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Abstract

Integral transforms of the lognormal distribution are of great importance in
statistics and probability, yet closed-form expressions do not exist. A wide
variety of methods have been employed to provide approximations, both ana-
lytical and numerical. In this paper, we analyse a closed-form approximation
L̃(θ) of the Laplace transform L(θ) which is obtained via a modified version of
Laplace’s method. This approximation, given in terms of the Lambert W (·)
function, is tractable enough for applications. We prove that L̃(θ) is asymp-
totically equivalent to L(θ) as θ → ∞. We apply this result to construct a
reliable Monte Carlo estimator of L(θ) and prove it to be logarithmically effi-
cient in the rare event sense as θ →∞.
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1 Introduction

The lognormal distribution is of major importance in probability and statistics as
it arises naturally in a wide variety of applications. For instance, the central limit
theorem implies that the limit distribution of a product of random variables often can
be well approximated by the lognormal distribution. Hence it is not surprising that
the lognormal distribution is frequently employed in disciplines such as engineering,
economics, insurance or finance, and it often appears in modeling across the sciences
including chemistry, physics, biology, physiology, ecology, environmental sciences
and geology; even social sciences and linguistics, see [2, 10, 12, 18, 20].

A random variable X has a lognormal distribution if X = eY where Y is a
N(µ, σ2) random variable. The density of X is

f(x) =
1

x
√

2πσ
exp

{
− (log x− µ)2

2σ2

}
, x ∈ R+.
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The Laplace transform of X is

E{exp(−θeY )} = e−θµE{exp(−θeY0)}, Y0 ∼ N(0, σ2), (1.1)

and because of this relation we need only consider L(θ) = E{exp(−θeY0)}. The
defining integral of the Laplace transform

L(θ) = E{exp(−θeY0)} =

∫ ∞
−∞

1√
2πσ

exp
{
−θey − 1

2σ2
y2
}

dy

=

∫ ∞
−∞

1√
2πσ

exp
{
−hθ(y)

}
dy, hθ(y) = θey +

1

2σ2
y2, (1.2)

has no closed form expression. For a complex argument θ the integral defining L(θ)
diverges when <(θ) < 0 and in consequence, the function L(θ) is not defined in the
left half of the complex plane and fails to be analytic on the imaginary axis. In the
absence of a closed-form expression it is desirable to have sharp approximations for
the transforms of the lognormal distributions as this paves the way for obtaining the
distribution of a sum of i.i.d. lognormal random variables via transform inversion.

In this paper we analyze the closed form approximation L̃(θ), θ > 0, of the
Laplace transform of the lognormal distribution which we reported in [21] and was
obtained via a modified version of Laplace’s method. The approximation is

L̃(θ) =
1√

1 + W (θσ2)
exp

{
− 1

2σ2
W (θσ2)2 − 1

σ2
W (θσ2)

}
, θ ∈ R+. (1.3)

In this expression, W (·) is the Lambert W function which is defined as the solution
of the equation W (x)eW (x) = x. This function has been widely studied in the last
20 years mainly due to the advent of fast computational methods, cf. [9]. Roughly
speaking, the standard Laplace method [11] states that∫ b

a

1√
2π

e−λh(y) g(y) dy =
e−λh(ρ)√
λh′′(ρ)

g(ρ)
(
1 + O(λ−1)

)
, λ→∞, (1.4)

where g(t) and h(t) are functions such that g(t) is “well behaved” and h(t) has a
unique global minimum at ρ ∈ (a, b). Therefore, the leading term of the expression
on the right hand side of (1.4) can be used as an asymptotic approximation of the
integral on the left hand side. Surprisingly, this approximation can be very accurate
for very general functions g(t) and h(t), not only in the asymptotic setting, but
also for relatively small values of λ. In our case, we take g(t) ≡ 1 and identify
λh(y) with hθ(y) in the integral from (1.2). Intuitively, the role of λ is given by
the second derivative of hθ(y) at the minimum of hθ(y), and we use the standard
Laplace method for a situation where the function h(y) depends on λ also. The
essential features of hθ(y) for this approach are as follows.

Lemma 1.1. Let θ > 0. Then the exponent hθ(y) from (1.2) is convex, attains its
minimum value at −W (θσ2), and the second derivative of hθ(y) at the minimum is
1/σ(θ)2 with σ(θ)2 = σ2/{W (θσ2) + 1}.
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To understand the error of the approximation (1.3) we note the general result

W (x) ∼ log(x), x→∞.

Using this we see that W (θσ2) ∼ log(θ) and σ(θ)2 ∼ 1/ log(θ) as θ → ∞ and this
leads to the approximation

L(θ) = L̃(θ)
(
1 + O(log−1(θ))

)
, θ →∞.

In this paper we prove this approximation and obtain an expansion of the error
term. Moreover, we will obtain a probabilistic representation of the error term and
construct a Monte Carlo estimator for the Laplace transform. We remark that one
must be careful in the implementation of Monte Carlo estimators as naive simulation
can lead to unreliable approximations. We show that our proposal corresponds to
an importance sampling estimator which delivers reliable estimates for any value of
the argument by proving its asymptotic efficiency in a rare-event sense to be defined.
We further provide numerical comparisons of our proposal against other methods
available in the literature.

We note that the problem of approximating the transforms of a lognormal is
notoriously problematic and has been long standing. Therefore, a significant number
of methods have been developed to approximate both the Laplace transform and
the characteristic functions of the lognormal distribution. We give a more complete
literature survey at the end in Section 5 and mention here the work which is most
relevant for the present paper. Barakat [5] expanded the characteristic function
ϕ(ω) = L(−iω) by making a series expansion of eiω(e

t−t−1) and integrating terms
by terms. Holgate [16] also considered the characteristic function and employed the
classical saddle point method [11, 23], which consists in applying Cauchy’s theorem to
deform the path of integration in such a way that it traverses through a saddlepoint
of the integrand in the steepest descent direction. As we mention at the end of
Section 2, this is similar to the approximation we develop in this paper for the
Laplace transform.

Gubner [14] employed (as many others) numerical integration techniques and was
the first in proposing alternative path contours to reduce the oscillatory behavior
of the integrand. This approach was further extended in Tellambura and Seranarte
[24] where specific contours passing through the saddlepoint at a steepest descent
rate were proposed; this choice has the effect that oscillations are removed in a
neighborhood around the saddlepoint. In addition, [24] also addresses the heavy-
tailed nature of the lognormal density by proposing a transformation which delivers
an integrand with lighter tails.

In this paper we follow a path somewhat different (although related to the sad-
dlepoint method) from Holgate to approximate the Laplace transform (1.2) of a
lognormal distribution by using a variant of the Laplace method. To the best of our
knowledge, the resulting closed form approximation (1.3) derived from this method-
ology was first reported in [21].

The paper is organized as follows: in Section 2 we compute the approximation
of the Laplace transform of the lognormal distribution and analyze its asymptotic
properties; in addition, we extend this result to the complex plane via the saddle-
point method and establish the relationships with the results of Holgate. In Section
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3 we construct an importance sampling estimator for approximating the Laplace
transform and prove its efficiency properties; we discuss the disadvantages of using
naïve Monte Carlo for estimating this Laplace transform. We verify the sharpness
of our approximations and present some numerical comparisons in the analysis pre-
sented in Section 4. Finally, a more complete literature survey and a summary of
the paper are in Section 5.

2 Approximating the lognormal Laplace transform

In this section we first derive a representation of the Laplace transform L(θ) and
then use this to derive an expansion of L(θ). For completeness we start by proving
Lemma 1.1.

Proof of Lemma 1.1. The first and second derivatives of hθ(y) are

h′θ(y) = θey +
y

σ2
, h′′θ(y) = θey +

1

σ2
.

Clearly, the second derivative is positive, implying the convexity of hθ(y). Equating
the first derivative to zero we get −ye−y = θσ2 or y = −W (θσ2). Finally, the second
derivative at the minimum is

1

σ2
{θσ2ey + 1} =

1

σ2
{−y + 1} =

1

σ2
{W (θσ2) + 1} ,

as stated in the lemma.

To shorten the notation slightly, define w(θ) = W (θσ2) and recall the notation
σ(θ)2 = σ2/{w(θ) + 1}. Furthermore, define

I(θ) =

∫ ∞
−∞

1√
2π

exp

{
− w(θ)

σ2

(
ezσ(θ) − 1− zσ(θ)

)
− σ(θ)2

2σ2
z2
}

dz. (2.1)

Recalling the expression (1.3) for L̃(θ), we then have the following representation
result.

Proposition 2.1. The Laplace transform L(θ) can be written as

L(θ) = L̃(θ)I(θ). (2.2)

Furthermore,

I(θ) = Eg
(
σ(θ)U ; θ

)
=
√

1 + w(θ)Eϑ(σU ; θ), (2.3)

where U is standard normal random variable, and

g(y; θ) = exp

{
− w(θ)

σ2

(
ey−1−y− y

2

2

)}
, ϑ(y; θ) = exp

{
− w(θ)

σ2

(
ey−1−y

)}
.
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Proof. We first note that

hθ
(
−w(θ)

)
=

1

σ2
θσ2e−w(θ) +

w(θ)2

2σ2
=

w(θ)

σ2
+
w(θ)2

2σ2
.

Using this and a change of variable z → −w(θ) + σ(θ)z, we rewrite the defining
integral in (1.2) as

L(θ) =
σ(θ)

σ
exp
{
−hθ

(
−w(θ)

)} ∫ ∞
−∞

exp
{
− kθ(z)

}
√

2π
dz

= L̃(θ)I(θ),

where kθ(z) = hθ
(
− w(θ) + σ(θ)z

)
− hθ

(
− w(θ)

)
. Since

kθ(z) =
w(θ)eσ(θ)z

σ2
+

[−w(θ) + σ(θ)z]2

2σ2
− w(θ)

σ2
− w(θ)2

2σ2

=
w(θ)

σ2

(
eσ(θ)z − 1− zσ(θ)

)
+
σ(θ)2

2σ2
z2 ,

we have clearly

I(θ) =

∫ ∞
−∞

1√
2π
ϑ
(
σ(θ)z; θ

)
exp
{
−σ(θ)2

2σ2
z2
}

dz,

and making the change of variable u = σ(θ)z/σ gives I(θ) =
√

1 + w(θ)Eϑ(σU ; θ).
Also, we have

I(θ) =

∫ ∞
−∞

1√
2π
g
(
σ(θ)z; θ

)
exp
{
−(w(θ) + 1)

σ(θ)2

2σ2
z2
}

dz

=

∫ ∞
−∞

1√
2π
g
(
σ(θ)z; θ

)
exp
{
−1

2
z2
}
,

which gives the representation I(θ) = Eg
(
σ(θ)U ; θ

)
.

The representation of the integral I(θ) as an expected value has a crucial ad-
vantage since it allows us to evaluate I(θ) via careful chosen Monte Carlo methods
(section 3). Observe that the function g( · ; θ) roughly equals 1 in a neighborhood of
0; in consequence, the value E

[
g(σ(θ)U ; θ)

]
is relatively close to 1.

In the following, we will expand the Laplace transform L(θ) by using an asymp-
totic series representation of I(θ). The argument has two parts: looking at an inner
region and an outer region in the integral. In the inner part we use a Taylor ex-
pansion, and the outer part is bounded using the convexity of hθ(y). In fact, we
will prove that the modified Laplace method delivers an approximation with an
error which is asymptotically negligible. Moreover, it turns out that this approxi-
mation remains accurate in all the domain of convergence of θ, as we will empirically
corroborate in the numerical examples in Section 4.

Proposition 2.2. As θ →∞, we have

L(θ) = L̃(θ)I(θ) = L̃(θ)
(
1 + O

(
log(θ)−1

))
. (2.4)
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Furthermore the error term can be expanded as

I(θ) =

1 θ = 0,

1− 3w(θ)σ(θ)4

24σ2
+

5w(θ)2σ(θ)6

24σ4
+ o
(
σ(θ)2

)
θ →∞.

(2.5)

Proof. Expansion of the exponential part−kθ(z) = −[hθ(−w(θ)+σ(θ)z)−hθ(−w(θ)]
of the integrand in I(θ) gives

−1

2
z2 − w(θ)σ(θ)3

6σ2
z3 − w(θ)σ(θ)4

24σ2
z4 + O

(
σ(θ)3|z|5

)
.

Expanding the exponential of the last three terms here we find that the integrand
in I(θ) is

exp(−1
2
z2)

√
2π

{
1− w(θ)σ(θ)3

6σ2
z3− w(θ)σ(θ)4

24σ2
z4 +

w(θ)2σ(θ)6

72σ2
z6 +O(σ(θ)3(|z|5 + |z|9))

}
.

(2.6)
We use this expansion for |z| < σ(θ)−ε, where ε is a small positive number with
9ε < 1. Integrating (2.6) over this region gives (2.5) since∫
|z|<σ(θ)−ε

zk√
2π

exp(−1

2
z2) dz =

∫ ∞
−∞

zk√
2π

exp
{
−1

2
z2
}

dz + O
(

exp
{
−1

4
σ(θ)−ε

})
.

What is left is to bound the part of the integral in I(θ) from the region |z| > σ(θ)−ε.
Due to the convexity of kθ(z) we have that the integral over z > σ(θ)−ε is bounded
by

1√
2π

exp{−kθ(σ(θ)−ε)}
k′θ(σ(θ)−ε)

= O
(

exp
{
−1

2
σ(θ)−2ε

})
= o

(
σ(θ)2

)
,

and with a similar bound for the region z < −σ(θ)−ε. We have thus proved (2.5),
and (2.4) is a consequence of this, remembering that σ(θ)2 ∼ 1/ log(θ).

In the following corollary we summarize the asymptotic behavior of L(θ) in the
rough form of logarithmic asymptotics familiar from large deviations theory:

Corollary 2.3. We have

lim
θ→∞
L(θ) = lim

θ→∞
L̃(θ) = 0 and lim

θ→∞

logL(θ)

(log θ)2
= − 1

2σ2
.

Proof. From the very definition of the Laplace transform we have of course that
L(θ) tends to zero for θ → ∞, and (2.4) shows that L̃(θ) has the same limit. For
the second statement we write

logL(θ) =
1

2
log
(
1 + w(θ)

)
− w(θ)2

2σ2
− w(θ)

σ2
+ O

(
(log θ)−1

)
∼ −(log θ)2

2σ2
.

6



Finally, we discuss the approximation obtained by using the so-called asymptotic
saddlepoint methodology [11, 23]. For that purpose we consider the complex function

L(z) =

∫ ∞
0

e−zx dF (x) =

∫ ∞
−∞

1√
2πσ

exp
{
− zet − t2

2σ2

}
dt, <(z) ≥ 0.

The saddlepoint method makes use of the Cauchy-Goursat theorem to deform the
contour of integration so the new contour traverses the saddlepoint ρz of the function

hz(t) = −zet − t2/2σ2, t ∈ C.

This is possible because hz(t) is a complex entire function with a unique root t = ρz
of the equation h′z(t) = 0 which is also a saddlepoint of the functions defining the real
and imaginary parts of hz. Under such circumstances Perron’s saddlepoint method
indicates that we can select a new contour for which the maximum of <(hz(t)) over
the contour is reached at the saddlepoint ρz, and =(hz(t)) is approximately constant
over the contour in a neighborhood of the saddlepoint. In consequence, the selected
contour is such that the maximum of |ehz(t)| is reached at the saddlepoint and most
of the contribution to the integral comes from the section of the contour in the
neighborhood of the saddlepoint. Thus, the Laplace method can be adapted to
provide an approximation of this contour integral. The resulting approximation is
the complex analogue of (1.3).

The approximation of the function L(z) obtained by applying the saddlepoint
methodology is [cf. 11, p. 84]

L(z) ≈ 1√
1 + W (zσ2)

exp
{
− 1

2σ2
W (zσ2)2 − 1

σ2
W (zσ2)

}
, <(z) > 0. (2.7)

This approximation is relevant for the whole domain of convergence of L(z) in the
complex plane. In particular, when restricted to the imaginary axis it coincides with
the approximation of the characteristic function given by Holgate [16]. Similarly,
when evaluated in the positive reals it coincides with the approximation (1.3) studied
in this paper.

3 Efficient Monte Carlo

The approximation of the Laplace transform of the lognormal distribution suggested
in the previous section turns out to be reasonably sharp for all positive values of
the argument θ when the value of the parameter σ is small; however, the quality
of the approximation deteriorates as the value of σ increases (see the numerical
results in Section 4 and the form of the remainder terms in (2.5)). When computing
transforms it is crucial to come up with approximations which remain sharp for all
values of σ and all over the domain of the transform, in particular in the tail regions.
Hence it is desirable to be able to achieve errors within certain preselected margins.
Resorting to numerical integration methods is a natural choice so various proposals
employing this approach have emerged over the years, [7, 14, 24]. However, the
difficulty of approximating the defining integral is such that most of the methods
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proposed are very complicated and deliver unreliable results as corroborated in our
numerical examples.

An alternative is the Monte Carlo method. Such an approach has two notable
advantages: 1) the approximations can be sharpened at the cost of computational
effort; 2) the precision of the estimates can be assessed with accuracy. The basic
version, known as Crude Monte Carlo, consists in simulating a sequence X1, . . . , XR

of i.i.d. random variables with common distribution LN(0, σ2), then applying the
transformation x 7→ e−θx to each random variable and finally returning the arith-
metic average of the transformed sequence as an estimator of the lognormal Laplace
transform L(θ). The Law of Large Numbers ensures unbiasedness of this estimator
while the Central Limit Theorem implies that the error, defined for example as the
half-width of the confidence interval, can be made arbitrarily small by choosing R
large enough. However:

Proposition 3.1. Let X ∼ LN(0, σ2). Then lim
θ→∞

Var(e−θX)

L(θ)2
=∞.

Proof. According to Proposition 2.2 we have that

lim
θ→∞

Var(e−θX)

L(θ)2
= lim

θ→∞

L(2θ)

L(θ)2
− 1

= lim
θ→∞

1 + w(θ)√
1 + w(2θ)

exp
{
− 1

2σ2w(2θ)2 − 1
σ2w(2θ)

}
exp

{
− 2

2σ2w(θ)2 − 2
σ2w(θ)

} − 1

=∞,

where in the last step we use that w(λ) ∼ log λ for λ = θ and for λ = 2θ, so that
2w(θ)2 − w(2θ) ∼ (log θ)2.

Note that the result is also true for X ∼ LN(µ, σ2) due to the relation (1.1).
The result implies that the Crude Monte Carlo estimation of L(θ) faces the

problem of a relative error that goes to infinity so that a huge value of R is required
if θ is large. This is exactly the same issue as arising in rare-event simulation ([3,
Ch.VI]), where the standard efficiency concepts are the following. A given unbiased
estimator L̂(θ) of L(θ) is strongly efficient or has bounded relative error if

lim sup
θ→∞

Var L̂(θ)

L(θ)2
<∞.

This efficiency property implies that the number of replications required to estimate
L(θ) with a certain fixed relative precision remains bounded as θ → ∞. A weaker
criterion is logarithmic efficiency defined as

lim sup
θ→∞

Var L̂(θ)

L(θ)2−ε
= 0, ∀ε > 0.

This criterion implies that the number of replications needed for achieving certain
relative precision grows at most at rate of order | log(L(θ))|. While bounded relative
error is clearly a stronger form of efficiency, it is widely accepted that for practical
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purposes (numerical implementations), there is no substantial difference between
these two criteria, although it is often more involved to prove bounded relative error
than logarithmic efficiency.

Our objective is to use variance reduction to construct an efficient estimator of
the lognormal Laplace transform L(θ). For that purpose we will construct a new
estimator employing the probabilistic representation of L(θ) obtained in Proposi-
tion 2.1. More specifically, we use Importance Sampling which consists in sampling
from an alternative distribution and then modifying by the likelihood ratio to re-
move the bias. In general, this method requires a careful analysis in order to be
effective as it not always produces a reduction in variance. We proceed to discuss
these ideas in detail.

Recall Proposition 2.1 which says that for any θ > 0, it holds that

L(θ) = L̃(θ)E
[
g(σ(θ)U ; θ)

]
where L̃(θ) is the approximation (1.3) of the Laplace transform, U is a normal
standard random variable and the function g is defined in Proposition 2.1. A naïve
approach is to use a Crude Monte Carlo estimator of E[g(σ(θ)U ; θ)], i.e. simulate
U ∼ N (0, 1) and return g(σ(θ)U ; θ). We refer to this estimator as Naïve Monte
Carlo and denote it L̂N(θ) in order to distinguish from the Crude Monte Carlo
estimator discussed previously.

The Naïve Monte Carlo estimator L̂N(θ) is still highly unreliable (in spite of
the apparent sharpness observed in the numerical examples in Section 4) as it turns
out it has infinite variance when θ > e1σ−2. For proving this, consider the second
moment

E[g(σ(θ)U ; θ)2]

=
1√
2π

∫ ∞
−∞

exp
{
− 2w(θ)

σ2

(
eσ(θ)z − 1− σ(θ)z − 1

2
σ(θ)2z2

)
− z2

2

}
dz

=
1√
2π

∫ ∞
−∞

exp
{
− 2w(θ)

σ2

(
eσ(θ)z − 1− σ(θ)z

)
+
w(θ)− 1

w(θ) + 1
· z

2

2

}
dz. (3.1)

If z → −∞, the exponential term eσ(θ)z vanishes and we are left with a second
order polynomial with leading coefficient [w(θ)− 1]/[2(w(θ) + 1)]. This coefficient is
positive if w(θ) > 1 which occurs if and only if θ > e1/σ2. In such case the integrand
goes to infinity as t→ −∞.

The argument just given shows that although the random variable g(σ(θ)U ; θ)
has the correct expected value, the naïve Monte Carlo estimator is bound to deliver
unreliable estimates because of an infinite variance. This observation is not entirely
surprising as exponential transformations of light tailed random variables (as the
one obtained by applying the function g2 to a normal random variable) often yields
heavy-tailed distributions with infinite moments. To fix this problem we propose
a second estimator which is based on the alternative representation in Proposition
2.1. Recall that

L(θ) = L̃(θ)
√

1 + w(θ)E
[
ϑ(σU ; θ)

]
, ϑ(t; θ) = exp

{
− w(θ)

σ2

(
et − 1− t

)}
.
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where σU ∼ N (0, σ2). Hence, if Y ∼ N (0, σ2) then

L̂IS(θ) = exp
{
−w(θ)2

2σ2
− w(θ)

σ2

}
· ϑ(Y, θ). (3.2)

is an unbiased estimator of L(θ). The notation is motivated by L̂IS(θ) being derived
from the naïve estimator by importance sampling, that is, by Eg(Y ) with Y having
a N
(
0, σ2(θ)

)
density fσ2(θ) being estimated by g(Y )fσ2(θ)(Y )/fσ2(Y ) where Y now

has a N
(
0, σ2

)
density fσ2 . This follows since

fσ2(θ)(y)

fσ2(y)
=

σ

σ(θ)
exp
{
−
( 1

2σ(θ)2
− 1

2σ2

)
y2
}

=
√

1 + w(θ) exp
{
−w(θ)

2σ2
y2
}
,

and
g(y; θ)

fσ2(θ)(y)

fσ2(y)
=
√

1 + w(θ)ϑ(y; θ) .

Moreover, in the next proposition we show that L̂IS(θ) achieves logarithmic efficiency
as θ →∞.

Proposition 3.2. The estimator L̂IS(θ) is an unbiased estimator of the Laplace
transform of the lognormal distribution LN(0, σ2). For θ → ∞ and σ

log θ
→ 0 we

have L(θ) → 0 and the IS estimator is logarithmic efficient. For θ → ∞ and σ
log θ

bounded away from zero the Laplace transform L(θ) is bounded away from zero as
well, and the IS estimator has bounded relative error.

Proof. The unbiasedness has already been discussed above. We write L̂IS(θ) =

L0(θ)ϑ(Y ; θ), with L0(θ) = exp{−[w(θ)2+2w(θ)]/(2σ2)}, and L(θ) = L0(θ)
σ(θ)
σ
I(θ).

Also we note that 0 ≤ ϑ(t; θ) ≤ 1 so that Var[L̂IS(θ)] ≤ L0(θ)
2.

When σ(θ) → 0 we have from Proposition 2.2 that I(θ) → 1. More generally,
from the proof of Proposition 2.2 we have that for σ(θ) ≤ c, for some constant c,
there exist 0 < c1 < c2 <∞ so that c1 < I(θ) < c2. In this case we get

lim
Var[L̂IS(θ)]

L(θ)2−ε
≤ lim c

−(2−ε)
1 L0(θ)

ε
(
1 + w(θ)

)1−ε/2
= lim c

−(2−ε)
1 exp{−ε[w(θ)2 + 2w(θ)]/(2σ2)}

(
1 + w(θ)

)1−ε/2
. (3.3)

It is clear that w(θ) is increasing in σ2 and calculating the derivative of [w(θ)2 +
2w(θ)]/(2σ2) it is seen that this term is decreasing in σ2. The worst case scenario
in (3.3) is therefore for the largest value of σ2, which is of order c2 log(θ) under the
restriction σ(θ) ≤ c, and in this case w(θ) ∼ log(θσ2)→∞. The limit in (3.3) then
becomes

lim exp{−ε[w(θ)2 + 2w(θ)]/(2c2(1 + w(θ)))}
(
1 + w(θ)

)1−ε/2
= 0.

When σ(θ) is no longer bounded we need a different scale to standardize the
integral I(θ). As explained in [4] the relevant scale is τ(θ) =

√
w(θ)2 + 2w(θ) + σ2−

w(θ) so that now

L(θ) = L0(θ)
τ(θ)

σ
Ĩ(θ)
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with c1 < Ĩ(θ) < c2. When σ(θ) is bounded away from zero we have that τ(θ)/σ is
bounded from below by a constant times σ/w(θ). Instead of (3.3) we get the upper
limit

lim exp{−ε[w(θ)2]/(2σ2)}
(
w(θ)/σ

)2−ε
= 0,

under the assumtion that σ
log θ
→ 0.

Finally, when σ
log θ

is bounded away from zero τ(θ)/σ and L0(θ) are both bounded
away from zero, implying that L(θ) is bounded away from zero. This shows that
the IS estimator has bounded relative error in this case.

In summary we propose the following

Algorithm for generating a single replicate of the IS estimator

1. Simulate Y ∼ N (0, σ2).

2. Compute ϑ(Y ; θ) = exp
{
−W (θσ2)

σ2

(
eY − 1− Y

)}
.

3. Return L̂IS(θ) = exp
{
−W 2(θσ2) + 2 W (θσ2)

2σ2

}
ϑ(Y ; θ).

4 Numerical examples

In this section we investigate the numerical performance of our proposals and com-
pare them against several approximations/numerical schemes available in the liter-
ature; we further discuss the quality of the approximations. First we investigate the
approximations of the Laplace transform. Secondly, we corroborate empirically the
efficiency properties of the Monte Carlo estimators considered in this paper.

4.1 Approximations of the Laplace transform

First, we compute our closed form approximation L̃(θ) given in (1.3). Next, we
implement our Importance Sampling Monte Carlo estimator L̂IS(θ) given in formula
(3.2). In our implementation we used 108 replications; each estimate is accompanied
with a 95% confidence interval.

For comparison purposes we consider the approximation proposed by Barakat [5],
and the numerical schemes of Gubner [14] and Tellambura and Seranarte [24]. The
scheme of Tellambura and Seranarte [24] is designed to handle both the characteristic
function and the Laplace transform. Contrary to this, the scheme of Gubner [14] is
designed for the characteristic function only. When using the same scheme for the
Laplace transform, we find that the numerical scheme of Tellambura/Seranarte is
always superior. For this reason we exclude the results of Gubner in the tables below.
Also the approximation of Barakat [5] is designed for the characterisitic function and
uses a truncated series expansion. Formally, when using the same expansion for the
Laplace transform, we find that the approximation works well for small values of σ
and that the series seems not to converge for σ large (roughly σ above 0.5). We have
therefore not included this approximation in the second and third tables below. As
we will see below the scheme of Tellambura/Seranarte works well except for small

11



values of σ. Because of this we have included in the tables the numerical scheme of
Asmussen, Jensen and Rojas-Nandayapa [4] that is designed to work for all values
of θ and σ. The scheme is described in Appendix 5. Each approximation presented
below is accompanied with its relative error with respect to the numerical scheme
described in Appendix 5. The relative error is defined as

RE =
Approximation− Appendix

Appendix
,

where Appendix is the result of the numerical scheme described in Appendix 5.
When the relative error is very small only the relative error is shown in the tables,
otherwise both the approximation and the relative error (in parenthesis) are shown.

We remark that the numerical output corresponding to the numerical schemes of
Gubner and Tellambura/Seranarte presented here is obtained by using the Matlab
codes provided by the authors. Also, for the series expansion of Barakat [5] we use
nine terms as done by Barakat.

Example 1. For our first example we consider σ = 0.0625. The results are in
Table 1.

Table 1: Approximations of L(θ) with σ = 0.0625.

θ L̂IS(θ) Appendix RE L̃(θ) T/S RE Barakat

0.0 1.000000 1.000000 0.0e-00 0.945115 (-0.055) 0.0e-00
0.5 0.606235 ± 1.64e-07 0.606235 9.5e-07 0.572894 (-0.055) -3.5e-12
1.0 0.367880 ± 1.98e-07 0.367880 1.9e-06 0.347607 (-0.055) -1.2e-10
2.0 0.135862 ± 1.45e-07 0.135862 3.7e-06 0.128344 (-0.055) 1.9e-10
4.0 0.018744 ± 3.95e-08 0.018744 7.1e-06 0.017698 (-0.056) -3.3e-10
8.0 0.000373 ± 1.52e-09 0.000373 1.3e-05 0.000352 (-0.057) -5.8e-09

The IS estimator is exact when θ = 0. We see here that for small values of σ the
numerical scheme of Tellambura/Seranarte fails in producing a negligible relative
error. The approximation of Barakat appears to be the most accurate for small
values of σ. Our Laplace Method approximation also delivers very sharp results.

Example 2. Next we consider σ = 1. The results are in Table 2.

Table 2: Approximations of L(θ) with σ = 1.

θ L̂IS(θ) Appendix L̃(θ) RE T/S

0.0 1.000000 1.000000 1.000000 (0.0e-00) -1.2e-14
0.5 0.561717 ± 2.53e-05 0.561707 0.568766 (1.3e-02) -2.2e-15
1.0 0.381752 ± 2.26e-05 0.381756 0.385738 (1.0e-02) -1.0e-15
2.0 0.216304 ± 1.60e-05 0.216309 0.217758 (6.7e-03) -5.7e-14
4.0 0.098042 ± 8.71e-06 0.098051 0.098323 (2.8e-03) -1.5e-14
8.0 0.034267 ± 3.53e-06 0.034269 0.034252 (-4.9e-04) -1.0e-12

As already mentioned, in this example the series of Barakat [5] is not con-
verging and therefore not included in the table. The numerical scheme of Tel-
lambura/Seranarte seems to be the one delivering the best results. Our Laplace
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method approximation (1.3) delivers reliable results (relative error of the order 1%
or less) with a relative error diminishing as θ goes to infinity in accordance with the
asymptotic equivalence of the approximation (cf. Corollary 2.3).

Example 3. In the third example we consider σ = 4. The results are shown in
Table 3.

Table 3: Approximated Values of L(θ) with σ = 4.

θ L̂IS(θ) Appendix L̃(θ) RE T/S

0.0 1.000000 1.000000 1.000000 (0.0e-00) -2.0e-15
0.5 0.513090 ± 5.95e-05 0.513045 0.516946 (7.63-03) -1.0e-13
1.0 0.447220 ± 5.52e-05 0.447199 0.441245 (-1.3e-02) -6.5e-14
2.0 0.382681 ± 5.00e-05 0.382686 0.371296 (-3.0e-02) -4.3e-14
4.0 0.321186 ± 4.43e-05 0.321194 0.307613 (-4.2e-02) -2.8e-14
8.0 0.264176 ± 3.84e-05 0.264181 0.250554 (-5.2e-02) -1.7e-14

As can be seen the numerical scheme of Tellambura/Seranarte works well for
increasing values of σ, whereas the relative error of the approximation L̃(θ) increases
with σ. For σ = 4 the maximum relative error is approximately 7%.

Numerical investigations show that the Matlab implementation of the numerical
scheme of Tellambura/Seranarte eventually breaks down when σ becomes very large.
Similarly, one can show theoretically that the approximation L̃(θ) does not work well
for very large values of σ. The reason for this is that the integrand, that is replaced
by a gaussian curve in the Laplace approximation, is far from the gaussian form.
Nevertheless, our IS Monte Carlo estimator is logarithmic efficient also for σ →∞.
Similarly, the numerical scheme in Appendix 5 works as well in this case.

Remark 4.1. We analysed approximations for the characteristic function of the
lognormal distribution. Besides the approximation of Barakat, and the numerical
schemes of Gubner and Tellambura/Seranarte, we also considered the approxima-
tion suggested by Leipnik [19]. Leipnik proposed a series representations of the
characteristic function given in terms of Hermite polynomials; however, we could
not use this expression to obtain values which could be considered reliable (other
authors have faced the same challenges when trying to implement this algorithm
[cf. 12]).

The conclusions obtained for the characteristic function were the same as for the
Laplace transform so we exclude these numerical examples from our presentation.

4.2 Efficient Monte Carlo

Next we compare the three estimators discussed in this paper: Crude Monte Carlo,
Naïve Monte Carlo and Efficient (Importance Sampling) Monte Carlo. For our
numerical experiments we took σ = 1 and used R = 106 replications. Figure 1
shows the estimates provided by the three methods in logarithmic scale. It is seen
that Crude Monte Carlo provides a reasonable approximation of the true Laplace
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transform for small values of the argument. However, as the value of θ increases,
the quality of the crude estimate deteriorates with an increasing relative error (as
seen by the jiggled nature of the curve). On the other hand, it appears that the two
importance sampling methods discussed in this paper provide sharp approximations
as their values are very close to each other (the curves are indistinguishable from
each other).

Figure 1: Monte Carlo Estimates for the Laplace transform of the lognormal with σ = 1.
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However, one of the two importance sampling estimators (Naïve Monte Carlo)
has an infinite variance, so it can provide unreliable estimates. This effect is noted in
Figure 2 where the variances of these two estimators are plotted against the number
R of replications for 5 runs. The sample variance of the IS estimators is seen to
be very stable and practically constant over the 5 runs. In contrast, for the Naïve
Monte Carlo there is no convergence (it is even possible to appreciate an increasing
trend) and the variation between runs is considerable. These features are the typical
behavior of the sample variance of an estimator with infinite variance.

Figure 2: Variance as function of the number of replications with σ = 1 and θ = 1000.

The variances of these estimators appears in the left panel of Figure 3. It appears
that the first estimator has a lower variance but this is only due to the fact that the
variance is underestimated (the random "peaks" are also a clear symptom of this
problem). On the other hand, the efficient algorithm has a sharp estimate of the
real variance which is reflected in the smoothness of the curve. The relative errors
are plotted in the panel on the right of Figure 3 in linear scale. The relative error of
the IS estimator increases at a rate which appears to be at least logarithmic, thus
corroborating its efficiency. In the case of the Naïve Monte Carlo estimator (infinite
variance), the estimators of the relative error are unreliable.
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Figure 3: Variance and Relative Errors of the importance sampling estimators.

5 Discussion and Conclusion

More on earlier literature: The use of infinite series representations has been
one of the most used approaches to deal with the transforms of the lognormal dis-
tribution. One of the most obvious attempts in the study of L(θ) is using formal
series representations as follows: consider the following integral expression for the
transform of the lognormal distribution

L(θ) =

∫ ∞
−∞

1√
2πσ

exp

{
− θet − (t− µ)2

2σ2

}
dt, <(θ) > 0 ,

replace the term e−θt with its Taylor series, interchange the integral and sum and
perform a term by term integration, thus obtaining a formal series representation
with the moments of the lognormal distribution as coefficients. This attempt turns
to be invalid as the resulting series diverges. This is not surprising because the
procedure described above is equivalent to deriving a Taylor series of the function
L(θ) around the origin, but as noted before, this function is not analytic in the
imaginary axis. This pathology is also related to the well known fact that the
lognormal distribution is not uniquely determined by its moment sequence (Heyde,
1963, [15]). Other methods using series representations appear as early as 1976. The
manuscript of Barouch and Kaufman [6] provides various approximations in terms
of series representations which are valid in specific regions; for instance, a series
expansion of the lognormal density is employed to produce a closed-form asymptotic
approximation in terms of both the Gamma function and its derivatives. However,
none of these expressions can deliver reliable estimates in the whole domain of the
characteristic function. The representation of the characteristic function proposed
by Barakat has the following closed form

φ(θ) = e−iθeθ
2σ2/2

∞∑
n=0

(−1)n(iσ)n

n!
an(iθ)Hn(σθ), (5.1)
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where an(θ) is the n-th coefficient in the MacLaurin series representation of e−θ(e
y−1−y)

and Hn is the n-th Hermite polynomial (notice that we have employed the probabilist
Hermite polynomials instead of the physicist Hermite polynomials in the definition
[cf. 1]). We found that the approximation (5.1) of Barakat [5] is sharp for small
values of σ2, but rapidly deteriorates for large values of σ2 in regions away from
the origin. A similar expression is obtained by Leipnik [19], but instead he shows
that the characteristic function satisfies a functional differential equation of the form
ϕ′(ω) = ieµ+σ

2/2ϕ(eσ
2
ω) (an observation that appeared previously in [6]). Leipnik

employs a method due to de Bruijn to solve this functional differential equation:
the solution (given as an integral involving the gamma function) is proven to have
an explicit convergent infinite series representation in terms of Hermite polynomials
which is of the form

ϕ(θ) =

√
π

2σ2
exp

{
− log2(θ + iπ/2)

2σ2

} ∞∑
n=0

in

σn
dnHn

(
log(θ + iπ/2)/σ

)
where dn are the coefficients in the MacLaurin series representation of the reciprocal
of the Gamma function Γ−1(y+1). Leipnik includes a recursive formula for calculat-
ing the coefficients dn in terms of Euler’s constant and the Riemann Zeta function;
this recursion facilitates the calculation of this series representation. However, the
solution of the functional differential equation cannot be extended to the whole com-
plex plane, so it appears that this approximation only applies for the characteristic
function (in fact, we were not able to obtain a reliable numerical estimate using any
of these formulae).

In his study of the characteristic function, cf. [16], Holgate applied the Lagrange
inversion theorem to the equivalence te−t = iσ2ω to obtain an asymptotic series rep-
resentation of the saddle point function ρ(ω), which inserted into expression (2.7)
provides a representation of the function ϕ(ω) in terms of an asymptotic infinite
series. However, the resulting series oscillates wildly and cannot provide a reli-
able numerical approximations. Finally, another interesting and somewhat different
approach which delivers closed-form expressions is given by Rossberg [22], who pro-
vides a representation of general Laplace transforms in terms of a 2-fold convolution
involving the cdf of the random variable of interest.

Numerical integration methods have also received a good deal of attention and
most of these have been developed in parallel with the analytic approximations dis-
cussed above. One of the earliest references is [7], where the performance of various
standard integration methods is analyzed. It is remarked there that approximating
the characteristic function via numerical integration is very challenging due to the
oscillatory nature of the term eiωt and the heavy-tailed nature of the lognormal den-
sity [cf. 13]. This fact has been further discussed in several other papers [5, 7, 14]).
An obvious approach to deal with the oscillations is to employ complex analytic
techniques: besides the paper of Holgate [16] where the saddlepoint methodology
is exploited, it seems that Gubner [14] was the first in proposing alternative path
contours to reduce the oscillatory behavior of the integrand, as followed up by Tel-
lambura and Seranarte [24] where they proposed specific contours passing through
the saddlepoint at a steepest descent rate; this choice has the effect that oscillations
are removed in a neighborhood around the saddlepoint. The contours proposed
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are the constant phase contour plus two additional approximating contours; the
first is computed numerically, while the other two are given explicitly. In addition,
they also address the heavy-tailed nature of the lognormal density by proposing a
transformation which delivers an integrand with lighter tails.

Summary of the paper

A closed form expression of the Laplace transform of the lognormal distribution does
not exist. Providing a reliable approximation is a difficult problem since traditional
approximation methods fail mainly due to the fact that the lognormal distribution is
heavy-tailed and its transforms are not analytic in the origin. We proposed a closed
form approximation of the Laplace transform which is obtained via a modified ver-
sion of the classic asymptotic Laplace’s method. The main result is a decomposition
of the Laplace transform which delivers a closed form approximation and an ex-
pression of the exact error. The last turns to be useful to prove the asymptotic
equivalence of the proposed approximation. Moreover, since the error term is given
in a probabilistic representation it turns out to be convenient for analysis.

In addition, we constructed a Monte Carlo estimator of the Laplace transform
of the lognormal distribution. This estimator is based on the probabilistic represen-
tation of the error term obtained via the modified version of the Laplace method.
We prove the efficiency of this estimator. In contrast, we illustrated that the Crude
and Naïve Monte Carlo implementations can deliver unreliable estimates for large
values of the argument.

Finally, we conducted numerical experiments where we compared our proposals
against other approximations available in the literature. We found that most ap-
proximations are very sensible for different values of σ. The method of Tellambura
and Seranarte is one of the most precise; however, it delivers unreliable results for
small values of σ and sometimes it fails to converge. The proposal of Barakat can
deliver sharp results for small values of σ but fails for large values of the argument.

In contrast, we showed, that our closed-form expression (1.3) delivers approxi-
mations which remain precise all over the domain of the transform; in particular, it
tends to be more precise for small values of σ. An attractive feature of our proposal
is its simple closed-form. Moreover, we showed that our efficient IS Monte Carlo
estimator and its numerical scheme counterpart in [4] are the only methods which
delivered reliable sharp results for any combination of values of the parameters σ
and θ. In particular, these remain sharp in asymptotic regions as these are based on
an asymptotic method. In addition, these have simple forms and are easy to imple-
ment. Furthermore, these do not have convergence issues. Overall, these proposals
seem to be excellent options to approximate the Laplace transform of the lognormal
distribution.

Appendix A: Numerical scheme of [4]

We use the procedure integrate in the R-package to evaluate the integral in (2.1).
Let w(θ) = W (θσ2). Numerical integration is performed from −∞ to ∞ of the
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function
u 7→ exp

{
−θe−w(θ)(eτu − 1)− (τ 2u2/2− τw(θ)u)/σ2

}
,

giving the result I0, and the Laplace transform is

L(θ) = I0 exp
{
−θe−w(θ) − w(θ)2/(2σ2)

}
τ/
√

2πσ2.

The scale τ is equal to σ/
√

1 + w(θ) (the scale used in (2.1)), when this quantity
is less than 10, and equal to

√
w(θ)2 + 2w(θ) + σ2−w(θ) otherwise. Finally, in the

above integration eτu is replaced by e700 when τu > 700.
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