A HIGH PRECISION LAMIMNATED AMISOTROPIC
THIN SHELL FIMITE STRIP

By
Dr. IBRAHIM MAHFOUZ, Dr. MOSTAFA K. AND Eng. IBRAHIM G.
M. IBRAHIM ZI DAN SHAABAN
Professor and Head, Associate Prof., Asst. Lecturer
Civil Eng. Dept., Struct. Eng. Dept., Civil Eng. Dept.,
Zagazig University, Faculty of Engineering, Zagazig Univ.,
Banha Branch Ain Shams University. Banha Branch.

1. INTRODUCTIOM

The demand for light weight high performance structures
has grown rapidly. Laminated and sandwich type constructions
are jideally suilted for the use as light welght prefabricated
roof structures owing to their high strength-to-weight and
stiffness-to-welght ratles. Such structures are typical to
those used in ferrocement, corrugated sheets  and fiber
reinforced roof structures.

One of the main characteristieces of such composite
structures is its heterogeneous and anlsotropic nature which
require analysis technigues incorporating the coupling between
bending and membrane actions which usually exist in such
systems [1].

The number of analytical methods which are capable of
accurately predicting the response of such anisotrople lami-
nated systems are limited and for a certain class of laminated
systems, rigorous technigues do not existed. Finite strip
metheod appears to have a great potential in predicting the
static response of the anisotropic structures under consider-

ation =since the computer storage regquirements for the finite
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strip method is relatively small. In addition, the incorpo-
ration of the anlseotropic and coupling effects in the finite
strip formulation are rather straight Eorward.

The finite strip method was first introduced by Cheung [2],
but was limited to the analysis of iscotroplc structures. The
method was extended by Ibrahim and Monmfortom [3], to the
analysis of certain types of anisotropic laminated roof
structures.

The objective of this paper is to extend the application
of the finite strip method to predlict the actual behaviour of
some types of lamlinated structural systems considered hereln.
Humerical results are presented to illustrate the potential of
the method Eor predicting the structural response of lamlnated

shell roof structures.

2. GENERAL FORMULATIOM

In the classical laminatiom theory [1,4], the following

assumptions (Eirchoff hypothesis) are made:

(1) Normals to the middle surface before deformation remain
stralght and normal after deformation. This is eguivalent to
ignore the shearing stralns in planes perpendicular to the

middle surface, that ls, ruz = rfﬂ = 0 where gz i the normal

direction, and y__and » are shearing strains in planes xz and

XZ Y

¥z respectively.

{Z) The normals are presumed to have constant length so
that the straln perpendicular to the middle surface is ignored,
that 1= = = 0 . Therefore, the normal deflection w at

z
any polnt in the laminate i3 egual to the normal deflection of
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the corresponding point on the mid plane.

The formulatien presented herein follows the approach of
Ref.[3] and in the following, the formulation is sSummarized for
the application of the finite strlp method to laminated aniso-

tropie thin shells.

2.1 STRAIN-DISPLACEMENT AND FORCE-DEFORMATION RELATIONS.

Based on the previously mentioned assumptions, the strain-
displacement relations for a point at a distance z from the

middle surface of the Laminate are gliven by
o
el = {7 + 2 (K} ceeiis L ] RS £ L

where {£°} contains the normal and shearing strains of the
reference surface and { K } contains the changes in curvature
and angle of twist of the reference surface during deform-

atien. The components of {£°} and | K } are glven by:
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In which, {ux = fu J o, uy L A | v+ } are the

derivatives of the tangential midplane displacements, u and v
and R Is the radius of curvature of the laminate., Inthe case of
plane surface R = oo .

Fer a laminate composed of m orthotropic laminae with
arbitrary orientations and thickresses (Fig. la and 1b), the

force and moment resultants of the cross section are gliven by,
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where, {H]Ta:e the membrane forces, [H“, HF’ ny]; IH}Tara the
bending stress resultants, [Hx’Hy'ny]i and {£°} and {K} are

as defined earlier. [A], [D] and [B] are the effective membrane,
bending and bending-membrane coupling stiffness matrices of
angle-ply unbalanced laminated composite section respectively
[11. In the case of a cross-ply laminated composite section
composed of two layers (plies), in its simplest shape as shown
in Fig. lc ; some terms of the matrices [A), [B], and ([D] are
setting to zero:

hlsll231312=ﬂ = B =B =D = [ =D-D 1&#11{3!

3. FORMULATION OF STRIP STIFFNESS MATRIX

3.1 BASIC ASSUMPTIONS:

1- Thin laminated cylindrical shell finite strip is the main
unit in the analysis. The flat plate strip is a special
case of the shell strip and 1is used in plate and folded
plate analysis (Flg. 2a and 2b).

2- In the finite strip analysis of laminated systems, the
whole structure is divided into a number of longitudinal
strips by lines which are called "nodal lines", (Fig. 2c).

3= The cylindrical shell roof structures considered in the
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present work are assumed to be simply supported at the ends

on transverse dlaphragms that are Infinitely rigld In their
own plane but perfectly flexible normal to their plane.

For such end supports the following boundary conditions
can be applied at X = 0 and L ;

oo } wem B Evrae e (dal

e W, W, "x and Hn are as defined before.

DI SPLACEMENT FUNCTIONS

Following Ref. [J]1, the displacement functions £for the

p can be wrltten as follows:

2
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g H and H are one-dimensional third- and flfth- ocrder
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rpolation polynomlials respectively defined 1n Appendix A.

undetermined coefficients ;

(n) (n)
3.¥ = s

[ %

= ﬂu;n} ay, v = ﬂv;n} ay, wj,y = ﬂw‘n} &y, and
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ciated with the nth term of the basic functlens at each of
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the two edges (j=1,2) of the strip. A total of 14 independent
displacement coefficients (7 on each edge) are involved in the
strip for each value of n.

For the boundary conditlons prescribed (eg. 4), the disp-
lacement functions are orthogonal; therefore, the terms of the
basic functions are uncoupled in the potential energy express-
ion and scolutlons for each cycle can be obtained independently.
In addition to satisfying the boundary conditions of eg. 4, the
displacement functlons proposed in eg.5, provide the capability
of imposing membrane strain continuity as well as continuity

of curvature at common edges of adjacent strips.

3.3 ETRIP POTENTIAL ENERGY

The strain energy of a thin laminated shell strip i is

given by the following integral over the strip ;
1 T 0 T
Uy 2= {j {IN} L& ] + {M} {K})} ds. s w o G

Substituting from egn 2 into egn 6;

U, = —%— g] tee®17 a1 1% + 1?17 ikt + (kiTIBY 1)

+ {K)T(D] {K}} ds. RO L T

in which s = the middle surface area of the laminated surface.

The potential of the loads applied to the face of the
strip can be expressed as :

W, = J] [Xu + ¥v 4+ 2wl d8. i ieees L8]

in which X, ¥, and Z are the components of the loads applied to
the strip and are generated using a work eqguivalent load appro-

ach and u,v,and w are the corresponding displacement functions.
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The resulting total potentlial energy of the laminated

system is : TT = (U;- W) SRR 2 k|

bue to the orthogonal properties of the displacement functions,

Il may be represented as:

pl
- tn)
T'r = E Tn pllllii-l{-]-[lah
pl l‘!=1,2p-- pl
() _ (n} _ (n)
in which Tpi = I.Jl Hi R TRt e 0.1 | o h

Eg. 10b represents the potential energy assocliated wlth the

nth term of the displacement functions for strip i, Ui": and
Hi"}:efer to strain energy and potential energy of the external
loads for strip 1, respectively.

By integrating egn. 7 over the surface of the strip i, it

takes the form:

N
u,= T u;“’ T b T T
n=El; 2.0
(oy . 3. (n),.T (m {n)
in which U 1o qa" T kg b owal®™ e . (11b}

(1X14) (14X14) (14X1)
where [Kinll refers to the stiffness matrix for one strip
assoclated with the nth term of the displacement functions and
[di“]r is the corresponding vector of undetermined displacement
coefficients for the strip associated with the nth term of the

displacement functions ; thus:

{m) (rn) (nl tn) _An} in) (n) .T
g 283,905 Y3 Vi, Y, yyt

gimilarly by Iintegrating egn. 8 over the surface of the

(@™ =ta T R T e L

strip L, 1t takes the form:

w!n]

'H = x*» . aa e R + F &
1,2... T
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% which wi“’= [Pi“:]T {ﬂi“’] T . (13b)

(1X14) (14X1)

where lPinj] refers to the work equivalent load vector matrix

in)
i

Substituting egns. 1lb and 13b into egn. 10b, it takes the

and {d } is as defined previously.

form:

Yy Lok {n) {n) {ny, _ {n) (n)

i e mg™Eo™ My <™ e i
{(1X14) (14X14) (14X1) (1X14) (14X1)

The total potential energy, TT of an assemblage of I

p-l‘
laminated shell roof strips can be obtained by invoking the
appropriate continulty conditions of displacement, slope,
strain, and curvature between adjacent strips and satisfylng

the boundary conditions along the longitudinal edges of the

structure. It can be expressed as;

T = T rinl eveeeesssllBa)
P pm1,2... P
in which
{n) % in)_ 1 {n).T {n (n)
' e T rp? =S AR § K | ¢ piP)y
ALy i (1xm)  (mxem) (mxl)
iPl:n}}T i D{h]}
[ 1xm) e e L g o 1158}

Eg. 15b represents the total potential energy of the laminated
cy¥lindrical shell structure associated with the nth term of the

[n}l are the master

displacement functions ; [I'Im:I 1 and {P
stiffness matrix and load vector, assembled from the strip
stiffness matrix and work equivalent load vector respectively
; and {Dinij represents the vector contalning the m independent

degrees of freedom assocliated with the assembled structure.



3.4 MASTER STIFFNESS MATRIX

Applying the minimum total potential energy theorem leads
to: (k'™ (o™ = ™My Ll .. (16)
Equation 1& Is the overall matrix eqguatlon whlch represents a
sel of llpegar simultanecus eguations relating all the unknown
parameters to the applied loads.

As mentioned previously; the master stiffness matrilx for
any one term of the series (basic Eunctions} [HIHJI can be ass-
embled guite easily by the Variable Correlation Table =zcheme,
which is a procedure used for numbering Degrees of Freedom; HODF.
With this procedure, the boundary conditions for nodal lines of
strips can be set avtomatically during the assemblage of master
stiffness matrix. This matrix has narrow half-band width, so
that it can be stored In the memory as a rectangular array of N
¥ HE (N 1= Ehe total number of unknowns for one term and HB is
the half band width) and zolved directly by band matrix soclution
technigues. Solution of egn. 16 for { D‘n}} and substitution of
the results into egn.5 give the reguired solutions for displac-
ements. Differentiation of the results and substitution inte
egn. 2 give the force and moment values for one term of the
serles,. The results for each of the wvarious terms of the series

are summed to give the filnal displacements and internal forces.

4. MNUMERICAL EXAMPLE=

4.1. SIMPLY SUPPORTED SQUARE PLYWOOD PLATE

In order to wverlfy that the above Fformulations can be
applied to analyze lamlnated balanced plate structures as a

special class of shell structures, a simply supported plywood
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plate which was analyzed previously by Timoshlinko [5] was rean-
alyzed again using the proposed method. The plate is subjected
to a transverse distributed leoad of 1040 Ibﬁinz. Loadling, plate
dimensions, and finite strip simulation can be seen in Fig. 3Ja.
The type of plywood material wused in this example 1ls Maple,

5-ply and the elastic properties of this material are: E11=1.ET

X 1I]E pai; EEE= B X 105951; and @ = 1.59 X 105 psi. Where Ellis

the material modulusz of elasticity in X - directlion, E22 is the
modulus of elastlclty in ¥- direction and 6 Is the material
shear modulus. The resulting stiffnesses for the plywood mater-

ial constructed of S5-plies (Fig. 3b) are as follows:

1. Membrane stlffnesses

_ 5 . -
1= 1-87 X 107 1b/in. ; A;y= 7.3 X 10
4

ﬁ22= 6. X:18 Ib/in. ; Ay57= 1.59 X 10

2. Eendlng stiffnesses @

2 ; " . .
Dy,= 1.56 X 107 in.~-Tbs ; D,,= 6.08 in.-Ibs ;

= 50,0 in.—-Ibs ; D33= 12.2% in.-Tbs

one should observe that there is no coupling between

3

A Ib/in. ;

4 1b/in.

&y
membrane and bending actions in laminated balanced sections
thus, the elements of the coupling stiffness matrix [B] will be
egqual to zero.

In order to assess the coupling effect In laminated un-
balanced sections, the simply supported plywood plate was re-
analyzed for the same dimensions and leoading but with 4-plies
only, ﬂﬂffﬂﬂﬂfﬂﬁf+9ﬂ? The resulting stiffnesses for this case

are as follows:
1. Membrane stiffnesses :
E

A11= 1.55 X 107 Ibfln. ; 112= .6 X 10

B Ib/in.
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5 ’ 4
A, = 1.55 X 107 Ib/in. ; Ag,= 1.59 X 10 “Ib/sin.,
2., Bending stiffnesses
» 2 - x a 2 s
Dll_ 1.2 %107 ini-Ibs DlE 50.34 in.-Ibs ;
= 2 = H = I,
E?E_ 1.29 ¥ 10" in.=Ibs ; D33 132.25 in.-Ibs

3. Coupling stiffnesses :

B,,= = 938.86 Ibs ; B:2= - B

11
For analysls, 4 finite strips were used as illustrated in

11

Fig. 3a. The vertlcal deflection,w, longitudinal mﬂment,Hx, and
transverse bending mumﬂnt,Hy, at the center aof the span are
given in Table 1 together with the results of Ref. [5]. In
this table, Lﬂ:&fers to the results obtained from the laminated
balanced plate, L1 refers to the results obtalned from the lam-
inated wunbalanced plate when the coupling stiffnesses are
considered and H represents those results when the coupling
stiffnesses are neglected. The variation in deflection guanti-
ties across the width of the plate at its midspan together with
the results of Ref. [5] are shown in Fig. 3Jc.

A comparison of these results indicates that, In general,
an excellent agreement exists between the predictions of the
proposed method and that of the other method of Ref. (5] for
laminated balanced case. It is observed that the effect of
coupling in laminated unbalanced plate is to reduce the overall
deflection, w, longitudinal moment, Hx’ and to Ilncrease the
transverse moment, Hy (M, and HF will be nearly the same). The
proposed model utlllzes 4 strips with only 29 degrees-of-free-
dom and 7 harmonic cycles. The execution time on the PC B8 IBM

640 KB is 7 minutes.
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TABLE 1. EXAMPLE 1= Deflection, Longitudinal and Transverze
Moments for Plywood Plate
Method Deflection Lopgiiudinal TIHEEIEEEE
of W [inches]) Mx [(Ib.inSin} My [(Ib.inSin]
analysis x=a/2, y=b/2|x=as2, y=b/2 |x=a/2, y=b/2
LI:| -60.013 -918.0 -295.82
Ref. [5] =60.0 -912.14 -293.95
Ll ~41.63 -645.8 -bd46.63
LI =35, 51 =651.71 -652.54
4.2. LAMINATED UMBALANCED CYLIMNDRICAL SHELL ROOF

In order to show the capability of the proposed finite

strip model to analyze cylindrical shells, two examples indicat-

ing the effect of the material strength on the coupling betwean

membrane and bending actlons in cross-ply lamlinated composzsltes

were solved. The two lnvestigated examples have the same cross-

sectlon and dimenslion as shown in Fig. d4da.

The structure shown in Fig. 4 is &0 in. long and is const-=

ructed of cross-ply laminated composite section. The material

pf composites used in the first example (Ex.

2) consists of two

graphite-epoxy plies, each of 0.125 in. thlick. The elastic prop-

ertles of which are E..= 30 X 10° psi; B, ./E..=

0 1122
The total thickness of the cross section is

40; GlEHEIE= 1;

and w, .=0.25. D.25

12

in. and the resulting stiffnesses for the two lay-ups consider-

ed In Flg. lc are as follows;

1. Membrane stliffnesses

£ - i 4 2
hlld 3.85% X 10" IbsIin. ; AlE_ 1.6% X 10" Ib/in. ;
A,.= 3.85 X 10° Ib/in. ; A,.= 1.88 X 10° Ib/in.

22 33
2. Bending stiffnesses :

;I Z

Dll& 2:01 X 10 in.-Ibs ; n12= 2:45% X 107 in.=-Ibs ;
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in.-Ibs ; D33= .77 X 101

4

D 2.01 X 10 in.-Ibs

23"
3. Coupling stiffnesses

= + 3.3 % 10° TIbs

B

in which the + sign of Blliﬁ shown in Fig. lec, and sz = _Bll

The elastic properties of the material of the second

example (Ex. 3) which consists of two glass-epoxy plies are

_ 6 _ . _ . _
Eyf 7.5 X 100 ; By /Byn= 3 ; Gy,/Eyo= 0.4 ; and v,,= 0.25. The

resulting stiffnesses for this case are as follows :

l. Membrane stiffnesses
B

A

5
11 1.28 X 10~ Ib/in. ; A

12" 1.6 ¥ 107 Ib/sin. ;

o Ib/in. A= 2.5 K 105 Ib/in.

A 33

1.28 X 10

L]

13
2: Bending stiffnesses :
3

= 8.34 X 10° in.-Ths ;

= 1.3 X 103 in.-Ibs

Dy,.= 6.6% X 107 in.-Ibs ; D

11 12

D..= 6.65 X 10° in.-Ibg ; D

22 33
3. Coupling stiffnesses :

B,.,= + 3.9%9 X 10

11 Iba ;' B..= =B

22 11

The shell roof is subjected to a load of 1 Ibfin2 of proj-
ected area as shown in Fig. 4a. Taking symmetry into consid-
eration, one-half of the shell was modeled using 5 strips (Flig.
4b)., The longitudinal edge (¢ = 0 ) was considered free while
the symmetry conditions were imposed at the crown (¢ = 30):

Lot
v=___=ﬂ BB & B B & B R R R R B E R R R s R R E S |:1.Ti

ay
where v and &w/8y are the Iin-plane displacement inm the
direction ¥ and the rotation around x axis respectively.
Eesults of the longitudinal force, Hx' circumferential

force resultants; Hﬁ' and transverse moment, H¢, at midspan and

the =shear force rﬂsultant,Hxﬁ, at the supports are plotted
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agalnst ¢ in Fig. 5 for Ex. 2 (Graphite-Epoxy laminated shell
(L) L.}

roocf). It has to be mentloned that in Fig. >, Hx 0 5 & [+ R
;; ], and H;LGJIEfEI to the results obtained when the coupling

(L) I TR {L]
1,H¢1,N¢ , Myl N2

correspond to the lay-ups shuun in

stiffnesses ar& neglected and N

(L.} (L (L.}
% H¢ 2N ¢E , and M¢ i

Fig. lc. Table 2 and 3 comprise comparisons between the results
of the midspan longitudinal force, Hx and transverse moment, H¢
of examples 2 and 3.

Inspection of Tables 2 and 3 indicates that the effects of
the coupling stiffnesses are generally small for glass-epoxy
malerial (week material) while being significant for graphite-
epoxy material (strong material). The biggest influence in this
last case lies in the longitudinal force r&sultant,ﬂx, for lay-
up Ll. The results plotted in Fig. 5, indicate that the coupling
effect is significant for the transverse moments, especially for

lay-up Ly where the orthotrople solution {LuJ underestimates

thizs moment resultant at the crown by approximatly 12 % .

TAOLE 2. - Mld-ppan Lenglitudinal Force Resultant (Hx)

l# . deg. EXMHPLE 2 - Graphite-ppoxy EXAHPLE 1 - Class-epoxy
[Erom (L} ler’ “. . 4
viger Wicel Lo Lin ¥, o (Lyl, giloMu tn u(Eydy wiloluila), yiko)
pounds/inch| * = X & pnundl_.u"lnth *

g -551.61 Q.96 .97 =G4 .89 0.39 1.0
L =502.%0 0.98 0.99% -537 .66 .99 1.0
18 -341.598 L.04 1.04 =330.9% 1.0 1.0
12 -23.62 2.27 2.09 29.18 0.75 1.07
& 516,36 n.98 on.99 BE3.4% 0.9% 1.0
o 1413.3 1.08 L.085 12974 i1.61 1.0

thoin = 4. 7HLD X :I.Elz Lo
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TAELE 3. - Wid-span Transverse Moment (M}

b, g, EXAMPLE ? = Craphlite-spoxy E¥AHPLE 1 = Glass-epoxy

teeom bikol 1 Tt wibolutiats witaleo!, (o pitals wiboluits)s ik
1, infin. b, infin.

30 12.44€ 1.12 0.08 19.5% 1.04 o,%3

24 17.62 1.13 o.87 17.64 1.04 0.93

18 12.85 1.113 0.E6 2.1 1.05 0.32

12 6.8 1.13 0.83 E.6% 1.05 0.51

1.83 1:12 0.75% 1.71 1.08 0.86

a =0.1 1.02 a.ao =@0.1 0.0 1.25:

1h. wrsin = 4. ddll H. M TR

5. Conclusions

The main advantage of the proposed model lies in its simp-
licity, its high accuracy, and to a certaln extent, 1its vers-
atility. The time and effort required to obtaln a sclution on
a personal computer of relatively limited slze is minimal Ln
comparison to the other methods.

The results of the treated examples indicate that the
effect of the coupllng stiffnesses In laminated unbalanced sec-
tions may be significant and that the influence of this coupling
decreases rapldly with the increase in the number of layers
(plies) while it increases in sections of layers made of strong
materials. Using the proposed model, the convergence of the
results for stresses and displacements can be obtained with a
reasonable limited number of strips and terms of the baslc disp-
lacement functions.
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APPENDIX A=TNTERFOLATION POLYWOMIALS

The definition of the interpolation polynomials is as
follows:

A.1- Third-arder Enlfnnmials:

3 2 3
(1) b - 3by” + 2y
Hnl {:f? L hj. -------- @8 oa f.'l..la:l
2 3
HIl]{?b = _;1_}1____32__ B & B & ®mom o®mo® R E B W th-lhj
02 h3
2 2 3
H[l]'i]"' - E_lr___gt_}r__i_x—_ R I e T +[J|..ll:l
11 bE
2 3
Thp e i BB 2 (A.1d)
12 bE
A.2- Flfth-order polynomials:
5 2. 3 4
2 b~ — 10b ] -
H{ ;‘}'} = ommm e e I--t-];"EE--__EE ----------- -||-1!1{Arza}
01 hE
&3 | 5
AR S A T TR (A.2h)
02 b5
4 2.3 4 5
2 b - 6 -
Ht }I}r] - --I----E“E-*iuggxh___gr_ ----- -Il'll'li-i-li{hi-icl
11 hi
£ -3 4 -]
H‘?}{y? s TEBENLCRL W TIARE e s (A.2d)
12 4
o oDl 208 e o
N i SN - SO - SRR (A.2e)

21 b]
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where for the cylindrical shell strip

y=R ¢ and b=R (Ag) = aiiieisasass PR . o

APPENDIX B- MOTATIOM

The following symbols are used in this paper:

AIJ Membrane stiffnesses of laminated cross-sectlon.
BIJ Coupling stiffnesses of anisotropic laminates.
Dra Bending stiffnesses of laminated cross-section.

Ell‘EEI'GlE‘ulEElaEtic constants of each layer of the laminates.

Hé;’,Hii: Third-order interpolation polynomials

Hégl Hi§3 Héil Fifth-order interpolation polynomials

Hx’ H . ny Moment resultants of laminated plate

Hx, N . fo Force resultants of laminated plate

b Width of finite strip

h Total thickness of the cross-section

hk Distance between the kth layer and the middle
surface of the cross-section.

L Length of Elnite strip

m Number of layers

T Denotes nth term of basic functions

R Radlus of curvature of cylindrical strip.

U, Y, W Displacement components of a plate in local

= ™ strip coordinate system.

U, v, w Displacement components of a plate in reference
coordinate system.

X; ¥y Z Local strip coordinate system

X, ms T Reference coordinate system

Subscripts and Superscripts:

i Subscript or superscript denoting 1lth strip.
i Subscript dencoting two edges of strip (3 =1, 2].
k Subscrlipt denoting kth layer

Additional symbols used are explained in the text.



Fiber directio
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a) Lamlina Forms

b )} An Orthotroplic Haterlial in Its

Laminated Shape.

€} Crogs=-ply Laminated System Inm lta Simplest Shape
{ ® and @ indicate the sign of Biq

Fig. 1 LAMINATED COMPOSITE CROSS SECTION.



a) Lamlnatad Plate Btelp

bl Lamipated Cylindclical Stcip

Nodal lines

Support Dlaphragm

€) Cylindrical Shell Roof

Fig. 2 LAMINATED ROOF SYSTEMS.
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Flg 3 EXAMPLE 1 - SIMPLY SUPPORTED PLYWOOD PLATE.



1 Ib/in®

TN Y T 0 O R

.25 . 625m)

L1

\

R=23(.50m) L=60(1.50m)

22
3 2
\ Ih..-"ini= 6E.8948 2 10 H/m

a) Dimenslons and Loadling
Q.‘_r%‘

P il ™

]

i

[
——

b) Finite Strip Simulations {Si strips in half of the shell)

Fig. 4 EXAHPLES 2 AND 3 = LAHMHINATED UNBALANCED

SHELL ROOF STRUCTURE.
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c) Shear Stress Resultants d) Transverse Bending Moment
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Fig. 5 EXAHPLE 2 = STRESS AND HOMENT RESULTANTS FOR

CRAPHITE-EPOXY LAMINATED SHELL ROOF.



