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ABSTRACT. We consider the fitting of heavy tailed data and distributions with a special attention to
distributions with a non–standard shape in the “body” of the distribution. To this end we consider
a dense class of heavy tailed distributions introduced in [6], employing an EM algorithm for the
maximum likelihood estimation of its parameters. We present methods for fitting to observed data,
histograms, censored data, as well as to theoretical distributions. Numerical examples are provided
with simulated data and a benchmark reinsurance dataset. Empirical examples show that the methods
will in most cases adequately fit both body and tail simultaneously.
Keywords. Statistical inference, heavy–tailed, phase–type, scale mixtures, approximating distribu-
tions, EM algorithm.

1. INTRODUCTION

In this paper we consider the statistical inference problem for univariate and independent heavy–
tailed data. We propose to fit heavy–tailed data with distributions in the class of scale mixtures of
phase–type distributions (NPH) as introduced in [6]. The NPH class consists of distributions which
can be expressed as the distribution of a product N ·X , where N is a discrete random variable with
some distribution π and X has a phase–type distribution (hence the abbreviation NPH). We refer to
π as the scaling distribution.

The NPH class is appropriate for modelling purposes because it is a class of absolutely con-
tinuous distributions which is dense in the nonnegative distributions. It is particularly well suited
for heavy–tailed data because it contains heavy–tailed distributions (i.e. nonnegative distributions
having Laplace transforms that fail to converge for any positive value of the argument); in fact, an
NPH distribution is heavy–tailed if and only if the scaling distribution is unbounded [18]. We con-
centrate on scaling distributions which can be parametrized by some vector θ of finite dimension,
so the number of parameters of the NPH distribution remains finite as well.

The NPH class allows for the simultaneous modelling of the “body” and the “tail” of general
heavy–tailed distributions. The idea behind this approach is that N shall provide an accurate fitting
of the tail of the distribution while X will take care of its body. This flexibility will allow to fit
general heavy–tailed data more accurately, including those data sets which may look distinctively
different from distributions usually found in catalogues of heavy–tailed distributions. The most
crucial decision a modeller must take is regarding the appropriate selection of a scaling distribution,
which will commonly be obtained from discretizing a parametric heavy tailed distribution of a
certain class (like e.g. Pareto or Weibull).

The problem of fitting heavy–tailed data is closely related to the statistics of univariate extreme
value theory (EVT), where limiting laws for sample maxima [8, 9], upper order statistics [7, 11] and
excesses over high thresholds [3, 16] are the foundational theoretical results for an extensive list
of statistical methods (see [10] for a recent survey). However, the EVT approach has drawn some
criticism; for instance, the focus is on the upper order statistics (thus implying an imminent waste
of data), while the resulting estimators depend significantly on thresholds and/or block data sizes
selected by the modeller. The alternative approach of selecting a specific parametric distribution is
often too rigid for modelling the tail behaviour of general distributions.
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With an appropriate selection of the scaling distribution, our method can be used not only to
derive estimates for the unique EVT shape parameter, but will also provide an accurate description
of the data in its whole range. Our method makes use of the full data set and it is not necessary
to make subjective decisions concerning threshold levels or the block sizes as required by EVT
methods. Finally it should be remarked that our approach allows for fitting NPH distributions
having asymptotically equivalent tails with respect to a fixed distribution. For instance, the modeller
can fit the tail using another competing (classical) approach, then fix the appropriate parameters of
the scaling distribution and thereafter run the NPH method, thus obtain a good fit in the body of the
data while maintaining its tail.

Apart from providing an adequate description of heavy–tailed data, an NPH distribution having
an unbounded and discrete scaling distribution can also be seen as infinite–dimensional phase–type
distribution, which for all intents and purposes is as tractable as its finite–dimensional counterpart.
Much of the machinery available for finite–dimensional phase–type distributions is also applicable
to the whole NPH class. For instance, algorithms are available for the exact calculations of quan-
tities related to renewal theory, random walks (ladder processes) and ruin probabilities (see [6] for
details).

The interpretation of an NPH distribution as an infinite–dimensional phase–type distribution
will allow for the approximation of the maximum likelihood estimators via the EM algorithm and
the estimation is hence considered classical. The implementation of the EM algorithm is carried
out in a similar way as for finite–dimensional phase–type distributions [2]; in addition, it will
also be possible to adapt the EM algorithm for approximating theoretical distributions as well as
for fitting (right-, left- or interval-) censored data [15] . However, new challenges arise from the
presence of the scaling component. Firstly, the estimation cannot be dealt as a simple extension
of the EM algorithm for finite–dimensional PH distributions to infinite dimensions. Neither a cut–
off in the number of dimensions would be a satisfactory solution because this would need to be
fixed in advance and would be equivalent to light–tailed estimation. We shall see, however, that
because the scaling distribution is selected from a parametric family, it is then possible to reduce the
expressions for the estimators to simple (one–dimensional) infinite series which can be numerically
evaluated up to any specified precision. Secondly, the estimation of the vector of parameters θ

of the scaling distribution will depend on the particular choice made by the modeller, which in
many cases requires a (non-trivial) numerical optimization in each iteration of the EM algorithm.
The selection of an adequate scaling distribution can result in a simpler optimization of the log-
likelihood function, as well as in reducing the required number of terms of the infinite series.

Further improvements in numerical performance of the algorithm are also described in this paper.
We show that the implementation of the EM algorithm essentially requires the empirical cumula-
tive distribution function associated to the heavy–tailed data, so a significant increase in speed may
be obtained by implementing certain data–reduction techniques (data binning/bucketing) with min-
imal loss of information. We also simplify various expressions which have their analogues in the
original algorithm [2] and employ alternative methods to compute matrix exponentials in a more
efficient way (see Remark 3.1).

The rest of the paper is organized as follows. In Section 2 we provide an overview of the PH
and NPH classes of distributions making some emphasis on the characteristics of the scaling dis-
tribution. In Section 3 we develop the main algorithm for estimating independent and identically
distributed data sampled from an NPH distribution. In Section 4 we adapt the proposed method
to cope with the presence of left-, right- or interval censored data. Section 5 provides an EM–
algorithm for adjusting an NPH distribution to a theoretical distribution function F , which in turn
is equivalent to finding the distribution in the NPH class with a given order which minimizes the
Kullback–Leibler distance to F . In Section 6 we provide some numerical examples from both
simulated data, real data and fits to a theoretical distribution. In there, we highlight that with an
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adequate selection of the scaling distribution we can accurately and efficiently fit any general Reg-
ularly Varying distribution as well as any Weibullian distribution.

2. PHASE–TYPE DISTRIBUTIONS AND THE NPH CLASS

Before proceeding with a more detailed account of the statistical approach for heavy–tailed data
proposed here, we first establish some notation and provide some background on PH (phase–type)
distributions and the extended class NPH of scale mixtures of phase–type distributions.

We follow the convention that matrices are written in bold capital letters from the Roman al-
phabet and their elements are represented with the corresponding minuscules (i.e. A = {ai j}). In
this paper, bold minuscule letters from the Greek alphabet (α,π) will represent row vectors, while
bold minuscule letters from the Roman alphabet (t,e) will represent column vectors. Elements of
a vector are denoted with the same letter in plain style (i.e. t = {ti}). In that way, the dimensions
of both matrices and vectors will become clear from the context and left unspecified unless stated
otherwise.

The class PH of phase–type distributions consists of distributions of (random) times until a finite
state Markov jump process exits a set of transient states. This can be made precise by letting
E = {1,2, ..., p, p+ 1} denote the state–space of a Markov jump process {Xt}t≥0, where states
1,2, ..., p are transient and p+1 is absorbing. The intensity matrix for {Xt}t≥0 can then be written
on the form

Λ =

(
T t
0 0

)
,

whereT is a p× p sub–intensity matrix, t is a p–dimensional column vector and 0 the p–dimensional
row vector of zeroes. We set αi = P(X0 = i), ∑

p
i=1 αi = 1 and α= (α1, ...,αp). Then we say that

τ = inf{s > 0 : Xs = p+1}

has a PH (phase–type) distribution with representation PHp(α,T ). Since t = −Te, where e de-
notes the column vector of ones, the distribution of τ is fully specified in terms of α and T . For
further background on PH distributions we refer e.g. to [4], [5], [12] or [14].

The PH class of distributions is widely used in the area of Applied Probability, where they often
provide exact (or even explicit) solutions in complex stochastic models. This is for example the
case for ruin probabilities in risk theory or steady–state waiting time distributions for queues. Any
distribution with support on the positive real numbers may be approximated arbitrarily close by
a PH distribution. In spite of this denseness property, PH distributions are all light tailed and
consequently any approximating (finite–dimensional) PH distribution will not be able to capture a
possible heavy tailed behaviour.

In [6] the dense class, NPH, of genuinely heavy tailed distributions is proposed in terms of
infinite–dimensional phase–type distributions. The idea is very simple and goes as follows. Let N
be a discrete random variable supported over {si : i ∈N,si > 0} with distribution πi = P(N = si),
and τ ∼ PHp(α,T ) be independent of N. We say that the random variable Y := N · τ has an NPH
distribution with parameters α, T and π = {πi}i≥1 (the vector of probabilities characterising the
distribution of N), and we write

Y ∼ NPHp(π,α,T ).

While the support of π is important, we will not denote it explicitly in the parametrisation of Y .
The cdf of an NPHp(π,α,T ) distribution can be written as the Mellin-Stieltjes convolution of a
cdf Gτ ∼ PHp(α,T ) and the distribution of N, i.e.,

FY (y) =
∞

∑
i=1

πi ·Gτ(y/si) =
∞

∑
i=1

πi ·αeT y/sie, y > 0.
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Observe from the above that T is a scale parameter of the finite–dimensional PH distribution, so
the distribution NPHp(π,α,T ) can be seen as a scale mixture of phase–type distributions, and for
this reason we often refer to N as the scaling random variable and π as the scaling distribution. An
NPH distribution is absolutely continuous with density

fY (y) =
∞

∑
i=1

πi ·αeT y/sit/si =
∞

∑
i=1

πi ·αeTiy/siti, y > 0,

where Ti = T /si and ti =−Tie, the latter corresponding to the exit rate vector at level i. Sampling
from NPH(π,α,T ) is also simple as we first draw an index i (referred to as the level) from π and
then a τ which will be simulated as a PH random variable from PHp(α,T /si).

The distribution of Y can also be interpreted as an infinite dimensional phase–type distribution
since we can write

fY (y) = (π⊗α)eΓyγ,

where

Γ =


T1 0 0 0 · · ·
0 T2 0 0 · · ·
0 0 T3 0 · · ·
0 0 0 T4 · · ·
...

...
...

... . . .

=


T /s1 0 0 0 · · ·

0 T /s2 0 0 · · ·
0 0 T /s3 0 · · ·
0 0 0 T /s4 · · ·
...

...
...

... . . .


and γ = −Γe. Here e is now the infinite–dimensional column vector of ones; we notice that the
exponential of the infinite dimensional matrix Γ is well defined since it is a bounded operator
(because the sequence {si : si > 0} is bounded away from zero).

In what follows, we will concentrate on NPH distributions with scaling distributions that belong
to some parametric family of nonnegative discrete distributions. We will write πi := πi(θ) where θ

is a vector of parameters of finite dimension. In that way, a distribution NPH(π(θ),α,T ) will have
a finite number of parameters.

The quality of the estimation method to be proposed below (in terms of accuracy and efficiency)
will depend on the adequate choice of the scaling distribution. The scaling distribution not only
determines if the NPH distribution is light- or heavy–tailed (recall that if N is unbounded, then Y
has a heavy–tailed distribution [cf. 18]), but will also determine the type of tail behaviour that the
NPH distribution will have. It is because of this feature that the NPH class contains a very rich
variety of heavy–tailed distributions. Below we consider two important general cases:

Example 2.1 (Regularly Varying distributions). In the regularly varying case, Breiman’s lemma
implies that if the scaling random variable N has a regularly varying distribution with tail index
−ξ < 0, then the distribution of Y := N ·X will also be regularly varying with the same index.
Moreover, the exact asymptotic tail behaviour is then given by

P(Y > t) = E[τξ ]P(N > t)(1+o(1)), t→ ∞.

Therefore, if data are assumed to have been drawn from some Regularly Varying distribution,
then we should select a discrete distribution which is regularly varying. This strategy will also
be effective if we choose a scaling distribution which is tail-equivalent. Recall that Regularly
Varying distributions with tail index −ξ together with their tail equivalent distributions correspond
to the Frechét maximum domain of attraction with shape parameter ξ . Hence an estimator for
the parameter index ξ in our model can also be taken as an estimator for the extreme value shape
parameter.

Example 2.2 (Weibullian Distributions). A similar feature holds true for the the class of Weibul-
lian distributions [1] since it is a closed class under Mellin-Stieltjes convolution (multiplication of
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independent random variable). Such a class is defined as the collection of nonnegative distributions
having survival function

(1) F(x) = xδ e−(λx)p
(C+o(1)), x > 0,λ , p > 0,δ ∈ R.

A Weibullian distribution is heavy–tailed iff its parameter p ∈ (0,1) (and light–tailed otherwise).
Since PH distributions are Weibullian with parameter p = 1, then Lemma 2.1 of [1] implies that if
the scaling distributionπ is Weibullian with parameter p then Y ∼NPH(π,α,T ) is Weibullian with
parameter p/(1+ p). The exact tail asymptotics is also known and given in [1] but the expressions
are somewhat complicated and thus omitted here.

In practice, we will frequently use scaling distributions constructed as discretizations of some
continuous distribution H over a countable set of nonnegative numbers. For instance, a dis-
cretization of H over an arithmetic progression with step length ∆ is such that si = i∆ and πi =
H(i∆)−H((i−1)∆), i = 1,2, . . . . A discretization over a geometric progression with initial value
s1 > 0 and ratio r is such that si = s1ri−1, so π1 = H(s1) and πi+1 = H(s1ri)−H(s1ri−1). The latter
can be seen as an exponential transformation of a distribution supported over a regular lattice with
step length ∆ = logr. Such a selection is quite natural because heavy–tailed distributions often
arise as exponential transformation of well-known light tailed distributions. Furthermore, if we
use a geometric progression the estimation will be more efficient because in this way an accurate
description of the tail is obtained through a smaller number of terms πi’s.

3. ESTIMATION

In this section we address the problem of fitting an NPH distribution to a data set. We assume that
y1,y2, ...,yM form an i.i.d. data set sampled from NPHp(π(θ),α,T ) for some fixed p and where
π(θ) is some parametric nonnegative discrete distribution of N. We assume that the support for
π(θ) does not depend on θ. We shall estimate the parameters θ,α and T .

Hence, with probability πi(θ), yn is the realization of the i–th level phase–type distribution
PHp(α,T /si), but both the level i and the actual sample path of the underlying Markov jump
process are unobservable. In this context we may consider the data as being incomplete, and a
standard method for maximizing the (incomplete data) likelihood is via the EM algorithm. To this
end we must first attend the calculation of the likelihood function for complete data.

Assume that apart from y1, ...,yM we have also observed all sample paths of the underlying
Markov jump process and their levels. Let In denote the level of the phase–type distribution of the
n’th sample path, so that

Li =
M

∑
n=1

1{In = i}

equals the number of i–level sample paths in the data. Next consider the Markov jump process
{J(n)u }u≥0 underlying the n’th phase–type distribution (which generates the data yn) and let

Bi
k =

M

∑
n=1

1{J(n)0 = k, In = i}

be the total number of i–level sample paths initiated in state k. Define

Zi
k =

M

∑
n=1

∫ yn

0
1{J(n)u = k, In = i}du,

which is the total time all underlying i–level sample paths spend in state k and let Ni
k` denote the

total count of jumps from state k to ` within all i–level sample paths. Finally, let Ni
k be the total

number of i–level sample paths that exit to the absorbing state from state k.
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Then the complete data likelihood is easily seen to be (see e.g. [2] or [5] for further comments
on this)

Lc(θ,α,T ) =
∞

∏
i=1

πi(θ)
Li

p

∏
k=1

α
Bi

k
k

p

∏
k,`=1
6̀=k

(
tk`
si

)Ni
k`

exp
(
−tk`

si
Zi

k

) p

∏
k=1

(
tk
si

)Ni
k

exp
(
−tk

si
Zi

k

)
,

where Li, Bi
k, Ni

k`, Ni
k and Zi

k are the (unobserved) sufficient statistics, and α = (α1, ...,αp), T =
{ti j}i, j=1,...,p are the parameters of a representation for τ ∼ PHp(α,T ), and t= (t1, ..., tp)

′ =−Te.
The corresponding log–likelihood is thus given by

`c(θ,α,T ) =
∞

∑
i=1

Li logπi(θ)+
∞

∑
i=1

p

∑
k=1

Bi
k logαk +

∞

∑
i=1

p

∑
k,`=1
6̀=k

Ni
k` log

(
tk`
si

)

−
∞

∑
i=1

p

∑
k,`=1
6̀=k

tk`
si

Zi
k +

∞

∑
i=1

p

∑
k=1

Ni
k log

(
tk
si

)
−

∞

∑
i=1

p

∑
k=1

tk
si

Zi
k(2)

with the convention that 0 · log(0) = 0 (or, equivalently, a reduction of the state–space if tk` is
assumed to be zero, which will happen in sub–models such as generalized Erlang or Coxian).

We now turn to the EM–algorithm for maximizing the incomplete data likelihood. Let fY (y;θ,α,T )
denote the density function of Y ∼ NPHp(π(θ),α,T ). The EM–algorithm then maximizes the in-
complete data likelihood

L(θ,α,T ;y) =
M

∏
k=1

fY (yk;θ,α,T ),

by using the complete data likelihood Lc (or equivalently the log-likelihood `c) in the following
way.

0: Initialize with some “arbitrary” (θ0,α0,T0) and let n = 0.
1: (E–step) Calculate the function

h : (θ,α,T )→ E(θn,αn,Tn) (`c(θ,α,T )|Y = y) .

2: (M–step) Let (θn+1,αn+1,Tn+1) := argmax(θ,α,T )h(θ,α,T ).
3: n=n+1; GOTO 1.

In each iteration, the incomplete likelihood is increased (i.e. L(θn,αn,Tn)≤ L(θn+1,αn+1,Tn+1)),
which hence implies that the procedure converges (possibly to a local maximum or saddlepoint
though).

From the actual form of the log–likelihood (2) we see that it is a linear function of the sufficient
statistics, and the conditional expected value of the log–likelihood given the data will then be the
log–likelihood function with the sufficient statistics replaced by their conditional expectations given
the data. Hence the calculation of the h function is straightforward since we only have to replace the
unobservable sufficient statistics in the complete log–likelihood and plug instead their respective
conditional expectations given the data.

E–step: First we consider one (generic) data point (M = 1) and let y = y1. We need to calcu-
late the conditional expected values of the sufficient statistics given Y = y. All distributions and
expectations are under Eθn,αn,Tn , but we will omit the index in order to ease the exposition.

Concerning the total number of i-level paths Li, this is equal to one if i is the chosen level and
zero otherwise. Let I denote the random variable indicating the chosen level. Then

E(Li|Y ∈ dy) = P(I = i|Y ∈ dy)

=
P(Y ∈ dy|I = i)P(I = i)

P(Y ∈ dy)
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=
πi(θ)αexp(yTi)ti

fY (y;θ,α,T )
= πi(θ)

αexp(yT si)t/si

fY (y;θ,α,T )
.(3)

Similarly, for total number of i-level paths started in state k, i.e. Bi
k we have

E(Bi
k|Y ∈ dy) = E(1{J0 = k, I = i}|Y ∈ dy)

=
P(Y ∈ dy|J0 = k, I = i)P(I = i)P(J0 = k)

P(Y ∈ dy)

= πi(θ)
αke

′
k exp(yTi)ti

fY (y;θ,α,T )
= πi(θ)

αke
′
k exp(yT /si)t/si

fY (y;θ,α,T )
.

Regarding Zi
k,

E
(
Zi

k|Y ∈ dy
)

= E

(
1{I = i}

∫ Y

0
1{Ju = k}du

∣∣∣∣Y ∈ y
)

=

E

(
1{Y ∈ dy}

∫
∞

0
1{Ju = k,u < Y}du

∣∣∣∣ I = i
)
P(I = i)

P(Y ∈ dy)

= P(I = i)

∫
∞

0
P(Y ∈ dy,Ju = k,Y < u|I = i)du

P(Y ∈ dy)

= πi(θ)

∫
∞

0
P(Y ∈ dy,u < Y |Ju = k, I = i)P(Ju = k|I = i)du

P(Y ∈ dy)

= πi(θ)

∫
∞

0
1{u < y}e′ke(y−u)TitiαeuTiekdu

fY (y;θ,α,T )

= πi(θ)

∫ y

0
e′ke(y−u)T /si(t/si)αeuT /siekdu

fY (y;θ,α,T )
.

Similar calculations yield that

E(Ni
k`|Y = y) = πi(θ)

tk`
si

∫ y

0
e′`e

(y−u)T /si(t/si)αeuT /siekdu

fY (y;θ,α,T )

and

E(Ni
k|Y = y) = πi(θ)

tk
si

αeyT /siek

fY (y;θ,α,T )
.

In general, for M > 1 datapoints we simply sum the previous formulas with arguments y j, j =
1, ...,M. Indeed, by independence of the data, the log–likelihood function will be a sum of log–
likelihoods for single data points and hence the expected values of the sufficient statistics given
data will be the sum of the sufficient statistics as given above for individual data points.

Remark 3.1. We see that the formulas in the E–step involve both matrix–exponentials and integrals
thereof, and by defining the generic integral

(4) J(y;α,T ) =
∫ y

0
e(y−u)T tαeuT du,
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we have that (see [19])

(5) exp
((

T tα
0 T

)
y
)
=

(
eT y J(y;α,T )
0 eT y

)
.

Thus a simple (and numerically efficient) way of obtaining J(y;α,T ) is by calculating the matrix
exponential on the left hand side.

M-step. Next we determine the point (θ̂,α̂, T̂ ) that maximizes the h–function (the conditional
expectation of the complete log–likelihood given the data). The estimation of θ should be treated
on a case-by-case basis, while for the parameters αi we shall use Lagrange multipliers due to the
constraints on them summing up to one. In the case of the non–diagonal elements tk` and the
absorption rates tk we will calculate these in a straightforward way by obtaining the first order
derivatives and equating them to zero.

For the parameter of the scaling distribution we write

θ̂ = argmax
θ

∞

∑
i=1
E[Li|Y = y] logπi(θ),

so it depends on the particular form of the discrete distribution π(θ) whether it can be estimated
explicitly or numerically. We shall consider some particular examples later on.

As for the parameters of the phase–type component we first address the estimator for the param-
eter α. Consider the Lagrange function

M(α) =
∞

∑
i=1
E[Bi

k|Y = y] logαk +µ(1−∑
k

αk),

where µ is a Lagrange multiplier. Then

∂M
∂αk

=
∞

∑
i=1

E[Bi
k|Y = y]

αk
−µ = 0,

which result in

αkµ =
∞

∑
i=1
E[Bi

k|Y = y].

Summing over k yields

µ =
∞

∑
i=1

p

∑
k=1
E[Bi

k|Y = y] = M

so

α̂k =
1
M

∞

∑
i=1
E[Bi

k|Y = y].

Next we consider the non-elements of tk`, k 6= `. For each entry we take partial derivatives and
equate to 0

∂h
∂ tk`

=
∞

∑
i=1
E[Ni

k`|Y = y]
1

tk`
−

∞

∑
i=1

E[Zi
k|Y = y]

si
= 0

implying

t̂k` =
∑

∞
i=1E[N

i
k`|Y = y]

∑
∞
i=1E[Z

i
k|Y = y]/si

.

Similarly,

t̂k =
∑

∞
i=1E[N

i
k|Y = y]

∑
∞
i=1E[Z

i
k|Y = y]/si

.
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We then obtain the estimator for the diagonal elements of the matrix T by

t̂kk =−∑
6̀=k

t̂k`− t̂k.

The EM–algorithm can now be stated as follows.

Algorithm 3.2 (EM–algorithm).
0: Initialize with some “arbitrary” (θ,α,T ).
1: The E-step and the M-step together yield the following estimators.

θ̂ = argmax
θ∗

∞

∑
i=1

M

∑
j=1

πi(θ)
αexp(y jT /si)t/si

fY (y j;θ,α,T )
logπi(θ

∗)

α̂k =
1
M

∞

∑
i=1

M

∑
j=1

πi(θ)
αke

′
k exp(y jT /si)t/si

fY (y j;θ,α,T )

t̂k` =

∞

∑
i=1

M

∑
j=1

πi(θ)
J`k(y j;α,T /si) · tk`/si

fY (y j;θ,α,T )
∞

∑
i=1

M

∑
j=1

πi(θ)
Jkk(y j;α,T /si)/si

fY (y j;θ,α,T )

, k 6= `

t̂k =

∞

∑
i=1

M

∑
j=1

πi(θ)
αeT y j/siek tk/si

fY (y j;θ,α,T )
∞

∑
i=1

M

∑
j=1

πi(θ)
Jkk(y j;α,T /si)/si

fY (y j;θ,α,T )

.

Assign the diagonal values
t̂kk =−∑

l 6=k
t̂k`− t̂k.

2: Reassign values to initial parameters

θ := θ̂

α := α̂

T := T̂

3: GOTO 1.

The EM–estimators for the NPH class (only) differ from their analogues for the PH class in the
presence of the scaling component. The estimators above are written as infinite series which can be
interpreted in terms of expected values associated to the EM estimators for scaled PH distributions
(seen as functions of the random scaling).

In practice we can only compute these infinite series up to a finite number of terms. It is then
desirable to compute enough terms so the probability P(N > i) is smaller than the computational
numerical precision, hence implying that the error becomes negligible. A natural trade–off between
precision and speed then ensues because computing a larger number of terms will come at a high
computational cost. Hence it is convenient to choose a scaling distribution πi(θ) that converges
to 0 rather quickly as i→ ∞ but still provides a good description of the tail behaviour. A solution
proposed here is to consider distributions supported over geometric progressions as these will con-
verge fast, thus achieving precision with a few terms while still preserving the shape of the tail.
Below is an important example for the Regularly Varying case.
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Example 3.3. Here we present an important special case for the choice of the scaling distribution
{πi(θ)} of N for the Regularly Varying case. Consider a Pareto distribution with parameter θ and
supported over (1,∞), so its cdf distribution is given by H(t) = 1− t−θ , t > 1. We consider a
scaling distribution as the discretization of H over a geometric progression with initial value s1 = 1
and ratio ec, c > 0. That is

πi(θ) = P(N = si) = H(si+1)−H(si) =
1
sθ

i
− 1

sθ
i+1

= (e−θc)(i−1)(1− e−θc), i = 1,2, . . .

The distribution above also corresponds to the exponential transformation ecW of a geometric ran-
dom variable W with parameter e−θc. Notice that the probability πi(θ) will decay exponentially
fast to 0 as i→ ∞, so we will require to compute fewer terms to obtain estimators with negligible
numerical errors while the cdf of π(θ) will remain close to H specially in the tail region. A further
advantage of selecting a scaling distribution of this form is that it features an explicit solution to
the M–step maximization problem of the function

θ→
∞

∑
i=1

logπi(θ)wi,

where wi = E(Li|Y = y). It is not difficult to see that such an explicit solution is given by

θ̂ =−1
c

log

1−

∞

∑
i=1

wi

∞

∑
i=1

iwi

=−1
c

log

1− M
∞

∑
i=1

iwi

 ,

where M is the sample size. We shall remark however, that since the distances between consecutive
points in the support are unbounded, then the scaling distribution suggested above is no longer
regularly varying in the strict sense and Breiman’s lemma cannot be applied. Nevertheless, the tail
probability of π(θ) will oscillate between two regularly varying distributions with the same index
θ , so this model still provides an accurate approximation to any regularly varying distribution (see
[18]).

The computational effort necessary to obtain the EM estimators for the NPH class will also
depend on the sample size. Below we discuss data-reduction techniques that can be used to speed–
up the algorithm without loosing important information in the tail.

Remark 3.4. Suppose that there are repeated values among the data points such that there are
ỹ1, ..., ỹD different values and that ỹi appears Mi ≥ 1 times in the original data. Then M1+ · · ·MD =
M and the sums over j = 1, ...,M in expected values can then be reduced to weighted sums of fewer
terms instead. For example,

E
(
Zi

k|Y = y
)
= πi(θ)

D

∑
j=1

M j
J(ỹ j;α,T /si)kk

fY (ỹ j;θ,α,T )
.

Hence, Algorithm 3.2 can be used to estimate the parameters of an NPH distribution when data are
represented by a histogram rather than the raw data.

Remark 3.5. The computational burden can also be reduced if we use data binning (bucketing) on
those regions of the support where data gather rather densely. This strategy is particularly effective
for heavy–tailed data, which typically concentrates on some interval of the distribution while it is
more scarce in the ”tail”.
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We split the support into D disjoint sub–intervals [Tj,Tj+1), j = 0,1, . . . ,D−1 where 0 = T0 <
T1 < · · ·< TD = ∞ and let M j denote the number of data points falling into [Tj,Tj+1). Then we use
the repeated data reduction of Remark 3.4 by treating the average of the data points falling in the
j-th bin, j = 0, ...,D− 1 as data points with counts M j. In regions where scattering of the data is
too diffuse (for instance in the tail-regions), bins will typically contain at most one data point so the
average will correspond to the raw data, so there will be minimal loss of information. Alternatively,
we might choose any point in [Tj,Tj+1) as a representative, including any data point falling in this
interval. Notice however that if we choose the left points of the intervals Tj as representatives, we
may need to make special arrangements regarding the first interval in order not to provoke an atom
at zero.

4. CENSORING

In certain situations some data may be censored. We say a data point is right–censored at y∗ if
it takes a value above y∗ but unknown; it is left–censored at y∗ if it is below y∗ but the exact value
is unknown, and it is interval-censored if it is contained in the interval (y∗,y∗] but its exact value is
unknown. Left–censoring is a special case of interval–censoring with y∗ = 0 while right–censoring
can be obtained by fixing y∗ and letting y∗→ ∞.

The EM algorithm works entirely in the same way as for uncensored data with the only difference
that we are no longer observing a data point Y = y but Y ∈ (y∗,y∗]. Formulas for right censoring
will, however, appear as a part of the derivation of interval censoring. This will only change the
E–step where we now have to calculate the conditional expectations:

E(Li|Y ∈ (y∗,y∗]), E(Bi
k|Y ∈ (y∗,y∗]), E(Zi

k|Y ∈ (y∗,y∗]), E(Ni
k`|Y ∈ (y∗,y∗]), E(Ni

k|Y ∈ (y∗,y∗]).

We consider first the case of a single data point y taken from a realization of Y ∼NPHp(π(θ),α,T ).
Concerning Li, notice that

E(Li1{Y > y∗}) = P(Y > y∗|I = i)P(I = i)

= πi(θ)αey∗T /sie.

Thus for interval–censored data we obtain that

E(Li|Y ∈ (y∗,y∗]) =
E(Li1{Y ∈ (y∗,y∗]})
P(Y ∈ (y∗,y∗])

=
E(Li1{Y > y∗})−E(Li1{Y > y∗})

P(Y ∈ (y∗,y∗])

=
πi(θ)(αey∗T /sie−αey∗T /sie)

∞

∑
i=1

πi(α)(αey∗T /sie−αey∗T /sie)

.

For right–censored data we get

E(Li|Y > y∗) =
πi(θ)αey∗T /sie

P(Y > t)
=

πi(θ)αey∗T /sie

∑
∞
i=1 πi(θ)αey∗T /sie

.

The rest of the formulas are derived as for censored phase–type distributions (see [15]) condi-
tionally on the level Li, with parameters α, Ti = T /si, which happens with probability πi(θ). Thus
we get that

E(Bi
k|Y ∈ (y∗,y∗]) =

πi(θ)
(

αke
′
key∗T /sie−αke

′
key∗T /sie

)
P(Y ∈ (y∗,y∗])
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E(Zi
k|Y ∈ (y∗,y∗]) =

πi(θ)

(∫ y∗

y∗
αeuT /siekdu+Jkk(y∗;α,T /si)−Jkk(y∗;α,T /si)

)
P(Y ∈ (y∗,y∗])

E(Ni
k`|Y ∈ (y∗,y∗]) =

πi(θ)
tk`
si

(∫ y∗

y∗
αeuT /siekdu+Jk`(y∗;α,T /si)−Jk`(y∗;α,T /si)

)
P(Y ∈ (y∗,y∗])

E(Ni
k|Y ∈ (y∗,y∗]) =

πi(θ)
tk
si

∫ y∗

y∗
αeuT /siekdu

P(Y ∈ (y∗,y∗])
,

where J(·;α,T ) is as defined in (4). The integral is calculated similarly as in the uncensored case,
namely ∫ y∗

y∗
αeuT /siekdu = siαT

−1(ey∗T /si− ey∗T /si)ek.

For more than one data point, the data are split into a group of uncensored data and into other
groups of different types of censored data. The conditional expectations are then calculated for all
data points subject to their group classification, and all conditional expectations of the same kind
(jumps, occupation times etc.) are then summed over all data. This amounts to the E–step in an
EM algorithm, the rest of which is identical to Theorem 3.2.

Remark 4.1. In Remark 3.5 we suggested the use of data–binning if the amount of data is large.
Interval censoring provides a feasible alternative in this same direction.

5. FITTING TO A KNOWN DISTRIBUTION

It may be of interest to approximate a given (heavy tailed) distribution H with a distribution in
the NPH class if for example methods for calculation the ruin probability based on the claim size
distribution H are not known. In [2] it was shown how the EM algorithm can be modified in order
to approximate phase–type distributions to a given distribution with non–negative support. The
EM algorithm then converges to a limit which minimizes the Kullback–Leibler distance between
phase–type distributions of a specified order and the target distribution.

The idea is to consider sequences of empirical distributions with increasing sample sizes. These
empirical distributions converge almost surely to the target distribution H as M→ ∞. Using Algo-
rithm 3.2 and dominated convergence we obtain that

α̂k =
∞

∑
i=1

πi(θ)
1
M

M

∑
j=1

αke
′
k exp(T y j/si)t/si

fY (y j;θ,α,T )
→

∞

∑
i=1

πi(θ)
∫

∞

0

αke
′
k exp(T y/si)t/si

fY (y;θ,α,T )
dH(y).

Similarly it is not difficult to see that for k 6= ` we have that

t̂k` =

∞

∑
i=1

πi(θ)
1
M

M

∑
j=1

J`k(y j;α,T /si) · tk`/si

fY (y j;θ,α,T )
∞

∑
i=1

πi(θ)
1
M

M

∑
j=1

Jkk(y j;α,T /si)/si

fY (y j;θ,α,T )

→

∞

∑
i=1

πi(θ)
tk`
si

∫
∞

0

J`k(y;α,T /si)

fY (y;θ,α,T )
dH(y)

∞

∑
i=1

πi(θ)

si

∫
∞

0

Jkk(y;α,T /si)

fY (y;θ,α,T )
dH(y)

and

t̂k→

∞

∑
i=1

πi(θ)
tk
si

∫
∞

0

αeTiyek

fY (y;θ,α,T )
dH(y)

∞

∑
i=1

πi(θ)

si

∫
∞

0

Jkk(y;α,T /si)

fY (y;θ,α,T )
dH(y)

.
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Concerning θ, maximizing the following function with respect to θ ∗

θ∗→
∞

∑
i=1
E(Li|Y = y) logπi(θ

∗)

is equivalent to maximizing

θ∗→
∞

∑
i=1

1
M
E(Li|Y = y) logπi(θ

∗).

As M→ ∞ the latter converges to

θ∗→
∞

∑
i=1

πi(θ)

(∫
∞

0

αexp(yT /si)t/si

fY (y;θ,α,T )
dH(y)

)
logπi(θ

∗).

Let θ̂ denote the argument which maximizes this function.
In general none of the integrals will have explicit solutions, and approximations (e.g. numerical

integration, Quasi Monte Carlo methods or more sophisticated variants) will have to be employed.

6. EXAMPLES

In this section we consider various numerical examples. In the first example we consider the
simplest case of simulated data from a scale mixture of exponential distributions, where the scal-
ing distribution has a Pareto type of tail. The exponential distribution is a particular case of an
Erlang distribution; so we will treat the more general case instead. We will see that the canonical
parametrization of the Erlang as a PH distribution will impose certain restrictions on the canonical
parameters α and T that will help to simplify the EM estimators.

In the second example we fit NPH distributions to a real data set (Danish reinsurance data of
fire claims), while in the last three examples we consider the fitting of NPH distributions to the
theoretical distributions Loggamma, Weibull and Lognormal respectively.

Example 6.1 (Erlang distributions). In the first example we will estimate the parameters of data
simulated from an NPH model where the PH component is Erlang distributed. Recall that a q
dimensional Erlang distribution, ERq(λ ), is a phase–type distribution with canonical representation

α= (1,0,0, ...,0), T =


−λ λ 0 · · · 0
0 −λ λ · · · 0
0 0 −λ · · · 0
...

...
...

...
...
...

...
0 0 0 · · · −λ

 and t=


0
0
0
...
λ

 .

Hence, it is not difficult to see that the complete likelihood for λ and θ satisfies

(6) Lc(λ ,θ) ∝

∞

∏
i=1

[πi(θ)λ
q]Li e−Ziλ/si,

where Li =∑
M
j=1 1(I j = i) is the total number of paths started at level i, while Zi =∑

M
j=1 y j ·1(I j = i)

is the aggregation of the absorption times of all i-level paths. The complete loglikelihood is then
given by

(7) `c(λ ,θ) =
∞

∑
i=1

Li logπi(θ)+Mq logλ −λ

∞

∑
i=1

Zi

si
+ k,
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where k is some constant not depending on λ or θ. The E–step is similar as for the general model.
As for the sufficient statistic Li, its expected value is analogue and found to be equal to

E
(
Li|Y = y

)
=

M

∑
j=1
P(I j = i|Y = y j) =

M

∑
j=1

πi(θ)g(y j/si;q,λ )
f (y j;θ,λ )

,

where g(·;q,λ ) is the density of an Erlang(q,λ ) distribution. In the case of the sufficient statistic
Zi we have

E(Zi|Y = y) =
M

∑
j=1

y jP(I j = i|Y = y j) =
M

∑
j=1

y j
πi(θ)g(y j;q,λ/si)

f (y j;θ,λ )
.

The EM estimators for λ and θ are then easily calculated to be

λ̂
−1 =

1
qM

∞

∑
i=1

M

∑
j=1

y j
πi(θ)g(y j;q,λ/si)/si

f (y j;θ,λ )

θ̂ = argmax
θ∗

∞

∑
i=1

M

∑
j=1

y j
πi(θ)g(y j;q,λ/si)

f (y j;θ,λ )
logπi(θ

∗).

We present a simulation study for the case of q = 1 (corresponding to an infinite–dimensional
hyperexponential distribution), si = i and scaling distribution

πi(θ) =
i−θ

ζ (θ)
, i = 1,2, ...,

where

ζ (θ) =
∞

∑
i=1

i−θ

is the Riemann Zeta function with parameter θ . This distribution is known as the Zipf distribution,
Riemann Zeta distribution or discrete Pareto distribution (since its tail resemble that of a Pareto
distribution).

In order to find the EM–estimate of θ (n+1), we have to maximize the function

h(θ) =−
∞

∑
i=1
E(Li|Y = y)θ log(i)−

∞

∑
i=1
E(Li|Y = y) log(ζ (θ)).

Differentiating with respect to θ and rearranging implies that we have to solve the following equa-
tion w.r.t. θ ,

(8)
ζ ′(θ)

ζ (θ)
=− 1

M

∞

∑
i=1
E
(
Li|Y = y

)
log(i),

which is done numerically using a simple Newton–Raphson procedure.
Results of the simulation study, which is shown in Table 1, reveal that the EM algorithm is able

to recover the underlying structure of the data, and that the estimation, as expected, improves with
larger sample sizes. The EM algorithm was in in all cases initiated with a randomly generated
seed. For these examples we choose a Gamma(1,1) distribution for both λ and θ to allow for all
possible values in the parametric space. We remark this selection is arbitrary and similar estimates
were obtained when using some other fixed starting points.

Example 6.2. We consider 2167 reinsurance data for Danish fire insurance claims above 1 million
DKR for the period 1980–1993. These data have been widely studied in Extreme Value Theory
[13, 17]. The data corresponds to claims in millions of Danish Kroner for the period 1980–1993,
the amounts being adjusted for inflation to prices of 1985. We subtracted 1 (million) from all data
in order to shift the support to [0,∞) which is the natural support for a phase–type distributions. Of
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parameters sample size
λ θ 100 500 1000 5000 10000

1.0 2.0 1.04 1.88 0.95 2.09 1.14 1.93 0.99 2.00 1.01 2.01
1.0 2.5 0.85 2.67 0.90 2.52 1.01 2.63 0.94 2.64 1.00 2.52
1.0 5.0 0.92 7.1 1.09 7.26 1.05 4.65 1.00 4.85 1.01 5.03

Table 1: EM–estimates of (λ̂ , θ̂) infinite dimensional hyper–exponential distributions with varying
parameters and sample size

the 2167 data, 519 are repeated values so only 1648 have different values. Just above 90% of the
data is below 5, while less than 10% falls between 5 and the maximum observation of 262.2504.

We propose an NPH model having a scaling distribution that is assumed to follow the discretized
Pareto distribution of Example 3.3. We conducted various numerical experiments to analyse the
effect of the various components of the model. For each model we ran the EM starting from various
initial points chosen at random; more precisely, the values of α, the non-diagonal elements of T
and the elements of the vector t were chosen from a uniform distribution, and then normalized in
the case of α. The parameter θ was drawn from a Gamma(2,1) distribution. The iterations of
the EM were stopped when the relative change in the log-likelihood was smaller than 10−10. The
EM algorithm was restarted several times and the model with the largest value of the incomplete
loglikelihood was selected as the output.

First we tested the difference in performance between the EM–algorithm using raw data and one
using the hybrid method proposed in Remark 3.5. We considered bins of the same length 0.05, thus
treating losses within 50,000 DKR as all being the same. For this example we choose the average of
all data points falling in the j-th bin as the data points. This amounts to a total of 265 distinct data
points. The actual binning of the data does not appear to have any effect at all on the estimation,
as compared with the EM–algorithm of the raw data. The speed was increased by a factor 6.12
which is more or less consistent with the execution times depending linearly on the number of data
points, in which case we should have expected an increase in speed by a factor 1648/265 = 6.21.
Moreover, we observed a significant faster convergence of the EM algorithm of a model with full
data in cases where the initial parameters are taken as the output of a data–reduced model. In all
the EM algorithms which follow we have used similar data–reduction techniques.

By fitting models with p = 1, ...,6, we selected a model with p = 5 phases based on visual
inspection of its fit to the histogram. Model selection based on e.g. the AIC index for phase–type
distributions is not well established since the number of free parameters in a phase–type distribution
is not known in general. Also, a p–dimensional phase–type distributions may be parametrized in
terms of at most 2p− 1 parameters which are the coefficients of the polynomials in its rational
Laplace transform. Based on this parametrization, the model with p = 4 would have been the
choice.

We now investigate the effect of the choice of the parameter c (see Example 3.3) will have on the
estimation. Intuitively, the smaller we choose the ratio of the geometric progression, the better the
estimation. Fixing the dimension of the phase–type distribution to p = 5, we select three different
values for c = 1,1/2,1/4. The estimates are as follows

c = 1:

θ̂ = 1.2743
α̂ = (0.6415,0.0099,0.0055,0.2115,0.1316)
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T̂ =


−2.7430 1.3565 0 0 0
0.0003 −3.0398 0 0 0

0 0 −2.6313 1.1226 0.2167
0 0 0.7223 −1.3953 0.4089
0 0 1.5129 0.8388 −2.4779


c = 1/2:

θ̂ = 1.3136
α̂ = (0.7692,0.0149,0.1154,0.0148,0.0857)

T̂ =


−3.0713 0.1234 0.2319 0.0655 1.6457
0.2239 −1.9576 0.3787 0.9651 0.3899
0.1824 0.7410 −3.0705 0.7978 0.4776
0.3099 0.6150 0.4751 −1.5588 0.1588
0.0034 0.0446 0.2263 0.0446 −3.4154


c = 1/4:

θ̂ = 1.3230
α̂ = (0.0267,0.4563,0.0010,0.2603,0.2556)

T̂ =


−0.7896 0.2531 0.0385 0.2652 0.0265
0.0810 −3.7022 1.7356 1.1626 0.3934
0.5838 0.0013 −3.7890 0.0576 0.0302
0.3386 0.0606 1.0320 −3.7735 0.1957
0.6694 0.0292 0.2376 0.3920 −3.4129


That the estimates for (α,T ) look distinct is because phase–type representations are not unique.
In Figure 1, the estimated densities are plotted against the almost identical histogram of the data
(actually indistinguishable in the plotted range of [0,6]). It is clear that the different phases do not
have a physical interpretation but are merely dummy (or black box) states used for the only purpose
of obtaining a proper adjustment of the distribution.

In order to inspect the tail behaviour we plotted the log–survival function in Figure 2. We have
provided two plots different ranges in order to be able to inspect the tail behaviour well beyond the
largest data value (which is 262.2504). The different values for θ (obtained as a consequence of
the different choices of c) does result in a slightly different tail behaviour for very large claim sizes.
We compare these estimates of θ against the ones obtained by [13] and [17]. The first reference fits
a Generalized Pareto Distribution via maximum likelihood estimation while the second employs
the Hill estimator. The implementation of the methods described above involve the selection of an
appropriate threshold which should be chosen by the modeler. According to [17] the values in the
interval [1.40, 1.46] produce excellent fits, the value recommend by the same author being 1.45. In
our case, smaller choices of c will typically result in values of the parameter θ closer to these ideal
values, hence suggesting that smaller values of c will provide better fits.

Finally, we compare the models above against an NPH model having a fixed scaling distribution.
The scaling distribution is chosen as in Example 3.3, but this time we fix θ = 1.45 as this is the
recommended by [17]. This can be done by running the EM algorithm in the usual way but avoiding
any adjustments in θ . The results of the estimation are given next

θ = 1.45: Fixed tail.

α̂ = (0.1114,0.0080,0.3366,0.3600,0.1840)
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FIGURE 1. Estimated densities against histogram of the NPH models for Danish
reinsurance data.
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FIGURE 2. Estimated survival functions of the NPH models for Danish reinsurance
data corresponding to θ̂ equal to 1.2748,1.3115,1.3387.

T̂ =


−3.0292 0.8810 0.0655 0.1600 0.1538
0.1204 −0.6765 0.3295 0.0829 0.0827
1.4308 0.2854 −4.2611 1.1133 1.4316
0.4463 0.2717 0.3082 −3.6472 1.3508
0.0958 0.0739 0.0230 0.0265 −3.2740

 .

This representation does not resemble any of the previous estimations (due to non–uniqueness
of representations) but from figures 3 and 4 it is clear that there is no distinguishable difference
between densities for the models with fixed and EM adjusted tails in the range [0,6] where the
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FIGURE 3. Estimated densities of the NPH models with EM adjusted (θ̂ = 1.3387)
and fixed (θ̂ = 1.45) tails against histogram of the Danish reinsurance data.
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FIGURE 4. Estimated survival functions of the NPH models with EM adjusted (θ̂ =

1.3387) and fixed (θ̂ = 1.45) tails.

main body of the distribution is situated. The tail behaviour also looks quite similar though the EM
fitted tail seems to be slight heavier than the fixed tail.

Example 6.3 (Fitting to a theoretical distribution: Loggamma). Next we consider the problem of
approximating a theoretical distribution via an NPH model. In our first example we take as target a
Loggamma distribution with shape parameter α , scale parameter β and shifted one unit to the left
so its support is [0,∞), which is the natural support for the class NPH. Its density function is then
given by

f (x) =
β

α logα−1(x+1)

Γ(α)(x+1)β+1 , x≥ 0.
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This distribution is regularly varying with parameter β . For this example we choose the parameters
α = β = 2, for the target distribution with the purpose of analysing a distribution with a mode away
from 0 and a moderately heavy–tail. We consider an NPH model where the underlying phase–type
distribution has five phases and the scaling distribution is that of Example 3.3 with c = 1. With this
example, we want to test if general Regularly Varying distributions can be correctly fitted with the
general model suggested in Example 3.3.

We employed Quasi Monte Carlo ideas to approximate the integrals in the EM steps and iterated
the algorithm until the relative error was smaller than 10−9. The results are given below

θ̂ = 1.6031
α̂ = (0.5717,0.0330,0.0000,0.3954,0.0000)

T̂ =


−1.9634 0.0609 0.5025 0.1249 1.2751
0.0616 −0.3372 0.0775 0.0382 0.1428
0.7529 0.1178 −2.2723 0.4797 0.0068
0.7278 0.3060 1.1458 −4.8966 2.7170
0.8923 0.0317 0.0482 0.2021 −3.4321


The densities of the Loggamma distribution and its NPH approximation are plotted in Figure 5.

The densities of the Loggamma and its NPH approximation are almost indistinguishable from each
other in the body region. The tail behavior is correctly captured by the NPH model as seen in Figure
6. The shape of the tail of the NPH is very close to that of the Loggamma distribution although
the NPH estimate has a heavier tail (the estimated regularly varying parameter was θ̂ = 1.6031 as
compared to θ = β = 2).

0 1 2 3 4
0

0.2

0.4
EM
LG(2,2)

FIGURE 5. Density of the Loggamma distribution with parameters (2,2) and a fit
of an NPH model using the EM algorithm.

Example 6.4 (Fitting to a theoretical distribution: Weibull). Next we move away from the Regu-
larly Varying case and consider instead the Weibullian case. As a target distribution we consider a
classical two–parameter Weibull with λ = 1 and p = 1/2 so its density is e−

√
x/2
√

x, x ≥ 0. For
adjusting this model we consider an NPH family of distributions where the phase–type part has five
phases and the scaling distribution is supported over a geometric progression ec,e2c,e3c, . . . with
c= 1 and taken as a discretization of a classical two–parameter Weibull distribution with δ = p−1.
More precisely, its density is given by

f (x) = pλ
pxp−1e−(λx)p

, x > 0.
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FIGURE 6. Survival functions of the Loggamma distribution LG(2,2) and a fit of
an NPH model using the EM algorithm.

Notice, that the target distribution is in the same two–parameter family of Weibull distributions.
The results are given below.

λ̂ = 0.6181, p̂ = 1.1673
α̂ = (0.2370,0.3349,0.0901,0.3380,0)

T̂ =


−3.0858 0.6964 0.2188 0.3355 0.5572
51.0253 −207.2799 18.3961 18.5851 46.0724
0.4369 0.2511 −0.9839 0.0122 0.0487
1.1297 0.2448 0.9388 −11.0548 0.7637
0.7583 1.0994 0.9844 0.4882 −3.3303


The agreement between the Weibull distribution and its NPH approximation is very good in the
body of the distribution. The approximation of the tail is also particularly good for values going
up to 100 which correspond to probabilities of order 10−4. The NPH adjusted model is Weibullian
with parameter p̂(1+ p̂)−1 ≈ 1.1673/2.1673 ≈ 0.5386. Recall that the parameter of the target
distribution is 0.5.

Example 6.5 (Fitting to a theoretical distribution: Lognormal). Finally we consider a Lognormal
distribution with location parameter µ = 0 and dispersion parameter σ2 = 1. The lognormal dis-
tribution is heavy–tailed but its survival function ultimately decays faster than a Regularly Varying
function (but slower than a Weibullian function). We consider the lognormal case more difficult
because a scaling distribution π(θ) for which the NPH model has the same tail behavior as the
lognormal distribution is unknown.

We consider two alternative NPH models for fitting the data. For both we have selected a phase–
type part with eight phases and the scaling distribution is chosen as a discretization of a Lognormal
distribution LN(µ,σ2) and supported over the set {si = ei : i = 0,1, . . .}. The difference between
the two models is that for the first one we let the EM algorithm to estimate the values of the
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FIGURE 7. Density of the Weibull distribution with parameters (1,0.5) and a fit of
an NPH model using the EM algorithm.
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FIGURE 8. Survival functions of the Weibull(1,0.5) and a fit of an NPH model
using the EM algorithm. The EM model is Weibullian with shape parameter p =
p̂(1+ p̂)≈ 0.5386.

parameters µ and σ , while for the second one we take these values to be fixed and equal to 0 and 1
respectively. The results for the first model are given below

From Figure 9 we can observe that the fit to the body of the distribution of the first model is
appropriate, but the tail probabilities differ. In the lognormal case, the heaviness of the distribution
is mostly determined by the parameter σ . The larger the parameter σ the more heavier its tail.
In our estimations we obtained an estimate σ̂ = 0.5979 which suggest a lighter tail, and this is
confirmed in the last panel of Figure 10.

For our second model we obtained a very poor fit, but this is somewhat expected since the tail
distribution of the NPH model is very different from the tail behavior of its scaling distribution
(as in the case of Regularly Varying or Weibullian cases). In fact, [18] demonstrate that the tail
probability of the NPH model is significantly heavier and different to the scaling distribution. More
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FIGURE 9. Density of the Lognormal distribution with parameters (0,1) and a fit
of an NPH model using the EM algorithm.

0 10 20 30 40 50

-4

-2

0
EM
EM fixed
LN(0,1)

0 100 200 300 400
-10

-5

0
EM
EM Fixed
LN(0,1)

FIGURE 10. Survival functions of the Lognormal distribution LN(0,1) and a fit of
an NPH model using the EM algorithm.

precisely, it is shown that if N ∼ LN(0,1), then

lim
t→∞

P(τN > t)
P(N > t)

= ∞.

7. CONCLUSIONS

In this paper we have adapted a known method for estimating phase–type distributions to the
extended class NPH of phase–type scale mixture distributions with the purpose of fitting heavy–
tailed data and distributions. While the model only requires the specification of the dimension of
the underlying phase–type distribution and a parametric family of discrete scaling distributions, the
suggested algorithm simultaneously fit both the body and the tail of general distributions.

Since the class of NPH distributions are generally genuinely heavy tailed (if N has unbounded
support) and dense in the class of heavy tailed distributions with support on R+, we may in prin-
ciple approximate any heavy tailed distribution (data) arbitrarily close with an NPH distribution.
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In particular, for the cases of Regularly Varying and Weibullian distributions the aforementioned
approximation is not only in the limit (denseness) but can be effectively carried out in praxis.
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