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Abstract

In this paper we provide three equivalent expressions for ruin proba-
bilities in a Cramér-Lundberg model with gamma distributed claims. The
results are solutions of integro-differential equations, derived by means of
(inverse) Laplace transforms. All the three formulas have infinite series
forms, two involving Mittag-Leffler functions and the third one involving
moments of the claims distribution. This last result applies to any other
claim size distributions that exhibits finite moments.

1 Introduction

Deriving the ruin probability is a central topic in risk theory literature. Starting
from the basic collective insurance risk model introduced by Cramér and Lund-
berg at the beginning of last century (Lundberg, 1903, 1926; Cramér, 1930),
researchers are still analyzing concrete instances of it or amending some of its
features to make it more practical. The classical Cramér-Lundberg is a com-
pound Poisson model, accounting for claims (losses) arriving independently at
exponential times, random in size, but independent and identical distributed.

One direction of research considers altering the assumptions of independence or
memory loss of claim arrivals, thus analyzing ruin probabilities in renewal mod-
els (Andersen, 1957) or models with various dependence structures (Albrecher
and Boxma, 2004, 2005; Constantinescu et al., 2013). Considering a gamma
aggregate claims process, Dufresne et al. (1991) derived bounds for the ruin
probabilities. Adding financial considerations to the model, such as returns in
investments, see e.g. Paulsen (1998); Frolova et al. (2002); Kalashnikov and Nor-
berg (2002); Paulsen (2008); Albrecher et al. (2012); Ramsden and Papaioannou
(2017), interest rate models, see e.g. Cai and Dickson (2004) or perturbations
in premium cash-flow, see e.g. Temnov (2014), asymptotics of ruin probabilities
have been derived. Lévy risk models were considered and first passege and exit
times were derived via fluctuation theory and scale functions, see e.g. Furrer
et al. (1997); Furrer (1998); Yang and Zhang (2001); Avram et al. (2002); Kypri-
anou (2006); Palmowski and Pistorius (2009); Hubalek and Kyprianou (2011).
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However, the direction that captured the most attention over the last hun-
dred years involves ruin results for particular claims’ distributions. Numerous
approximations (Beekman, 1969; De Vylder, 1978; Kingman, 1962; Bloomfield
and Cox, 1972) and asymptotic results have been derived (Klüppelberg et al.,
2004; Palmowski and Pistorius, 2009), especially for heavy-tailed claims (Ram-
say, 2003). However, ever since the explicit form of ruin probability in the case of
exponential claims sizes was established (Cramér, 1930), searching for explicit
formulas for other (light-tailed) distributions becomes a frequent direction of
research.

This paper falls into this latter category, exploring the classical ruin model with
gamma distributed claims, extending and generalizing earlier results of Thorin
(1973). Among the first distributions considered in risk theory literature are
the integer shaped gammas, or the so-called Erlang distributions. These have
rational Laplace transforms and at the same time are phase-type distributed,
a class dense in the class of continuous distributions. The ruin probability
has closed form expressions for classical risk models with phase-type claims,
see e.g. Asmussen and Albrecher (2010) or rational Laplace transform distri-
butions, see e.g. Albrecher et al. (2010). In this paper we go beyond Erlang
distributions and derive results for gamma distributions that allow real shape pa-
rameters, using Laplace transform properties and deriving Pollaczeck-Khinchine
type formulas. In our discussion section, we comment on the merit of the se-
ries expressions obtained. More precisely, for gamma claims, we first introduce
two different methods, leading to two different series expressions in terms of
Mittag-Leffler functions. Moreover, we present a general Pollaczeck-Khinchine
type form for the ruin probability in the classical Cramér-Lundberg model with
light-tail claims, in terms of moments, which in case of gamma claims reduces
to a third, tractable expression.

Since some of our results are expressed in terms of Mittag-Leffler functions, we
remind the reader that a Mittag-Leffler function is an extension of an expo-
nential function ez and plays a very important role in the theory of fractional
differential equations. As a one-parameter generalization of an exponential, the
function introduced by Mittag-Leffler (1903) is an infinite series

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, <(α) > 0, z ∈ C,

where Γ(z) denotes the gamma function Γ(z) =
∫∞
0
e−ttz−1 dt. The two-parameters

generalization of an exponential, introduced by Agarwal (1953),

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, <(α) > 0,<(β) > 0, z ∈ C (1)

is also referred to as Mittag-Leffler function, see e.g., (Erdélyi et al., 1955). Also,
recall that (Podlubny (1998))∫ ∞

0

e−szzαk+β−1E
(k)
α,β(±azα) dz =

k!sα−β

(sα ∓ a)k+1
, <(s) > |a|1/α, (2)
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which for any k > 0, gives us the Laplace transform of Mittag-Leffler type

functions and their derivatives. Here E
(n)
α,β is the nth derivative of the Mittag-

Leffler function, which can be computed as

E
(n)
α,β(z) =

∞∑
j=0

(j + n)!zj

j!Γ(αj + αn+ β)
.

The classical collective risk Cramér-Lundberg model, describes the reserve pro-
cess U(t) of an insurance company as

U(t) = u+ ct−
N(t)∑
k=1

Xk, t > 0, (3)

where u > 0 is the initial capital of the company and c > 0 represents the
constant rate at which the premiums are accumulated. The aggregated paid
claims by time t are modelled by a compound Poisson process, with N(t) a
Poisson process with intensity λt and Xk independent, identically distributed
random variables with finite mean, representing the amount of individual claims
paid. One assumes the positive loading assumption c > λEX1, and define the
ruin probability as

ψ(u) = P
(

inf
t>0

U(t) < 0

)
= P (τu <∞) , u > 0, (4)

where τu is the first hitting time

τu = inf

t ≥ 0 :

N(t)∑
k=1

Xk − ct > u

 .

The non-ruin, or survival probability, is denoted

φ(u) = 1− ψ(u), u > 0. (5)

Lundberg (1926) derived a bound and the asymptotic behavior for the ruin
probability in the classical model, making use of an equation that in risk theory
literature is commonly referred to as the Lundberg’s equation

MX(s)MT (−cs) = 1, (6)

where MX(s) and MT (s) are the moment generating functions of the claim
size distribution and the waiting time distribution, respectively. Note that, in
classical compound Poisson case, Lundberg’s equation (6) reads

cs− λ+ λMX(−s) = 0. (7)

The literature of deriving explicit expressions for the ruin probability of the clas-
sical compound Poisson risk model for various claims distributions is abundant
in methods and results. Cramér (1955) derives the non-ruin probability φ(u) as
a solution of an integro-differential equation, which, under some conditions, can
be solved analytically by either differentiating both sides or taking the Laplace
transform, when the claims are exponentially distributed. Gerber (1973) uses
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martingales to analyze the risk process with independent and stationary in-
crements. Pakes (1975) derives the relationship between ruin probability and
claims’ tail distribution. Thorin and Wikstad (1977) analyzes the ruin problem
when claims are log-normal distributed. Gerber et al. (1987) obtains the ruin
probability for mixture Erlang claims by studying the severity of ruin, as well
as its probability. Ramsay (2003) inverts the Laplace transforms over the com-
plex domain to derive a closed-form solution of the ruin probability when the
claim sizes follow a special Pareto distribution. Hubalek and Kyprianou (2011)
have considered a class of spectrally negative Lévy processes, called Gaussian
temepered stable convolution, whose Lévy measure has a Gamma component
with shape parameter ≤ 1. They showed that their scale functions, which are
essentially proportional to the survival probability, admit expressions in terms
of Mittag-Leffler functions (Theorem 2 and 3), which have similarities to our
results (12) and (14).

The simplest case of classical risk model is when claims are exponential dis-
tributed with parameter α. Under the assumption of positive loading, the ruin
probability is given by (Cramér, 1930)

ψ(u) =
λ

αc
e−(α−λc )u, u > 0. (8)

The focus of this paper is on gamma distributed claim sizes, i.e., with the density

fX(x) =
αr

Γ(r)
xr−1e−αx, x > 0, (9)

where r > 0 is the shape paramater, and α > 0 is the scale parameter. The
starting point is the classical integro-differential equation for the survival prob-
ability, valid whenever the claim size distribution has a density that we denote
by f :

d

du
φ(u) =

λ

c
φ(u)− λ

c

∫ u

0

φ(u− z)f(z) dz, u > 0 . (10)

An immediate conclusion is that the Laplace transform of non-ruin probability,

φ̂(s) =

∫ ∞
0

e−suφ(u) du, <(s) > 0 ,

is given by

φ̂(s) =
cφ(0)

cs− λ+ λMX(−s)
=

cφ(0)

cs− λ+ λ( α
s+α )r

, <(s) > 0 , (11)

when the claim sizes follow the gamma distribution with scale α and shape
r. We would like to mention that the non-ruin probability of the classical risk
model (3) with zero initial capital equals to

φ(0) = 1− λµ

c
,

where µ denotes the expected claim size, , see e.g. Rolski et al. (2009). Through-
out the paper, by φ(0) we refer to this expression. We introduce three different
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methods to invert back the Laplace transform of the survival probability.

Note that the denominator in (11) is the right hand-side of Lundberg equation
(7). When the shape parameter r is integer, namely when the claims are Erlang
distributed, the expression in the right hand side of (11) can be written as the
ratio of two polynomial functions. One can then use the partial fraction decom-
position and invert φ̂ to obtain a linear combination of exponential functions
(Grandell, 1991).

Notice that for a rational shape parameter r = m/n, with <(s) > α, one could
shift the argument s to obtain

φ̂(s− α) =
cφ(0)

c(s− α)− λ+ λ(αs )m/n
=

cφ(0)sm/n

c(s− α)sm/n − λ+ λαm/n
,

which is a ratio of polynomials of orders m and (m+ 1) in t = s1/n. This again
permits a partial fraction decomposition. In this case, an explicit expression
can be obtained as in Wei Zhu’s MSc project at University of Liverpool, using
the two parameter Mittag-Leffler function in (1):

φ(u) = e−αuu
1
n−1

m+n−1∑
k=0

mkE 1
n ,

1
n

(
sku

1
n

)
, (12)

with sk and mk real constants, determined on a case-by-case basis.

Extending these results to real shape parameter r proves to be non-trivial and
different approaches are presented here. Prior to this work, the only known
(to us) result for non-integer shape gamma distributed claims is that of Thorin
(1973) and it deals with a special case of the Γ(1/b, 1/b), b > 1, distribution.
Namely, for the classical collective risk model with Poisson arrival intensity
λ = 1, Γ(1/b, 1/b), b > 1, distributed claims and positive loading c > 1, the ruin
probability for u > 0 is

ψ(u) =
(c− 1)(1− bR)e−Ru

1− cR− c(1− bR)

+
c− 1

bπ
sin

π

b

∫ ∞
0

x1/be−(x+1)u/b[
x1/b

(
1 + cx+1

b

)
− cos πb

]2
+ sin2 π

b

dx,

where R is the positive solution of Lundberg equation (6). This approach ex-
plores the properties of completely monotone functions. When b = 2, the ex-
pression of ruin probability becomes a linear combination of exponentials and
error functions, which expression (12) can recover when r = 1/2 (see Appendix
A for details). However, note that the general form of the integral term appear-
ing in the result can only be calculated numerically.

The paper is organised as follows. Section 2 extends the method of shifting
Laplace transform to the real shape parameter case. Using geometric expan-
sions, one can present an explicit form in terms of an infinite sum of convolutions
of exponential and Mittag-Leffler functions. Section 3 derives an explicit form
in terms of an infinite sum of derivatives of Mittag-Leffler functions, by carefully
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reconstructing geometric sum on the Laplace side. Section 4 uses induction and
recursive formulas to derive the ruin probability in terms of integrals of sum
of moments. This last result applies to any claim size distributions with finite
moments, gamma distribution being a special case. All three results are shown
to retrieve the classical exponential ruin probability result when reduced to ex-
ponential claims. Section 5 discusses the advantages or disadvantages of each
one of the expression derived in the paper. For ease of reading, some of the
calculations are deferred to the appendix.

2 Method One - Infinite Sum of Convolutions of
Mittag-Leffler Functions

In this section we use our ability to recognise certain geometric expansions
present in the Laplace transform of the survival probability when the claim
sizes are gamma distributed. These expansions can be inverted to obtain an
explicit form of the survival probability. The result is in terms of an infinite
sum of convolutions. Recall that for two locally integrable functions, f, g on
(0,∞) the convolution is defined by

f ∗ g(x) =

∫ x

0

f(y)g(x− y) dy, x > 0 , (13)

and it is a locally integrable function. The convolution power of a locally inte-
grable function f is defined recursively by f∗1 = f , f∗n = f∗(n−1) ∗ f , n ≥ 2.

Theorem 2.1. For a classical compound Poisson risk model (3) with claim
sizes Xk having the gamma distribution (9) with shape parameter r > 0 and
scale parameter α > 0, the non-ruin probability is

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

( ∞∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]

∗n

)}
,

(14)
for any u > 0.

Remark 2.1. Note that the Mittag-Leffler functions in the expression (14) can
be expressed in terms of incomplete gamma functions (Simon, 2015)

E1,β(x) =

∞∑
k=0

xk

Γ(k + β)
=

∞∑
k=0

xk

Γ(β − 1)Γ(k + 1)
B(β − 1, k + 1)

=
1

Γ(β − 1)

∫ 1

0

(1− t)β−2
∞∑
k=0

(xt)k

Γ(k + 1)
dt

=
1

Γ(β − 1)

∫ 1

0

(1− t)β−2ext dt = x1−βex
γ(β − 1, x)

Γ(β − 1)
(15)

with the lower incomplete gamma function γ(r, z) =
∫ z
0
tr−1e−t dt.
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Proof. Rearranging the expression (11), one can identify a geometric series with
general term easily set to be between 0 and 1 for any s > 0,

λ

c

(
1

s
− MX(−s)

s

)
< 1,

so that we can write

φ̂(s) =
φ(0)

s

1

1− λ
c

(
1
s −

MX(s)
s

) =
φ(0)

s

∞∑
n=0

(
λ

c

)n(
1

s
−

( α
s+α )r

s

)n
.

For s > α we can shift the argument as explained above, to obtain

φ̂(s− α) =
φ(0)

s− α

∞∑
n=0

(
λ

c

)n(
1

s− α
− αr

(s− α)sr

)n
.

Note that

1

s− α
− αr

(s− α)sr
=

1

s− α
− αr

sr+1

∞∑
i=0

(α
s

)i
=

∫ ∞
0

e−su

(
eαu −

∞∑
i=0

αr+i

Γ(r + i+ 1)
ur+i

)
du ,

the Laplace transform of a positive function. Therefore,

e−αuφ(u) = φ(0)

{
eαu + eαu ∗

( ∞∑
n=1

(
λ

c

)n [
eαu −

∞∑
i=0

αr+i

Γ(r + i+ 1)
ur+i

]∗n)}

= φ(0)

{
eαu + eαu ∗

( ∞∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]

∗n

)}
,

as required.

Remark 2.2. Note that Theorem 2.1 is an exponentially tilted variant of the
Pollaczeck-Khinchine (Beekman) formula for gamma claims, see Rolski et al.
(2009) and Asmussen and Albrecher (2010). To clarify this connection, consider
the upper tail of claims F̄X(u) = P[X > u], which, as in Remark 2.1, identity
(15), can be regarded as

eαuF̄X(u) = eαu − αrurE1,1+r(αu),

so that the equation (14) becomes

φ(u) = φ(0) + e−αuφ(0)

( ∞∑
n=1

(
λ

c

)n
eαu ∗

[
eαuF̄ ∗nX (u)

])

= φ(0) + φ(0)

∞∑
n=1

(
λ

c

)n ∫ u

0

F̄ ∗nX (y) dy.

This is equivalent to

ψ(u) = 1−

(
1 + φ(0)

∞∑
n=1

(
λ

c

)n ∫ u

0

F̄ ∗nX (y) dy

)
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= φ(0)

∞∑
n=1

(
λ

c

)n ∫ ∞
u

F̄ ∗nX (y) dy,

the Pollaczeck-Khinchine formula for the ruin probability, as in, e.g. Rolski
et al. (2009).

Remark 2.3. For r = 1 the expression (14) reduces to the classical result (8)
of Cramér (1930).

Proof. When r = 1 the expression in the square bracket in (14) equal to 1 for
all u > 0, and its n-fold convolution power is the function un−1/(n− 1)!, u > 0.
Therefore, one has

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

( ∞∑
n=1

(
λ

c

)n
un−1

(n− 1)!

)}

= φ(0) + e−αuφ(0)

{
eαu ∗

(
λ

c
e
λ
c u

)}
= φ(0) + e−αuφ(0)

{
λ

c

(
α− λ

c

)−1
e
λ
c u
[
e(α−

λ
c )u − 1

]}
= φ(0)

α

α− λ
c

[
1− λ

αc
e−(α−λc )u

]
.

Since φ(0) = 1− λ/αc, one concludes that

φ(u) = 1− λ

αc
e−(α−λc )u,

which coincides with equation (8).

Remark 2.4. For an integer number r, recall from Podlubny (1998) that

E1,1+r(αu) =
1

(αu)r

(
eαu −

r−1∑
k=0

(αu)k

k!

)
, (16)

and so by (14) the survival probability equals to

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

( ∞∑
n=1

(
λ

c

)n [r−1∑
k=0

(αu)k

k!

]∗n)}
. (17)

Consider the case r = 2. The n-fold convolution in expression (17) becomes

(1 + αu)∗n =

n∑
i=0

(
n

i

)
αiun+i−1

(n+ i− 1)!
, (18)

which needs to be further convolved with eαu. Recall that the convolution of
an exponential function and a power function is given by

eαu ∗ uk =

∫ u

0

eα(u−s)sk ds =
k!

αk+1
eαu −

k∑
j=0

k!uj

αk+1−j j!
. (19)
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Using the linearity of the convolution, one may conclude from identities (18)
and (19) that

eαu ∗ (1 + αu)∗n =

n∑
i=0

(
n

i

)eαu
αn
−
n+i−1∑
j=0

uj

αn−j j!


=

2neαu

αn
−

n∑
i=0

(
n

i

)n+i−1∑
j=0

uj

αn−j j!

 ,

which leads to the survival probability

φ(u) = e−αuφ(0)

∞∑
n=0

(
λ

c

)n 2neαu

αn
−

n∑
i=0

(
n

i

)n+i−1∑
j=0

uj

αn−j j!


= φ(0)

1

1− 2λ
cα

− e−αuφ(0)

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)n+i−1∑
j=0

uj

αn−j j!


= 1−

(
1− 2λ

αc

)
e−αu

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)n+i−1∑
j=0

uj

αn−j j!

 .

To deal with the infinite series term
∑∞
n=0

(
λ
c

)n∑n
i=0

(
n
i

) (∑n+i−1
j=0

uj

αn−j j!

)
in

the above expression, first take its Laplace transform to obtain the following
expression for s > α,

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)n+i−1∑
j=0

αj

αn sj+1


=

1

s

∞∑
n=0

(
λ

αc

)n n∑
i=0

(
n

i

)
1− (α/s)n+i

1− α/s

=
1

s

∞∑
n=0

(
λ

αc

)n(
2n

1− α/s
−
(α
s

)n (1 + α/s)n

1− α/s

)
,

where one detects a sum of two geometric series with general terms 2λ
αc and

λ
cs

(
1 + α

s

)
respectively. Therefore, the term of infinite series can be further

expressed as

1

(s− α)
(
1− 2λ

αc

) − 1

(s− α)
(
1− λ

cs

(
1 + α

s

))
=

αc

αc− 2λ

((
1− λ

cs

(
1 + α

s

))
−
(
1− 2λ

αc

)
(s− α)

(
1− λ

cs

(
1 + α

s

)) )

=
2λ

αc− 2λ

s+ α
2

s2 − λ
c (s+ α)

=
2λ

αc− 2λ

(
m1

s− s1
+

m1

s− s2

)
,

where the last step involves a partial fraction decomposition, with s1,2 = λ±
√
λ2+4λαc
2c .
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One can invert the Laplace transform back to obtain

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)n+i−1∑
j=0

uj

αn−j j!

 =
2λ

αc− 2λ
(δ(u) +m1e

s1u +m2e
s2u) ,

and so the non-ruin probability for r = 2 is

φ(u) = 1−
(

1− 2λ

αc

)
e−αu

2λ

αc− 2λ
(m1e

s1u +m2e
s2u)

= 1− 2λ

αc

(
m1e

(s1−α)u +m2e
(s2−α)u

)
,

where s1,2 are given above, and m1,2 can be calculated from the fraction decom-
position step. This result agrees with the elementary partial fraction inversion
mentioned in Grandell (1991).

3 Method Two - Infinite Sum of Derivatives of
Mittag-Leffler Functions

In this section, we present a different method to derive the survival probability
which leads to an explicit form in terms of an infinite sum of derivatives of
Mittag-Leffler functions.

Theorem 3.1. For a classical compound Poisson risk model (3) with claim
sizes Xk following gamma distribution (9) with shape parameter r > 0 and
scale parameter α > 0, the non-ruin probability can be written as

φ(u) = e−αuφ(0)

∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α+

λ

c

)
u

)
, (20)

where E
(n)
α,β is the nth derivative of the Mittag-Leffler function.

Proof. Let β > α. The first step is to find a function G whose Laplace transform
is, for sufficiently large s > 0,

g(s) =
1

asβ + bsα + c
,

where a, b, c are non-zero constants. One can rewrite

g(s) =
1

c

c

asβ + bsα
asβ + bsα

asβ + bsα + c
=

1

c

c
as
−α

sβ−α + b
a

1

1 +
c
a s

−α

sβ−α+ b
a

.

Denoting P =
c
a s

−α

sβ−α+ b
a

, which is a number in (0, 1), for large s, the expression

becomes

g(s) =
1

c

P

1− (−P )
=

1

c

∞∑
k=0

(−1)kP k+1 =
1

c

∞∑
k=0

(−1)k
( c
a

)k+1 s−αk−α(
sβ−α + b

a

)k+1
.
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Recognizing the Laplace transform formula (2), one can invert this expression
term by term, to see that g is the Laplace transform of the function (Podlubny,
1998)

G(t) =
1

a

∞∑
k=0

(−1)k

k!

( c
a

)k
tβ(k+1)−1E

(k)
β−α,β+αk

(
− b
a
tβ−α

)
.

Recall that for a classical risk model with gamma distributed claim sizes, the
Laplace transform of survival probability after shifting the argument becomes,
when s is large enough,

φ̂(s− α) =
cφ(0)sr

csr+1 − (cα+ λ)sr + λαr

=
cφ(0)sr

csr+1 − (cα+ λ)sr

∞∑
k=0

(−1)k
(

λαr

csr+1 − (cα+ λ)sr

)k

=

∞∑
k=0

(−1)k
φ(0)

(
λ
cα

r
)k
s−rk(

s−
(
α+ λ

c

))k+1
,

which permits to invert term-by-term back to

φ(u) =e−αuφ(0)

∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α+

λ

c

)
u

)
,

as required. The last expression can be rewritten in the form

φ(u) = e−αuφ(0)

∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)k

∞∑
j=0

(j + k)!
((
α+ λ

c

)
u
)j

j!Γ(k(r + 1) + 1 + j)
. (21)

Remark 3.1. For r = 1, note that expression (20) also reduces, as it should,
to the classical result (8) of Cramér (1930). We leave out a somewhat longish
calculation.

4 Method Three - Tail Convolutions

In this section, we start with the classical risk model with any light-tail dis-
tributed claims. The non-ruin probability can be obtained as integral of an in-
finite sum of moments of claim size distributions. When the claims are gamma
distributed, the resulting formulas can be relatively efficiently evaluated.

Recall the form (11) of the Laplace transform of the ruin probability in a com-
pound Poisson process with a generic claim size X and the moment generating
function MX :

φ̂(s) = φ(0)
1

s

1

1− λ
c
1−MX(−s)

s

. (22)

Notice that the term in the denominator,

ĝ(s) =
1−MX(−s)

s
, s > 0,
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is the Laplace transform of the distributional tail

g(x) = P (X > x), x > 0. (23)

By the positive loading assumption we have

φ̂(s) = φ(0)
1

s

∞∑
n=0

(
λ

c

)n
(ĝ(s))n, (24)

since the ratio in the series is smaller than 1. Inverting the Laplace transforms
in (24) gives us immediately the first statement of the next theorem. The key
part of the theorem is the expression (26) for the ingredients in (25).

Theorem 4.1. The non-ruin probability in classical risk model can be written
in the form

φ(u) = φ(0)

(
1 +

∫ u

0

∞∑
n=1

(
λ

c

)n
g∗n(y) dy

)
, u > 0. (25)

Here g∗n is the nth convolution of the tail distribution of claim Xj . It can be
computed for n ≥ 2 as

g∗n(x) =
1

(n− 1)!
E


 n∑
j=1

Xj − x

n−1

1

 n∑
j=1

Xj > x


 (26)

− 1

(n− 1)!

n−1∑
i=1

(
n− 1

n− i− 1

)
bn−i(F )E


 i∑
j=1

Xj − x

i

1

 i∑
j=1

Xj > x


 ,

n = 1, 2, . . .. Here X1, X2, . . . are the i.i.d. claim sizes. The sequence
(
bi(F ), i =

1, 2 . . .
)

depends on the distribution F of claim sizes. It is defined recursively
by

b1(F ) = 1,

bm+1(F ) = E

 n∑
j=1

Xj

m

−
m∑
i=1

(
m

i− 1

)
bi(F )E

n−i∑
j=1

Xj

m+1−i

, (27)

for m = 1, . . . , n− 1. Thus defined, bm is independent of n > m.

Proof. The proof is postponed to Appendix B.

Remark 4.1. Method 3 computes the convolution powers for the tail-distribution
in a Pollaczeck-Khinchine formula via a sequence of integrals of increasing di-
mension which simplify to one-dimensional integrals in the gamma case. See
the discussion part for details.

Remark 4.2. Once again, for r = 1, the expression (25) can be checked to
reduce to the classical result (8) of Cramér (1930). We leave out the calculation.
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Remark 4.3. Even though the statement of Theorem 4.1 is valid for a general
classical risk model, the calculation of the numbers

(
bi(F )

)
in (27) and functions(

g∗n
)

in (26) requires, in general, integration of increasing dimension. In the case
where the claims follow a gamma distribution, the sums of the type X1+. . .+Xi

themselves also follow a gamma distribution, and the integrals always stay one-
dimensional. The same is true in other cases where the distributions of such
sums are known.

5 Discussion of Three Results

The results shown in this paper refer to extensions of the classical ruin models
and all of them coincide with the classical result when claim sizes are expo-
nentially distributed. In this section, we will present the advantages of each
method and its result, including some numerical examples. Since all three ex-
pressions present infinite sums, we truncate those to their first 20 terms to
be able to obtsin a numerical value. The corresponding truncated errors are
less than 10−5 for all three expressions, and we have noticed that considering
more than the first 20 terms will not decrease substantially the numerical errors.

The first expression in Theorem 2.1 is an infinite sum of convolution terms.
When r takes integer value, the expression reduces to a sum of finite terms
due to property (16) of the Mittag-Leffler function and thus explicit results can
be implemented. As long as r is not integer, numerical methods are needed
to calculate the probability. One choice is to use the relationship between
the Mittag-Leffler function and incomplete gamma function, mentioned in Re-
mark 2.1, identity (15), since the incomplete gamma functions are available
in most numerical libraries and systems. The other choices would be to use
”Mittag-Leffler function” MATLAB codes by Igor Podlubny (which calculates
the Mittag-Leffler function with desired accuracy) or ”MittagLeffleR” R package
by Gurtek Gill and Peter Straka (whihc provides probability density, distribu-
tion function, quantile function and random variate generation for the Mittag-
Leffler distributions, and the Mittag-Leffler function). For instance, we will take
the sum of the first 20 convolutions in the expression for a numerical result for
the survival probability

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
20∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]

∗n

)}
.

(28)
The second expression (20) is a quite time efficient method, which is very easy
to implement with accurate results. Due to the fact that the derivative of a
Mittag-Leffler function is an infinite series, this expression contains two-fold
infinite sums. Moreover, inside each series, only gamma functions and power
functions are needed to be calculated. Therefore, any software having ’addition’
and loop functions can handle this expression. Compared with the first result,
which contains convolution terms, this one is more time efficient in a numerical
sense. The disadvantage is that we have no instance where we can get exact
result, for r 6= 1. In this case, we could evaluate the first 20 derivatives in the
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expression to obtain a numerical approximation of the survival probability

φ(u) = e−αuφ(0)

20∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α+

λ

u

)
u

)
.

The third result in Theorem 4.1 is presented in terms of moments of the claim
size distribution. In principle, this method is valid for any claim distribution,
but in the case of gamma claims, the distribution of the sum of X’s are known
analytically, so the computations are tractable. Note that since∫ u

0

∞∑
n=1

(
λ

c

)n
g∗n(y) dy =

∞∑
n=1

(
λ

c

)n ∫ u

0

g∗n(y) dy,

one needs to be able to compute efficiently

∫ u

0

g∗n(y) dy =
1

(n− 1)!
E
∫ u

0

 n∑
j=1

Xj − x

n−1

1

 n∑
j=1

Xj > x

 dx

− 1

(n− 1)!

n−1∑
i=1

(
n− 1

n− i− 1

)
bn−1(F )E

∫ u

0

 i∑
j=1

Xj − x

i

1

 i∑
j=1

Xj > x

 dx.

As it is easy to compute the sequence (bn(F )) for gamma claims, one only needs
to evaluate efficiently the functions

an,k(u) = E
∫ u

0

 n∑
j=1

Xj − x

k

1

 n∑
j=1

Xj > x

 dx,

for k = n−1 and n. However, these functions can be further expressed in terms
of incomplete gamma functions as

an,k(u) =
αnr

Γ(nr)(k + 1)

Γ(nr + k + 1)

αnr+k+1
−
k+1∑
j=0

(
k + 1

j

)
(−u)k+1−j Γ(nr + j, αu)

αnr+j


for k = n − 1 and n. Therefore, the whole calculation consists on evaluating
some incomplete gamma functions, and those have already been efficiently im-
plemented. The first 20 convolutions in expression (25) would be sufficient when
implementing the survival probability numerically.

Other claim size distributions to which the third method can be applied reason-
ably efficiently include the mixed exponential distribution with density function

f(x) = αλ1e
−λ1x + (1− α)λ2e

−λ2x.

The calculations become more involved but still practical.

Figure 1 shows the difference on accuracy of these three results.
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Figure 1: Difference on accuracy of three results

In order to test the accuracy of the three results, we choose the parameter values
λ = 1, c = 1, r = 2 and α = 2.4. All the dash lines stand for the first method
and solid one for the method two and three. In order to numerically evaluate
the convolution integral in equation (28), we break up the interval [0, 10] into
subintervals of length h, then apply the trapezoid rule and use Newton-Cotes
formula to realize the numerical integration. We compare results obtained for
different lengths h. One can see that using the second method, the results
converge fast to the true value. Moreover, for the third method, all the moments
of gamma random variables have explicit expressions. Note that for r = 2, one
retrieves the case of Erlang(2) claims. Several equivalent results under this
model assumption have been obtained in the past and the formula chosen in
this test comes from (He et al., 2003)

φ(u) = 1 +
v2(v1 + α)2

(v1 − v2)α2
ev1u +

v1(v2 + α)2

(v2 − v1)α2
ev2u,

where

v1 =
λ− 2cα+

√
λ2 + 4cαλ

2c
,

v2 =
λ− 2cα−

√
λ2 + 4cαλ

2c
.

The corresponding results are put in Table 1.
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Table 1: Difference on accuracy of three results

initial
capital

Method 1
h=0.1

Method 1
h=0.01

Method 1
h=0.001

Method 2 Method 3

u=0 0.167 0.167 0.167 0.167 0.167
u=1 0.340 0.350 0.352 0.352 0.352
u=2 0.480 0.503 0.505 0.506 0.506
u=3 0.588 0.620 0.623 0.623 0.623
u=4 0.674 0.709 0.713 0.713 0.713
u=5 0.742 0.777 0.781 0.782 0.782
u=6 0.796 0.830 0.833 0.834 0.834
u=7 0.839 0.870 0.873 0.873 0.873
u=8 0.874 0.900 0.903 0.903 0.903
u=9 0.900 0.923 0.925 0.926 0.926
u=10 0.920 0.939 0.941 0.944 0.944

The errors between the results obtained from method two and true values are
significantly smaller at 10−11 level.

Here are some results run by MATLAB using method two. These results can
also be obtained using method one if one sets the step length to be as small as
h = 0.0001, which takes more time. In table 2, the parameter values are set to
be λ = 1, c = 1 and safety loading θ = 0.2. Because the safety loading is held
constant, for each r, we choose an α such that the average claim size r

α stays
the same.

Table 2: Survival probabilities for different parameter values r, when the safety
loading is 0.2

Initial
Capital

r = 0.5 r = 1 r = 1.5 r = 2 r = 2.5 r = 3

u = 0 0.167 0.167 0.167 0.167 0.167 0.167
u = 1 0.281 0.318 0.338 0.352 0.361 0.368
u = 2 0.371 0.441 0.481 0.506 0.523 0.536
u = 3 0.449 0.543 0.593 0.623 0.644 0.660
u = 4 0.517 0.626 0.680 0.713 0.735 0.750
u = 5 0.576 0.693 0.749 0.782 0.802 0.817
u = 6 0.628 0.749 0.803 0.834 0.852 0.865
u = 7 0.673 0.795 0.846 0.873 0.890 0.901
u = 8 0.713 0.832 0.879 0.903 0.918 0.927
u = 9 0.749 0.862 0.905 0.926 0.939 0.947
u = 10 0.779 0.887 0.926 0.944 0.954 0.961

The corresponding plotting figure is shown in Figure 2.
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Figure 2: Survival probabilities for different parameter values r, when the safety
loading is 0.2

One can observe that when the safety loading and other model parameters are
fixed, the bigger r is, the higher survival probability the model has. The reason
is that in this case, the expected claim size is fixed, further means that the ratio
r
α is fixed, whereas the variance of claim size r

α2 decreases as r increases, i.e., the
chance of having large claims will decrease. Since ruin is usually caused by some
large claims, the model with a bigger shape parameter r is more likely to survive.

Table 3 and Figure 3 show how the survival probability changes with various
premium rates and same safety loading when claim has gamma distribution with
r = 1.5.

Table 3: Survival probabilities for different parameter values c, when the safety
loading is 0.2

initial
capital

c = 1 c = 1.2 c = 1.4 c = 1.6 c = 1.8 c = 2

u=0 0.167 0.167 0.167 0.167 0.167 0.167
u = 1 0.338 0.311 0.291 0.276 0.264 0.255
u = 2 0.481 0.437 0.403 0.377 0.356 0.338
u = 3 0.593 0.540 0.498 0.465 0.437 0.414
u = 4 0.680 0.624 0.578 0.540 0.508 0.481
u = 5 0.749 0.693 0.645 0.605 0.570 0.540
u = 6 0.803 0.749 0.702 0.660 0.624 0.593
u = 7 0.846 0.795 0.749 0.708 0.672 0.639
u = 8 0.879 0.833 0.789 0.749 0.713 0.680
u = 9 0.905 0.863 0.823 0.785 0.749 0.717
u = 10 0.926 0.888 0.851 0.815 0.781 0.749
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Figure 3: Survival probabilities for different parameter values c, when the safety
loading is 0.2

Since the safety loading θ is fixed, the bigger premium rate c is, the bigger the
expected claim size is. In this case, the shape parameter of claim distribution r is
set to be constant 1.5, which means the larger expectation gives larger variance.
Thus, similar to the previous test, this result is quite reasonable. When the
safety loading and claim shape parameter are fixed, decreasing premium rate
can make the company less likely to have ruin.
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Letters, 79(16):1752–1758.

20



Paulsen, J. (1998). Ruin theory with compounding assets—a survey. Insurance:
Mathematics & Economics, 22(1):3–16. The interplay between insurance,
finance and control (Aarhus, 1997).

Paulsen, J. (2008). Ruin models with investment income. Probability Surveys,
5:416–434.

Podlubny, I. (1998). Fractional differential equations: an introduction to frac-
tional derivatives, fractional differential equations, to methods of their solu-
tion and some of their applications, volume 198. Academic press.

Ramsay, C. M. (2003). A solution to the ruin problem for Pareto distributions.
Insurance: Mathematics and Economics, 33(1):109–116.

Ramsden, L. and Papaioannou, A. D. (2017). Asymptotic results for a Markov-
modulated risk process with stochastic investment. Journal of Computational
and Applied Mathematics, 313:38–53.

Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (2009). Stochastic pro-
cesses for insurance and finance, volume 505. John Wiley & Sons.

Simon, T. (2015). Mittag-Leffler functions and complete monotonicity. Integral
Transforms and Special Functions, 26(1):36–50.

Temnov, G. (2014). Risk models with stochastic premium and ruin probability
estimation. Journal of Mathematical Sciences, 196(1):84–96.

Thorin, O. (1973). The ruin problem in case the tail of the claim distribution
is completely monotone. Scandinavian Actuarial Journal, 1973(2):100–119.

Thorin, O. and Wikstad, N. (1977). Calculation of ruin probabilities when the
claim distribution is lognormal. Astin Bulletin, 9(1-2):231–246.

Yang, H. and Zhang, L. (2001). Spectrally negative Lévy processes with appli-
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6 Appendix A

Thorin (1973) provides an integral expression for the ruin probability when the
claims are gamma distributed with parameters k = α. When k = α = 1

2 and
inter-arrival times are exponentially distributed with parameter λ = 1, this
becomes

ψ(u) =
(c− 1)(1− 2R)e−Ru

1 + c(3R− 1)
+
ρ

2π

∫ ∞
0

√
xe−(x+1)u/2

(x+ 1)
[
c2

4 x
2 + ( c

2

4 + c)x+ 1
] dx, (29)

where R is the unique positive solution of Lundberg equation

(1 + cR)
√

1− 2R = 1,

which can be solved to be R = c−4+
√
c2+8c

4c .
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On the other hand, from our result (12), when r = 1/2, the survival probability
equals

φ(u) = e−αuu−
1
2

2∑
k=0

mkE 1
2 ,

1
2

(
sku

1
2

)
.

Here s0, s1, s2, m0, m1 and m2 can be calculated explicitly, since for these
special parameter values, the Mittag-Leffler function equals to

E 1
2 ,

1
2

(
sku

1
2

)
=

1√
π

+ sku
1
2 es

2
ku

2√
π

∫ ∞
−sku

1
2

e−t
2

dt,

which leads to

φ(u) = e−αuu−
1
2 (m0 +m1 +m2)

1√
π

+

2∑
k=0

skmke
(s2k−α)u 2√

π

∫ ∞
−sku

1
2

e−t
2

dt.

The ruin probability can be expressed as

ψ(u) =−
2s21

(
1− 1

c

)
(s0 − s1)(s2 − s1)

e−Ru +
1

2
erfc

(
s0u

1
2

)
+

s21
(
1− 1

c

)
(s0 − s1)(s2 − s1)

erfc
(
s1u

1
2

)
e(s

2
1− 1

2 )u

−
s22
(
1− 1

c

)
(s0 − s2)(s1 − s2)

erfc
(
−s2u

1
2

)
e(s

2
2− 1

2 )u. (30)

which by exploiting properties of the roots s0, s1 and s2 leads to (29).

7 Appendix B: Proof of Theorem 4.1

Proof. We start by proving that the sequence
(
bi(F ), i = 1, 2 . . .

)
defined in

(27) has the property that bm is independent of n ≥ m. Since the statement is
clear for m = 1, we proceed by induction. Assume that bk(F ) is independent of
n > k for all k 6 m, and let n > m+ 1. It is enough to show that the difference
between the expressions in the right hand side of (27) computed for n and for
n+ 1 is equal to zero. We have:

E

n+1∑
j=1

Xj

m

−
m∑
i=1

(
m

i− 1

)
bi(F )E

n+1−i∑
j=1

Xj

m+1−i

− E

 n∑
j=1

Xj

m

+

m∑
i=1

(
m

i− 1

)
bi(F )E

n−i∑
j=1

Xj

m+1−i

=

m∑
k=1

(
m

k

)
E
(
Xk
)
E

 n∑
j=1

Xj

m−k

−
m∑
i=1

(
m

i− 1

)
bi(F )

m+1−i∑
k=1

(
m+ 1− i

k

)
E(Xk)E

n−i∑
j=1

Xj

m+1−i−k
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=

m∑
k=1

(
m

k

)
E
(
Xk
)
E

 n∑
j=1

Xj

m−k

−
m∑
k=1

E(Xk)

m+1−k∑
i=1

m!

(i− 1)!k!(m+ 1− i− k)!
bi(F )E

n−i∑
j=1

Xj

m+1−i−k

=

m∑
k=1

(
m

k

)
E
(
Xk
)
·E

 n∑
j=1

Xj

m−k

−
m+1−k∑
i=1

(
m− k
i− 1

)
bi(F )E

n−i∑
j=1

Xj

m−k+1−i


=

m∑
k=1

(
m

k

)
E
(
Xk
)
·E

 n∑
j=1

Xj

m−k

−
m−k∑
i=1

(
m− k
i− 1

)
bi(F )E

n−i∑
j=1

Xj

m−k+1−i

− bm−k+1


=

m∑
k=1

(
m

k

)
E
(
Xk
)

(bm−k+1 − bm−k+1)

=0

by (27). This completes the induction step and, hence, proves that bm is inde-
pendent of n ≥ m.

In order to prove the representation (26) we start from the cases n = 2 and
n = 3, checking the structure of the formula in those cases and then proceed by
induction. For n = 2 we have

g∗2(x) =

∫ x

0

g(y)g(x− y)dy =

∫ x

0

dy

∫ ∞
y

f(v)dv

∫ ∞
x−y

f(w)dw (31)

=

∫ ∫
v+w>x

(min(v, x)− (x− w)) f(v)f(w) dv dw

=

∫
v>x

f(v)dv

∫ ∞
0

wf(w)dw +

∫ ∫
v6x, v+w>x

(v + w − x)f(v)f(w) dv dw

=P(X > x)E(X) + E [(X1 +X2 − x)1(X1 +X2 > x)]

−
∫ ∫

v>x

(v + w − x)f(v)f(w) dv dw

=P(X > x)E(X) + E [(X1 +X2 − x)1(X1 +X2 > x)]

− E [(X − x)1(X > x)]− P(X > x)E(X)

=E [(X1 +X2 − x)1(X1 +X2 > x)]− E [(X − x)1(X > x)] , (32)

which coincides with (26) for n = 2 with b1(F ) = 1.

For a generic random variable Y with a finite mean consider the function

h1(x) = E ((Y − x)1(Y > x)) , x > 0.
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Note the appearance of such functions in the above expression for g∗2. We
proceed with calculating the convolution of this function with g. The notation
in the following calculation assumes that X and Y are defined on the same
probability space and are independent.

g ∗ h1(x) =

∫ x

0

g(y)E ((Y − (x− y))1(Y > x− y)) dy

=

∫ ∞
0

∫ ∞
0

fX(v) dvfY (w) dw

∫ ∞
0

(w − x+ y)1(x− w 6 y 6 min(x, v)) dy

=
1

2

∫ ∫
v+w>x

(min(w, v + w − x))
2
fX(v)fY (w) dv dw

=
1

2
P(X > x)E(Y 2) +

1

2
E
(
(X + Y − x)21(X + Y > x)

)
− 1

2

∫ ∫
v>x

(v + w − x)2fX(v)fY (w) dv dw

=
1

2
E
(
(X + Y − x)21(X + Y > x)

)
− 1

2
E
[
(X − x)21(X > x)

]
− E [(X − x)1(X > x)]E(Y ),

with the last step following by simple algebraic manipulations.

Applying this result, first with Y = X1 +X2 and then with Y = X, to the right
hand side of (32) we obtain the following expression for g∗3:

g∗3(x) =g ∗ g∗2(x)

=
1

2
E
[
(X1 +X2 +X3 − x)21(X1 +X2 +X3 > x)

]
− 1

2
E
[
(X − x)21(X > x)

]
− 2E(X)E [(X − x)1(X > x)]− 1

2
E
[
(X1 +X2 − x)21(X1 +X2 > x)

]
+

1

2
E
[
(X − x)21(X > x)

]
+ E(X)E [(X − x)1(X > x)]

=
1

2
E
[
(X1 +X2 +X3 − x)21(X1 +X2 +X3 > x)

]
− 1

2
E
[
(X1 +X2 − x)21(X1 +X2 > x)

]
− E(X)E [(X − x)1(X > x)] .

This coincides with (26) for n = 3 with b1(F ) = 1, b2(F ) = EX. Accordingly,
we are led to introduce, for a generic random variable Y , and n ≥ 1, the function

hn(x) = E [(Y − x)n1(Y > x)] , x > 0,

and calculate its convolution with g. Once again, in the following calculation
we assume that X and Y are defined on the same probability space and are
independent.

g ∗ hn(x) =

∫ x

0

g(y)E [(Y − (x− y))n1(Y > (x− y))] dy (33)

=
1

n+ 1

∫ ∫
v+w>x

(min(w, v + w − x))n+1fX(v)fY (w) dv dw

=
1

n+ 1
P(X > x)E(Y n+1) +

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
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− 1

n+ 1

∫ ∫
v>x

(v + w − x)n+1fX(v)fY (w) dv dw

=
1

n+ 1
P(X > x)E(Y n+1) +

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
− 1

n+ 1

n+1∑
j=0

(
n+ 1

j

)
E(Y n+1−j)E

[
(X − x)j1(X > x)

]
=

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
− 1

n+ 1

n+1∑
j=1

(
n+ 1

j

)
E(Y n+1−j)E

[
(X − x)j1(X > x)

]
.

Assume now that the statement (26) holds for g∗k with all k ≤ n for some n ≥ 3.
We will establish the validity of this formula for k = n+ 1. We have by (33):

g∗(n+1)(x) =
1

(n− 1)!

1

n

{
E

n+1∑
j=1

Xj − x

n

1

n+1∑
j=1

Xj > x


−

n∑
i=1

(
n

i

)
E


 n∑
j=1

Xj

n−i
E

[
(X − x)i1(X > x)

]}

− 1

(n− 1)!

n−1∑
k=1

(
n− 1

n− k − 1

)
bn−k(F )

1

k + 1

{
E


k+1∑
j=1

Xj − x

k+1

1

k+1∑
j=1

Xj > x




−
k+1∑
i=1

(
k + 1

i

)
E


 k∑
j=1

Xj

k+1−i
E

[
(X − x)i1(X > x)

]}

=
1

n!
E

n+1∑
j=1

Xj − x

n

1

n+1∑
j=1

Xj > x


− 1

n!

n∑
k=2

n

k

(
n− 1

n− k

)
bn−k+1(F )E


 k∑
j=1

Xj − x

k

1

 k∑
j=1

Xj > x




−
n∑
i=2

E
[
(X − x)i1(X > x)

] [ 1

n!

(
n

i

)
E

 n∑
j=1

Xj

n−i

− 1

(n− 1)!

n−1∑
k=i−1

(
n− 1

n− k − 1

)
bn−k(F )

1

k + 1

(
k + 1

i

)
E

 k∑
j=1

Xj

k+1−i ]
+ θn(F )E [(X − x)1(X > x)]

=
1

n!
E

n+1∑
j=1

Xj − x

n

1

n+1∑
j=1

Xj > x
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− 1

n!

n∑
k=2

n

k

(
n− 1

n− k

)
bn−k+1(F )E


 k∑
j=1

Xj − x

k

1

 k∑
j=1

Xj > x




+ θn(X)E [(X − x)1(X > x)] ,

with the cancellation due to the defining property (27). Here

θn(F ) =− n

n!
E

 n∑
j=1

Xj

n−1

+
1

(n− 1)!

n−1∑
k=0

(
n− 1

n− k − 1

)
bn−k(F )

1

k + 1
E

 k∑
j=1

Xj

k

(k + 1)

=− 1

(n− 1)!
b1(F ),

once again by the defining property (27). Therefore,

g∗(n+1)(x) =
1

n!
E

n+1∑
j=1

Xj − x

n

1

n+1∑
j=1

Xj > x


− 1

n!

n∑
i=1

(
n

n− i

)
bn+1−i(F )E


 i∑
j=1

Xj − x

i

1

 i∑
j=1

Xj > x


 .

This completes the induction step.
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