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Abstract

Recurrent Neural Networks (RNNs) have been widely used in natural language

processing and computer vision. Amongst them, the Hierarchical Multi-scale

RNN (HM-RNN), a recently proposed multi-scale hierarchical RNN, can auto-

matically learn the hierarchical temporal structure from data. In this paper, we

extend the work to solve the computer vision task of action recognition. Howev-

er, in sequence-to-sequence models like RNN, it is normally very hard to discover

the relationships between inputs and outputs given static inputs. As a solution,

the attention mechanism can be applied to extract the relevant information

from the inputs thus facilitating the modeling of the input-output relationships.

Based on these considerations, we propose a novel attention network, name-

ly Hierarchical Multi-scale Attention Network (HM-AN), by incorporating the

attention mechanism into the HM-RNN and applying it to action recognition.

A newly proposed gradient estimation method for stochastic neurons, namely

Gumbel-softmax, is exploited to implement the temporal boundary detectors

and the stochastic hard attention mechanism. To amealiate the negative effect

of the temperature sensitivity of the Gumbel-softmax, an adaptive temperature

training method is applied to improve the system performance. The exper-

imental results demonstrate the improved effect of HM-AN over LSTM with
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attention on the vision task. Through visualization of what has been learnt by

the network, it can be observed that both the attention regions of the images

and the hierarchical temporal structure can be captured by a HM-AN.

Keywords: Action recognition, Hierarchical multi-scale RNNs, Attention

mechanism, Stochastic neurons.

1. Introduction1

Action recognition in videos is a fundamental task in computer vision. Re-2

cently, with the rapid development of deep learning, and in particular, deep3

convolutional neural networks (CNNs), a number of models [1] [2] [3] [4] have4

been proposed for image recognition. However, for video-based action recog-5

nition, a model should accept inputs with variable length and generate the6

corresponding outputs. This special requirement makes the conventional CNN7

model that caters for a one-versus-all classification unsuitable.8

For decades RNNs have been applied to sequential applications, often with9

good results. However, a significant limitation of the vanilla RNN models, which10

strictly integrate state information over time, is the vanishing gradient effect11

[5]: the ability to back propagate an error signal through a long-range temporal12

interval becomes increasingly impossible in practice. To mitigate this problem,13

a class of models with a long-range dependencies learning capability, called Long14

Short-Term Memory (LSTM), was introduced by Hochreiter and Schmidhuber15

[6]. Specifically, LSTM consists of memory cells, with each cell containing units16

to learn when to forget previous hidden states and when to update hidden states17

with new information.18

Much sequential data often has a complex temporal structure which re-19

quires both hierarchical and multi-scale information to be modeled properly. In20

language modeling, a long sentence is often composed of many phrases which21

further can be decomposed into words. Meanwhile, in action recognition, an ac-22

tion category can be described by many sub-actions. For instance, ‘long jump’23

contains ‘running’, ‘jumping’ and ‘landing’. As stated in [7], a promising ap-24
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proach to model such hierarchical representation is the multi-scale RNN. One25

popular approach of implementing multi-scale RNNs is to treat the hierarchical26

timescales as pre-defined parameters. For example, Wang et al. [8] implemented27

a multi-scale architecture by building a multiple layers LSTM in which higher28

layers skip several time steps. In their paper, the skipped number of time steps29

is the parameter to be pre-defined. However, it is often impractical to pre-define30

such timescales without learning, which also leads to a poor generalization capa-31

bility. Chung et al. [7] proposed a novel RNN structure, Hierarchical Multi-scale32

Recurrent Neural Network (HM-RNN), to automatically learn time boundaries33

from data. These temporal boundaries are similar to rules described by discrete34

variables inside RNN cells. Normally, it is difficult to implement training al-35

gorithms for discrete variables. Popular approaches include unbiased estimator36

with the aid of REINFORCE [9]. In this paper, we re-implement the HM-RNN37

by applying the recently proposed Gumbel-sigmoid function [10] [11] to realize38

the training of stochastic neurons due to its efficiency [12].39

In the general RNN framework for sequence-to-sequence problems, the input40

information is treated uniformly without discrimination on the different parts.41

This will result in the fixed length of intermediate features and hence subsequent42

sub-optimal system performance. The practice is in sharp contrast to the way43

humans accomplish sequence processing tasks. Humans tend to selectively con-44

centrate on a part of information and at the same time ignores other perceivable45

information. The mechanism of selectively focusing on relevant contents in the46

representation is called attention. The attention based RNN model in machine47

learning was successfully applied in natural language processing (NLP), and48

more specifically, in neural translation [13]. For many visual recognition tasks,49

different portions of an image or segments of a video have unequal importance,50

which should be selectively weighted with attention. Xu et al. [14] systemati-51

cally analyzed stochastic hard attention and deterministic soft attention models52

and applied them in image captioning tasks, with improved results compared53

with other RNN-like algorithms. The hard attention mechanism requires a s-54

tochastic neuron which is hard to train using the conventional back propagation55
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algorithm. They applied REINFORCE [9] as an estimator to implement hard56

attention for image captioning.57

The REINFORCE is an unbiased gradient estimator for stochastic units,58

however, it is very complex to implement and often has high gradient variance59

during training [12]. In this paper, we study the applicability of Gumbel-softmax60

[10] [11] in hard attention because Gumbel-softmax is an efficient way to esti-61

mate discrete units during the training of neural networks. To mitigate the62

problem of temperature sensitivity in Gumbel-softmax, we apply an adaptive63

temperature scheme [12] in which the temperature value is also learnt from64

the data. The experimental results verify that the adaptive temperature is a65

convenient way to avoid manual searching for the parameter. Additionally, we66

also test the deterministic soft attention [14] [15] and stochastic hard attention67

implemented by REINFORCE-like algorithms [16] [17] [14] in action recogni-68

tion. Combined with HM-RNN and the two types of attention models, we sys-69

tematically evaluate the proposed Hierarchical Multi-scale Attention Networks70

(HM-AN) for action recognition in videos, with improved results.71

Our main contributions can be summarized as follows:72

• We propose a Hierarchical Multi-scale Attention Network (HM-AN) by im-73

plementing HM-RNN with Gumbel-sigmoid to realize the discrete bound-74

ary detectors.75

• We also propose four methods of realizing an attention mechanism for76

action recognition in videos, with improved results over many baselines.77

• By incorporating Gumbel-softmax and Gumbel-sigmoid into HM-RNN,78

we make the stochastic neurons in the networks end-to-end trainable by79

error back propagation.80

• For the hard attention model based on Gumbel-softmax, we propose to use81

an adaptive temperature for the Gumbel-softmax, which generates much82

improved results over a constant temperature value.83
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• Through visualization of the learnt attention regions, the boundary detec-84

tors of HM-AN and the adaptive temperature values, we provide insights85

for further research.86

2. Related Works87

2.1. Hierarchical RNNs88

The modeling of hierarchical temporal information has long been an impor-89

tant topic in many research areas. The most notable model is LSTM proposed90

by Hochreiter and Schmidhuber [6]. LSTM employs the multi-scale updating91

concept, where the hidden units’ update can be controlled by gating such as92

input gates or forget gates. This mechanism enables the LSTM to deal with93

long term dependencies in the temporal domain. Despite this advantage, the94

maximum time steps are limited to within a few hundred because of the leaky95

integration which makes the memory for long-term gradually diluted [7]. Actu-96

ally, the maximum time steps in video processing is several dozen frames which97

makes the application of LSTM in video recognition very challenging.98

To alleviate this problem, many researchers tried to build a hierarchical99

structure explicitly, for instance, Hierarchical Attention Networks (HAN) pro-100

posed in [8], which is implemented by skipping several time steps in the higher101

layers of the stacked multi-layer LSTMs. However, the number of time steps102

to be skipped is a pre-defined parameter. How to choose these parameters and103

why to choose a certain number are unclear.104

More recent models like clockwork RNN [18] partitioned the hidden states105

of a RNN into several modules with different timescales assigned to them. The106

clockwork RNN is more computationally efficient than the standard RNN as107

the hidden states are updated only at the assigned time steps. However, finding108

the suitable timescales is challenging which makes the model less applicable.109

To mitigate the problem, Chung et al. [7] proposed the Hierarchical Multi-110

scale Recurrent Neural Network (HM-RNN). The HM-RNN is able to learn the111
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temporal boundaries from data, which allows the RNN model to build a hier-112

archical structure and enables long-term dependencies automatically. However,113

the temporal boundaries are stochastic discrete variables which are very hard114

to train using the standard back propagation algorithm.115

A popular approach to train the discrete neurons is the REINFORCE-like116

[19] algorithms. This is an unbiased estimator but often with high gradient117

variance [7]. The original HM-RNN applied a straight-through estimator [9]118

because of its efficiency and simplicity in implementation. Instead, in this paper,119

we applied the more recent Gumbel-sigmoid [10] [11] to estimate the stochastic120

neurons. This is much more efficient than other approaches and achieved state-121

of-the-art performance among many other gradient estimators [10].122

2.2. Attention Mechanism123

One important property of human perception is that we do not tend to124

process a whole scene, in its entirety, at once. Instead humans pay attention125

selectively on parts of the visual scene to acquire information where it is need-126

ed [16]. Different attention models have been proposed and applied in object127

recognition and machine translation. Mnih et al. [16] proposed an attention128

mechanism to represent static images, videos or as an agent that interacts with129

a dynamic visual environment. Also, Ba et al. [17] presented an attention-based130

model to recognize multiple objects in images. These two models are all with131

the aid of REINFORCE-like algorithms.132

The soft attention model was proposed for the machine translation problem133

in NLP [13], and Xu et al. [14] extended it to image caption generation as the134

task is analogous to ‘translating’ an image into a sentence. Specifically, they135

built a stochastic hard attention model with the aid of REINFORCE and a136

deterministic soft attention model. The two attention mechanisms were applied137

to the image captioning task, with good results. Subsequently, Sharma et al.138

[15] built a similar model with soft attention applied to action recognition from139

videos.140

There are a number of subsequent works on the attention mechanism. For141
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instance, in [20], the attention model is utilized for video description generation142

by softly weighting the visual features extracted from the frames in each video.143

Li et al. [21] combined a convolutional LSTM [22] with the soft attention144

mechanism for video action recognition and detection. Teh et al. [23] extended145

the soft attention into CNN networks for weakly supervised object detection.146

One important reason for applying soft attention instead of hard version is147

that the stochastic hard attention mechanism is difficult to train. Although the148

REINFORCE-like algorithms [19] are unbiased estimators to train stochastic149

units, their gradients have high variants. To solve this problem, recently, Jang150

et al. [10] proposed a novel categorical re-parameterization technique using the151

Gumbel-softmax distribution. The Gumbel-softmax is a superior estimator for152

categorical discrete units [10]. It has been proved to be efficient and has high153

performance [10].154

2.3. Action Recognition155

Action recognition has received significant attention recently. Most ap-156

proaches focused on the design of novel features, trajectory-based features [24],157

CNN based features [25] [26] [27]. For example, [28] built a simple representa-158

tion to explicitly model the motion relationships, with outstanding results with159

popular classifier like SVM on several benchmark datasets.160

Some researches built model to better exploit these powerful features by161

fusing operation. For instance, [29] proposed a regularized Deep Neural Network162

(DNN) to fuse the CNN features, the trajectory features and the audio features163

for action categorization, with promising results. [26] [27] fused CNN features164

and motion features for better recognized action categories in video.165

RNNs have been popular for speech recognition [30], image caption gener-166

ation [14], and video description generation [20]. There have also been efforts167

made for the application of LSTM RNNs in action recognition. For instance,168

[31] proposed an end-to-end training system using CNN and RNN deep both in169

space and time to recognize activities in video. [32] also explicitly models the170

video as an ordered sequence of frames using LSTM. Most of the previous work171
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treat image features extracted from CNNs as static inputs to a RNN to generate172

action labels at each frame. The attention mechanism is able to discriminate173

the relevant features from these static inputs and can improve the system per-174

formance. On the other hand, the interpretation of CNN features will be much175

easier if the attention mechanism can be applied to action recognition because176

the attention mechanism automatically focuses on specific regions to facilitate177

the classification.178

In this paper, we re-implement the HM-RNN to capture the hierarchical179

structure of temporal information from video frames. By incorporating the180

HM-RNN with both stochastic hard attention and deterministic soft attention,181

the long-term dependencies of video frames can be captured.182

Research related to ours also includes the attention model proposed by Xu183

et al. [14] and [33]. [14] first applied both stochastic hard attention and de-184

terministic soft attention mechanisms for spatial locations of images for image185

captioning. [33] instead used weighting on image patches to implement region-186

level attention. In this paper, similar to [14], both stochastic hard attention and187

deterministic soft attention are studied. However, when implementing hard at-188

tention, [14] borrowed the idea of REINFORCE whilst we also propose to apply189

the more recent Gumbel-softmax to estimate discrete neurons in the attention190

mechanism.191

3. The proposed methods192

In this section, we first re-visit the HM-RNN structure proposed in [7], then193

introduce the proposed HM-AN networks, with details of Gumbel-softmax and194

Gumbel-sigmoid to estimate the stochastic discrete neurons in the networks.195

3.1. HM-RNN196

HM-RNN was proposed in [7] to better capture the hierarchical multi-scale197

temporal structure in sequence modeling. HM-RNN defines three operations198
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FLUSH COPY

UPDATE

Boundary 
Detectors

Figure 1: Network Structure: After the networks discover the implicit boundary

relations of the multi-scale property, boundary detectors can set the networks

into an explicit multi-scale architecture.

depending on the boundary detectors: UPDATE, COPY and FLUSH. The se-199

lection of these operations is determined by the boundary state zl−1t and zlt−1,200

where l and t represent the current layer and time step, respectively:201

UPDATE, zlt−1 = 0 and zl−1t = 1;

COPY, zlt−1 = 0 and zl−1t = 0;

FLUSH, zlt−1 = 1.

(1)

The updating rules for the operation UPDATE, COPY and FLUSH are202

defined as follows:203

clt =


f lt � clt−1 + ilt � glt, UPDATE

clt−1, COPY

ilt � glt, FLUSH

(2)

The updating rules for hidden states are also determined by the pre-defined204

operations:205

hlt =

h
l
t−1, COPY

olt � clt, otherwise

(3)
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The (i, f, o) indicate the input, forget and output gate, respectively. g is206

called the ‘cell proposal’ vector. One of the advantages of HM-RNN is that the207

updating operation (UPDATE) is only executed at certain time steps instead208

of all the time, which significantly reduces the computation cost.209

The COPY operation simply copies the cell memory and hidden state from210

the previous time step to the current time step in the upper layers until the end211

of a subsequence, as shown in Fig. 1. Hence, the upper layer is able to capture212

coarser temporal information. Also, the boundaries of subsequence are learnt213

from the data which is a big improvement over other related models. To start214

a new subsequence, the FLUSH operation needs to be executed. The FLUSH215

operation firstly forces the summarized information from the lower layers to be216

merged with the upper layers, then re-initialize the cell memories for the next217

subsequence.218

In summary, the COPY and UPDATE operations enable the upper and219

lower layers to capture information on different time scales, thus realizing a220

multi-scale and hierarchical structure for a single subsequence. The FLUSH221

operation is able to summarize the information from the last subsequence and222

forward them to the next subsequence, which guarantee the connection and223

coherence between parts within a long sequence.224

The values of gates (i, f, o, g) and the boundary detector z are obtained by:225



ilt

f lt

olt

glt

zlt


=



sigm

sigm

sigm

tanh

hardsigm


fslice



s
recurrent(l)
t +

s
top−down(l)
t +

s
bottom−up(l)
t +

bl


(4)

where

s
recurrent(l)
t = U l

lh
l
t−1 (5)

s
top−down(l)
t = U l

l+1(zlt−1 � hl+1
t−1) (6)
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s
bottom−up(l)
t = W l

l−1(zl−1t � hl+1
t ) (7)

and the hardsigm is estimated using the Gumbel-sigmoid which will be is ex-226

plained later. In the equation, the Ul and Wl are the weight matrices, and bl is227

the bias matrix.228

3.2. HM-AN229

The sequential problems inherent in action recognition and image captioning230

in computer vision can be tackled by a RNN-based framework. As previously231

explained, HM-RNN is able to learn the hierarchical temporal structure from232

data and enable long-term dependencies. This inspired our proposal of the233

HM-AN model.234

As attention has been proved very effective in action recognition [15], in235

HM-AN, to capture the implicit relationships between the inputs and outputs236

in sequence to sequence problems, we apply both hard and soft attention mech-237

anisms to explicitly learn the important and relevant image features regarding238

the specific outputs. A more detailed explanation is as follows.239

3.2.1. Estimation of Boundary Detectors240

In the proposed HM-AN, the boundary detectors zt are estimated with241

Gumbel-sigmoid, which is derived directly from the Gumbel-softmax proposed242

in [10] and [11].243

The Gumbel-softmax replaces the argmax in the Gumbel-Max Trick [34] [35]

with the following Softmax function:

yi =
exp(log(πi + gi)/τ)∑k

j=1 exp(log(πj + gj)/τ)
(8)

where g1, ..., gk are i.i.d. sampled from the distribution Gumbel (0,1), and τ is244

the temperature parameter. k indicates the dimension of the generated Softmax245

vector.246
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Figure 2: The attention mechanism: Soft attention assign weights on different

locations of features using softmax whilst the values of the hard attention map

are either 1 or 0 which means only one important location is selected.

To derive the Gumbel-sigmoid, we firstly re-write the Sigmoid function as a247

Softmax of two variables: πi and 0.248

sigm(πi) =
1

(1 + exp(−πi))
=

1

(1 + exp(0− πi))

=
1

1 + exp(0)/exp(πi)
=

exp(πi)

(exp(πi) + exp(0))

(9)

Hence, the Gumbel-sigmoid can be written as:249

yi =
exp(log(πi + gi/τ)

exp(log(πi + gi)/τ) + exp(log(g′)/τ)
(10)

where gi and g′ are independently sampled from the distribution Gumbel (0,1).250

To obtain a discrete value, we set values of zt = ỹi as:251

ỹi =

1 yi ≥ 0.5

0 otherwise

(11)

In our experiments, all the boundary detectors zt are estimated using the252

Gumbel-sigmoid with a constant temperature of 0.3.253

3.2.2. Deterministic Soft Attention254

To implement soft attention over image regions for the action recognition255

task, we applied a similar strategy to the soft attention mechanism in [15] and256
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[14].257

Specifically, the model predicts a Softmax over K×K image locations. The258

location Softmax is defined as:259

lt,i =
exp(Wiht−1)∑K×K

j=1 exp(Wjht−1)
i = 1, ...,K2 (12)

where i means the ith location corresponding to the specific regions in the orig-260

inal image.261

This Softmax can be considered as the probability with which the model262

learns the specific regions in the image, which is important for the task in hand.263

Once these probabilities are obtained, the model computes the expected values264

over image features at different regions:265

xt =

K2∑
i=1

lt,iXt,i (13)

where xt is considered as inputs of the HM-AN networks. In our HM-AN imple-266

mentations, the hidden states used to determine the region softmax is defined267

for the first layer, i.e., h1t−1. The upper layers will automatically learn the ab-268

stract information of input features as previously explained. The soft attention269

mechanism can be visualized in the left side of Fig. 2.270

3.2.3. Stochastic Hard Attention271

REINFORCE-like algorithm. Stochastic hard attention was proposed in [14].272

Their hard attention was realized with the aid of a REINFORCE-like algorithm.273

In this section, we also introduce this kind of hard attention mechanism.274

The location variable lt indicates where the model decides to focus attention275

on the tth frame of a video. lt,i is an indicator of a one-hot representation which276

can be set to 1 if the ith location contains a relevant feature.277

Specifically, we assign a hard attentive location of {αi}:

p(li,t = 1|lj<t,a) = argmax(αt,i)

= argmax

(
exp(Wiht−1)∑K×K

j=1 exp(Wjht−1)

)
(14)
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where a represents the input image features.278

We can define an objective function Ll that is a variational lower bound

on the marginal log-likelihood log p(y|a) of observing the action label y given

image features a. Hence, Ll can be represented as:

Ll =
∑
l

p(l|a)log p(y|l, a)

≤ log
∑
l

p(l|a)p(y|l, a)

= logp(y|a)

(15)

∂Ll

∂W
=
∑
l

p(l|a)[
∂log p(y|l, a)

∂W
+

log p(y|l, a)
∂log p(l|a)

∂W
]

(16)

Ideally, we would like to compute the gradients of Equation 16. However, it279

is not feasible to compute the gradient of expectation in Equation 16. Hence,280

a Monte Carlo approximation technique is applied to estimate the gradient of281

the operation of expectation.282

Therefore, the derivatives of the objective function with respect to the net-283

work parameters can be expressed as:284

∂Ll

∂W
=

1

N

N∑
n=1

[
∂log p(y|l̃n, a)

∂W
+

log p(y|l̃n, a)
∂log p(l̃n|a)

∂W
]

(17)

where l̃ is obtained based on the argmax operation as in Equation 14.285

Similar with the approaches in [14], a variance reduction technique is used.286

With the kth mini-batch, the moving average baseline is estimated as an accu-287

mulation of the previous log-likelihoods with exponential decay:288

bk = 0.9× bk−1 + 0.1× log p(y|l̃k, a) (18)
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The learning rule for this hard attention mechanism is defined as follows:

∂Ll

∂W
≈ 1

N

N∑
n=1

[
∂log p(y|l̃n, a)

∂W
+

λ(log p(y|l̃n, a)− b)∂log p(l̃n|a)

∂W
]

(19)

where λ is a pre-defined parameter.289

As pointed out in Ba et al. [17], Mnih et al. [16] and Xu et al. [14], this is290

a formulation which is equivalent to the REINFORCE learning rule [19]. For291

convenience, it is abbreviated as REINFORCE-Hard Attention in the following292

sections.293

Gumbel Softmax. In the hard attention mechanism, the model selects one im-294

portant region instead of taking the expectation. Hence, it is a stochastic295

discrete unit which cannot be trained using back propagation. [14] applied296

REINFORCE to estimate the gradient of the stochastic neuron. Although RE-297

INFORCE is an unbiased estimator, the variance of the gradient is large and298

the algorithm is complex to implement. To solve these problems, we propose to299

apply Gumbel-softmax to estimate the gradient of the discrete units in our mod-300

el. Gumbel-softmax is better than REINFORCE and much easier to implement301

[10].302

We can simply replace the Softmax with Gumbel-softmax in Equation 12303

and remove the process of taking expectation to realize the hard attention.304

lt,i =
exp(log(Wiht−1 + gi)/τ)∑K×K

j=1 exp(log(Wjht−1 + gj)/τ)
i = 1...K2 (20)

The Gumbel-softmax will choose a single location indicating the most impor-305

tant image region for the task. However, the search space for the temperature306

parameter is too large to be manually selected. The temperature is a sensitive307

parameter as explained in [10]. Hence in this paper we applied an adaptive308

temperature as in [12]. The adaptive temperature determines the value de-309

pending on the current hidden states. In other words, instead of being treated310
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Figure 3: Action recognition with HM-AN.

as a pre-defined parameter, the value of temperature is learnt from the data.311

Specifically, we use the following mechanism to determine the temperature:312

τ =
1

Softplus(Wtemph1t + btemp) + 1
(21)

where h1t is the hidden state of the first layer of our HM-AN. Equation 21313

generates a scalar for the temperature. In the equation, adding 1 can enable314

the temperature to fall into the scope of 0 and 1. The hard attention mechanism315

can be seen in the right hand side of Fig. 2.316

3.3. Application of HM-AN in Action Recognition317

The proposed HM-AN can be directly applied in video action recognition.318

In video action recognition, the dynamics exist in the inputs, i.e., the given319

video frames. With the attention mechanism embedded in RNN, the important320

features of each frames can be discovered and discriminated in order to facilitate321

recognition.322

For action recognition, the HM-AN applies the cross-entropy loss for recog-

nition.

LOSS = −
T∑

t=1

C∑
i=1

yt,ilog(ŷt,i) (22)

where yt is the label vector, ŷt is the classification probabilities at time step t.323

T is the number of time steps and C is the number of action categories. The324
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system architecture of action recognition using HM-AN is shown in Fig. 3325

4. Experiments326

In this section, we first explain our implementation details then report the327

experimental results on action recognition.328

4.1. Implementation Details329

We implemented the HM-AN using the Theano platform [36] and all the330

experiments were conducted on a server embedded with a Titan X GPU. In our331

experiments, HM-AN is a three layer stacked RNN. The outputs are concate-332

nated by hidden states from three layers and forwarded to a softmax layer.333

In addition to the baseline approach (LSTM networks), four versions of HM-334

AN were implemented for the purpose of comparison:335

• Softmax regression. This is to perform a general image classification task336

based on spatial features.337

• LSTM with soft attention (Baseline). The baseline approach is set as a338

one layer LSTM networks with the soft attention mechanism.339

• Deterministic soft attention in HM-AN (Soft Attention). This is to deter-340

mine how soft attention mechanism performs with the HM-AN.341

• Stochastic hard attention with reinforcement learning in HM-AN (REINFORCE-342

Hard Attention). This type of hard attention mechanism is described in343

Section 3.2.3.344

• Stochastic hard attention with a 0.3 temperature for Gumbel-softmax in345

HM-AN (Constant-Gumbel-Hard Attention). A constant temperature is346

applied in Gumbel-softmax to accomplish the proposed hard attention347

model.348

• Stochastic hard attention with adaptive temperature for Gumbel-softmax349

in HM-AN (Adaptive-Gumbel-Hard Attention). The temperature is set350

as a function of the hidden states of RNN.351
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For the experiments, with the help of the MatConvNet platform [37], we first-352

ly extracted frame-level CNN features from the last convolutional layer (res5cx)353

based on Residue-152 Networks [4] trained on the ImageNet [38] dataset. The354

images were resized to 224×224, hence the dimension of each frame-level fea-355

tures is 7×7×2048. For the network training, we applied a mini-batch size of356

64 samples at each iteration. For each video sequence, the baseline approach357

randomly selected a sequence of 30 frames for training while the proposed ap-358

proaches selected a sequence of 60 frames for training in order to verify the359

proposed HM-AN’s capability to capture long-term dependencies. Actually, the360

optimal length for LSTM with attention is 30 and increasing the number will361

seriously deteriorate the performance. In order to determine the optimal length362

of sequence feeding into the networks, we perform several trials as described in363

Section 4.2.2, determining that the optimal length for the HM-AN is 60. We364

applied the back propagation algorithm through time and Adam optimizer [39]365

with a learning rate of 0.0001 to train the networks. The learning rate was366

changed to 0.00001 after 10,000 iterations. At test time, we compute class pre-367

dictions for each time step and then average those predictions over 60 frames.368

Table 1 provides a detailed description of the network configuration. Table 2369

shows the number of iterations and epoches needed for convergence on different370

datasets.371

4.2. Experimental Results and Analysis372

4.2.1. Datasets373

We evaluated our approach on three widely used datasets, namely UCF374

Sports [40], the Olympic Sports datasets [41] and the more difficult Human Mo-375

tion Database (HMDB51) dataset [42]. Fig. 4 provides some examples of the376

three datasets used in this paper. The UCF Sports dataset contains a set of377

actions collected from various sports which are typically featured on broadcast378

channels such as ESPN or BBC. This dataset consists of 150 videos with a res-379

olution of 720 × 480 and contains 10 different action categories. The Olympic380

Sports dataset was collected from YouTube sequences [41] and contains 16 dif-381
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Table 1: Networks Structure Configuration.

Input to HM-AN Size of Inner Units of HM-AN

Inputs 7× 7× 2048 Hidden Unit Size 2048

Output Layers Cell Memory Size 2048

1st Layer Outputs 2048 Gate Size (i, f, o, g) 2048

2nd Layer Outputs 2048 Boundary Detector Size 2048

3rd Layer Outputs 2048 Training Parameters

Concatenation Layer 6144 Dropout 0.5

Fully connected Layer 1 1024 Learning Rate 0.00001

Fully connected Layer 2 Class Categories Video Sequence Length 60

Table 2: Number of Iterations and Epoches for Convergence on Different

Datasets.

Dataset Iterations Epoches

UCF Sports 400 2

Olympic Sports 2500 2

HMDB51 10000 2

ferent sports categories with 50 videos per class. Hence, there are a total of 800382

videos in this dataset. The HMDB51 dataset is a more difficult dataset which383

provides three train-test splits each consisting of 5100 videos. These sequences384

are labeled with 51 action categories. The training set for each split has 3570385

videos and the test set has 1530 videos.386

For the UCF Sports dataset, as there is lack of training-testing split for387

evaluation, we manually divide the dataset into training and testing sets. We388

randomly selected 75 percent for training, and left the remaining 25 percent for389

testing. We then report the classification accuracy on the testing dataset.390

As for Olympic Sports dataset, we used the original training-testing split391

with the 649 sequences for training and 134 sequences for testing provided in392
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(a) UCF Sports dataset

(b) Olympic Sports dataset

(c) HMDB51 dataset

Figure 4: Some examples from the datasets used in this paper.

the dataset. Following the practice in [41], we evaluated the Average Precision393

(AP) for each category on this dataset.394

When evaluating our method on HMDB51, we also followed the original395

training-testing split and report the classification accuracy on the testing set.396

4.2.2. Results397

UCF Sports dataset. We firstly tested the performance of the LSTM with soft398

attention proposed in [15] on the UCF Sports dataset and obtained 70.0% ac-399

curacy. All the experimental settings were the same as those in [15]. Then we400

evaluated the proposed four approaches mentioned previously. As described in401

[15], the optimal sequence length is 30 frames.402

One of the expectations of using HM-AN is to enable long-term dependen-403

cies. In order to find the optimal length for HM-AN, we performed certain404

experiments. As shown in Table 3, the optimal length of the video sequence is405
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Figure 5: Training cost of the UCF Sports dataset.

60 frames. Increasing or decreasing the length would cause a drop in the overall406

result accuracy.407

HM-AN with stochastic hard attention which is realized with REINFORCE-408

like algorithm improves the results to 82.0%. HM-AN with soft attention is409

similar to the REINFORCE-Hard Attention, with an accuracy of 81.1%. The410

hard attention mechanism realized by Gumbel-softmax with adaptive tempera-411

ture achieves 82.0% accuracy, similar to our REINFORCE-Hard Attention mod-412

el. However, the Constant-Gumbel-Hard Attention which uses Gumbel-softmax413

with constant temperature value of 0.3 only yields 76.0% accuracy, which in-414

dicates the significant role of adaptive temperature in maintaining the system415

performance. Fig. 5 shows the curves of training cost cross entropy for the416

Adaptive-Gumbel-Hard Attention approach and REINFORCE-Hard Attention417

approach, respectively. It can be seen from the figure that the REINFORCE-418

Hard Attention converges marginally slower than the approach of Adaptive-419
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Figure 6: Training cost of the Olympic Sports dataset.

Gumbel-Hard Attention.420

As shown in Table 4, we compare our model with the methods proposed in421

[43] in which a convolutional LSTM attention network with hierarchical archi-422

tecture was used for action recognition. The hierarchical architecture in [43]423

was pre-defined whilst our model is able to learn the hierarchy from the data.424

The improvements demonstrated by our methods are obvious as shown in Table425

4.426

Olympic Sports dataset. The Olympic Sports dataset is of medium size. Results427

from this dataset are shown in Table 5. The mAP result of baseline approach428

is 73.7%. Our method HM-AN with Soft attention achieves 82.4% mAP. How-429

ever, unlike the UCF Sports dataset, the mAP result of REINFORCE-Hard430

Attention is 77.1%, which is lower than the approach of Soft Attention. The431

Constant-Gumbel-Hard Attention, which is implemented by Gumbel-softmax432

with a constant temperature of 0.3, obtains a mAP value of 82.3%. By mak-433
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Figure 7: Training cost of the HMDB51 dataset.

Table 3: Accuracy on UCF Sports using Adaptive-Gumbel-Hard Attention with

different sequence lengths.

Sequence Length Accuracy

30 frames 70.0%

40 frames 74.0%

50 frames 78.0%

60 frames 82.0%

70 frames 80.1%

ing the temperature value of Gumbel-softmax adaptive, the proposed model434

achieves 82.7% mAP, the highest among all our experimental results. Again, our435

proposed methods show superior performance compared to the hand-designed436

hierarchical model in [43].437
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Table 4: Accuracy on UCF Sports

Methods Accuracy

Softmax Regression (Residue-152 Features) 66.0%

Baseline (Residue-152 Features) 70.0%

Conv-Attention [43] (Residue-152 Features) 72.0%

CHAM [43] (Residue-152 Features) 74.0%

Soft Attention (Residue-152 Features)(Ours) 81.1%

REINFORCE-Hard Attention (Residue-152 Features)(Ours) 82.0%

Constant-Gumbel-Hard Attention(Residue-152 Features) (Ours) 76.0%

Adaptive-Gumbel-Hard Attention (Residue-152 Features)(Ours) 82.0%

HMDB51 dataset. HMDB51 is a more difficult and larger dataset. First of all,438

we test the accuracy of softmax regression based on Residue-152 networks, with439

38.2% accuracy, which improved this approach based on GoogleNet features by440

4.7%. This is consistent with previous findings where the Residue-152 networks441

reported 23.0% top 1 error on ImageNet dataset [38], which is 11.2% percent442

less than the GoogleNet results (34.2%) [44] [4]. However, all the subsequent443

experiments are all performed using features from Residue-152 features, which444

verify that the performance gain is from the proposed model instead of the445

advanced image features. The performance of the baseline approach is shown446

in Table 7, with 40.8% accuracy. The three layer LSTMs with soft attention447

based on GoogleNet features was reported in [15], with 41.3% accuracy. To448

make the comparison fair, we also tested three layer LSTMs with soft attention449

on Residue-152 features. However, we were not able to obtain a very obvious450

improvement on the final result, with 42.4% accuracy (1.1% gains over the451

result from [15]). Our HM-AN model with soft attention improves the accuracy452

to 43.8%. We then applied the REINFORCE-Hard Attention approach on this453

dataset. The result accuracy turns out to be lower than the HM-AN with soft454

attention. Moreover, the model with REINFORCE-like algorithm converges455

slower than the Gumbel-softmax with adaptive temperature, also with more456
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Figure 8: Confusion Matrix of HM-AN with Adaptive-Gumbel-Hard Attention

on the UCF Sports dataset.

oscillations on the training cost, which is shown in Fig. 7. With a constant457

temperature value of 0.3 for hard attention, the model achieves 44.0% accuracy.458

Again, the improvement by adding adaptive temperature is obvious, with 44.2%459

accuracy on the HMDB51 dataset. The accuracy results are further summarized460

in Table 7.461

We also compare the performance of the proposed HM-AN with some pub-462

lished models related to ours. Our proposed approach shares similarity with463

the spatial convolutional net from the two-stream scheme [26]. The difference464

is that the two-stream approach performs fine-tuning on the CNN model, with465
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Table 5: AP on Olympics Sports

Class Vault Triple Jump Tennis serve Spring board Snatch

Softmax Regression (Residue-152 Features) 97.7% 100.0% 42.8% 58.4% 31.7%

Baseline (Residue-152 Features) 97.0% 88.4% 52.3% 60.0% 23.2%

Conv-Attention (Residue-152 Features) [43] 97.0% 94.0% 49.8% 66.4% 26.1%

CHAM (Residue-152 Features) [43] 97.0% 98.9% 49.5% 69.2% 47.8%

Soft Attention (Residue-152 Features)(Ours) 99.0% 100.0% 60.7% 64.2% 38.6%

REINFORCE-Hard Attention (Residue-152 Features) (Ours) 100.0% 95.0% 50.8% 56.3% 28.6%

Constant-Gumbel-Hard Attention (Residue-152 Features) (Ours) 97.0 % 99.0% 62.6 % 58.7% 40.3%

Adaptive-Gumbel-Hard Attention (Residue-152 Features) (Ours) 98.1% 98.9% 62.1% 64.3% 45.4%

Shot put Pole vault Platform 10m Long jump Javelin Throw High jump

61.5% 88.8% 85.6% 96.6% 95.0% 79.7%

67.4% 69.8% 84.1% 100.0% 89.6% 84.4%

60.0% 100% 86.0% 98.0% 87.9% 80.0%

79.8% 60.8% 89.7% 100.0% 95.0% 78.7%

77.2% 85.4% 91.5% 98.9% 97.0 77.2%

90.6% 100.0% 86.7% 100.0% 89.7% 77.5%

87.8% 100.0% 93.1% 100.0% 93.2% 82.8%

84.1% 100.0% 94.8% 100.0% 95.3% 86.2%

Hammer throw Discus throw Clean and jerk Bowling Basketball layup mAP

32.9% 84.2% 78.0% 41.5% 89.3% 72.7%

38.0% 100.0% 76.0% 60.0% 89.8% 73.7%

36.6% 97.8% 100.0% 46.8% 81.2% 75.5%

37.9% 97.0% 84.8% 46.7% 89.1% 76.4%

44.1% 94.2% 83.8% 63.9% 89.2% 77.1%

52.9% 95.8% 92.4% 69.4% 98.1% 82.4%

54.7% 95.8% 91.3% 60.5% 100.0% 82.3%

53.8% 95.8% 84.9% 62.5% 97.0% 82.7%

an improved accuracy of 40.5%. Recent research on the two-stream approach466

[27] reported better results, with 47.1% accuracy. However, the evaluation of467

the two-stream method is based on each video whilst our evaluation is based468

on 60 frame sequences. The sequence-based accuracy is normally lower than469

the video-based accuracy as described in [45]. We only list the video-based470

approaches for reference since the evaluation of them is different from sequence-471

based approaches.472

For sequence-based approaches, the methods not from the RNN family but473

only with the spatial image, show poor performance as illustrated in Table474

8. Specifically, the softmax regression approach [15] directly uses extracted475

image features of each frame and performs softmax regression on them, with476

33.5% accuracy. The softmax regression approach based on image features477

from Residue-152 networks improves the accuracy to 38.2%. [15] reported that478

the LSTM without attention achieves 40.5% accuracy [15]. When adding the479
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Table 6: Accuracy of Softmax Regression on HMDB51 based on Different Fea-

tures

Image Features Accuracy

GoogleNet 33.5%

Residue-152 Network 38.2%

soft attention mechanism, an improved accuracy of 41.3% can be obtained.480

The Conv-Attention [43] and ConvALSTM [21] both use convolutional LSTM481

with attention. The differences are that Conv-Attention extracts features from482

Residue-152 Networks [4] without fine-tuning whilst ConvALSTM extracts im-483

age features from a fine-tuned VGG16 model. The ConvALSTM leads Conv-484

Attention by a small margin, with 43.3% accuracy. As explained previously,485

CHAM [43] has a hand-designed hierarchical architecture, which is in contrast486

with ours in which the temporal hierarchy is formed through training. Our487

best setting (Adaptive-Gumbel-Hard Attention) reports the highest accuracy488

(44.2%) among methods from the RNN family and leads the CHAM results489

(43.4%) by 0.8 percent. In sequence-based approaches, the one that outper-490

forms ours is the Long-term temporal convolutions [45], with 52.6% accuracy.491

This method has a 3D-convolution architecture, and is trained directly on the492

specific dataset, which is very different from our approach.493

Analysis and Visualization. We tested four approaches (Soft Attention, REINFORCE-494

Hard Attention, Constant-Gumbel-Hard Attention and Adaptive-Gumbel-Hard495

Attention) on three different datasets: UCF Sports dataset, the Olympic S-496

ports dataset and the HMDB51 dataset. On the UCF Sports dataset, the497

REINFORCE-Hard Attention and Adaptive-Gumbel-Hard Attention generate498

satisfactory results and show better performance than the soft attention and499

Constant-Gumbel-Hard Attention. This indicates that the adaptive tempera-500

ture is an efficient method to improve performance in the implementation of501

Gumbel-softmax based hard attention.502
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Table 7: Accuracy on HMDB51

Methods Accuracy

Softmax Regression (Residue-152 Features) 38.2%

Baseline (Residue-152 Features) 40.8%

Three LSTM Layers with Attention (Residue-152 Features) 42.4%

Soft Attention (Residue-152 Features)(Ours) 43.8%

REINFORCE-Hard Attention (Residue-152 Features)(Ours) 41.5%

Constant-Gumbel-Hard Attention (Residue-152 Features)(Ours) 44.0%

Adaptive-Gumbel-Hard Attention (Residue-152 Features)(Ours) 44.2%

Table 8: Comparison with related methods on HMDB51

Methods Accuracy Spatial Image Only Fine-tuning of CNN model

Video Accuracy

Spatial Convolutional Net (8 Layers CNN model) [26] 40.5% Yes Yes

Spatial Convolutional Net (VGG 16) [27] 47.1% Yes Yes

Composite LSTM Model [46] 44.0% Yes No

Trajectory-based modeling [47] 40.7% No No

Deep 3D CNN [48] 51.9% Yes Yes

Sequence Accuracy

ConvALSTM (VGG16 model) [21] 43.3% Yes Yes

Long-term temporal convolutions [45] 52.6% Yes Yes

Softmax Regression (GoogleNet Features) [15] 33.5% Yes No

Average pooled LSTM [15] (GoogleNet Features) 40.5% Yes No

Three LSTM Layers with Attention (GoogleNet Features) [15] 41.3% Yes No

Three LSTM Layers with Attention (Residue-152 Features) 42.4% Yes No

Conv-Attention (Residue-152 Features) [43] 42.2% Yes No

CHAM (Residue-152 Features) [43] 43.4% Yes No

Adaptive-Gumbel-Hard Attention (Residue-152 Features) (Ours) 44.2% Yes No

On both of the Olympic Sports dataset and HMDB51 dataset, the best503

approach is the Adaptive-Gumbel-Hard Attention while the REINFORCE-Hard504

Attention is even worse than the soft attention mechanism. On the bigger505

datasets, the advantages of Gumbel-softmax include small gradient variance and506

simplicity, which are obvious compared with the REINFORCE-like algorithms.507

This shows that Gumbel-softmax generalizes well on large and complex datasets.508

This is reflected not only by the result accuracy, but also by the training cost509
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Figure 9: Confusion Matrix of HM-AN Adaptive-Gumbel-Hard Attention on

the HMDB51 dataset.

curves in Fig. 6 and Fig. 7. This conclusion is also consistent with the findings in510

other recent research [12] which also applied both REINFORCE-like algorithms511

and Gumbel-softmax as estimators for stochastic neurons.512

The visualization of attention maps and boundary detectors learnt by the513

HM-AN is shown in Fig. 10. In the attention maps, the brighter an area514

is, the more important it is for the recognition. The soft attention captures515

multi-regions while the hard attention selects only one important region. As516

can be seen from the figure, in different time steps, the attention regions are517

different which means the model is able to select region to facilitate the recog-518
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nition through time automatically. The z 1, z 2 and z 3 in the figure indicate519

the boundary detectors in the first layer, the second layer and the third layer,520

respectively. In the figure, for the boundary detectors, the black regions indi-521

cate there exists a boundary in the time-domain whilst the grey regions show522

the UPDATE operation can be performed. The multi-scale properties in the523

time-domain can be captured by the HM-AN as different layers show different524

boundaries.525

From the reported results, we find that on all three datasets, the Constant-526

Gumbel-Hard Attention approach is worse than the approach of Adaptive-527

Gumbel-Hard Attention. This is because we do not know initially which tem-528

perature parameter is the optimal for the dataset. To provide a better under-529

standing of the network, we showed how the adaptive temperature change along530

with the test samples on three datasets, as shown in Fig. 11. From the figure,531

we can see that the adaptive temperature is about 0.6, which is very different532

from the pre-defined 0.3 temperature in Constant-Gumbel-Hard Attention.533

On the UCF Sports dataset, the Constant-Gumbel-Hard Attention is signif-534

icantly worse than other approaches, including the REINFORCE-Hard Atten-535

tion, with only 76.0% accuracy. As shown in Fig. 11, the temperature from536

the UCF Sports dataset is slightly higher than the other two datasets, which537

means the 0.3 pre-defined temperature parameter is not an appropriate option.538

In addition, the approach of Adaptive-Gumbel-Hard Attention makes the net-539

works converge much quicker as shown in Fig. 5, Fig. 6 and Fig. 7, which also540

explains the higher accuracy results of this method.541

5. Conclusion542

In this paper, we proposed a novel RNN model, HM-AN, which improves543

HM-RNN with attention mechanism for visual tasks. Specifically, the bound-544

ary detectors in HM-AN are implemented by the recently proposed Gumbel-545

sigmoid. Two versions of the attention mechanism were implemented and test-546

ed. Our work is the first attempt to implement hard attention in vision tasks547
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Figure 10: Visualization of attention maps and detected boundaries for action

recognition.

with the aid of Gumbel-softmax instead of REINFORCE algorithm. To solve548

the problem of sensitive parameter of softmax temperature, we applied adap-549

tive temperature methods to improve the system performance. To validate the550

effectiveness of HM-AN, we conducted experiments on action recognition from551

videos. Through experimenting, we showed that HM-AN is more effective than552

LSTMs with attention. The attention regions of both hard and soft attention553

and boundaries detected in the networks provide visualization for the insights of554

what the networks have learnt. Theoretically, our model can be built based on555
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Figure 11: Visualization of temperature values with attention maps and detected

boundaries for action recognition, the samples are randomly selected.

various features, e.g., Dense Trajectories, to further improve the performance.556

However, our emphasis in this paper is to prove the superiority of the model557

itself compared with other RNN-like models given same features. Hence, we558

chose to use deep spatial features only. Our work can facilitate further research559

on the hierarchical RNNs and its applications to computer vision tasks.560
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