
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgei20

Download by: [University of Liverpool], [Saad Bhatti] Date: 23 November 2017, At: 04:52

Geocarto International

ISSN: 1010-6049 (Print) 1752-0762 (Online) Journal homepage: http://www.tandfonline.com/loi/tgei20

Step-wise Land-class Elimination Approach for
extracting mixed-type built-up areas of Kolkata
megacity

Ansar Khan, Soumendu Chatterjee, Hashem Akbari, Saad Saleem Bhatti,
Apurba Dinda, Chandana Mitra, Haoyuan Hong & Quang Van Doan

To cite this article: Ansar Khan, Soumendu Chatterjee, Hashem Akbari, Saad Saleem Bhatti,
Apurba Dinda, Chandana Mitra, Haoyuan Hong & Quang Van Doan (2017): Step-wise Land-class
Elimination Approach for extracting mixed-type built-up areas of Kolkata megacity , Geocarto
International, DOI: 10.1080/10106049.2017.1408704

To link to this article:  https://doi.org/10.1080/10106049.2017.1408704

Accepted author version posted online: 23
Nov 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgei20
http://www.tandfonline.com/loi/tgei20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10106049.2017.1408704
https://doi.org/10.1080/10106049.2017.1408704
http://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10106049.2017.1408704
http://www.tandfonline.com/doi/mlt/10.1080/10106049.2017.1408704
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2017.1408704&domain=pdf&date_stamp=2017-11-23
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2017.1408704&domain=pdf&date_stamp=2017-11-23


Publisher: Taylor & Francis
Journal: Geocarto International
DOI: http://doi.org/10.1080/10106049.2017.1408704

Step-wise Land-class Elimination Approach for extracting 
mixed-type built-up areas of Kolkata megacity 

Ansar Khana,*, Soumendu Chatterjeeb, Hashem Akbaric, Saad Saleem Bhattid, Apurba 
Dindae, Chandana Mitraf, Haoyuan Hongg, Quang Van Doanh

Ansar Khan
Assistant Professor
Department of Geography, Lalbaba College, Howrah, India
Email: khanansargeo@gmail.com 

Soumendu Chatterjee
Professor and Head
Department of Geography, Presidency University, Kolkata, India
Email: soumendu.geog@presiuniv.ac.in 

Hashem Akbari
Professor
Heat Island Group, Building, Civil and Environmental Engineering, Concordia University,
Montreal, Canada
Email: hakbari@encs.concordia.ca

Saad Saleem Bhatti
Research Associate
Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, 
United Kingdom 
Email: dearsaad@gmail.com

Apurba Dinda
Research Assistant
Department of Geography and Environment Management, Vidyasagar University, Midnapore, India
Email: apurbadinda0@gmail.com 

Chandana Mitra
Associate Professor
Department of Geosciences, Auburn University, Auburn, Alabama
Email: czm0033@auburn.edu

Haoyuan Hong
Research Scientist
Jiangxi Provincial Meteorological Observatory, Jiangxi Meteorological Bureau, Nanchang, China
Email: honghaoyuan@qq.com

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

iv
er

po
ol

],
 [

Sa
ad

 B
ha

tti
] 

at
 0

4:
52

 2
3 

N
ov

em
be

r 
20

17
 

http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2017.1408704&domain=pdf


Quang Van Doan
Research Scientist
Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan 
Email: doanquangvan@gmail.com

*Corresponding author:
Department of Geography, Lalbaba College, Howrah, India
Email: khanansargeo@gmail.com  

Step-wise Land-class Elimination Approach for extracting 
mixed-type built-up areas of Kolkata megacity 

Abstract

The extraction of urban built-up areas is an important aspect of urban planning and 

understanding the complex drivers and biophysical mechanism of urban climate processes. 

However, built-up area extraction using Landsat data is a challenging task due to spatio-

temporal dynamics and spatially intermixed nature of Land Use and Land Cover (LULC) in 

the cities of the developing countries, particularly in tropics. In the light of advantages and 

drawbacks of the Normalized Difference Built-up Index (NDBI) and Built-up Area 

Extraction Method (BAEM), a new and simple method i.e. Step-wise Land-class Elimination 

Approach (SLEA) is proposed for rapid and accurate mapping of urban built-up areas without 

depending exclusively on the band specific normalized indices, in order to pursue a more 

generalized approach.  It combines the use of a single band layer, Normalized Difference 

Vegetation Index (NDVI) image and another binary image obtained through Logit model. 

Based on the spectral designation of the satellite image in use, a particular band is chosen for 

identification of water pixels. The Double-window Flexible Pace Search (DFPS) approach is 

employed for finding the optimum threshold value that segments the selected band image into 

water and non-water categories- the water pixels are then eliminated from the original image. 
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The vegetation pixels are similarly identified using the NDVI image and eliminated. The 

residual pixels left after elimination of water and vegetation categories belong either to the 

built-up areas or to bare land categories. Logit model is used for separation of the built-up 

areas from bare lands. The effectiveness of this method was tested through the mapping of 

built-up areas of the Kolkata Metropolitan Area (KMA), India from Thematic Mapper (TM)  

images of 2000, 2005 and 2010, and Operational Land Imager (OLI) image of 2015. Results 

of the proposed SLEA were 95.33% accurate on the whole, while those derived by the NDBI 

and BAEM approaches returned an overall accuracy of 83.67% and 89.33%, respectively. 

Comparisons of the results obtained using this method with those obtained from NDBI and 

BAEM approaches demonstrate that the proposed approach is quite reliable. The SLEA 

generates new patterns of evidence and hypotheses for built-up areas extraction research, 

providing an integral link with statistical science and encouraging trans-disciplinary 

collaborations to build robust knowledge and problem solving capacity in urban areas. It is 

also brings landscape architecture, urban and regional planning, landscape and ecological 

engineering, and other practice-oriented fields to bear in processes for identifying problems 

and analyzing, synthesizing, and evaluating desirable alternatives for urban change. This 

method produced very accurate results in a more efficient manner compared to the earlier 

built-up area extraction approaches for the landscape and urban planning. 

Keywords:  

Double-window flexible pace search; Kolkata metropolitan area; Logit model; Spatially 

intermixed LULC; Step-wise land-class elimination
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1. Introduction

Remote sensing techniques for the extraction of urban land use information have 

drawn immense research attention during the last three decades. Satellite Remote Sensing 

(SRS) images with increasingly improved optical quality are now invaluable resources for 

discrimination of land cover types within cities at appreciably finer levels of accuracy. 

Automatic and semi-automatic methods of detecting urban features from images have 

evolved with enhanced details of information captured by more powerful sensors. These 

imageries, being available historically, allow determination of the dynamic nature of 

urbanization, characterized by alteration of the natural land areas into unreceptive built-up 

areas (DeFries, 2008, Mushore et al., 2017). Apart from such modifications in the urban core, 

urban areas encroach on to the surrounding natural lands such as agricultural fields, 

forestlands and wetlands as peri-urban dynamic processes (Xu, 2008; Estoque & Murayama, 

2015). Remote sensing based (timely and cost-effective) mapping of built-up areas facilitates 

subsequent urban analysis and modeling of the urban morphology, urban hydrology, urban 

ecology and urban climate. The significance of expanding built-up areas in intensifying 

Urban Heat Island (UHI) phenomena cannot be ignored (Stone, 2007; Xu, 2008; Gibril et al., 

2017). Apropos recent global warming and climate change concerns, it has been suggested 

that the warming trends observed at continental weather stations could be partly influenced 

by rapid urbanization and local UHIs (Jones et al., 2008; Parker, 2010; Khan et al., 2015). As 

urbanization is an alarming and accelerating phenomenon across the world, especially in 

developing countries like India, the investigation of UHI effects has accrued momentum 

(DeFries & Pandey, 2010; Liu & Yang, 2015). 

The study of spatial expansion of urban built-up areas always needs accurate 

information on the size, shape and spatial structure of built-up features (Xu, 2008; Wang et 

al., 2015). Therefore, a scientific and robust technique is required to quickly retrieve such 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

iv
er

po
ol

],
 [

Sa
ad

 B
ha

tti
] 

at
 0

4:
52

 2
3 

N
ov

em
be

r 
20

17
 



information, and its success depends on the availability of spatio-temporal data. Fortunately, 

SRS technology offers considerable pledge to meet these requirements. SRS data are useful 

for monitoring the growth of urban built-up areas as well as their sprawling effects due to 

their ability to provide varied spatial and temporal resolutions, consistent and repetitive 

measurements and synoptic views of Land Use and Land Cover (LULC) (Guindon et al., 

2004; Xu, 2008; Bhatta, 2009; Griffiths et al., 2010; Bouzekri et al., 2015).Early researchers 

have made use of SRS imagery to address urban and suburban problems (Jacquin et al., 

2008).  Several techniques have been formulated, applied and evaluated to achieve desirable 

level of accuracy in automated mapping of urban LULC. These techniques can be broadly 

grouped into three categories:(a) pixel-based classification (Jensen, 1986; Gong et al., 1992; 

Casals-Carrasco et al., 2000; Zhou and Robson, 2001; Dean & Smith, 2003);(b) object-based 

classification (Giada et al., 2003; Guindon et al., 2004; Gao et al., 2006; Qian et al., 2007; 

Cleve et al., 2008); and (c) application of spectral indices such as Normalized Difference 

Built-up Index (NDBI) (Zha et al., 2003; Zhang et al., 2005). Pixel-based approach is still 

considered efficient for classificatory purposes when employed on multi-band imageries of 

medium resolution (Adam et al., 2016). Exploring the advantages of the unique spectral 

signature of built-up areas and other LULC of Thematic Mapper (TM) images, Zha et al. 

(2003) formulated NDBI for automatic extraction of built-up areas. The method involves 

simple arithmetic manipulation of re-coded Normalized Difference Vegetation Index (NDVI) 

and NDBI binary images which indicated vegetation and built-up areas, respectively for pixel 

value =1. Reportedly, this process is unable to separate urban built-up areas from bare lands 

(Zha et al., 2003; Zhai et al., 2015). It has been suggested that the universality of the 

approach needs to be tested in other geographic areas because spectral response patterns of 

vegetation and other LULC classes are actually more complicated than were assumed (Zha et 

al., 2003; Bhatti &Tripathi, 2014; Mushore et al., 2017). The problem is more acute in case of 
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old cities like Kolkata, where mixed urban development has continued throughout its history 

of urbanization. As a refinement of the original method, He et al. (2010) suggested that 

continuous images of NDBI and NDVI be used, not the binary images and then a final 

separation of built-up areas on the basis of an optimal threshold value determined adopting 

Double-window Flexible Pace Search (DFPS) technique (Chen et al., 2003). This modified 

approach has been demonstrated to be comparatively better than the customary NDBI 

approach in terms of overall accuracy (He et al., 2010; Bhatti & Tripathi, 2014; Lu et al., 

2015 ).

NDBI has been widely used for the mapping of urban built-up areas from TM images. 

Afterwards, Bhatti & Tripathi (2014) tested the applicability of this approach on Landsat-8 

Operational Land Imager (OLI) and proposed a new Built-up Area Extraction Method 

(BAEM) for improving the performance of index-based separation of built-up pixels. This 

new approach considers Principal Component Analysis (PCA) as a method to ensure optimal 

utilization of information in image data and accordingly uses the first Principal Component 

(PC) image of the highly correlated bands in Landsat-8 OLI imagery to replace the spectrally 

equivalent TM band in the original formula for computing NDBI. Similarly, strategies for 

calculating NDVI and Normalized Difference Water Index (NDWI) were modified by 

substitution of TM bands with corresponding OLI bands. Finally, the BAEM image was 

obtained by simple arithmetic operation on modified NDBI, modified NDVI and modified 

NDBI images of continuous type (Bhatti & Tripathi, 2014). The threshold value for the 

extraction of built-up areas from this BAEM image was then determined through the DFPS 

technique. The BAEM subsequently brought a noticeable improvement in NDBI approach to 

make it commensurate with the Landsat-8 images and also revealed a higher overall accuracy 

than modified NDBI method (Ke et al., 2015; Piyoosh & Ghosh, 2017).
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In spite of all these efforts, the accuracy in extraction of built-up area from satellite 

images still lies below 80% and currently available methods fail to completely separate built-

up areas from bare lands (Pant et al., 2016). Results from a lot of studies revealed that there 

has not been a single technique to classify the built-up areas but one combines the intrinsic 

aspect of two or more techniques in order to build a hybrid approach to improve the 

extraction accuracy of urban LULC.Hence, a satisfactory technique with justifiable approach 

is necessary. The major challenges encountered while analyzing raster data in wavelength 

domain arehigh probability of misclassification due to mixed pixel problem (Lo & Choi, 

2004) and the juxtaposition of discrete and continuous features in an extremely 

heterogeneous urban landscape (Aplin, 2006). Moreover, Very High Resolution (VHR) 

images are prohibitively expensive for urban agencies and researchers to be used in real 

applications. One way of handling these difficulties is to develop a regression model based on 

digital number (DN) values of sample pixels from those bands which can significantly 

distinguish a feature class from the rest, and to apply such models on medium resolution 

images.

In light of the original NDBI and BAEM approach’s recompense and drawback, a 

new and simple method is proposed here for the rapid and accurate mapping of urban built-up 

areas without depending exclusively on the band specific normalized indices, in order to 

pursue a more generalized approach befitting both TM and OLI images. The indifference in 

the spectral response of built-up areas and bare soils to thermal bands makes the separation of 

these two land categories difficult, particularly in tropical areas. Encountering this problem 

for the city of Kolkata, the proposed method excludes the thermal bands in extraction of 

built-up areas. This new approach, called Step-wise Land-class Elimination Approach 

(SLEA) combines the use of a single band layer, an NDVI image and another binary image 

obtained through Logit model. Based on the spectral designation of the satellite image, a 
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particular band is chosen for identification of water pixels. The DFPS approach is employed 

for finding the optimum threshold value that segments the selected band image into water and 

non-water categories - the water pixels are then eliminated from the original image in use. 

The vegetation pixels are similarly identified using the NDVI image and eliminated. The 

residual pixels left after eliminating water and vegetation categories are assumed to be the 

built-up and bare land categories, and thus need to be separated.  For extracting built-up 

areas, Logit model is used to select the probable image bands appropriate for recognizing the 

land characters. It allows, after coefficient optimization, to model the link between a set of 

explanatory bands and a dichotomous dependent output which, at a given probability, reveals 

if  a pixel belongs to the built-up class or not. The mapping is accomplished through recoding 

of the final image.This method, importantly, does not involve much of subjective human 

intervention in the mapping process. The effectiveness of this method was tested through the 

mapping of built-up areas in the Kolkata metropolis of India from TM images of 2000, 2005 

and 2010, and OLI image of 2015. Comparison of the results obtained using this method with 

those interpreted manually demonstrates that the proposed approach is quite reliable. This 

method produced very accurate results in a more efficient manner compared to the earlier 

built-up area extraction approaches.

The past study revealed that most of the studies developed spectral indices for rapid 

extraction of built-up areas from various types of satellite images based on specific image 

data (Sameen & Pradhan, 2016). Therefore, it is needed to improve band specific approach 

for Landsat satellite images, which is not examined in previous study. In addition, inspection 

further advanced and robust methods are prerequisite to be involved in the improvement of 

spectral response for tropical environment. Therefore, this study proposes a novel spectral 

land-class elimination approach for rapid extraction of built-up areas from Landsat images. 

For this, researchers’ use of a single band layer, an NDVI image and another binary image 
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obtained through Logit model. This approach offers paramount solution for numerous 

problems including the selection of relevant bands and determining the best combination of 

spectral bands for the elimination of final land-class in tropical city.

2. Study Area 

The present study of built-up area extraction was conducted on Kolkata Metropolitan 

Area (KMA), delimited by the latitudes of 22.01°N and 23.08°N, and the longitudes of 

88.03°E and 88.45°E, developed mainly along the banks of the river Hugli about 150 km to 

the north of the Bay of Bengal (BoB), right over the Gangetic delta plains (Fig. 1). This is 

one of the leading urbanized areas in India, as well as of the urban world characterized by 

swift urbanization and associated spatio-temporal variation in biophysical processes. KMA, 

the largest urban agglomeration in eastern India, extending over 1851.41km2comprises 4 

municipal corporations, 39 municipalities, and 1 cantonment, and parts of 24 panchayat 

samiti (rural local governments at the intermediate level in administrative structure of 

India)(Census of India, 2011). Kolkata is the most important commercial and industrialized 

centre of east and northeast Indian hinterland, and it holds essential manufacturing and 

transportation infrastructure (Nath et al., 2015).The population of core Kolkata was 1.5 

million in 1901, 11 million in 1991 and an exceptional 14.2 million in 2011 (Census of India, 

2011). In some parts of the KMA, the population density exceeds10,000 persons/km2. Owing 

to the huge demand of land for housing the tremendously growing population, 

accommodating the ever increasing vehicular traffic and facilitating the booming trade and 

commerce, the city has intensified the use of land and, at the same time, has also intruded into 

the adjacent natural back swamp and marshy lands to the east. Planned development, 

particularly in the Salt Lake City and New Town-Rajarhat areas, and spontaneous haphazard 

growth in inner city areas characterize the urbanization process in Kolkata. Both filling up of 
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widespread natural areas in the former instance, and densification of landuse in the later, are 

adding to the intensity of the heat island effect in Kolkata at the city scale as well as at the 

neighbourhood level (Stone, 2007; Bhatta et al., 2009; Khan, & Chatterjee, 2016). More than 

80% of land in the city core is built-up with high-rise residential buildings, overcrowded 

commercial areas, hospitals and different other institutions (Nandy, 2007). Aesthetically, the 

city exhibits wide variations from leafy residential areas like Alipore and Rajarhat to ‘grey’ 

areas of Binoy-Badal-Dinesh (BBD) Bag (erstwhile Dalhousie Square). Kolkata’s business 

district shows unmistakable signs of haphazard developments mirroring the reality in other 

big cities in the country.

<Fig. 1>

3. Methods and materials 

3.1 Pre-processing of imagery

Images from two different sensors of Landsat satellite series were used for delineation 

of built-up areas in Kolkata metropolis i.e. TM of Landsat-5 and OLI and Thermal Infrared 

Sensor (TIRS) of Landsat-8 (Table 1). All multi-temporal images were pre-processed in 

ERDAS 2014 and subsequent analysis was carried out in ArcGIS 10.1 software. Only the 

cloud-free images were selected for this study, hence no atmospheric correction was required 

(Deng & Wu, 2013; Bhatti & Tripathi, 2014). For the purpose of comparing three different 

approaches (NDBI, BAEM and SLEA), the entire set of bands of all the selected images 

required necessary pre-processing, though the proposed SLEA does not include the thermal 

bands. Initially, a rectangular area encompassing the KMA was clipped from the original 

images in order to avoid null pixels at the processing stage. Careful observation of the 

standard False Colour Composite (FCC) band combination helped to distinguish diverse 

types of LULC (Zha et al., 2003). Field survey and unsupervised classification of the images 

with variable number of classes revealed that the area comprises four principal land-class 
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types namely water bodies, vegetated areas (including other green coverage), bare lands and 

built-up areas. TM band 4 and 5 were most pertinent for discerning the urban built-up areas 

from other LULC types (Zha et al., 2003; He et al., 2010; Bhatti & Tripathi, 2014). In case of 

OLI bands, the spectral ranges differ from those of TM, so, it was necessary to examine the 

spectral signatures of built-up areas in different bands of OLI bands before developing any 

suitable method for built-up areas extraction (Bhatti & Tripathi, 2014). For this, the spectral 

signatures associated with built-up, vegetation and water areas in different bands of TM and 

OLI were examined. The plots for the Digital Number (DN) values of 20 sample pixels each 

from every land class typein: (a) optical bands 1-5 and 7 of Landsat-5 TMand; (b) optical 

bands 2–7 of Landsat-8 OLI are shown in Fig. 2. It reveals that vegetation show higher 

spectral reflectance than other LULC classes in the TM Band 4 and OLI band 5. Therefore, 

subtraction of band 3 from band 4 (for TM images) and subtraction of band 4 from band 5 

(for OLI images) produce positive values for vegetation pixels (Zha et al., 2003; Bhatti & 

Tripathi, 2014).

<Table 1> Satellite data used in the study.

<Fig. 2>

The multi-temporal sub-set (clipped) images have been geometrically rectified using 

200 Ground Control Points (GCPs). The Root Mean Square Error (RMSE) at all GCPs 

ranged from 0.25-0.86 pixels, which is acceptable and quite suitable for further processing 

(Gibson, 2000; Askne et al., 2003). Afterwards, the original images were projected into 

Universal Transverse Mercator (UTM) system and resampled to the same spatial resolution 

using nearest neighbour technique (Zha et al., 2003). In case of Landsat 8 OLI/TIRS, digital 

DNs of optical bands 2-8 were converted to Top of Atmosphere (ToA) reflectance and DNs 

of thermal bands 10 and 11 were first converted to ToA reflectance and subsequently 

processed to obtain at-satellite brightness temperature in °C (USGS, 2013; Bhatti & Tripathi, 
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2014). The working formulae for translating the DN values into ToA reflectance and at-

satellite brightness are available in the Landsat-8 data user handbook (USGS, 2013). The 

optical bands 2-7 (except the panchromatic band 8) were then stacked into a multi-band 

image file and similarly, the thermal bands 10 and 11 were stacked into another image file. 

The spectrally rectified optical stack (bands 2-7, spatial resolution 30m) was then combined 

with high-resolution panchromatic layer (band 8, spatial resolution 15m) by using the High 

Pass Filter (HPF) resolution merge function to obtain an output (spatial resolution 15m) with 

greater detail (Gangkofner et al., 2008: Bhatti and Tripathi, 2014). The values of the 

parameters, used in this image sharpening process, were set accordingly. The Fig. 3 compares 

the original image with spatially enhanced image for a sample area of the Salt Lake City in 

Kolkata. The thermal bands 10 and 11 were resampled to a spatial resolution of 15m, in order 

to make them compatible with the spectral bands.

<Fig. 3>

In case of Landsat-5 TM images for 2000, 2005 and 2010, the above resolution merging was 

not possible as the sensor does not deliver any panchromatic band of higher resolution. 

Therefore, after re-projection and re-sampling, the bands 1-5 and 7 (exceptthe thermal band 

6) were directly stacked into a multi-band image file for further processing. 

3.2 Built up area extraction 

The proposed method for extraction of built-up areas using TM and OLI imagery 

considers elimination, in phases, of the LULC categories, and retains the built-up areas 

finally (Fig. 4). Starting with all the component LULC classes, water and vegetation pixels 

were detected and excluded, and the resultant image was then used as the input to a Logit 

model for separation of built-up pixels from the bare land pixels.  

3.2.1 Step 1: Elimination of water class
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The most significant spectral character of water is energy absorption at the Shortwave 

Infrared (SWIR) wavelengths. A single band density slices classification of Landsat-5 images 

using the TM band 5 (1.55-1.75μm) produces 96.9% accuracy in mapping of water 

boundaries. The optical bands are not fit for the method, but while using TM band 5, the 

performance of density slicing in detecting water pixels is comparable with multispectral 

maximum likelihood algorithm (Frazier et al., 2000). Band 6 of OLI image provides similar 

data in the SWIR1 band (1.57 – 16.5μm), though the spectral range is a bit narrower than the 

TM band 5. Therefore, band 5 of Landsat-5 images and band 6 of Landsat-8 images were 

selected since they exhibit comparable spectral character suitable for the purpose of detecting 

water pixels. The greyscale image (band 5 for TM or band 6 for OLI) is segmented into water 

and non-water classes by thresholding method where the spatially continuous pixels are 

partitioned into two disjoint sets in reference to a fixed constant pixel value, called threshold 

value. The pixels with values less than the threshold value indicate water and such pixels 

were re-coded to 0, while pixels with values greater than the threshold value signify non-

water and they were re-coded to 1. Thus, thresholding converts the grey-level band images 

into a binary image by turning all water pixels to black and others to white. A DFPS search 

approach was used for fixing the threshold value.

<Fig. 4>

3.2.1.1 Double-window flexible pace search

The DFPS is a systematic approach to determine the optimum threshold value 

between change and no-change pixels while examining LULC transitions (Chen et al., 2003; 

He et al., 2010; Bhatti & Tripathi, 2014). This technique is an improved version of Change 

Vector Analysis (CVA) which determines the threshold of change first and then determines 

change direction (from one category to another) by application of minimum-distance 

classification algorithm on direction cosines of the change vectors (Chen et al., 2003). DFPS 
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approach has been widely used to determine optimum threshold value for recognizing 

vegetation, water and bare land in a thematic image while extracting built-up areas (He et al., 

2010; Bhatti & Tripathi, 2014). The technique is based on choosing an optimum threshold 

from representative training samples, which should contain all possible feature classes to 

represent in the study area optimally (Chen et al., 2003). It relies on determination of 

threshold value at the highest level of accuracy such that the value eliminates all the pixels 

under a targeted class from all other classes present in the sample area (Chen et al., 2003; He 

et al., 2010; Bhatti & Tripathi, 2014). The technique involves some steps to apply in SLEA 

method (Fig 5).

Fig. 5

3.2.1.2 Selection of typical sample area

Selection of representative training sample areas in processed image is decisive for 

actual extraction of water areas. In this study, the sample water bodies have been selected 

through rapid visual survey of study area and visual interpretation of the processed image, 

subject to the condition that sample areas include only water pixels in inner window and 

surrounded by non-water pixels in the outer window (Fig 6).  

<Fig. 6>

3.2.1.3 Determination of search range and pace

In this stage, the threshold range has been setup using simple arithmetic difference 

between minimum pixel value (a) and the maximum pixel value (b) of the magnitude of 

change in processed image by first search (Chen et al., 2003; He et al., 2010; Bhatti & 

Tripathi, 2014). The pace of first search, P1 could be computed by Equation 1 (Chen et al., 

2003).

 
1

b a
P

m


                                                                  (1)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

iv
er

po
ol

],
 [

Sa
ad

 B
ha

tti
] 

at
 0

4:
52

 2
3 

N
ov

em
be

r 
20

17
 



where, m is the positive integer that reveals the number of optimum threshold in a iteration 

search and it can be manually determined. The optimum thresholds to detect magnitude 

change pixels from training sample in a iteration search process are given within the range of 

(a,b) as ( 1 1 1, 2 ,...,b P b P b mP   ). It is to be remembered that the value of m has no bearing 

on the search process and ultimate results, but it is a time dependant parameter. A large value 

of m increases to the number of optimum threshold during first search, but it gradually 

decreases as the search process is iterated (Bhatti & Tripathi, 2014).

3.2.1.4 Calculation of test parameter

The procedure for calculating test parameter has been slightly modified from that 

suggested by Chen et al. (2003). A success rate of target pixel detection is defined to evaluate 

the performance of each potential threshold during one search process for identifying 

change/no-change pixels. The success rate  kL  is calculated for a potential threshold of k

using Equation 2.

1 2

1 2

100k k
k

A A
L

A A
 

   
                                                               

(2)

where, 1A is the total number of pixels under water within the inner window frame, 
1kA is the 

number of pixels detected correctly as water inside the inner window, 2A is the total number of 

pixels in the non-water rectangular strip lying between the boundaries of outer and inner 

window, and
2kA is the number of pixels correctly detected as non-water in 2A .For all m 

thresholds in one particular search process, the maximum and minimum values of kL were 

calculated and assigned to maxL and minL , respectively. These two values were examined 

whether or not they satisfied the exit condition given in the final step of the DFPS process. If 

the exit condition was not satisfied, a new search began with a new search range ( max 1k P ,
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max 1k P ) and a new search pace that was calculated using Equation (2), where maxk was the 

threshold value corresponding to maxL in that particular search iteration.

3.2.1.5 Condition to exit the iteration  

The condition to exit from the iteration search process was performed until 

differences between Lmax and Lmin satisfied the stipulation given in Equation 3. 

max minL L                                                                     (3)

where   denotes an acceptable error in the search process, and its value is 1 in case of an 

inter-type image. The desired threshold value to separate water areas from other areas in the 

continuous image was equivalent to maxL  in the final iteration of DFPS search technique. 

Thus, the said value has been employed in continuous layers of band 5 (for TM images of 

2000, 2005 and 2010) and band 6 (for OLI image of 2015) to separate water bodies; 

waterpixels were assigned a value of 0 and the rest were given a value of 1.

The output binary image was multiplied to their corresponding multi-band image so 

that the water pixels in each layer of the stacked images receive zero value while the other 

pixels retain their original values. Consequently, the water areas were eliminated and the 

output images were ready for subsequent analyses. 

3.2.2 Step 2: Elimination of vegetation class

The elimination of vegetation pixels follows the same technique as employed for the 

delineation of water (see Step 1 above); the only difference is that it was applied to the NDVI 

images instead of any single band. Continuous NDVI images were obtained through raster 

calculation using Equation 4 that involves Red (R) and Near Infrared (NIR) bands. 

NIR RNDVI
NIR R




                                                             
(4)
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The red band corresponds to the band 3 of TM and band 4 of OLI, while the infrared 

band corresponds to the band 4 of TM and band 5 of OLI images. Accordingly, the formula 

was applied for preparing the NDVI image. 

The DFPS method, with all its steps, was applied to the NDVI images to detect the 

pixels that cover the green areas including woodlands, crop fields and vegetated wetlands. 

The threshold based classification segmented the vegetation pixels from the pixels under 

other land classes and this classified image was re-coded to obtain a binary image with values 

0 for vegetation and 1 for others. The image was then multiplied to the output image from 

step 1 to eliminate the vegetation pixels. The multi-band images layers now comprises the 

pixels under only two categories- built-up and bare land. 

3.2.3Step 3: Separating bare lands from built-up areas

In an effort to segregate built-up pixels from the bare land pixels, one Logit  model 

each was formulated for the images of 2000, 2005, 2010 and 2015 on the basis of the DN 

values of the pixels sampled from the corresponding images obtained from Step 2 above.The 

proposed method includes several components: (1) training and test data preparation;(2) 

formulation of Logit  model; (3) accuracy assessment of the model using test data set; and (4) 

selection of the final model by repeating the steps from 2 to 3 until the best level of accuracy 

is achieved. 

3.2.3.1 Sampling pixels and preparation of data sets

In order to sample pixels, we carried out unsupervised classification of the input 

image into two categories for a primary detection of built-up and bare land pixels, and both 

the categories were sampled randomly. The sampled points, originally saved in shape file 

format, were converted into a Google Earth (GE) Keyhole Markup Language (KML) file for 

verification of the land class that the sample points represent. In the process, we took the 

advantage of the availability of historical high resolution Landsat GeoCover imageries for the 
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study area on GE. Moreover, horizontal positional accuracy of GE high-resolution imagery is 

sufficient for assessing moderate-resolution satellite images for majority of the world cities 

(Potere, 2008). Sample points in KML file were drawn on GE images and any mismatch in 

land class category of the sample points, led to withdrawal of the points from the sample 

pool. A final round of verification was done with ground-based survey using Global 

Positioning System (GPS) receivers and parcel level detail landuse map of municipal wards 

available for the study period. The size of the sample was 576, same for all the images 

processed. Sampling was followed by building of database that includes the DN values of the 

sampled pixels in each band of the respective layer-stacks (independent variables), and the 

land class of the pixels in a binary format, 1 for built-up and 0 for bare land (dependent 

variable). The data was split into two parts in the proportion of 60 to 40 for preparing the 

training and test data sets, respectively, which were used in formulating the Logit model.

3.2.3.2 Logit model

Logit  model, also known as logistic regression (Dyke and Patterson, 1952; Cox, 

1958; Cox, 1970; Sankoff and Labov, 1979), is a promising approach for modeling binary 

responses {1,0}iY y  as the linear combination of one or more continuous or categorical 

predictor variables 1 2 3( , , ....... )nx x x x , plus some normalized random error,  (and optionally 

the intercept 0 ), expressed as (Equation 5,6 and 7):

0 1 1 2 2 .......... n nY x x x                                                    (5)

0 1 1 2 2( ) .......... n nE Y x x x                                                   (6)

( )E Y  x β                                                              (7)

where, ( )E Y is the expected value ofY , vector 1 2(1, x , ,........, )T
nx x x and vector

0 1 2( , , ,.........., )T
n   β .In order to accommodate categorical nature ofY , the model 

considers ( 1| )p P Y   x  i.e. probability of the success of an observation that assumes a 
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logistic distribution bounded between 0 and 1 ( 1 1 1 )p e e e     x β x β x β and uses natural 

logarithm of odds called Logit  ( ) ln( 1 )logit p p p  as the output variable that ranges 

unboundedly from -∞ to +∞. Thus, the Logit function transforms the probability space into a 

log-odds space where the logistic relation becomes linear as (Equation 8).

ln
1

p Y
p

  


x β                                                         (8)

The ordinary Logit  model aims at estimating the parameters 0 1 2( , , ,..., )n    from a 

training data with observed responses 1y through my , by way of maximizing a likelihood 

function defined as (Equation 9):

1 2 1 2
1

( ; , ,..., ) ( , ,..., ; ) ( ) (1 )
m

k m k
m m i

i

L p y y y f y y y p P Y y p p 



                    (9)

where,
1

m

i
i

k y


   and 0 1p   .

Statistical conditions required for application of Logit model are fulfilled in the 

present context of multiband image transformation to obtain a binary image depicting 

probability of a pixel to be under built-up class. Logistic regression is independent of many of 

the vital assumptions made in the ordinary least square approach. It does not need that the 

dependent and independent variables to be in a linear relationship, because log-odds 

transformation of the dependent variable makes the system capable of handling all types of 

relationship in a linear framework. It is not mandatory for the independent variables to be 

multivariate normal and homoscedastic. Land class of a sample pixel was entered into the 

model in a binary form because the logistic regression needs its dependent variable to be 

dichotomous. The issue of over fitting or under fitting of the model was tackled by retaining 

only the significant independent variables in the model. The sampling strategy complies with 

the recommendation of 20-30 samples per independent variable.
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For the present purpose of separating built-up areas from bare lands, Logit  model is 

implemented on the multiband image containing those two land classes only (output from 

Step 2). This entails digital transformation of input image into a single band output image by 

combining selected bands through linear operation.

3.2.3.3 Assessment of model fit

An iterative modeling strategy was adopted where predictive bands were 

progressively removed (Campling et al., 2002), based on significance test for the co-efficients 

in the model using Wald’s method. The Wald’s test considers square of the ratio of regression 

coefficients to its standard error and thus assesses the statistical significance of each co-

efficient in the model. The test suggested the variables to be retained in the next round of 

repetition. On every reiteration, fitting of the model was further confirmed by assessing its 

predictive capacity through application of the model on the test data, at a chosen level of 

probability. A model is finalized when it includes only the statistically significant predictive 

bands and has attained a satisfactory level of accuracy (> 95%) in predicting the output.

Implementation of the final model on the appropriate image produces a single band 

raster layer in greyscale where the pixel value represents the probability of a pixel to be the 

built-up area. Finally, segmentation of the output image by use of DFPS technique gives the 

desired map of built-up area.

4. Results and discussion

The mapping of mixed and swift urban growth and their spatial pattern in relation to 

LULC is an indispensablerequirementfor urban planning. One of the foremost tasks for this 

purpose is the actual mapping of urban built up area. The issue is more crucial for the cities 

of the developing countries like India where haphazard unplanned use of land has led to 

mixed type of development where the continuity of a land class is often interrupted by 
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appearance of another class. This situation makes the extraction of built-up area challenging 

due to adjacency and similar spectral response of built-up area and bare land. The problem is 

still unresolved in spite of several attempts made to address the issue.

4.1 Previous approaches: NDBI and BAEM

The NDBI Zha et al. (2003) has been useful for automatic mapping urban built-up 

areas using TM data. It was prepared on the basis of the unique spectral signatures and 

responses of built up land and other LULC. The authors have argued that the built up areas 

and open bare land provide a sharp increment in their reflectance from band 4 to band 5 and 

this pace of increment greatly exceeds that of any other LULC (Zha et al., 2003). The 

normalized differentiation of thesetwo bands is given by Zha et al., 2003 as (Equation 10):

 
 

0
5 4

0 1
5 4

0 1

close to vegetation
TM TM

NDBI to waterbodies
TM TM

to built up

 
                                               

(10)

The index was developed through simple arithmetic manipulation of two bands from 

TM satellite imagery. In the output image, the values range between -1 and 1 where the built 

up areas and bare land pixels have positive values which allow the built up areas to be 

mapped automatically.

Recently, the applicability of NDBI to the Landsat-8 OLI imagery was examined and 

tested by Bhatti & Tripathi (2014), and they proposed a new technique for urban built up area 

extraction by utilizing PCA of similar spectral bands and thermal bands of OLI data. The new 

method called BAEM was the revised version of a modified NDBI approach (He et al., 

2010), and was employed on Landsat-8 OLI imagery. The possibility of built up areas is 

given by Bhatti & Tripathi (2014) as:

 
high DN built up

BAEM NDBI NDVI MNDWI
low DN other land

 
                           

(11)
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The BAEM approach is an amalgamation and integration of Land Surface 

Temperature (LST), NDVI, and Modified Normalized Difference Water Index (MNDWI) 

given by Xu (2005). The BAEM approach was able to extract the built up areas from OLI 

images more satisfactorily as compared to the modified NDBI approach. Instead of using 

binary NDBI, NDVI and MNDWI images directly, continuous images of these indices were 

employed and the outputs were re-coded to map the built-up areas based on optimal threshold 

value determined through the DFPS method.

The aforementioned methods of NDBI and BAEM were applied and tested in this 

study, and it was found that both the methods could not completely separate built-up areas 

from bare land in case of Kolkata, one of the leading metropolitan areas in eastern India. 

These two techniques of built-up area extraction are more suitable for temperate climate 

where a distinct contrast exits in spectral reflectance from built up lands and open bare lands. 

In the case of tropical environment, however, these methods overestimates the built-up areas 

because no distinct contrast exits in spectral reflectance from built up lands and open bare 

lands; both the land categories are classified as built up in some parts of the study area, 

particularly in margins of the city.Results show that many of the built-up areas could not be 

identified by the index-based methods due to less difference between spectral reflectance 

between built-up areas and other land-classes in the bands used in building the indices. NDBI 

and BAEM techniques returned exceptionally good results for continuously built-up areas but 

failed to detect built-up pixels from areas of mixed-type LULC. Thus, for the tropical cities 

with haphazard growth, these methods do not provide the assessment of urban built up areas 

with desirable accuracy because no spatial thresholding method has been suggested to 

separate the misclassified pixels. This is a major problem and challenge for urban planning 

and policy implementation purposes.

4.2 Proposed SLEA approach 
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The approaches developed so far for built-up area extraction suffers from generic 

limitations either from technical or from methodological or from applicative point of view. 

The present study is an attempt to eliminate those discrepancies and proposes a simple 

technique that involves application of Logit model and DFPS approach to precisely map 

urban built-up areas by successive elimination of other land classes. The suggested method is 

more straightforward and eliminates users’ control over the output. When applied in case of 

Kolkata metropolis, it turned out to be more efficient than the other methods available.

The impervious surfaces have effects on the land surface temperature which is 

directly related to their thermal properties and therefore, the impervious urban surface covers 

exhibit direct relation with the intensity of reflectance in the thermal bands (Oke, 1973; 

Weng, 2001; Yuan & Bauer, 2007). The uncovered land parcels within the built-up areas 

have spectral reflectance in thermal bands which is comparable to that of the impervious 

built-up areas. Techniques of built-up area extraction using thermal bands are, therefore, 

prone to overstimulation. For this, thermal bands were excluded from the analysis. The 

method, therefore, only considers the optical bands of TM and OLI sensors. After elimination 

of the water bodies and the green covers, Logit model was employed to eliminate bare lands. 

The Logit model was finalized on the basis of best level of accuracy obtained through several 

trials with different combinations of the bands. The model retains only those bands for which 

the co-efficient in the linear combination are statistically significant. Thus the built-up areas 

extraction approach was simple and follows a strategy of eliminating other land classes to 

finally obtain the built-up areas.

The spectral features and ranges of TM bands differ from those of OLI, accordingly, it 

was essential to examine the signatures of spectral ranges of LULC class in different bands of 

TM and OLI data before applyingthis sample based approach of eliminating the unintended 

land classes and subsequent extraction of built-up areas. For this reason, the spectral response 
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of water bodies, vegetation areas and built-up areas in different band of TM and OLI were 

examined after necessary pre-processing. It was found that the band 4 (0.76-0.90μm) and 

band 5 (1.55-1.75μm) of TM data are closely analogous to band 5 (0.85-0.88μm) and band 6 

(1.57-1.65μm) of OLI data, respectively, in respect of spectral character. The spectral 

responses of the major land classes differ significantly in some bands. For example, water 

responds quite differently than built-up and vegetation class in band 5 and 6 of OLI while 

such variation is distinct in band 4 and 5 of TM (Fig. 7). Importantly, Band 4 and band 5 of 

TM are very strongly correlated at a high level of statistical significance and a similarly 

strong correlation exists between the band 6 and 7 of OLI (Bhatti & Tripathi, 2014).    

<Fig. 7>

In SLEA, each of the land classes to be eliminated are identified and separated out of 

the original raster image sequentially. The continuous image was first converted to unsigned 

integer, and then its histogram was plotted and examined to set the initial range of search. 

The search process for identifying water pixels in the Landsat 8 OLI image of 2015 and the 

results obtained thereby are shown in the Table 2, as an example. This is a 16 bit data with 

DN values ranging between 0 and 65535. For the first cycle, 13 individual searches were 

desired and accordingly threshold values were set at an interval of 5000 within the said range 

of DN values. The first search turned out to be successful (with success rate > 0) for the 

threshold values 15535, 10535 and 20535 suggesting that the second round of searches to 

start with threshold value 15535 and be continued till 5535. The pace or interval for the 

second search was considered to be 1000. In subsequent searches, both the search range and 

pace gradually diminished to achieve a precise threshold value for which the success rate 

attains the maxima. For the image under consideration, the search process identified 8355to 

be the optimal DN value for segmentation of the image into water and non-water classes with 
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a success rate of 96.35%. The Table 3 summarises the results of DFPS run for all other 

similar pursuits of image segmentation involved in the study.  

<Table 2> An example of the DFPS for the determination of optimal threshold value of 

water pixels of the Landsat-8 OLI image of 2015

<Table 3>Summary results of the DFPS for determination optimum threshold values in 

eliminating the water and vegetation pixels and final extraction of built-up areas.

After eliminating the water and vegetation pixels (values recoded as zero), the multi-

band images with layers of selected bands were sampled for preparing pixel-based database 

to be employed in formulating Logit model that uses the image bands as the independent 

variables. The best fit Logit model transforms the corresponding multi-band image into a 

binary image which when segmented through DFPS delineates the built-up areas (Fig. 8). In 

formulating the Logit model, an iterative approach was adopted that initiated with all the 

bands in the image progressively discarded insignificant bands from the model. Optimality of 

the model was judged by the level of accuracy measured with reference to the test data. 

Results show that for the TM image of 2000, the best model involves band 5 and band 7 with 

an accuracy of 98.21%, signifying that the model is highly accurate in distinguishing built-up 

area from bare lands (Table 4). The results for the images of other years are summarized in 

Table 3. The pixels with values abovethe optimum threshold were classified as built-up areas 

(Fig. 9).

<Table 4> Co-efficient values of Logit model for built up area extraction.

<Fig. 8>

<Fig. 9>

4.3 Built-up areas and level and agreement of accuracy
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In order to assess the classification performance, the results of the proposed SLEA 

were verified at 350 locations by rapid visual survey with corresponding image pixels using a 

stratified random sampling technique (Congalton, 1991). At first, a specific area was split 

into two strata, built-up areas and non-built-up areas, and then samples were taken from each 

one stratum on the basis of proportion in the output image (Bhatti & Tripathi, 2014). In 

addition, both NDBI and BAEM approaches were also used to generate a map of built-up 

areas, which was tested using the same accuracy assessment method in order to compare the 

performance of the three approaches (Fig. 10). Producer and user accuracy of three 

approaches were compared to each other for assessing the classification efficiency. Selected 

sampled areas were visually observed to comprehend the discrepancies in the outputs of three 

approaches. The Fig. 10 demonstrates the misclassification of built-up area in NDBI and 

BAEM approach very clearly. The red ‘A’ rectangles indicate sample areas with large 

number of bare land parcels situated within the developed areas which could not be detected 

by NDBI and BAEM methods and those bare lands have been classed under the built-up 

areas. The disconnected built-up areas interspersed with homestead have been underestimated 

in both NDBI and BAEM approaches. Such areas were sampled, indicated by red ‘B’ 

rectangles in the Fig. 10.

<Fig. 10>

The confusion matrix has been derived for NDBI, BAEM and SLEA to assess the accuracy of 

the three approaches (Table 5). Results of the proposed SLEA were 95.33% accurate on the 

whole, while those derived by the NDBI and BAEM approaches returned an overall accuracy 

of 83.67% and 89.33%, respectively. These comparative accuracy discrepancies occur mainly 

due to incorrect detection of built-up and non-built-up areas in different approaches. The 

commission error greater than the omission error in NDBI and BAEM approaches has 

resulted in outputs containing some pixels wrongly detected as built-up areas. However, the 
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least omission error signifies that the approach is capable to capture the built-up areas well 

(Table 6). Nevertheless, least values of omission and commission errors, represented by the 

kappa index, suggested that the SLEA has the highest agreement level or overall accuracy 

than the NDBI and BAEM approaches.

<Table 5>Confusion matrix for NDBI, BAEM and SLEA

<Table 6> Summary of the accuracy assessment of the images derived by NDBI, BAEM and 

SLEA 

For the purpose of comparison, the input TM and OLI images and final outputs of 

three built-up areas extraction approaches have been displayed in Fig. 10 showing the same 

sample locations. It was found that the NDBI and BAEM approaches have over classified 

(inclusion of bare lands) the built-up areas as compared to the SLEA. The NDBI and BAEM 

classifications include higher commission error in the outputs than that obtained through the 

SLEA method. The use of thermal bands in BAEM approach helped in separating less dense 

built-up areas from other LULC types (Bhatti & Tripathi, 2014). However, in case of 

Kolkata, inclusion of thermal bands and seasonality in BAEM approach misclassified a 

considerable number of bare lands pixels as built-up areas, and thus reduced the overall 

accuracy of BAEM approach. On the other hand, NDBI approach is also incapable to 

segregate built-up areas from open bare lands because built-up areas and bare lands have 

comparable spectral signatures in TM bands (Zha et al., 2003). Zha et al., (2003) have 

suggested that the drawback may be tackled through the integration of spatial knowledge, that 

the bare lands are located next to water. But obviously, this is totally a time dependant 

protocol. The established methods in use could not completely separate the bare lands from 

built-up areas because of the resemblances in spectral response of these two LULC classes 

which may be due to monotonous nature of surface, seasonality and climate type of the study 

area (Zha et al., 2003; Herold et al. 2004; Lu &Weng, 2004; Lwin & Murayama, 2013; Bhatti 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

iv
er

po
ol

],
 [

Sa
ad

 B
ha

tti
] 

at
 0

4:
52

 2
3 

N
ov

em
be

r 
20

17
 



& Tripathi, 2014).Thus, in case of Kolkata metropolis, the rationale for the high commission 

error may be endorsed to spectral mixing of built-up pixels with bare lands. It is interesting to 

note that SLEA was able to recognize water, vegetation and bare lands from continuously 

built-up areas, and to eliminate them for separating out the built-up areas. Moreover, the 

integration of optical band-based Logit model for segregating built up areas from bare lands 

increased the performance of the proposed land class elimination technique. 

5. Conclusion 

Both NDBI and BAEM approaches were capable to map continuously built-up areas but they 

could not perform satisfactorily when applied to highly intermixed type built-up areas of 

tropical environment as in the case of Kolkata metropolis. This study proves that the accuracy 

and objectivity of NDBI and BAEM approaches decrease towards urban fringe areas where 

the built-up areas are dotted with bare lands. Both the methods wrongly detected most of the 

open bare lands as built-up areas. NDBI and BAEM approaches are based on indices which 

rely on some fixed bands and if any two types of objects have similar spectral responses in 

these bands, and then the indices fail to distinguish between the objects in question. In the 

present context, the built-up areas and the bare lands respond comparably to energy in 

thermal and some visible bands, particularly during the summer. These shortcomings were 

addressed in this study to develop a method that was simultaneously applicable to both TM 

and OLI sensor data in order to assess urban growth. The new approach, SLEA, extracts and 

maps the built-up areas by eliminating water bodies, vegetation and bare lands. This method 

is capable of distinguishing built-up areas from bare land parcels by using Logit model which 

flexibly involves only those bands of an image to which the land classes respond distinctly. 

The Logit model is developed on the basis of sample pixels collected from the image in use, 

which makes the method free from any theoretical assumption regarding spectral response of 
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the objects. The SLEA enables to map built-up areas (excluding barren lands) objectively 

with higher consistency and accuracy even when applied to images of tropical urban areas 

like KMA. In comparison to NDBI and BAEM approaches, SLEA maps the built-up areas at 

higher degree of spatial and visual accuracy because SLEA can easily exclude the bare lands 

from the built-up areas. The confusion matrix has been derived for NDBI, BAEM and SLEA 

to assess the accuracy of the three approaches. Results of the proposed SLEA were 95.33% 

accurate on the whole, while those derived by the NDBI and BAEM approaches returned an 

overall accuracy of 83.67% and 89.33%, respectively. SLEA does not entail a multifaceted 

mathematical computation protocols or any spatial filtering technique with user defined 

window at the cost of spatial accuracy of the output. Its methodological simplicity 

substantially expedites the built-up area extraction accomplished by simple arithmetic 

manipulation and recoding of intermediate images.
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Fig. 1 The KMA in FCC of satellite image (2005).

Fig. 2 Spectral signatures of built-up area, bare land, water body and vegetation area in (a) 
optical bands 1-5 and 7 of Landsat-5 TM and (b) optical bands 2-7 of Landsat-8 OLI. 

Fig. 3 Landsat-8 OLI in true colour composite (a) before resolution merging (30m spatial 
resolution) and (b) after resolution merging (15m spatial resolution).This illustrates the visual 
difference between non-enhanced and spatially enhanced image, at the location of Salt Lake 
City, Kolkata. The increase in sharpness and level of detail in the enhanced image obtained 
by merging original low resolution band images with high resolution image (15m spatial 
resolution) using a bilinear 4-nearest neighbour algorithm.

Fig. 4 Graphical flow chart for step wise elimination and extraction of water bodies, 
vegetation area, bare land and built up area from Landsat image. 

Fig. 5 Diagrammatic representation of DFPS process for determination of threshold DN 
value that segments the NDVI image into vegetated and other areas. Gradual narrowing of 
search range and shortening of pace range increase success rate of the search. Iterative 
searching finally determines the threshold value to be 0.25 with the highest success rate of 
96.26 for this example of thresholding NDVI image derived from Landsat-5 TM of 2000.      

 Fig. 6 (a-a´) The OLI image (bands 3, 4, 5 as red-green-blue) of 2015, (b) output of 
vegetation area segmentation from NDVI image and (b´) output of water bodies segmentation 
from band 6. Red rectangles in each panel show the sample areas where the DFPS approach 
applied to determine threshold values.

Fig. 7 Scatter plots showing the correlation between (a) band 4 (x-axis) and band 5 (y-axis) 
(b) band 4 (x-axis) and band 5 (y-axis) and (c) band 5 (x-axis) and band 6 (y-axis) for 2005; 
2010 and 2015 respectively for (a-b-TM data) and (c-OLI data). The Pearson’s correlation 
value (R) of (a) 0.951, 0.942 and 0.961; (b) 0.962, 0.951 and 0.976 and (c) 0.957, 0.964 and 
0.941 for water bodies, vegetation areas and built-up areas respectively.

Fig. 8 Fitting of Logit models for separating built-up areas from bare lands in the images 
(water bodies and vegetation areas eliminated): 2000, 2005, 2010 and 2015. Bold numerics 
denote image bands involved in the best fit model with highest accuracy.

Fig. 9 Map of built-up areas in KMA derived from satellite images through application of 
SLEA for (a) 2000 (b) 2005 (c) 2010 and (d) 2015.

Fig. 10 Comparison of the results from the NDBI, BAEM and SLEA at sample locations, (a-
a´) Landsat-5 TM and Lansat-8 OLI  of 2010 and 2015, respectively; (b-b´) output from 
NDBI and BAEM  respectively; (c-c´) output from SLEA for TM and OLI, respectively. Red 
A rectangles in each panel show the places where the NDBI and BAEM approaches 
incorrectly extracted other land covers as built-up areas and red  B  rectangles show the 
places where the NDBI and BAEM approaches underestimated the built-up areas while 
SLEA extracted built-up areas properly.
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Fig. 1 The KMA in FCC of satellite image (2005).
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Fig. 2 Spectral signatures of built-up area, bare land, water body and vegetation area in (a) optical bands 1-5 and 
7 of Landsat-5 TM and (b) optical bands 2-7 of Landsat-8 OLI. 
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Fig. 3 Landsat-8 OLI in true colour composite (a) before resolution merging (30m spatial resolution) and (b) 
after resolution merging (15m spatial resolution).This illustrates the visual difference between non-enhanced 
and spatially enhanced image, at the location of Salt Lake City, Kolkata. The increase in sharpness and level of 
detail in the enhanced image obtained by merging original low resolution band images with high resolution 
image (15m spatial resolution) using a bilinear 4-nearest neighbour algorithm.  
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Fig. 4 Graphical flow chart for step wise elimination and extraction of water bodies, vegetation area, bare land 
and built up area from Landsat image. 
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Fig. 5 Diagrammatic representation of DFPS process for determination of threshold DN value that segments the 
NDVI image into vegetated and other areas. Gradual narrowing of search range and shortening of pace range 
increase success rate of the search. Iterative searching finally determines the threshold value to be 0.25 with the 
highest success rate of 96.26 for this example of thresholding NDVI image derived from Landsat-5 TM of 2000.      
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Fig. 6 (a-a´) The OLI image (bands 3, 4, 5 as red-green-blue) of 2015, (b) output of vegetation area 
segmentation from NDVI image and (b´) output of water bodies segmentation from band 6. Red rectangles in 
each panel show the sample areas where the DFPS approach applied to determine threshold values.
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Fig. 7. Scatter plots showing the correlation between (a) band 4 (x-axis) and band 5 (y-axis) (b) band 4 (x-axis) 
and band 5 (y-axis) and (c) band 5 (x-axis) and band 6 (y-axis) for 2005; 2010 and 2015 respectively for (a-b-
TM data) and (c-OLI data). The Pearson’s correlation value (R) of (a) 0.951, 0.942 and 0.961; (b) 0.962, 0.951 
and 0.976 and (c) 0.957, 0.964 and 0.941 for water bodies, vegetation areas and built-up areas respectively. 
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Fig. 8 Fitting of Logit models for separating built-up areas from bare lands in the images (water bodies and 
vegetation areas eliminated): 2000, 2005, 2010 and 2015. Bold numerics denote image bands involved in the 
best fit model with highest accuracy. 
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Fig. 9 Map of built-up areas in KMA derived from satellite images through application of SLEA for (a) 2000 (b) 
2005 (c) 2010 and (d) 2015.
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Fig. 10 Comparison of the results from the NDBI, BAEM and SLEA at sample locations, (a-a´) Landsat-5 TM 
and Lansat-8 OLI  of 2010 and 2015, respectively; (b-b´) output from NDBI and BAEM  respectively; (c-c´) 
output from SLEA for TM and OLI, respectively. Red A rectangles in each panel show the places where the 
NDBI and BAEM approaches incorrectly extracted other land covers as built-up areas and red  B  rectangles 
show the places where the NDBI and BAEM approaches underestimated the built-up areas while SLEA 
extracted built-up areas properly.
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Table 1 Satellite data used in the study.

Table 2 An example of the DFPS for the determination of optimal threshold value of water pixels of the 
Landsat-8 OLI image of 2015

Satellite Date of acquisition Path and row Referencing system
Landsat-5 TM 12 January 2000 138 & 44 and 138 & 45 UTM and WGS84
Landsat-5 TM 10 January 2005 138 & 44 and 138 & 45 UTM and WGS84
Landsat-5 TM 20 May 2010 138 &44 and 138 & 45 UTM and WGS84
Landsat-8OLI and 
TIRS

15 May 2015 138 & 44 UTM and WGS84

Range:
65535- 535   Pace  5000

Range:
15535 - 5535  Pace  
1000

Range:
8535 - 7535   Pace  200

Range:
8535 - 8135   Pace  50

Range:
8435 - 8335   Pace  10

Threshol
d

Succes
s Rate

Threshol
d

Succes
s Rate

Threshol
d

Succes
s Rate

Threshol
d

Succes
s Rate

Threshol
d

Succes
s Rate

65535 0 15535 3.59 8535 58.79 8535 58.79 8435 82.35
60535 0 14535 5.38 8335 78.48 8485 72.65 8425 84.37
55535 0 13535 11.28 8135 76.57 8435 82.35 8415 85.58
50535 0 12535 16.27 7935 71.24 8385 84.27 8405 87.54
45535 0 11535 22.59 7735 60.45 8335 78.48 8395 89.69
40535 0 10535 26.25 7535 62.62 8285 79.56 8385 91.57
35535 0 9535 32.14 8235 79.56      8375 94.59
30535 0 8535 58.79 8185 78.92 8365 95.37
25535 0 7535 62.62 8135 76.57 8355 96.35
20535 3.59 6535 37.54 8345 92..38
15535 26.25 5535 29.24 8335 88.48
10535 29.24
5535 0
535 0
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Table 3 Summary results of the DFPS for determination optimum threshold values in eliminating the water and 
vegetation pixels and final extraction of built-up areas.

First search Second search Third search Fourth search Fifth searchYear Target 
land 
class

Range Pace Maximu
m 
success 
rate

Rang
e

Pac
e

Maximu
m 
success 
Rate

Range Pac
e

Maximum 
success 
Rate

Range Pac
e

Maxi
mum 
succes
s rate

Range Pace Maxi
mum 
succe
ss rate

Opti
mu
m 
thres
hold 

NDVI 1 - -1 0.20 72.36 0 – 
0.40

0.10 82.93 0.10 – 
0.30

0.05 96.26 0.25

Water 255 - 
5

50 16.25 105 - 
5

20 57.28 45 - 
25

5 82.42 45 - 
35

1 95.21 37

2000

Built-
up

1 - 0 0.10 95.83 0.05-
0.35

0.05 98.21 0.45

NDVI 1 - -1 0.20 69.52 0 - 
0.40

0.10 86.65 0.10 – 
0.30

0.05 95.83 0.25

Water 255 - 
5

50 10.24 105 - 
5

20 48.67 45 - 
25

5 87.54 40 - 
35

1 94.52 37

2005

Built-
up

1 - 0 0.10 94.68 0.50 - 
0.35

0.05 97.83 0.45

NDVI 1 - -1 0.20 72.36 0 – 
0.40

0.10 88.35 0.10 – 
0.30

0.05 97.53 0.25

Water 255 - 
5

50 22.34 105 - 
5

20 54.54 45 – 
25

5 82.57 40 - 
35

1 96.24 37

2010

Built-
up

1 - 0 0.10 96.28 0.05 - 
0.35

0.05 97.85 0.45

NDVI 1 - -1 0.20 46.25 0 – 
0.4

0.10 46.25 0.10 – 
0.30

0.05 68.24 0.20 – 
0.25

0.01 97.56 0.23

Water 60689 
- 689

5000 29.24 1568
9 - 
5689

100
0

62.62 8689 
- 
7689

200 78.48 8489 
- 
8289

25 84.27 8489 
- 
8439

5 96.35 8449

2015

Built-
up

1 - 0 0.10 76.31 0.30 - 
0

0.05 86.29 0.10 - 
0

0.01 96.38 0.07
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Table 4 Co-efficient values of Logit model for built up area extraction. 

Selected band
band 1 band 2 band 3 band 4 band 5 band 6 band 7

Time Whole
intercept 
value  

Intercept value  
10.80 -0.00 -0.35 0.342000
13.05 -0.08 -0.36 0.35
8.73 -0.02 -0.25 0.212005
9.55 -0.16 -0.10
39.06 0.41 -1.07 -0.48 0.922010
25.18 -0.76 -0.02 -0.43
29.06 -0.52 -0.272015
27.21 -0.49 0.80
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Table 5 Confusion matrix for NDBI, BAEM and SLEA

 Table 6 Summary of the accuracy assessment of the images derived by NDBI, BAEM and SLEA

Classified data Reference data
NDBI Non-built-up area Built-up area Classified total User’s accuracy (%)
Non-built-up area 55 5 60 91.67
Built-up area 44 196 240 81.67
Reference total 99 201 300
Producer’s accuracy (%) 55.56 97.51
Overall accuracy NDBI (%) 83.67
BAEM Non-built-up area Built-up area Classified total User’s accuracy (%)
Non-built-up area 101 3 104 97.11
Built-up area 29 167 196 85.20
Reference total 130 170 300
Producer’s accuracy (%) 77.69 98.24
Overall accuracy BAEM (%) 89.33
SLEA Non-built-up area Built-up area Classified total User’s accuracy (%)
Non-built-up area 106 2 108 98.14
Built-up area 12 180 192 93.75
Reference total 118 182 300
Producer’s accuracy (%) 89.83 98.90
Overall accuracy SLEA (%) 95.33

Method Overall accuracy (%) Omission error (%) Commission error (%) k coefficient
NDBI 83.67 2.49 18.33 0.51
BAEM 89.33 1.76 14.80 0.62
SLEA 95.33 1.10 6.25 0.66
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