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Adaptive auxiliary particle filter for
track-before-detect with multiple targets
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Abstract—A novel particle filter for multiple target tracking
with track-before-detect measurement models is proposed. Par-
ticle filters efficiently perform target tracking under nonlinear
or non-Gaussian models. However, their application to multiple
target tracking suffers from the curse of dimensionality. We
introduce an efficient particle filter for multiple target tracking
which deals with the curse of dimensionality better than previ-
ously developed methods. The proposed algorithm is tested and
compared to other multiple target tracking particle filters.

Index Terms—Particle filters, multiple target tracking, auxil-
iary particle filter, adaptive resampling, track-before-detect.

I. INTRODUCTION

State estimation of dynamic systems is an extensively
studied field, as it can be used to address a wide variety of
problems in science and engineering [1]. In dynamic state
estimation, the filtering problem consists of estimating the
current state of the system given the observations, which are
corrupted by measurement noise, obtained up to the current
time.

The multiple target tracking (MTT) [2] problem comprises
both the estimation of the number of targets in the surveillance
area, and their individual states, which gather some kinematic
information such as their positions and velocities. The general
MTT problem can be posed in the Bayesian framework using
random finite sets [3]. In the random finite sets framework the
multitarget state is represented as a set whose elements are the
single target state vectors. These state vectors can incorporate
labels to allow for track formation.

In this paper, the interest lies in tracking multiple targets
using track-before-detect measurement models, with special
emphasis on the case that multiple targets get in close proxim-
ity [4], [5]. Due to the difficulty of the general MTT problem,
we focus on the case of a fixed and known number of targets.
In this case, representing the multitarget state as a vector
is equivalent to a labeled set [6], [7]. Algorithms with this
representation can be used in the general MTT setting to deal
with the surviving targets after each time step, as done in [8],
[9].
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The Bayesian filtering approach to MTT aims to se-
quentially compute the posterior probability density function
(PDF), which is the PDF of the current state given all measure-
ments and contains all the information of interest about the
current state of the targets. In general, the posterior cannot
be described by a finite set of parameters, making its exact
computation intractable except in some special cases [10].

Making use of importance sampling techniques, particle
filters (PFs) can sequentially approximate the posterior PDF
with any dynamic and measurement models. As the number of
particles increases, the PF approximation to the posterior be-
comes more accurate [11], [12], [13]. Nevertheless, efficiently
sampling high dimensional state spaces, as is usually the case
in MTT, is generally quite difficult.

It was shown in [14] that, in order to reduce the curse
of dimensionality, it is useful to assume that the current
target states are independent. This posterior independence
assumption can improve the PF approximation to the prior
at the next time step, especially for a low enough number of
particles or a high number of targets. Examples of PFs with
this assumption are the independent partition PF (IP) [15]
or the parallel partition PF (PP) [8]. In addition to making
this assumption, one should carefully select the importance
density, which determines how target states are sampled.
As an example, IP does not consider neighboring targets in
the sampling procedure of each individual target, therefore
resulting in a severe performance loss when targets move
in close proximity. In order to overcome this shortcoming,
PP incorporates an estimation of the state of the neighboring
targets in the sampling procedure.

Another option to tackle the curse of dimensionality is to
approximate the marginal PDF for each target, as done in [16]
or in the multiple PF (MPF) [17], [18], [19]. However, it is
sometimes useful to obtain the updated joint PDF of the target
states [20].

None of the above PFs obtain samples from the optimal
importance density, which minimizes the variance of the par-
ticle weights [21]. The independent joint optimal importance
density (IJOID) [14] uses the optimal importance density to
sample from the state space once the posterior independence
assumption has been made to tackle the curse of dimensional-
ity. However, IJOID cannot be applied to any track-before-
detect measurement model [22], so it does not result in a
generally applicable algorithm, which is the aim of this paper.

The auxiliary particle filter (APF) [23] aims to mimic the
way samples are produced by the optimal importance density
by taking into account the actual measurements by means of
an auxiliary variable. However, the performance of the APF
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rapidly decays with an increase in the number of targets,
suffering from the curse of dimensionality as it jointly samples
the whole state space.

In this paper, we first propose two particle filters that
generalize the APF for MTT using the posterior independence
assumption and the state partition strategy to overcome the
curse of dimensionality. The main difference between them is
that the first filter, the target-resampling auxiliary PP (TRAPP),
includes a target-resampling stage and the second filter, the
auxiliary PP (APP), does not. A preliminary version of these
results was presented in [24]. We then analyze why the
filter with the best performance changes between these two
depending on the scenario, demonstrating that the use of the
target-resampling procedure is especially useful when dealing
with high-dimensional state spaces.

It is a novelty of this paper to consider target-resampling
within an update step to adequately handle large dimensional
state estimation problems. However, target-resampling reduces
sample diversity, meaning that it does not always improve
performance. Thus, the last contribution of this paper is the
development of a new algorithm that is able to adaptively
combine both techniques: the adaptive TRAPP (ATRAPP).
Contrary to the IJOID method, the presented algorithm does
not need to be constrained to its use with any particular
track-before-detect measurement model, thus being a general
method for nonlinear filtering. ATRAPP gathers the best
features of APP and TRAPP and, consequently, is able to
outperform both of them. ATRAPP monitors the effective
sampling size [22] for each target to adaptively decide if target-
resampling is needed. This makes ATRAPP a robust algorithm
with a reliable performance regardless of the number of targets
being tracked. In the final part of the paper we provide
extensive numerical results to evaluate the performance of
ATRAPP in comparison with state-of-the-art filters for track-
before-detect.

The rest of the paper is organized as follows: In Section
II, the problem of tracking a fixed and known number of
targets is formulated. In Section III, we thoroughly explain
APP and TRAPP. In Section IV, we analyze the suitability
of target-resampling for high target number. In Section V, the
ATRAPP PF is introduced. In Section VI, the performance of
ATRAPP is compared with other PFs via simulations. Finally,
conclusions are drawn in Section VII.

II. PROBLEM STATEMENT

In this section, we describe the MTT problem we consider.
The following two assumptions are made:
• Assumption A: There is a fixed and known number of

targets in the surveillance area.
• Assumption B: Targets move independently.

Under Assumption A, the state of the targets at time k can be
described by the multitarget state vector

Xk =
[
(x

k
1)T , (x

k
2)T , ..., (x

k
t )T
]T
∈ Rn·t (1)

where t stands for the number of targets, the superscript T
stands for the vector transpose and the state of target j at
time k is described by the n-dimensional target state vector

xk
j , which comprises kinematic features of the target such as

its position and velocity. Under Assumptions A and B the
dynamic system is described by the state-transition equations
of the targets and the measurement equation

xj
k+1 = fj(x

k
j ,w

k
j ) (2)

zk+1 = h(Xk+1,vk+1) (3)

where fj(·, ·) and h(·, ·) might be nonlinear functions, wk
j

is the process noise vector for the j-th target at time k,
zk+1 denotes the observation at time k + 1, and vk+1 is the
measurement noise vector at time k+1. Noise vectors at each
time step are assumed to be independent. Note that Equation
(2) implicitly assumes that the system evolves according to a
Markov process.

In the Bayesian setting, MTT is based on the recur-
sive approximation of the joint multitarget posterior PDF,
p(Xk |z1:k), where z1:k represents a sequence of measure-
ments z1, z2, ..., zk taken from time 1 to time k. Following
the usual steps of Bayesian filtering, the posterior PDF of the
state at time k+1 based on the measurements up to time k+1,
can be obtained by recursively applying two steps: prediction
and update [25].

In the prediction step, the prior PDF at time k + 1, which
denotes the PDF of the current state given the measurements
up to time k, is computed via the Chapman-Kolmogorov
equation

p(Xk+1|z1:k ) =

ˆ
p(Xk |z1:k )p(Xk+1|Xk )dXk (4)

=

ˆ
p(Xk |z1:k )

t∏
j=1

p(xj
k+1|xk

j )dXk(5)

where the transition PDFs, p(xk+1
j |xk

j ), are obtained from
equation (2). Once the measurement at time k+1 is available,
the update step makes use of Bayes’ rule to provide the
posterior at time k + 1

p(Xk+1|z1:k+1)∝p(zk+1|Xk+1)p(Xk+1|z1:k ) (6)

where ∝ indicates proportionality and the PDF p(zk+1|Xk+1)
can be obtained from the measurement equation in (3). How-
ever, when the dynamic or measurements are nonlinear or non-
Gaussian, the posterior PDF (6) does not generally admit a
closed-form expression, so approximations are necessary. In
the next section, some PF approximations to this recursion
are proposed.

III. AUXILIARY STATE PARTITION PFS

The dimension of the state in the MTT problem grows
linearly with the number of targets. This poses a significant
challenge for PFs as they typically require a prohibitively large
number of particles to deal with a state of sufficiently high
dimension. This effect is commonly referred to as the curse
of dimensionality [26], [27]. As mentioned in the introduction,
a common strategy to alleviate this curse of dimensionality is
to use a posterior independence assumption [14], in which
targets are assumed to be independent in the posterior at the
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previous time step. The methods presented in this paper also
make use of this approach.

In this section, the auxiliary PP (APP) PF and the target-
resampling APP (TRAPP) PF are presented. We also highlight
their advantages and limitations in order to illustrate the
benefits of the adaptive procedure presented in Section V.

Particle filters approximate the posterior PDF,
p(Xk+1|z1:k+1), by sequentially propagating a
set of N particles with their associated weights,
{(Xk+1

1 , ωk+1
1 ), ..., (Xk+1

N , ωk+1
N )}, based on the proposal of

an importance sampling density function, q(Xk+1|z1:k+1).
Therefore, the update of the weights is performed according
to the principle of importance sampling

ωk+1
i ∝ p(Xk+1

i |z1 :k+1)

q(Xi
k+1|z1:k+1)

(7)

∝ p(zk+1|Xk+1
i )p(Xi

k+1|z1:k )

q(Xi
k+1|z1:k+1)

(8)

Particle Xk
i is

Xk
i =

[
(xk

1,i)
T , ..., (xk

t,i)
T
]T ∈ Rn·t

where xk
j,i is the part of the particle that corresponds to

target j, which is referred to as a subparticle. Each particle is
therefore formed by t subparticles. To describe the proposed
methods, we find the following nomenclature useful. In the
prediction and update steps from time k to time k+1, particles
and subparticles at time k are referred to as parent particles
and subparticles, while particles and subparticles at time k+1
are referred to as child particles and subparticles.

The filters we propose in this paper are based on the
posterior independence assumption so we proceed to write the
posterior for this case. Given a particle filter approximation to
the posterior at time k, and considering posterior independence
assumption, the posterior PDF at time k + 1 becomes

p(Xk+1|z1:k+1) ∝ p(zk+1|Xk+1)

t∏
j=1

N∑
i=1

ωk
i p(x

k+1
j |xk

j,i)

(9)
In order to allow for the developed filters to account

for neighboring targets in the sampling step, we denote the
averaged predicted target state for target j as

x̂k+1
j =

N∑
i=1

ωk
i · x

k+1|k
j,i (10)

where x
k+1|k
j,i is the prediction of the j-th target state at time

k + 1 of the i-th subparticle at time k [28]. For each target,
we build the vector X̂k+1

−{j} stacking the predicted state at time
k + 1 of every target except for target j as

X̂k+1
−{j} =

[
(x̂

k+1
1 )T , ..., (x̂

k+1
j−1)T , (x̂k+1

j+1 )T , ..., (x̂
k+1
t )T

]T
We now define the predicted target likelihood, bj(xk+1

j ), as

bj(x
k+1
j ) ∝ p(zk+1|X̂k+1

−{j},x
k+1

j
), (11)

which takes into account the rest of the targets by their
predicted states.

A. APP PF

APP obtains samples from the posterior by making use of
an auxiliary variable [23] for each target, therefore sampling
in a higher dimension from

p(Xk+1,a|z1:k+1) ∝ p(zk+1|Xk+1)

t∏
j=1

ωk
aj
p(xk+1

j |xk
j,aj

)

(12)
where a = [a1, a2, ..., at]

T ∈ {1, 2, ..., N}t, and aj is an index
in the mixture of the j-th target in (9). The selection of the
auxiliary variable is sound because p(Xk+1,a|z1:k+1) ≥ 0
and by integrating (12) over a, one gets the posterior.

The use of an auxiliary variable decreases the computa-
tional burden and enables subparticle crossover. Subparticle
crossover is a desirable property in such filters, as it allows
the formation of a particle at time k+ 1 from the propagation
of subparticles that belonged to different particles at time
k. Using an auxiliary variable, APP performs the crossover
between parent subparticles. This is, particles at k + 1 are
formed based on a selection of the parent subparticles that are
prone to obtain child subparticles with higher likelihoods.

As previously mentioned, samples are produced from an im-
portance density function. In the case of APP, the importance
density function samples targets independently and is selected
as

qA(Xk+1,a|z1:k+1) =

t∏
j=1

qAj (xk+1
j , aj |z1:k+1) (13)

qAj (xk+1
j , aj |z1:k+1) ∝ bj(µ

k+1
j,aj

)ωk
aj
p(xk+1

j |xk
j,aj

)

where bj(µ
k+1
j,aj

)ωk
aj

constitute the first-stage weights of
the APP filter, with µk+1

j,aj
being some characterization of

xk+1
j given xk

j,aj
, such as the predicted mean, µk+1

j,aj
=

E[xk+1
j |xk

j,aj
], or a sample, µk+1

j,aj
∼ p(xk+1

j |xk
j,aj

).
Substituting Equation (13) into (7), the updated weights

become

ωk+1
i ∝

p(zk+1|Xk+1
i )

t∏
j=1

ωk
ai
j
p(xk+1

j,i |xk
j,ai

j
)

t∏
j=1

bj(µ
k+1
j,ai

j
)ωk

ai
j
p(xk+1

j,i |xk
j,ai

j
)

∝ p(zk+1|Xk+1
i )

t∏
j=1

bj(µ
k+1
j,ai

j
)

(14)

Note that for one target, t = 1, APP is in fact the
conventional auxiliary particle filter [23]. Under the conditions
stated in [23], i.e. informative measurements, the use of this
method to obtain the samples from the importance sampling
function allows for the reduction of the variance of the first-
stage weights. Thus, APP obtains a better approximation than
PP [8] of the importance sampling function in (16) for a fixed
number of samples. A pseudocode of the APP method is given
in Algorithm 1.

It should be noted that as a consequence of the definition
of bj(x

k+1
j ), the APP method can always be applied to
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approximate the prediction (4) and update (6) equations, so
that it can be satisfactorily applied to any other Bayesian
filtering problem under Assumptions A and B.

B. TRAPP

In this section we present the TRAPP PF. The main differ-
ence with APP is that TRAPP uses a resampling step for each
target, which is useful in some situations, as will be analyzed
in Section IV.

As happened for APP, TRAPP also uses the posterior
independence assumption and individually samples each target
state. Subparticle crossover is again desired, so TRAPP also
makes use of an auxiliary variable for each target, therefore
sampling in a higher dimension from (12). The importance
sampling function proposed for the TRAPP method takes the
form

qT (Xk+1,a|z1:k+1) =

t∏
j=1

qTj (xk+1
j , aj |z1:k+1) (15)

qTj (xk+1
j , aj |z1:k+1) ∝ bj(x

k+1
j )ωk

aj
p(xk+1

j |xk
j,aj

)(16)

where we recall that bj(xk+1
j ) is given by (11) to account for

nearby targets. Substituting (16) in (7), the updated weight is
given by

ωk+1
i ∝

p(zk+1|Xk+1
i )

t∏
j=1

ωk
ai
j
p(xk+1

j,i |xk
j,ai

j
)

t∏
j=1

bj(x
k+1
j,i )ωk

ai
j
p(xk+1

j,i |xk
j,ai

j
)

=
p(zk+1|Xk+1

i )
t∏

j=1

bj(x
k+1
j,i )

(17)

However, as stated in [8] for the IP and PP filters, it is
not generally feasible to sample directly from (16). TRAPP
therefore makes use of the sampling/importance resampling
method in [29] to obtain samples from (16), thus sampling
from a first-pass approximation of (16)

hj(x
k+1
j , aj |z1:k+1) ∝ bj(µk+1

j,aj
)ωk

aj
p(xk+1

j |xk
j,aj

) (18)

where, as before, µk+1
j,aj

is some characterization of xk+1
j given

xk
j,aj

such as the predicted mean or a sample. A set of M
samples (x∗j , a

∗
j ) are drawn from this first-pass approximation

and the following quotient is computed

r(x∗j,p,a
∗
j,p) ∝

qTj (x∗j,p, a
∗
j,p|z1:k+1)

hj(x∗j,p, a
∗
j,p|z1:k+1)

=
bj(x

∗
j,p)

bj(µ∗j,p)
(19)

in order to draw N samples of qTj (xk+1
j , aj |z1:k+1) from the

distribution defined by (x∗j,p, a
∗
j,p), for p = 1, 2...,M (it is

common to set M = N ) with probability r(x∗j,p, a
∗
j,p). The

drawn samples for each target are then introduced in (17) to
compute the particle weights.

Hence, the TRAPP PF selects for every target the par-
ent subparticles at time k that are prone to generate child
subparticles with a higher likelihood given the measurement

Table I: Properties of IP, PP, APP and TRAPP algorithms.

MTT
filter

Generalization
of APF
to MTT

target-resampling accounts
for nearby

targets

avoids
particle

resampling

IP × X × ×

PP × X X ×

APP X × X X

TRAPP X X X X

at time k + 1 based on the auxiliary filtering in Equation
(18). This causes the crossover of parent subparticles. Then,
TRAPP performs crossover of the child subparticles. That is,
TRAPP selects for every target those child subparticles x∗j,p
that show a higher likelihood with the measurement at time
k+1, performing a per target-resampling using Equation (19).
Finally the particle weights are computed using Equation (17).

Note the clear resemblance of the described procedure for
drawing samples from (16) to the APF. The TRAPP PF is a
generalization of the APF for multiple target tracking. Note
that for t = 1 TRAPP is in fact the same filter presented in
[23] with a resampling stage. A pseudocode of the TRAPP
method is pointed out in Algorithm 2.

With the aim of clarifying the details and differences of
TRAPP, APP, PP [8] and IP [15], [30] and how they perform
subparticle crossover, Table I indicates the different properties
of these algorithms.

IV. ON THE USE OF RESAMPLING

In this section, we motivate the possible benefits of using
target-resampling, as in TRAPP, compared to not using it, as
in APP. In general, resampling is used in particle filters to
avoid particle degeneracy that occurs over time [22]. Without
resampling, the variance of the particle weights increases
until there is only one particle with a non-negligible weight.
Clearly, this is not an accurate representation of the posterior
PDF. The underlying cause is that the particle filter is in fact
approximating the posterior PDF over all trajectories, which
implies that the dimension of the state grows at each time
step [31]. This degeneracy of particle weights is therefore
associated to an increase in the dimension of the state under
consideration and its effects can be mitigated by resampling.

In MTT, the dimensionality of the state space depends on
the number of targets being tracked. In this sense, particle
degeneracy arises in the sampling of high dimensional space-
time states, which can be dealt with target-resampling. As
such, in this paper, we use the concept of target-resampling
to overcome degeneracy in MTT filters, either this being a
consequence of the number of targets being tracked or of the
number of steps of their trajectories.

It also should be taken into account that resampling
produces a side-effect, commonly referred to as sample-
impoverishment [25], meaning that there will be a loss of
diversity in the resultant resampled approximation to the PDF,
as it will contain repeated samples. We find it useful to
illustrate these insights with the following example.
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Algorithm 1 APP procedure

procedure (zk+1, X̂k+1
−{j}, {(X

k
1 , ω

k
1 ), (Xk

2 , ω
k
2 ), ..., (Xk

N , ω
k
N )})

for j = 1, ..., t do . Auxiliary filtering
for i = 1, ..., N do

- Draw µk+1
j,i using:
p(xk+1

j |xk
j,i) or E[xk+1

j |xk
j,i]

- Compute bj(µk+1
j,i ) = p(zk+1|X̂k+1

−{j},µ
k+1
j,i )

- Compute λj,i = bj(µ
k+1
j,i )ωki

end for
for i = 1, ..., N do

- Normalize λj,i =
λj,i∑N

i=1 λj,i

end for
for i = 1, ..., N do

- Sample an index aij from the distribution
defined by (λj,1, λj,2, ..., λj,N )

- Draw a sample xk+1
j,i using p(xk+1

j |xk
j,aij

)

end for
end for

for i = 1, ..., N do . Weight update
- Compute ωk+1

i =
p(zk+1|Xk+1

i )∏t
j=1 bj(µ

k+1

j,ai
j

)

end for
for i = 1, ..., N do

- Normalize ωk+1
i =

ωk+1
i∑N

i=1 ω
k+1
i

end for

return {(Xk+1
1 , ωk+1

1 ), (Xk+1
2 , ωk+1

2 ), ..., (Xk+1
N , ωk+1

N )}

end procedure

Algorithm 2 TRAPP procedure

procedure (zk+1, X̂k+1
−{j}, {(X

k
1 , ω

k
1 ), (Xk

2 , ω
k
2 ), ..., (Xk

N , ω
k
N )})

for j = 1, ..., t do . Auxiliary filtering
for i = 1, ..., N do

- Draw µk+1
j,i using:
p(xk+1

j |xk
j,i) or E[xk+1

j |xk
j,i]

- Compute bj(µk+1
j,i ) = p(zk+1|X̂k+1

−{j},µ
k+1
j,i )

- Compute λj,i = bj(µ
k+1
j,i )ωki

end for
for i = 1, ..., N do

- Normalize λj,i =
λj,i∑N

i=1 λj,i

end for
for i = 1, ..., N do

- Sample an index aij from the distribution
defined by (λj,1, λj,2, ..., λj,N )

- Draw a sample x∗
j,aij

using p(xk+1
j |xk

j,aij
)

- Compute bj(x∗j,aij
) = p(zk+1|X̂k+1

−{j},x
∗
j,aij

)

- Compute rj(x∗j,aij
) =

bj(x
∗
j,ai

j

)

bj(µ
k+1

j,ai
j

)

end for
for i = 1, ..., N do

- Normalize rj(x∗j,aij
) =

rj(x
∗
j,ai

j

)∑N
i=1 rj(x

∗
j,ai

j

)

end for
for i = 1, ..., N do . target-resampling

- Sample an index p from the distribution
defined by (rj(x

∗
j,a1j

), rj(x
∗
j,a2j

), ..., rj(x
∗
j,aNj

))

- Set xk+1
j,i = x∗

j,a
p
j

end for
end for
for i = 1, ..., N do . Weight Update

- Compute ωk+1
i =

p(zk+1|Xk+1
i )∏t

j=1 bj(x
k+1
j,i )

end for
for i = 1, ..., N do

- Normalize ωk+1
i =

ωk+1
i∑N

i=1 ω
k+1
i

end for

return {(Xk+1
1 , ωk+1

1 ), (Xk+1
2 , ωk+1

2 ), ..., (Xk+1
N , ωk+1

N )}

end procedure

Example 1. A different number of targets ranging from t = 1
to t = 40 are considered. In each simulation, targets are
arranged in a straight line so that for j = 1, ..., t, the j-th
target position is given by pj = [j · dt, 0]T , with dt = 10m.
A total of Ns = 40 sensors are displayed in the scenario
at positions si = [i · dt, 12]T , where i = 1, ..., 40 and the
nonlinear measurement model described in Section VI, using
a measurement noise variance of σ2

s = 2. To simplify the
experiment, we only consider an update step; the a priori
position density function for each target, N (pj ; p̄jΣ), is a
Gaussian PDF with mean p̄j corresponding to the real target
position, and covariance matrix Σ = σ2I2, where In is the
n × n identity matrix and σ = 1m. In Figure 1(b), we
show the optimal sub-pattern assignment [32] (OSPA) position
error (with parameters p = 2, c = 10m) for a different
number of targets averaged in a Monte Carlo simulation with

n = 10000 runs. It can be observed that if the dimension of the
state space is high enough (9 targets in this case), the target-
resampling stage makes it possible for TRAPP to achieve a
lower error than APP. On the other hand, for a low number
of targets APP outperforms TRAPP. This is to be expected as
the dimensionality of the state is lower so target-resampling
is counterproductive.

In order to clarify this, we also show in Figure 1(c), the
normalized OSPA position errors with respect to the worst
performing filter. In this simple example, APP obtains an error
up to a 14% lower than TRAPP for a low number of targets,
while TRAPP obtains an error of almost an 11% lower than
APP does when considering a high enough number of targets.
Note that, for the sake of simplicity, this example uses only
a one-step update. However, if we use these algorithms in
a normal filtering set-up with a recursive approximation of
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Figure 1: (a) Proposed scenario for Example 1 with up to t = 40 targets.
(b) OSPA position error as a function of the number of targets for the
APP and TRAPP algorithms for one update step. (c) Normalized OSPA
position error with respect to the worst performing filter in each case.
It is shown how the target-resampling stage of TRAPP is advisable for
a high enough number of targets, while it is not for a low number of
targets.

the filtering PDF, errors propagate over time. This means that
even small differences in the errors in one update can result in
bigger differences as time goes on, as shown in the simulation
examples of Section VI.

In this section we have analyzed target-resampling as a pos-
sibly good feature for a multitarget PF. However, performing
an additional resampling for the whole particles, which we
call particle-resampling (see Table I), as done in IP and PP,
is generally detrimental as we would be resampling particles
whose subparticles have already been resampled. This double

resampling generally implies a loss of particle diversity that
can be avoided with the algorithms presented in this paper.

V. ATRAPP
We have seen in the previous section that target-resampling

becomes an advantage for a high number of targets. However,
in general, it is difficult to know when it is beneficial to
perform target-resampling or not, as it depends on all the
parameters of the problem at hand. In order to tackle this issue,
in this section, we develop the adaptive TRAPP (ATRAPP)
particle filter. ATRAPP aims to combine the best features
of both APP and TRAPP in a single algorithm, where the
decision of performing target-resampling is independently
taken for each target.

A common approach to decide whether to resample in PFs is
the monitoring of the effective sample size [33], [21], which
measures the degeneracy of the particle weights. Then, we
perform target-resampling if the effective sample size falls
below a given threshold. We proceed to extend this technique
for target-resampling. This will enable us to combine the
strengths of APP and TRAPP into ATRAPP.

As previously stated, the target-resampling stage in TRAPP
is achieved by taking samples from the distribution defined
by (x∗j,p, a

∗
j,p), for p = 1, 2...,M with the normalized weights

r(x∗j,p, a
∗
j,p) in (19). ATRAPP measures subparticle degener-

acy using this distribution (with M = N ), computing the ef-
fective target sample size, N j

eff , to decide if target-resampling
is really advisable for target j. One cannot generally exactly
evaluate N j

eff , however a commonly accepted estimate of the
effective sample size is given by [22]

N̂ j
eff =

1∑N
p=1 r

2(x∗j,p, a
∗
j,p)

(20)

It should be noted that N̂ j
eff can take values in the interval

[1, N ]. If this estimate of the effective target sample size drops
below a threshold, target-resampling is performed among the
child subparticles of target j as in TRAPP, avoiding the
subparticle degeneracy that would lead the whole filter to an
undesired global particle degeneracy. On the other hand, if
N̂ j

eff is high enough, no resampling is necessary. Noting that
the first-pass approximation in (18) is in fact the importance
sampling density used for the APP method in (13), the
absence of the target-resampling stage makes the sampling
procedure equivalent to the one in APP, thus in these cases,
only a reindexing step is necessary, setting xk+1

j,i = x∗
j,ai

j
, for

i = 1, 2, ..., N .
In order to provide a compact expression for the importance

sampling function of ATRAPP, it is useful to make use of the
set of target indices in the scenario at time k + 1, Sk+1

t =
{1, 2, ..., t}, and define a partition over Sk+1

t as

Sk+1
t = Sk+1

APP ∪ S
k+1
TRAPP

N̂ j
eff ≤ Γk+1

j ⇒ j ∈ Sk+1
TRAPP

N̂ j
eff > Γk+1

j ⇒ j ∈ Sk+1
APP

with Γk+1
j , a parameter of ATRAPP that represents the target-

resampling threshold for the j-th target at time step k+1. The
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importance sampling function for ATRAPP can be therefore
written as

qAT (Xk+1,a|z1:k+1) =∏
j∈Sk+1

TRAPP

qTj (xk+1
j , aj |z1:k+1)

∏
j∈Sk+1

APP

qAj (xk+1
j , aj |z1:k+1)

(21)

and introducing (21) into (7) finally yields the weight update
equation for ATRAPP

ωk+1
i ∝ p(zk+1|Xk+1

i )∏
j∈Sk+1

TRAPP

bj(x
k+1
j,i )

∏
j∈Sk+1

APP

bj(µ
k+1
j,ai

j
)

(22)

There are 2t possible configurations for
qAT (Xk+1,a|z1:k+1), i.e. all possible combinations of
choices for each target between qTj (xk+1

j , aj |z1:k+1) and
qAj (xk+1

j , aj |z1:k+1). Selecting the optimal configuration
for the importance density of ATRAPP at each time step is
not straightforward. It is for this reason that we rely on a
robust and well established criterion as the monitoring of the
effective sample size for this purpose.

It should also be noted that the importance sampling
function (21) of the proposed algorithm can accommodate a
different resampling threshold for each target at each time step,
Γk
j . This flexibility in Γk

j can serve different purposes, e.g.,
tuning the threshold for the possibly different dynamic models
of each target, or for the possibly different measurement
models of the sensors that surround each target.

In addition, the use of Γk
j also allows for the adequate

accommodation of multidimensionality. As previously stated,
the curse of dimensionality [27] naturally arises in the MTT
problem. The difficulty of sampling a multitarget state pos-
terior becomes higher when the number of targets grows. To
tackle this problem, a different target-resampling threshold can
be considered depending on the number of targets present in
the surveillance area. This is in accordance with the mentioned
insights into target-resampling exposed in Section IV. The
higher the dimension, the more benefits we expect to obtain
from target-resampling. Therefore, in general, the threshold Γk

j

should be higher for a higher number of targets. A particular
way of selecting this threshold policy is given in Section
VI-C2. Finally, a pseudocode for the ATRAPP method is given
through Algorithms 3 and 4.

VI. EXPERIMENTAL RESULTS

In this section, the performance of ATRAPP is tested
via a set of simulations with a demanding MTT scenario.
The proposed scenario is presented along with the employed
motion and measurement models. It is shown how ATRAPP
can respectively match the performances of both APP and
TRAPP. Simulations also indicate that ATRAPP can in fact
outperform both filters with an adequate selection of the
threshold parameter, as well as other PFs for MTT in the
literature.

The tracking performance of all PFs is tested by computing
their OSPA [32] position error (with parameters p = 2, c =

Algorithm 3 ATRAPP prediction and update at time k + 1

procedure (zk+1, {(Xk
1 , ω

k
1 ), ..., (Xk

N , ω
k
N )})

for i = 1, ..., N do
for j = 1, ..., t do

x
k+1 |k
j,i = E[xk+1

j,i |x
k
j,i]

end for
x̂k+1
j =

∑N
i=1 ω

k
i · x

k+1 |k
j ,i

end for
for j = 1, ..., t do
{(xk+1

j,1 , bj,1), ..., (xk+1
j,N , bj,N )} =

target_AT (zk+1, X̂k+1
−{j}, {(x

k
j,1, ω

k
1 ), ..., (xk

j,N , ω
k
N )})

end for
for i = 1, ..., N do . Weight Update

- Compute ωk+1
i =

p(zk+1|Xk+1
i )∏t

j=1 bj,i

end for
for i = 1, ..., N do

- Normalize ωk+1
i =

ωk+1
i∑N

i=1 ω
k+1
i

end for

return {(Xk+1
1 , ωk+1

1 ), ..., (Xk+1
N , ωk+1

N )}

end procedure

10m) averaged over all targets, time steps of the trajectories
and realizations in a Monte Carlo simulation with n = 5000
runs.

A. Motion modeling

The state of the j-th target is represented by the state vector
xk
j = [xkj , ẋ

k
j , y

k
j , ẏ

k
j ]T , thus considering the target position

and velocity. The motion of each target has been modeled as
linear with a nearly constant velocity [34], so according to
Assumption B

p(Xk+1|Xk ) =

t∏
j=1

N(xk+1
j ;Fxk

j ,Q) (23)

F = I2 ⊗
(

1 τ
0 1

)
Q = σ2

uI2 ⊗
(
τ3/3 τ2/2
τ2/2 τ

)
where N(x; x̄,Q) is a Gaussian PDF with mean x̄ and
covariance Q evaluated at x, τ is the sampling period, In is
the n×n identity matrix, ⊗ stands for the Kronecker product
and σ2

u is the continuous-time process noise intensity.
Simulations have been carried out with up to 8 targets

present in the scenario whose trajectories repeatedly cross each
other to recreate a demanding MTT problem. The trajectories
have been generated according to equation (23), taking τ = 1s
and σu = 0.1m/s3/2. The simulated target trajectories have
100 time steps and are shown in Figure 2.

B. Sensor modeling.

The nonlinear measurement equation (3) for the i-th sensor
at time k + 1 is

zk+1
i = hi(X

k+1) + vk+1
i (24)
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Algorithm 4 target_AT subroutine

procedure (zk+1, X̂k+1
−{j}, {(x

k
j,1, ω

k
1 ), ..., (xk

j,N , ω
k
N )})

for i = 1, ..., N do . Auxiliary filtering
- Draw µk+1

j,i using:
p(xk+1

j |xk
j,i) or E[xk+1

j |xk
j,i]

- Compute bj(µk+1
j,i ) = p(zk+1|X̂k+1

−{j},µ
k+1
j,i )

- Compute λj,i = bj(µ
k+1
j,i )ωki

end for
for i = 1, ..., N do

- Normalize λj,i =
λj,i∑N

i=1 λj,i

end for
for i = 1, ..., N do

- Sample an index aij from the distribution
defined by (λj,1, λj,2, ..., λj,N )

- Draw a sample x∗
j,aij

from p(xk+1
j |xk

j,aij
)

end for

for i = 1, ..., N do
- Compute bj(x∗j,aij

) = p(zk+1|X̂k+1
−{j},x

∗
j,aij

)

- Compute rj(x∗j,aij
) =

bj(x
∗
j,ai

j

)

bj(µ
k+1

j,ai
j

)

end for
for i = 1, ..., N do

- Normalize rj(x∗j,aij
) =

rj(x
∗
j,ai

j

)∑N
i=1 rj(x

∗
j,ai

j

)

end for
- Compute N̂j

eff = 1∑N
i=1(rj(x

∗
j,ai

j

))2

if N̂j
eff > Γk+1

j then
for i = 1, ..., N do

- Set xk+1
j,i = x∗

j,aij

- Set bj,i = bj(µ
k+1
j,i )

end for
else

for i = 1, ..., N do . target-resampling
- Sample an index p from the distribution

defined by (rj(x
∗
j,a1j

), rj(x
∗
j,a2j

), ..., rj(x
∗
j,aNj

))

- Set xk+1
j,i = x∗

j,a
p
j

- Set bj,i = bj(x
∗
j,a

p
j
)

end for
end if

return {(xk+1
j,1 , bj,1), ..., (xk+1

j,N , bj,N )}

end procedure

hi(X
k+1) =

t∑
j=1

SNR(dk+1
j,i )

SNR(dk+1
j,i ) =

SNR0 dk+1
j,i ≤ d0

SNR0
d2
0

(dk+1
j,i )2

dk+1
j,i > d0

dk+1
j,i =

√
(xk+1

j − sx,i)2 + (yk+1
j − sy,i)2

where vk+1 is a zero-mean, unit-variance, Gaussian-distributed
noise. SNR0 is the maximum signal to noise ratio produced
by a target when it is closer to the sensor than the saturation
distance, d0. The coordinates of the i-th sensor are given by
its position vector, si = [sx,i, sy,i]

T . In the simulated scenario,
measurements are taken from a set of sensors displayed in a
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Figure 2: Eight simulated trajectories, consisting of 100 steps sampled
with a period of τ = 1s. The initial point of each trajectory is indicated
by a colored circle, while the final point is represented by a colored
square. An arrow shows the position of the target at steps 20, 40, 60 and
80 of each trajectory. When simulating a scenario with t targets, target
trajectories 1 to t of the above presented are taken into account.

flat squared regular grid covering 120m×120m, with a spacing
of 10m between sensors in both axes, yielding a total of 169
sensors, SNR0 has been taken to be 20dB and d0 = 5m.

Sensor measurements do not depend on the velocity of the
targets, as they are only affected by their position. As the
relationship between the velocity and the position of the targets
is linear, Rao-Blackwellization is applied to reduce the curse
of dimensionality [35][4], only including the position of the
targets in the PF and optimally estimating their velocities by
Kalman filtering.

C. Simulation results

1) Constant threshold: We first analyze the capabilities of
ATRAPP using a simple target-resampling threshold policy
where Γk

j is set constant, thus Γk
j = Γ. This approach has some

advantages, first, it can be used to analyze the equivalence of
the ATRAPP PF with respect to APP and TRAPP PFs when
Γ = 0 and Γ = N , respectively. In addition, this constant
threshold policy has the advantage of needing the adjustment
of only one parameter, which simplifies the filter design. This
parameter is set in advance so that no additional computational
expense is required.

In Figure 3 we show the error results for 2 and 8 targets.
It can be seen that the better performance between APP and
TRAPP switch when considering 2 targets in Figure 3(a) with
respect to the results obtained when considering 8 targets in the
scenario in Figure 3(b). This is in accordance with the insights
explained in Section IV, showing that when the dimensionality
of the state space grows, the target-resampling stage is advised.

It would be desirable that a unique policy in ATRAPP
served to reach the performances of both APP and TRAPP
PFs regardless of the situation. This may not be generally
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Figure 3: OSPA position error with respect to the number of particles
with 3 different filters: APP, TRAPP and ATRAPP with Γ = 0.5 · N .
Results show how this parametrization of ATRAPP can match the best
performance of APP when 2 targets (3a) are present in the scenario as
well as the best performance of TRAPP when 8 targets (3b) are present
in the scenario.

attainable, however, a fine parametrization of the thresholds in
ATRAPP can bring this objective closer. Figure 3 illustrates
how in the proposed scenario, a target-resampling threshold of
Γ = 0.5·N makes ATRAPP to match the performance of APP
when there is not a high number of targets in the scenario and
match the performance of TRAPP when this number of targets
grows. In this case, simulations indicate that ATRAPP can
handle the situation of sampling the state space for 2 targets
with their effective target sample sizes not falling below the
50% of the number of particles, thus not usually performing
target-resampling and matching the performance of APP. On
the other hand, results show that the effective target sample
size tends to fall below the 50% of the number of particles
when sampling the 8-target state space, thus making ATRAPP
prone to target-resampling in this situation and allowing it to
match the best performance of TRAPP in such a complex
scenario.

It has been shown how a simple policy of a midpoint
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Figure 4: OSPA position error with respect to the number of particles
when 8 targets are under track with different filters; JA, IP, PP, MPF,
APP, TRAPP, ATRAPP with Γ = 0.8 · N . (4b) only shows the results
of the 5 latter algorithms.

threshold selection allows ATRAPP to match the performance
of APP and TRAPP when they respectively accomplish best
results. However, a fine choice of the target threshold param-
eter should make ATRAPP to apply target-resampling only
when necessary to favor particle diversity. Figure 4 shows
how ATRAPP can, not only match the performances of APP
and TRAPP, but also marginally outperform either of them in
the considered scenario with a fine choice of the thresholding
parameter.

Note that if we compare ATRAPP with APP and TRAPP
considering both previous scenarios simultaneously, ATRAPP
outperforms both of them in general as it significantly outper-
forms APP or TRAPP in one of the scenarios, TRAPP when
there are two targets and APP when there are eight targets.

In the case of Figure 4, a constant target threshold of Γ =
0.8 ·N is adopted, resulting in the mentioned improvement of
the performance of ATRAPP with respect to APP and TRAPP.

Figure 4 also shows the comparative results with respect to
other MTT PFs: IP [15], PP [8], the MPF [17], [18], [19],
and the jointly auxiliary (JA) PF, which is a version of the
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traditional APF that suits the MTT problem as in [36]. This
filter jointly samples the whole multitarget state space, there-
fore it accounts for nearby targets in the sampling procedure,
but does not perform subparticle crossover. It can be observed
how both JA and IP show remarkably more error; in the case
of JA this is caused by the curse of dimensionality arising
due to the joint sampling of the multitarget state space. On
the other hand, as IP does not take into account neighboring
targets in the importance density, its performance plummets in
this scenario with a high number of target crossings. The MPF,
while providing low estimation errors, does not approximate
the joint posterior PDF over the multiple targets, which is quite
useful in some situations [20]. It is also worth mentioning
that although PP does not acutely suffer from the curse of
dimensionality nor from the presence of neighboring targets,
it is clearly outperformed by APP and TRAPP. In addition PP
is also outperformed by ATRAPP due to the adaptive target-
resampling strategy.

As the methods considered in this section have different
computational loads for the same number of particles, it is
also worth analyzing the performance of PFs for a given com-
putational load, which is measured by the execution time. As a
previous remark, notice that the results in this kind of analysis
can appreciably vary depending on the implementation of
the algorithms and the computing platform, among other
factors. The execution times of the Matlab implementation of
the considered algorithms on an Intel Core i7 computer are
presented in Figure 5(a).

It is shown in 5(b) how if hard real-time constraints are
present, the best option in terms of performance for small
execution times is to use those algorithms with very low com-
putational burden, in particular, MPF. However, as previously
mentioned, this method approximates individual target states
by their marginal PDFs, so its application is restricted if the
joint PDF of the multitarget state is required [20]. When higher
execution times are affordable, ATRAPP is clearly the best
choice, as it not only outperforms all the filters that estimate
the joint multitarget state PDF, but also outperforms MPF.

2) Variable threshold: As previously stated, the optimal
thresholding policy for ATRAPP can result in a great improve-
ment in the filter performance, as it can account for the best
possible target-resampling strategy. This policy should take
into account the different dynamics of each target, the mea-
surement model of the surrounding sensors and the number
of targets to deal with the dimensionality problems arising in
MTT.

In this section, we define a sample target-resampling thresh-
old selection policy based on the number of targets in the
scenario. The higher the number of targets, the higher the
dimension and, therefore, the better target-resampling is ex-
pected to perform, as indicated in Section IV. An example of
a policy that favors target-resampling for high target number
is shown in Figure 6.

Figure 7 shows the results of the applied policy for the
proposed simulation scenario when the number of targets
being tracked varies from t = 2 to t = 8. It is shown
how ATRAPP either matches or improves the performance of
APP and TRAPP PFs, a clearer view of this improvement is
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Figure 5: (a): Mean execution times with respect to the number of
particles for the different algorithms when t = 8 targets are present
at the scenario. Execution times consider the estimation of the 100 steps
of the trajectories. (b): OSPA position error with respect to the mean
execution time of the different algorithms.
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Figure 6: Target-resampling threshold selection policy dependent on the
number of targets being tracked. The threshold is normalized with respect
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on the best results obtained in previous simulations.



11

2 3 4 5 6 7 8

number of targets

0.5

1

1.5

2

2.5

3
 O

S
P

A
 p

o
s
it
io

n
 e

rr
o

r 
[m

]

APP

TRAPP

ATRAPP

(a)

2 3 4 5 6 7 8

number of targets

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

N
o
rm

a
liz

e
d
  
O

S
P

A
 p

o
s
it
io

n
 e

rr
o
r 

APP

TRAPP

ATRAPP

(b)

Figure 7: Normalized OSPA position error with respect to the worst
performing algorithm using APP, TRAPP and ATRAPP PFs with N =
250 particles when 2 to 8 targets are present in the scenario. ATRAPP
uses the target-resampling threshold selection policy in Figure 6. (7a)
shows the OSPA position error and (7b) the improvement with respect
to the worst performing filter in each case.

shown in Figure 7(b), where the errors between APP, TRAPP
and ATRAPP have been normalized with respect to that of
the worst performing filter in each simulation, showing how
ATRAPP either matches or outperforms APP and TRAPP.

The origin of the improvement in ATRAPP is explained in
Figure 8. It is shown how all the filters increase their error
when target trajectories cross (almost all crossings approxi-
mately start at time step 50, see Figure 2). Nevertheless, it is
shown how ATRAPP is the filter which better reacts to these
difficult situations by performing a faster and more successful
recovery, achieving this by favoring subparticle diversity when
possible and performing target-resampling only when it is
really needed to avoid subparticle degeneracy.

In this paper, we have derived ATRAPP for a fixed and
known number of targets. We would like to mention that we
can also use this method for sampling the surviving targets
in a general MTT problem, which includes a varying and
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Figure 8: OSPA position error at each time step of the trajectories
for a scenario with 3 targets (8a) and 8 targets (8b) for APP, TRAPP
and ATRAPP PFs with N = 250 particles. ATRAPP uses the target-
resampling threshold selection policy in Figure 6.

unknown number of targets, as in the algorithm presented in
[8]. Conditioning on the surviving targets at each time step,
we can use ATRAPP, instead of PP as proposed in [8]. In
this context, the use of the proposed policy in Figure 6 would
adequately respond to the necessities of the filter as the number
of targets in the scenario changes.

VII. CONCLUSIONS

In this paper, we have extensively presented APP and
TRAPP particle filters for multiple target tracking. We have
also illustrated and analyzed their behavior with an increasing
number of targets. In order to combine the strengths of both
filters, we have also proposed ATRAPP.

ATRAPP makes use of state partitioning, auxiliary filter-
ing and an adaptive target-resampling scheme to be able to
attain good performance in difficult, high dimensional track-
before-detect scenarios. Making use of extensive numerical
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simulations, we have also demonstrated that ATRAPP does
not only outperform both APP and TRAPP in different MTT
scenarios but also other previous known methods for MTT in
the literature.

We have also demonstrated how simple resampling thresh-
old policies can make ATRAPP achieve remarkable results in
a demanding MTT scenario. Future work includes the search
of an optimum target-resampling threshold policy.

REFERENCES

[1] Särkkä, S., Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[2] Bar-Shalom, Y., Multitarget-multisensor tracking: advanced applica-
tions. Artech House, 2000.

[3] Mahler, R. P. S., Statistical Multisource-Multitarget Information Fusion.
Norwood, MA, USA: Artech House, Inc., 2007.

[4] Morelande, M. R., Kreucher, C. M., and Kastella, K., “A Bayesian
approach to multiple target detection and tracking,” IEEE Transactions
on Signal Processing, vol. 55, pp. 1589–1604, May 2007.

[5] Ekman, M., Sviestins, E., and Systems, S., “Particle Filters for Tracking
Closely Spaced Targets,” Proceedings of the10th International Confer-
ence on Information Fusion (FUSION), 2010.

[6] García-Fernández, Á. F., Morelande, M. R., and Grajal, J., “Bayesian
Sequential Track Formation,” IEEE Transactions on Signal Processing,
vol. 62, no. 24, pp. 6366–6379, 2014.

[7] García-Fernández, Á. F. and Morelande, M. R., “Explicit filtering
equations for labelled random finite sets,” International Conference on
Control, Automation and Information Sciences (ICCAIS), pp. 349–354,
2015.

[8] García-Fernández, Á. F., Grajal, J., and Morelande, M., “Two-layer par-
ticle filter for multiple target detection and tracking,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1569–1588,
2013.

[9] García-Fernández, Á. F., “Track-Before-Detect Labeled Multi-Bernoulli
Particle Filter With Label Switching,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 52, no. 5, pp. 2123–2138, 2016.

[10] Daum, F. E., Company, R., and Division, E., “New exact nonlinear
filters: theory and applications,” Proc. SPIE 2235, Signal and Data
Processing of Small Targets, vol. 2235, pp. 636–649, 1994.

[11] Crisan, D. and Doucet, A., “A survey of convergence results on
particle filtering methods for practitioners,” IEEE Transactions on Signal
Processing, vol. 50, no. 3, pp. 736–746, 2002.

[12] Hu, X. L., Schön, T. B., and Ljung, L., “A basic convergence result
for particle filtering,” IEEE Transactions on Signal Processing, vol. 56,
no. 4, pp. 1337–1348, 2008.

[13] Hu, X. L., Schön, T. B., and Ljung, L., “A General Convergence Result
for Particle Filtering,” IEEE Transactions on Signal Processing, vol. 59,
no. 7, pp. 3424–3429, 2011.

[14] Yi, W., Morelande, M. R., Kong, L., and Yang, J., “A computationally
efficient particle filter for multitarget tracking using an independence
approximation,” IEEE Transactions on Signal Processing, vol. 61,
pp. 843–856, Feb 2013.

[15] Kreucher, C. M., Kastella, K., and O. Hero III, A., “Multitarget tracking
using the joint multitarget probability density,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1396–1414, 2005.

[16] Maskell, S., Rollason, M., Gordon, N., and Salmond, D., “Efficient
particle filtering for multiple target tracking with application to tracking
in structured images,” Image and Vision Computing, vol. 21, no. 10,
pp. 931–939, 2003.

[17] Bugallo, M. F., Lu, T., and Djuric, P. M., “Target Tracking by Multiple
Particle Filtering,” IEEE Aerospace Conference, pp. 1–7, 2007.
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