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Finite difference time domain (FDTD) models are developed to solve the vibroacoustic problem of a

thin elastic plate undergoing point force excitation and radiating into an acoustic cavity. Vibroacoustic

modelling using FDTD can be computationally expensive because structure-borne sound wavespeeds

are relatively high and a fine spatial resolution is often required. In this paper a scaling approach is pro-

posed and validated to overcome this problem through modifications to the geometry and physical prop-

erties. This allows much larger time steps to be used in the model which significantly reduces the

computation time. Additional reductions in computation time are achieved by introducing an alternative

approach to model the boundaries between the air and the solid media. Experimental validation is car-

ried out using a thin metal plate inside a small reverberant room. The agreement between FDTD and

measurements confirms the validity of both approaches as well as the FDTD implementation of a thin

plate as a three-dimensional solid that can support multiple wave types. Below the lowest room mode,

there are large spatial variations in the sound field within the cavity due to the radiating plate; this indi-

cates the importance of having a validated FDTD model for low-frequency vibroacoustic problems.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Prediction of low-frequency sound fields inside cavities

with airborne sources is well-suited to finite difference time

domain (FDTD) models (e.g., see Refs. 1 and 2). However,

many noise control problems in engineering involve low-

frequency sound radiation from vibrating surfaces into

acoustic cavities. Hence this paper concerns FDTD model-

ling of the interaction between the vibration field of a point-

excited thin elastic plate and the resulting sound field at low

frequencies inside an acoustic cavity. Running such a model

can be problematic because the general FDTD formulation3

that uses a uniform FDTD grid requires a large number of

calculation cells and small time steps.

In this paper a scaling approach is introduced for FDTD

modelling in order to give significant computational advan-

tages. Previous approaches to model fine geometric details

embedded in large FDTD models have primarily been con-

cerned with the use of non-uniform grids, parallelization of the

FDTD computations, and the use of dimension-reduced mod-

els. Parallelization requires the splitting of routine calculations

and memory over a number of central or graphics processing

units to reduce computation times and has been implemented

by a variety of authors in a number of research fields such as

vibroacoustics,3 electrodynamics,4 and vibration.5 The use of

non-uniform grids (a technique also referred to as sub-gridd-

ing) allocates a finer grid resolution to regions that require

more detail whilst using coarser grid cells elsewhere.4 Sub-

gridding has been used in acoustic FDTD problems6,7 but does

not seem to have been considered in vibroacoustics.

Dimension-reduced models use a two-dimensional grid

to represent solid media rather than three-dimensional calcula-

tion cells. This results in significant memory savings

and reduced computation times. Previous work used

Kirchhoff�Love theory for a two-dimensional implementa-

tion of thin elastic plates8 and Mindlin�Reissner theory for

two-dimensional implementation of thick elastic plates.9

These approaches are more complex to implement than gen-

eral viscoelastic explicit FDTD routines. To provide flexibility

in modelling, this paper considers a general viscoelastic

explicit formulation for a solid medium which allows all

forms of wave motion. In practice, bending waves are usually

of most interest for vibroacoustic problems due to their rela-

tively efficient sound radiation.

This paper focuses on a point-excited elastic plate radiat-

ing into an acoustic cavity. Section II describes the theory

used to create the FDTD model and introduces an alternative

approach to modelling boundaries between acoustic and solid

media. A scaling approach is also introduced to improve com-

putational efficiency for explicit methods that are limited by

the Courant condition (but avoids the need for sub-gridding

schemes). This approach is valid for vibroacoustic problems

where the structural response is dominated by bending wave

motion. Section III describes the experimental setup used to

validate the FDTD model. Section IV contains results and

analysis from the comparison of measurements and FDTD.

II. THEORY

A. FDTD model

Previous work by Toyoda and Takahashi3 modelled a

vibrating solid in an acoustic cavity using FDTD bya)Electronic mail: carl.hopkins@liv.ac.uk
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considering only velocity and stress fields. The viscoelastic

field is described using a velocity field (vector) and a stress

field (tensor). However, in this work a pressure field (scalar)

is used for the acoustic medium. This makes it easier to inte-

grate existing acoustic FDTD routines, particularly those

implementing boundaries using a perfectly matched layer

(PML).10 Velocity and stress fields are used to model the

solid medium, whereas velocity and pressure fields are used

to model wave propagation in the acoustic medium, includ-

ing PML boundaries. Coupling between the acoustic

medium and the solid medium is a sequential two-way pro-

cess such that any change in the acoustic field is transferred

to the vibration field of the solid medium and vice versa.

This is implemented using the following procedure: first,

updating pressure field nodes, second, updating stress field

components of the solid medium, and third, updating all the

velocity components for the air and solid media. This updat-

ing loop then repeats until the simulation has reached a pre-

scribed value of time, upon which it is stopped.

Stress nodes in the solid medium that are located outside

of the plate, and acoustic pressure nodes that are located

inside the plate, are not considered for the calculations and

need not be allocated memory.

1. Acoustic wave propagation

The set of acoustic update equations to be used in the

FDTD routine are described by Kunz.11 These are the equa-

tion of motion for air particles,

@vi

@t
¼ � 1

qo

rp (1)

and continuity,

@p

@t
¼ �qoc2r:vi; (2)

where p is the acoustic pressure, vi is the velocity vector in

the ith coordinate corresponding to the x-, y-, or z-directions,

qo is the density of air and c is the speed of sound in air.

2. Structure-borne sound propagation

A general formulation is used for the solid medium that

allows all types of wave motion. Momentum equations are then

formulated in terms of the relationship between the stress tensor

acting on an element of the solid material and the correspond-

ing velocity of that element.3 The basic constitutive model

assumed for the solid medium is a linear viscoelastic Voigt-ele-

ment.12 Time domain equations using Einstein summation

notation that describe the wave propagation are given by3,13

q
@vi

@t
¼ @rji

@xj
� bvi; (3)

drij

dt
¼ kekkdij þ 2leij þ v

dekk

dt
dij þ 2c

deij

dt
; (4)

where q is the material density, rij is the stress tensor, dij is

the Kronecker delta, k and l denote the Lam�e constants

(which can be derived from other material properties13), b is

a damping constant proportional to velocity, and v and c
denote the viscosity damping constants. The variables eij and

ekk are defined by

eij ¼
1

2

@vj

@xi
þ @vi

@xj

� �
; (5)

ekk ¼
@v1

@x1

þ @v2

@x2

þ @v3

@x3

� �
: (6)

In order to implement the FDTD routine, Eqs. (3) and (4) are

discretized to allow their explicit numerical solution.

As an example of a set of discretized equations, consider

the simple case of a two-dimensional space lattice (see Fig. 1)

and consider the stress and velocity components along the z-

direction as described by Eqs. (7) and (8):

q
@vz

@t
¼ @rxz

@x
þ @rzz

@z
� bvz; (7)

drzz

dt
¼ k

@vx

@x
þ ðkþ 2lÞ @vz

@z
þ v

@

@t

@vx

@x

� �

þ vþ 2cð Þ @
@t

@vz

@z

� �
: (8)

The lattice in Fig. 1 shows how the two-dimensional compo-

nents of stress (represented by r and s for the normal and

tangential components, respectively) and velocity (whose

nodes are represented by double arrows) are placed at differ-

ent positions forming a staggered grid. However, the normal

stress components, rxx and rzz, are placed at the same posi-

tion. In addition to the spatial offset, there is also an offset in

time, where the stress components are calculated at different

times to the velocity components.

Based on the space lattice shown in Fig. 1, Eq. (7) is dis-

cretized as follows:

vnþ0:5
z ji;jþ0:5 ¼ vn�0:5

z ji;jþ0:5 þ
Dt

q

h
Dir

n
xzji�0:5;jþ0:5

þDjr
n
zzji;j � bvn�0:5

z ji;jþ0:5

i
; (9)

where Di denotes the forward difference for spatial point i
and n denotes the time step. For example,

FIG. 1. Spatial discretization used for the FDTD grid.
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Dir
n
xzji�0:5;jþ0:5 ¼

rn
xzjiþ0:5;jþ0:5 � rn

xzji�0:5;jþ0:5

Dx
(10)

and

Djv
nþ0:5
z ji;j�0:5 ¼

vnþ0:5
z ji;jþ0:5 � vnþ0:5

z ji;j�0:5

Dz
: (11)

In order to discretize Eq. (8), the mixed derivatives can be

reversed using Clairaut’s theorem:

@

@t

@vz

@z

� �
¼ @

@z

@vz

@t

� �
¼ @az

@z
; (12)

where az represents the acceleration in the z direction. In dis-

crete form it is calculated from vz using

anþ1
z ji;j ¼

vnþ1
z ji;j � vn

z ji;j
Dt

: (13)

Using this variable substitution, Eq. (8) is discretized as

rnþ1
zz ji;j¼rn

zzji;jþDt kDiv
nþ0:5
x ji�0:5;j

h
þðkþ2lÞDjv

nþ0:5
z ji;j�0:5þvDia

nþ0:5
x ji�0:5;j

þðvþ2cÞDja
nþ0:5
z ji;j�0:5

i
: (14)

Equations (9) and (14) essentially form the update equations

for vz and rzz, respectively. The nature of the method is that

the value of a variable at a given instant of time is calculated

directly from the values obtained at previous instants of

time. Note that in order to transform Eqs. (9) and (14) into a

form that can be implemented using a programming lan-

guage, the indexes of the field array variables must be inte-

gers and cannot be fractions.

For the vibroacoustic problem considered in this paper,

the variables are arranged in three-dimensional space

according to a lattice described by Schroeder et al.14

3. Vibration source

The simulations use a “hard” vibration source as

described by Schneider.15 For this source the normal stress

component in the z-direction is assigned a time-dependent

force, F(t), which is converted into rzzðtÞ through division

by the area of a single horizontal grid cell, DxDy. The vibra-

tion source node follows the driving function irrespective of

the state of its neighbour nodes.

4. Damping

Models are intended for the low-frequency range; hence,

damping is not considered for wave motion in air. However, it

is essential to include damping for the solid medium. All dis-

sipation of mechanical energy occurs with internal damping

due to the viscoelastic nature of the plate material which is

incorporated using the approach of Toyoda et al.21 Damping

constants b, c, and v result in a frequency-dependent loss fac-

tor, similar to systems characterized by Rayleigh damping.

The constant b results in damping, which is proportional to

velocity. The frequency-dependence of the b loss factor curve

is inversely proportional to frequency. Constants c and v give

equivalent frequency characteristics; hence it is possible to

consider only c, and set v to zero whilst still obtaining a gen-

eral Rayleigh damping profile. Using the constants b and c,

the frequency-dependent loss factor is then given by22

g fð Þ ¼ 2pf cþ b
2pf

; (15)

where f is the frequency and g indicates the loss factor.

The frequency-dependent loss factor of the plate is

determined from measurements. The damping coefficients

are calculated such that the loss factor used in FDTD follows

the measured loss factor as closely as possible; this is

described in Sec. III B.

5. Numerical grid positions

Sound pressure is calculated at discrete points along uni-

form horizontal and vertical grids. The geometrical position-

ing of these grids matches the grids used in the experimental

validation. The pressure impulse response at the grid posi-

tions is Fourier transformed and divided by the spectrum of

the driving function FðxÞ, in order to obtain a transfer func-

tion of pressure-to-force.

B. Boundary conditions

1. Boundary conditions for the acoustic medium

For the room, the acoustic boundary conditions are

frequency-independent and are described in detail by Yokota

et al.16

2. Boundary conditions around the edges of a plate

For the edges of the plate, the implementation of simply

supported boundaries aims to approximate the following

conditions:17

w ¼ 0;Mx ¼ 0

w ¼ 0;My ¼ 0

for x ¼ 0; Ly

for y ¼ 0; Lx;

�
(16)

where w denotes displacement and Mx and My indicate bend-

ing moments along the x- and y-directions, respectively.

To implement simply supported boundaries using the

general viscoelastic FDTD formulation, only the kinematic

condition w¼ 0 needs to be specified. This is approximately

carried out by assigning a value of zero to the vertical veloci-

ties that are located on the mid-plane around the plate edges

as shown in Fig. 2. In this diagram the velocity nodes of the

air particles are represented by a single arrow whereas the

velocity of the solid medium is represented by a double arrow.

Note that the approach described here differs from the imple-

mentation used for dimension-reduced models,8 which require

both displacement and bending moment conditions.

3. Boundary conditions at the interface between the
plate and the surrounding air

For velocity nodes at the boundary between air and solid

media, Toyoda et al.18 split the velocity update equation into

2998 J. Acoust. Soc. Am. 142 (5), November 2017 Nuno Ferreira and Carl Hopkins



two equations involving a forward difference and a back-

ward difference. These equations are combined to form a

new equation, where the space step across the boundary is

divided by a factor of 2 and the density at the boundary

between the two media is averaged. This type of boundary

condition is referred to here as the “standard approach.” To

improve computational efficiency, the implementation in

this paper considers the update equations for the velocity

nodes that lie on the boundaries to have the same form as the

other solid medium velocity update equation [Eq. (9)] for

which the density equals that of the actual solid. However,

both the pressure and stress field are modelled; hence the

velocity update equation for a boundary node must include

both pressure and stress terms, as indicated in Eq. (17):

vnþ0:5
z ji;jþ0:5 ¼ vn�0:5

z ji;jþ0:5

þDt

q

rn
xzjiþ0:5;jþ0:5 � rn

xzji�0:5;jþ0:5

Dx

�

þ
rn

zzji;jþ1 þ pnji;j
Dz

� bvn�0:5
z ji;jþ0:5

�
: (17)

It is assumed that compression corresponds to a positive pres-

sure increment, whereas in terms of stress tensors the same

compression is assumed to be a negative stress increment

(rxx¼ ryy¼rzz¼ –p).19 This sign convention is used in Eq.

(17). The shear stress nodes adjacent to the boundary are set

to zero because air is assumed to be an inviscid medium. In

this paper, the approach to implementing boundary conditions

will be referred to as a “simplified approach” because the

implementation requires fewer calculations than the standard

approach. For convenience the derivation considers a plate

lying in a Cartesian coordinate plane, although it is feasible

(but more complex) to consider other plate orientations.

The standard and simplified approaches result in the pat-

tern shown in Fig. 3. Note that the principle applies to all nodes

of the solid medium that are adjacent to the surrounding

medium, not just the upper and lower surfaces of the solid

medium. In this lattice diagram, the simplified approach results

in boundary conditions for the plate which appear to be

“ragged,” although in terms of its eigenfrequencies the plate

behaves as if it has smooth edges. Note that the

eigenfrequencies correspond to a different set of physical

dimensions as might be expected from the number of nodes in

the solid medium. The physical dimensions along a given

direction using the simplified boundary conditions are referred

to as “effective” dimensions, which are Lx;eff ; Ly;eff , and Lz;eff .

Considering the number of normal stress nodes assigned to the

plate, or by considering the standard approach, the physical

dimensions that are to be expected, are referred to as

“expected” dimensions, Lx; exp ; Ly; exp ; and Lz; exp . In Fig. 3, the

spatial offset along the ith Cartesian direction between Li;eff

and Li; exp is denoted by di;boundary. Li;eff can be obtained from

Li; exp via the relation Li;eff ¼ Li; exp � 2di;boundary. Hence, it is

necessary to quantify di;boundary in order to predict Li;eff from

Li; exp and to be able to design plates with a prescribed set of

dimensions.

To quantify the value of di;boundary along a given direc-

tion, i, of the plate, a number of numerical tests are now car-

ried out. These tests are based on the assumption that the

mismatch between the expected and effective dimensions

along a given direction must vanish as the number of calcu-

lation cells in that direction is increased. Therefore, tests are

carried out with the minimum possible number of nodes

along the thickness direction of the plate (two normal stress

nodes) and the largest possible number of nodes along the

other two lateral directions. The difference between the

eigenfrequencies obtained from the FDTD model using the

simplified approach and the eigenfrequencies corresponding

to a plate with the expected dimensions given by Eq. (19) is

primarily due to the difference between the expected and the

effective thickness of the plate. Using this numerical

approach it is only possible to identify an approximate value

for di;boundary; however, this approximation becomes more

accurate as the number of lateral calculation cells increases.

To carry out these tests, consider a simply supported

plate in the xy plane for which the analytical equation

describing the eigenfrequencies fp;q for thin plate bending

wave motion is given by20

fp;q ¼
pLzcL

2
ffiffiffiffiffi
12
p p

Lx

� �2

þ q

Ly

� �2
" #

; (18)

FIG. 2. (Color online) Lattice diagram for a cross-section through the solid

medium (shaded grey) indicating the implementation of the simply supported

boundary condition using a velocity node set to zero indicated by 1.

FIG. 3. (Color online) Lattice diagram indicating the solid medium (shaded

grey), the expected boundary between the air and the solid medium (dashed

line) and the effective boundary (solid line).
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where Lz is the plate thickness, cL is the quasi-longitudinal

wavespeed, and Lx and Ly are the lengths of the plate along

the x- and y-directions, respectively.

The eigenfrequencies of a plate with expected dimen-

sions are calculated as follows:

f exp
p;q ¼

pLz; exp cL

2
ffiffiffiffiffi
12
p p

Lx; exp

� �2

þ q

Ly; exp

� �2
" #

(19)

and the eigenfrequencies of a plate with effective dimensions

are given by

f eff
p;q ¼

pLz;effcL

2
ffiffiffiffiffi
12
p p

Lx;eff

� �2

þ q

Ly;eff

� �2
" #

: (20)

As the number of lateral nodes along the x- and y-directions

is increased relative to the z-direction, the accuracy is

increased for the two approximations: Lx;eff � Lx; exp and

Ly;eff � Ly; exp . With the approximations for the expected and

effective lengths across the lateral directions of the plate, the

expected and effective eigenfrequencies are then related to

the expected and effective thicknesses of the thin plate by

f eff
p;q=f exp

p;q ¼ Lz;eff=Lz; exp : (21)

Since Lz;eff ¼ Lz; exp � 2dz;boundary it can be shown that

dz;boundary ¼
Lz; exp

2
1�

f eff
p;q

f exp
p;q

 !
: (22)

To allow bending wave motion, the minimum number

of normal stress nodes across the thickness (z-direction) of

the plate is two. This allows the lower stress node to be

strained and the upper node to be under compression, and

vice versa. Two thickness nodes are assumed in the follow-

ing analysis because there is no computational advantage in

using higher numbers of thickness nodes, but the same pro-

cess can be followed if this is required. Hence, Lz; exp ¼ 2Dz
and the following equation relates dz;boundary to the spatial

resolution along the z-direction:

dz;boundary ¼ Dz 1�
f eff
p;q

f exp
p;q

 !
: (23)

The result in Eq. (23) can also be used to relate di;boundary to

the spatial resolution along the ith direction.

In principle, Eq. (23) applies to any plate mode; how-

ever, the numerical tests use the fundamental mode

(p¼ q¼ 1) to determine the effective thickness because

higher modes are affected by numerical errors such as spatial

discretization and numerical dispersion.

The numerical tests are carried out using undamped plates

(arbitrary material properties) with two normal stress nodes

along the thickness direction (for example, see Fig. 3 where i
corresponds to the z-direction) and a varying number of normal

stress nodes along each of the horizontal x- and y-directions.

The spatial resolution is set to 0.025 m in all directions so the

expected plate thickness h exp is 0.05 m. The results are given

in Table I in terms of the ratio f eff
1;1=f exp

1;1 . Assuming that the

mismatch between the expected and effective lengths along a

given direction vanishes as the number of nodes is increased in

that direction, the ratio of 0.70 obtained using 120 stress nodes

can be considered to be the most accurate; hence the value of

dz;boundary is calculated to be dz;boundary ¼ ð1� 0:7ÞDz ¼ 0:3Dz.

Therefore, the relation between di;boundary and the spatial resolu-

tion along the ith direction, denoted by xi, is also given by

di;boundary ¼ ð1� 0:7ÞDxi ¼ 0:3Dxi.

The next step is to define a methodology using the sim-

plified boundaries approach to model a generic plate with a

prescribed set of dimensions. In order to model a plate with

n normal stress nodes and a side length of Lx;eff along the x-

direction, it is necessary to set the spatial resolution, Dx, to

Lx;eff ¼ nDx� 2� 0:3Dx() Dx ¼ Lx;eff=ðn� 0:6Þ. It can

be seen that the spatial resolution which is required along

that direction is defined by Dx ¼ Lx=ðn� 0:6Þ rather than

Dx ¼ Lx=n, where n is the number of normal stress nodes

along a given direction. If n is set to two, which represents

the number of stress nodes along the thickness direction, the

space step along the thickness direction needed to implement

the simplified boundary conditions approach is around 40%

larger than that required using the approach described by

Toyoda et al.18 This larger space step provides significant

computational benefits because the FDTD time step will be

larger; hence the number of iterations required to reach a

given time interval will be reduced.

C. Scaling of vibroacoustic fields

The Courant condition determines the maximum possi-

ble value for the time step in the FDTD model according to

the following inequality:11

Dt � C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dx

� �2

þ 1

Dy

� �2

þ 1

Dz

� �2
s2

4
3
5
�1

; (24)

where C is the highest phase velocity of any wave motion

within the frequency range of excitation and Dx; Dy and Dz
are the spatial resolutions in the x-, y-, and z-directions,

respectively. If Dt does not satisfy the inequality in Eq. (24),

the solution becomes unstable, i.e., the response will be

unbounded. In practice, other factors such as damping and

boundary conditions can also give rise to unstable solutions

and it is not always possible to identify whether waves that

have the highest phase velocity have actually been excited.

Hence the aim is to find the largest value of Dt that provides

a stable solution over the time period of the FDTD

simulation.

In contrast to room acoustic simulations, it can be com-

putationally expensive to run a large vibroacoustic model

with a fine spatial resolution because of the fact that

TABLE I. Ratios of eigenfrequencies obtained using effective and expected

boundaries using different numbers of normal stress nodes.

Number of nodes 20 40 60 80 100 120

f eff
1;1=f exp

1;1 ð�Þ 0.68 0.69 0.69 0.69 0.70 0.70
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structure-borne sound wavespeeds are relatively high. In

such cases, it is proposed to use an alternative formulation

for the vibroacoustic problem to yield much faster results

than with standard FDTD.3 The main issue with vibroacous-

tic models is that if the spatial resolution is kept constant

throughout the domain, a large number of cells are required

to represent the whole domain. With a fine spatial resolution,

the required time step will be very small as a consequence of

the Courant condition. To overcome this problem, the pro-

posal is to model a larger structure that has the same vibra-

tion characteristics as the actual structure and couple it to the

acoustic medium because a coarse spatial resolution will

result in a larger time step. Once the equivalent structure is

identified and processed, the results can be scaled back to

represent the actual structure. Assuming the thickness direc-

tion of the plate is coincident with the z-direction (vertical

direction), the following steps are used to scale the vibroa-

coustic model:

(1) A scaling factor s> 1 is chosen and a plate with the same

eigenfrequencies as the actual plate is identified where the

side dimensions of the scaled plate are Lx0 ¼ sLx and

Ly0 ¼ sLy; respectively. In order to obtain the same bend-

ing eigenfrequencies [given by Eq. (18)], the thickness of

the scaled plate is h0 ¼ s2h.

(2) The spatial resolution of the scaled problem is then dic-

tated by the dimensions of the scaled plate to give

Dx0 ¼ sDx, Dy0 ¼ sDy; and Dz0 ¼ s2Dz. In addition to

scaling the plate, the x-, y-, and z-dimensions of the cav-

ity also need to be scaled up by a factor of s to match

the scaled x- and y-dimensions of the plate and to main-

tain the eigenfrequencies of the cavity. The scaled

acoustic cavity with dimensions Lx0 ¼ sLx; Ly0 ¼ sLy;
and Lz0 ¼ sLz is modelled using the aforementioned spa-

tial resolutions: Dx0; Dy0; and Dz0. Uniform scaling of

the x-, y-, and z-dimensions of the cavity by a factor of

s results in the use of fewer calculation cells along the

z-direction because the space step is larger along this

direction (Dz0 ¼ s2Dz > sDz), requiring a factor of

s fewer cells than if the spatial resolution along the

z-direction was given by z0 ¼ sDz. The advantage of

fewer cavity cells along the z-direction is not exclusive

to explicit FDTD routines that depend on the Courant

condition as it could be used to increase the computa-

tional efficiency of other prediction methods. To calcu-

late the eigenfrequencies of a scaled rectangular room

so that they equal those of the actual room, the speed of

sound in air must be scaled using c0 ¼ sc, such that

f 0nx;ny;nz
¼ sc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx

sLx

� �2

þ ny

sLy

� �2

þ nz

sLz

� �2
s

; (25)

where f 0n denotes the eigenfrequencies of the scaled

room.

(3) To keep the same characteristic acoustic impedance, the

density of the air must be scaled using q0o ¼ qo=s.

(4) The magnitude of the driving-point mobility for the

scaled plate needs to be offset from that of the actual

plate. The driving-point mobility, Ydp, of a simply sup-

ported isotropic plate is given by

Ydp ¼
v

F
¼ i4x

qLzS

X1
p¼1

X1
q¼1

w2
p;q x; yð Þ

x2
p;q 1þ igð Þ � x2

; (26)

where i2 ¼ �1, S is the surface area of the plate,

w2
p;qðx; yÞ is the local bending mode shape, and xp;q

denotes the angular mode frequency.

Since the mode shapes, eigenfrequencies and loss factors

are the same for the actual and scaled plates, the only differ-

ence between their transfer mobilities is in the absolute value.

Taking the absolute value of the transfer mobility yields

jYdpj¼
��� v
F

���¼ ���� i4x
qLzS

����
����X1

p¼1

X1
q¼1

w2
p;q x;yð Þ

x2
p;q 1þ igð Þ�x2

����: (27)

Hence the following ratio is expected between the driving-

point mobility of the scaled and actual plates:

jYdpjscaled

jYdpjactual

¼ LzS

L0zS
0 ¼

LzLxLy

L0zL
0
xL0y
¼ LzLxLy

s2LzsL0xsL0y
¼ s�4: (28)

This indicates that the magnitude of the scaled driving-point

mobility is smaller than that of the actual plate, by a factor of

s�4 or by 80 log10ðsÞ dB when considering mobility in decibels

using 20 log10ðjYdpjÞ. Therefore the results should be scaled

accordingly, in order to account for this offset in the magnitude

of the driving-point mobilities. For the experimental validation

in this paper, s¼ 6 and therefore the shift in level is � 62 dB.

One limitation concerns the high-frequency limit for

pure bending wave theory. If the thin plate frequency limit

for the actual plate is fB � 0:05cL=h, the limit for the scaled

plate f 0B is given by f 0B ¼ fB=s2 and the error in the simulation

results will increase above this limit.23

1. Extension to other plate boundary conditions

For plates with boundary conditions other than simply sup-

ported boundaries, it is only necessary to be able to calculate or

estimate the eigenfrequencies in order to identify the scaling

factor for the z-direction. Eigenfrequencies corresponding to

the mode (m, n) of a rectangular thin plate were originally

approximated by Warburton25 for any combination of free (F),

simply supported (SS) and clamped (C) boundaries:

xmn ¼
hcL

2
ffiffiffi
3
p p

Lx

� �2

qmn; (29)

where the term qmn is given by

qmn ¼
"

G4
x mð ÞþG4

y mð Þ Lx

Ly

� �4

þ 2
Lx

Ly

� �2

� �Hx mð ÞHy nð Þþ 1� �ð ÞJx mð ÞJy nð Þ
	 
#0:5

(30)

with constants Gx, Hx, Jx, Gy, Hy, and Jy that are characteris-

tic of each boundary condition involving any permutation of

J. Acoust. Soc. Am. 142 (5), November 2017 Nuno Ferreira and Carl Hopkins 3001



F, C, and SS conditions. These constants only depend on the

mode indices, m and n. Hence, when lateral dimensions of

the plate are scaled by a factor of s, the eigenfrequencies of

the scaled system are given by

x0mn ¼
hcL

2
ffiffiffi
3
p p

sLx

� �2

qmn: (31)

The term qmn is unaffected by geometric scaling, since Gx,

Gy, Hx, Hy, Jx, and Jy only depend on the mode indices m
and n and the scaling factors on the terms sLx=sLy cancel

out. Hence, to obtain the same eigenfrequencies as the origi-

nal system, it is necessary to scale the thickness of the plate

by a factor of s2. It is therefore concluded that the scaling

methodology is identical for plates with any combination of

free, clamped or simply supported boundaries.

2. Extension to other topologies

The scaling approach is readily applied to more complex

problems involving a number of geometrically parallel thin

plates and/or acoustic cavities as illustrated by the examples

in Fig. 4. This includes the situation which simulates a sound

transmission suite that can be used to determine impact or

airborne sound insulation—see Fig. 4(d). When scaling a

thin plate, the spatial resolution across its lateral dimensions

is scaled by a factor of s, whereas the spatial resolution along

the thickness direction must be scaled by a factor of s2, so

that the eigenfrequencies predicted by Eq. (18) remain

invariant. This scaling of the spatial resolution can be con-

sidered as a coordinate transformation that applies to the

entire FDTD model, given by x0 ¼ sx; y0 ¼ sy; and z0 ¼ s2z.

For models involving one or more parallel plates, the scal-

ing of their dimensions will be congruent because their lateral

dimensions will be scaled by a common factor of s and their

thickness direction will be scaled by a common factor of s2.

Therefore all the scaled plates will preserve the dynamic char-

acteristics of the actual plates. For example, the plates shown

in Fig. 4(b) can be simultaneously scaled if the thickness value

for each of the two plates is set to h01 ¼ s2h1 and h02 ¼ s2h2.

Additionally, since both plates use the same scaling factor,

their lateral dimensions are given by L0x1 ¼ sLx1; L0y1 ¼ sLy1

and L0x2 ¼ sLx2; L0y2 ¼ sLy2.

Future work could consider whether it would be compu-

tationally advantageous and feasible to apply the scaling

approach to orthogonally arranged plates facing into a cav-

ity, i.e., two plates forming an L-junction.

3. Numerical efficiency of the scaling approach

As noted in the second bullet point in Sec. II C, the scal-

ing approach requires a factor of s fewer elements than with-

out scaling. In addition to the computational gain from the

reduction in the number of elements, there is the additional

benefit of being able to use a larger time step. This gain in

numerical efficiency can be estimated by assuming that

Dx� Dz and Dy� Dz such that the corresponding terms

for Dx and Dy in the Courant condition [Eq. (24)] can be

omitted. For thin plates this approximation is reasonable

because the plate thickness (z-direction) is typically at least

one order of magnitude smaller than the lateral dimensions

of the plate. Hence the relation between the original time

step and the scaled time step is estimated to be

Dt0

Dt
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dz

� �2
s2

4
3
5,

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2Dz

� �2
s2

4
3
5 ¼ s2: (32)

Therefore the time step using the scaling approach is

larger than that obtained without scaling by a factor of up

to s2. In conclusion, the scaling approach requires s fewer

cells and the relationship between the scaled and original

time steps is a maximum of s2. Hence the total computa-

tional time of the scaled model is estimated to be reduced

by a factor up to s� s2 ¼ s3 compared to the computation

time needed for the original model. Note that this is the

maximum possible reduction in computation time; the

actual reduction in computation time will be less than s3.

FIG. 4. (Color online) Examples of valid configurations for the scaling

method: (a) and (b) two isolated, parallel plates, (c) two isolated plates that

each face into an acoustic cavity and (d) two acoustic spaces separated by a

plate. Light grey surfaces represent the boundaries of the acoustic cavity.

FIG. 5. (Color online) Reverberant room indicating (a) the plate (grey sur-

face), (b) the horizontal measurement grid, and (c) the vertical measurement

grid.

FIG. 6. (Color online) Experimental setup in the reverberant room: alumin-

ium plate with viscoelastic material arranged in a diagonal pattern.

3002 J. Acoust. Soc. Am. 142 (5), November 2017 Nuno Ferreira and Carl Hopkins



III. EXPERIMENTAL VALIDATION

A. Experimental setup

A 5 mm thick aluminium plate (1.2 m� 0.8 m) is placed

inside a 13 m3 reverberant room (1.83 m� 2.87 m� 2.48 m)—

see Fig. 5(a). This configuration was chosen to validate the

FDTD model in the low-frequency range because the first two

bending modes of the plate occurred below the fundamental

room mode.

The plate is positioned at a height of 0.78 m above the

floor using a metal frame—see Fig. 6. The minimum dis-

tance between the short edge of the plate and the nearest

wall is 0.53 m and between the long edge and the nearest

wall is 0.33 m. A simply supported boundary condition is

applied around its edges by using a heavy steel frame with

pins at 20 mm centres as described by Yin and Hopkins.24

To provide damping similar to the Rayleigh curve, a visco-

elastic damping material (Sylomer) is fixed onto the plate

surface. By applying different configurations of damping

material and measuring the loss factors using the 3 dB down-

points in the magnitude of the driving-point mobility, a

diamond-shaped configuration (see Fig. 6) is chosen because

the overall damping approximately follows a Rayleigh

damping curve below 200 Hz.

Sound pressure measurements inside the room are taken

using two grids, one horizontal grid (15� 11 positions) and

one vertical grid (13� 11). Figure 5(a) defines the x-, y-, and

z-directions for these grids. The horizontal grid is 0.84 m

above the floor and 0.06 m above the plate [Fig. 5(b)]. The

vertical grid is 0.82 m from the back wall and 0.32 m from

the edge of the plate [Fig. 5(c)]. The distances between adja-

cent grid positions are: 0.2 m in the x-direction for the hori-

zontal grid, 0.18 m in the y-direction for both horizontal and

vertical grids, and 0.2 m in the z-direction for the vertical

grid, as indicated in Fig. 7. An array of six 1/4 in. micro-

phones (B&K type 4135 with B&K type 2670 pre-ampli-

fiers) is used to measure the sound pressure at the grid

points. The maximum uncertainty in each microphone posi-

tion is estimated to be 61.5 cm in the plane of the horizontal

or vertical grid.

A force transducer (B&K type 8200) and accelerometer

(B&K type 4393) are connected at the excitation point to

monitor the input force. This also allows measurement of the

driving-point mobility in order to estimate the modal loss

factors. The excitation signal is pseudo-random noise with a

cutoff frequency of 200 Hz.

The sound pressure and force signals are used to calcu-

late a complex transfer function of pressure-to-force at all

grid points using 0.25 Hz frequency resolution and an upper

frequency of 200 Hz. The magnitude of the transfer functions

obtained at 0.25 Hz were linearly averaged in order to yield

1 Hz intervals.

FIG. 7. (Color online) Source and

receiver positions for (a) horizontal

and (b) vertical grids.

FIG. 8. Vibration hard source: (a)

Time-dependent normal stress and (b)

Fourier spectrum (magnitude).
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B. Numerical implementation

In the FDTD model the material properties for the alu-

minium plate are: q¼ 2700 kg/m3, cL ¼ 5100 m/s and

� ¼ 0:34. This results in the following values for the Lam�e
constants: l ¼ 2:32� 1010 N/m2 and k ¼ 4:92� 1010 N/m2.

The following Rayleigh damping constants are used to simu-

late the measured damping: b¼ 11 000 Ns/m4, c¼ 0 Ns/m2,

and v¼ 0 Ns/m2.

The properties of air for the acoustic medium were

qo¼ 1.2 kg/m3 and c¼ 343 m/s. Using a scaling factor of

s¼ 6 gives q0o¼ 0.20 kg/m3 and c0 ¼ 2058 m/s.

Previously validated acoustic FDTD models of this

room2 give the specific acoustic impedance for the bound-

aries as 224.9, which remains the same after scaling.

TABLE II. Empty room: comparison of analytical eigenfrequencies and the

frequencies of peaks in the room response from FDTD.

Mode Analytical (Hz) FDTD (Hz) Difference (%)

1 60.3 (0,1,0) 60.0 0.5

2 69.8 (0,0,1) 68.9 1.3

3 92.3 (0,1,1) 91.0 1.4

4 94.6 (1,0,0) 95.0 �0.4

5 112.2 (1,1,0) 112.5 �0.3

6 117.6 (1,0,1) 117.3 0.3

7 120.6 (0,2,0) 119.2 1.2

8 132.1 (1,1,1) 131.7 0.3

9 139.4 (0,2,1) 136.4 2.2

10 139.6 (0,0,2) 137.8 1.3

11 152.1 (0,1,2) 148.9 2.1

12 153.3 (1,2,0) 152.5 0.5

13 168.4 (1,2,1) 166.1 1.4

14 168.6 (1,0,2) 167.8 0.5

15 179.1 (1,1,2) 176.7 1.4

16 181.0 (0,3,0) 178.4 1.4

17 184.5 (0,2,2) 182.0 1.4

18 189.2 (2,0,0) 189.4 �0.1

19 194.0 (0,3,1) 191.4 1.3

20 198.6 (2,1,0) 198.5 0.1

TABLE III. Plate: comparison of analytical eigenfrequencies and modal

peaks in the driving-point mobility from FDTD.

Mode Analytical (Hz) FDTD (Hz) Difference (%)

1 26.1 (1,1) 27.5 �5.1

2 50.2 (2,1) 52.2 �3.9

3 80.3 (1,2) 83.0 �3.3

4 104.4 (2,2) 106.7 �2.2

5 146.0 (4,1) 145.0 0.7

6 200.0 (4,2) 195.7 2.2

TABLE IV. Plate: comparison of measured and FDTD eigenfrequencies

identified from modal peaks in the driving-point mobility.

Mode Measured (Hz) FDTD (Hz) Difference (%)

1 27.3 27.5 0.9

2 48.5 52.2 7.7

3 82.3 83.0 1.0

4 105.0 106.7 1.6

5 148.3 145.0 �2.2

FIG. 9. Plate: comparison of measured and FDTD driving-point mobilities.

TABLE V. Plate: comparison of measured and FDTD loss factors.

Mode Measured (-) FDTD (-) Difference (%)

1 0.0269 0.0266 �1.4

2 0.0109 0.0125 15.1

3 0.0075 0.0078 3.8

4 0.0145 0.0066 �54.8

5 0.0112 0.0047 �57.8

FIG. 10. Transfer functions for all grid points in the horizontal grid: (a)

measured and (b) FDTD.
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The global Cartesian frame of reference used in the

FDTD model is coincident with that shown in Fig. 5.

The spatial resolution used for the scaled FDTD model

is Dx0 ¼ 0.39 m, Dy0 ¼ 0.35 m, and Dz0 ¼ 0.13 m. The

largest wave speed that is accounted for in the vibroa-

coustic model is the quasi-longitudinal phase velocity

of aluminium, 5100 m/s. As discussed in Sec. II C, the

largest time step which satisfied the Courant condition

and provided stability was found to be 1:93� 10�5 s,

which is �15% smaller than the value obtained with

Eq. (24). The simulations are carried out over a time

interval of 4 s.

The driving function assigned to the source is propor-

tional to the first time derivative of the Gaussian pulse,

which has the form

rzzðtÞ ¼ �Ao

t� toð Þ
r3

o

exp
t� toð Þ2

2r2
o

" #
; (33)

where to is the time offset and ro is the Gaussian width of

the pulse and Ao is an amplitude constant which was

assigned the value of 10�4 N s2=m2. This particular wave-

form is chosen because its spectrum contains no energy at

0 Hz (which would represent static loading). The values cho-

sen for to and ro determine the frequency content of the

source function. In this work, to ¼ 10 ms and ro ¼ 10�3 ms.

Figure 8 shows the waveform and frequency response of the

pulse. It is important that most of the power of the source

function lies below the maximum frequency allowed by the

domain discretization.1

It is necessary to estimate an upper frequency limit for

the FDTD analysis; however, there is more than one factor

that determines this limit. The sampling frequency used in

the FDTD simulations is 51 724 Hz and according to the

Nyquist sampling theorem this results in an upper limit of

25 862 Hz. In contrast, the upper limit due to the scaling

approach for the aluminium plate with a scaling factor of 6

is 1418 Hz. In terms of spatial discretization for the air, the

use of six computational cells per wavelength results in an

upper limit of �870 Hz (based on c0 ¼ sc ¼ 2040 m/s). For

bending waves on the plate, six cells per wavelength gives

an upper limit of �300 Hz; hence as this is the lowest value,

it provides an estimate for the upper frequency limit of the

FDTD simulation.

The FDTD simulation outputs a time history of transient

pressure, p(t), and a force driving function, f(t), each with a

duration of 4 s and a time step of 1:93� 10�5 s. A fast

Fourier transform (FFT) was carried out to give complex

PðxÞ and FðxÞ. To obtain the complex transfer function P/F,

the complex vectors PðxÞ and FðxÞ were pointwise divided.

After obtaining the complex transfer function, its magnitude

was taken to give jPðxÞ=FðxÞj from which the level in deci-

bels was calculated using 20 log10ðjPðxÞ=FðxÞjÞ. The loga-

rithmic transfer function in 0.25 Hz lines was arithmetically

averaged over every four points to give a frequency resolution

of 1 Hz. This resolution corresponds to that of the measure-

ments, which was also averaged to 1 Hz from the original data

measured at 0.25 Hz.

IV. RESULTS

The FDTD model of the experimental situation uses a

scaling factor of s¼ 6 for which the computation time

was reduced by using the scaling approach. After account-

ing for the total number of calculation cells and the time

step used in the scaled model, the computation time was

reduced by a factor of �170 compared to the original

model. As expected (see Sec. II C 3), this factor does not

exceed the ratio of 216 that corresponds to s3 indicated

by Eq. (32).

To assess numerical dispersion in the FDTD model for

wave motion in the acoustic medium, a hard, point pressure

source is implemented in one corner of the empty room (i.e.,

without the plate). The sound pressure response in a different

corner is then used to identify modal peaks for comparison

with the analytical eigenfrequencies that are calculated for

an empty room with rigid boundaries. Results for modes

below 200 Hz are shown in Table II. These indicate that the

FIG. 11. Transfer functions for all grid points in the vertical grid: (a) mea-

sured and (b) FDTD.
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errors are less than 2.2%. To assess numerical dispersion for

the elastic plate, analytical eigenfrequencies for a simply

supported plate are compared with the modal peaks in the

FDTD driving-point mobility below 200 Hz. The results are

shown in Table III which indicates that the errors are no

more than 5.1%. Hence, numerical dispersion can be consid-

ered to be negligible for both the air and plate below 200 Hz.

For the plate, a comparison of the frequencies at which

the peaks occur in the measured and FDTD driving-point

mobilities is shown in Table IV. The agreement confirms

that the experimental setup provides a reasonable

approximation of simply supported plate boundaries, with

the largest difference (7.7%) occurring for mode 2, the f2;1

mode.

Figure 9 shows the driving-point mobility after account-

ing for the level offset due to scaling and allows a compari-

son between FDTD and the measurements. As expected

from Table IV, there are slight differences in the frequencies

at which the peaks occur but there is reasonable agreement

in terms of level with differences ranging from 0.4 to 7 dB.

This indicates that the approach used to model the damping

of the plate is appropriate, which is also confirmed by

FIG. 12. (Color online) Transfer functions: measured (27 Hz, left column) and FDTD (28 Hz, right column) for (a) and (b) horizontal grid and (c) and (d) verti-

cal grid.
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comparing loss factors from measurements and FDTD using

the 3 dB down points in the driving-point mobility in Table

V. The agreement between measured and predicted loss fac-

tors is reasonable for the first three modes but has errors of

�50% for modes 4 and 5.

To assess the ability of FDTD to predict the spatial vari-

ation in sound pressure in the room, a comparison is now

made between measured and FDTD transfer functions (mag-

nitudes). The transfer functions for all grid points in the hori-

zontal and vertical grids are shown in Figs. 10 and 11,

respectively. Peaks in these transfer functions correspond to

global resonances of the plate-cavity system for which there

are fifteen peaks below 200 Hz. For the first six of these

global resonances, contour plots are shown in Figs. 12�17

with the outline of the plate indicated using solid black lines.

These plots allow comparisons of measurements and FDTD

for the horizontal and vertical grids.

At frequencies corresponding to plate modes f11 and

f12 that occur below the lowest room mode f010, the con-

tour plots in Figs. 12 and 13 show close agreement

between measurements and FDTD. For the horizontal

grid, the sound pressure field corresponds to the vibration

FIG. 13. (Color online) Transfer functions: measured (48 Hz, left column) and FDTD (52 Hz, right column) for (a) and (b) horizontal grid and (c) and (d) verti-

cal grid.
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field of the plate mode. The results for the vertical grid

show that the sound pressure level varies by up to

�40 dB over the grid surface. This demonstrates that it is

inappropriate to assume a uniform sound field (pressure

zone) below the first room mode in a small acoustic cav-

ity which is excited by a plate.

Figure 14 shows the spatial variation above the lowest

room mode at a frequency close to the lowest axial mode

f001 (vertical direction) and in between plate modes f12 and

f21. In terms of the spatial variation in the horizontal and ver-

tical grids, there is close agreement between measurements

and FDTD, with the vertical grid showing the expected vari-

ation in sound pressure corresponding to the lowest axial

mode in the vertical direction. However, FDTD underesti-

mates the level by �8 dB for both grids. This issue in pre-

dicting the correct level has been observed to occur at other

frequencies where there is a room mode that is in between

plate modes where at least one of the plate modes has a p or

q as an even number. This could be due to cancellation in

the radiated field that occurs with the unbaffled plate in the

FDTD model but does not occur exactly in the experimental

setup due to the metal frame that supports the plate. The

FIG. 14. (Color online) Transfer functions: measured (68 Hz, left column) and FDTD (65 Hz, right column) for (a) and (b) horizontal grid and (c) and (d) verti-

cal grid.
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spatial variation in the horizontal grid is characterised by

low sound pressure levels over the surface of the plate

because in the vicinity of the plate it prevents the establish-

ment of the mode shape for the lowest axial mode.

Figure 15 shows the response at 82 Hz near the f12 plate

mode which is in between room modes f001 and f011. There is

close agreement between measurements and FDTD for the

horizontal grid in terms of the spatial variation and levels.

However, there is less agreement for the vertical grid, partic-

ularly at grid positions that are at a higher elevation than the

plate.

Figure 16 shows close agreement between measure-

ments and FDTD for the horizontal and vertical grids for the

response at 92 Hz which is close to the lowest tangential

room mode f011 and in between excited plate modes f21 and

f22. There is similarly close agreement in Fig. 17 at 104 Hz

which is close to the f22 plate mode and in between room

modes f011 and f110.

The general finding from the comparison of measured

and predicted transfer functions is that FDTD is capable of

predicting the spatial variation of sound pressure within

experimental error. However, in many noise control

FIG. 15. (Color online) Transfer functions: measured (82 Hz, left column) and FDTD (83 Hz, right column) for (a) and (b) horizontal grid and (c) and (d) verti-

cal grid.
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situations it is sufficient to predict the spatial-average sound

pressure level in the cavity. This also applies to airborne and

impact sound insulation involving small rooms at low-

frequencies where the spatial-average corresponds to the

average over the entire room volume.26 To indicate the accu-

racy after spatial-averaging, Fig. 18 shows differences

between the measured and FDTD spatial-average magnitude

of the transfer functions for all fifteen peaks that occur below

200 Hz. This scatter plot indicates that 60% of the data

points are within 63 dB, and that 76% are within 66 dB.

V. CONCLUSIONS

Vibroacoustic modelling using FDTD has been devel-

oped for an elastic plate undergoing point excitation and

radiating into an acoustic cavity. In comparison with room

acoustic simulations, it can be computationally expensive

to run a large vibroacoustic model with a fine spatial reso-

lution because wavespeeds for structure-borne sound are

relatively high. In this paper a scaling approach is proposed

and validated to overcome this problem. Modifications to

the geometry and physical properties are used to preserve

FIG. 16. (Color online) Transfer functions: measured (92 Hz, left column) and FDTD (90 Hz, right column) for (a) and (b) horizontal grid and (c) and (d) verti-

cal grid.
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the dynamic characteristics of the model whilst allowing

much larger time steps. This reduces the total number of

iterations necessary to complete the simulation and signifi-

cantly reduces computation times. An alternative approach

is also proposed and implemented in FDTD to model the

boundaries between the air and the solid medium with

improved computational efficiency. This results in the

model in this paper being �170 times faster than conven-

tional FDTD and the calculations could be parallelized to

give further reductions in computation time. The scaling

approach can be applied to more complex problems that

involve more than one geometrically parallel thin plate and

more than one acoustic cavity.

Both modelling approaches proposed in this paper are

experimentally validated by the agreement between FDTD

and measurements. This confirms the validity of implement-

ing a thin plate undergoing bending wave motion as a three-

dimensional solid that can support multiple wave types. In

the frequency range below the lowest room mode, the close

agreement between FDTD and measurements shows the

existence of large variations in sound pressure level. This

confirms the importance of having a validated vibroacoustic

FIG. 17. (Color online) Transfer functions: measured (104 Hz, left column) and FDTD (107 Hz, right column) for (a) and (b) horizontal grid and (c) and (d)

vertical grid.
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prediction model to predict sound fields inside acoustic cavi-

ties in the low-frequency range.
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