  Flight simulation research began with a single-

seat, full motion flight simulator, HELIFLIGHT [10] which was built with a technical and functional 

specification that would allow research into flight handling qualities, flight mechanics, flight control 

system design, aircraft design concepts and cockpit technologies.  As a research simulator it provided 

greater availability and flexibility than a qualified naval training simulator and also allowed access to 

the simulator’s motion system controllers. In 2008 a second, larger and more capable simulator, 

HELIFLIGHT-R, was installed [11] by Advanced Rotorcraft Technology (ART), shown in Fig. 3 (the 

smaller single-seat HELIFLIGHT simulator can be seen in the background). 
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Figure 3 HELIFLIGHT-R simulator – internal and external views 

 

HELIFLIGHT-R is also a full-motion research flight simulator which has a three channel 220 x 70 

degree field of view computer visual system, a six-degree of freedom motion platform, a four-axis force 

feedback control loading system and an interchangeable crew station. Flight mechanics models are 

developed in either FLIGHTLAB or Matlab/Simulink and the current aircraft library features a range 

of fixed wing, rotary wing and tilt-rotor aircraft. The outside world imagery is generated using Presagis’ 

Creator Pro software to produce either geo-specific or custom visual databases. Using Presagis’ VEGA 

Prime software, the Liverpool group has generated its own run-time environment, LIVE, which allows 

the simulator operator to change environmental effects such as daylight, cloud, rain and fog, along with 

maritime effects such as sea state, ship exhaust and rotor downwash on the sea surface. A heads-up 

display can either be generated using an LCD screen with a beam splitter located above the instrument 

panel or projected directly onto the inside surface of the dome. The motion and visual cues, together 

with realistic audio cues, provide a powerful immersive environment for a pilot. Data from the flight 

models, e.g. aircraft position, accelerations, attitudes etc., together with pilot control inputs can be 

monitored in real-time and recorded for post-flight data analysis, while in-cockpit cameras provide 

audio and video recordings of a flight, together with computer-generated “chase” views of the aircraft. 

Amongst the flight simulation projects that were initiated at Liverpool in the early 2000’s was research 

into the ship-helicopter dynamic interface.  As well as developing the flight simulation capability, the 

research was also concerned with the effect of the ship superstructure geometry on the airwake, and 

hence on the potential flight envelope of the helicopter.  Figure 4 shows the mean air flows over three 

ship geometries for a headwind, generated using Computational Fluid Dynamics (CFD). The ships are 

a Type 23 frigate (133m long), a Type 45 destroyer (152m) and a Wave Class Tanker (197m). For each 

ship the path lines show the chaotic air flow over the aft landing deck and it should also be noted that 

these flows are highly unsteady.  

It is this research capability and experience that has enabled The University of Liverpool to support the 

UK’s SAIF project and current and future FOCFTs, as well as providing practical ship design guidance.  

The following sections will describe aspects of this research. 
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Figure 4 Mean pathlines over (from top) Type 23 Frigate, Wave Class Tanker, 
Type 45 Destroyer. 

 

 

3. HELICOPTER FLIGHT SIMULATION AT THE SHIP-

HELICOPTER DYNAMIC INTERFACE  

The creation of a full-motion flight simulation environment for a helicopter operating to a ship requires: 

a simulator, in this case the HELIFLIGHT-R shown in Fig. 3; a helicopter flight dynamics model; a 

ship visual model, such as those shown in Fig. 4; a CFD-generated airwake; a ship motion model and a 

visual scene. 

 
Figure 5 Seahawk helicopter model showing location of Airload Computation Points 

 

The FLIGHLTAB modelling and simulation software has a library with a number of flight models for 

both rotary and fixed wing aircraft. Figure 5 shows the FLIGHTLAB Generic Rotorcraft, which has 

been configured to represent a Sikorsky SH-60B Seahawk helicopter model that was used, for example, 

by Hodge et al [4]. The SH-60B was selected because of the availability of engineering data in the open 

literature for that type of helicopter [12]. The FLIGHTLAB Generic Rotorcraft model comprises the 

following major subsystem components: (1) individual blade-element main-rotor model including look-

up tables of non-linear lift, drag and pitching moment coefficients stored as functions of incidence and 

Mach number; (2) a Bailey disk tail-rotor model, (3) finite-state Peters-He dynamic inflow model; (4) 

10 points on each 
rotor blade

Vertical 
tail

Starboard 
& port stabilator

Tail rotor 
hub

• Airload Computation Point (ACP)
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separate aerodynamic look-up tables for the fuselage, vertical tail and the port and starboard stabilator 

forces and moments stored as nonlinear functions of incidence and sideslip; (5) turbo-shaft engine 

model with a rotor-speed governor; (6) primary mechanical flight control system and Stability 

Augmentation System (SAS) models including sensor and actuator dynamics; and (7) a landing gear 

model to provide deck reaction cues on touchdown. 

 

The Airload Computation Points (ACP) indicated in Fig. 5 are where the three-dimensional velocity 

components of the air flow are applied to the helicopter model to create the forces and moments that 

are imposed on the aircraft by the unsteady airwake. The velocity components (u,v,w) created by the 

CFD are stored in a lookup table at fixed positions in space (x,y,z) and at different times (t). The x,y,z 

locations in the lookup table have to be translated to the locations of the ACPs shown in Fig. 5, including 

those along the rotating blades of the main rotor.  

Early development at Liverpool used steady-state CFD airwakes, and the challenge was to integrate the 

velocity field with the helicopter flight mechanics model so that the aerodynamic loadings could be 

applied correctly. This work was reported by Roper et al [2] but while it was a success, and the pilots 

reported a more realistic flying experience than without the airwake included, they also reported that 

the fidelity was compromised by not having the ‘bumping’ associated with unsteady aerodynamic loads.   

As more powerful computing resources become available, unsteady CFD was used to create the ship 

airwakes, and more realistic and complex ship geometries were employed. A challenge for the CFD is 

not just to create the unsteady velocity field as the air flows over the ship superstructure, but also to 

maintain the unsteadiness in the ship airwake as it passes over the ship.  The turbulence modelling 

technique that has been adopted for the airwake simulation is Detached Eddy Simulation (DES) [3].  

DES is a hybrid approach to turbulence modelling where Large Eddy Simulation (LES) is used away 

from the surfaces of the ship to directly compute the larger scale turbulent structures, while closer to 

the surface Unsteady Reynolds-averaged Navier-Stokes (URANS) is used.  LES is computationally 

expensive, especially so if applied close to the walls where the computational grid has to be very fine 

to capture the small-scale turbulent structures, so a URANS solution is applied near to the wall.  DES 

therefore combines the two methods and has been found to be particularly effective for bluff bodies 

with sharp edges, such as a ship’s superstructure, where the edges where the flow separates from the 

surface are well-defined.  Figure 6, extracted from Hodge et al [4], shows how the velocity in the flow 

at a particular point over the landing deck changes with time for URANS and DES. As can be seen, the 

DES solution is able to maintain the unsteadiness in the flow, while the velocity produced by the 

URANS solution is damped out and converges onto a steady-state solution. 

 

Figure 6 Time history of velocity at a point in the flow above the flight deck using URANS and DES [4] 
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As reported by Forrest & Owen [3], CFD airwakes of realistic ship geometries have been produced and 

validated against wind tunnel and at-sea data. The wind tunnel data was provided by the National 

Research Council of Canada who used hot wire anemometry over a model of a generic simplified ship, 

known as the Simple Frigate Ship. The at-sea data was provided by the UK Defence Science and 

Technology Laboratory and was obtained using ultrasonic flowmeters placed around the flight deck of 

a Type 23 frigate. More detail of the CFD methodology and validation can be found in [13].  

The complex unsteady airwakes have been created using Ansys Fluent, a commercial CFD code. A ship 

model, such as those shown in Fig. 4, is imported into the Ansys ICEM mesh generation software, so 

that it can be 'cleaned' to repair any erroneous surfaces and to remove small features to create geometry 

suitable for meshing. Features such as small antennae, railings and other small deck clutter have little 

effect on the airwake but if not removed will increase the complexity and hence the run-time of the 

CFD. Generally, objects that are less than 0.3m in diameter are removed. A surface mesh is then applied 

to the ship geometry and this is ‘grown’ away from the ship into the computational domain which 

surrounds the ship. The surface and volume mesh for a Type 23 frigate can be seen in Fig. 7. 

The DES solution is created at 100 Hz, i.e. (u,v,w) velocity components are calculated every 0.01 

seconds, but for implementation within FLIGHTLAB the solution is down-sampled to 0.04 seconds. 

The (u,v,w,t) data of the airwake is then stored in a lookup table that coincides with the volume within 

which the helicopter will fly; Figure 8 shows the domain around the flight deck of a Type 23 frigate in 

which a helicopter will fly when executing the port-side landing manoeuvre illustrated earlier in Fig. 2. 

For simulated SHOLs, where winds of different directions and strengths are required, it is possible to 

scale the velocities from one wind speed to another using Reynolds and Strouhal scaling, as 

demonstrated by Scott et al [14], but a separate airwake has to be computed for each wind direction. 

Figure 7  Unstructured CFD mesh for Type 23 frigate 

Figure 8  Structured grid for airwake lookup table 
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Ship motion is also required for the simulation, so the pilot has to contend not just with the unsteady 

forces and moments on the helicopter, but also the moving landing spot. Ship motion is determined by 

the ship design, the sea surface waves and the relative motion of the two.  A ship does not therefore 

have a particular defined motion so what is required for the simulation is a motion that is representative 

of a particular ship and sea state, and is realistic when viewed by the pilot. While ship motion can be 

calculated by bespoke software models, the approach used most often at Liverpool has been a more 

pragmatic one, to take a recorded motion for a ship and to scale it according to the ship size and sea 

state so it has representative displacements and frequency and, importantly, has the naturally occurring 

quiescent periods when the motion subsides somewhat [4]. An example of ship motion data in the roll, 

pitch and heave axes measured at the ship’s centre of gravity is shown in Fig. 9. The motion can be seen 

to have the naturally occurring quiescent period and it is this that the pilot waits for to execute the final 

landing phase.  In a recent study by Scott et al [15] into pilot workload when landing to ships of different 

sizes taking account of both the different airwakes and ship motion, the motion was computed for each 

ship using ShipMo3D, a ship motion code developed by the Canadian Department of National Defence 

[16], and made available to the University of Liverpool. 

 
Figure 9  Example of simulated ship motion in sea state six conditions measured at the ship’s 

centre of gravity [4] 

  

 

4. SIMULATED SHIP-HELICOPTER OPERATIONAL LIMITS 

Having created a simulation environment, a programme of research was conducted at Liverpool to 

establish a simulated SHOL, initially for simplified ship and airwake models [2], and then with a Type 

23 frigate and a detailed time-accurate unsteady airwake [4]. For each ship, airwakes were computed 

for a 40 kt wind coming from different angles relative to the ship around the 360° azimuth; the wind 

strength was then scaled up and down to create a set of airwakes for wind speeds from 20 to 50 kts.  

The simulated flight test programme typically consisted of a series of approach and deck landing tasks 

for different winds over deck, usually in increments of 15° and 5 kts. During each experiment an 

experienced (former) Royal Navy (RN) test pilot was instructed to fly the deck landing task using the 

standard RN technique shown in Fig. 2. This involves flying the helicopter to a stabilised hover on the 

port side of the ship, then manoeuvring sideways across the deck to a position above the landing spot 

and waiting there for a quiescent period in the ship’s motion before executing a vertical landing. Three 

Mission Task Elements (MTEs) were identified from this description of the deck landing mission: (i) 

Sidestep manoeuvre; (ii) Station keeping (precision hover) above the flight deck; and (iii) Vertical 

landing.  
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Conducting the deck landings in a controlled simulation environment allows test points to be well 

defined and to be repeated. As well as recording the difficulty of the landing task, either on the Deck 

Interface Pilot Effort Scale (DIPES) [17] or the Bedford Workload rating scale [18], it is also possible 

to record pilot comments, as well as pilot control inputs, helicopter flight dynamics and motion platform 

dynamics. It is also possible to interrogate the CFD flow field when airwake disturbances are of interest.  

More detail of simulated SHOL testing can be found in [4] and [7]. While simulated SHOLs are as yet 

insufficiently validated and cannot therefore currently replace at-sea FOCFT data, they can be used to 

explore the flight envelope and to recommend the wind over deck conditions where at-sea testing should 

be concentrated. A recent NATO report [19] describes the current state of the art with respect to the use 

of modelling and simulation applied to ship-helicopter operations. The lack of validation between the 

at-sea experience and the simulation is acknowledged as being the main challenge. 

 

Figure 10  Deck Interface Pilot Effort Scale (DIPES)  

The previous paragraph refers to two rating scales that are used to quantify pilot workload.  The Bedford 

scale is a 10-point scale [18]; 1 indicating insignificant workload, 10 indicating that the pilot had to 

abandon the task. In the Bedford scale the pilot is asked to consider how much spare capacity they have 

while performing the assigned task, spare capacity being connected to the pilot’s ability to perform 

secondary tasks, such as maintaining mission awareness, monitoring aircraft systems or listening to 

radio communications; the primary task being to fly the aircraft through a particular manoeuvre or 

mission. The higher the workload generated by the primary task, the less spare capacity there is for 

attention to these secondary tasks. The Bedford scale is applicable to any task, but the DIPES, as its 

name suggests, was designed specifically for deck landings. The DIPES, Fig. 10, requires the test pilot 

to rate each landing based on workload, performance, accuracy and consistency. A DIPES rating of 3 

or less indicates that deck landings can be repeatedly achieved with precision and safety, under the 



10 
 

conditions being tested. A rating of 4 or 5 indicates the contrary and places that condition outside of the 

SHOL, thus prohibiting deck landings under those conditions. In addition to the detailed comments 

given by the pilot, a number of letter suffixes can also be assigned to each rating, to describe the cause 

of increased workload (e.g. ‘T’ for turbulence or ‘D’ for deck motion).  

The DIPES is used by many navies to construct SHOLs; an example of a simulated SHOL based on 

DIPES will be discussed in the next section.  The Bedford scale is used to assess how difficult a 

particular MTE is, e.g. hovering over the port-edge of the ship, and can be used to quantify the difficulty 

caused by the airwake at a particular location. This process has been useful in assessing the effect a 

particular feature on the ship’s superstructure may have on the helicopter, as will be discussed later.  

Earlier in the paper the importance of being able to compute airwakes with unsteady velocities was 

emphasised.  Figure 11, from Hodge et al [4] shows the workload ratings awarded by a pilot using the 

Bedford ten-point scale referred to above for a task of holding the aircraft in a hover position over the 

landing spot of a Type 23 frigate. The data is for headwinds, and for winds coming from 45° off the 

starboard bow (Green 45) for a steady-state CFD airwake, and an unsteady one. As can be seen, the 

pilot had to work much harder to maintain the aircraft’s position in the unsteady airwake, especially for 

the 45° wind, so confirming the importance of having an unsteady airwake for the flight simulation. 

 

 
Figure 11  Bedford workload ratings for a station-keeping task in steady and unsteady airwakes [4]. 

 

 

In terms of presenting to the simulator pilot an experience that is realistic and immersive, a fundamental 

requirement is the feedback, or cueing, that the pilot receives from the dynamics of the motion base and 

the visual scenery. While the need to have a motion base is not universally accepted, the importance of 

vestibular motion cues when a pilot is operating at high workload and the aircraft is at the limits of its 

control capacity can be demonstrated, especially when the visual cues are reduced in a degraded visual 

environment. Wang et al [20] conducted a series of ship landings and hover manoeuvres, using the 

Liverpool HELIFLIGHT-R simulator, where the outside scene was adjusted to be representative of 

daylight, twilight, fog and night. The importance of both the motion and visual cues was confirmed, 

and so too was the interdependence of the two.  Figure 12 show the pilot’s activity in the cyclic, 

collective and pedal controls while holding the helicopter in a hover position over the landing spot of a 

Type 23 frigate. In the daylight the pilot can use the visual references to hold position, but as the visual 

cues are degraded the pilot’s control movements display larger excursions without the vestibular motion 

cues.  
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Figure 12  Pilot control activity in (a) daylight and (b) fog, with and without motion [20]. 

 

 

 

5. USING FLIGHT SIMULATION TO ASSESS THE EFFECT OF SHIP 

SUPERSTRUCTURE DESIGN ON HELICOPTER FLYING 

QUALITIES 

To illustrate how flight simulation has been used to quantify the effect that a ship’s design can have on 

a helicopter’s operational envelope we present two cases: one for ship size, and the other for particular 

features of the ship superstructure.  

 

5.1. Ship Size 
 

Figure 13 shows the simulated SHOL diagrams for ± 90° winds for a SH-60B Seahawk conducting a 

RN port-side landing on a) a Type 23 frigate and b) a Wave Class Tanker, which were illustrated earlier 

in Fig. 4; the data was reported by Forrest et al in [5]. The left hand diagrams show the pilot’s DIPES 

ratings translated onto a polar diagram of wind speed and direction, while the right hand diagrams show 

the safe boundary drawn through the points. The solid line represents the limits defined by the DIPES 

ratings, while the dotted lines represent a boundary due to the limits of the tail rotor authority in a side 

wind. 

  

There is a lot of detail that can be drawn out of these diagrams, and this is supplemented by the recorded 

pilot control activity and commentary, as reported in [5]. The main observation from Fig. 13 is that the 

SHOL for the larger Wave Class ship is significantly more restricted than the smaller frigate, despite it 

having a larger flight deck. The reason for this is that the air flow over the ships creates unsteady vortical 

structures that are shed from the sharp edges of the superstructure, and the bigger the ship the bigger 
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and slower the vortices. The vortices are of a similar size to the helicopter main rotor, thereby creating 

unsteady moments on the helicopter, and of a frequency that can lead to pilot induced oscillations as 

the pilot tries to hold position by counteracting the unsteady loads on the aircraft.  

 

 

Figure 13  DIPES Ratings and SHOL Diagrams for a Type 23 Frigate and Wave Class tanker [5] 

The data in Fig. 14, which was obtained during the same trials as those reported in [5], are an example 

of how the pilot’s control activity yields further information about the effect of ship size on the 

helicopter; the graph shows a time-history of the pilot’s inputs to the pedal control while trying to hold 

a hover position over the landing spot (plot shows deviations from the control trim position).  The wind 

direction is 45° off the starboard (Green 45) and so the pilot is applying a biased input to the tail rotor 

to maintain heading. In the larger ship’s airwake it can be seen that there is more activity, shown by a 

higher number of pedal reversals being applied, and this represents greater pilot workload. 

Figure 14  Pilot pedal activity (+1 to -1) in the simulator while station-keeping above the landing spot 
of a Wave Class Tanker and a Type 23 frigate in a Green 45 wind [13] 



13 
 

5.2. Superstructure Features 
As mentioned earlier, oblique winds produce airwakes that are more challenging for the pilot, and 

Green winds in particular are problematic during a port-side landing approach. Figure 15 shows the air 

flow, as surfaces of iso-vorticity, over a simplified ship geometry in an oblique 45° wind.  

 

Figure 15  Visualisation of air flow over a simplified ship 
in oblique 45°winds by surfaces of iso-vorticity 

A fluctuating shear layer caused by the flow separating from the hangar vertical edge can be clearly 

seen. The other dominant features in the figure are the numerous vortical structures caused by the flow 

‘rolling up’ and shedding from the sharp edges, for example at the horizontal leading edge of the hangar.  

More importantly for the helicopter, particularly while off the port side and translating across the deck, 

are the large vortex structures being shed from the upper horizontal edges on the starboard side of the 

hangar; the significance of these is that they pass above the path taken by the helicopter and get drawn 

into the helicopter’s main rotor, causing significant unsteady moments. These flow features contribute 

significantly to the high pilot workload in Green winds.   

Kääriä et al [21] modified the horizontal hangar edge to interfere with the vortex shedding and then 

used piloted flight simulation to determine how this would affect helicopter loading and pilot workload.  

Figure 16 show three different modifications: a cut-out or notch, and two different side flaps. Figure 17 

shows pilot workload ratings for the original geometry and the three modifications; these were recorded 

in the simulator while the pilot maintained the helicopter in a stable hover above the landing spot for 

30 seconds in Green winds. The first thing to note in Fig. 17 is that the pilot has to work harder to 

maintain the helicopter over the landing spot as the wind speed increases, as might be expected.  More 

importantly, the three modifications have significantly reduced pilot workload, particularly the Notch 

modification with up to a 3-workload-rating reduction, while the side flaps typically show a reduction 

of one workload-rating.  Further understanding of the mechanisms responsible for the improvements is 

provided by examining the CFD and the various inputs to the pilot’s controls.  It is understood that ship 

geometry modifications may also affect other important characteristics such as radar cross section, but 

the significance of the work is that ship superstructure geometry can improve the flying environment 

for the helicopter and the pilot.  
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Figure 16 Simplified ship; a) Baseline; b) Notch; c) Side-Flap-1; d) Side-Flap-2 [21] 

 

 

 

Figure 17  Pilot workload ratings for 30 second hover over landing spot in Green 45° winds [21] 

 

6. NON-PILOTED FLIGHT ASSESSMENT OF SHIP 

SUPERSTRUCTURE DESIGN ON HELICOPTER LOADING 

At the core of the piloted motion-base flight simulation described above is the flight model, which is 

created using FLIGHTLAB, and the CFD-generated unsteady airwake; these two elements have been 

used together, without the motion simulator, to create a computer-based simulation tool that can also 

be used to assess the impact of ship superstructure designs on a helicopter. The Virtual Airwake 

Dynamometer, or Virtual AirDyn (VAD), as it is known, is a software analysis tool developed at the 

University of Liverpool [22]. During piloted real-time simulations, unsteady forces are generated on 

the aircraft causing it to move away from the trim condition and requiring the pilot to counteract the 

movement through the aircraft’s controls. In the VAD the helicopter is trimmed in the prevailing 

freestream conditions and is then placed at a selected point in the airwake and is fixed in that position. 

Because the helicopter is no longer trimmed for the conditions within the airwake, it experiences non-
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zero forces and moments imposed by the unsteady air flow, and it is these values that are recorded by 

the VAD. Therefore, using the VAD technique, the helicopter model becomes an instrument that 

measures the unsteady forces and moments imparted by the unsteady CFD airwake, providing a 

quantitative measure of the relative impact on the helicopter of the airwakes created by the different 

ship geometries. The helicopter model used in the VAD is again FLIGHTLAB’s Generic Rotorcraft 

configured to represent a Sikorsky SH-60B Seahawk.  

Typically, as for the piloted simulation described earlier, the unsteady airwake is computed for 30 

seconds and is interpolated onto a structured rectangular grid, as seen earlier in Fig. 8. The airwakes are 

calculated for a single wind speed, and for a range of wind angles. The method by which the VAD has 

been employed to compare ship airwakes is to carry out a translational approach beginning with the 

helicopter’s rotor hub located at the ship’s hangar height, one beam width from the landing spot, off the 

port edge of the ship. The helicopter is then held stationary with the rotor hub at several positions over 

the flight deck as shown in Fig. 18. 

Figure 18  Rotor hub fixed positions used to investigate ship airwakes  
with the Virtual AirDyn 

As with the application of FLIGHTLAB within the HELIFLIGHT-R flight simulator, the unsteady CFD 

airwake velocities are imposed onto the helicopter model at the ACPs shown earlier in Fig. 5. At each 

of the sampling locations over the ship, Fig. 18, the helicopter is held stationary and the time histories 

of the unsteady forces and moments at the helicopter’s centre of gravity are recorded over the full 30 

seconds of airwake data. The unsteady loads are then time-averaged to provide the mean forces and 

moments acting on the helicopter at each of the test points. 

A measure of the unsteady forces and moments is produced using a method in which Power Spectral 

Density (PSD) plots are generated from the time histories given by the VAD, and the square root of the 

integral between the limits 0.2 to 2Hz is used to represent the RMS loadings on the helicopter [22]. This 

analysis technique takes account of the fact that although the unsteady loads are imposed over a very 

wide frequency range, the high-frequency loads (>2 Hz) are less important because the inertia of the 

aircraft means it does not respond significantly, while the lower frequency loads (<0.2Hz) can be 

counteracted by the pilot through the helicopter’s controls. Loads in the frequency range 0.2 to 2 Hz are 

said to be in the closed-loop pilot response frequency range and have the greatest influence on pilot 

workload. In general terms, the RMS loading is responsible for the pilot workload while the mean loads 

will influence the control margins. 

As an illustration of the VAD technique, Fig. 19, extracted from [23], shows the mean and unsteady 

(RMS) thrust force on the helicopter as it is placed in positions 7 to 1 on Fig. 18. This particular set of 

data is using the VAD to quantify the effect of ship size on a helicopter’s loading. Looking first at the 

mean loads, off the ship and out of the airwake the rotor thrust equals the weight of the helicopter, 70 

kN. As the helicopter moves through the airwake, the thrust generated by the main rotor reduces as the 

air velocities at various points on the rotor change in magnitude and direction; in practice the pilot 
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would counteract this by increasing the power to the rotor to compensate for the thrust deficit. The mean 

loads are therefore a measure of the amount of control the pilot has to apply or, more importantly, how 

much control margin is remaining.  The pilot is expected to have a minimum of 10% control margin in 

all inceptors and if one falls below this the task may have to be aborted.  

The RMS loads in Fig. 19 are a measure of the unsteady forces in the 0.2-2.0 Hz frequency range that 

contributes to pilot workload, again in the vertical direction.  The greater the RMS value the greater the 

unsteadiness that the pilot has to counteract through the controls, and hence the greater the workload.  

In the figure it can be seen how the unsteady loads increase as the helicopter moves into the airwake, 

and also how the bigger ship causes the higher RMS, consistent with comments in 5.1 above. The higher 

unsteady loads at point 5 are when the helicopter is over the port-side deck edge and is experiencing 

the unsteady shear layer being shed from the vertical side of the hangar, when the helicopter moves 

over the landing spot it is sheltered somewhat but the steady loads increase again as the helicopter 

moves over to the starboard edge. The asymmetry in the unsteady loads as the helicopter translates 

across the deck is because of the direction of rotation of the main rotor. The helicopter main rotor rotates 

in a counter-clockwise direction when viewed from above so a rotor blade will have a very different 

forward velocity and interaction with the airwake depending on whether it is sweeping forward (on the 

RHS) or sweeping back (on the LHS).  

Figure 19 shows mean and unsteady data for only the vertical axis; mean and unsteady data are also 

acquired for the forward and side forces, and for the pitch, roll and yaw moments.  

Figure 19  Mean and RMS helicopter loads in ship airwakes measured by the Virtual AirDyn [23] 

 

 

 

a) Mean loads 

b) Unsteady (RMS) loads 
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7. SHIP DESIGN GUIDANCE FOR HELICOPTER OPERATIONS  

The simulation and modelling tools described in this paper are being applied during the design stages 

of naval vessels; examples of such applications are given below. 

7.1. Superstructure aerodynamics 
An example of how the VAD technique has been used in practice is the assessment of superstructure 

design features on a future British frigate that is currently in the design phase.  Figure 20 shows the air 

flow over a superstructure that has a number of features above the hangar and close to the landing deck. 

The VAD technique was used to evaluate different design configurations to assess their likely impact 

on the ship airwake and on the aerodynamic loading of the helicopter.  

As well as evaluating the effect of ship superstructure designs on the flight dynamics and handling 

qualities of a maritime helicopter, modelling and simulation can be used to assess other aspects of the 

ship’s design that will affect helicopter operations. For example, the air flow over the ship also affects 

the ship’s anemometers and the dispersion of the ship’s engine exhausts, both of which have 

consequences for the ship’s helicopter, and both of which can be investigated as part of the ship’s 

design.  

 

 
 

Figure 20  Virtual AirDyn assessment of future frigate superstructure aerodynamics 
 
 

7.2. Anemometer placement 

The accuracy of the ship’s anemometers is important because they both define the Ship-Helicopter 

Operating Limits (SHOL) at the outset of the ship’s service, and the wind-over-deck conditions for 

every sortie thereafter; unreliable anemometers lead directly to unnecessarily restricted SHOLs.  

In a study of how a bulky foremast, typical of those appearing on modern warships, affects the flow 

around the traditional anemometer locations, Mateer et al [24] used CFD to demonstrate the flow 

distortion. Figure 21 shows the mean velocity vectors and contours of turbulence intensity for the flow 

in the vicinity of the main mast of a conceptual future frigate.  The crosses indicate typical anemometer 

positions that have been selected because they are above the shear layer that forms as the air flow (in 

this case a starboard beam wind) rises above the superstructure and separates to create a strong shear 

layer (the red shading) and a slow recirculating wake in the portside lee of the superstructure. Using 

unsteady CFD, the local three-dimensional velocity components at the proposed anemometer positions 

can be evaluated, thereby predicting the unsteady wind speeds and directions that the anemometers 

would record.  Figure 22 shows the deviation of the mean velocities in the horizontal plane from the 

undisturbed incoming wind velocity (i.e. as for a ship’s anemometer, not including the vertical 

components).  Ships’ anemometers are expected to record wind speeds that are within ±10% of the true 
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relative wind speed and so in-situ calibration tests will be required if the anemometers are placed in 

these positions. 

 

 

Figure 21  Contours of turbulence intensity with velocity magnitude vectors  
in a 40 kt 90° beam wind [24] 

 

Figure 22  Predicted percentage deviation of wind speed at anemometer locations [24] 

 

7.3. Ship engine exhaust gas dispersion 
The issue for ship engine exhaust gas dispersion, which can either be gas turbine or Diesel exhaust, is 

partly due to concern over crew comfort and surface heating, but in the context of this paper the main 

concern is that if the helicopter is immersed in the exhaust plume, the heated ambient air will have a 

lower density and this will reduce the lift generated by the main rotor. Elevated and unsteady air 

temperatures can also have an effect on the helicopter’s engine power.  While there are no formal 

requirements for limiting air temperature rises over a naval ship’s helicopter deck, there are for offshore 

oil/gas platforms where industrial gas turbines are used for power generation. The UK Civil Aviation 

Authority has published advice in document CAP 437 “Standards for Offshore Helicopter Landing 

Areas” [25]; the statement of the temperature criterion in CAP 437 includes: “when the results of wind 
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tunnel or CFD modelling indicate a temperature rise of more than 2°C, averaged over a 3 second period, 

the helicopter operator should be consulted at the earliest opportunity so that appropriate operational 

restrictions may be applied”. This statement recognises that there will be occasions when the criterion 

cannot be met, so pilots may be required to take measures such as avoiding the exhaust plume when 

close to the rig, adjusting the payload accordingly, and generally exercising care. 

There is similar but more flexible advice given to offshore platform operators working in Norwegian 

waters, where the NORSOK Standard C-004 [26] discusses air temperatures in terms of mean values 

and does not mention the 3-second time interval. The Standard recommends that CFD modelling be 

used to predict air temperature rises above the landing deck from gas turbine exhaust and that these be 

referred to the Temperature Gradient matrix shown in Fig. 23. Depending on where the 

temperature/height data point falls, the Matrix then recommends normal operations, caution, or no 

operation, corresponding to the green, amber and red sections of the Matrix.  It can be seen that caution 

is triggered by a 2°C temperature rise, and no operation by a 30°C rise. The cautionary measures will 

be similar to those in CAP 437, i.e. avoid the exhaust plume when close to the rig, adjust payload 

accordingly, and exercise care; advice that may not always be acceptable during naval operations. 
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Figure 23  NORSOK chart [26] showing levels of temperature rise over the flight deck and associated 
guidance to helicopter operators 

 

Scott et al [27] considered the temperature criteria adopted by the offshore oil and gas industry in the 

context of the engine exhaust from a modern warship powered by a combination of Diesel and gas 

turbine engines. Figure 24 shows an instantaneous image of iso-surfaces of temperature within an 

unsteady airwake with entrained exhaust gas over a ship, along with a superimposed image of a 

helicopter over the deck; the ship is in a headwind. As can be seen, the unsteady airwake causes 

‘dollops’ of hot gas to be convected over the landing deck and, as can be seen in Fig. 25, the 

temperatures are predicted to peak at 10°C above ambient; the 3-second average referred to in CAP 437 

also show that the 2°C limit is exceeded, and for these conditions the NORSOK matrix in Fig. 23 advises 

‘caution’.  It is noticeable that the exhaust gas temperatures of about 500°C from the ship’s gas turbine 

engines have significantly reduced due to mixing with the highly unsteady airwake. It can also be seen 

that the hot gases from the gas turbine exhaust are entrained into the recirculation zone in the wake of 

the ship’s mast; another design consideration from the perspective of surface heating and the ship’s 

thermal signature.   
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Figure 24  Instantaneous iso-surfaces of unsteady ship exhaust plume temperatures [27] 

 

Figure 25  CFD-predicted air temperatures above landing deck  
– Instantaneous and 3-second average [27] 

 

8. CONCLUDING COMMENTS 

This paper has given a brief overview of the research into helicopter-ship flight simulation that has been 

conducted at the University of Liverpool over the past decade or more. The research has made 

considerable progress, and has often been undertaken in collaboration with international research 

groups as well as with the UK’s ship designers and builders and naval helicopter community. Simulated 

SHOL testing to replace at-sea trials is still some way off, but it is now possible to explore the limits of 

the helicopter’s operational envelope so that, when SHOL trials are conducted, priority can be given to 

properly determining the limits for the more restrictive wind conditions.  

Both piloted and non-piloted simulation are being used to inform the design stage of real ships, and the 

research into simplified ship geometries has given very useful insight into the kinds of superstructure 

features that create adverse flying conditions. The creation of the CFD airwakes is still expensive and 

time-consuming, even with modern computing resources, so while the techniques can be deployed 

during a ship’s design, they should be used carefully at key stages in the design cycle. 

Modern developments in ship design, such as radar cross section reduction, large integrated masts, and 

gas turbine engines are significantly affecting the ship’s aerodynamics and will have consequences for 

the helicopter’s operational envelope, so their development should be taken forward with the helicopter 

in mind.  
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