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Ebénézer Tetsi

I



Abstract

AB2O6 oxides: potential thermoelectric and magnetic materials
Ebénézer Tetsi

The search for environmentally friendly and more sustainable energy sources is an ever-growing
global concern. It is mainly due to global warming associated with fossil fuel sources which threatens
our eco-system and ultimately our existence. Among the viable technologies for renewable energy,
thermoelectric (TE) modules are of increasing interest because these solid-state devices can harness
the waste heat given off from sources such as power production, factories, motor vehicles or computers
into electricity using the Seebeck effect. However, because of their low efficiency the state-of-the-art
TE materials (Bi2Te3, Sb2Te3, PbTe) have found limited commercial application. In addition, most
of the best TE materials are non-stable at high temperature. Due to to their abundance, low cost
and minimal environmental impact oxide materials attract increasing interest for the replacement
of the standard TE materials. Besides, the spin degrees of freedom exhibited by some oxides lead
to unique and fascinating properties which can be tuned for other applications.
AB2O6 oxides are interesting materials to study, due to the wide range of compositions and crystal
structures. The investigation of the structural-property relationship in these systems may lead
to high temperature thermoelectric applications. This said, some AB2O6 exhibit exotic magnetic
features whose understanding raises questions regarding some fundamental physics. The thesis
is organised in two parts. The first part discusses the thermoelectric properties of two AB2O6

oxides whereas the magnetic structures of other AB2O6 compounds are investigated in the second
part. In this thesis there is the report, for the first time, of the temperature dependence of the
thermopower of Y-doped CdSb2O6 and WV2O6. The negative sign of the Seebeck coefficient of
these two materials indicates their n-type character. The temperature dependence of their electrical
conductivity data reveal that these compounds behave as semiconductors. Henceforward Y-doped
CdSb2O6 and WV2O6 are n-type semiconductor materials. Their power factors are comparable
to that of some established TE materials such as Cu0.98Ni0.02Nd2O4. Analysis of the thermal
conductivity of tungsten divanadate oxide demonstrates that the lattice contribution dominates the
electronic contribution. Furthermore, there is the report of the ordering of Ni2+ ions within the
magnetic lattices of NiTa2O6 and NiNb2O6. For the columbite NiNb2O6 a new model is proposed
for its magnetic structure. Two propagation vectors are needed to describe the antiferromagnetic
ordering below the Néel temperature. The 2-~k sublattice magnetisation is characterised by non
collinear magnetic moments. Eventually, in this thesis there is the determination of a new magnetic
structure of NiTa2O6. As previously never done before for this antiferromagnetic compound, both a
Shubnikov group and a magnetic structure are attributed to the ordering of the magnetic moments
within its magnetic lattice. The study on the trirutile NiTa2O6 also illuminates the discrepancies
between the novel model and the previous two models for its sublattice magnetisation.
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“The truth is that as a man’s real power
grows and his knowledge widens, ever the
way he can follow grows narrower: until at
last he chooses nothing but does only and
wholly what he must do.”

Ursula K. Le Guin, A Wizard of Earthsea
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Chapter 1

Introduction

Electricity is the most common and convenient form of energy in today’s world society and economy.
Many household appliances, industrial processes and communication devices rely on electricity, caus-
ing our society to be highly dependent on electricity. World population continues to rise year after
year, with global population expected to exceed 10 billion by 20501,2,3. This population growth will
lead to an increased demand on energy dependent services by a factor of 2-2.52.

During the past two decades fossil fuels have provided most our energy requirements. The use
of this energy source is threatening our eco-system and, ultimately, the existence of mankind. Some
of the main environmental issues are the deterioration of the stratospheric ozone, water pollution
and the global climate change. For instance, the use of fossil fuels in transportation of freight us-
ing aeroplanes (kerosene), shippings (diesel) and heavy goods vehicles (diesel) is directly related to
the emission of pollutants. Among these toxic substances is CO2: a harmful greenhouse gas which
contributes to the depletion of the stratosphere. With population growth and its resultant pressure
of increased demands for energy along with rising concerns about climate change there is a desire
in the research community and general population to find new ways to produce clean, cheap and
environmentally friendly energy.

In almost half of all the industrial processes more than half of the energy inputed into the process
is turned into waste heat4,5. This holds true from a home kitchen kettle to manufacturing processes
and industrial power production. Automobiles fueled with gasoline only utilise about 25 % of the
initial input energy for vehicle mobility and accessories; the remainder is lost in the form of waste
heat in the exhaust and coolant, as well as friction and parasitic losses6. One way of producing
clean energy consists of capturing and re-utilizing the waste heat via a device in order to produce
electricity. These devices are based on the principles of thermoelectricity, where there is direct con-
version of heat into electricity. A phenomenon called the Seebeck effect7,8, creates a voltage over a
temperature gradient causing electricity to flow. The reverse effect, for which a material generates
a temperature gradient when subjected to a difference of potential is also possible, this is called the
Peltier effect8,9,10. The production of electric power via a thermoelectric (TE) module is a process
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Figure 1.1: Typical thermoelectric modules. The module illustrates the Peltier effect, whereas the Seebeck
effect is represented by the module on the right. Red denotes hotter temperatures, and blue denotes
colder temperatures. Both modules are made of p- and n-type semiconductors. The latter are represented
by green and magenta legs, respectively. They are linked-up by substrates, typically metallic pads11.

without moving parts nor greenhouse gas emissions.

TE devices for power generation are also known as thermoelectric generators (TEGs) and those
for cooling are called Peltier devices, see Figure 1.1. In practice a TE module is made of multiple
pairs of n-type and p-type semiconductor legs connected to each other through metallic pads. In n-
type semiconductors the majority of carriers are electrons, whereas holes are the majority of carriers
in a p-type semiconductor. In order to minimise electrical resistance losses p-type and n-type arrays
are put electrically in series and thermally in parallel; this configuration increases the operating
voltage and reduces the electrical current of the system.

In order to determine the ability of a material at converting a temperature difference into elec-
tricity one evaluates its figure of merit ZT . This dimensionless physical quantity is given by the
following formula:

ZT = α2σT

κ
= α2T

ρκ
, (1.1)

where σ is the electrical conductivity, ρ is the electrical resistivity, α is the Seebeck coefficient
and T is the mean operating temperature. The thermal conductivity κ of material is a physical
quantity which measures how a material conducts the heat. The motion of free-carriers throughout
the lattice and coherent lattice vibrations (phonons) are both responsible for the heat conduction in
a solid. Hence, κ can be described by the equation (1.2):

κ = κe + κl. (1.2)

The first term on the right hand side of equation (1.2) κe is the electronic contribution of the
thermal conductivity. The lattice contribution is represented by κl. One can rewrite equation (1.1)
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as:

ZT = α2σT

κe + κl
. (1.3)

A figure of merit, of about 1, ZT ≈ 1, is the standard performance for a TE material in the thermo-
electrics community. Bi2Te3 and PbTe11,12,13 have a figure of merit, of about 1 at room temperature.

Thermodynamics defines the efficiency of a device as being the ratio between the net power output
and the power input within the system. For instance, an TEG operating within two temperatures
TH and TC has the following efficiency:

η = QH −QC
QH

. (1.4)

The efficiency of a TE module is the power input to the load (W ) over the net heat flow rate
(QH). From the figure of merit of a TE module the efficiency can then deduced as

η = W

QH
= TH − TC

TH
(
√

1 + ZTM − 1√
1 + ZTM + TC

TH

). (1.5)

TH and TC correspond to the temperatures at the hot and the cold side of the TE module,
respectively. Thus TH has a higher value than that of TC in both equation (1.4) and equation (1.5).
QH represents the heat flow from the source to the sink and therefore is positive. TM is equal
to TC+TH

2 . For instance, let us consider TC as room temperature (300 K) and a ZT = 1. As a
consequence, η corresponds to 5% conversion efficiency at TH = 400 K and almost 15% conversion
efficiency at TH = 900 K. It demonstrates that stability at high operation temperature, is equally
important as high ZT values of the thermoelectric materials to achieve greater heat to electricity
conversion efficiency, as seen in Figure 1.2 on page 5.

Furthermore, according to equation (1.1) a good thermoelectric material must have a large ther-
mopower or Seebeck coefficient, a high electrical conductivity and a low thermal conductivity. Indeed
a high value of σ minimises the ohmic losses and facilitates the flow of electric current from one end
of the material to the other one. In order to maintain the temperature gradient a low κ is required.
One of the challenges within thermoelectric research is that κ, σ and S are all dependent of the
carrier concentration of the free-carriers, as seen Figure 1.3 on the next page.

Figure 1.3 illustrates the difficulty of identifying materials with good thermoelectric properties, as
improvements in one physical property (electrical conductivity) often results in drawbacks in another
property (Seebeck coefficient). For example, metals - materials characterised by zero bandgap - have
by far the highest electrical conductivity but small thermopower values14,15,16. On the contrary ther-
mal insulators - materials characterised by a large bandgap - exhibit the lowest thermal conductivity
and high Seebeck coefficients but are also electrical insulators14,15,16. It is due to the fact that both
σ and κe are governed by the electron’s behavior. σ and κe are tied through the Wiedemann-Franz
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Figure 1.2: Thermoelectric power generation efficiency versus TH . Comparison of Carnot efficiency η of
various sources of energy13. The temperature of the cold side TC is 300 K.

Figure 1.3: Comparison of the thermoelectric properties of insulators, semiconductors and metals. Seebeck
coefficient, electrical conductivity and thermal conductivity behavior are mapped as function of the
free-carrier concentration13.
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Chapter 1. Introduction

law which states that the ratio between κe and σ is constant at a given temperature, T, according
to the following relation:

κe
σ

= (π
2k2
B

3e2 )T. (1.6)

The constant on the right hand side of equation (1.6) corresponds to the Lorentz number (L). L
is equal to 2.48× 10−8 V2 K−2 for metals and is usually taken as L = 2.0× 10−8 V2 K−2 for degen-
erate semiconductors. Therefore materials in which thermal conductivity is dominated by lattice
phonon contribution are more promising for thermoelectric application, since the phonon thermal
conductivity can be decreased without affecting the electrical conductivity.

The curves in Figure 1.3 indicate that semiconductors are the most promising materials for the
use in thermoelectric applications. In most semiconductors the major contribution to the thermal
conduction comes from κl (phonons). As a consequence κ can be reduced without causing too great
of a reduction of the electrical conductivity. In the 1950s tremendous amounts of work (experimental
and theoretical) was conducted in order to identify semiconducting materials with a high ZT. For
instance, the work of Ioffe17 exposed that heavily doped semiconductors made the best TE modules,
due their high free-carriers concentration. Elsewhere Mahan and Sofo18 derived the thermopower,
the electrical and thermal conductivities, as integrals of the transport distribution. These investiga-
tions and other studies have lead to the establishment of guidelines on materials suitable for TEGs.
The criteria for the determination of potential TE materials are the following criteria:

• The first criterion focuses on the free-carriers concentration. Semiconductors with a carrier
concentration n ≈ 1018− 1020 cm−3 are good candidate materials for thermoelectric power
generation applications. As illustrated in Figure 1.3, these materials possess the optimal elec-
trical conductivity and Seebeck coefficient to achieve a high power factor PF.

PF = α2.σ = α2

ρ
(1.7)

• Materials with good figure of merit are those for which the band gap ∆ is of the order 10 kBTo
(the operating temperature of the thermoelectric material).

• Materials with high symmetry crystal structure (high band-degeneracy) and with small elec-
tronegativity difference among the constituent elements are good TEs. The aim is to minimise
the scattering of charge carriers by optical phonons.

• Low thermal conductivity κl is often found in materials made up of heavy elements and/or with
many atoms per unit cell. The scattering of phonons by heavy elements leads to a deterioration
of the thermal conductivity of these materials. The same applies for structures made up of
many atoms per unit cell.

The bipolar effect
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The bipolar effect occurs in semiconductors in which both electrons and holes, have similar con-
centration and mobility, and then can both participate to the electric conduction. This is typically
the case of wide-gap semiconductors at elevated temperatures or narrow-gap semiconductors at or-
dinary temperatures.

When a n-type semiconductor is subjected to an electric field and temperature gradient, the
current density for electrons, in 7,11, is given by:

in = σn(dV
dx
− αn

dT

dx
), (1.8)

where σn and αn represent the electric conduction and the thermopower associated to electrons.
Similarly for a p-type semiconductor one has the following equation

ip = σp(
dV

dx
− αp

dT

dx
). (1.9)

One can then derive the respective Seebeck coefficient of the system:

α = −dV
dT

= −dV
dx

.
dx

dT
. (1.10)

In order to evaluate dV
dx one sets up the temperature gradient to be equal to zero. Hence,

combining equation (1.8) and equation (1.9) leads to:

in + ip = σn
dV

dx
+ σp

dV

dx
(1.11)

= dV

dx
(σn + σp). (1.12)

Therefore, the electric field is given by:

dV

dx
= in + ip
σn + σp

. (1.13)

Inserting this relation into equation (1.11) gives

α =
in

dx
dT + ip

dx
dT

σn + σp
. (1.14)

The thermopower of the system can then be rewritten as

α = αnσn + αpσp
σn + σp

. (1.15)

Equation (1.15) demonstrates that the thermopower of the material is a weighted average of the
Seebeck coefficients associated with the two types of carrier7. The carrier concentration of electrons
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and holes are in the same order of magnitude in an intrinsic narrow semiconductor at ordinary
temperatures or wide bandgap semiconductor at high temperatures. The Seebeck coefficient values
for the two types of carriers are of opposite signs (+ or -). As a consequence one has α → 0. In
order to avoid a deterioration of the thermopower in such materials, because of the bipolar effect,
one typically dopes these materials with either donor or acceptor states. The doping then allows
extrinsic conduction of the appropriate carrier type, electrons or holes, respectively11. The overall
aim is to have either a predominantly n- or a predominantly p-type semiconductor material with
an optimal Seebeck coefficient. A large direct band gap - typically on the order of10 kBTo - is
recommended to minimise the minority carrier contributions to the Seebeck coefficient. To is the
operating temperature of the material11.

1.1 State-of-the-art thermoelectric materials

Following the above guidelines, the search for the state-of-the-art TE materials was directed towards
degenerate semiconductors and alloys materials. These materials, with covalently bonded characters
(for high mobility) and with high-symmetry crystal structures (for low mobility), contain one or
more of the following heavy elements: Bi, Pb, Te, or Sb. Gaultois, Seshadri et al.19 created a large
database of thermoelectric materials, by abstracting information from over 100 publications.This
data mining has over 18 000 data points from multiple classes of compounds, whose relevant TE
properties have been measured at several temperatures. One can then gain certain insights on a
studied sample, by comparing its TE properties with that of the best materials in the database. The
current best n- and p-type TE materials are for instance Bi2Te3, Sb2Te3, Bi2Se3, PbTe and SiGe.
The temperature dependence of their figure of merit is displayed in Figure 1.4, found in the next
page. n-type TE materials are exposed in the top diagram in Figure 14. The figure of merit (ZT),
of bismuth telluride20,21,22, is ≈ 1 at room temperature up to 200 °C. SiGe is by far the best n-type
material for high temperature thermoelectric applications, as its ZT ∼ 1 at temperatures between
800 and 1000 °C.

The bottom diagram in Figure 1.4 on the next page illustrates the figure of merit of the best p-type
materials. At room temperature, in place of Bi2Te3 is antimony telluride Sb2Te3, whose ZT approx-
imates 1 at 25 °C. The appropriate p-type material for a high-temperature TEG is Yb14MnSb11,
because its figure of merit is about 1 around 1000 °C. TAGS refers to (GeTe)0.85 (AgSbTe)0.15. The
standard TEGs (Bi2Te3, Sb2Te3, TAGS, etc) have an efficiency between 5 and 8 %. The best TE
modules are used in various waste heat recovery applications, which are classified in the following
five categories23:

• Electricity generation in extreme environments. In this instance thermoelectric devices are
used in the space industry as radioisotope generators (RTG)23. The cold end is the vacuum,
whereas the heat originates from the natural radioactive decay of a plutonium 238. The RTGs
are made of PbTe, PbSnTe and TAGS23.

• Decentralised domestic power in combined heat and power generation systems23. The aim is
to produce electricity by installing TE modules (mostly Bi2Te3) on domestic ovens24,25.
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1.1. State-of-the-art thermoelectric materials

Figure 1.4: Figure of merit of some of the state-of-the-art thermoelectric materials as function of the
operating temperature. The latter corresponds to the temperature of the hot side of a TE module14.
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• Micro-generation for sensors, microelectronics. TEGs are utilised to power micro-instruments
(sensors, micro-controllers, etc). For this type of applications the heat source can be ovens,
motors, hot fluid pipes, etc.

• Solar thermoelectric generator (solar TEG)26,27. The heat source is the sun. A TEG is installed
on the rear side of photovoltaic panel to collect the waste heat in order to produce electricity.
The idea is to increase the efficiency of the combined solar/thermoelectric system to convert
the solar radiation into electricity.

• Power generation in the automotive sector. TEGs (Bi2Te3, PbTe) are typically installed on a
vehicle to capture the waste heat and convert it into electricity.

1.2 Thermoelectric oxides

This section provides a review on the use of oxides for thermoelectric purposes. First there is a
discussion on the main issues related to the state-of-the-art TE materials, which is then followed by
a review of the thermeoelectric properties of some of TE oxide materials.

1.2.1 Merits of TE oxides

Some of the key-elements in the high-ZT materials are not abundant28 in the Earth’s crust. This is
typically the case of tellurium (Te), which has an abundance of 0.001 ppm by weight. Te is by far
the most commonly used element in TEGs. The abundance of antimony (Sb) and germanium (Ge)
are 0.2 ppm and 1.4 ppm, respectively. One of the factors to take into account regarding a material’s
usage for technology is its price, especially when it comes to large-scale production. There has been
a comparison between the crustal abundance and the price for most elements by many economic
geologists29.

Figure 1.5: Price versus crustal abundance of some elements28.

The x- and y-axes in Figure 1.5 above, correspond to the crustal abundance and the respective
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1.2. Thermoelectric oxides

price in dollar(s) per kilogram of an element, respectively. The diagram in Figure 1.5 reveals that
the rarer the elements become, the more expensive they are. It is evidenced by key-elements of the
state-of-the-art TE materials, as their abundance is low (10× 10−2 ppm) and their prices are among
the highest (few hundreds American dollars (US dollars) per kilogram). However, elements such
as Fe and Al are among the most abundant elements (10× 103 ppm) in the Earth’s crust. Their
respective prize per kilogram is very economical only of few US dollars per kilogram.

In addition to being scarce, some of the key-elements of the best TE materials are toxic. For
example, lead (Pb) is a toxic and harmful element which can damage the brain through seizure and
can lead to coma. Figure 1.6 below compares the environmental impact of the best TE materials
with other materials. Complex materials involving lead and antimony such as PbTe, Bi2Te3, (Bi,
Sb), Zn4Sb3 are among the most toxic. Figure 1.6 highlights the need of finding TE oxides (or
environmentally friendly) materials for thermoelectric applications.

Figure 1.6: Schematic comparison of various TE materials in terms of the temperature range of operation
and environmental friendliness of constituent elements.16.

Additionally, the operating temperatures of Bi2Te3 and PbTe are 300 K and temperatures around
700 K, respectively. It is in agreement with Figure 1.4, which shows the figure of merit of the best
TE materials. The figure of merit of both bismuth and lead telluride decreases as temperature
increases. It should be noted that both bismuth and antimony telluride melt at 853 and 893 K and
are therefore not suitable for high-temperature applications. In order to convert the waste heat from
furnaces and manufacturing processes, materials such as Bi2Sr2Co2O7, SrTiO3, ZnO or CaMnO3

are more appropriate. Because they are stable at high temperature. These materials belong to the
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Figure 1.7: Schematic representation of hybrid crystal structure.30

class of materials known as the oxides.

The inability and instability of the state-of-the-art TE materials at operating at high temper-
atures, as well as the scarcity and toxicity of some of their key-elements, lead the thermoelectric
community to search for new classes of materials abundant, environmentally friendly and stable at
high temperature.

Among these new TE materials are the oxides. As oxides are abundant, non-toxic, low cost and
minimal in environmental impact along their stability at high temperature indicates that they can
be used to recuperate the waste heat energy for power generation, with high efficiency.

1.2.2 Review of some thermoelectric oxides

Thermoelectric oxides are ionic compounds consisting of cations and oxygen anions, alternately
placed with the Coulomb interaction between them16. The cation can either be an alkaline (Na, Li,
Ca, Ba), a transition metal (Fe, Co, Ni, Mn, Zn) or a lanthanide (Eu). This diversity of elements,
thus structures, is another aspect favouring the use of oxides for TE applications. The TE proper-
ties of some of the best TE oxides are discussed below. These materials are some layered cobaltites,
perovskites and a wurzite.

The layered cobaltites

Koumoto et al.30 developed the concept of hybrid structure. Hybrid structured materials consist
of alternated blocks with different compositions and symmetries. Each block has a specific thermo-
electric function (Seebeck, electrical and thermal conductivities). Consequently, the TE properties
of hybrid structured materials are decoupled and can individually be tuned to attain greatest ZT.
Figure 1.7 illustrates the hybrid structured crystal of new functional oxides.

The crystal lattice in Figure 1.7 consists of blocks A and B, alternately stacked along a direction.
Blocks A and B are made up of different elements (green octahedra and bricks, respectively) and
their symmetry are different. On one hand, the transport of phonons (κ) can be hindered by the
blocks B. On the other hand, the diffusion of the free carriers in the block A may lead to large values
of the thermopower (α). Combining these two TE properties (κ and α) may give rise to high TE
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performance. The system A+B is a hybrid crystal. The layered cobaltite family is an example of
hybrid structured crystals. The TE properties of some the best layered cobaltites are discussed below.

a) Na0.5CoO2

The seminal work of Terasaki, Sasago and Uchinokura31 on the large thermopower of Na0.5CoO2

single crystals, brought the attention of the thermoelectric community onto the use of oxide materials
as thermoelectric materials.Na0.5CoO2 crystallises in an hexagonal lattice, which is associated with
the symmetry space group P63/mmc (194). Figure 1.8 on the next page depicts the 3D-view of the
crystal structure of Na0.5CoO2.

Figure 1.8 (a) illustrates the layered structure of sodium cobalt oxide, as the Na and CoO2 layers
are alternately stacked along the c-axis. In the crystal structure each cobalt is surrounded by six oxy-
gen atoms forming edge-sharing CoO6 octahedra. Na0.5CoO2 is often regarded as a 2D material due
to the 2D layers of CoO2. This material exhibits a large in-plane thermopower (about 100µV K−1)
and a low in-plane electrical resistivity (200µΩ cm), at room temperature. The positive sign of
the Seebeck coefficient of sodium cobalt oxide indicates that the majority of free-carries are holes.
In other words Na0.5CoO2 can be regarded as a p-type material. This large in-plane thermopower
coupled with a low in-plane resistivity suggests that Na0.5CoO2 is a potential thermoelectric material.

Numerous studies on Na0.5CoO2 demonstrate that the large thermopower is due to spin, charge
and orbital degeneracy of the cobalt cations32,33. The crystal lattice found in Figure 1.8 (a) plays
a major role in the understanding of the unexpected low TE properties of Na0.5CoO2. The in-
plane-resistivity is much lower than that of the out-of-plane resistivity. Consequently, the electric
conduction in Na0.5CoO2 is mainly due to the in-plane electrical conductivity. This conduction of
electrons occurs in the a-b plane in the CoO2 sheets (layers). The electrons are strongly correlated
in the CoO2 layers and are hardly affected by Na layers. As a result, Na0.5CoO2 exhibits a high elec-
trical conductivity in the a-b plane. The thermal conductivity of Na0.5CoO2 was also investigated
and was found to be low in comparison to that of traditional oxides. This low value of the thermal
conductivity is explained by the scattering of phonons due to Na+ ions. These sodium ions are
distributed between the cobalt layers. Interfaces between CoO2 layers and sodium also contribute to
a reduction of κ. Mikio Ito34 reported a ZT = 0.7 - 0.8 for polycrystalline Na0.5CoO2. Na0.5CoO2 is
therefore a hybrid crytsal, as the CoO2 and the Na layers mainly control the thermal and electrical
conductivities, respectively.

b) Ca2Co2O5

Another p-type TE oxide with outstanding thermoelectric properties is Ca2Co2O5. It belongs to
the family of calcium cobalt oxides, with the formula [Ca2CoO3]yCoO2. These materials are often
designated by Ca-uvw, where u, v and w are integers and correspond to the indices of Co, Ca and
O, respectively. For instance, Ca-349 refers to Ca3Co4O9. Ca2Co2O5 possesses a layered structure
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(a)

(b)

Figure 1.8: Crystal structure of the unit cell of NaCo2O4.The blue ( yellow) spheres represent the Na+

(Co2+)-cation; the anions, the oxygens, are represented by the red spheres. (a) Alternated layers of CoO2
and Na along the c-axis. (b) 2D triangle of CoO2 within the a-b plane.
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similar to that of Na0.5CoO2
35. In this superlattice, there are CaCoO3 layers alternating with layers

of CoO2 along the [0 1 0] direction, as seen in Figure 1.9 below.

Figure 1.9: The crystal lattice of the hybrid Ca2Co2O5, also called Ca-225.

In Figure 1.9, the yellow, blue and red spheres represent the calcium (Ca), cobalt (Co) and oxy-
gen (O) atoms, respectively. It should be noted that Co is surrounded by six O, together they form
CoO6 octahedra as illustrated in Figure 1.9. Like in Na0.5CoO2, the octahedra form CoO2 layers.
These CoO2 layers are separated by CaCoO3 layers along the b-axis. CaCoO3 layers are double rock-
salt blocks made up of Ca, Co and O. Funahashi et al.35 reported a thermopower of 210µV K−1

at 1000 K. The positive sign of the Seebeck coefficient indicates the p-type character of this ma-
terial: the majority of carriers responsible for its electric conduction are holes. Additionally, the
electrical resistivity study shows that this material behaves like a semiconductor because ρ decreases
with increasing temperature. The CoO2 crystalline sheet structures contribute to a high electrical
conductivity of 714.3 S cm−1 at 963 K. κ values for this material are less than 1.0 W m−1 K−2 for
temperatures between 473 K an 873 K. According to Funahashi et al.35, the thermal conductivity is
suppressed by phonon scattering at the interface between the two types of CoO2 layers35. Eventu-
ally the figure of merit ZT of Co-225 whiskers is estimated to vary from 1.2 to 2.7 for temperatures
above 873 K35. These values are greater than that of standard TE materials such as Yb14MnSb11,
whose ZT ∼ 1 at 1000 K.

c) Bi2Sr2Co2Oy

Bi2Sr2Co2Oy is another layered cobaltate exhibiting low electrical resistivity and large Seebeck
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coefficient for power generation applications at high temperatures and in air. Its crystal lattice is
similar to that of Ca3Co4O9; and it consists of blocks alternately stacked along the b-axis. These
blocks are CoO2 sheets and Bi2Sr2O4. The Bi2Sr2O4 blocks are in place of the CaCoO3 layers, and
are made of two layers of SrO sandwiching two layers of BiO. This specific arrangement of Bi2Sr2O4

is called the quadruple rock salt structure.

Figure 1.10: The crystal structure of the layered Bi2Sr2Co2Oy, also called BC-222.16

The black, green, red and yellow spheres represent the calcium (Bi), cobalt (Sr), cobalt (Co) and
oxygen (O) atoms, respectively. Like in the [Ca2CoO3]yCoO2 system Co atoms have an octahedral
environment and form CoO2 layers. These layers are illustrated by the white-light blue blocks in
Figure 1.10 above. They are separated by a quadruple rock-salt block of Bi, Sr and O, along the
b-axis. The two pink sheets of BiO are located between two layers of SrO in green in Figure 1.10.
The Seebeck coefficient of bismuth strontium cobaltate, in air, peaks at 973 K, and reaches the value
of 290µV K−1. The electrical and thermal resistivities of this material are low at high temperature.
ρ is about 2 mΩ cm at 1000 K and κ is in the order of 2 W m−1 K−1 at 800 K. Funahashi et al.
reported a figure of merit near unity at 1000 K: ZT ≥ 1.136. This value is higher than the one of
SiGe at 1000 K. ZTSiGe is about 0.58 at that temperature, as seen in Figure 1.4.

1) Some perovskite oxide materials with high TE properties

The band structure of ABO3 perovskite materials is at the origin of their large Seebeck coefficient
and high electrical conductivity. The bottom of the CB consists of B d states and the upper valence
band is composed of Op states. The large power factor of the perovskite-type structured materials is
due to the triply degenerate t2g states of the B 3d orbitals. Because of the symmetry of the crystal
(Jahn Teller effect), these orbitals are split into a singlet (low energy) and a doublet (high energy).
The states associated with the singlet near the Fermi level are degenerate and the large thermopower
power is due to their very high density (Heikes formula37). On the other hand, the band associated
with the doublet is very dispersive38. The electrons of the doublet states are responsible for the high
electrical conductivity of the material. In other words, there are two types of conduction electrons
at the bottom of the CB. The first type of conduction electrons are the light electrons38 of the
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Figure 1.11: Typical unit cell of CaMnO3: a perovskite compound. The blue ( black) spheres represent
the Ca (Mn)-cation; the anions, the oxygens, are represented by the red spheres.

dispersive bands and are responsible for the high electrical conductivity. The heavy electrons which
belong to the dispersionless degenerate states are the second type of conduction electrons. These
electrons greatly contribute to the large thermopower of these ABO3 materials. The perovskite-type
structure thus allows for large Seebeck an high electrical conductivity.

a) CaMnO3

One of best n-type semiconductor oxide, utilised in TE oxide module, is CaMnO3. The ther-
moelectric properties39,40,41,42 of this material have been extensively investigated. This compound
crystallises in a perovskite-type structure43,44. It is typically a cubic lattice made from a corner shar-
ing octahedra. In general in a perovskite, the A and B cations have an oxidation number of 2+ and
4+, respectively. In the crystal structure of CaMnO3, Ca2+ ions are surrounded by 6 anions (O2−)
and together they form CaO6 octahedra, as seen in Figure 1.11 above. From room temperature to
1180 K crystallises in an orthorhombic lattice characterised by the symmetry space group Pnma (62).
For temperatures higher than 1180 K a structural transition occurs at the atomic scale. CaMnO3

45

crystal structure then orders in a higher symmetry space group: a cubic lattice whose space group
is Pm3̄m (221). The cubic and orthorhombic phases differ in the angle of the ̂Mn−O−Mn bond.
The angle value is either equal or lower than 180° for these two phases, respectively.

Figure 1.11 illustrates the orthorhombic structure of the room-temperature CaMnO3. The blue,
green spheres represent the Ca2+ and Mn2+ cations; the anions, O2−, are represented by the red
spheres. The ̂Mn−O−Mn bond is distorted, thereby introducing a tilt between CaO6 octahedra.
At room temperature, CaMnO3

42 behaves like an insulator material and exhibits an outstanding
Seebeck coefficient of about −300µV K−1. The negative sign of the thermopower indicates that n-
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type conduction occurs in this manganite perovskite: the majority of the free-carriers are electrons.
Additionaly, numerous studies46,47 have demonstrated that the electrical conductivity of CaMnO3

can be enhanced by either doping the A- or B-site of this perovskite. The most common dopant
on the manganese site is niobium. Bocher et al.47 investigated the TE properties of polycrystalline
CaMn1−xNbxO3 (with x = 0.02; 0.05 and 0.08). The figure of merit of the 2 % Nb sample is the high-
est. CaMn0.98Nb0.02O3 exhibits a Seebeck coefficient and an electrical resistivity of −251µV K−1

and 4.0× 10−2 Ω cm at 1000 K respectively.

Taking into account its low thermal conductivity (1.5 W m−1 K−1) at the same temperature,
Bocher et al.47 reported a value of 0.30 for its ZT. The calcium site has been doped by rare-Earth
elements like Yb, Tb, Nd, Lu and Ho; Ca1−xRExMnO3. Funahashi et al.40 demonstrated that, the
substitution of Ca by these elements induces a hopping conduction within Ca1−xRExMnO3 com-
pounds,for temperatures above 400 K; it is due to the introduction of extra electrons by the high
valence state of RE3+. The 2 % sample, with lutetium as the doping material, behaves like a metal
for temperature above 973 K. It also exhibits an electrical resistivity (ρ) of around 5 mΩ cm. Its
thermopower (α) and thermal conductivity (κ) at 973 K are −130µV K−1 and ∼ 1.5 W m−1 K−1,
respectively. As a consequence the ZT of Ca0.8Lu0.2MnO3 sample reaches 0.16 at 973 K.

b) SrTiO3

Eventually, heavily-doped strontium titanate (SrTiO3) exhibits promising thermoelectric proper-
ties at high temperature. SrTiO3 has a perovskite-type structure, but unlike CaMnO3 it crystallises
in an isotropic cubic lattice. Figure 1.12 on the next page illustrates the unit cell of the crystal
structure of SrTiO3. The green, light blue and red spheres represent the Sr, Ti and O atoms, respec-
tively. Both strontium and titanium ions have an octahedral environment of the within the lattice,
as they are surrounded by six oxygens.

SrTiO3 is an insulator at room temperature with a bandgap of ∼ 3.2 eV48; its band structure is
characterised by Ti 3d orbitals at the bottom of the conduction band and O 2p at the top of the va-
lence band. However, heat treatment under reduced atmosphere generates oxygen vacancies, thereby
introducing electrons into the conduction band49. Otha et al.50,51 investigated the TE properties
of single crystals Nb-doped SrTiO3 and La-doped SrTiO3 at the Ti and Sr site, respectively. Both
samples exhibit large thermopower values in the order −0.2µV K−1 at 1000 K. Their σ decreases
as temperature increases proportionally to T−2 below 750 K and T−1.5 above 750 K. Only small
changes of κ are observable after the introduction of extra electrons in the conduction band by La
and Nb. κ is about 6-10 W m−1 K−1 at room temperature. The thermal conductivity decreases and
2.5 W m−1 K−1 at 1000 K for both La-doped and Nb-doped SrTiO3. Both samples reach a figure of
merit (ZT) of about 0.1-0.2 at 1000 K. Otha51 also investigated the TE properties of polycrystalline
SrNb0.20Ti0.80O3 and reported a value of 0.35 for its ZT at 1000 K. To go further SrTiO3 when
appropriately doped can form a superlattice Ruddelsden-Popper structure, also known as RP-phase.
Strontium titanate RP-phase52,53 has the formula (SrO)(SrTiO3)n, with n been an integer. The
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1.2. Thermoelectric oxides

Figure 1.12: The unit cell of the crystal structure of SrTiO3. The strontium atoms (in green) are
surrounded by six oxygen atoms (in red). The titanium atom is located at the centre of the cube.

superlattice consists of perovskite (SrTiO3) layers separated by SrO layers. The crystal lattice of
(SrO)(SrTiO3)n systems contributes to an enhancement of their ZT, as it enables the reduction of
κ due to scattering of phonons at the interface of the different layers. Wang et al.54 demonstrated
that κ is reduced but σ is also reduced. Hence, for systems such as (SrO)(SrTiO3)n (n = 1, 2) the
ZT value (0.15) is lower than that of SrNb0.20Ti0.80O3

51. Eventually the major issue of SrTiO3-
based oxides as TE material is the need of reducing conditions for the n-type doping. The reducing
conditions limit the number of applications of this oxide to vacuum or inert atmosphere-applications.

2) A Wurtzite with high TE properties

Zinc oxide (ZnO) is one of the best n-type TE oxide. ZnO is well known as a transparent conductor
oxide (TCO) due to its wide bandgap of 3.2-3.5 eV. This material has been highly investigated over
the past 30 years as a replacement for the toxic indium tin oxide (ITO); because zinc is more
abundant in the Earth’s crust (70 ppm) than indium (4.61 ppm). ZnO crystallises in a Wurtzite
structure: a hexagonal lattice whose unit cell has the following lattice parameters: a = 3.253 Å, c =
5.213 Å.

Figure 1.13 on the next page illustrates the layered structure of ZnO. The green and red spheres
represent the zinc and oxygen atoms, respectively. There is a 4-fold coordination of O2− around the
Zn2+. Theoretical studies55 make evident that this material can be treated like a semiconductor,
as its conductivity increases with increasing temperature. Indeed, a small doping concentration of
both aluminium and gallium increases its conductivity by up to three orders of magnitude at room
temperature. Thereby Zn:Al (AZO) and Zn:Ga (GZO) behave like metals. The conductivities of
AZO and GZO both reach up to 1× 104 S cm−1. These high conductivity values suggest that these
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Figure 1.13: The crystal structure of zinc oxide in the ab-plane.

compounds are potential TCOs. It also demonstrates why they are excellent replacements for ITO,
as transparent conducting electrodes56,57. Recently, studies55,58,59 have exposed the potential of
ZnO-based oxide materials for high-temperature energy conversion. Ohtaki et al.58 investigated the
TE properties of aluminium-doped zinc oxide (Zn1−xAlxO) powder samples (with x = 0, 0.005, 0.01,
0.02 and 0.05). The solubility limit of Al in ZnO correspond to x = 0.02, as transmission electron mi-
croscopy images revealed the presence of secondary phase60 (ZnAl2O4) for x ≥ 0.02. Nevertheless,
the thermopower and electrical resistivity of Zn0.98Al0.02O ceramic sample are optimal for high-
temperature thermoelectric applications. Indeed at 1273 K α and σ are both about −180µV K−1

and 1.9× 104 S cm−1 respectively; the sign of the thermopower indicates that the majority of free-
carriers are electrons: Zn0.98Al0.02O can be viewed as a n-type semiconductor. These values are
in the same order of magnitude of those found in Si-Ge alloys, which are utilised in radioactive
thermoelectric generators for space applications. The ZT of this TCO, at 1273 K, is near 0.30. The
large value of κ is responsible for the low value of its figure of merit ZT at high temperature. Indeed,
at 1273 K, κ is about 5 W m−1 K−1, which is higher than that of the state-of-the-art TE and other
oxide materials. ZnO has also been doped by gallium oxide as the dopant material on the zinc site.
Zn1−xGaxO show similar thermoelectric properties as Zn1−xAlxO. Additionally, the dually doped
zinc oxide is another promising TCO with high thermoelectric performance. Indeed, Ohtaki and
co-workers59 measured the thermopower, electrical and thermal conductivities of Zn1−x−yAlxGayO.
Zn0.96Al0.02Ga0.02O polycrystalline sample proved to be the best candidate for TE applications, as
its ZT values were the greatest: about 0.47 at 1000 K and 0.65 at 1247 K.

To summarise, the high cost, toxicity and scarcity of traditional TE materials leads this ther-
moelectric research to be directed towards abundant, cheap and environmental friendly materials
like the TE oxides. TE oxides have better stability than tellurides and antimonides and thus may
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be suitable for high temperature applications. Most p-type oxides exhibit better thermoelectric
properties than n-type oxides. Great figures of merit of both n- and p-type are needed for a high
performance of a TE module. Consequently, in order to enhance the thermoelectric properties of
TE oxide modules, the search for new n-type oxide with great ZT is of a great importance.

1.3 AB2O6 oxides family

Throughout the thesis thermoelectric and magnetic studies have been carried out on oxides with the
chemical formula AB2O6, in the context of the search of new materials. The A and B elements in
this formula can be a transition metal (Fe, Co, Ni, etc), an alkaline (Ba, Ca, Mg), or a lanthanide
(Eu). The herein work was restricted to compounds in which the B type is one of the four following
elements: V, Ta, Nb and Sb. The majority of these structures can be described as variants of a
hexagonal close packing of oxygen atoms with cations distributed in different manners, in an ordered
way, in the octahedral voids61. Such arrangements are defined by the size ratio between A and B
cations. In most of these oxides, A and B are present in the form of A2+ and B5+, respectively. The
family tree of the crystallographic structures of some AB2O6 compounds is discussed. The AB2O6

compounds (with B = V, Ta, Nb and Sb) are then classified in groups using sorting maps. It is
followed by a comparison of the nuclear structures of these AB2O6 and that of the best TE oxides.
The last part of the chapter is dedicated to a literature review on the magnetic properties of some
AB2O6 oxides.

The so-called family tree of the crystal chemistry can established for the AB2O6 compounds, by
comparing the crystal symmetry of several structures in group-subgroup relations. Such trees have
been reported by H. Bärnighausen62 and Müller et al.63, about different families of oxides. A tree
consists of space groups, which are arranged vertically with arrows in between them. These arrows,
as seen in Figure 1.14 on the next page, give the direction of symmetry change. There are additional
informations on the type of symmetry reduction, the preservation or change of lattice translations.
Some changes of origin are sometimes necessary to go from one subgroup to another subgroup. The
family tree some of AB2O6 derived by Beck61 is displayed in Figure 1.14.

Within Megaw’s nomenclature64 the noblest member of the tree is the member with the high-
est symmetry space group compounds. The type structure associated with a noblest member is
known as the aristotype. The structure types and subgroups of an aristotype are called hettotypes.
Their respective symmetry space groups are lower than that of the aristotype. The lowering of the
symmetry space group from aristotype to hettotypes is due to:

• a lowering of the class of the parent group; it indicated by t in the tree.

• a loss of translational symmetry but the subgroup has the same class as the parent group,
indicated by k. In such cases the resulting unit cell is bigger than the original one;

• a loss of translational symmetry but the subgroup has the same class as the space group type
as the parent one. This structural change is also associated with an increase of the unit cell.
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Figure 1.14: Family tree of some AB2O6, according to Beck61.
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Table 1.1: Crystallograhic parameters of the unit cell of the rosiaite CdSb2O6. ICSD stands for Inorganic
Crystal Structures Database. Space group: P3̄1m (162).

Lattice parameters a = 5.2373(0) Å, b = 5.2373(0) Å, c = 4.7983(1) Å. ICSD number = 71028
Atom Type Wyckoff x y z

positions
Cd1 Cd 1a 0.000 0.000 0.000
Sb1 Sb 2d 0.333 0.667 0.500
O1 O 6k 0.365(1) 0.000 0.282(1)

In the tree of AB2O6 oxides61, the noblest members are P63/mmc (194) and P42/mnm (136).
These structures can be found in compounds such as NiAs- and h-T FeNb2O6, respectively. ”h-T”
stands for high-temperature and indicates that FeNb2O6 orders in a rutile-type structure at high
temperature. The tree of AB2O6 in Figure 1.14 consists of three branches: the rosiaite, columbite
and rutile. The lattice of three structures within these branches are described in the following three
subsections.

1.3.1 The rosiaite-type structure

The branch on the left of the tree in Figure 1.14 corresponds to the Rosiaite branch. There is a
lowering of the symmetry space group from P3̄m1 (164) to P3. The 3-fold symmetry belongs to
all the intermediate subgroups of this branch. A reduction of the translation symmetry from P3̄m1
(164) leads to the formation of a variant symmetry space group P3̄m1 (162). A tripling of the unit
cell occurs while there is lowering of symmetry of the crystal. The type-structure at this point of the
tree of AB2O6 oxides is the rosiaite. Compounds with the rosiaite-type structure such as MnAs2O6

order in a trigonal lattice, whose symmetry space group is P3̄m1 (162). The branch ends up with
the space group P3 (143). Such phase (crystal structure with the space group P3 (143)) is realised
in a low temperature modification of MnSb2O6 where subtle changes in the fine structure comply
better with individual needs of the different cations61.

Within the trigonal lattice of the rosiaite-type structure A- and B-cations are octahedrally coordi-
nated to oxygen atoms. When viewing the structure of a rosiaite-type structured material, one finds
layers where one third of the octahedra are filled with A cations alternating with the ones where B
cations occupy two thirds of them according to the stoichiometric relation of the cations. The AO6

and BO6 octahedra form 1D chains, which are alternately stacked along the [0 0 1] direction. AO6

octahedra are isolated from each others. The BO6 layers are corner-linked with the AO6 octahedra
along the c-axis, as seen in Figure 1.15 on the next page. The AO6 octahedra are located at the
edges of the unit cell whereas the BO6 octahedra are in the middle of the unit cell. Since one deals
with a trigonal lattice one has α = β = 90° and γ = 120°. CdSb2O6, SrSb2O6 also crystallise in the
rosiaite-type structure.

1.3.2 The columbite-type structure

The third branch of the family tree of AB2O6 in Figure 1.14 is the Columbite branch. It is named
after an intermediate subgroup between Cmcm (63) and the lowest subgroup at the end of the branch
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Figure 1.15: The unit cell of a rosiaite-type structure, here CdSb2O6.The blue ( green) spheres represent
the Cd2+ (Sb5+)-cation; the anions, the oxygens, are represented by the red spheres.

Table 1.2: Crystallograhic parameters of the unit cell of the columbite CoNb2O6. Space group: Pbcn (60).
Lattice parameters a = 14.1475(18) Å, b = 5.7120(7) Å, c = 5.0446(6) Å. ICSD number = 15854
Atom Type Wyckoff x y z

positions
Co1 Co 4c 0.000 0.1579(4) 0.250
Nb1 Nb 8d 0.1613(1) 0.3628(2) 0.7821(2)
O1 O 8d 0.0941(4) 0.3722(1) 0.4474(1)
O2 O 8d 0.0829(1) 0.1184(2) 0.8977(3)
O2 O 8d 0.2372(2) 0.1531(4) 0.4345(2)

P21/c (14): the columbite-type structure. In Figure 1.14, the hettotype structure which precedes the
columbite-type structure in the columbite branch is found in a binary compound AB2 (α-PbO2-type.
Similarly the rosiaite-type structure (P3̄m1 (162)) is derived from the hettotype structure found in
a binary compound (CdI2). There is a tripling of the unit cell as one goes from α-PbO2-type to
the well-known columbite-type structure. Materials with the columbite-type structure order in an
orthorhombic lattice whose symmetry space group is Pbcn (60), as depicted in Figure 1.16 on page
26. The unit cell of the orthorhombic structure consists of layers of hexagonal closed-packed oxy-
gen octahedra AO6 and NbO6. These two types of octahedra with common edges are staggered in
zigzag and are stacked along [1 0 0] direction, with the -A-Nb-Nb-A- sequence. It should be noted
that another arrangement of the A and B cations in the triple cell is possible and it corresponds
to a variant of the columbite-type structure: ZnTa2O6-type structure. The latter differs from the
columbite-type structure as cations are A cations interspersed into the B layers. Thus, the A and B
cations belong to the same layer in compounds with ZnTa2O6-type structure. Compounds such as
FeNb2O6, CoNb2O6, NiNb2O6 crystallise in the columbite-type structure.
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1.3. AB2O6 oxides family

Figure 1.16: The unit cell of cobalt diniobate oxide- a typical columbite type structure.The blue ( green)
spheres represent the Co2+ (Nb5+)-cation; the anions, the oxygens, are represented by the red spheres.

1.3.3 The trirutile-type structure

The Rutile branch is the last branch of the tree of AB2O6 oxides in Figure 1.14. There is conser-
vation of the 2-fold symmetry in this series, just as the 3-fold symmetry belongs to all the groups
of the hettotype structures in the rosiaite branch. The lowest symmetry space group of the branch
is P21/n (14) and can be found in materials such as m-CuSb2O6. This space group is in fact a
variant of the lowest subgroup of the columbite branch: P21/c (14). One of the most encountered
structure between the noblest member P42/mnm (136) and lowest member of this branch which is
the trirutile-type structure. This structure can be deduced from the rutile by a tripling of the unit
cell along the [0 0 1] direction. For further details on the rutile family and its derivatives the reader
is encouraged to consult the seminal work of W. Baur65.

Like in the columbite-type structures the cations (A2+, Ta5+) are octahedrally coordinated to
the oxygen atoms in the trirutile-type structure. However, the octahedra are slightly distorted due
to a static Jahn-Teller effect66. The Jahn-teller effect is geometric distortion of the bonds between
atoms which thus reduces the symmetry space group of the studied material. This phenomena
occurs because the distortion lowers the overall energy of the compound. In the tetragonal lattice
the AO6 and BO6 octahedra are slightly distorted due the Jahn-Teller effect. The A cations occupy
a body-centered tetragonal arrangement, resulting in square-planar Ni layers stacked along the c-
axis. Additionally, layers of A and B cations are alternately stacked along the [0 0 1] direction, as
illustrated in Figure 1.17 on the next page. This alternation of layers of A nd B cations is also found
within columbite structured materials but along the a-axis.
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Figure 1.17: The unit cell of FeTa2O6- a typical trirutile type structure.The blue ( green) spheres
represent the Fe2+ (Ta5+)-cation; the anions, the oxygens, are represented by the red spheres.

Table 1.3: Crystallograhic parameters of the unit cell of the trirutile FeTa2O6. Space group: P42/mnm
(136).

Lattice parameters a = 4.7515(3) Å, b = 4.7515(3) Å, c = 9.254(1) Å. ICSD number = 79684
Atom Type Wyckoff x y z

positions
Fe1 Fe 2a 0.000 0.000 0.000
Ta1 Ta 4e 0.000 0.000 0.333(2)
O1 O 4f 0.307(5) 0.307(5) 0.000
O2 O 8j 0.297(3) 0.297(3) 0.322(1)
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Table 1.4: Crystallograhic parameters of the unit cell of a brannerite compound: ZnV2O6. Space group:
C2 (5).

Lattice parameters a = 9.2651(9) Å, b = 3.5242(5) Å, c = 6.5889(8) Å. ICSD number = 30880
Atom Type Wyckoff x y z

positions
Zn1 Zn 2a 0.000 0.000 0.000
V1 V 4i 0.1916(2) 0.000 0.6528(2)
O1 O 4i 0.0328(6) 0.000 0.7193(11)
O2 O 4i 0.3406(6) 0.000 0.8884(10)
O2 O 4i 0.3065(6) 0.000 0.4345(9)

1.3.4 The brannerite structure and the rossite structure

As the work done throughout the thesis focuses one AB2O6 systems, with B = V, Ta, Nb and Sb,
two additional type-structures can be added: the brannerite and rossite.

Materials with the brannerite67 structure crystallise in a monoclinic lattice, whose space group
symmetry is C121 (5) or C2/m (12). Within the lattice on finds AO6 and BO6 octahedron. Bran-
nerite such as ZnV2O6 consist of edge-connected ZnO6 octahedra forming 1D chains along [0 1 0]
direction. The 1D chains form bidimensional layers separated by vanadium oxide layer. The layer
of VO6 octahedra is composed of zigzag chains of edge-connected VO6 octahedra parallel to the A
chains, as depicted in Figure 1.18 on the next page. Note that the AO6 are not directly connected
to each other along the [0 0 1] direction. α-CoV2O6, MgV2O6 and MnV2O6 are another AB2O6 ox-
ides which crystallise in a brannerite-type structure. The brannerite and the rossite both crystallise
within a monoclinic crystallographic lattice. The unit cell is characterised by the following angles :
α = 90 ◦; 104 ◦ < β < 112 ◦ ; γ = 90 ◦.

The rossite-type structure68 is a variant of the brannerite type structure, as its symmetry space
group is also C 2/m (12). In crystal lattices with the rossite-type structure the B cations are no
longer surrounded by octahedra but rather BO5 trigonal bipyramids. As a consequence there is not
zigzag chains of BO6 along the a-axis. Instead the BO5 polyhedra form two groups of three trigonal
bipyramidal which are not directly connected to each to other. The AO6 octahedra form 1D chains
along [0 1 0] direction. The Wyckoff positions of atoms within the unit cell of a rossite-type structure
are displayed in Table 1.5. Other AB2O6 oxides which order in a rossite-type structure are CaV2O6

and CdV2O6.

1.3.5 Structure and properties

A sorting map is another type of diagram used to classify the crystal structures of compounds which
belong to the same family. The classification lies on a set of coordinates. These coordinates can be
related to the magnetic (ferromagnetic, antiferromagnetic and paramagnetic) and electric properties
(insulator, semiconductor and metal) of the studied compounds. Materials with similar properties
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Figure 1.18: Typical unit cell of the brannerite and rossite type structures. The brannerite structure
and the rossite structures are represented by the ZnV2O6 (top) and the CaV2O6 (bottom), respectively.
The blue ( green) spheres represent the A (B)-cation; the anions (the oxygens) are represented by the red
spheres.
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Table 1.5: Crystallograhic parameters of the unit cell compound: CaV2O6. Space group: C2/m (12).
Lattice parameters a = 9.18(1) Å, b = 3.58(3) Å, c = 6.48(1) Å. ICSD number = 21067

Atom Type Wyckoff x y z
positions

Ca1 Ca 2a 0.000 0.000 0.000
V1 V 4i 0.2342 0.000 0.6691
O1 O 4i 0.08740 0.000 0.7219
O2 O 4i 0.1434 0.500 0.11820
O2 O 4i 0.2465 0.000 0.3934

belong to regions in a sorting map. Hence, the sorting map is a guideline to select useful materials
to study. The coordinates used in establishing a sorting map of AB2O6 oxides are the radii of the
cations A and B: rA and rB, respectively.

The AB2O6 oxides can be classified using the symmetry space group as criteria. The classifiation
of the compounds of this family is synonym of the establishment of a sorting map. Such diagram
(or sorting map) is useful, as the physical properties of a material are related to its atomic structure.
For instance, magnetic properties such as the direct exchange coupling66 is directly related to the
distance between two magnetic ions. One thus expects the exchange coupling constants in CoTa2O6

and NiTa2O6 to be similar to that of CoTa2O6 and CoNb2O6. The exchange coupling constants
in CoTa2O6 and NiTa2O6 are comparable in magnitde because these two compounds crystallise in
a tetragonal lattice whereas CoNb2O6 has a orthorhombic crystal structure. The sorting map of
AB2O6 (with B = V, Ta, Nb and Sb) is depicted in Figure 1.19 on page 30.

In Figure 1.19, x- and y-axes represent the radius of A- and B-cations of AB2O6 oxides, respec-
tively. There are four rows and each of these rows appears at 0.54, 0.64, 0.60 and 0.64 Å. These
values are the respective radius of V, Nb, Sb and Ta. Tantalum, antimony, vanadium and niobium
are associated with 1rst, 2nd, 3rd and 4th row, respectively. AB2O6 oxides can therefore be clas-
sified into four groups which are the niobates, the antimonates, the tantalates and the vanadates.
This Figure highlights that the crystal structure of these AB2O6 oxides is mainly influenced by the
B-cation. In addition, there are four rectangles (regions) in the sorting map of the AB2O6 oxides
in Figure 1.19 and they all are all associated with a specific structure type. The rosiaite, rossite,
columbite, brannerite and trirutile structures are represented by the pink, black, blue, green and
red regions in Figure 1.19. The red and magenta rectangles are mostly filled out with red dots and
pink diamonds, respectively. Hence, tantalates and antimonates mostly crystallise in a trirutile and
rosiaite structures respectively. Similarly, the brannerite and columbite structures are mostly found
in vanadate and niobate AB2O6 oxides. Figure 1.19 is in therefore agreement with the family tree
in Figure 1.14.

1.3.6 Analogy between some TE oxides and some AB2O6 oxides

There are similarities between some AB2O6 oxides and the layered cobaltites. Firstly, due their
abundance, high-temperature stability and very low toxicity, AB2O6 oxides are promising materials
for high temperature thermoelectric applications. Secondly, their crystal structures possess some
traits of the crystallographic lattice of the layered cobaltites. Indeed the crystal structures of some
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Figure 1.19: A sorting map of the AB2O6 oxides. The radius of different A elements is on the x-axis,
whereas each row is associated with one of the four transition metal elements: V, Nb, Ta and Sb.
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AB2O6 consist of different types of blocks (or layers) with specific compositions and symmetries.
Within some AB2O6 oxides one finds CdI2-type layers. Eventually, some AB2O6 can be viewed as
high-symmetry superstructures, due to the presence of heavy elements and/or many atoms in their
crystal lattices. As a consequence, AB2O6 fulfill some of the guidelines for the determination of
good TE materials.

Figure 1.20: The layered structure of NaxCo2O4 (on the left) and FeNb2O6 (on the right).

Figure 1.20 above is a comparison of the atomic structure of Na0.5CoO2 (on the left) and FeNb2O6

(on the right). In both structures the red spheres represent the oxygen atoms. The white and blue
spheres correspond the sodium and cobalt atoms, respectively. Both Co and Na are octahedrally
coordinated with oxygens. In FeNb2O6, the green and brown layers are in place of Na and CoO2

layers, respectively. The green and brown spheres represent the niobium (Nb) and iron (Fe) atoms,
respectively. In Na0.5CoO2, the reduction of κ is due to sodium ions and the interface between
yellow layer (Na) and blue layer (Co). They act as scattering centres for phonons. The conductivity
of Na0.5CoO2 is mainly due to the in-plane conduction electrons in the CdI2-type CoO2 layers. As
a consequence, one can independently tailor σ and κ. Similarly, the layered structure of FeNb2O6

consists of alternated FeO6 and Nb2O6 layers along the c-axis. The Fe-O layers play the role of
CoO2 sheets. Additionally, there are blocks made up of heavy elements (niobium, Z = 41) between
these CdI2-type layers. Its TE properties may therefore be individually tuned to attain the best ZT.
Finally, AB2O6 crystal structures can also be described as a hybrid crystal in the point of view of
magnetism. For instance, the magnetism in AB2O6 compounds with the columbite-type structure
is due to ordering of A cations, which form layers in the a-c plane. In FeNb2O6 magnetic Fe2+ ions
form 2D layers and are separated by non-magnetic Nb layers, as seen on the right diagram in Figure
1.20.

Due to their atomic structures and stability at high temperature, AB2O6 are strong candidates
for high temperature thermoelectric technologies. Their crystal structures made of low cost and
environmental friendly elements can be viewed as superstructures which are made of different types

31



Chapter 1. Introduction

of blocks. The blocks are associated with the A or B cations, respectively. Each block or layer has
a specific function. These functions combined together may yield high TE performances.

1.3.7 Magnetic properties of some AB2O6 oxides

This section is a literature review on the magnetic properties of some AB2O6 oxides. There is where it
is available a review of the investigations on the magnetic susceptibility, the sublattice magnetisation,
the magnetisation field-dependence magnetisation of some tantalates, niobates, metantimonates and
vanadates.

1.3.7.1 The tantalates - ATa2O6

Most magnetic tantalates such as FeTa2O6, CoTa2O6 and NiTa2O6 crystallise in a trirutile-type
structure. Santos et al.69 developed models to describe the magnetic interactions in a class of
tantalite compounds of compositions AxA

′

1−xTa2O6, with A, A′ = Fe, Co or Ni. These models are
anisotropic Heisenberg or Ising models. Such models enable a better understanding of the various
low-temperature magnetic phases observed by neutron diffraction in these compounds.

FeTa2O6

The magnetic structure of FeTa2O6 has previously been investigated using Mössbauer spec-
troscopy70,71,72, and powder neutron-diffraction measurements70,73. These studies demonstrated
that the tapiolite FeTa2O6 exhibits antiferromagnetic ordering below TN = 8.5 K. The magnetic
peaks in the neutron diffraction pattern can be indexed by the propagation vector ~k = (1

2 , 0, 1
2).

These studies suggest that the spins in FeTa2O6 are constrained to the a–b plane, with each layer
consisting of a collinear arrangement of moments where opposite spins are oriented along ± [1 1 0]
directions. However they didn’t establish an exact configuration of the 3D magnetic structure. This
is due to the fact that these early reasearch were based exclusively upon the analysis of polycrys-
talline samples. Recently, Chung et al.74 shed light on the sublattice magnetisation by performing
magnetic measurements on FeTa2O6 single crystals.

Magnetic susceptibility74,75 data ( dχdT ) shows a maximum at TN . It is confirmed by the presence
of a sharp peak (λ anomaly) in the magnetic heat capacity data. The lambda anomaly is a signature
of low dimensional 2D-systems. In addition χ vs T curve shows a broad maximum at 14 K for H
along the [1 1 0] direction. Chung et al.74 showed that this broad maximum is due to short-range
correlations between the magnetic moments. The magnetic entropy (disordering of the spins due
to thermal excitation) was deduced from the measured heat capacity. 73 % of the magnetic entropy
of FeTa2O6 is lost above TN due to short-range order effects. In ferromagnetic (antiferromagnetic)
materials, below TC (TN ) there is ordering of the magnetic moments. Ferromagnetic and antiferro-
magnetic systems exhibit a long-range order, as the ordering of the magnetic moments is repeated
over infinitely great distances. This order gradually gives way to disorder, with increasing temper-
ature. Slightly above TC the ordering of magnetic moments does not persist over a long distance.
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1.3. AB2O6 oxides family

Figure 1.21: Different configurations of the magnetic structure of FeTa2O6 after the application of a
magnetic field H. a) H = 0 configuration, (b) H ‖ [1 1 0] before spin-flip, (c) H ‖ [1 1 0] after spin-flop
and (d) H ‖ [1 1 0] at saturation.74

One speaks of short-range ordering.

Chung et al.74 established a model for the magnetic structure via magnetisation measurements on
FeTa2O6 single crystals. The M vs H studies indicated that the ordered antiferromagnetic structure
of FeTa2O6 is composed of collinear 〈1 1 0〉 spins lying in the a–b plane. This is in agreement with
the work of Eicher et al.70. The magnetic field dependence of the magnetisation revealed that the
bulk crystal contains approximately equal populations of spins along the four symmetry equivalent
〈110〉 directions. A spin-flip, at T = 1.6 K and H = 70 kOe, suggests the perpendicular sets of
spins in the a–b plane. Figure 1.21 (a) is the model, proposed by Chung et al.74, for the magnetic
structure of FeTa2O6.

The square represents the lattice of FeTa2O6. The dots and small arrows are the magnetic Fe2+

ions and the magnetic moments they carry, respectively. There are two types of Fe: Fe (1) in black
and Fe (2) in grey. The magnetic field direction is illustrated by the large black arrow pointing in
the [1 1 0] direction. HSF is the field for which the spin-flip occurs: 70 kOe. As the field H increases
the magnetic moments of Fe (2) move away from their initial position (configuration (a)). The
sublattice of moments that is parallel to the field gets flipped for H = HSF . Eventually for stronger
magnetic fields all magnetic moments are aligned and it corresponds to the saturation (configuration
(d)). The previous studies and that of Chung et al.74 all agree on the refined value for the moments
of Fe2+ ions: µeff = 5µB per Fe2+.

FeTa2O6 powder susceptibility data4 has been modelled by Muraoka et al.75 using the Padé
approximated76,77,78 high-temperature expansion of a two-dimensional anisotropic Heisenberg model
with S = 2 spins placed on a square lattice. The refined values75 of the nearest- and next-nearest
neighbours exchange interactions, J and J’ respectively, are given by the following relations:
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• −0.41 ≤ J
kB
≤ −0.39 K,

• 0.6 ≤ α ≤ 0.9.

α is equal to J
′

J . Fan and Wu79 established the phase diagram of FeTa2O6 and derived the phase
diagram for frustrated 2D Ising model at 0 K. According to Fan and Wu the antiferromagnetic
configuration, exhibited by FeTa2O6, will be realised as the ground state structure only if - | J | >
2 J ′ . The J and J

′ values obtained by Muraoka et al.75 fulfill this condition.

CoTa2O6

Early investigations of the magnetic properties of cobalt ditantalate oxide (CoTa2O6) consisted
of neutron diffraction80 and magnetic susceptibility65,80,81 measurements on powder samples. These
studies suggest the antiferromagnetic character of CoTa2O6. The magnetic susceptibility χ as func-
tion of temperature T is characterised by an inflection point at 6.63(5) K. It indicates that the
magnetic moments are ordered below TN = 6.63(5) K. Like in the χ vs T curve of FeTa2O6, a
broad maximum is observed above the Néel temperature. The broad maximum indicates the pres-
ence of enhanced short-range correlations between the magnetic moments which is characteristic of
low-dimensional materials. A λ-anomaly is observed in the specific-heat data. The temperature at
which this sharp peak occurs coincides with the Néel temperature TN = 6.63(5) K.

The magnetic reflections in the neutron iffraction patterns, recored at temperatures below TN ,
were indexed with the propagation vector ~k = (1

4 , 1
4 , 1

4). The smallest supercell that indexes all
of the well-defined magnetic reflections is a 2

√
2a × 2

√
2a × 4c unit cell. Reimers80 proposed two

models to fit the magnetic reflections. The first moel has a helical spin arrangement and the second
one is a model in which the two sublattices have different cone axes. The second mode was the most
successful. Recently Kinast et al.82 performed magnetic measurements on CoTa2O6 polycrystalline
sample. Their magnetic susceptibility, heat capacity data are in agreement with those of Reimers.
However unlike Reimers they used two propagation vectors to index all magnetic reflections:

• The first one is ~k1 = (1
4 , 1

4 , 1
4) for the corner ions. Their moments are aligned along the [1 1

0] direction.

• The second one ~k2 = (-1
4 , 1

4 , 1
4) for the center ions, with moments along the [1̄ 1 0] direction.

The primitive cell of the magnetic structure derived from these two modulations vectors has the
following dimensions: amag = 2

√
2a, bmag = 2

√
2a and cmag 4c. The magnetic structure is displayed

in Figure 1.22. a and c are the lattice parameters of the nuclear structure. For a better visualization
of the magnetic moments, Kinast et al.82 illustrated the magnetic structure in the supercell (4a ×
4a × 4c) in Figure 1.22 on the next page.

In Figure 1.22, the spheres and arrows represent the Co2+ ions and the magnetic moments
they carry. Dark (bright) spheres represent corner (center) ions. There is a ↑↑↓↓ sequence of the
magnetic moments along the three axes. All magnetic moments lie in the a-b plane, and alternate
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Figure 1.22: Magnetic structure of CoTa2O6 according to Kinast et al.82.
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Figure 1.23: 2D view of the crystal structure of CoTa2O6
83. The black, grey and white circles represent

the cobalt (Co), tantalum (Ta) and oxygen (O) atoms. The dash lines indicate the potentisl exchange
pathways associated.

their orientations between the [1 1 0] and [¯1 1 0] directions on successive planes. In addition, Kinast
et al.82 measured the field-dependence of the magnetisation of polycrystalline CoTa2O6 sample. The
M vs H curve enables the determination of easy-axis magnetic anisotropy which is the preferred
direction for the orientation of the magnetic moments. A sudden change in the M vs H curve is
synonym of spin-flip transition. Although not pronounced the low-temperature curve presents a clear
change in slope around H = 70 kOe. The easy-axis corresponds to [1 1 0] direction. This model
and the second model of Remeirs80 for the magnetic structure of CoTa2O6 both fit the neutron
diffraction patterns. However, these models are based on powder neutron diffraction measurements.
Neutron diffraction on CoTa2O6 single crystals is therefore necessary for a better understanding of
its magnetic structure, since single crystals inform on the intrinsic properties of a material.

Eventually Kinast et al.82 refined an effective magnetic moment µeff = 4.68µB per Co2+. This
value of µeff corresponds to a high-spin Co2+ in octahedral geometry. Like Muraoka et al.75, Kinast
and coworkers used a Heisenberg model on a square lattice to fit magnetic susceptibility data; but
Kinast’s model was based on spin S = 3

2 instead of S = 1
2 .

Figure 1.23 depicts the potential exchange pathways connecting nearest neighbours (Jnn) and
next-nearest neighbours (Jnnn). The dominant interactions in the square lattice in Figure 1.23 are
the in plane exchange interactions, involving a next-nearest-neighbours. They take place along the
diagonals of the square lattice. Other possible interactions are the ones between nearest neighbours,
involving the Co-O distance and bond angles far from 180° or 90°. These two exchange interactions
are J ′ and J, respectively. Kinast et al.82 refined a value of −1.57 K for J

kB
and -1.96 K for J

′

kB
.
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1.3.7.2 The niobates - ANb2O6

Most magnetic niobates crystallise in the columbite-type structure, as evidenced by FeNb2O6,
CoNb2O6 and NiNb2O6. These compounds have been extensively studied. Recently, Prabhakaran
et al.84 investigated the field dependence magnetisation (M vs H) of single crystals of ANb2O6 (A
= Ni, Co, Fe, Mn) niobates.

FeNb2O6

Magnetic susceptibility85,86,87 and neutron diffraction85,88 measurements have been performed
on both polycrystalline and single crystals FeNb2O6 samples. These studies demonstrate that iron
diniobate oxide exhibits an antiferromagnetic order below 4.9 K. The χ vs T curves, depending
on crystallographic orientation, expose that the magnetic moments lie in the a- c plane. Their
orientation is close to the crystallographic a axis. Two modulation vectors are needed to index all
magnetic peaks: ~k1 = (1

2 , 1
2 , 0) and ~k2 = 0, 1

2 , 0). Heid et al.85 performed neutron diffraction
on FeNb2O6 single crystals. Heid’s model for the magnetic structure of FeNb2O6 consists of two
different magnetic domains, where each one results in one of the two propagation vectors. The
sublattice magnetisation of FeNb2O6 according to Heid et al.85 is exposed in Figure 1.24 below.

Figure 1.24: Magnetic structure of FeNb2O6 according to Heid et al.85.

Figure 1.24 depicts the magnetic unit cell of FeNb2O6. It can be observed that there is a doubling
the nuclear cell along the [0 1 0] direction. The black dots and arrows represent the Fe2+ ions and
the magnetic moments they carry. Mossbauer studies85,89 indicate that there are two magnetically
nonequivalent sites of the Fe2+ ion a in the lattice. They are the corner ions (x = 0 or x =1) and
the center ions (x = 1

2). Along the b-axis the sequence of magnetic moments is identical to the one
along the three axes in CoTa2O6: ↑↑↓↓. The moments form a canting angle of 23° to the a-axis.
The magnetic moments form ferromagnetic chains along the c-axis. Heid and coworkers refined a
value of 4.5µB per Fe2+ ion for the effective magnetic moment µeff of iron ions, in agreement with
the theoretical value (4.52µB).
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To interpret the magnetisation measurements Heid et al.85 took into account the crystal field,
spin-orbit coupling, isotropic Heisenberg exchange, magnetic dipole-dipole interaction and an exter-
nal field into account (Zeeman effect). Within this model for the magnetism in FeNb2O6 very good
agreement between theory and experiment was obtained. This model reveals that the ferromagnetic
superexchange in the chains along the [0 0 1] direction is the strongest interaction. The interchain
exchange interaction was found to be smaller and antiferromagnetic.

CoNb2O6

The magnetic properties of cobalt niobate oxide have been extensively studied. Magnetic suscepti-
bility90,91,92, heat capacity90,91 and neutron diffraction91,92,93 measurements revealed two magnetic
phase transitions. There is a switch from the paramagnetic state to an ordered spin structure at
TN1 = 2.95 K, as evidenced by a sharp peak in the specific heat data and a broad maximum in the
χ vs T curve. The second phase transition occurs at TN2 = 1.97 K. Magnetisation studies90,91,93,94

demonstrate that below 1.97 K there is an commensurate antiferromagnetic structure. In addition,
there is an intermediate state between the paramagnetic and antiferromagetic phases that changes
with applied field. This intermediate state can be visualise by the presence of a 1

3 magnetisation
plateau95 in the M vs H curve, for field in the a-c and b-c planes.

The crystallographic orientation dependence magnetic susceptibility from Scharf et al.92 showed
the magnetic moments within this antiferromagnetic structure are canted in the a-c plane. They form
an angle of γ = 31° with the c-axis. Like in FeNb2O6 the moments form ferromagnetic chains along
the c-axis. The moments are arranged collinearly within b-c planes, and non collinearly between
neighbouring b-c planes, as seen in Figure 1.25 below.

Figure 1.25: Antiferromagnetic structure of FeNb2O6 below 1.97 K according to Scharf et al.92.

Figure 1.25 above exposes the non collinear magnetic antiferromagnetic structure of CoNb2O6

below 1.97 K, according to Scharf et al.32. Like for the sublattice magnetisation of FeNb2O6 there
is a doubling the nuclear cell along the y-axis. The empty and plain spheres represent the Co2+

and Nb5+ ions, respectively. The magnetic moments are illustrated by arrows. The magnetic space
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group associated with this structure is Pb212121 (19). Recently Sarvezuk et al.96 performed neutron
diffraction on powdered CoNb2O6 sample and showed that two coexisting magnetic phases exist
below 1.97 K. Two propagation vectors were needed to index all magnetic reflections: ~k1 = (0, 1

2 , 0)
and ~k2 = (1

2 , ±1
2 , 0). Each phase is associated with one propagation vector. The volume fraction

for the (0, 1
2 , 0) and (1

2 , ±1
2 , 0) phases are 80 and 20 %, respectively.

Several studies have been performed to understand the intermediate state between paramagnetic
and antiferromagnetic states. According to Scharf et al.92 it corresponds to an incommensurate
magnetic structure with a propagation vector k = (0, ky, 0), 0.37 < ky <

1
2 . The value of ky de-

pends on the temperature. Scharf et al.32 described the magnetic structure within this temperature
range as a helical structure with the b-axis as the screw axis with an angle of 133°. Later, Hanawa
et al.91,97 investigated this helical structure through heat capacity and magnetisation measurements
under applied fields on both powder and single crystals samples. Magnetic fields were applied along
a, b and c directions. These studies revealed the antiferromagnetic character of the helical structure.
Two spin-flips can be observed in the M vs H curves, for H ‖ a and H ‖ c for temperature between
1.97 and 2.95 K. These spin-flips indicate the existence of metamagnetic phases between TN1 and
TN2.

Mistuda et al.92 performed neutron diffraction on CoNb2O6 single crystals below 3 K in order for
a better understanding of the ordering of moments between 1.97 and 2.95 K. These investigations
reveal strong ferromagnetic intrachain interactions in zigzag chains along the c-direction resulting
in a quasi-one-dimensional. But magnetic order in other dimensions are expected. As temperature
decreases and is near TN2 the magnetic structure of CoNb2O6 behaves as a 2D-system. It is evidenced
by the fact that heat capacity data can be fitted by a 2D-Ising model. The restructuration of the
magnetic structure for temperatures below TN2 highlights the presence of competing interactions
such as the interchain exchange interaction and Co2+ single ion anisotropy.

Heid et al.85,98 also investigated the magnetic structure of CoNb2O6. Field dependence magneti-
sation, with field in a-c, reveal the presence of three spin flip phases in the c-axis direction, with
two of those phases sharing common boundaries when the same fields were applied to the a-axis.
To explain all these features Heid and coworkers introduced a new model in which the dipole-dipole
interactions are in the same order of magnitude than the interchain interactions.

Later Kobayashi et al.99 performed neutron scattering with H parallel to the c-axis, at low fields.
The results are slightly different to those of Heid and coworkers, as the new spin-flip phases com-
prised of ferrimagnetic ordering instead of ferromagnetic ordering. Kobayashi and coworkers used a
quasi-1D Ising model to describe the different phases in CoNb2O6. According to their model, the
magnetic structure of cobalt diniobate oxide consists of 1D ferromganetoc zigzag chains along the
c-axis which are arranfged in an isoceles triangular geometry in the a-b plane. Due to the competi-
tion between interactions related to the triangle distortion one speaks of a geometrically frustrated
isosceles triangular Ising antiferromagnet. This concept is discussed in details by Lee et al.100 in
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the 2010’s paper. Lee and coworkers derived all possible magnetic structures of CoNb2O6 based on
an isosceles triangular lattice. The magnetic structure of CoNb2O6 is fascinating and complex as
there is interplay of quantum mechanics ( interactions) and geometric frustration (triangular lattice).
Eventually there is very good agreement between all these studies on the value of the refined effective
magnetic moment µeff of Co2+, which was found to be equal to 3µB per Co2+.

1.3.7.3 The antimonates ASb2O6

There have been few reports on the magnetic properties of antimonate oxides. This subsection
summarises the seminal works on the magnetic CoSb2O6 and NiSb2O6.

CoSb2O6

Reimers et al.80 performed one of the early studies of the magnetic properties of CoSb2O6. The
researchers study found that CoSb2O6 exhibits a long-range antiferromagnetic order below TN =
13.0(2) K. The heat capacity data confirmed the ordering of the magnetic moments of Co2+ by the
presence of a λ-anomaly at TN . It should be highlited that a broad maximum at around 35 K is
observable in the susceptibility data. This broad maximum is indicative of short-range correlations,
which is a signature of low-dimensional systems. The magnetic reflections can be indexed by the
propagation vector ~k = (1

2 , 0, 1
2). These two magnetic structures were found to be consistent with

the reflection intensities. The two structures can be described in terms of two sublattices (origin
and the body center) where the moments within one sublattice are antiparallel along [1 0 0] and [0
0 1] but parallel along [0 1 0]. All moments lie within the a-b plane along [1 1 0] and [1 1̄ 0].

Figure 1.26: The (2a, a, 2c) magnetic unit cell of CoSb2O6 according to the two models. The collinear
and orthogonal models are displayed on the left and the right respectively80.

Figure 1.26 above illustrates the two models for the magnetic structure of CoSb2O6, according
to Reimers and coworkers. The arrows represent the magnetic moments. Both structural models
illustrate the antiferromagnetic character of CoSb2O6. The lattice parameters of the magnetic unit
cell along the a- and c-axes are the doubles of those of the nuclear structure. The structures differ in
the angle of the moments between the two sublattices. Indeed for the structure shown on the left in
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Figure 1.26 the two sublattices have collinear magnetic moments, whereas in the model on the right
on Figure 1.26 the moments of the two sublattices are orthogonal. Because all the measurements were
collected using polycrystalline samples, the two are indistinguishable. Consequently, the growth of
large enough single crystals is very important for a better understanding of the magnetic properties
of compounds.
Like CoTa2O6 powder magnetic susceptibility and specific heat data were modelled by an Ising
model with S = 3

2 spins placed on a square lattice. In such models the nearest neighbour exchange
coupling J dominates the next-nearest neighbour exchange coupling J

′ . Finally, Reimers et al.80

refined a value of 4.62µB per Co2+ for µeff .

NiSb2O6

Nickel metantimonate oxide NiSb2O6 is another magnetic antimonate. Magnetic susceptibility
data101of this material demonstrate that the Ni2+ ions exhibit local magnetic order below ∼50 K
followed by long-range antiferromagnetic order below TN = 6.7 K. Ehrenberg et al.102 performed
neutron diffraction on powdered NiSb2O6 samples. Like for CoSb2O6 all magnetic reflections were
indexed by the modulation vector ~k = (1

2 , 0, 1
2). Ehrenberg and coworkers refined a magnetic

structure in which the magnetic moments are collinearly aligned parallel to [1 1 0]. The magnetic
moments build an arrangement of ferromagnetic and antiferromagnetic chains, which are perpendic-
ular to each other. These chains run along the [1 0 0] and [0 1 0] directions, as seen in Figure 1.27
below.

Figure 1.27: The magnetic structure of NiSb2O6 in the a-b plane, according to the Ehrenberg’s model102.

The empty and filled circles represent Ni2+ ions in (z = 0) and out (z = 1
2) of the a-b plane,

respectively. it should be noted that the magnetic moments form a ”↑↑↓↓ ” sequence along the a-
axis. On the other hand ferromagnetic chains run along the b-axis. The dotted rectangle indicates a
possible choice for the magnetic unit cell of NiSb2O6. Ehrenberg et al.102 refined a value of 1.6(1)µB

per Ni2+ ion as absolute value of the magnetic moments of nickel ions. This value is lower than
the theoretical value of go.ms = 2µB, indicating that the spins are not completely ordered in this
system.

41



Chapter 1. Introduction

Figure 1.28: Two possible magnetic structures in α-CuV2O6 which produce (A) (100) and (B) (10 1̄
2 )

magnetic reflections, respectively. Only the Cu atoms are shown. ↑ and ↓ moments are represented by the
open and solid circles, respectively.

1.3.7.4 The vanadates AV2O6

There have been few reports on the magnetic properties of vanadates. The magnetic properties of
CuV2O6 and CoV2O6 are further discussed in details.

CuV2O6

Magnetic properties of α-CuV2O6 have been studied by means of susceptibility measurement,
NMR and neutron diffraction on polycrystalline103,104 and single crystals105. α-CuV2O6 crystallises
in the triclinic structure of space group P 1̄ (2). Cu2+ spins (S = 1

2) order antiferromagnetically below
22.6 K. This said one of the highlights of the susceptibility data is the presence of a broad maximum
at around 48 K. This maximum is in fact indicative of low-dimensional short range correlations due
to anisotropic exchange interactions between the Cu2+ ions in the crystal structure. A magnetic
reflection appears at 2θ = 16.3° and can be indexed as either (1 0 0) or (1 0 1̄

2) on the basis of
the original triclinic cell. Consequently Kikuchi103 proposed two indistingishable models for the
magnetic structure of this material. The non distinguishability comes from the fact that neutron
diffraction was performed on powder samples. These models are illustrated in Figure 1.28.

In both magnetic structures, only the Cu atoms are shown. Up and down spins re represented by
the open and solid circles, respectively. The nearest-neighbour spins align ferromagnetically. The
broad maximum in susceptibility data indicates a dominant antiferromagnetic coupling between
Cu2+ spins. Hence, the exchange coupling between the next-nearest neighbours is stronger than
that between the nearest neighbours Cu2+ ions. The antiferromagnetic spin chains in α-CuV2O6

are therefore along [1 1 0] (or [1 1̄ 0]) rather than [0 1 0]. Prokoviev105 attempted to fit the temper-
ature dependence of the susceptibility by a Heisenberg S = 1

2 linear chain model. These attempts
yielded unsatisfactory results indicating that α-CuV2O6 should be described as an anisotropic three-
dimensional magnetic system. This is in agreement with the work of Vasilév and coworkers104 who
refined a value of −14 K and 36 K for the interchain (J ′) and intrachain (J) coupling constants, re-
spectively. This relative large value of |J ′ | compared with J confirmed then that α-CuV2O6 can not
be described as a 1D antiferromagnet. They refined a a value of 1.6(1)µB per Ni2+ ion as absolute
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Figure 1.29: Magnetic structure ofα-CoV2O6 (a) in the antiferromagnetic ground state, (b) in the
ferrimagnetic state , and (c) in the ferromagnetic state106.

value of the magnetic moments of nickel ions.

CoV2O6

α-CoV2O6 crystallises in a brannerite-type structure. Magnetic susceptibility measurements were
performed on flux grown α-CoV2O6 single crystals, with fields parallel to a, b and c axes. The χ
vs T curves suggest that the moments lie in the a-c plane. The susceptibility curve for H ‖ c has
a higher response to temperature changes than the one for H ‖ a, suggesting the c-axis is the easy
axis for the Co2+ ions. It is an energetically favorable direction of spontaneous magnetisation. The
χ vs T curves also reveal an antiferromagnetic ordering of the Co2+ ions below TN = 14 K. Lenertz
et al.106 performed neutron diffraction on powdered α-CoV2O6 sample. The magnetic reflections
were indexed by the propagation vector ~k = (1, 0, 1

2). Their refined subattice magentization is
depicted in Figure 1.29 and corresponds to the structure on the top left (a).

In Figure 1.29 above Co and O atoms are represented by the blue and and red spheres, respec-
tively. V and some O atoms are not shown for visibility reasons. The blue arrows indicate the
direction of the magnetic moments. For the antiferromagnetic ground state (a) there is a doubling
of the nuclear structure along the c-axis. One observes ferromagnetic chains along the b-axis and an
antiferromagnetic arrangement in the a-c plane.

The application of a magnetic field -for temperature below TN - creates excitations of the mag-
netic moments. Typically as the magnitude of the magnetic field H increases, the magnetic moments
align themselves in the direction of the field. The state of the system in which all spins are parallel to
each others and point in the direction of the field is the saturation point of the system. The moments
order ferromagnetically at the saturation. The application of a magnetic field along particular direc-
tions may lead to some intermediate ordered states between the ground and the saturation states.
The latter are called excited states. These excited states can be visualise via neutron diffraction
measurements - under the application of a field.
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In the case of α-CoV2O6 new magnetic peaks are generated for H = 2.5 T106. These magnetic
reflections can be indexed with the modulation vector ~k = (2

3 , 0, 1
3) in the C 1 (5) space group.

Another way of presenting the sublattice magnetisation is to use a ninefold unit cell (3a, b, 3c)
with no modulation vector in the P 1 (1) space group. This sublattice is shown at the bottom of
Figure 1.29 (b), and it corresponds to a ferrimagnetic ordering of the spins. In the ferrimagnetic
structure the chains follow an “up-up-down” sequence along the a- and c-axes. This ferrimagnetic
ordering is associated with the 1/3-magnetisation plateau between 1.9 and 3.2 T in the magnetic field
dependence of the magnetisation (M vs H)106,107.

As the field reaches 5 T the magnetic moments reoder thermselves. It can be seen in the neutron
diffraction patterns measured below 5 K as the peaks from both the antiferromagnetic and the fer-
rimagnetic superstructures are suppressed. Additionally extra reflections at the positions of nuclear
reflections such as (1 1 0), (1 1 1), and (2 0 0) are observed. The latter correspond to a simple fer-
romagnetic order of spin chains with propagation vector (0 0 0), as shown in Figure 4.3 (c). In the
anti-, ferri- and ferromagnetic states, as seen in Figure 1.29, the magnetic moments are at an angle
of 9.3° with respect to the c-axis. This is in agreement with the susceptibility data from He et al.107.
Note that co-existing magnetic phase were observed in non-aligned samples: antiferromagnetic and
ferrimagnetic phases at 2.5 T; all three spin-ordered phases at 5 T.

The magnetic properties (ground state, field-induced magnetic states, the susceptibility data,
puzzling steplike magnetic behavior) of α−CoV2O6 can be reproduced by an Ising model106,108,109

on a triangular lattice with frustrated antiferromagnetic couplings between neighbour pairs of sites.
The magnitude of the ordered moments from 0 to 5.0 T is about 4.4(1)µB per Co2+ ion. This large
value of µeff of Co2+ moments in monoclinic CoV2O6 significantly exceeds the ideal spin-only value
of 3.87µB, evidencing a strong orbital contribution.
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Chapter 1. Introduction

1.4 Definition of the project

AB2O6 oxides are interesting materials to study, due to the wide range of compositions and crystal
structures. The investigation of the structural-property relationship in these systems may lead to
high temperature thermoelectric applications. This said, some AB2O6 exhibit exotic magnetic fea-
tures, whose understanding raises questions regarding fundamental physical problems.
The thesis is organised in two parts, which consist of two chapters each. The first part discusses
the thermoelectric properties of two AB2O6 oxides, whereas the magnetic structures of two other
AB2O6 compounds is investigated in the second part. Prior to these two parts, Chapter 3 intro-
duces some fundamentals on some transport properties: the Seebeck coefficient, the electrical and
thermal conductivities. The projects presented in Chapter 4 and Chapter 5 are both thermoelectric
applications-driven. In Chapter 4 the influence of a doping material (Y3+) on the thermoelectric
properties of CdSb2O6 is investigated. Polycrystallines Y-doped CdSb2O6 have been prepared by
a solid-state reaction and their Seebeck coefficient, electrical conductivity have been investigated.
Analysis and characterization of powdered WV2O6 are addressed in Chapter 4. Results of the inves-
tigations on the thermal conductivity and thermopower of this material are presented and discussed
in Chapter 5. The electrical and thermal conductivity of tungsten divanadate oxide has also been
measured and several models are assessed for the understanding of its behaviour. Furthermore,
Chapter 6 and 7 are dedicated to the magnetic structures of NiTa2O6 and NiNb2O6. Chapter 6 is
dedicated to the models for the sublattice magnetisation of nickel ditantalate oxide. The cation dis-
tribution of this material is also revisited. The last chapter of the thesis is dedicated to determination
of the magnetic structure of NiNb2O6.

46



Chapter 2

Experimental and computational methods

This chapter is dedicated to the experimental techniques used throughout the thesis. The main tech-
niques used for structural characterization were powder x-ray and neutron diffraction. There is an
introduction to both the theoretical background and technical details about the specific instruments
of these techniques. In addition, the computational methods related to these two techniques are also
presented. It is then followed by a description of the ZEM-3 and the MMR instruments, utilised for
thermoelectric characterization. An introduction to the principles of energy-dispersive x-ray (EDX)
concludes the chapter.

2.1 Powder x-ray diffraction

2.1.1 Principles

X-ray diffraction110,111,112 (XRD) relies on the phenomenon of diffraction, whereby x-rays encounter
a periodic structure with geometrical variations of the length scale of the wavelength of the x-rays.
William Lawrence Bragg and his father William Henry Bragg113 were the first to observe particular
patterns due to the interaction between x-rays and crystalline solids for specific wavelengths and
incident angles. Their work was motivated by the demonstration of the wave character of x-rays by
Max Von Laue114.

A crystalline solid can be described by an ensemble of crystallographic lattice planes with dis-
tances dhkl. As a set of x-rays meets the atomic planes their path is deflected and reflected. An
x-ray diffraction pattern results from the interference between the scattered x-rays. Constructive
interferences occur when the scattered x-rays are in phase. On the other hand destructive inter-
ferences is observed when the scattered x-rays are out of phase. Bragg derived the rule governing
the diffraction pattern of crystalline solid by means of geometry. Figure 2.1 is a simple version of
Bragg’s model.

Two in-phase incindent waves, beam 1 and beam 2, encounter a set of atomic planes with separa-
tion dhkl, at an angle θ. There is a path difference between the beam 1 which gets reflected by the
plane mm’ and the beam 2 which is transmitted then reflected by the plane nn’. This path difference
is equal to (SQ + QT). The scattered waves 1’ and 2’ interfere constructively if (SQ + QT) is a
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Chapter 2. Experimental and computational methods

Figure 2.1: Schematic representation of diffraction by x-rays. Source: http://nptel.ac.in/courses/

multiple of the wavelength (nλ) of the incident x-rays. Let us derive SQ and QT from Figure 2.1.

In the rectangle triangle SPQ one has:

SQ = PQ.sin(θ). (2.1)

PQ is the interdistance between crystallographic planes, Hence, PQ = dhkl = d. Similarly one
has QT = d.sin(θ). Therefore the path difference is equal to the following equation

(SQ+QT ) = 2dsin(θ). (2.2)

The condition for the scattered waves to be in phase can be written as:

2dhklsin(θ) = nλ. (2.3)

Equation (2.3) is known as the Bragg’s law for x-ray diffraction. The determination of the atomic
structures from x-ray diffraction was based on the fact that the detected scattered intensities were
directly related to the the coordinates of the atoms. The electron density function in this case was
expressed by the following formula:

ρ(xyz) = 1
V

+∞∑
hkl=−∞

|F (hkl)|.exp[−2π.i.(hx+ ky + lz)], (2.4)

where x,y,z are the coordinate of an atom, h k l are the Miller indices, V represents the total
volume of the material and F (h k l) is the atomic structure factor of the lattice along different planes.
The structure factor F(h k l) of a diffracted x-ray along the (h k l) plane is is a mathematical function
describing the amplitude and phase of the diffracted x-ray from crystal lattice planes characterised
by Miller indices h,k,l. It should be noted that the scattering factor of an atom A (fA) describes
the effects of the electronic cloud of the atom on the path of an incident wave.

48



2.1. Powder x-ray diffraction

Figure 2.2: Experimetal set-up for x-ray diffraction. It is the PANalytical X’pert instrument, which was
extensively used during the course of this work for powder x-ray diffraction.

2.1.2 Instrumentation

A simple experimental set-up for XRD involves an anode tube, also known as source, sending a flux
of x-rays with a particular energy hc

λ on a sample. The emitted photons interact with the atoms
of various atomic planes within the sample, are reflected at different angles by the crystallographic
planes and then are collected by a detector. Figure 2.2 presents a simplest set up for XRD.

Figure 2.2 illustrates the Bragg-Brentano configuration with a θ - θ geometry. In this diffrac-
tometer x-rays are produced from a monochromated cobalt anode and have a wavelength of 1.789 Å.
The powder samples were sprinkled on a glass slide and fixed with a drop of ethanol. The glass
slide was then placed in the centre of the spinner sample stage. This sample stage was chosen to
minimize preferred orientation, which can lead to a misinterpretation of the x-ray diffraction pat-
tern. An X’Celerator detector was used to detect the scattered x-rays. Eventually the optics of the
PANalyitcal were kept the same for all measurements: programmable divergence slits of 4° and a
beam mask of 15 mm.

2.1.3 Structure refinement

The refinement of the crystal structures of the studied AB2O6 from powder XRD was performed us-
ing the Fullprof115 program. This software is based on the Rietveld method, which is a least-square
fitting of the peaks profile Rietveld116,117. Several mathematical functions can be used to fit the
peaks. Gaussian, Lorentzian and a Pseudo-Voigt are among these functions. A pseudo-Voigt is a lin-
ear combination of a Gaussian and a Lorentzian functions. Throughout the thesis, the pseudo-Voigt
was chosen as model to fit the x-rays diffraction (XRD) patterns, as it best fitted the peaks within
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Chapter 2. Experimental and computational methods

the different XRD patterns. In order to fully fit an XRD pattern, an additional function is added
as it takes into account the anisotropy of peaks. The combination of a pseudo-Voigt and this extra
function is the Thompson-Cox-Hastings function. Consequently, the Thompson-Cox-Hastings118

with axial divergence is the profile used to fully fit the AB2O6 oxides powder x-ray diffractograms.

Additionally, some fitting parameters indicate the agreement between the calculated pattern from
the Thompson-Cox-Hastings function and the measured XRD pattern. The first agreement factor
is RB or RBragg is defined by equation (2.4):

RB =
∑
h,k,l |Iobs(h,k,l) − Icalc(h,k,l)|∑

h,k,l |Iobs(h,k,l)|
(2.5)

RBragg indicates whether or not the model chosen was appropriate. However, this fitting param-
eter does not take into account peaks due to the presence of spurious phases. Another agreement
factors are responsible for this task: the conventional Rp and weighted Rwp profiles. Rp and Rwp

are defined by the following formulas, respectively:

Rp =
∑
i |yi,obs − yi,calc|∑

i |yi,obs|
(2.6)

Rwp =
∑
iwi.|Ii,obs − Ii,calc|2∑

iwi.y
2
i,obs

(2.7)

Where wi is the statistical weight. The agreement factors are calculated at each iteration of the
calculations and stored in a file. An alternative approach to access a structural refinement is to
judge the quality of the residual line: the difference between observed and calculated profile. Low
values of RB, Rp nd Rwp are associated with a good fit: the residual is almost a straight line.

2.2 Powder neutron diffraction

2.2.1 Principles

Powder neutron diffraction is another structural characterization method used during the thesis. It
follows the same principle (Bragg’s law) as x-ray diffraction. The main difference is that the neutrons
replace the x-rays. Neutrons are particles with no charge. The penetration depth of neutrons is
therefore more important than that of x-rays. To go further, a neutron carries a spin 1

2 and can
thus interact with other spins. These are typically the spins of unpaired electrons within a material.
Hence, neutron diffraction is the optimal method to investigate the magnetic structure of materials.

2.2.2 Instrumentation

Unlike x-ray diffractometers which are commonly found in laboratories neutron powder spectrome-
ters are rare and they are found in reactor centres or spallation sources. This is due to their large
size and the fact that their production of neutrons involve radioactive elements119,120. In spallation
sources negatively charged hydrogen H− are first accelerated to very high speed. Their electrons
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2.2. Powder neutron diffraction

are stripped off by a foil, leaving the H− anions with only protons. The protons accumulate in
bunches and are released as constitute a beam at specific rate. The beam of protons hit a target
(tungsten W) thereby ejecting thermal neutrons of the target. Eventually, these neutrons are slowed
down in a moderator and guided through beam lines to areas containing specific instruments where
they are used in a wide variety of experiments. ISIS121, in Didcot in the United Kingdom, is one
of world-leading centre for neutron scattering experiments, using a spallation source. On the other
hand, in Saclay in France neutron scattering experiments are performed with neutrons produced
from a reactor source. At the LLB, neutrons are produced in the Orphée nuclear reactor with a
nominal power of 14 W. Both diffractometers 3T2 and G4.1 were utilised for the structural and
physical characterization of both NiNb2O6 and NiTa2O6. A description and comparison of both
spectrometer is presented below.

G4.1

The medium resolution G4.1 is a two-axis diffractometer using cold neutrons with a wavelength of
2.428 338 Å. The neutrons are selected with a pyrolytic graphite (002) monochromator. The sample
is placed in the cryostat configuration as pictured on Figure 2.3. 3 g of each nickel samples (NiNb2O6

and NiTa2O6) were placed in a vanadium tube. Scattered neutrons are detected by a multidetector:
800 (BF3) cells with 0.1° of separation. One of the main advantages of this instrument is its high
acquisition time - the lowest recording time is of the order of one minute. In addition to that the
resolution of G4.1 is optimal at low angles as depicted in Figure 2.4 on page 52. As a consequence,
G4.1 was utilised to determine the magnetic structure of both NiTa2O6 and NiNb2O6, and also
to study the evolution of the magnetic moment value of the nickel ions within these materials as
function of temperature. The magnetic structures crystallize in high symmetry space groups. The
high symmetry planes which fulfill the Bragg’s law are thus more intense at low angles (2θ < 60°).
The sublattice magnetisation can then be extracted from the magnetic reflections.

Figure 2.3: Schematic representation of G4.1 diffractomter. Source
http://www-llb.cea.fr/en/fr-en/pdf/g41-llb.pdf.
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Chapter 2. Experimental and computational methods

Figure 2.4: Resolution curve of the two-axis G4.1 diffractometer. Source
http://www-llb.cea.fr/en/fr-en/pdf/g41-llb.pdf.

3T2

The 3T2 diffractometer is also a two-axis diffractometer, with a similar geometry as G4.1, as seen
in Figure 2.5 below. In this spectrometer cold neutrons with a wavelength of 1.227 634 Å are selected
with Ge (355) monochromator, instead of the pyrolytic graphite (002) in the G4.1 instrument. The
sample is placed in vanadium tube, which is then introduced in cryofurnace configuration. On the
other hand the scattered neutrons are collected by a detector bank constituted of 50 3He tubes
spaced 2.4° apart. Another striking difference with the G4.1 system is the collection time on this
apparatus. In fact the typical time on the 3T2 are between 12 h and 24 h. Consequently this
spectrometer is often called the high-resolution 3T2 diffractometer. Its resolution curve is presented
in Figure 2.6 on the next page. This accuracy allows one to accurately determine the positions and
temperature factors of atoms within the crystallographic lattice. The neutron diffraction pattern of
both nickel compounds was recorded with the same acquisition time: 24 h.

Figure 2.5: Schematic representation of the high-resolution 3T2 diffractometer. Source
http://www-llb.cea.fr/spectros/pdf/3t2-llb.pdf.

The G4.1 and the 3T2 diffractometers complement each other: the atomic positions and thermal
factors determined with 3T2 will be used to refine the magnitude of the magnetic moments evaluated
from G4.1 data.
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2.2. Powder neutron diffraction

Figure 2.6: Resolution curve of the two-axis 3T2 diffractometer. Source
http://www-llb.cea.fr/spectros/pdf/3t2-llb.pdf.

2.2.3 Structure refinement

The lattice parameters, Wyckoff positions were determined in the same fashion as for the powder
x-ray diffraction data. Only the magnetic structure determination is described in this subsection.

In the paramagnetic regime, above the Néel (or Curie) temperature, the magnetic moments of
the magnetic atoms are randomly orientated and only the coherent scattering due to the nuclear
structure is observed. Below the ordering temperature (TN or TC) the magnetic moments ordered
over a long distance: one observes extra reflections or magnetic reflections on the NDPs associated
with these temperatures. More details on the origin of the ordering of the magnetic moments
belowTN or TC are given in section B of the Appendix. The magnetic structure and other magnetic
properties are extracted from the refinement of these magnetic reflections. Note that the refinement
factor, Rmag, related to the fitting of the magnetic reflections is given by:

Rmag =
∑
h,k,l |Iobs,m(h,k,l) − Icalc,m(h,k,l)|∑

h,k,l |Iobs,m(h,k,l)|
. (2.8)

This is similar to RB or RBragg except that the intensities are those of the magnetic peaks. There
are two methods to determine the magnetic structure of a material from powder neutron diffraction.
They are the magnetic symmetry and the representation analysis. The mathematical calculations
of these two methods are implemented in the programs Jana and Fullprof, respectively.

Fullprof: A computational approach of the representation analysis method

In this method the magnetic structure is described by the nuclear structure and a propagation
vector ~k. The different steps to determine the magnetic structure are the following:

• The derivation of the modulation vector ~k by the tool k search. One first identifies the mag-
netic reflections, by subtracting a neutron diffractogram measured below TN from a neutron
diffraction pattern measured above. One then evaluates the d spacing associated with all the
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different planes orientations. By combining all these d spacing values one can identify the crys-
tal system (orthorhombic, cubic, etc) of the magnetic lattice. The propagation or modulation
vector ~k is the ratio between the basis of nuclear and magnetic lattices.

• The derivation of the little group G~k. G~k contains the symmetry operations of the nuclear
space which leave the propagation vector invariant.

• The derivation of the irreducible representations (IRs) of the little group G~k by BasIreps. The
periodicity of a primary IR agrees with the nuclear structure’s periodicity. The active IRs and
their combination are potential models for the magnetic structure of the studied material.

• The refinement of the magnitude and phase of magnetic moments, within the different models,
is the last step of the refinement.

The tool FP Studio enables the visualization of the magnetic structure. One of the advantages
of the representation analysis method (thus Fullprof) is the reduction of number of possible models
for a magnetic structure: one only focuses on the IRs of the little group G~k and their superposition.
This is due to the Landau theorem on second order phase transition122,123. However it is not yet
possible to refine 2~k-magnetic structure. Fullprof does not yet handle magnetic space groups. As a
consequence Fullprof can not differentiate between the subgroups of a representation.

Jana: A computational approach of the magnetic symmetry analysis method

The magnetic structure can be described by one of the Shubnikov groups124,125. The refinement
of the magnetic structure of a material from powder neutron diffraction with Jana has the following
organization:

• The derivation of little group G~k.

• The derivation of the IRs of the little group associated with the propagation vector ~k.Jana is
connected with ISODISTORT (Bilbao Crystallographer Server), which enables the derivation
of the magnetic space groups related to an irreducible representation.

• The selection of a magnetic space group of the chosen representation. The Shubnikov group
and its subgroups are the potential models for the sublattice magnetisation of the material.

• The final step is to refine the magnitude and phase of magnetic moments within the magnetic
structure, according to the chosen Shubnikov group.

The program VESTA enables the visualisation of the refined magnetic structure. Jana is ver-
satile program as it is possible to choose the different subgroups of the same representation. In
additionJana interacts with ISODISTORT, one can then combines IRs and select an the differ-
ent magnetic subgroups associated with the combination of the chosen IRs. However, one of the
disadvantages is the large number of potential models for a magnetic structure. In addition the
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2.3. Thermoelectric measurements on the ZEM-3

nomenclature of the representations is not straightforward in Jana.

The pros and cons of Fullprof and Jana have been discussed. The magnetic symmetry refine-
ment (Jana) and the representation analysis (Fullprof) are complementary for magnetic structure
determination. Both software were utilised to shed light on the discrepancies between the magnetic
structure models of NiTa2O6 and to determine the magnetic sublattice magnetisation of NiNb2O6.

2.3 Thermoelectric measurements on the ZEM-3

The ZEM-3 instrument, in Figure 2.7 on page 56, enables the simultaneous measurement of the
electrical conductivity (σ) and Seebeck coefficient (α) of bulk or thin films materials within the
temperature range from 25 °C up to 1000 °C. The instrument is connected to computer program
which controls the measurement and collects the data. A bottle of He gas and a vacuum pump are
connected to the apparatus in order to cool and evacuate the furnace, respectively. The sample is sit-
uated in the furnace. The sample can either be a rectangular bar or a rod, which is clamped between
two electrodes. The difference of temperature between these two electrodes must be less than 50 °C.
Two probes 3 mm apart are placed in contact with the rectangular bar. These probes are also thermo-
couples of type K (Type M8 & L). Figure 2.8 on page 57 is a schematic representation of the furnace.

As illustrated in Figure 2.8 a current is constantly supplied to the sample. For the measurement of
the conductivity, a potential difference is measured between the two side probes. Knowing the width
of the sample the software program calculates the conductivity (σ) of the sample. Regarding the
thermopower, the bottom electrode plays the role of hot end whereas the top electrode is the cold end.
The difference of temperature between the side electrodes generates a difference of potential. The
Seebeck coefficient (α) is given by the ratio between the created voltage and the applied temperature
difference.

2.3.1 Sample preparation

The sample shape for the ZEM system can either be a rectangular bar or a cylinder. An ideal
sample should have the following dimensions: from 6 mm up to 22 mm long and between 2 to 4 mm
wide. For this work the rectangular bar shape was chosen. This was done in order to insure a
good electrical contact between the side probes and the rectangular column. A rectangular bar is
prepared in the following manner.

• The powder is pressed between two die within a pellet press instrument. This process leads to
the formation of a pellet.

• The pellet is pressurised at 30 psi for 10 mins using the cold isostatic pressure - also known as
CIP.

• This pressurised pellet is then sintered at a higher temperature than the one used for the
synthesis.
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Figure 2.7: The ZEM-3 instrument utlised for the measurement of conductivity and thermopower of
Y-doped CdSbO6 and WV2O6.
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2.3. Thermoelectric measurements on the ZEM-3

Figure 2.8: Schematic representation of a furnace within a ZEM-3 instrument.

• Eventually using wax and a diamond cutter rectangular bars are prepared.

To ensure good electrical contact all surfaces of the rectangular bars are polished. Rectangular
bars of WV2O6 and Y-doped CdSb2O6 have been prepared throughout the thesis with this method.
To calculate the density of a pellet two methods were utilised: the Archimede’s method and the
standard method. The standard method is simply the ratio of the mass by the volume. The former
method, established by Archimede, gives an indication of the porosity of an object by use of a liquid.
The principle of this method states that the apparent weight of an object immersed in a liquid
decreases by an amount equal to the weight of the volume of the liquid that it displaces126. The
presence of pores within the object creates an important decrease of the density of the object. This
principle is summed up by the following formula:

do = ds.
m1

m3 −m2
, (2.9)

where m1 and m2 represent the mass of the object before immersion in the liquid and when the
object is completely submerged by the liquid, respectively. After been taking out of the container,
typically a beaker, the object is dried with non absorbing materials. One then measures its mass
m3. do and ds are the density of the object and the solvent used for the experiment, respectively.

2.3.2 A measurement at a specific temperature

The first step in the process for the measurement of the Seebeck at a specific temperature is the
insertion of the rectangular bar between the two electrodes. The probes and electrodes are tightened
around the sample to insure a good ohmic contact. It is followed by a rapid test of the ohmic character
of the bar. The V-I plot is a straight line in the ideal case, otherwise polishing may be needed. The
furnace is then closed. It is then evacuated (via the vacuum pump) and filled with helium several
times. The dimensions of the bar are entered in a program which controls the measurements and

57



Chapter 2. Experimental and computational methods

Figure 2.9: A MMR instrument. This apparatus measures the thermopower of metals and semiconductors.

stores the data. Furthermore, the furnace is heated up to the set temperature. Once this set
temperature does not fluctuate the system creates three ∆T between two electrodes. The plot α
vs ∆T gives a line and the slope of this line corresponds the thermopower of the bar. At a specific
temperature the thermopower is measured several times (∆T), in order to have a better statistics,
thus a better accuracy on data.

2.4 Thermoelectric measurements on the MMR

The MMR system is an instrument which measures the Seebeck coefficient of metals and semicon-
ductors for temperatures between 80 K and 300 K. The instrument is made up of various kits: a
SB1000 which evaluates the thermopower, a K2000 which controls the temperature of the system
and a chamber where the sample is mounted on a sample stage. Similarly to the ZEM-3 instrument,
the MMR can be connected to a vacuum pump to evacuate the chamber. The chamber can thus be
filled with (N2) gas, which enables a cooling of the sample stage. The instrument is connected to a
computer program, which controls the measurement and stores the data. Figure 2.9 at the top of
the page illustrates the MMR system utilised throughout the thesis.

The sample stage in the MMR instrument is different to that of the ZEM-3. There are two
pairs of thermocouples: one of copper and a metal with known properties, and the other pair of
copper and a the material whose thermopower needs to be determined. Each pair of thermocouples
form two junctions. One of the junctions is considered a reference junction, and the other the
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2.4. Thermoelectric measurements on the MMR

Figure 2.10: Sample stage in the MMR system. The orange and green bars represent the fference and
sample materials, respectively. Source: www.semimetrics.com/

working junction. The working junction is near the heater and the latter is controlled by the MMR
Programmable Seebeck Controller SB1000. The refrigerator is placed underneath the sample stage
near the reference junction and is controlled by the K2000 temperature controller. The Seebeck
stage has two outputs: one for the reference material V2 and one for the material with properties
to be determined V1.

2.4.1 Sample preparation

For the SB1000 instrument a small bar is designed, but with smaller dimensions in comparison to
that of the rectangular bar for the ZEM. One of the main requirements on the sample dimension
is that its length needs to be similar to that of the reference wire: from 4 up to 6 mm. In addition
to that, the the bar’s thickness has to be of the order of magnitude of the wire’s thickness. It is
typically 0.002 up to 0.032 mm. Successive polishing are needed to design bars for the MMR system.
Silver paint is used to mount the sample and the reference wire on the sample stage in order to
insure a good ohmic contact. Throughout the thesis the reference wire used for the measurements
of the thermopower of AB2O6 oxides was constantan.

2.4.2 A measurement at a specific temperature

The heater and the refrigerator play the role of the hot and cold ends, respectively. If power is
applied to the heater a temperature difference will be created between the working and reference
junction. This is due to their respective distance from the heater. As a consequence, differences of
potential will be generated in each pair, giving non zero values to V1 and V2. These two voltages
can be expressed by the following formulas:

V 1 = α1.∆T, (2.10)

V 2 = α2.∆T. (2.11)

α1 and α2 are the Seebeck coefficient of the material with unknown properties and the reference
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wire, respectively. Therefore, the Seebeck coefficient of the material is given by:

α1 = α2.
V 1
V 2 (2.12)

Like in the ZEM-3, for a better accuracy on the value of the sample’s thermopower three different
∆T are created at a specific temperature. It is also common to perform measurements at different
power settings as the power controls the temperature difference: the greater the power the greater
the ∆T. The difference of temperature varies from 0.01 to 2 K.

2.5 EDX analysis

Energy-dispersive x-ray (EDX) is another structural characterization technique. This technique en-
ables the calculations of atomic and mass percentage for each element within a studied compound
from SEM images. The principles of this technique are presented below.

An incident beam of electrons is focused onto the studied material. These electrons have a spe-
cific energy and therefore excite some electrons of the inner shells (K, L,M,etc) of the studied sample.
The excited electrons will be ejected from the atom into the vacuum - thereby leaving holes in the
inner shells. Some electrons of the higher energy levels will fill the holes of the energy levels of the in-
ner shells, thereby there will be emission of an x-ray. The energy of this x-ray is characteristic of the
difference in energy between higher- and lower-energy levels. However, only the transitions for which
the difference of quantum number of orbital angular momentum ∆l = ± 1 are allowed. The emitted
x-rays are detected and the result of this process is a pattern constituted of peaks. The x- and y-axes
of this diagram correspond the energy and the intensity of the x-rays, respectively. The detected
x-rays have different energies. These energies correspond to the different states of an element X: X+,
X2+, etc. By combining the peak position (energy) and its intensity one can determine the content
of each element within the studied material. For more details on energy-dispersive x-ray the reader is
encoruaged to consult the book of Shindo et al.127. Another description is proposed by Goldstein128.
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Chapter 3

Transport properties fundamentals

In this chapter fundamentals on some transport properties are introduced. The three physical
quantities (thermopower, electrical and thermal conductivities) related to the Figure of merit of a
material are successively derived.

3.1 The thermopower

3.1.1 Mechanisms of Seebeck effect

The Seebeck effect (or thermopower) involves two principal physical phenomena, which are the
charge-carrier diffusion and the phonon drag. The former is often referred as the entropy per carrier.
As a material is exposed to a temperature gradient, there is unbalance of free-carrier concentration
at the two ends of a conductor. The free-carriers tend to diffuse from the hot end to the cooler one
to reach a steady state. The charge-carrier diffusion builds up a net charge at the cold end. It gives
rise to an electrostatic potential counteracting the chemical potential of the diffusion and brings the
system to equilibrium.
The second effect related to the Seebeck effect is the phonon drag. Its contribution to the ther-
mopower is more important at low temperature than at high temperature. Electrons have a very
long relaxation time at low temperature, hence transfer their momentum to phonons in the direc-
tion of the electric current. This energy transport contributes to the Peltier heat which may be
much larger than the charge-carrier diffusion effect. The temperatures for which the phonon drag is
important are those which fulfill the following relation:

T ∼ 1
5ΘD (3.1)

where ΘD is the Debye temperature. The phonon drag vanishes as temperature increases.

3.1.2 Generalised description of the Seebeck coefficient

In his 1971’s paper129, Fritzsche derived a general expression of the thermopower α without reference
to a specific conduction process. He writes the Seebeck coefficient as an integral over one electron
energy states. From this generalised formula of α one can derive Mott’s thermopower formula for
metallic conduction around of the Fermi level and also the familiar thermopower formula for crys-

61



Chapter 3. Transport properties fundamentals

talline semiconductors. However Fritzsche also added that his expression is valid if one does not
take into account correlation effects.

The starting point of his derivation is to express the electric conduction or conductivity as

σ =
∫
σ(E)dE. (3.2)

σ(E) is the differential conductivity and a measure of the fractional contribution of electrons
with an energy E to the total conductivity. At a finite temperature only electrons near the Fermi
surface contribute to the conduction process. Hence, equation (3.2) can be written as

σ ≡
∫
σ(E)(−∂feq

∂E
)dE. (3.3)

The second term in the integral is a bell-shaped function centered at E = EF , where f is the
Fermi-Dirac distribution and EF is the Fermi energy. At any temperature T, f is given by

f(E) = 1

e
(E−EF )
kBT + 1

(3.4)

Fritzsche then derives the Peltier coefficient Π as a function of the conductivity. Π corresponds
to the energy transported per unit charge. Every electron above the Fermi level contributes to Π in
proportion to its contribution to σ. Mathematically it corresponds to σ(E)

σ . The Peltier coefficient
is given by the formula formula:

Π = −1
e

∫
(E − EF )σ(E)

σ
dE. (3.5)

The Thomson relation10 relates Seebeck and Peltier coefficients:

Π = Tα (3.6)

where T is the temperature. One then gets Fritzsche’s generalised expression for the thermopower:

α = −kB
e

∫ (E − EF )
kBT

σ(E)
σ

dE. (3.7)

3.1.3 The Seebeck coefficient for n- and p-type semiconductors

From equation (3.7) one can derive the familiar expressions of the thermopower for n- and p-type
semiconductors. One of the assumption made for such cases is that the conduction take place only
in a single band, located at the density of states edge. For a n-type semiconductor, this edge is the
bottom of the conduction band (CB). One arrives at the following well known expression for the
thermopower :
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α = −kB
e
.((EC − EF )

kBT
+AC). (3.8)

It is due to the fact that the integral in equation (4.10) can be viewed as a weighted average.
The term σ(E)

σ indicates the contribution of the electron of energy E to the electric conduction. For
a n-type semiconductor only carries whose energy E > EF participate at the electrical conduction.
As a consequence the major part of the integral is equal to (E−EF )

kBT
. The term AC is a constant and

it accounts for the carriers distributed beyond EC ; it is equal to

AC =
∫ ∞

0

ε

kBT
σ(ε)dε/

∫ ∞
0

σ(ε)dε (3.9)

with ε= E - EC . In a similar way, one can derive the thermopower of p-type semiconductor,
should conduction take place only in a single band located at the top of the valence band. α in this
case is given by

α = kB
e
.((EF − EV )

kBT
+AV ). (3.10)

The weight average AV is equal to

AV =
∫ 0

−∞

ε

kBT
σ(ε)dε/

∫ 0

−∞
σ(ε)dε, (3.11)

and ε = EV - E.

3.1.4 The Seebeck coefficient for metals and degenerate semiconductors

It is possible to derive the thermopower’s expression of metals and heavily doped semiconduc-
tors from the generalised expression of α. This derivation is done by Mott in his book entitled
The theory of the properties of metals and alloys130. Mott established that in metals and degener-
ate semiconductors in which conduction occurs in multiple bands, the Seebeck coefficient is expressed
as

α = (πkB)2T

3q
∂ln[σ(E)]

∂E
‖EF (3.12)

q and kB are the free-carrier’s charge and the Boltzmann’s constant, respectively. equation
(3.12) is the well known Mott formula, which relates the Seebeck coefficient to the derivative of
the differential conductivity. This formula can also be derived from Boltzmann equations131,132.
Mott formula can be simplified under the following approximations: (i) conduction occur in a single
parabolic band, (ii) the scattering effects are neglected. For such cases equation (3.12) becomes:

α = 8(πkB)2T

3eh2 m∗T ( π3n)2/3. (3.13)
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m∗, h and n represent the effective mass of the free-carrier, the Planck’s constant and the carrier
concentration, respectively. This formula indicates that the Seebeck coefficient of metals and heavily
doped semiconductors is linearly proportional to temperature.

3.1.5 The Seebeck coefficient for metal oxides

In transition-metal oxides (TMOs) the correlation between electrons plays a major role in the ma-
terial properties133. This correlation can no longer be neglected in the derivation of α. After the
report of Terasaki on the large thermopower of Na0.5CoO2 single crystals31, numerous investigations
(theoretical and experimental) were carried out in order to comprehend the anomaly large values
of α in this metal oxide. Taking into account the electron transport properties of semiconductor
oxides and the theory of irreversible thermodynamics the Seebeck coefficient in metal oxides can be
expressed as

α = −kB
e

(H
T
− µ

T
) (3.14)

where µ is the chemical potential and H is the heat transport per particle134. In the high-
temperature limit, Koshibae and Maekawa133 demonstrated that H becomes negligibly small, as the
heat transfer integrals become much lower than kBT. Mathematically, the term H

T goes to zero as
T → ∞. The thermopower becomes proportional to the chemical potential

α = µ

eT
. (3.15)

According to thermodynamics, the chemical potential and entropy of a system are tied by the
following relation:

µ

T
= −( ∂s

∂n
)E,V (3.16)

where s is the entropy, E and and V are the internal energy and the volume of the system,
respectively. n is the concentration of the charge carriers. It follows that

α = −1
e

( ∂s
∂n

)E,V . (3.17)

The above equation clearly demonstrates that the thermopower can be defined as the entropy
per charge carrier in a material.

In strongly correlated systems33,37,135 such as TMOs the spin and orbital degrees of freedom of
the charge carrier must be considered to evaluate the thermopower. Beside for high temperature
limit the entropy can be written as s = kBln(g), where g represents the degeneracy of the system.
g represents the number of ways of rearranging the charge carriers in the different energy levels N,
taking into account the spin, charge and orbital degeneracy. Therefore, in the high temperature
limit, the thermopower in strongly correlated transition-metal oxides is given by
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α = −kB
e

(∂ln(g)
∂n

)E,V . (3.18)

This equation is the so-called Heikes37 formula for thermopower. In order to simplify this ex-
pression one needs to determine the degeneracy. For instance, for a system of spinless fermions no
two particles can occupy the same site because of the Pauli’s principle (Figure 3.1A). g is therefore

g = N !
(N − n)!n! . (3.19)

Using Stirling’s approximation, ln (n!) ' n ln (n) - n, and differentiating with respect to n, the
thermopower can be rewritten as

α = −kB
e
ln[ 1− ρ

ρ
] (3.20)

whereρ = n / N is the carrier density, the ratio of charge carriers to available sites (N). This
formula is the generalised Heikes formula. This situation is physically applicable to a system in
enormous magnetic fields or electron-paired with strong binding energy134.

For a system of electrons with spin, an electron can either be in the spin-up or spin down
configuration. Two parameters control the degeneracy: the Coulomb repulsion between two electrons
and the overall temperature of the system. The former parameter can be seen as a kinetic energy,
as it allows electrons to hop between sites. If the thermal energy (kBT) is greater than the one-site
Coulomb repulsion (Uo two electrons can occupy the same site, see Figure 3.1B. The degeneracy
then represents the number of ways of distributing independently the N↑ and the N↓ among the N
sites. g can be expressed as

g = 2N !
(2N − n)!n! . (3.21)

Consequently, the thermopower is expressed as

α = −kB
e
ln[ 2− ρ

ρ
]. (3.22)

Furthermore, for a system of fermions with spin, where the electron–electron repulsion (Uo) is
greater than the thermal energy (kBT), there is forbidden double occupancy as shown in Figure
3.1C. The electronic degeneracy and the Seebeck coefficient are the respective following relations:

g = 2n N !
(N − n)!n! . (3.23)

α = −kB
e
ln(2[1− ρ

ρ
]). (3.24)
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Figure 3.1: Possible high-temperature site configuration of (A) spinless fermions, (B) fermions with spin
without coulombic interaction, and (C) fermions with spin with large electronic interactions.134

One can rewrite the last equation as

α = −kB
e
ln(2) +−kB

e
ln[ 1− ρ

ρ
]. (3.25)

This equation demonstrates that thermopower for such systems is greater than that of spinless
fermions. Consequently the spin degrees of freedom can enhance the Seebeck coefficient of some
TMOs. Figure 3.1 illustrates the three different configurations discussed above. The first one (A)
corresponds to a system of spinless fermions. On the contrary for (B) and (C) one deals with fermions
with spins. These configurations are associated with kBT � Uo and kBT � Uo, respectively.

Eventually, one considers systems in which one cation - whose electrons are responsible for the
electric conduction - is present with mixed valency or two different electronic configurations. This is
typically the case of Co3+/Co4+ in Ca3Co4O9 or Mn3+/Mn4+ in doped CaMnO3

133,134,135. There-
fore, if gI and gII are the electronic degeneracies of sites I (Co3+) and II (ceCo4+), the thermopower33

can be expressed as a function of n
N

α = −kB
e
ln{ gI

gII
{1− ρ

ρ
}}. (3.26)

This equation shows that the electronic degeneracies ( gIgII ) of the ions involved play an important
role in defining the magnitude and sign of the thermopower for oxide thermoelectric materials.
Koshibae and Maekawa33 investigated the impact of spin, charge and orbital degeneracy on the
thermopower in cobalt oxide materials such as NaxCoO2 and La1−xSrxCoO3. They demonstrated
that in such compounds the three states of Co3+ and Co4+ sites, i.e., low-spin, intermediate spin
and high-spin states, are considered to be close in energy. The large degeneracies of spin, charge and
orbital in Co3+ and Co4+ sites, but also the ratio between them are important for the enhancement
of thermopower.

3.2 The Electrical conductivity of semiconductor oxides

3.2.1 The broad band model

The band model is based on the molecular orbital theory136. A solid can be described as aggregations
of an almost infinite number of atoms in a periodic lattice. The interaction between atoms lead to an
overlap of the atomic orbitals which are closely spaced in energy and spread over the whole crystal.
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The narrowly spaced energy states form energy bands. The electronic structure of the solid thus
does not consist of discrete energy levels but consists of bands. There are three types of materials:
metal, semiconductor and insulator. The electronic structure of semiconductors is marked by a gap
between two bands. This gap is called the bandgap Eg. The bands below the bandpap form the
valence band (VB) in which all energy states are occupied by electrons. The conduction band (CB)
consists of unoccupied bands which are located above the band gap. For metals there is no bandgap,
the bottom of the CB and the VB are overlapped. Insulators are characterised by large bandgap
(higher than 3 eV), so that no electrons from the VB can reach the CB. An important concept in
band theory is the Fermi level. It is the highest occupied state at T = 0 K and the energy associated
with this state is called the Fermi energy EF . The discussion below is restricted to semiconductors.

3.2.1.1 Conduction in intrinsic semiconductor

In an intrinsic semiconductor the free-carriers belong to some atoms of the studied material. The
conduction in these materials occur when the electrons are excited, thereby they leave the top of
the VB and thus populate the bottom of the CB. The minimum energy required for introduce free
delocalized electrons in the CB is called the activation energy EA. This excitation typically occurs
via an increase of the solid temperature.

3.2.1.2 Conduction in extrinsic semiconductor

Extrinsic semiconductors are intrinsic semiconductor which are doped. The introduction of substi-
tutional atoms (with higher or lower valence state) in the lattice is called a doping process. The
substitutional element is the dopant or doping element. For a n-type doping process, the dopant
has a higher valence state than the host atom. The filled donor band is commonly near the empty
conduction band. For conduction to occur there needs to be an excitement of electrons of the donor
band, also called donor electrons. The energy requires to supply the donor electrons to the CB is
the activation energy EA of the system. It is also the difference between the bottom of the CB and
the donor band. For a p-type doping, the dopant element has a lower valence state than the host
element. Doping atoms form an empty acceptor band lying above the fully occupied valence band
of the host material. The thermally excited electrons of the top of VB will populate the acceptor
levels, thereby releasing holes in the VB. Electric conduction occurs because of the migration of free
delocalised holes in the valence band.

In practice, one often uses an Arrehnius plot to assess whether or not the band conduction
occurs in a material. In other words, a fit of the electrical conductivity data with the band model is
required. The logarithm of the electrical conductivity [log (σ)] is plotted against the inverse of the
temperature [ 1

T ], in an Arrehnius plot. If the band model holds true for the studied material, the
electrical conductivity of the material (σ) and the activation energy (EA) are tied by
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Figure 3.2: Simple energy band diagrams for (a) an insulator, (b) an intrinsic semiconductor, (c) an
n-type semiconductor, and (d) a p-type semiconductor.10

σ ∝ exp(−EA
kBT

), (3.27)

where kB is the Boltzmann constant. The band conduction model predicts a linear dependence
between log (σ) and 1

T , in the Arrhenius plot. The activation energy of the material is thus deduced
from the slope of the line in the Arrenhius plot. The diagram below is a simple version of an energy
band diagram for an insulator, intrinsic semiconductor, n-type and p-type semiconductors.

3.2.2 The hopping models

The electrical conductivity in semiconductor oxide materials is best explained through the polaron
hopping model. A generalised expression of σ based on this model is derived. Prior to that there
is an introduction of the concept of polaron followed by a brief history of the hopping conduction.
The Mott model for conductivity will also be discussed.

3.2.2.1 Mechanisms

In semiconductor oxide materials, and particularly those with large ionic bonding between cations
and anions, fluctuations of the electric potential associated with each ion become too large. In order
to explain their electric conduction’s behaviour one needs to take into account the coupling between
the electrons of the narrow band type semiconductor and the lattice ions (virtual phonons). Indeed
as an electron moves through the lattice it influences the dynamics of the surrounding lattice. The
electron pulls nearby positive ions towards it and pushes nearby negative ions away. The electron
and its virtual phonons taken together can be treated as a new composite particle, called a polaron.
This concept was introduced by Landau in his 1933’s paper137. When the electron–phonon inter-
action is weak the overlap of neighbouring orbitals is larger thus resulting in the creation of large
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polarons. On the other hand in systems in which the electron–phonon interaction is strong, electrons
push negative ions further away, and the overlap of neighbouring orbitals becomes narrower until
electrons fall into localised states. This phenomenon is defined as a small polaron.

3.2.2.2 History of hopping conduction

The concept of hopping conduction was first introduced by Conwell138 and Mott139 under the name
of phonon assisted hopping. They proposed a model for a ”new” process of conduction in which
charge carriers conduct the electric current by thermally activated tunnelling from an occupied site
to an empty site. The model was then developed by Miller and Abrahams140 in the 60’s. It would
be the inspiration source of the variable-range hopping (vrh) theory of Mott141. In the early 70’s,
Ambegaokar142 and Pollak143 developed a more sophisticated treatment, which is based on the per-
colation theory143,144,145,146. In such model the hopping conduction is equivalent to the conduction
process of a random network of small conductances that link sites. These localised sites, typically
electronic states, are spatially close to each others and their corresponding energies are also in the
same order of magnitude. Such an approach is still considered today as the most reliable theory for
the evaluation of the electrical conductivity of semiconductor metal oxides but also of non-crystalline
semiconductors at low temperature.

3.2.2.3 Electrical conductivity in polaron hopping model

For the polaron hopping conduction electrons hop to localised neighbouring147 sites near the Fermi
level, as seen in Figure 3.3. The electronic states are represented by dashes and the electrons by
black dots. The y-axis represents the energy of an electron. The density-of-states is shown on the
right. The shaded region corresponds to the valence band in which all energy levels are occupied.

Figure 3.3: Band structure made of localised states, whose energies are separated from the Fermi level
by less than εo. The density-of-states diagram is shown on the right; the range of occupied states is
shaded147.

Th hopping probability of a carrier tunneling from a localised state i with energy Ei to an empty

69



Chapter 3. Transport properties fundamentals

state j with energy Ej is given by

Pij ∼ exp(−2.α.Rij −
Ej − Ei
kBT

), (3.28)

with α the localization parameter of these states, Rij the physical distance separating the two
localised states. For the sake of simplificaton one introduces the parameter W, such that W = Ej
- Ei. Equation (3.28) illustrates that the hopping probability at a given temperature depends on
two parameters: (i) Rij the spatial separation of the sites, and W, their energy separation. Apsley
and Hughes148,149 noted that the two variables were independent and so they combined them into
a single parameter, the range R between two sites which determines the probability of hopping
between them. So one had R = 2.α.Rij -Ej−EikBT

, Hence, the hopping probability becomes:

Pij ∼ exp(−R). (3.29)

The states can be regarded as ”points” in a four-dimensional hopping space made of the three
spatial coordinates and one energy coordinate. R is the ”distance” between two points of the four-
dimensional hopping space.

The probability distribution function of all hops originating from one site is dominated by the
hop to the nearest neighbouring site in the four-dimensional hopping space. It corresponds to two
configurations:

• The first one describes hopping to empty spatially nearest neighbour sites. In other words the
first term on the right hand site of equation (3.28) is dominant. Typically one must have αR0

� 1, with R0 the average spatial distance to the nearest neighbouring empty localised state.

• The second configuration describes hopping to empty nearest neighbour sites whose energy
is close to that of the charge-carrier’s state. Here the second term on the right hand side of
equation (3.28) contributes significantly to the hopping probability.

In the second configuration electrons preferably hop to sites that are further away in space but
closer in energy. This is the variable-range hopping (vrh) process which is also known as the Mott’s
model141,150 for hopping conduction. Details on this hopping conduction are discussed futher below.

Since the probability distribution function of all hops originating from one site is dominated by
the hop to the site at closest range, the average hopping probability from this site i is approximated
by

Pi ≈ exp(−Ri,nn). (3.30)

One can then derive the electrical conductivity from the hopping propability. The electric con-
ductivity consists of a series of hops while the net electric conduction depends on an average of the
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probabilities of the different hops. The appropriate average over the probabilities is the geometric
mean, i.e.

σ ∼ 〈P 〉 = lim
n→∞

[
n∏
i

Pi]
1/n (3.31)

= exp[ lim
n→∞

1
n

n∑
i

ln(Pi)] (3.32)

= exp(−R̄nn). (3.33)

Combining this equation and the density of states g(E) of the charge-carriers can enable the
electrical conductivity to be represented as

σ = σo
T
exp{−W

kBT
}. (3.34)

This equation represents the generalised expression of the electric conduction in the small polaron
hopping model151,152. W is the activation energy EA, the energy required for the electron to hop
from its original site i to an empty localised site j. The pre-factor σo is given by the following
relation:

σo = gde
2νo

akB
, (3.35)

where gd is a factor which depends on lattice geometry. a is the polaron jump distance, such that
the charge carriers can not hop to sites located at distances beyond a. νo is characteristic frequency.
One can therefore rewrite equation (3.34) as

σ = gde
2νo

akBT
exp{−EA

kBT
}. (3.36)

3.2.2.4 The Mott’s model or variable-range hopping model

In Mott’s formalism141,150 the dominant contribution to the hopping current is through states within
kBT of the chemical potential µ. In order to evaluate Ri,nn Mott makes the following assumptions:
the carrier hops to a empty site within a sphere of radius r(T) and the density of states g(E) is
constant over the energy range of hopping µ. The average distance R̄ between the original site and
the empty site is about 3

4r. The average energy difference between an energetically closest site within
this sphere and the original site is given by

W̄ = 3
4πr3g(µ) . (3.37)

g(µ) represents the density of states around µ. Replacing r by 4
3 R̄ in the above equation gives

71



Chapter 3. Transport properties fundamentals

W̄ = 34

44πR̄3g(µ)
. (3.38)

Therefore the average close range R̄′ can be expressed as

R̄
′

= 2.α.R̄+ W̄

kBT
(3.39)

= 2.α.R̄+ 34

44πR̄3g(µ)kBT
. (3.40)

There is an optimal average distance R̄′ which minimizes the range R̄′ . One differentiates the
latter with respect to R̄. This critical distance is given by the following formula

R̄
′

= 3
4{

3
2.π.α.g(µ).kB.T

}1/4 (3.41)

This expression is characteristic for the vrh conduction. At low temperature carriers can hop to
sites which are further away spatially, but close in energy. As a consequence the average nearest
hopping range is given by

R̄
′

nn = (To
T

)1/4, (3.42)

with

To = (3
4)4 3

2π.α3.kB.g(µ) . (3.43)

Combining equation (4.38) and equation (4.47) one can write the conductivity as

σ = σoexp{−(To
T

)1/4}. (3.44)

This equation is the electrical conductivity in the variable-range hopping model of Mott. The
parameter σo is a constant which is to be determined experimentally. The conductivity is dominated
by the { - (ToT )1/4 } term, thus log σ has T 1/4 temperature dependence. However eq.(4.46) describes
the vrh mechanism for a 3D system. For a d-dimensional system it can be shown that the Mott’s
variable-range becomes:

σ = σoexp{−(To
T

)1/d + 1}. (3.45)

3.3 Thermal conductivity fundamentals

3.3.1 Mimimum thermal conductivity κmin

The thermal conductivity, κ, is a physical quantity which measures the ability of a material at
transferring heat. The heat is channeled via the free-carriers (electronic contribution) and the
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lattice (lattice contribution). These two contributions are represented by the symbols κe and κl,
respectively. The relation between κ, κe and κl is summed up in equation (4.51):

κ = κe + κl (3.46)

One of the requirements to achieve high figure of merit is that of a low thermal conductivity.
Although very poor electrical conductors glasses153,154,155 exhibit some of the lowest lattice thermal
conductivities. In such materials thermal conductivity is viewed as a random walk of energy through
a lattice. The investigation of the thermal properties of glasses by Slack153,154 lead to the concept
of minimium thermal conductivity.

In 1992 Cahill et al.156,157,158 proposed a model to estimate the minimum thermal conductivity
of non perfect crystals. This model is based on the seminal work of Debye and Einstein. Einstein159

described the atomic vibrations of a solid as harmonic oscillators that all vibrate at the same fre-
quency ν. Hence, for thermal transport to occur the oscillators must be coupled. He made the
assumption that each atom was connected to its neighbours by harmonic forces. Due to this crude
approximation Einstein’s model failed to reproduce not only the temperature dependence, but also
the absolute magnitude of the thermal conductivity of crystals. Debye improved Einstein’s model
by taking into account the periodicity of a crystal. Indeed the repetition of atoms within lattice
produces coherence between the atomic oscillators. Using this idea Cahill et al.160,161 demonstrated
that the thermal conductivity of a material is given by:

κmin = (π6 )1/3.kB.n
2/3
a .

∑
i

[νi(
T

Θi
)2

∫ Θi/T

0

x3ex

(ex − 1)2 dx], (3.47)

where ω is the frequency of the phonon and x = ~ω
kBT

; na corresponds to the number of atoms
per unit volume, νi represents the sound velocity, and Θi is the cut-off frequency in the unit of K
for polarisation mode i. The cut-off frequency for a mode i is a critical frequency, above which the
oscillators resonate anharmonically. Θi is given by

Θi = ~.νi
kB

.[6π2na] 1
3 . (3.48)

In Cahill’s model the thermal conductivity can be viewed as a random walk of heat between
localized oscillators of varying sizes and frequencies and the dominant heat transport is between
nearest neighbours.

3.3.2 The Callaway-Debye model

The Callaway-Debye model160,161 is the model commonly used to fit the lattice contribution of the
thermal conductivity of a crystal. In this model, the lattice is also represented by a series of chains
of atoms of mass M held together by springs of force constant k. The conduction of heat occurs
when two neighbouring atoms move in phase with one another. There is a critical frequency for
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the phonons or modes of vibrations of the oscillators. It is known as the Debye frequency, ωD. ωD
is defined as the maximum vibrational frequency of a given mode i in a crystal. This frequency is
associated with a temperature known as the Debye temperature (ΘD). ΘD is the temperature above
which all vibrational modes in a crystal are excited. The Debye temperature is given by:

ΘD = ~ωD
kB

, (3.49)

where ~ is the Planck constant and kB is the Boltzmann constant. Note that the vibrational
modes below ωD are called N-processes.

With increasing temperature numerous processes develop and hinder to the conduction of the heat
by the lattice. This decay of κ corresponds to an enhancement of the anharmonicity of the oscillators;
it is due to scattering mechanisms, which increase with increasing temperature. These scattering
mechanisms are: Umklapp phonon-phonon scattering (U), phonon-defect scattering (d), phonon-
electron scattering, and phonon-boundary scattering (b). The scattering rate of each scattering
process is associated with a relation time τ . The combined relaxation time τc can be calculated from
the individual relaxation time τi, using the Matthiessen’s rule162,

1
τc

=
∑
i

1
τi

(3.50)

= 1
τU

+ 1
τb

+ 1
τd

+ 1
τe
. (3.51)

τU , τb, τd and τe are the relaxation times of Umklapp-, grain boundary-, defect- and electron-
phonon scattering, respectively.

Umklapp processes Phonon-phonon scatterings become increasingly anharmonic as the tem-
perature increases, causing a deterioration of heat conduction. U-processes become dominantly
important in controlling the thermal conductivity of a crystal, with increasing temperature. The
relaxation time τU is given by:

τ−1
U = B.ω2 = 2γ2 kBT

µVo

ω2

ωD
.ω2, (3.52)

where γ is the Gruneisen anharmonicity parameter, Vo is the volume per atom and ω is the
frequency of a phonon.

Phonon-grain boundary scattering The main source of this type of scattering is the sample
size, namely the size of the particulates at the microscopic scale. Phonon-grain boundary scatterings
is independent of temperature and frequency. τb is given by:
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τ−1
b = νs

l
, (3.53)

with νs as the velocity of sound, l as the effective length or characteristic length of the sample.
The latter is usually determined experimentally from SEM images. Note that it is possible to deter-
mine the sound velocity from the Debye temperature, and vice-versa.

Phonon-defect scattering There are multiple defects or impurities within the lattice. They
are for instance, isotopes, substitutional impurities with different masses, vacancies and so forth.
Defects are considered as a point-defect if their size is smaller than the wavelength of the phonon.
This scattering by the defect can strongly scatter phonons and is due to the difference in mass and
bonding between the atoms. The scattering rate τ−1

d is given by:

τd = A.ω4 =
VoΓ(kBT~ )4

4πν3
s

.ω4, (3.54)

where Γ is the mass-fluctuation-scattering158,163 parameter.

Phonon-electron scattering When dealing with highly doped materials, the scattering of
phonons by electrons needs to be taken into account. The contribution to the thermal conductivity
by phonon-electron scattering is often assumed to be negligible. τe is given by:

τ−1
e = nε2ω

ρV 2kBT

√
πm∗V 2

2kBT
exp(m

∗V 2

2kBT
), (3.55)

where n is free-carriers (electron) concentration, ε is deformation potential, ρ is mass density of
the material; m∗ is effective electron mass of the electron.

It should be noted that Umklapp processes are also called intrinsic relaxation time processes,
whereas point defects, grain boundary and electron-phonon are extrinsic relaxation time processes.
Taking into account the scattering of the phonons by the above processes, Callaway160,161 demon-
strated that the lattice contribution of a material is given by:

κ = κ1 + κ2. (3.56)

According to this model κ1 and κ1 are respectively given by:

κ1 = kB
2π2νs

.(kBT
~

)3
∫ ΘD

T

0
τc

x4ex

(ex − 1)2 dx (3.57)

and
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κ2 = kB
2π2νs

.(kBT
~

)3
[
∫ ΘD

T
0

τt(x)x4ex

τN (x)(ex−1)2 dx]2∫ ΘD
T

0
τt(x)x4ex

τN (x)τc(x)(ex−1)2 dx
(3.58)

where ΘD is the Debye temperature, x = ~ω
kBT

is a dimensionless variable. ω and νs represent
the phonon frequency and the average sound velocity in the material, respectively. τN represent the
scattering time due to normal phonon processes. τ−1

t is the combined scattering rate and is given
by:

τ−1
t = τ−1

c + τ−1
R . (3.59)

κ2 is large for pure crystals but decreases rapidly in presence of defects with the lattice, which is the
case of impure crystals. Most crystal compounds have intrinsic defects (grain boundary, vacancies,
point defects, etc), thus are impure crystals. Consequently for these materials κ2 is negligible; one
has:

κ ∼ κ1. (3.60)
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Chapter 4

Thermoelectric properties of Y-doped CdSb2O6

4.1 Motivation

Transparent conducting oxides56,57,164 (TCO) have been highly investigated and are utilised in the
industry of flat panel displays such as high-definition televisions (HDTVs), mobile phones and other
devices. A transparent conducting oxide is a material which combines the high electrical conductivity
of metals with a high transmittance in the visible range. Typically TCO materials57 have an average
transmittance above 80% for wavelength between 400 nm and 800 nm, an electrical conductivity of
the order of 104 S cm−1. TCOs are wide bandgap semiconductors with a direct bandgap above 3.1 eV.

Transparent conducting oxides are potential TE materials due to their bandgap Eg in the order
of ∼ 10kBT. This wide bandgap would prevent the bipolar effect observed in narrow semiconductors.
The bipolar conduction is observed when the carrier concentrations and mobilities of the electrons
are comparable to that of holes. As a consequence at high temperature the Seebeck coefficient
should be very small, as observed in Bi2Te3

165. For wide bandgap semiconductors the bipolar effect
is practically suppressed as only one type of the carriers is responsible for the electric conduction.
An example of transparent conducting oxide material with high TE properties is ZnO. Zinc oxide
is one of the best n-type TCOs57,166 but also is one of best TE oxides58,59.
When doped with a small quantity of Y3+, cadmium metantimonate oxide (CdSb2O6) has the
characteristics of a TCO167. CdSb2O6 crystallises in a rosiaite-type structure, the space group
symmetry of its trigonal lattice is P3̄1m (162). Mizoguchi et al.168 refined the crystal structure of
CdSb2O6 by means of x-ray diffraction. The positions of the cadmium, antimony and oxygen atoms
are displayed in Table 4.1 on the next page. The Wyckoff positions were refined using a unit cell
with the following characteristics: a = 5.2373(0) Å, c = 4.7983(1) Å and Z = 1. The unit cell of
rosiaite-type structured lattice is displayed in Figure 4.1 on the next page.

In Figure 4.1 the blue, green and red spheres represent the cadmium, antimony and oxygen atoms,
respectively. One notes a 6-fold coordination of O2− around the Sb5+ and Cd2+ ions. The crystal
structure of the cadmium metantimonate consists of two-dimensional layers of edge-sharing CdO6

octahedra in the a-b plane.
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Table 4.1: Crystallographic parameters of CdSb2O6 samples after structural refinement of a room
temperature powder x-ray diffraction pattern168. Space group: P3̄1m (162).

atom site x y z Biso(Å2)

Cd 1a 0 0 0 0.0036(3)
Sb 2d 1/3 2/3 1/2 0.0003(2)
O 6k 0.365(1) 0 0.282(1) 0.005(2)

Figure 4.1: Unit cell of the trigonal lattice of CdSb2O6.
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4.2. A literature review of CdSb2O6

The TCO character of Cd1−xYxSb2O6 polycrystalline sample was recently reported by Yanagawa
et al.167, with a room-temperature electrical conductivity of at least 1× 102 S cm−1 and a bandgap
of 4.1 eV. However, the thermoelectric properties of this AB2O6 oxide have not yet been investigated.
As far as we are concerned this work is therefore a first characterization of the thermoelectric prop-
erties of yttrium-doped CdSb2O6 polycrystalline samples. In order to investigate the TE properties
of impurity-doped CdSb2O6, solid solutions of Cd1−xYxSb2O6 (x= 0.03; 0.05; 0.08; 0.1) have been
prepared by standard solid state reaction. There is a discussion on the temperature dependence of
their thermopower. It is followed by an analysis of their electrical conductivity data and their power
factor.

4.2 A literature review of CdSb2O6

4.2.1 Methods of synthesis

Solid state reaction is by far the most utilised technique to prepare cadmium metantimonate samples.
The early studies15,169 on polycrystalline samples were dedicated to the establishment of the crystal
structure. Castro et al169 explored the trigonal systems of CdSb2O6 by means of standard X-ray
diffraction. They reported the atomic positions of Cd, Sb and O within the crystal lattice with
P3̄1m (162) as symmetry space group. Besisdes powders, thin films of cadmium metantimonate
were prepared by sputtering method by Yanagawa et al.167.

4.2.2 Electronic structure

Band structure calculations were performed using the Linear Muffin-Tin Orbital (LMTO) approx-
imation method170 for the determination of the electronic structure of CdSb2O6. Mizuguchi and
coworker168 derived Molecular Orbital (MO) diagram of Sb2O6

2− in order to identify the nature
of the chemical bonding between Cd2+ and Sb2O6

2−. The MO diagrams of Sb2O6
2− are mixtures

between the Sb 5s, Sb 5p and O 2p orbitals. The highest occupied molecular orbital (HOMO) is
made up of nonbonding O 2p orbitals whereas the lowest unoccupied molecular orbital (LUMO) is
an antibonding orbital resulting from the interaction between the Sb 5s and O 2p orbitals. Due to
a spatial and energetic proximity of the latter orbitals an overlap between these two orbitals occurs.
This overlap strengthens the cation-anion bond. Andersen described the chemical bond Sb -O as a
covalent bond168.

Mizugushi and coworkers then performed band structure calculations with Linear Muffin-Tin
Orbital approximation (LMTO). The valence and conduction bands correspond to HOMO and
LUMO energy levels, respectively. The plots in Figure 4.2b) at the top of the next page illustrate
the variation of the energy of states (Energy / ev) as function of the position in the reciprocal space
(k). The letters Γ, K, M, A and H are high symmetrical points in the unit cell of the reciprocal space
or Brillouin zone, as seen in Figure 4.2a). For example, Γ is a point in the centre of the Brillouin
zone, A is the middle of facets perpendicular to ~b3. ~b1, ~b2 and ~b3 are the unitary vectors of the
reciprocal space and are given by
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(a) (b) 126

Figure 4.2: (a)The Brillouin zone for a primitive hexagonal lattice168. (b) The band structure of CdSb2O6
derived from the LMTO approach. The fatbands on the left-hand side show the Sb 5s orbital contribution
in red and the Cd 5s orbital contribution in blue. The O 2s orbital contribution in red and the O 2p
orbital contribution in blue are shown by the fatbands on the right-hand side .

~b1 = 2π
~b× ~c

~a.(~b× ~c)
, (4.1)

~b2 = 2π ~c× ~a
~a.(~b× ~c)

, (4.2)

~b3 = 2π ~a×~b
~a.(~b× ~c)

, (4.3)

where ~a, ~b and ~c are the unitary vectors of the real space. In Figure 4.2 above, the bands whose
energies are lower than 0 eV form the valence band (VB), whereas the conduction band (CB) consists
of bands with energies higher than 2 eV. The minimum of the conduction band is located at the Γ
point and the top of the valence band is located at the A point. For the calculations of the band
structure, energies are evaluated for all k points between the high symmetry points. The calculations
are run along the paths bewteen the high symmetry points, illustrated by the letters on the top of
the electronic structure: Γ, K, M, Γ, A, L, H and A. The top of the valence band of this material
is dominated by Cd 4d and O 2p orbitals. The lowest energy states of the conduction band mainly
consists of Cd 5d and Sb 5s orbitals. The lowering of the conduction band, at Γ point, is due to
a bonding overlap between the Cd 5s orbitals with the O 2p orbitals involved in an antibonding
interaction with two Sb 5s orbitals across a shared octahedral edge. The bottom of the CB at the
Γ point has a parabolic shape. This dispersive band is similar to that of a free electrons gas. The
large bandgap (3.8 eV) and the dispersive band at the Γ point indicate that CdSb2O6 is suitable
for n-type doping. Note that the bandgap is indirect as the lowest point of the CB and the highest
point of the VB are not directly aligned.

4.2.3 Physical properties

Yanagawa et al.167 reported optical properties on polycrystalline samples of CdSb2O6 and Yttrium-
doped CdSb2O6 (Cd1−xYxSb2O6). Diffuse reflectance on these samples was measured in the near
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ultraviolet and visible region. Since cadmium metantimonate powder has a yellowish colour, MgO
(white powder) was used as reference material as it has no optical absorption in the measured
wavelength region. The absorption edge of Cd1−xYxSb2O6 (with x = 0; 0.01; 0.05) samples appear
below 300 nm. The absorption edge is defined as the transition between absorbing and non-absorbing
regions in the diffuse reflectance spectrum of a solid. Light with lower energy photons (long wave-
length) is not absorbed whereas light with higher energy photons (short wavelength) is absorbed.
The absorption edge therefore determines the energy separation between the valence band (long
wavelength) and conduction band (short wavelength) of the studied material. The optical bandgap
of the Y-doped CdSb2O6 samples is thus larger than 4.1 eV. This bandgap value is in agreement
with that of Mizoguchi et al.168, who estimated a value of ∼3.8 eV by means of band structure cal-
culations. In addition, samples with higher yttrium content have a lower bandgap than those with
low yttrium content.

Yanagawa et al.167 also measured DC electrical conductivity of Cd1−xYxSb2O6 samples in a tem-
perature range between 77 and 300 K by means of four-point probe technique. At room temperature
the electrical conductivity of the two doped samples (x = 0.01 and x = 0.05) and CdSb2O6 reach
1.4× 10−1 S cm−1 and 2.7 S cm−1 and 5.6× 10−6 S cm−1, respectively. The conductivity of cadmium
metantimonate increases by 4 or 5 orders of magnitude when doped with Y2O3. This behaviour is
supported by diffuse reflectance measurement in the wavelength region higher than 470 nm, as the
reflectance of Y-doped CdSb2O6 samples is lower than that of the nonsubstituted sample. In this
region the conduction electrons are responsible for the optical absorption. As a conclusion, the sub-
stitution of Cd2+ by a cation with a higher valence Y3+ introduces extra electrons in the conduction
band, thus reducing the bandgap of the material.

4.2.4 Devices and applications

Due to their wide bandgap, good electrical conductivity and high transmittance in the visible region,
Cd1−xYxSb2O6 systems can be treated as transparent conductor oxides. It can therefore be used
as electrodes in the photovoltaic field. Elsewhere, when doped with Eu3+ (0.5%) and Tb3+ (1.5%)
CdSb2O6 behaves as an efficient material for photocatalysis reactions and as a white light emitter171.

4.3 Synthesis

CdSb2O6 (with x = 0.03; 0.05; 0.08 and 0.10) polycrystalline samples have been prepared by a
solid state reaction. A solid state reaction is a direct reaction between reagents at high temperature
under specific atmosphere (air, argon, vacuum,etc), whose feasibility depends on thermodynamic and
kinetic parameters. It is the standard route for solid state scientists. The synthesis, in accordance
with Yanagawa et al.167, has been carried out by mixing appropriate amounts of CdO (99.9%) and
Sb2O3 (99.99%) and Y(NO3)3.6H2O (99.98%). The two first precursors or reagents (cadmium oxide
and antimony trioxide) are brown and white powders respectively; while the third one, yttrium
nitrite hexahydrate, is a salt. The solid state reaction is described by the following equation
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Figure 4.3: Room-temperature x-ray diffraction patterns of Cd0.98Y0.02Sb2O6 samples sintered at 1423 K.

(1− x)CdO + Sb2O3 + (x)Y(NO3)3.6H2O air−−→ CdSb2O6, (4.4)

where x represents the content on yttrium. The reagents were mixed with a pestle in an agate
mortar under acetone. The mixture was then placed in an aluminium crucible and the furnace used
to carry the reaction had the following heating program: calcination at 853 K for 24 h, followed by
1173 K for 24 h, then 1223 K for 12 h, and finally 1273 Kfor 48 h. In order to reach phase purity a
second re-grinding and a repetition of the annealing process was performed. The mixing ratios of the
starting materials are displayed in Table 4.2 on page 83. These contents of yttrium were chosen as
the introduction of Y3+ in the lattice do not change the crystal structure of the material. This was
illustrated by the x-ray diffraction patterns of Cd1−xYxSb2O6. The positions and relative intensities
of the reflections of the doped samples are very similar to that of undoped sample. In other words,
these values of x are below the solubility of CdSb2O6. The obtained powder samples have a similar
colour to that described by Yanagawa and coworkers, a yellow-green colour. The excess of Sb2O3

is due to his partially volatility at high temperature which initiate the formation of Cd2Sb2O7, as
seen in Figure 4.3 above.

Figure 4.3 above depicts the room temperature x-ray diffraction pattern of a Cd0.98Y0.02Sb2O6.
The green ticks correspond to the Bragg peak positions of the trigonal phase P3̄1m whereas the
reflections indexed by the blue ticks are the expected reflections for the Cd2Sb2O7 compound. To
avoid the formation of this phase 15% excess of antimony trioxide were added during the synthesis
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as indicated by ”1.15” in the third column of Table 4.2. The lattice associated with these reflections
has Fd3̄mz as symmetry space group.

Table 4.2: The molar quantities for the synthesis of Cd1−xYxSb2O6.
Sample CdO Sb2O3 Y(NO3)3.6H2O

(mol) (mol) (mol)
a 1.00 1.15 0

b 0.97 1.15 0.03

c 0.95 1.15 0.05

d 0.92 1.15 0.08

e 0.90 1.15 0.10

4.4 Powder x-ray diffraction

Powder x-ray diffraction (XRD) is by far the most used technique by solid-state scientists to assess
the phase purity of a prepared polycrystalline sample. It is considered to be ”the eyes” of the solid
state scientist. The phase purity of each sample has thus been examined through x-ray powder
diffraction (XRD), obtained with a PANalytical diffractometer. Details on this instrument are given
in section 2.1.2 of Chapter 2. The powder diffractograms of the five samples are shown in Figure
4.4 on the next page.

The profiles of the five XRD patterns are similar as indicated by the positions and the relative
intensities of the Bragg peaks. The diffraction pattern suggests that the Y3+ are integrated within
the lattice and substitute some Cd2+ without changing the trigonal lattice structure. Refinements
of the crystal structures from the diffractograms have been performed utilising the Fullprof program.
The Rietveld method115 was implemented to extract the main crystallographic parameters of the
samples structure. This method is based on a least-squares fitting of the observed intensities and
comparison with a chosen structural model. All reflections in the patterns in Figure 4.4 were indexed
by the a trigonal cell with the symmetry space group P3̄1m (162) as illustrated in Figure 4.5 on
page 85. The experimental data in Figure 4.5 correspond to the red dots. The calculated profile is
represented by the continuous black line; the blue line at the bottom of the diagram corresponds to
a difference curve (observed-calculated). The green tick marks indicate the Bragg peak positions.
A good level of agreement between the observed and calculated XRD patterns was obtained for all
samples. The agreement between measured and calculated XRD patterns is indicated by the low
values of the refinement factors coefficients: χ2 = 3.61 %, RB = 6.982 % and RF = 5.514 %. The
fitting parameters are defined in the section 2.1 of Chapter 2.

The lattice parameters, the atoms positions (Wyckoff positions) and the fitting parameters are
presented in Table 4.3.
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Figure 4.4: The x-ray diffraction pattern of CdSb2O6 and of four Y-doped CdSb2O6 with the doping
concentration x equal to 0.03; 0.05; 0.08 and 0.10.
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4.4. Powder x-ray diffraction

Figure 4.5: Rietveld refinement result for Cd0.95Y0.05Sb2O6.
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)Å

O
6k

0.
38

27
8(

6)
0.

00
0

0.
23

18
9(

3)
c

=
4.

80
14

3(
15

)Å
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4.4. Powder x-ray diffraction

4.4.1 The Vegard’s law

Figure 4.6 on page 88 shows the Y3+-dependence of the lattice. All three lattice parameters a and
c increase as the doping concentration of Y3+ increases. As a consequence the volume V increases
from 114.149(4) Å3 to 114.343(5) Å3; a(x), and c(x) follow the Vegard’s law as there is a linear
relationship between Y3+ content and the expansion the lattice. The rate of the lattice expansion
was extracted from the slopes of the lines in Figure 4.6 and can be estimated at 0.0194 Å3 per
0.01 Y3+ introduced within the system. The increase of the volume of the unit cell with increasing
substitution ratio is in disagreement with the work of Yanagawa and coworkers165 who reported a
decrease of the lattice parameters with increasing substitution ratio. The value of ionic radius of 6-
coordinated Cd2+, Y3+ are 0.95 and 0.90 Å, respectively. As a consequence the unit cell is expected
to shrink as Y3+ ions substitute Cd2+ ions. The oxygen ions link up the cations together. Each
cation is surounded by six oxygens and together they form octahedra. The oxygens are considered
to be free within the lattice. Although there is been replacement of up to 10% of the Cd2+ by Y3+

the solubility limit was not achieved, as confirmed by the x-ray diffraction pattern in Figure 4.5.
The diffractograms do not present reflections of some spurious phases. The fairly low values of Rwp,
RB and RF indicate that the five prepared samples are all single phase. The refininement of the
crystal structure of the powdered Y- doped CdSb2O6 samples from XRD patterns is the first step
of structural characterization.

4.4.2 Energy-dispersive x-ray (EDX) analysis

The atomic composition of the yttrium-doped cadmium metantimonate polycrystalline samples was
then investigated by means of energy-dispersive x-ray (EDX) technique. Details on this technique
are given in section 2.5 of Chapter 2. Series of images on the rectangular bars were taken on
a scanning electron microscope (SEM)30,34,170. SEM images give an indication on the particles
size, the porosity of the material, the presence of defect, and so forth. In addition to that, one
can perform energy-dispersive analysis on a SEM image. EDX informs on the composition of a
compound as it enables the calculations of atomic and mass percentage for each element within the
studied compound. Hence, EDX analysis was carried out to investigate the yttrium content on each
of the Cd1−xYxSb2O6 samples. Some of the images taken on the pellets of Y-doped CdSb2O6 are
displayed in Figure 4.7 on page 89. For each sample, different regions were imaged in order to have
a better statistics on the physical quantities such as the grain size and the atomic percentage of each
element.

The images in Figure 4.7 were taken at a voltage of 30 kV and a magnification of 10kX. The
white ruler below each image corresponds to 1µm. The first, second and third rows correspond to
the images of the samples x = 3, 5 and 10 %, respectively. These images illustrate a decrease of the
particle size with an increasing substitution ratio x. Indeed, most of the agglomerates in the top row
images have a size (diameter) larger than 1µm. However, the average particle size rapidly decreases
and reaches down do 0.4µm as one goes from the top to the bottom in Figure 4.7. This set of SEM
images suggest that the decrease of the particles size within the Cd1−xYxSb2O6 samples is related
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(a)

(b)

Figure 4.6: (a) Cell parameters of Cd1−xYxSb2O6 (x < 0.10) plotted versus x (Y content. (b) The
relationship between the doping concentration x and volume of the unit cell.
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4.4. Powder x-ray diffraction

Figure 4.7: SEM images of Cd1−xYxSb2O6 rectangular bars with x = 0.03 (1rst row); 0.05 (2nd row) and
0.10 (3rd row). These images were taken at a voltage of 30 kV and a magnification of 10kX. The white
ruler below each image corresponds to 1µm.
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the yttrium concentration within the lattice. It may be due to the fact the ionic radius of yttrium
ions is smaller than that of cadmium ions. The SEM images also indicate that the Cd1−xYxSb2O6

samples become more porous with increasing substitution ratio. It is confirmed by the density mea-
surements of the samples. The relative densities of samples Cd0.97Y0.03Sb2O6 and Cd0.95Y0.05Sb2O6

are 69 and 63.5 %, respectively. Therefore, the more Y3+ substitute Cd2+, the more the particles
size decreases and the less dense the material becomes.

EDX measurements have been performed on three images of Y-doped CdSb2O6 (with x = 3; 5;
10 %) and of the parent material CdSb2O6. Note that the atomic percentage of oxygen (O) does
not appear in Table 4.4 as this element is light (small molar mass). Hence, oxygen can not be
appropriately quantify. Elements with a Z number less than 11 emit low-energy x-rays, thus the
emitted x-rays are mostly absorbed by the sample and only a weak signal is detected. Table 4.4
below presents the results of the EDX analysis.

Table 4.4: Ratio of the atomic percentages of elements (Cd, Y, Sb) within Cd1−xYxSb2O6 polycrystalline
samples. These data are extracted from EDX measurements. ∗ All experimental values normalised using
Sb as a known reference.

Samples
Ratio Atomic x = 0 x = 0.03 x = 0.05 x = 0.10

percentage (%)
theoretical 0.5 0.486 0.477 0.450

Cd/Sb experimental∗ 0.480 ± 0.014 0.482 ± 0.003 0.473 ± 0.004 0.428 ± 0.002
theoretical - 0.015 0.025 0.05

Y/Sb experimental - 0.015 ± 0.003 0.025 ± 0.007 0.049 ± 0.004

The atomic percentage of antimony is constant within all four compositions therefore this ele-
ment was used as a reference element to explore the atomic percentage ratio between cadmium and
yttrium. The atomic percentages of antimony (Sb) were normalised to 22.222 %. The experimental
atomic percentages for the ratios Cd/Sb and Y/Sb correspond to the averages of the measured values
for three images which are then normalised with respect to the antimony atomic percentage. For
each sample, the experimental and theoretical (nominal) atomic percentages are in good agreement
as the errors on these values is lower than 3σ. σ is the error on an atomic percentage. For instance,
the experimental and nominal values of the atomic percentage ratio (Cd/Sb) in Cd0.97Y0.03Sb2O6

sample are both equal to 0.480 (014) and 0.5 respectively. The atomic percentage ratio Cd/Sb, Y/Sb
are within good agreement for the other samples as indicated in Table 4.4 above.

X-ray diffraction confirmed the phase purity of the different samples as the positions and relative
intensities of the observed reflections are those of the a lattice with the space group P3̄1m (162). The
EDX measurement confirmed that the quantities of yttrium in each sample was similar to that of
the respective theoretical values. The phase purity of these materials were confirmed by the 1:2 ratio
between the atomic percentages of the ensemble (Cd, Y) and the ones of Sb. These two structural
characterisation techniques confirmed that the prepared Cd1−xYxSb2O6 samples are all single phase.
The thermoelectric properties of these polycrystalline samples have then been investigated.
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4.5 Thermoelectric properties

The electrical conductivity and the thermopower of the Cd1−xYxSb2O6 samples have been measured
simultaneously on the ZEM instrument. Rectangular bars have been designed for this system. The
Cd1−xYxSb2O6 rectangular bars are displayed in Figure 4.8 below. Details on the ZEM machine
and the preparation method of the rectangular bars are given in sections 2.3.1 and 2.3.2 of Chapter
2. The electrical conductivity data is discussed followed by analysis of the temperature dependence
of the different Seebeck coefficients. The final part of this section is dedicated to the power factors
of the yttrium-doped CdSb2O6 samples. The crystal structure of the Y-doped CdSb2O6 is assumed
to be constant from room temperature to 1000 K.

a) b)

Figure 4.8: a) A CdSb2O6 pellet. b) Four vials, each containing a rectangular bar of Cd1−xYxSb2O6
sample with x = 0.03; 0.05; 0.08 and 0.10. All these materials have a green-yellow colour.

4.5.1 The electrical conductivity

The electrical conductivity (σ) as function of the temperature (T) has been measured for all four
yttrium-doped cadmium metantimonate samples. CdSb2O6 is an insulator167 at room temperature,
as its resistivity is near 1× 106 Ωcm. The ZEM instrument cannot measure highly resistive materials
and as a result no measurements were perform on CdSb2O6. The electrical conductivity data of the
three other samples are illustrated in Figure 4.9 on the next page.

The introduction of yttrium within the lattice of CdSb2O6 has enhanced the conductivity by
five orders of magnitude. For instance, the Cd0.97Y0.03Sb2O6 sample exhibits an electric conduction
of 50 S cm−1 at 950 K. This value differs from the one reported by Yanagawa and coworkers167

(1× 102 S cm−1). This discrepancy may be due to the poor density of the current polycrystalline
materials. Additionally, it appears that at room temperature Cd0.97Y0.03Sb2O6 polycrystalline
sample is the best conductor. Its conductivity is one order of magnitude higher than that of
Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6: ∼ 29 S cm−1 and ∼ 7 S cm−1, respectively. Data mining19

was used to compare the current electrical conductivities data with some established TE materials.
The conductivity values of the yttrium-doped cadmium metantimonate ceramics are comparable
to that of Ni-doped CuNd2O4

172. Cu0.98Ni0.02Nd2O4 exhibits an electrical conductivity of about
43 S cm−1 at 1000 K.
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Figure 4.9: Electrical conductivity σ of Cd1−xYxSb2O6 samples. The black squares represents
Cd0.97Y0.03Sb2O6. The samples with 5 % and 10 % of yttrium are shown by the red triangles and
blue dots, respectively.
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4.5.1.1 Analysis

The three profiles in Figure 4.9 suggest that the electric conduction of Cd0.95Y0.05Sb2O6 behaves
similarly as Cd0.90Y0.10Sb2O6, as temperature increases. The range of their conductivities values
vary between 7 S cm−1 at 300 K and 19 S cm−1 at 950 K. The conductivity of the sample x = 0.03
almost doubles in the same temperature range. The slopes of the the three conductivities profiles
change at 650 K and this is well pronounced for samples for which x is equal to 0.05 and 0.10. From
room temperature to 650 K, Cd0.95Y0.05Sb2O6 has a higher resistivity than that of Cd0.90Y0.10Sb2O6.
However, for temperatures above 650 K the sample x = 0.05 becomes a better conductor than the
sample x =0.10. Indeed at 950 K the samples for which x = 0.05 and 0.10 exhibit the following
respective conductivity values: 18 S cm−1 and 13 S cm−1.

The curves also indicate that from 650 K to 950 K the fewer Y3+ atoms are contained within the
lattice, the better the conductivity of the material. It is also the case at 950 K where the three sam-
ples have the following respective conductivity values: 50 S cm−1, 18 S cm−1, 13 S cm−1. Optical and
electrical measurements from Yanagawa et al.167 demonstrated that the free-carriers or conduction
electrons are the Cd2+ electrons. Y3+ has a higher valence state that Cd2+. One thus expects the
free-carriers concentration to increase as the yttrium content increases. Therefore there should be an
increase of the electrical conductivity. The behaviour of σ at high temperatures with respect to the
doping concentration, does not follow this trend. Figure 4.9 suggests that there is a critical doping
carrier concentration nY,cri such that an increase of the Y3+ content contributes to a deterioration
of the conduction of free-carriers. This concept is illustrated by the diagram at the top in Figure 4.10.

This behaviour of the electrical conductivity with respect to the doping concentration also occurs
in Sn-doped CdO. Yan et al.173 studied the electrical properties of CdO thin films. The thin films
were doped withSn: 1; 2.5; 5.2; 6.2 and 11.4 %. Yan and coworkers emphasised that there is a critical
doping carrier concentration of tin, in fact 2.5%, beyond which there is deterioration of the electrical
properties (µ, σ) of the Cd1−xSnxO films. The electrical conductivity increases from 1× 103 S cm−1

for x = 0% to 4.2× 104 S cm−1 for x = 2.5%, it then decreases down to 8× 103 S cm−1 as x increases
up to 11.4%. According to Yan and co-workers the decrease of the mobility of the free-carriers with
increasing doping concentration plays a major role in the reduction of the electrical properties of
Cd1−xSnxO samples. The crystalline defects such as oxygen vacancies and grain boundaries also
contribute to a deterioration of the electrical conductivity at high temperature. The current study
on Cd1−xYxSb2O6 systems present similar features with the work of Yan et al.173. There is thus an
optimal doping concentration x between 0 and 0.05, for which σ reaches its maximum as depicted by
the diagram at the bottom in Figure 4.10. The decrease of the free-carriers mobility with increasing
doping concentration may be responsible for the decrease of the electric conduction in Y-doped
CdSb2O6 samples. Additionally, the decrease of density of the Cd1−xYxSb2O6 with increasing Y3+

concentration may play role in the previous studies results. As it is well known that a decrease in
relative density may contribute in a decrease their electrical conductivity.
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Figure 4.10: Schematic representations of the electrical conductivity of Y-doped CdSb2O6 samples with
respect to carrier concentration (top) and doping concentration (bottom).

4.5.1.2 A model for the electrical conductivity of Cd1−xYxSb2O6 samples from 300 to 650 K

The conductivity of Y-doped CdSb2O6 samples increases with increasing temperature from room
temperature to 650 K, as seen in Figure 4.9. These materials can therefore be viewed as n-type
semiconductors. Several models were tested to fit the experimental data. The broad band model
was ruled out, as the trend of the data points in the Arrhenius plot (ln[σ] vs 1

T ) was not a straight
line. There were also discrepancies between the profile calculated from the variable range hopping
and the experimental data. On the other hand, there was good agreement (low χ2) between the
measured conductivities values and those predicted by the small polaron hopping model. In this
model, for electric conduction to occur, electrons hop between localised states near the Fermi level.
If the behaviour of σ within Cd1−xYxSb2O6 ceramics is welll explained by the small polaron hopping,
the plot ln[σ.T] vs 1

T should be a straight line. The slope and intercept of the line are equal to - ∆
kB

and ln(A), respectively. ∆ corresponds to the activation energy EA. Figure 4.11 on the next page
illustrates the evolution of ln(σ.T) as function of 1

T for Cd0.97Y0.03Sb2O6.

The lowest values on the x-axis in Figure 4.11 correspond to high temperature whereas those near
0.021 K−1 are related to low-temperature values. For instance, 0.0015 K−1 and 0.021 K−1 correspond
to 667 K and 48 K respectively. Figure 4.11 demonstrates the linear response of the ln(σT) as 1

T

varies from 0.0016 to 0.0027 K−1. The respective temperatures for these two values of 1
T are 625 and

370 K. It was therefore possible to fit the black squares with the small polaron hopping model in
equation (3.36) of Chapter 3. The fitting curve is represented by the green line in Figure 4.11. The
activation energy EA was deduced from the slope and it is about 0.073 ± 0.004 eV. The electrical
conductivity data of Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6 also fitted within the small polaron
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Figure 4.11: Fitting of electrical conductivity data with small polaron model. The black diamonds
represent the experimental data and the red line stands for the theoretical model.

model, and the results are presented in Figure 4.12. The respective activation energies for these two
samples are 0.069 ± 0.005 eV and 0.055 ± 0.003 eV. As expected the difference in energy between
the bottom of the conduction and the donor states decreases as more Y3+ are introduced in the CB.

4.5.2 The Seebeck coefficient

The thermopower α of Cd1−xYxSb2O6 rectangular bars has also been measured on the ZEM in-
strument. Figure 4.13 on page 97 exposes the temperature dependence of their thermopower. The
negative sign of the Seebeck of these materials indicates that the free-carriers responsible for the
electric conduction in these materials are electrons. It is in agreement with the band structure calcu-
lations which indicates that CdSb2O6 is suitable for n-type doping. For example, at 326 K the value
of thermopower of Cd0.97Y0.03Sb2O6, Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6 are −50.01, −59.32
and −61.34µV K−1, respectively. Within all three samples |α| increases with increasing temperature.
The absolute value of the thermopower is the relevant parameter because the power factor is propor-
tional to α2. The magnitude of |α| has practically doubled as T increases from room temperature
to 950 K. For instance, at 300 and 950 K temperatures the absolute value of the thermopower of
Cd0.97Y0.03Sb2O6 takes the respective values of about 50 and 100µV K−1. Besides the Seebeck co-
efficients of Cd0.95Y0.05Sb2O6 (green triangles) and and Cd0.90Y0.10Sb2O6 (red squares) are similar
at any given temperature. The high-temperature thermopower values of the prepared samples are in
the same order of magnitude of that of Cu0.98Ni0.02Nd2O4 which exhibits a thermopower of about
83µV K−1 at 1000 K.172
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Figure 4.12: Fitting of electrical conductivity data with small polaron model for Cd0.95Y0.05Sb2O6 (top)
and Cd0.90Y0.10Sb2O6 (bottom). The black diamonds represent the experimental data and the green line
stands for the theoretical model.
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Figure 4.13: Thermopower (α) of Cd1−xYxSb2O6 samples. The blue dots represent the sample x = 0.03;
the two other samples Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6 are shown by the green triangles and red
squares, respectively.

The Y-doped CdSb2O6 systems behave as n-type semiconductors as their electric conduction
increases with increasing temperature. As a consequence, the model used to fit the experimental
data of the three samples is given by

α(T ) = kB
e
.( EA
kBT

+Ac), (4.5)

where kB and e are the Boltzmann constant and the charge of the electron, respectively. The
term Ac is a dimensionless parameter. Figure 4.14 illustrates the fitting of the experimental data
of Cd0.97Y0.03Sb2O6. In this figure, the experimental data and the fitting curve are indicated by
the black squares and the violet line, respectively. The low values of the x-axis correspond to high
temperature values whereas low temperatures are associated with high values on the x-axis. There
is good level of agreement between the measured and calculated Seebeck coefficient for temperatures
between 600 and 950 K. The absence of data for temperatures below room temperature contributes
to the poor fit at temperatures below 600 K. Thermopower data measured at temperatures below
300 K should improve the agreement between the experimental data and the profile derived from the
model.

The thermopower of the Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6 samples were fitted with the
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Figure 4.14: Fitting of the Seebeck coefficient of Cd0.97Y0.03Sb2O6. The experimental and theoretical
curves are shown by the black squares and the violet line, respectively.

98



4.6. On the density of yttrium-doped cadmium metantimonate

model in equation (4.5), as seen in Figure 4.15. The Mott formula describes the temperature de-
pendence of the thermopower of all three materials as the values of χ2 are low. The discrepancies
between measured and calculated thermopower for these samples are more pronounced for these two
samples than in Cd0.97Y0.03Sb2O6. Indeed at about 950 K Cd0.90Y0.10Sb2O6 exhibits a Seebeck coef-
ficient of about 110.31µV K−1 whereas the model predicts a value of 55.15µV K−1. The low density
of these two samples may play a important role in the shift between experimental and theoretical
thermopower values. The activation energies EA extracted from the fitting of the thermopower
curves for Cd0.97Y0.03Sb2O6, Cd0.95Y0.05Sb2O6 and ceCd0.90Y0.10Sb2O6 were found to be about
0.026 ± 0.004 eV , 0.028 ± 0.005 eV and 0.026 ± 0.003 eV, respectively. These values are smaller
than the activation energies extracted from the electrical conductivity as expected for a material in
which electric conduction occurs via thermally excited hopping of small polarons.

4.5.3 The power factor

Knowing both the electrical conductivity ρ and the Seebeck coefficient α of the different samples one
then computes their respective power factor, PF, for temperatures between 300 K and 950 K. The
power factor in Figure 4.16 on page 101 is obtained from equation (4.6):

PF = S2

ρ
= S2.σ. (4.6)

The PF vs T plots in Figure 4.16 indicate that the Cd1−xYxSb2O6 samples exhibit a power
factor of the other of few microwatts per meter per kelvin square. The PF of each material increases
with increasing temperature. The PF of Cd0.97Y0.03Sb2O6 is greater than that of the two other
samples. At 942 K the power factor of Cd0.97Y0.03Sb2O6 sample is more than the double of the
values of Cd0.95Y0.05Sb2O6 and Cd0.90Y0.10Sb2O6: 45.98, 21.85 and 15.77µW m−1 K2. respectively.
The trends of curves in Figure 4.16 are similar to those in Figure 4.9. It is due to the fact that
the electrical conductivity is few orders of magnitude greater than the Seebeck coefficient. In other
words σ dictates the behaviour of the temperature dependence of the power factor of these materials.
The Cd0.97Y0.03Sb2O6 sample seems to be the best candidate for high-temperature thermoelectric
applications, as it exhibits the highest PF (45.98µW m−1 K−2) at high temperature. The power
factor of this AB2O6 oxide is higher than that of Cu0.98Ni0.02Nd2O4, which exhibits a power factor
of 30.04µW m−1 K−2.

4.6 On the density of yttrium-doped cadmium metantimonate

This section presents the methods which were utilised to increase the density of the yttrium-
doped cadmium metantimonate samples in order to improve the electrical conductivity of Y-doped
CdSb2O6. The methods used herein this work are the sintering174,175 and the ball-milling126 tech-
niques.

The formula in equation (2.8) in the section 2.3 of Chapter 2 was utilised for the determination
of the density d of the prepared samples. Distilled water was used as the solvent.
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Figure 4.15: Fitting of the thermopower (α) of Cd0.95Y0.03Sb2O6 (top) and Cd0.90Y0.10Sb2O6 (bottom).
The straight lines in each graph are the fitting curves. The red dots and blue triangles correspond to the
experimental data. 100
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Figure 4.16: Power factor (PF) of Cd1−xYxSb2O6 samples. The two samples for which x = 0.05 and 0.10
are shown by the black and blue dots, respectively. Reds dots correspond to Cd0.97Y0.03Sb2O6 sample.
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For instance, for Cd0.97Y0.03Sb2O6 sample the masses m1, m2 and m3 take the respective follow-
ing values 3.2246 g, 2.6433 g and3.3487 g. Applying the relation in equation (2.8) one can write:

d = 0.99823 ∗ 3.2246
3.3487− 2.6433 (4.7)

where is d is the density of the Cd0.95Y0.05Sb2O6 pellet, 0.998 23 g cm−3 is the density of wa-
ter at room temperature. The density of this yttrium-doped cadmium metantimonate is equal to
∼ 4.56 g cm−3 whereas the theoretical value is 6.58 g cm−3 and it corresponds to 69 % as relative
density. The low value of d suggests the presence of pores within the material. This porosity is
illustrated by the voids between the particulates in Figure 4.7. The concentration of voids seems to
increase as one goes from x = 3% (top image in Figure 4.7) to x = 10% (bottom image in Figure
4.7).These pores are potential defects for the electric conduction of the material.

One of the popular method of solid-state chemists to increase the density of a material is the
sintering. The material is heated up to a higher temperature than that of its synthesis temperature,
but below the melting point of the material174,175. An increment of the reaction’s temperature
causes an agglomeration the grains particles close to each other therefore it reduces the volume of
pores within the material. Ball-milling is another process which enables the synthesis of highly dense
ceramics. A ball-mill is a grinding device with a cylindrical shape. By constantly rotating clockwise
or anti-clockwise around a horizontal axis the ball-mill converts material into fine powders via the
presence of a grinding material. Ball-milling is a technique which favours a better inter-mixing of
the reagents materials126. Consequently, the resulting mixture consists of fine particles with high
surface area thereby there will be an increase of the reaction rate between the precursors at high
temperature. Zirconium balls were utilised as grinding materials in this work.

Investigations on the effects of sintering and ball-milling on Cd0.98Y0.02Sb2O6 pellets were carried
out with the following sequence:

• A mixture of CdO, Sb2O3 and Y(NO3)3,6H2O was ball-milled for 16 h; parallely to that a
mixture of the three precursors was also prepared with a pestle and mortar.

• Three pellets have been prepared from the ball-mill mixture and one pellet was prepared from
the pestle and mortar mixture.

• The latter pellet and one of the three prepared from the ball-mill mixture have both been
sintered at 1323 K for 48 h.

• The other two pellets were fired up fro 48 h at 1373 K and 1423 K, respectively.

After sintering the phase purity of the samples was assessed. X-ray diffraction has been performed
to check the phase purity of the prepared samples. The recorded diffractograms are displayed in
Figure 4.17 on the next page.
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Figure 4.17: Power x-ray diffraction patterns of Cd0.98Y0.02Sb2O6 samples prepared under different
conditions.

Table 4.5: Positions and relative intensities of reflections of Cd2Sb2O7.
Five reflections

Number 1 2 3 4 5
2θ angle 17.381 33.654 35.118 40.787 59.055
(deg)
Relative 7.29766 7.10619 6.74471 6.23355 5.56841
intensity 118 228 374 144 139
(arb u )

The initials ”G” and ”BM” stand for grinding and ball-milling, respectively. The numbers beside
these two initials correspond to the sintering temperatures. The powder x-ray diffraction patterns
in green and black are similar to the diffractogram in Figure 4.5 apart from the poor background of
the first one. These XRD patterns are associated with powders which have been sintered at 1323 K.
It suggests that the formation of CdSb2O6 is not affected by the method of preparation - grinding
or ball-milling. The two other diffractograms, in blue and red, differ from the green and black
diffractograms by the presence of extra peaks. The magenta ellipses indicate the the reflections an
additional phase. The positions (angles) of these extra reflections correspond to some of the Bragg
peak positions of Cd2Sb2O7. The angle and intensity of some of the Bragg peak of the spurious
phase are displayed in Table 4.5 above.

The intensity of the reflections of the Cd2Sb2O7 phase are higher in the x-ray diffraction pattern
in red (1423 K) than in the one in blue (1373 K). The diffractograms of powders sintered at tem-
perature higher than 1323 K are similar to that of Figure 4.3. One deduces that by increasing the
sintering temperature one increases the formation rate of the spurious phase.
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Table 4.6: Investigations on the density Cd0.98Y0.02Sb2O6 pellets. The theoretical density for these four
pellets is 6.58 g cm−3.

Samples
Sample A Sample B Sample C Sample D

Temperature
(°C)

1050 1050 1100 1150

Method G BM BM BM

Mass (g) 0.7964 0.6757 0.5938 0.4916

Radius (cm) 0.500 0.500 0.500 0.500

Height (cm) 0.240 0.215 0.210 0.270

Density (g cm−3) 4.23 4.00 3.60 2.32

Relative 64 61 55 35
density (%)

The relative density of all four powders are displayed in Table 4.6. The relative density of an
object is a comparison between its measured density and its theoretical value. The relative density
of a material is given by:

dr = 100 ∗ (1− dth − da
dth

). (4.8)

In equation (4.8) dth, da and dr are the respective theoretical, actual and relative densities.

Table 4.6 demonstrates that the density of the pellet decreases with increasing sintering tem-
perature as the ceramics become more and more porous. The density of sample B (4.00 g cm−3) is
far greater than the one of sample D (2.32 g cm−3). This table confirms that preparing samples via
grinding or via ball-milling lead the similar polycrystalline samples. The respective relative densities
of samples B and D are 64 and 61 %.

The low density of the yttrium-doped cadmium metantimonate samples can be attributed to two
main factors: the volatility of Sb2O3

167 and the presence of yttrium. At high temperature the loss
of the Sb2O3 creates re-organization of the atoms within the lattice, this restructuring of the atoms
within the lattice may lead to the formation of secondary phase. The material becomes cadmium
rich and there is formation of oxygen vacancies. The loss of antimony oxide results in the decrease
of the density of the material as the sintering temperature increases, as seen in Table 4.6. Although
the temperature of the synthesis has been optimised, for an improvement of the density of Y-doped
CdSb2O6, other parameters need to be addressed. These variables are for instance the sintering time,
the use a binder or the time used to increase the density of the pellets on the cold isostatic press
(CIP) instrument and. The role of a binder material is to glue to the ceramics particles together
thereby closing voids between the particles.
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4.7 Conclusion

As a conclusion, some thermoelectric properties of transparent conducting oxides Y-doped CdSb2O6

have been investigated. The temperature dependence of σ and α suggests that these materials can
be treated as n-type semiconductors. The Cd0.97Y0.03Sb2O6 sample proved to the best candidate for
thermoelectric applications due its high power factor. At 950 K its PF reaches up to 50µW m−1 K−2.
However, this value is two orders of magnitude lower than that of state of the art oxide thermoelectric
materials such as ZnO176. The values indicate that there is room for improvements. The use
of a binder is envisaged for an improvement of the density of the Cd1−xYxSb2O6 pellets. Hall
measurements are considered as they will enable the determination of the carriers concentration of
the materials. For a complete characterization of the thermoelectric properties of these systems
their respective thermal conductivity κ needs to be measured thereby enabling the determination of
their figure of merit (ZT). Finally this study suggests to investigate the temperature dependence
of σ, α and κ as function of the content on Y 3+ from 0 to 5 %. A n-type doping of CdSb2O6 is
envisaged with La2O3 as the doping material. This is due to the fact that the size (1.032 Å) and
coordination state (6) of La3+ are similar to that of Cd2+ (0.95 Å and 6). The higher valence state
of silver (3+) suggests that the introduction of La3+ in the lattice may contribute to an increase of
the free-carriers concentration thereby an increase of the electrical conductivity of Cd1−xLaxSb2O6.
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Chapter 5

Thermoelectric properties of tungsten divanadate
oxide (WV2O6)

5.1 Motivation

WV2O6 crystallizes in a trirutile-type structure. W6+, V3+ and O2− ions order in a tetragonal
lattice whose symmetry space group is P42/mnm (136). The crystal lattice of WV2O6 is displayed
in Figure 5.1 on the next page. W6+ and V3+ cations occupy the 2a and 4e Wyckoff sites within
the lattice. The light blue octahedra in this Figure represent the WO6 octahedra which form sheets
in the a-b plane. The sheets are separated by blocks made of V and O atoms. Thus, the crystal
structure of WV2O6 is constituted of alternated sheets of edge-shared octahedra (WO6 and VO6)
along the c-axis. The crystal structure is made up of heavy elements (W and V) and with many
atoms per unit cell: two tungsten, four vanadium and sixteen oxygens atoms. Hence, WV2O6 can
be viewed as a superstructure and thereby fulfills two of the guidelines necessary to achieve high
Figure of merit ZT. Indeed the high symmetry structure may contribute to minimize the scattering
of charge carriers by optical phonons. For instance, the presence of heavy elements and many
atoms per unit cell within this trirutile may contribute to a reduction of the thermal conductivity
κ of WV2O6. In addition electrical studies177 demonstrates that WV2O6 conducts electrically at
room temperature and behaves like a semiconductor for temperatures between 300 and 620 K; its
electrical conductivity ,σ, increases with increasing temperature. These aspects of WV2O6 suggest
its potential for thermoelectric applications. The absence of reports on the thermoelectric properties
of WV2O6 in the literature was the motivation of the investigations carried out within this material.
This chapter is organised as follows: the structural and physical properties of this trirutile are first
reviewed. It is followed by a structural characterization of the prepared polycrystalline samples. The
thermoelectric properties (α, σ and κ)of WV2O6 are presented and analysed. Prior to these sections
the electronic structure of this trirutile is discussed.

106



5.2. A literature review of WV2O6

Figure 5.1: The crystal lattice of the trirutile WV2O6. W, V and O are represented by the black, magenta
and red spheres, respectively. The light blue octahedra represent WO6 octahedra.

5.2 A literature review of WV2O6

5.2.1 Methods of synthesis

Bernier and Poix178 were the first to study the crystal structure of tungsten divanadate. They pre-
pared powdered WV2O6 samples by mixing stoichiometric amount of WO3 and V2O3. The mixture
was heated at 950° under vacuum. Successive grindings and firings enable the formation of single
phase WV2O6. X-ray diffraction analysis illustrates that WV2O6 crystallizes in a trirutile-type struc-
ture with the space group symmetry of the lattice is P42/mnm (136). Hodeau et al.177 prepared
WV2O6 single crystals by chemical vapour transport179,180 where TeCl4 was used as transport agent
for this single crystals growth. Their demonstrated that WV2O6 can either be trirutile or rutile. For
a rutile WV2O6 there is disorder in the packing of magnetic cations (V3+) and non-magnetic ones
(W6+). A regular packing is observed in WV2O6 tritutiles.

5.2.2 Physical properties

The magnetic properties of tungsten divanadate have been thoroughly investigated. Fruchart et al.181

measured the susceptibility of polycrystalline WV2O6 samples. Susceptibility data of a trirutile
WV2O6 at high temperature follows a Curie-Weiss profile of an antiferromagnetic material. There is
maximum at 117 K. The Néel transition is confirmed by the study of the evolution of the intensity
of a magnetic reflection (0 0 1) as function of temperature. The intersection of M(T) with the tem-
perature axe corresponds to Néel temperature TN = 117 ± 2 K. The inverse magnetic susceptibility
of an ordered WV2O6 shows a broad minimum whereas the one of a rutile WV2O6 is a straight
line. Fruchart and coworkers refined the magnetic structure of the antiferromagnet WV2O6 from
the neutron diffractograms recorded below TN . The magnetic reflections follow the rule in equation
(5.1)
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h+ k + l = 2n+ 1, (5.1)

whe h, k and l are integers and l 6= 3 n. The A configuration is their model for the sublattice
magnetization of WV2O6. This model is given by:

A = S1 − S2 − S3 + S4. (5.2)

The indexes from 1 to 4 are related to the positions of the magnetic ions (V3+) within the
magnetic unit cell. The magnetic structure of WV2O6 is similar to the collinear magnetic structure
of WCr2O6

182,183. The positions of magnetic ions in the magnetic unit cell are presented in Table
5.1.

Table 5.1: Wyckoff positions of magnetic atoms within magnetic unit cell of WV2O6. Space group:
P42/mnm (136).

site x y z
1 0 0 z
2 0 0 1 - z
3 1

2
1
2

1
2 + z

4 1
2

1
2

1
2 - z

Refining the neutron diffraction patterns below TN only with the Axy mode lead to an average
magnetic moment of 0.9 ± 0.2µB/V3+. This value is lower than the expected value of µeff =
2.83µB. This discrepancy between measured and theoretical magnetic moment value is due to the
superposition of magnetic and nuclear reflections.

Hodeau et al.177 investigated the electrical properties of tungsten divanadate. Using two elec-
trodes, made of platinum, they measured the resistance of WV2O6 single crystals from room tem-
perature to 1000 K. The plot log (R) = f (1/T) was fitted by a straight line indicating that the
tungsten divanadate behaves like a broad band semiconductor. Using the data from 249 K up to
625 K Hodeau et al.177 deduced the activation energy, EA, from the slope of the fitting line: EA =
0.20 eV. This is in agreement with previous work by Rfidorff and Kornelson (1969) who refined a
value of 0.24 eV for EA.

5.3 Synthesis

Powdered WV2O6 samples have been prepared by a solid state reaction. The synthesis, in accordance
with Bernier and Poix (1968), was carried out by mixing appropriate amounts of WO3 (99.9%) and
V2O3 (99.99%). Tungsten oxide is a powder with light green color whereas vanadium oxide (III) is
a black powder. The solid state reaction is described by the following reaction:

WO3 + V2O3
vacuum−−−−−→WV2O6 (5.3)

The precursors have been mixed with a pestle in an agate mortar under acetone. The mixture
was placed under vacuum in an quartz tube and then sealed. The quartz tube was finally placed
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Table 5.2: Wyckoff positions of atoms within the tetragonal unit cell of WV2O6. Space group: P42/mnm
(136).

atom labelatom type site x y z
W W 2a 0 0 0
V V 4e 0 0 0.33540(4)
O1 O 4f 0.33422

(3)
0.33422
(3)

0

O2 O 8j 0.29288
(4)

0.29288
(4)

0.33387 (2)

Table 5.3: Wyckoff positions of atoms within the tetragonal unit cell of WV2O6 by Fruchart et al.181.
Space group: P42/mnm (136).

W W 2a 0 0 0
V V 4e 0 0 0.334
O1 O 4f 0.290 0.290 0
O2 O 8j 0.308 0.308 0.334

in a furnace. The reaction has been carried at 1273 Kfor 48 h in order to form WV2O6. Note this
synthesis of WV2O6 differs from that of Bernier and Poix178, and Hodeau et al.177, as they fired the
quartz tube at 1223 K. It is due to the fact that powder diffraction of powders sintered at 1223 K
reveal the presence of the reactants phase. Multiple grindings and annealing processes have been
performed in order to reach phase purity. The resulting powder has a black colour and this is in
agreement with the result of Hodeau and coworkers.

5.4 Powder x-ray diffraction

X-ray diffraction was performed on the prepared samples in order to assess their phase purity. Once
again the PANalytical diffractometer was the instrument used for this purpose. Figure 5.2 on
the next page presents the Rietveld refinement of a room-temperature x-ray diffraction pattern of
WV2O6. The Fullprof Suite program was utilized this task. In Figure 5.2 the experimental data and
calculated profile are shown as red dots and the continuous black line, respectively. The blue line at
the bottom of the diagram corresponds to a difference curve (observed-calculated). All reflections
in Figure 5.2 are those of a tetragonal lattice, whose space group symmetry is P42/mnm (136). The
Bragg peak positions associated with these reflections are indicated by the green tick marks. There
is a good level of agreement between the observed and calculated profile as indicated by the low
values of the refinements factors: χ2 = 1.29, RB = 5.26 % and RF = 5.09 %.

From the Rietveld analysis one extracts the following lattice parameters: a = 4.633 11(1) Å, c =
8.899 78(2) Å. These results are in good agreement with those reported by Fruchart et al.181.

Although the lattice parameters of the current are in good agreement with those reported in the
literature, the calculated Wyckoff positions are different to those previously reported by Fruchart
et al.181 and Hodeau et al.177. This discrepancy is well pronounced for the oxygens on site 4f.
There is a complete ordering of the cations on 2a and 4e sites as none if these sites is shared by both
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Figure 5.2: Rietveld refinement of a room-temperature x-ray diffraction pattern of WV2O6. The experi-
mental data and calculated profile are shown as red dots and the continuous black line, respectively; the
blue line at the bottom of the diagram corresponds to a difference curve (observed-calculated). The green
ticks indicate the Bragg peak positions.

Table 5.4: Wyckoff positions of atoms within the tetragonal unit cell ofWV2O6 by Hodeau et al.177.Space
group: P42/mnm (136).

W W 2a 0 0 0
V V 4e 0 0 0.33472 (3)
O1 O 4f 0.2943 (8) 0.2943 (8) 0
O2 O 8j 0.3018 (6) 0.3018 (6) 0.334
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cations. Table 5.4 strongly suggests that the prepared powder of WV2O6 is a fully ordered trirutile.
However, a trirutile is a modulated rutile. This modulation can give rise to homometric structures:
two distinguishable atomic structures, for which the distance between atoms are identical but the
distributions of the atoms within the lattice differs. This topic is extensively discussed in Chapter
6 on NiTa2O6. Joint x-ray and neutron refinement184 is needed to confirm or refute the ordering of
the cations within this trirutile. This says the Rietveld refinement indicates the absence of spurious
phases. As consequence single phase trirutile WV2O6 has been prepared and the material is optimal
for the characterization of its physical properties.

5.5 Electronic structure

The section is dedicated to the band structure and the density of states (DOS) of WV2O6. Both
the electronic structure and the DOS are displayed in Figure 5.3 below. The hybrid functional185,
HSE06, was the model utilized for the band structure calculations. For these calculations the Fermi
level (EF ) was chosen to be in the middle of the bandgap.

Figure 5.3: On the left, the density of states (DOS) of WV2O6. A detailed description of the bands is
giving on the right hand side. The blue, green and red colours indicate the bands related to tungsten,
vanadium and oxygen, respectively.

The diagram on the left in Figure 5.3 corresponds to the calculations of the band structure of
WV2O6 in reciprocal space or k-space (Å−1). This plot shows the variation of the energy of states (E
- EF ) as function of position in the reciprocal space (k). The letters Γ, M, X, Z, R and A represent
high symmetry points in the unit cell of this reciprocal lattice. This unit cell is also known as the
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Brillouin zone and is depicted as the black parallelepiped in Figure 5.4. Γ is at the origin of the
Brillouin zone. Z and X points are in the middle of the facets perpendicular to ~b3 and ~b2 vectors,
respectively. A is located at one of the eight edges o the Brillouin zone. M and R correspond to
the middle of the vertices parallel to ~b3 and ~b1 vectors, respectively. ~b1, ~b2 and ~b3 are the unitary
vectors of the reciprocal space and are given by

~b1 = 2π
~b× ~c

~a.(~b× ~c)
, (5.4)

~b2 = 2π ~c× ~a
~a.(~b× ~c)

, (5.5)

~b3 = 2π ~a×~b
~a.(~b× ~c)

, (5.6)

where ~a, ~b and ~c are the unitary vectors of the real space. The minimum of the conduction band
is loated at the Γ point, whereas the top of the valence band is located at the Z point.

Figure 5.4: Brillouin zone of a tetragonal lattice.186

In order to calculate the band structure of the system, energies are evaluated for all k points
between the high symmetry points. The calculations are run along the paths between the high
symmetry points, illustrated by the red parallelepiped in Figure 5.4. The path chosen for the calcu-
lations is indicated by the letters on the top of the electronic structure. The higher the number of
~k points between two high symmetry points, the smoother is the band structure. In Figure 5.3 the
bands whose energies are lower than −1 eV form the valence band (VB), whereas the conduction
band (CB) consists of bands with energies higher than 1 eV. The direct bandgap is the difference
in energy between the top of VB and bottom of CB, which are aligned. If these two band edges
are not aligned, the bandgap is said to be indirect. In WV2O6 the direct and indirect bandgap are
about 2.3 and 2.2 eV, respectively; if the valence (conduction) band is near the Fermi level (0 eV in
this case) a p-type (n-type) doping is expected for the material.

In order to obtain the density of states (DOS), one calculates the energies across the Brillouin
zone, not just the special directions. In other words k samples the whole Brillouin zone. The
DOS is the plot on the right in Figure 5.3. The red, blue and green indicate the orbitals related
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to oxygen (O), vanadium (V) and tungsten (W) atoms, respectively. The oxygens link up the V
and W atoms and therefore their orbitals are located at the bottom (−9.5 < E - EF < −2.5 eV)
of the valence band (red). The top of the valence band (VB) mainly consists of occupied V d-
states, whereas the unoccupied W d-states (blue) form the bottom of the conduction band (CB).
A n-type doping consists of introducing electrons near the bottom of the CB, thereby involving W
d-orbitals. According to Fruchart et al.181 and Hodeau et al.177 the difference between the energy of
such electrons and the CB is estimated to be about 0.24 eV. This energy is known as the activation
energy.

5.6 Thermoelectric properties of WV2O6

Rectangular bars of WV2O6 have been prepared with the method discussed in section 2.3.1 of
Chapter 2 dedicated to the ZEM instrument. The density of this bar was calculated using the
Archimede method and is estimated to be equal to 3.86 g cm−3 and it corresponds to a relative
density of 42 %. This poor value of the density is not ideal to measure the thermoelectric properties of
WV2O6. Two sets of measurements have been performed for the determination of the thermoelectric
properties of tungsten divanadate oxide. High-temperature data (300 K - 950 K) were collected on the
ZEM instrument. The electrical conductivity σ, the thermal conductivity κ and the thermopower α
have also been investigated at low-temperature (14 K - 260 K) using the Dynacool. The temperature
dependence of the thermopower of WV2O6 is discussed. It is followed by a discussion on the
mechanisms responsible for its electrical conductivity. The end of this chapter is dedicated to the
analysis of the thermal conductivity data, the power factor and figure of merit of WV2O6. The
crystal structure of WV2O6 is assumed to be constant from room temperature to 1000 K.

5.6.1 The Seebeck coefficent α of WV2O6

The temperature dependence of the thermopower of WV2O6, α, is presented in Figure 5.5. There
is a gap between the blue hexagonal points between 256 and 327 K. These two temperatures are
the highest and lowest temperature recorded on the Dynacool and ZEM instruments, respectively.
The thermopower values at these two temperatures have the same order of magnitude: −19.90 and
−35.90µV K−1, respectively. From 100 up to 200 K the thermopower takes positive values. It is due
to the fact that the material becomes insulating with decreasing temperature. The positive sign of
the Seebeck coefficient indicates that most of the free-carriers responsible of the electrical proper-
ties of WV2O6 are holes. Hence, WV2O6 behaves as a p-type material within this temperature range.

For temperatures higher than 200 K the thermopower decreases and takes negative values. The
majority of the free-carriers are electrons, thus WV2O6 behaves like a n-type semiconductor. From
600 to 1000 K the WV2O6 bar exhibits a thermopower of about −59.55µV K−1. This Seebeck
coefficient value is rather small with respect to the state-of-the-art thermoelectric oxide materials,
as the latter exhibit a thermopower power of order of few hundreds microvolts per kelvin. The
semiconductor behaviour177 of WV2O6 and the negative sign of its Seebeck coefficient indicate that
this material can be treated like a n-type semiconductor. Hence, the thermopower data from 174 to
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1000 K were fitted with the model described in equation (5.7)

α(T ) = kB
e
.( EA
kBT

+Ac) (5.7)

where kB, EF and EC correspond to the Boltzmann constant, the Fermi energy and the lowest
energy of conduction band, respectively. U is a unitless fitting parameter. Figure 5.5 presents a
comparison between measured and theoretical thermopower of the WV2O6 bar.

Figure 5.5: Fitting of the Seebeck coefficient data of WV2O6. The red curve represents the fitting curve
whereas the blue dots are to the experimental data.

In Figure 5.5 the blue dots represent the experimental data whereas the model used to fit this
data points corresponds to the red line. The experimental and the fitting line are within agreement
as the values of the blue dots are very similar to those of the red line, from 400 to 800 K. The unitless
parameter U is equal to −0.910. From 800 K onward there are discrepancies between the model and
the experimental data. Indeed, at 850 and 950 K the thermopower of the WV2O6 bars is equal to
−59.45 and −58.96µV K−1, respectively. On the other hand, the respective values of α according
to the red line at these temperatures are: −60.69 and −62.10µV K−1. The scattering of electrons
by defects within the lattice, at high temperature, may be responsible for the discrepancy between
the model (red line) and the experiment data (blue hexagons). Indeed, more defects are thermally
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generated within the lattice with increasing temperature. Consequently, these point defects and
grain boundaries may alter the free-carriers properties such as their mobility, thus the thermopower
of WV2O6. The term EF - EC in equation (4.67) corresponds to the thermopower activation energy
EA. The value of EA which best fitted the experimental data was 0.014 ± 0 eV. This value is one
order of magnitude lower than the activation energy reported by Hodeau (0.20 eV).

5.6.2 The electrical conductivity σ of WV2O6

The ZEM measures simultaneously the thermopower and the electrical conductivity, σ, of a sample
at any temperature. Hence, σ was measured within the same temperature as the Seebeck coefficient
and the experimental data are presented in Figure 5.6 below.

Figure 5.6: The evolution of the electrical conductivity, σ, of WV2O6 sample as function of the temperature.

The green stars in Figure 5.6 represent the experimental data recorded on the ZEM instrument.
One notes that as the temperature increases the electrical conductivity exponentially increases. The
WV2O6 bar exhibits an electrical conductivity of few Siemens per centimeter (1 S cm−1) at room
temperature. The values of σ increases by almost two orders of magnitude as the temperature in-
creases. At 1000 K tungsten divanadate oxide exhibits an electrical conductivity of 75 S cm−1. The
electrical conductivity data was compared to that of established TE materials in the data mining
chart19. At high temperatures, WV2O6 exhibits an electrical conductivity which is in the same
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order of magnitude than that of CuNd2O4
172. This material exhibits an electrical conductivity of

41 S cm−1 at 700 K. In order to fit the electrical conductivity data different models are successively
tested. These models are two hopping models (small polaron and variable range) and the band model.

The variable range hopping model

The first model used to fit the experimental data is the variable range hopping model for a 3D
material. In the variable range hopping (vrh), derived by Mott141, electrons jump (hop) now and
then to other energy levels, which are localized around the Fermi energy. The hopping probability
mainly depends on the energy separation W between two states. In order to determine whether or
not the variable range hopping regime is the appropriate model to explain the electric conduction
in WV2O6, the plot ln(σ) vs 1

T

1
4 was tested. The result is depicted in Figure 5.7.

Figure 5.7: Fitting of the electrical conductivity with the variable range hopping model. The black squares
represent the experimental data and the red line corresponds to the theoretical model.

In Figure 5.7 the lowest values on the x-axis correspond to high temperatures, whereas low
temperatures are associated with the highest values on the x-axis. The black squares in Figure
5.7 are the experimental data and the red line corresponds the theoretical profile of the electrical
conductivity according to the variable range hopping model. There is good agreement between
the vrh model and experimental values for temperatures below 102 K, indicated by the green box
in Figure 5.7. For instance, the values of ln(σ) for both the experiment and the vrh model at
82 K are equal to −7 and −7 S m−1, respectively. The shift between the black squares and the
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red line increases with increasing temperature. Indeed at 515 K the logarithm of the electrical
conductivity is equal to 7 S m−1 experimentally whereas the variable range hopping model predicts
6 S m−1. Therefore the hopping mechanism may be suitable to describe the electric conduction of
tungsten divanadate oxide for temperatures below 102 K. One can thus extract the values of σo and
To in the following manner. One first starts by rewriting equation.(3.45) in Chapter 3 as

g(T ) = ln(σ(T )) = ln(σo)− (To
T

) 1
4 . (5.8)

The next step is a change of variable as one is interested in 1
T

1
4 :

X = ( 1
T

) 1
4 , (5.9)

g(X) = −D.X +B, (5.10)

where D = T
1/4
o and B = ln(σo). The values of D and B for this model are 103.558 ± 2 K

and 27 ± 0 S m−1, respectively.The respective values of the parameter To and the pre-factor σo are:
1.150× 108 K ± 9 K and 1× 1012 ± 0 S m−1.

The small polaron hopping model

The small polaron hopping model was then considered as model for the electrical conductivity
data of WV2O6. The mechanism of the small polaron hopping187 relies on the strong interaction
of electron-phonon system. In fact electrons push negative ions further away and the overlap of
neighbouring orbitals becomes narrower until electrons fall into localised states. If the behaviour
of σ within WV2O6 is welll explained by the small polaron hopping, the plot ln(σ.T) vs 1

T is thus
a straight line. The slope and intercept of the line are equal to - ∆

kB
and ln(A), respectively. ∆

corresponds to the activation energy EA. Figure 5.8 illustrates the evolution of ln(σ.T) as function
of the inverse of the temperature.

Similarly to Figure 5.7, the lowest values on the x-axis in Figure 5.8 correspond to high temper-
ature whereas those near 0.021 K−1 are related to low-temperature values. For instance, 0.0015 K−1

and 0.021 K−1 correspond to 667 K and 48 K, respectively. Figure 5.8 demonstrates that ln(σ.T)
vs 1

T follows and exponential decay, as indicted by the trend of the black diamonds. However, the
linear response of the ln(σT) as 1

T varies from 0.005 to 0.001 K−1. The respective temperatures for
these two values of 1

T are 214 and 1000 K. It is therefore possible to fit the black diamonds within
that temperature range with the model in equation (1.5). The fitting curve is represented by the red
line in Figure 5.8. ∆

kB
and ln(A) are equal to −2336.82 ± 22 K and 178 ± 0 S m−1 K2, respectively.

A was found to be equal to 18 ± 0 S m−1 K. Eventually, the activation energy ∆ was deduced from
the slope. ∆ is equal to 0.204 ± 0.003 eV. The activation energy value is within good agreement
with the value reported by Hodeau and coworkers:0.202 eV. Nevertheless, the small polaron model
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Figure 5.8: Fitting of the electrical conductivity data with the small polaron hopping model. The black
diamonds represent the experimental data and the red line stands for the theoretical model.

fails to explain the behaviour of the electrical conductivity of WV2O6 for temperatures below 215 K.

The band model

The last model considered to explain the electrical conductivity data of WV2O6 was the band
model. One of the striking differences between this model and the two previous ones is the delocal-
isation of the energy states near the Fermi level. The energy levels are closely stacked at different
positions: one speaks of bands. For the band model to be valid as model for the electrical con-
ductivity data of WV2O6, the plot ln(σ) vs 1

T should be a straight line. The slope of this line is
proportional to the activation energy EA.

The plot in Figure 5.9 is similar to that in Figure 5.8. ln(σ) follows an exponential decay as the
temperature decreases. On the x-axis 0.004 K−1 is equivalent 250 K, whereas 62.5 K corresponds to
0.016 K−1. The black squares and the red line represent the experimental data and the theoretical
model, respectively. For temperature below 220 K there is discrepancy between the black squares
and the red line. At 118 K the theoretical model predicts a value of −5 S m−1 for ln(σ) whereas the
value of the black square at that temperature is equal to −3 S m−1. The shift between the red line
and the black squares increases with decreasing temperature. Nevertheless the band regime model
(red line) well fits the experimental data (black squares) for temperatures above 215 K. At 800 K
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Figure 5.9: Fitting of the electrical conducitivity of WV2O6 with the broad band model. The black
squares represent the experimental data and the theoretical model is illustrated via the red line.
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the value of ln(σ) according to the theoretical model and the experimental data is equal to 8 and
8 S m−1, respectively. Eventually the activation energy was extracted from the slope of the red line
via the relation: slope = EA

kB
. The analysis lead to a value of 0.169 ± 0.001 eV for the activation

energy EA. This value of EA is in the same order of magnitude than the value reported by Hodeau
and coworkers177: 0.202 eV .

The small polaron model in Figure 5.8 and the band model in Figure 5.9 both describe well the
temperature dependence of the electrical conductivity of the WV2O6 bar, for temperatures above
215 K. The Pearson’s r coefficient of the band model is higher than that of the small polaron model.
The Pearson coefficient measures how linearly correlated are two variables X and Y. For a perfect
negative linear correlation the Pearson’s r is equal to 1 or -1. r takes the values of -0.999 11 and
-0.999 55 for the small polaron and band model, respectively. Hence, the band model is the suitable
model to describe the high temperature data. Table 5.5 summarizes the relationship between regimes
(models) and the electrical conductivity of WV2O6.

Table 5.5: Relationship between regimes and electrical conductivity of WV2O6. EA correspods to the
activation energy, and Temp stands for temperature.

Criteria Models
Model Variable range Small polaron Band

hopping hopping
Temp. 0 - 105 215 - 1000 215 - 1000
range (K)
Activation 0.204 ± 0.003 0.169 ± 0.001 eV
energy (eV)
Pearson’s r -0.998 53 -0.999 11 -0.999 55

5.6.3 The power factor PF of WV2O6

The power factor was deduced from α and σ from the relation in equation (5.11):

PF = S2.σ. (5.11)

The evolution of the value of PF as function of the temperature is shown in Figure 5.10. The
exponential-type profile of the power factor is similar to that σ. Indeed the power factor of the
WV2O6 bar increases, with increasing; PF varies from 1.69 up to 26.76µW m−1 K−2. These values
are those of κ at 300 and 1000 K, respectively. This is due to proportionality between σ and PF
present in equation (5.11) and the fact that the electrical conductivity is higher than the thermopower
by more than 4 orders of magnitude. The power factor of CuNd2O4 is about 41.10µW m−1 K−2 at
700 K. It suggests there are opportunities for improvement of the PF of WV2O6.

5.6.4 The thermal conductivity κ of WV2O6

In this section the conduction of heat in WV2O6 is discussed. First, the temperature dependence
of electronic (κe) and thermal (κl) conductivities are discussed. The experimental data is then com-
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Figure 5.10: The evolution of the power factor PF of the WV2O6 bar as function of the temperature.
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pared to the theoretical minimum conductivity which is derived from the Cahill’s model.

The thermal conductivity of the WV2O6 bar was simultaneously measured with σ and α on the
Dynacool. The data recorded from 54 to 257 K are presented in Figure 5.11. The white dots are
the measured values of κ. The thermal conductivity data for temperatures above 150 K are not
reliable, due to the radiation losses. From 0 to 62 K the thermal conductivity sharply increases
from 0.032 to 0.800 W m−1 K−1. κ decreases from temperatures above 62 K, then stabilises around
0.782 W m−1 K−1. The thermal conductivity value exhibited by WV2O6 is in the same order of
magnitude of the best TE oxides, such as the layered cobaltite CaCo2O5

35 which exhibits a thermal
conductivity of around 1 W m−1 K−1 for temperatures between 473K an 873K.

Figure 5.11: The evolution of the thermal conductivity κ of the WV2O6 bar as function of the temperature.
The white dots represent the experimental data.

The electronic contribution κe

κe is the summation over all heat transferred within lattice due to the motion of free-carriers.
Since σ is also governed by the free-carriers, it inevitably follows that the electronic contribution
of the thermal conductivity is directly related to the electrical conductivity. That relationship is
expressed in the following equation:
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κe
σ

= (π
2k2
B

3e2 ).T (5.12)

Equation (5.13) is the Wiedemann-Franz law which states that the ratio between κe and σ at a
given temperature is equal to a constant. That constant is the Lorenz constant, which is equal to
2.44× 10−8 W Ω K−2. In other words κe is proportional to σ. The temperature-dependence of the
electronic contribution of κ is presented in Figure 5.12 by the red dots.
The red dots are deduced from the electrical conductivity measured on the Dynacool; the deduction
was done using the relation in equation (5.13). κe has the same exponential profile as the electrical
conductivity, as seen in Figure 5.6. As the temperature increases from 50 and 257 K κe increases 0 up
to 148.443µW m−1 K−1. The red dots, blue triangles and the black squares in Figure 5.12 illustrates
the electrical, lattice and total thermal conductivity, respectively. κe is six orders of magnitude lower
than the measured thermal conductivity κ. As a consequence, Figure 5.12 highlights that the heat
transfer within WV2O6 is mainly due to the lattice. This dominance of κ by κl indicates that it may
be possible to tailor the electrical properties of WV2O6 without deteriorating its thermal properties,
and vice-versa. The lattice contribution of κ was then deduced by subtracting κe from κ, and its
temperature-dependence is discussed on the next paragraph.

Figure 5.12: Temperature-dependence of κ, κe and κl of the WV2O6 bar.

The lattice contribution κl
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Chapter 5. Thermoelectric properties of tungsten divanadate oxide (WV2O6)

The lattice contribution of the thermal conductivity, κl is the summation over all heat transferred
within the material due to coherent lattice vibrations, also known as phonons. κl was estimated by
subtracting the electronic part from the total thermal conductivity κ. The temperature dependence
of κl has the profile of a thermal conductivity of a material in which different scattering mechanisms
limit the thermal conductivity, at low and high temperatures, as discussed in Section 4.6.5. SEM
images ware taken on a WV2O6 bar. These images were taken at a voltage of 30 kV and a magnifi-
cation of 10kX. The presence of gaps and non-uniformity of particles in the SEM images evidence
that the prepared sample is not a perfect crystal. The Callaway model was therefore taken to be
equal to κ1:

κ1 = kB
2π2νs

.(kBT
~

)3
∫ ΘD

T

0
τc

x4ex

(ex − 1)2 dx. (5.13)

The combined relaxation time τc used in equation (5.55) is given by:

τ−1
c = νs

l
+Aω4 + [B1exp(−

Θ
3T ) +B2].ω2T, (5.14)

where νs
l is the phonon-boundary scattering rate, Aω4 accounts for the point defects scattering

rate; the third and last term ω2T describes the phonon–phonon scattering rate. The phonon-electron
scattering was considered to be negligible. The characteristic length of the material l corresponds
to the (average) size of particulates in Figure 5.13 and is estimated to be about 3.7µm.

Figure 5.14 illustrates the fitting of the experimental data of κl (red dots) with the Callaway-
Debye model (black line). Four parameters were refined for the fitting of the lattice thermal con-
ductivity data. These parameters are νs, A, B1 and B2. B1 and B2 influence the tail of the
fitting curve. Their determination is challenging because κl was not measured at high temperature.
Changes in the mass-fluctuation parameter A and the sound veloctity affects the low-temperature
values of the theoretical profile of κl. There is good agreement between the profile predicted by the
Callaway-Debye model and the experimental data, for temperatures between 15 and 75 K. However,
as temperature increases the the black line deviates from the red dots. This discrepancy is well
pronounced for temperatures between 80 and 150 K. Several factors need to be taken into account
to address the disagreement between the experimental and theoretical profiles. The low density of
the prepared sample contributes to the poor fit observed in Figure 5.13. Besides, the model chosen
for the scattering rates in equation (5.14) needs to be reconsidered. For instance the electron-phonon
needs to be taken into account. Nevertheless, the relaxation time parameters A, B1 and B2 which
best fit the lattice thermal conductivity of WV2O6 are 1.050× 10−41 s3, 1.5120× 10−15 s K−1 and
8.600× 10−17 s3, respectively. In addition, the value of νs and ΘD are 5550 m s−1 and 752 K, respec-
tively. It should be noted that the sound velocity and the Debye temperature fulfill equation (3.48)
in Chapter 3.

The minimal conductivity of κl

The Cahill’s model was used to estimate the minimum thermal conductivity (κmin) of WV2O6.
The minimum thermal conductivity is given by
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(a)

(b)

Figure 5.13: SEM images of WV2O6 bar. These images were taken at a voltage of 30 kV and a magnification
of 10kX. The white ruler below both images corresponds to 10µm.
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Figure 5.14: Observed (red dots) and calculated (black line) lattice thermal conductivity κl as function of
the temperature.
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κmin = (π6 )1/3.kB.n
2/3
a .

∑
i

[νi(
T

Θi
)2

∫ Θi/T

0

x3ex

(ex − 1)2 dx], (5.15)

where ω is the frequency of the phonon and x = ~ω
kBT

; na corresponds to the number of atoms per
unit volume (9.428× 1022 cm−3), νi represents the sound velocity (5550 m s−1), and Θi is the Debye
temperature (752 K). The calculated profile is illustrated in Figure 5.15. κmin increases towards a
saturation value of 1.875 W m−1 K−1 at 1000K. This value will be used for the calculation of the
Figure of merit. It is due to the fact that values of the total thermal conductivity κ converge to
κmin at high temperature.

Figure 5.15: Calculated mimimum thermal conductivity from the Cahill’s model.

5.6.5 The figure of merit ZT of WV2O6

The figure of merit of the WV2O6 was derived from the measured Seebeck coefficient (S), electrical
(σ) and thermal conductivity (κ) via the relation in equation (5.15):

ZT = (S
2σ

κ
)T. (5.16)

ZT is dimensionless and its value indicates the potential of material for thermoelectric applica-
tions: A material with a large ZT is a good TE material. The figure of merits of the state-of-the-art
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n-type TE oxides are within the following range 0.3 ≤ ZT ≤ 1. For instance Zn0.98Al0.02O188 ex-
hibits a ZT of 0.30 at 1279 K. Since the thermal conductivity was not measured at high temperature,
κ was assumed to be equal to a constant for the calculations of the Figure of merit. This constant
is the minimum thermal conductivity κmin determined with the Cahill’s model. The temperature
dependence of the figure of merit of tungsten divanadate oxide is depicted in Figure 5.16.

Figure 5.16: Temperature-dependence of the figure of merit ZT of WV2O6.

The orange asterisks in Figure 5.16 are the values of the figure of merit which are derived from
the experimental data. The figure of merit of WV2O6 increases with increasing temperature. The
highest value of ZT is observed at 1000 K and it is equal to 1.416× 10−2. The exponential profile
of the figure of merit results from the fact that PF is much greater than κ, which is in the order
of the unity. In other words, the power factor dictates the profile of ZT.WV2O6 exhibits a figure
of merit which is one order of magnitude lower than that the standard Al-doped ZnO. However,
tungsten divanadate oxide is undoped. Appropriate dopings of this material may therefore result in
enhancements of its power factor thus figure of merit. For instance, increasing its PF by a factor 10
yields a figure of merit of about 0.142 at 1000 K.
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5.7 Conclusion

To conclude, the thermoelectric properties of WV2O6 was investigated. This n-type semiconductor
exhibits a figure of ZT of 3.395× 10−2 at 1000 K. This value is one order of magnitude lower
than that of typical n-type TE oxide such as ZnO58,188. Several strategies are envisaged for an
enhancement of the TE properties of this trirutile. Due to modulated nature of WV2O6, the sample
prepared in this work corresponds to a specific composition of the trirutile VxW3−xO6 (with 1.7
< x < 2.1). The synthesis of several compositions of this trirutile is considered for a study of
the relationship between electrical conductivity and the atomic structure of different compositions.
Measurements on singles crystals reveal the intrinsic properties of a material. Single crystals growth
of this homogeneous range of trirutile systems by chemical vapor transport177 is envisaged. Joint
x-ray and neutron diffraction on these single crystals will shed light on the packing of V3+ and
W6+. The effects of the crystal structure (different compositions) on the TE properties of tungsten
divanadate oxide will then be investigated.
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Chapter 6

NiTa2O6: revisiting the magnetic structure of a
trirutile compound

6.1 The cation ordering wave in trirutile NiTa2O6

Symmetry is certainly one of the most important concepts in physics, especially in condensed matter
physics189. Symmetry manifests itself in the crystal structures of materials. A crystal structure is
a specific arrangement of atoms within a Bravais lattice189,190. The crystal structure of a material
(hence crystallography) plays a major role in the understanding of its physical properties. For in-
stance, phase transitions are mostly related to a change in symmetry of the crystal structure.

X-ray diffraction is one of the methods for the determination of crystal structures. The x-
ray/crystal structure relationship started with the groundbreaking discovery of Max Von Laue191.
A regular diffraction pattern is observed, when x-rays were diffracted by single crystals. William
Lawrence Bragg and his father William Henry Bragg113,191 then demonstrated, by means of geom-
etry, that such phenomena was possible if the wavelength of the x-rays were in the same order of
magnitude as the interatomic distances of the solids. This condition is known as the Bragg’s law for
x-ray diffraction. A fundamental assumption in x-ray diffraction is that once a well refined crystal
structure has been established there is no need to consider the possibility of a different arrange-
ment of the same atoms that produces an identical diffraction pattern184,191, i.e, there is one-to-one
relationship between a nuclear structure and a x-ray diffraction pattern.

6.1.1 Homometric structures

The determination of the atomic structures from x-ray diffraction was based on the fact that the
detected scattered intensities were directly related to the the coordinates of the atoms. The electron
density function in this case was expressed by the following formula:

ρ(xyz) = 1
V

+∞∑
hkl=−∞

|F (hkl)|.exp[−2π.i.(hx+ ky + lz)], (6.1)

where x,y,z are the coordinate of an atom, h k l are the Miller indices, V represents the total
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Figure 6.1: Scheme of a Patterson function derived from a crystal containing three atoms in the unit cell
(left) . All possible interatomic vectors are plotted (center figure). These vectors are then moved parallel
to themselves to the origin of the Patterson unit cell (right figure). Source: http://www.xtal.iqfr.csic.es

volume of the material and F (h k l) is the atomic structure factor of the lattice along different
planes. The structure factor F(h k l) of a diffracted x-ray along the (h k l) plane is is a mathemat-
ical function describing the amplitude and phase of the diffracted x-ray from crystal lattice planes
characterised by Miller indices h,k,l.

However, in his 1933’s paper192 Patterson proved that the one-to-one relationship between nuclear
structure and x-ray diffraction pattern is not valid for some structures. Patterson demonstrated that
two or more distinguishable arrangements of atoms can give rise to the same XRD diffraction pattern.
In other words, the intensities of the x-ray reflections from the different crystal structures are the
same. For Patterson the relevant parameter to determine crystal structures is the vector distance
set between atoms in the crystal lattice. A new electron density function, named after him, was
thus introduced. This function is given by:

ρ(uvw) = 1
V

+∞∑
hkl=−∞

|F (hkl)|2. cos[2π.(hu + kv + lw)], (6.2)

where u = x1 - x2, v = y1 - y2 and w = z1 - z2. The Patterson function provides a map of
interatomic vectors between the atoms positions, as seen on the right figure in Figure 6.1.

Using the function in equation (6.2) one can demonstrate that several structures with differ-
ent atomic arrangements - but same distance between the atoms - can lead to the same electron
density function. Consequently these distinguishable atomic structures will exhibit the same x-ray
diffractogram184,193. Such structures are known as homometric structures.

6.1.2 The trirutile structure as commensurately modulated rutile

A modulated structure consists of a basic structure plus an occupancy and/or a displacive wave184,194,195.
The wave is made commensurate when the resulting lattice is a multiple of the original lattice. The
trirutile-type structure derives from the rutile type as a consequence of the chemical ordering of the
divalent and the pentavalent cations, leading to a tetragonal structure with the c-axis being tripled
as compared to a- and b-axes. A trirutile is therefore a commensurate modulated rutile. All fully
ordered AB2O6 trirutiles can be described as commensurately modulated by a scattering density
wave of the form :
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f(z) =< f > −2
3 ∗ g ∗∆f ∗ cos(2πz), (6.3)

where f(z) describes the scattering power in position 0, 0, z along the [0 0 1] direction. <f>
and ∆f refer to the average scattering power and the difference of scattering power, respectively.
They are both expressed in terms of the scattering factors of A (fA) and B (fB). g is the fraction
amplitude, i.e. the ratio of the amplitudes of the waves generated by the two cations. Equation
(6.3) exposes that the modulation is a scattering wave function which runs along the two cations
along the [0 0 1] direction184. Note that the scattering factor of an atom A (fA) describes the
effects of the electronic cloud of the atom on the path of an incident wave. The scattering wave
function therefore describes how a unit cell (cations and anions) deviates the path of an incident
wave. The Unit cell of TiO2 and FeTa2O6 are illustrated in Figure 6.2. The cations (Fe2+, Ta5+,
Ti4+) are octahedrally coordinated with the oxygens (O2−). Figure 6.2 demonstrates the trirutile is
commensurate modulated rutile as its unit cell is the triple of the latter along the c-axis.

Figure 6.2: The unit cells of a rutile (left) and a trirutile (right). The black, grey and blue spheres
represent the iron (Fe), tantalum (Ta) and titanium (Ti) atoms, respectively. These atoms are linked
through shared oxygens atoms (O), illustrated by the red spheres.

Hansen et al.184 studied the homometric character of trirutiles in the tapiolite FeTa2O6. In the
fully ordered trirutile Fe2+ and Ta5+ are distributed on the 2a and 4e Wyckoff sites. Figure 6.3
below is a plot of the scattering density wave as function of the cation position along the c-axis. One
thus expects each of the functions in Figure 6.3 to be associated with a unique cations distribution,
i.e. distinguishable arrangements of the cations within the sites.

In Figure 6.3 f varies like a cosine function. f takes the same value for z = 1
3 and z = 2

3 for all
g values. The functions for g = x and g = -x are antisymmetrical, where x ∈ R; the black dashed
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Figure 6.3: Scattering power f as a function of z coordinate within the trirutile structure. f6, f8 and f10
are the scattering wave functions for g equal to 0.25, 0.5 and 1, respectively. Likewise the red (f1), blue
cyan (f3) and green (f5) curves are the respective functions for g equal to -0.25, -0.5 and -1.

line represents f(z) for g = 0, in other words the average scattering power <f>. At the two black
dots on the function f(z) = <f> the scattering functions of two different structures are identical.
Consequently, the diffraction patterns of the two structures will be identical and the two atomic
structures are said to be homometric.

In a fully ordered tapiolite the 2a and 4e Wyckoff sites are only occupied by the Fe and Ta,
respectively. On the other hand a trirutile characterised by 67 % Ta in 2a corresponds to a fully
disordered trirutile, i.e. a rutile. Between these two extreme configurations there are intermediate
structures for which iron and tantalum atoms can both occupied the sites 2a and/or 4e. This is
chemically possible due to the fact that Fe2+ and Ta5+ both have the same coordination number
(6) and their atomic radius is similar: 0.61 and 0.64 Å, respectively. Hansen et al.184 identified two
different crystal structures of FeTa2O6, thus two different f functions, which gave rise to the same
x-ray diffraction pattern. The two crystal structures are therefore homometric. These functions are
f3(z) and f8(z) in Figure 6.3 and are associated with g = ± 0.5.

Hansen and coworkers showed that the scattering functions f3(z) and f8(z) are associated with
the respective cation distributions:

• for g = 0.5 one deals with 66.7% of Fe and 33.3% of Ta at the 2a site; the 4e site is occupied
by 16.7% of Fe and 83.3% of Ta.
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• For g = −0.5 the site 2a is only occupied by Ta. The site 4e is evenly shared by both metals:
50% of Fe and 50% of Ta.

For these two homometric FeTa2O6 crystal structures there is no longer one-to-one relationship
between crystal structure and x-ray diffraction pattern but rather two-to-one relationship.

6.1.3 Joint refinement: a solution to the Patterson’s problem

The joint x-ray and neutron diffraction is one of the methods used to differentiate two or more-
homometric structures. One performs separately both x-ray and neutrons diffraction on the studied
material. X-rays and neutron have different scattering factors. The interplay between their scattering
factors is essential to solve the problem outlined by Patterson. The x-ray scattering factor of an atom
results from scattering by the electron cloud of an atom while neutron (non-magnetic) diffraction is
due to scattering from the nucleus of an atom. During a joint x-ray and neutron diffraction, there
is collection of information on the nuclei and the electrons clouds of the atoms within the structure.
Hence, by combining both sets of data there is a unique arrangement of the atoms within the lattice,
which fulfills both structure factors individually obtained from x-ray and neutrons diffraction. A
system of two simultaneous equations is a good analogy to joint x-ray and neutron refinement.
Consider the following two simultaneous equations:

2x+ 1y = 5

−1x+ 1y = 2
(6.4)

The first equation - (2 , 1) - can be associated with the scattering by x-rays. In the same manner
the parameters (−1 , 1) are associated with neutron scattering factors. The variables (x,y) play the
role of the set of vectors distance of the unknown crystal structure. There is an infinite number of
solutions for the first equation, and also for the second one. But there is only one set (x,y) which
fulfills both equation at the same time: (1, 3). Therefore the joint x-ray and neutron diffraction
solves the problem of homometric structures.

Investigations on the atomic structure of NiTa2O6 were motivated by the work of Hansen who
reported two homometric structures of the trirutile FeTa2O6. Since NiTa2O6 also crystallises in
the trirutile structure, it can be viewed as a commensurately modulated structure. Hence, there
is possibility of dealing with different arrangements of atoms which give rise to the same x-ray
diffraction pattern. Joint x-ray and neutron diffraction was thus performed to determine the ordering
of the cations (Ni2+ and Ta5+) within the prepared powdered NiTa2O6 sample. As the establishment
of the atomic structure is essential for the understanding of the properties (thermoelectric, optical
and magnetic) of a material such as the magnetic structure.

6.1.4 Synthesis

A solid state reaction has been used to prepare powdered NiTa2O6 samples. Following Takano
et al.72, the synthesis has been carried out by mixing stoichiometric quantities of NiO (99.9%) and
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Ta2O5 (99.99%). The NiO and Ta2O5 powders have a green and a white color, respectively; the
solid state reaction is given by the following equation:

NiO + Ta2O5
air−−→ NiTa2O6 (6.5)

The reagents have been mixed with a pestle in an agate mortar under acetone; the mixture has
been placed in an aluminium crucible and then heated at 1400 °C in a furnace for 48 hours at a rate
of 5 °C/min. After two days the reaction’s products had been cooled at a rate of 5 °C/min to room
temperature. A second grinding and a repetition of the annealing process have been performed in
order to ensure phase purity. The synthesis temperature differed from Takano and coworkers72, who
heated the NiO-Ta2O5 mixture at 1200 °C. This is due to the fact spurious phases (NiO, Ta2O5)
were found in the x-ray diffraction pattern of a sample prepared at 1200 °C. The resulting powder
has a light yellow colour, as seen Figure 6.4a.

6.1.5 Powder x-ray diffraction

Prior to any physical characterization, the phase purity of the prepared sample needs to be assessed.
The sample quality was examined through powder x-ray diffraction, by comparing the observed
diffractograms with those recorded in a database. The PANalytical instrument was utilised to
measure the x-ray diffraction patterns of the prepared samples. Details on this instrument are
given in section 2.1 of Chapter 2. Rietveld refinement of the diffraction pattern was then performed
in order to extract the main crystallographic parameter of the crystal structure of NiTa2O6. The
Fullprof program was utilised for this task. The resulting Rietveld refinement of a room temperature
powder x-ray diffraction pattern (XRD) is shown in Figure 6.4b.

In Figure 6.4b, the measured and calculated profiles correspond to the red dots and a black
line, respectively. The blue line is obtained by subtracting the observed data from the data of the
calculated profile. The tick marks indicate the nuclear Bragg peak positions. All peaks correspond
the nuclear reflections of a lattice whose space group is P42/mnm (136). The crystallographic pa-
rameters of the lattice are displayed in Table 6.1 and are in good agreement with those reported in
the literature. The refinement factors are defined in the appendix. The small values of the fitting
and structural parameters - χ2 = 2.19, RB = 5.76 %, RF = 6.15 % - and the absence of spurious
reflections on the diffractogram are strong indications that a well crystallised single-phase sample
has been prepared.

6.1.6 The joint x-ray and neutron diffraction on powdered NiTa2O6 sample

Joint refinement of the x-ray and neutron diffraction patterns was then performed to investigate
the catiosn distribution on the 2a and 4e Wyckoff sites. Both diffractograms were recorded at
room temperature. The 3T2 high resolution powder diffractometer was utilised to record zero-field
neutron powder diffraction data on NiTa2O6 polycrystalline samples at Laboratoire Léon Brillouin
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(a) (b)

Figure 6.4: (a) Yellow NiTa2O6 polycrystalline samples. (b) Rietveld refinement of a room temperature
x-ray powder diffraction pattern for NiTa2O6.
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Table 6.1: Crystallographic parameters of NiTa2O6 after Rietveld refinement of the above room-
temperature x-ray powder diffraction pattern. Z corresponds to the number of nickel per unit cell.
The R-coefficients give an indication on the goodness of the fit.

Space group a[Å] c[Å] Z
P42/mnm 4.7190(4) 9.1248(1) 2

x y z
Ni 0 0 0

Ta 0 0 0.3312(4)

O(1) 0.3051(6) 0.3051(6) 0

O(2) 0.2920(4) 0.2920(4) 0.3322(3)
RB (%) 5.76
RF (%) 6.15

(LLB), Saclay (France). Details on this instrument are given in section 2.2.2 of Chapter 2. The
software Fullprof was utilised to perform the joint refinement. The joint refinement was carried in
the following manner: (i) the positions of both Ni2+ and Ta5+ were refined. (ii) In addition to that
the occupancy of both cations was distributed on both 2a and 4e sites and refined, (iii) and the
refinement factors of the different models were compared in order to determine the best model for
the atomic structure of nickel ditantalate oxide.

The cation distribution on the Wyckoff sites 2a and 4e was explored, like in the case of FeTa2O6
184.

One is interested in g values associated with the prepared sample, for which homometry occurs. A g-
value corresponds to a specific way of arranging the Ni2+ and Ta5+ in the 2a and 4e sites. Instead
of directly assessing the value of g one can also study the configurations in which both cations are
distributed in both sites. The total occupation number of each cation is the sum of the occupancy
one site 2a and the occupancy site 4e. The occupancy is defined as the ratio of site multiplicity and
the general multiplicity.

There are four occupancy numbers to refine, as both nickel and tantalum can occupy 2a and
4e sites. These four occupancy numbers are given initial values. This specific configuration of the
Ni2+ and Ta5+ in the Wyckoff sites is a potential model for the crystal structure. Various models
were tested and here are some examples: (*) all 4e sites are fully occupied by Ta. Ta and Ni both
share the 2a sites; (**) the reverse configuration corresponds to another model. For the ”general”
model both sites are occupied by both transition metal ions. This configuration is displayed in Table
6.2. During the joint x-ray and neutron calculations the occupation values are released, varied and
converged towards some values. The resulting configuration associated with the lowest refinement
factors is the best model for the crystal structure of NiTa2O6. It should be noted that the constraints
have been added to the occupation number of the cations, in order to insure the stoichiometry of the
compound. Indeed the sum of the occupation numbers of Ni2+ must be equal to 0.125. Similarly
those of Ta5+ are equal to 0.250 throughout the refinement.
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Table 6.2: Crystallographic parameters of the unit cell of NiTa2O6. Ni2+ and Ta5+ ions both fully occupy
the 2(a) and 4(e) Wyckoff sites, respectively.

Wyckoff positions
Atom Type x y z Biso Occ
Ni1 Ni 0 0 0 0.000 0.127(1)

0.00 0.00 0.00 0.00 241.00
Ta1 Ta 0 0 0 0.000 −0.002(1)

0.00 0.00 0.00 0.00 -
241.00

Ni2 Ni 0 0 0.33152
(3)

0.000 0.009(2)

0.00 0.00 231.00 0.00 -
251.00

Ta2 Ta 0 0 0.33152
(3)

0.000 0.241(2)

0.00 0.00 231.00 0.00 251.00
O1 O 0.31051

(5)
0.31051
(5)

0 0.000 0.250
(0)

221.0 0.00 221.00 0.00 0.00
O2 O 0.29707

(3)
0.29707
(3)

0.3267
(2)

0.000 0.500(0)

211.0 0.00 211.00 0.00 0.00

Table 6.2 is the ”general” model used to perform the joint x-ray and neutron powder diffraction.
The last column represents the occupancy of the atoms on the crystallographic sites. The occupation
values of Ta1 (blue font) and Ni2 (green font) are very low- 0.002 (1) and 0.009 (2) in comparison
to those of Ni1 (blue font) and Ta2 (green font), respectively. The occupancy values of the latter
atoms are 0.127 (1) and 0.241 (2), respectively. One deduces that the Wyckoff sites (2a and 4e)
in the prepared NiTa2O6 sample are only occupied by Ni and Ta, respectively. This is different to
the tapiolite FeTa2O6

184 for which the iron and the tantalum both occupy the two Wyckoff positions.

The Rietveld method was utilised to perform the joint x-ray and neutron refinement. The
diffractogram (a) in Figure 6.5 corresponds to the x-ray contribution of the refinement. Similarly the
neutron contribution is illustrated by the diffractogram (b). The red dots and black line correspond
to experimental and theoretical profiles, respectively. The green tick marks indicate the nuclear
Bragg peak positions. The observed reflections are those of the lattice with the space group P42/mnm
(136). The low values of RB and RF indicate that agreement between the observed and calculated
profiles. The lattice and fitting parameters of the joint refinement are shown in Table 6.3. The
phase 1 and 2 represent the x-ray and neutron contributions, respectively. The RB and RF were the
lowest refinement factors in the series, suggesting that the model in Table 6.3 is the most appropriate
one for the crystal structure of NiTa2O6. The prepared nicked ditantalate oxide is therefore a fully
ordered trirutile.

The 3D crystal structure of NiTa2O6 is shown Figure 6.6. Atoms are drawn as large spheres and
the unit cell is outlined. The green spheres represent the Ta atoms whereas the Ni atoms appear
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Figure 6.5: Results of the Rietveld joint x-ray and neutron powder diffraction refinement. The red dots
and black line correspond to experimental and theoretical profiles, respectively. The green tick marks
indicate the nuclear Bragg peak positions.

Table 6.3: Some parameters of the joint x-ray and neutron powder diffraction refinement of the crystal
structure of NiTa2O6.

Phase λ[Å] a[Å] c[Å] RB RF
Phase 1 1.78919 4.71769(4) 9.12340(8) 11.6 8.85
Phase 2 1.22763 4.71769(4) 9.12340(8) 5.95 4.41
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Table 6.4: Wyckoff positions of atoms within the orthorhombic unit cell of NiNb2O6, obtained from
Rietveld refinement of room-temperature joint x-ray and neutrondiffraction patterns. Site occupancy (site
occu.) is the ratio between the site multiplicity and the general multiplicity. Space group: P42/mnm
(136).

atom atom Wyckoff x y z site occu.
label type symbol
Ni Ni 2a 0 0 0 1/8
Ta Ta 4e 0 0 0 1/4
O1 O 4f 0.31051(5) 0.31051(5) 0 1/4
O2 O 8j 0.29707(3) 0.29707(6) 0.3267(8) 1/2

as the blue spheres. The latter are surrounded by six oxygens (red spheres) and together they form
NiO6 octahedra. The tantalum atoms also have an octahedral environment.

Figure 6.6: Unit cell of NiTa2O6 obtained room temperature joint x-ray and neutron powder diffraction
refinement.

To summarsise this section, the crystal structure of NiTa2O6 were investigated by means of a
joint x-ray and neutron diffraction. This compound crystallises in a trirutile structure, which is a
commensurately modulated rutile. This modulation may give rise to homometric structures. Patter-
son demonstrated that such structures give rise to the same x-ray diffraction pattern. By combining
x-ray and neutron data one can distinguish the homometric structures. The positions and occupation
numbers of the cations on the 2a and 4e sites were refined, under several constraints. Comparison
between the refinement factors of the different models enables the identification of the appropriate
model for the cations distribution in the lattice. In the prepared NiTa2O6sample the 2a and 4e
Wyckoff sites are only occupied by Ni and Ta, respectively. Hence, the prepared nickel ditantalate
oxide is a fully ordered trirutile. The lowest value of the refinement factors are strong indicators
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6.1. The cation ordering wave in trirutile NiTa2O6

that a well-crystallised single phase purity has been prepared, as required for the investigation of
physical properties. The physical property investigated in the next section of the chapter is the
magnetic structure of NiTa2O6.
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6.2 Magnetic structure determination

The determination of magnetic structure is crucial for understanding the properties of magnetic
materials, particularly those with technological applications such as spin electronics and permanent
magnets. Magnetic structures are either commensurate and incommensurate:

• a commensurate structure has a structure periodicity which is a multiple of that of the nuclear
crystal structure. This is typically the case in ferromagnets, antiferromagnets and ferrimagnet
materials. For instance, for ferromagnetic materials the nuclear and magnetic crystallographic
lattice are identical.

• for incommensurate structures, the magnetic unit cell is non-integer multiple of the nuclear
unit cell.

Magnetic structures can be predicted theoretically196,197. After writing the Hamiltonian of the
system one can solve the relevant eigenstates and eigenvalues. The establishment of the Hamilto-
nian and the eigenstates calculations are very complex, partly because it is difficult to predict which
magnetic interactions are important and which ones can be neglected. This is why it is common to
determine magnetic structures experimentally. There are many ways to explore magnetic structures
experimentally, but neutron diffraction120,198,199 is by far the most common technique. This method
uses a beam of thermal neutrons (having a spin 1

2) which then interact with any unpaired electrons
in magnetic ions in the sample. Neutron diffraction patterns (NDPs) reveal information on the mag-
nitude and orientation of electron spins within crystals. Further details on neutron diffraction are
given in the section 2.2 of Chapter 2. In addition the reader is encouraged to consult, for example,
the authoritative reference works of Willis and Carlie120 or Chatterji119.

Magnetic structures are determined by neutron diffraction via two methods. The first is the
method of magnetic symmetry refinement discussed further in section 4.3 in which a magnetic
model is derived from the nuclear structure of the parent material, using symmetry elements and
time reversal. The end product is a magnetic space group (also called Shubnikov group31,124,200)
which describes the symmetry relations between magnetic ions within a crystal system. All allowed
magnetic space groups are subgroups of the space group of the nuclear structure. The range of
possible magnetic structures is reduced by choosing one (with a particular magnetic space group)
which best fits the neutron diffraction pattern. This method provides an efficient and systematic
way to characterize the symmetry of the magnetic lattice from the nuclear lattice, and yields and
classifies all degrees of freedom of the system. However, one of the disadvantages of the method is the
large number of potential magnetic structures. The second approach, known as the representation
analysis7,8,201, combines a propagation vector −→k and the space group of the crystal. The propagation
vector −→k relates equivalent magnetic atoms in different unit cells of the magnetic lattice. The
irreducible representations (IRs) of the group associated with the propagation vector ~k are then
derived. The IRs physically represent some functions which describe the symmetry operations
between the magnetic ions positions and spins orientaton. Some IRs are magnetically active as
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they transform the magnetic ions without changing the symmetry relations between the magnetic
ions. The rest of IRs are said to be magnetically inactive, as their corresponding functions do not
preserve the magnetic structure symmetry. The magnetically active IRs and their combinations are
the potential models for the magnetic structure. It turns out there are fewer models to refine within
this method. On the other hand different magnetic structures can be associated with the same
representation, and are therefore indistinguishable from with this method. Representation analysis
and magnetic symmetry refinement methods are discussed in some detail in the following sections.

6.3 Representation analysis

This section introduces the formalism of the representation analysis method. The concepts of rep-
resentation and reducible representations are briefly reviewed. The little group, the cornerstone of
the representation analysis approach, is then discussed. The application of representation theory to
the determination of magnetic structure concludes the section.

6.3.1 Representations of groups

When dealing with physical properties (vibration spectroscopy, crystal field calculations, etc) related
to crystallographic structures solid state physicists take advantage of another aspect of group the-
ory: the representation. Representation theory facilitates the understanding of a complex structure
by describing its elements in linear algebra, which is well understood. For instance, the symmetry
elements of a group are represented as matrices. For an exhaustive mathematical description of
representation theory the reader should consult books by Dresselhaus202 and Fulton203, elsewhere
Kamp et al.204 wrote an outstanding book introducing the concepts of representation theory.

Definition A representation of an abstract group is a substitution group such that the substitu-
tion group is homomorphic (or isomorphic) to the abstract group202.

Typically one assigns a square matrix D (g) to a symmetry element (g) of a group G. This set
of matrices form a particular representation Γ of G. It can be shown that these matrices themselves
form a group. Consequently there is a unit element within these matrices. Hence, representation is a
linear map from a group of symmetry elements to a group of matrices. An isomorphism corresponds
to a one-to-one relationship between the representation matrices and the symmetry operations. On
the other hand for a homomorphic mapping there is a many-to-one correspondence. The matrices
of a representation205 are related to the group symmetry elements as follows:

D(gi)D(gj) = D(gigj) (6.6)

D(e) = 1 (6.7)

Where gi, gj and the identity element e are elements of G. These equations indicate that the set
of matrices forming a representation have identical multiplication relations within to those of the
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group symmetry elements.

Each element of the representation is defined by a matrix with respect to some chosen vectors
forming basis. The matrices of a representation can be diagonalized using the application of ap-
propriate transformations. Another picture of diagonalisation is as a change of the basis. The end
product is a matrix with square blocks on the diagonal and zeros everywhere else205. The following
equation represents the change of basis via a rotation whose matrix is U:

Γ
′
(g) = UΓ(g)U−1. (6.8)

The matrix Γ′ below illustrates the diagonalisation process, as it consists of square blocks:

Γ
′
(g) =



A11 A12 0 0 0 0 0
A21 A22 0 0 0 0 0
0 0 B11 B12 0 0 0
0 0 B21 B22 0 0 0
0 0 0 0 B11 B12 0
0 0 0 0 B21 B22 0
0 0 0 0 0 0 C11


= UΓ(g)U−1. (6.9)

6.3.2 Irreducible representations

Definition If by one and the same equivalence transformation, all the matrices in the representa-
tion of a group can be made to acquire the same block form, then the representation is said to be
reducible; otherwise the representation is irreducible.202

A representation is said to be reducible if it can be decomposed into a direct sum of irreducible
representations (IRs). Additionally, an irreducible representation cannot be expressed in terms of
representations of lower dimensionality. Γ′ is reducible and its decomposition is given by:

Γ
′
(g) = A(g)⊕ 2B(g)⊕ C(g), (6.10)

where A(g), B(g) and C(g) are also representations of G and ⊕ is the direct sum operator. Γ′

has been reduced onto representations of lower dimensions. {A, B} and C are respectively two- and
one-dimensional irreducible representations (IRs), and can not be further decomposed into lower-
dimensional representations. In general, the decomposition205 of a reducible representation can be
written as:

Γ =
∑
ν

nνΓν = n1Γ1 ⊕ n2Γ3 ⊕ ...⊕ nmΓm (6.11)

Where m is the number of distinct IRs of G, nν is the weight or number of IRs of type Γν in the
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composition of Γ. Two representations D(g) and D’(g) are equivalents if there exists a matrix T which
transforms one into the other. The decomposition of a representation into irreducible representations
involves one of the most important theorems of Representation Theory: the Wonderful Orthogonality
Theorem. Prior to the description of the Wonderful Orthogonal Theorem one needs to introduce
the concepts of characters and the character table.

Definition The character χΓ (g) of the matrix representation DΓ (g) for a symmetry operation
g in a representation Γ, is the trace (the sum over diagonal matrix elements) of the matrix of the
representation202:

χΓ(g) = Tr[DΓ(g)] =
l∑

µ=1
[DΓ(g)]µµ, (6.12)

where l is the dimension of the representation Γ.

The calculations of the characters of matrices representations for all symmetry elements in all
irreducible representations of a space group results in a table, called the character table. In order to
reduce a representation Γ into its IRs one first determines the characters of the representation Γ, then
the IRs contained in the reducible representation Γ are found using the Wonderful Orthogonality
Theorem30,202,206 which are:

∑
k

χi(Ck)∗χj(Ck)Nk = hδij (6.13)

where χi(Ck) is the character of class Ck written in some representation Γi, ∗ denotes the complex
conjugate, h is the order - number of elements - of the group, Nk is the number of elements in class
Ck, and δij is the Kronecker delta207.

To illustrate the use of the orthogonality theorem, consider the point group mm2 and an example
reducible representation Γ, see Table 6.5. The group mm2 contains four symmetry elements: the
identity, a 2-fold axis and two mirror planes:

G = {1, 2z,mx,my}. (6.14)

This group (mm2) has four classes and Table 5.4 is its character table.

Table 6.5: The character table of the point group mm2 in first five rows. The last row contains the
characters of a reducible representation Γ.

mm2 1 2 mx my

Γ1 1 1 1 1
Γ2 1 1 -1 -1
Γ3 1 -1 1 -1
Γ4 1 -1 -1 1
Γ 9 -1 1 3

In Table 6.5 the first column lists the irreducible representations Γi of the group, with i = {1, 2,
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3, 4}. The classes are listed in the first row. In this case, each symmetry element is in a distinct
class. The numbers 1 and -1 are characters of the symmetry elements written in the corresponding
IRs. The application of the Wonderful orthogonal theorem then determines whether or not an IR is
part of the decomposition. The number Nk is here equal to 1 for each class.

∑
k χi(Ck)∗ χi(Cl) is

written as:

For Γ1: 1*1*9 + 1*1*−1 + 1*1*1 + 1*1*3 = 12 = 3*4.

For Γ2: 1*1*9 + 1*1*−1 + −1*1*1 + −1*1*3 = 4 = 1*4.

For Γ3: 1*1*9 + −1*1*−1 + 1*1*1 + −1*1*3 = 8 = 2*4.

For Γ4: 1*1*9 + −1*1*−1 + −1*1*1 + 1*1*3 = 12 = 3*4.

The blue and green numbers respectively correspond to the characters of the IR and the reducible
representation Γ. The numbers in red represent the nν in equation (4.11): the number of times an
IR appears in the reducible representation. Hence, the decomposition of Γ into IRs can be written:

Γ = 3Γ1 ⊕ 1Γ2 ⊕ 2Γ3 ⊕ 3Γ4 (6.15)

This example illustrates the decomposition of reducible representations into linear combinations
of IRs via the wonderful orthogonality theorem. Programs such as the Bilbao Crystallographer
Server and BasIreps in Fullprof suite115 automate the decomposition of representations into IRs.
The character table and orthogonality relations are also useful in determining selection rules for
optical absorption in infrared and Raman spectroscopy, where they indicate whether or not some
vibrations modes of a crystal lattice are infrared or Raman active.

6.3.3 The little group G~k

The representation analysis method lies on the Representation Theory for the determination of mag-
netic structures. Before discussing this the propagation vector ~k is introduced.

Magnetic structures combine crystal lattices with magnetic ions. They can be viewed as a periodic
repetition of a magnetic unit cell in the three directions of space. An atom/ion within the crystal
lattice is identified by its coordinates:

~R~tj = ~t + ~rj

(6.16)
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where ~t is a translation vector from an origin to a particular crystal unit cell and ~rj represents the
position of atom in that unit cell. In order to describe a magnetic structure one takes advantage of
its periodicity by considering all magnetic moments in the zeroth crystallographic unit cell. Atoms
with identical magnetic moments which sit in equivalent crystallographic sites (or Wyckoff positions)
in different unit cells are then said to be related by a propagation vector ~k, defined by:

~mj = ~Ψje−2πi~k.~t (6.17)

where ~mj is the magnetic moment at atomic site j in a unit cell, that is related to the zeroth unit
cell by a translation ~t, and ~Ψj is the magnetic moment in the same atomic site in the zeroth unit cell.

The periodicity of the magnetic structure is associated with a set of points in reciprocal space.
These points are associated with the magnetic reflections seen in neutron diffraction patterns recorded
below the critical temperature of a material. The points in reciprocal space are shifted from those
associated with the periodicity of the nuclear structure by a vector. This vector is the propagation
vector ~k. For commensurate magnetic structures, ~k relates the magnetic and nuclear unit real space
cells. For instance, consider cerium rhodium silicide CeRh2Si2 . The lattice parameters of the unit
cell of the nuclear structure are a = b = 4.075 Å and c = 10.13 Å, depicted as the small parallelepiped
in Figure 6.7. The larger parallelepiped in Figure 6.7 corresponds to the magnetic unit cell; with
lattice parameters are a = b = 8.15 Å and c = 10.13 Å. Therefore the size of the magnetic unit cell
is the twice of the nuclear unit cell along the [1 0 0] and [0 1 0] directions.

Figure 6.7: The nuclear and magnetic unit cells of CeRh2Si2. Cerium atoms and their magnetic moments
are represented by the light green spheres and the red arrows, respectively. The small and big cells are
the nuclear and magnetic unit cells of CeRhSi2, respectively.

The lattice parameters of the magnetic unit with respect to the those of the nuclear structure
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can be deduced from the propagation vector and equation (15). In the case of CeRh2Si2, the
magnetic structure is associated with the propagation vector ~k = (1

2 , 1
2 , 0). The three component

of ~k are related to the crystallographic a−, b− and c−axes, respectively. The number 2 in the first
and second components of the propagation vector indicates that the lattice parameters along these
directions are twice those of the nuclear structure. As ~k.~z = 0 the magnetic moments are unchanged
in the [0 0 1] direction. The magnetic structure of MnF2 in Figure 6.8 illustrates this feature of
the propagation vector ~k. Manganese atoms and their magnetic moments are represented by the
magenta spheres and the red arrows, respectively. The magnetic moments are along the c-direction.
The unit cell of the magnetic structure is one of the 8 smalls parallelepipeds in Figure 6.8. The
moments order ferromagnetically along the three crystallographic axes. Hence, the propagation
vector for this compound is ~k = (0, 0, 0).

Figure 6.8: Supercell representing the magnetic structure of MnF2. Manganese atoms and their magnetic
moments are represented by the magenta spheres and the red arrows, respectively. The propagation vector
associated with this magnetic structure is ~k = (0, 0, 0).

For some magnetic structures more than one propagation vector are needed to account for the
periodicity of the magnetic phase, equation (6.17) becomes:

~mj =
∑
~k

~Ψ~k
j e
−2πi~k.~t (6.18)

The summation in equation (6.18) is over all possible ~k vectors relating equivalent magnetic
atoms in different unit cells. For the sake of simplicity we will only consider cases here where a
single propagation vector ~k is sufficient to describe the magnetic structure. One can rewrite equation
(6.18) in terms of sine and cosine function. The simple condition which needs to be fulfilled for ~mj
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to be real is the following: ~Ψj is real and the sine part is equal to zero. Hence, equation (6.18) can
be written as

~mj = ~Ψj cos(2π~k.~t). (6.19)

As one travels between equivalent ions, the magnitude of ~mj varies like a cosine function. This
is why magnetic structures are also called modulated structures. The propagation vector ~k controls
the modulation and so is also called the modulation vector. Note that in the case of ferromagnetic
materials the magnetic cell is identical to that of the nuclear cell: ~k = (0, 0, 0).

To find the symmetries of the magnetic phase one must determine how the propagation vector
~k transforms under the symmetry operations of the space group of the material. All the symmetry
elements which leave the propagation vector unchanged up to a reciprocal lattice vector form a
group. The latter is known as the little group G~k. The concept of little group will be illustrated
with point group 4mm.

Figure 6.9: Propagation vectors ~k1 and the star of ~k1.

The space group of the square consists of 8 symmetry elements. The application of symmetry
operations on the propagation vector ~k1 generates new positions ~k′ . The little group of ~k1 lying at
the boundary is given by:

Gk = {1,md}. (6.20)

The set of ~k vectors in Figure 6.9 form the star of the propagation vector ~k1: the number of
distinct positions which result from the application of all symmetry elements. In practice in order
to extract ~k from neutron diffraction patterns, one follows the process described below:

• One first determines the magnetic reflections, by subtracting a neutron diffractogram measured
below the ordering temperature TN from one measured above. The ordering of the moments
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is revealed by the presence of extra reflections in the neutron diffraction patterns (NDPs)
measured below TN .

• From the magnetic reflections one can work out the d-spacing associated with each plane.

• The crystal system (orthorhombic, cubic, etc) of the magnetic structure is identified by com-
bining the d-spacing values.

• The components of the propagation or modulation vector ~k are given by the ratio between the
amplitudes of the basis vectors of the nuclear and magnetic lattices.

Identifying the propagation vector from a powder neutron diffraction pattern involves rather
complex numerical calculations. Therefore it is convenient to use software such as GSAS, Jana,
Fullprof and Sarah to determine the propagation vector(s). For more details on this topic the reader
should consult outstanding reports of Wills208 and Ressouche209. The programs Fullprof and Jana
were utilised throughout this research.

6.3.4 Magnetic representation

The determination of the little group G~k is followed by the derivation of its character table, as see
Table 6.5 for the point group mm2. The IRs of the little group G~k are not ”ordinary” irreducible rep-
resentations. Indeed the functions which generate the IRS, not only describe the symmetry relations
between atomic positions but also those between magnetic moments. The IRs of the little group G~k
are also called magnetic representations. Details on a magnetic representation are discussed further
below. The action of the functions associated with some IRs of the little group G~k do not preserve
the periodicity of the magnetic structure. Such IRs are magnetically inactive. The other IRs are
magnetically active. The functions of these IRs insure a matching between the periodicity of the
magnetic and nuclear lattice; in addition they preserve the modulation of the magnetic moments
within the magnetic lattice. Hence, the magnetically active IRs and their combinations are potential
models for the magnetic structure of the crystal.

As a symmetry element operates on a magnetic ion, it may or may not change the ion’s position.
It may also alter the orientation of the magnetic moment. The combinations of these two effects are
described by a magnetic representation Γmag.

To account for the spatial transformation due to the application of a symmetry operation on a
magnetic ion, the permutation representation Γperm is introduced. Γperm is given by:

~rj −−−−→
Γperm

~r′j (6.21)

A phase factor θ = e2πi~k.~t is often added to account for a symmetry operation leaving the initial
ion at a new position ~r′j outside the zeroth crystal cell.
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Figure 6.10: Representation of the action of a mirror plane (blue rectangle) on a polar vector (top white
arrows) and an axial vector (bottom white arrows).

The axial representation ΓṼ accounts for the change in orientation of a magnetic moment. A
magnetic moment is represented by an axial vector. An axial vector is a vector which has an equal
magnitude but an opposite direction, to its mirror image. Opposite to a axial vector is a polar vector,
whose image after reflection matches its mirror image202. For the sake of simplicity the expression
vector will be used instead of axial vector. More details on Γperm and ΓṼ can be found in [8,49].
Figure 6.10 illustrates the difference between a polar vector and an axial vector.

The application of a symmetry operation on a magnetic atom may transform its magnetic mo-
ment components (mx, my, mz) into new components (m′x, m′y, m

′

z) . The character of the axial
representation ΓṼ , associated with this symmetry element is given by

χh
Ṽ

=
∑
a=b

Rha=bdet(h), (6.22)

where Rha=b corresponds to a specific element a, b of the rotation matrix h, and det (h) represents
the determinant of the rotation matrix Rh,and has the value of +1 for a proper and -1 for an
improper rotation. To illustrate these two representations, consider the effects of the 4-fold rotation
axis passing by the centre of square (4+) on some magnetic moments located at the edges of the
square. In Figure 6.11, the 4-fold rotation axis passes by the red dot. The numbers 1 to 4 and the
arrows represent atoms and the magnetic moment they carry, respectively. The rotation transforms
atom 1 to atom 2, atom 2 to atom 3, etc. This effect is described by Γperm (4+.)

One uses equation (6.22) to determine the character of ΓṼ associated with the 4+ symmetry
operation . The matrix representing the 4-fold rotation axis is given by
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Figure 6.11: Effects of the symmetry operation 4+ on the atoms of a square and on their respective
magnetic moments. The atoms all leave their positions and their respective magnetic moments change
orientation.

4̂+ =


0 −1 0
1 0 0
0 0 1

 . (6.23)

Its determinant det (4̂+) = 1. χ4+

Ṽ
is therefore given by the product of the determinant and the

trace of the rotation matrix:

χ4+

Ṽ
= det(4+)(Tr[4̂+]). (6.24)

Thus, χ4+

Ṽ
= 1: the sum of the diagonal components of matrix representing the axial repre-

sentation ΓṼ , associated with the 4-fold rotation axis. This said, equation (6.22) shows that the
application of the axial representation on the magnetic moments is similar to that of the permuta-
tion representation on the magnetic moments. The det (h) accounts for the axial character of the
magnetic moments, as it will be equal to -1 for an improper rotation.

It can be shown that a magnetic representation Γmag, at a particular crystallographic site, is the
direct product of the permutation representation and the axial representation199:

Γmag = Γperm ⊗ ΓṼ . (6.25)

A magnetic representation can be manipulated using the tools representation theory introduced
in section A of appendices. For instance, a decomposed into representations of lower dimensions, as
illustrated by the following equation:

Γmag =
∑
ν

nνΓν (6.26)

where the Γν are the IRs of the little group. Γmag is a l-dimensional matrix, which acts upon
l dimensional vector. This components of this vector are the magnetic moment components of the
atoms in the zeroth crystallographic cell. One can calculate the number of possible basis vectors
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associated with a single IR Γν . These vectors form the basis for the magnetic moments ordered ac-
cording to a the particular IR Γν of G~k. Therefore the magnetic moments can be expressed as some
linear combination of these basis vectors. Rodŕıguez-Carvajal and Bourée210 wrote an outstanding
article on the derivation of the basis vectors of an IR of the little group G~k. These calculations are
not straightforward, therefore it is convenient to utilize programs such as BasIreps or ISODISTORT.

In most cases a single magnetic IR can uniquely describe the magnetic structure. This is due to
the Landau theorem on second order phase transition122 which states that a second order transition
occurs when a new state of reduced symmetry develops continuously from the disordered phase.
The transition must occur homogeneously at critical points where structural change is infinitesimal
but only the crystal symmetry varies. John O. Dimmock211 applied the Landau-Lifshitz theory
of second order phase transitions on magnetic structures. Dimmock demonstrated that near the
critical temperature as magnetic systems undergo the passage from the paramagnetic phase to mag-
netically ordered phase the spin density can be described by the basis vectors of a single irreducible
representation of the symmetry group of the paramagnetic phase. For an exhaustive mathematical
derivation of the Landau theorem and its impact on magnetic structure the reader can consult the
seminal work of Cracknell123 and Dimmock211.

To summarize, basis tools of representation analysis method and group theory were introduced,
along with the concepts of the propagation vector, little group and representations. Magnetic struc-
tures combine crystal lattices with atomic magnetic moments. The representation analysis method
describes a magnetic structure by relating the periodicity of the nuclear structure with a propaga-
tion vector ~k. Additonally, a magnetic representation Γmag acts in the same manner as a ”normal”
representation. The only difference is that a magnetic representation acts on ensembles of atoms
carrying magnetic moments. Γmag is the direct product of a permutation representation (Γperm)
and an axial representation (ΓṼ ). The little group is the cornerstone of the representation analysis
method as its IRs will constitute the models for the magnetic structure. Most of the time, the
description of a magnetic structure relies on a single magnetic IR of the little group .
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6.4 Magnetic symmetry refinement

This section discusses the magnetic symmetry refinement method for the determination of magnetic
structures from neutron diffraction patterns. A review to the history of magnetic space groups is
followed by an introduction to the concept of anti-symmetry operations; the derivation and applica-
tion of magnetic point groups for magnetic structure determination concludes the section.

6.4.1 History of magnetic space groups

Until the Shubnikov’s paper in 1954 crystal structures were described by one of the 230 space
groups212. In this paper Shubnikov introduced the idea of anti-symmetry operations which describe
objects whose ensemble of coordinates consists of ordinary position coordinates and an additional
coordinate. This extra coordinate takes two values, for example colour (black and white), sign
(+ or -) or direction of magnetic moment with respect to an applied field (parallel or anti-parallel).
Shubnikov introduced a new symmetry element which inverts the value of the extra coordinate: + to
- for example. The new anti-symmetry operations then result from the product of the anti-symmetry
operator R and the ordinary symmetry element. If we let the extra coordinates be the magnetic
moments, then described objects are the magnetic structures. In this manner Shubnikov derived a
series of magnetic point groups, followed subsequently by the work of Zamorzaev213. The field of
magnetic space groups was further developed in work by Belov, Nerenova and Smirnova214, then
Tavger and Zaitsev215.

6.4.2 Definitions

An anti-symmetry operation: When the anti-symmetry element R is combined with a regular
symmetry element, g, one denotes the new symmetry element by a primed symbol, g′ .

Typically, an anti-symmetry operation is the product of a regular symmetry operator with the
time reversal operator:

g
′

= Rg = gR. (6.27)

A grey group: A point group in which the element R appears by itself is known as a grey point
group M, given by:

M = G +RG, (6.28)

where G is any ordinary point group. The anti-symmetry and the identity elements are tied by
the following relation:

R2 = e. (6.29)
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Figure 6.12: Symmetry operations of a square (left). A black and white square (right).

A grey point group is also known as a Shubnikov point group of type II. Note than the order of
a grey group is the double of the that of the original point group.

A black or white point group: Point groups, in which the anti-symmetry operator is not an
element, but have anti-symmetry operations are called magnetic point group (or black/white point
groups).

A black or white point group is given by:

M = H +R(G−H), (6.30)

where H is a halving of the ordinary point group G. A halving designates half of the elements
of G which are not then multiplied by R. Since one can choose different halvings of a point group,
various magnetic space groups can be derived from a single non-magnetic group. A black (or white)
group is also known as a Shubnikov point group of type III.

6.4.3 Derivation of a type III point group

The point group of a square will now be used to illustrate the concept of magnetic space groups. The
8 symmetry elements of the square (Figure 5.11 (left)) are illustrated in Figure 6.12. The square on
the right in Figure 5.11 consists of black and white units, which colour the vertices.

The point group of the square on the left is G = 4mm. One has:

G = {1, 2, 4+, 4−,mx,my,md,m
′

d}. (6.31)

The identity operation (1)leaves the vertices unchanged. The 4-fold and a 2-fold rotations respec-
tively rotate the vertices about the centre (red dot) by 90 and 180 ◦.The four reflection operations
perpendicular to x- and y-axes (mx and my) or accross the two diagonal (md and m

′

d) the vertices
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through the mirror planes.

Half of the square in Figure 6.12 is coloured white, while the other half is black. This description
of the square requires an additional ”colour ” coordinate. Hence, each vertex associated with this
square is described by either grey or magnetic group. These may be generated by combining the
symmetry elements of G with the anti-symmetry operator R. The grey group resulting from this
combination is:

G1 = {1, 2, 4+, 4−,mx,my,md,m
′

d,R,R2,R4+,R4−,Rmx,Rmy,Rmd,Rm
′

d}. (6.32)

The order of this group is 16: twice that of G.

The coloured square is not invariant under the 4-fold rotations 4+ and 4− or the reflections
mirrors md and m

′

d. Indeed the the black block takes the place of the white block, and vice-versa.
Therefore the symmetry elements 4+, 4−, md and m′d are no longer symmetry operations. However,
the antisymmetric operations R4+, R4−,-R4+ and -R4− are good symmetry elements of the colour
square. Consequently, the point group G2 of the coloured square consists of four symmetry elements
from G, and the above four antisymmetric elements. Thus, G2 fulfills equation (6.31), as half of
the original group elements are included and unmodified, and the half have been combined with R.
In other words, the two halves of the group contain uncoloured and coloured symmetry operations.
Therefore G2 is given by:

G2 = {1, 2,md,m
′

d,R4+,R4−,Rmx,Rmy}. (6.33)

In the magnetic point groups tabulated by Tavger and Zaitsev215 this group is denoted as 4′mm′ .
The primes indicate the regular point group symmetry elements which are combined with R. One
can derive groups similarly to 4′mm′ to describe any three-dimensional object supplemented with
an extra coordinate, such as sign, colour, etc. The 3 spatial and 1 supplementary dimensions lead
to 1651 Shubnikov space groups. More details on Shubnikov’s work are found in Bradley and Crack-
nell205, Miller216 or various review articles217,218,219.

6.4.4 Determination of magnetic structure from neutron diffraction

Shubnikov or magnetic space groups are important for the determination of magnetic structures
from neutron diffraction pattern, discussed below.

The neutron diffraction pattern (NDP) of a material measured below its Néel temperature (TN )
differs from a NDP measured well above TN , respectively, by the presence of additional peaks. The
extra reflections are due to the ordering of the magnetic moments of the magnetic ions. The Landau
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theorem on second order phase transition122 states that a second order transitions occurs when a
new state of reduced symmetry develops continuously from the disordered phase. The transition
must occur homogeneously at critical points where but any structural change is infinitesimal but only
the crystal symmetry varies. Consequently, the magnetic space group symmetry of such materials
is one of the Shubnikov groups derived from the space group of the crystal. These grey, black or
white groups are the models for the unknown sublattice magnetization. The magnetic symmetry
refinement method is as follows:

• Derivation of the Shubnikov groups related to the studied crystal. The mathematical derivation
of the grey, black and white space groups is implemented in programs such as Jana. In addition,
one can derive the Shubnikov space groups with the Bilbao Crystallographic Server and import
them into Jana.

• Evaluation of all structural models. One refines the orientations of magnetic moments and
positions of the magnetic ions within the lattice of a specific Shubnikov space group, against
the neutron diffraction pattern.

• Comparison between the different structural models. One can visualize the sublattice magne-
tization - associated with a model - with the program VESTA.

The best structural model has the magnetic space group which best fits the measured neutron
diffraction pattern - lowest refinement factors.
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6.5 The magnetic structure of NiTa2O6

6.5.1 Discrepancies on the previous magnetic models

Neutrons powder diffraction have been performed on 3 g of the single phase NiTa2O6. Nickel ditan-
talate has been previously81,102 reported to behave like an antiferromagnetic material, which order
below TN = 10.3 K. Two magnetic structures were reported for this trirutile compound and there is
a discrepancy between the two models. This work aims to shine light on the origin of the differences
between the reported sublattice magnetisations for this trirutile.

The first magnetic model (describing the positions, magnitudes and orientations of the magnetic
moments of the Ni2+ ions within the lattice) was proposed by Ehrenberg et al.102 in 1998. Ehren-
berg and coworkers performed neutron diffraction on polycrystalline samples at the High Flux Beam
Reactor (HFBR) of the Brookhaven National Laboratory, using the High Resolution Neutron Pow-
der Diffractometer (H1A1) with a wavelength of 1.8857 Å. Their neutron diffraction pattern reveal
the presence of a spurious phase within their samples. The additional peaks are reflections of the
NiO phase. Nevertheless, the majority of magnetic reflections are indexed by a propagation vector
~k = (1

4 , −1
4 , 1

2) or others of its star. The supercell used to describe the magnetic unit cell has an
orthorhombic-type crystal system. The lattice parameters of the unit cell are the following: a =
6.677 80 Å, b = 13.355 60 Å and c = 18.30 Å.

Figure 6.13: The magnetic structure NiTa2O6 according to Ehrenberg102.

In Figure 6.13 above, the square represents the unit cell of the nuclear structure. The dotted line
outlines the unit cell of the magnetic structure. The open and filled spheres represent the Ni2+ ions,
which are at z = 0 and z = 1

2 , respectively. The magnetic moments are illustrated by the arrows.
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There is a doubling of the nuclear cell along the c-axis. There are two magnetically non-equivalent
Ni-sites within the lattice. Those at Ni1 at (0, 0, 0) and Ni2 at ( 1

2 , 1
2 , 1

2). Within the magnetic
lattice the magnetic moments of all Ni2+ ions lie in the ab-plane and they are collinearly aligned
parallel to [1 1 0] and [1 1̄ 0]. These magnetic moments form an arrangement of ferromagnetic
and antiferromagnetic chains which are perpendicular to each other. There is -up-up-down-down-
sequence along the crystallographic axes a and b. Finally, Ehrenberg and co-workers refined a value
of 1.6(1)µB per Ni2+ ion for the magnetic moments. This value deviates from the theoretical value
which is equal to go. ms = 2µB per Ni2+ ion. go is the Landé factor66. This discrepancy suggests
that the magnetic moments in the samples of Ehrenberg are not completely ordered.

A second model of the magnetic structure of NiTa2O6 was reported recently, 2014, by Law
et al.220. Law and coworkers investigated the magnetic properties of the nickel ditantalate by means
of magnetic susceptibility, specific heat, electron paramagnetic resonance, neutron powder diffraction,
and pulse field magnetisation measurements. Additionally, first principles calculations in Density
Functional Theory (DFT) determined the spin-exchange constants which describe the magnetic ex-
change interactions Ji between magnetic ions. According to Law et al.220 NiTa2O6 has the traits of
low-dimensional magnets: it behaves as a quasi-1D system. The chains of Ni2+ are well described
by a Heisenberg hamiltonian S = 1 with only a nearest-neighbour spin-exchange interaction J of
18.92(2) K. Furthermore, the magnetic susceptibility data and the λ-type anomaly in the specific
heat data both indicated long-range antiferromagnetic ordering of Ni2+ ions below 10.3(1) K. This
Néel temperature is in perfect agreement with that reported by Ehrenberg et al.102. Like in Ehren-
berg’s model the magnetic reflections were indexed by propagation vector ~k = (1

4 , −1
4 , 1

2). From
neutron powder diffraction pattern Law refined a magnetic moment of 1.93(5)µB per Ni2+ ion. This
value is in good agreement with the expected value for S = 1 systems and it indicates that the
magnetic moments of the Ni2+ ions within the Law’s powders sample are well ordered. There is
clear discrepancy between the magnetic moment value refined by Ehrenberg and Law and it is the
first difference between the two models. The arrangement of magnetic moments of Ni2+ sublattice
magnetisation is another difference between the model reported by Law and that of Ehrenberg.

In Figure 6.13 the solid square represents the nuclear unit cell and the dashed box the magnetic
unit cell. The grey spheres and the arrows represent the Ni atoms and their respective magnetic
moments, respectively. Like in the Ehrenberg model the latter lie in the ab-plane, and are collinearly
aligned parallel to one of the [ ±1 ±1, 0] directions. The lattice parameters of their magnetic unit
cell - according to the Law model - are the following: a = 18.867 20 Å, c = 18.247 60 Å, indicating
that there is a quadrupling and doubling of the nuclear cell along the a- and c-axes, respectively.
The crystal system of the magnetic structure of NiTa2O6, according to the Law model is monoclinic.
This is different to that of the Ehrenberg model where the crystal system was orthorhombic. As a
consequence the non-equivalent magnetic Ni2+ ions occupy the following Wyckoff sites: Ni1 at (0,
0, 0) and Ni2 at (1

8 , 1
8 , 1

4). Eventually Law and co-workers refined a value of 1.93(5)µB per Ni2+

ion for the magnetic moments. This is in agreement with the theoretical value of 2µB per Ni2+ ion.
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Figure 6.14: The magnetic structure NiTa2O6 according to Law220.
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It indicates that the magnetic moments in the samples of Law are well ordered.

There are apparent discrepancies between the magnetic structures of NiTa2O6 reported by Ehren-
berg and Law. The crystal system within which the spins ordered themselves are orthorhombic and
monoclinic, according to Ehrenberg102 and Law220, respectively. Additionally, in the sublattice mag-
netisations reported by Ehrenebrg and Law the moments are collinearly aligned along the [1 1 0] and
[-1, 1 0] directions, respectively. The value of the effective magnetic moment µeff of Ni2+ (1.63(1)
and 1.93(5)µB) also differ. These differences between the magnetic models proposed for the mag-
netic structure of NiTa2O6 motivated the investigations carried on this trirutile material throughout
the thesis. First, the Ehrenberg and Law models are assessed, by fitting the magnetic reflections of
the measured neutron powder data. A new magnetic model (which best fits the data) is then be in-
troduced. A discussion about the relationship between these magnetic models concludes the chapter.

The magnetic structure of the nickel ditantalate is revisited via neutron diffraction on the
NiTa2O6 polycrystalline samples. Long-range ordering of the magnetic moments of Ni2+ is investi-
gated by means of powder neutron diffraction because neutrons wavelengths are comparable to that
of the interatomic distance within NiTa2O6: few angstroms. More importantly thermal neutrons
possess a spin 1

2 which can interact with the magnetic moments of Ni2+ cations. Neutron powder
diffraction on the prepared sample has been performed at Laboratoire Léon Brillouin (LLB), Saclay
(France), using the two-axes G4.1 diffractometer. This system was chosen as it is equipped with a
cryostat which enables the determination of the Néel temperature TN of NiTa2O6. In addition to
that, its resolution at low angle is optimal to investigate the magnetic reflections, as discussed in
Chapter 2. The measured diffractograms are depicted in Figure 6.15 on page 162.

The heat map in Figure 6.15 illustrates the NDPs of NiTa2O6 from 1.5 to 100 K. The axis on
the left indicates the temperature at which the NDP was recorded. The intensity an angle of the
reflections are on the left and bottom axes, respectively. The vertical lines are Bragg reflections and
they are two types of vertical lines (or peaks). They are the intense and weak vertical lines. The
intense vertical lines correspond to Bragg peaks which appear on all NDP patterns, for all tempera-
tures, these peaks are the nuclear reflections. On the other hand, the weak vertical lines vanish at
about 9.8 K. These vertical lines are the magnetic reflections. Observed on low-temperature NDPs,
these reflections are associated with the ordering of the magnetic ions (Ni2+). The most intense
magnetic peaks correspond to the following 2θ values: 12.9 ◦, 25.4 ◦ and 24.7 ◦. Figure 6.14 indicates
that the Néel temperature of NiTa2O6 is 9.8 K. This value is very similar to the value reported by
both Ehrenberg102 and Law220: 10.3 K.This shift between the current an former TN may be due to
the difference in sintering temperatures.
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Figure 6.15: Neutron powder diffraction patterns of NiTa2O6 recorded on the two-axes G4.1 diffractometer
in Saclay (France).
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6.5.2 Revisiting the magnetic models of Ehrenberg and Law

In the first part of this section the Ehrenberg’s102 model is used as model to fit the magnetic re-
flections before the Law’s220 model is then accessed. For this purpose Rietveld refinement was
performed on the neutron diffraction pattern recorded at 1.5 K. In both models the magnetic reflec-
tions are indexed by the modulation vector ~k = (1

4 , −1
4 , 1

2).

The space group of the paramagnetic phase - or nuclear phase - is P42/mnm. This group contains
16 symmetry elements:

G = {1, 4+, 4−, 2z, 2y, 2x, 2xy, 2−xy, 1̄,mxy,m−xy, n, n,mx,my,mz}. (6.34)

There are four symmetry operations which keep the propagation vector unchanged. They form
the little group G~k. These symmetry elements are the following: the identity (1), a 2-fold axes
(2−xy), and the two mirrors (m). Hence, one has the following relation:

G~k = {1, 2−xy,mxy,m−xy}. (6.35)

The program BasIreps was utilised for the calculations of the irreducible representations of G~k.
The are four irreducible representations for the little group G~k and they are presented in Table 6.6.

Table 6.6: Magnetic irreducible representations of the little group G~k associated with the modulation
vector ~k = ( 1

4 , - 1
4 , 1

2 ) and the space group number P42/mnm (136).
IRREPS Symmetry elements

1 2 x,-x, 0 m x,y,0 m x, -x, z
{1‖0, 0, 0} {2‖0, 0, 0} {m‖0, 0, 0} {m‖0, 0, 0}

Γ1 1 -1 1 -1

Γ2 1 -1 -1 1

Γ3 1 1 1 1

Γ4 1 1 -1 -1

This table is essentially the character table of the little group G~k. Γ1, Γ2,Γ3 and Γ4 are the irre-
ducible representations (IRs) of G~k. The irreducible representations are also known as its primary
representations. Note that Γ3 corresponds to the unitary representation. For the NiTa2O6 only
two irreducible representations of G~k are magnetically active, they are Γ2 and Γ4. Both these pri-
mary representation are 4-dimensional representations. The magnetic model reported by Ehrenberg
et al.102 is a combination of Γ2 and Γ4. However, these irreducible representations of the little group
G~k were utilised by Law and coworkers for their model. Consequently, the representation analysis
method is not relevant to test the two models with the recorded data.

The magnetic symmetry refinement was thus utilised as the internal degrees of freedom of a
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representation are fully expressed. Indeed two subspaces (subgroups) can be associated with the
same IR if their respective basis vectors generate the same set of matrices D(g). Γ2 is 4-dimensional
representation. It is therefore possible to choose different sets of basis vectors within this vector
space. The latter define subspaces of 4-dimensional space and each subspace is associated with a
subgroup. As one deals with NiTa2O6 these subgroups are subgroups of P42/mnm (136). Further-
more, the Bilbao Crystallography Server enables the visualisation of the sublattice magnetisation
associated with the different subgroups of a representation. The tool ISODISTORT in the Bilbao
Crystallography server enables the combination of IRs. Hence, the subgroups of the combination
between Γ2 and Γ4 were studied.

6.5.2.1 The Ehrenberg model

One can visualises the sublattice magnetisation of all the different subgroups of an IR in the Bilbao
Crystallography Server. The superposition of the primary representations Γ2 and Γ4 gives rise to 25
subgroups. Among these 25 possible subgroup (or distortion modes), one finds the subgroup whose
magnetic unit cell is identical to the one reported by Ehrenberg102: Abba2 (41.217). The crystal-
lographic parameters of this magnetic space group were used as model for the Rietveld refinement
of the 1.5 K-neutron diffraction pattern. The Rietveld refinement was performed with the program
Jana and is illustrated in Figure 6.16 on the next page.

In Figure 6.16 the measured and calculated profiles are shown with red dots and black line,
respectively. A difference curve (observed-calculated) is shown at the bottom by the blue line. The
green tick marks indicate the Bragg peak positions associated with a orthorhombic lattice whose
space group is Abba2 (41.217). For a perfect agreement between the experimental data and the
model the blue line would be a straight line. One note the presence of numerous peaks within the
blue line. This suggests some discrepancies between the Ehrenberg model and the (actual) magnetic
structure of the powder data. This inconsistency is highlighted by the amplitude of the two first
reflections, at 12.9 ◦ and 24.7 ◦. This is also the case of the peak observed for 2θ equal 33 ◦.

6.5.2.2 The Law model

The Bilbao Crystallography Server was utilised to determine the Shubnikov group (among the 25)
whose symmetry elements were those of the Law220’s magnetic structure. This Shubnikov space
group is Pb21/c (14.82). The procedure performed for the Ehrenberg model was reiterated for the
Law model, i.e. the 1.5 K-neutron diffractogram were refined, using the crystallographic parameters
of the magnetic unit cell of the subgroup Pb21/c (14.82); the Rietveld method, via the program Jana,
was performed for this task. Figure 6.17 on page 166 exposes the result of this refinement.

In Figure 6.17 the measured and calculated profiles are displayed with red dots and black line,
respectively. A difference curve (observed-calculated) is depicted at the bottom of the figure by the
blue line. The green tick marks indicate the Bragg peak positions associated with a orthorhombic lat-
tice whose space group is Abba2 (41.217). Similarly to the Ehrenberg’s case, there are discrepancies
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Figure 6.16: Rietveld refinement of the neutron powder diffraction pattern of NiTa2O6 according to the
Ehrenberg model.
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Figure 6.17: Rietveld refinement of the neutron powder diffraction pattern of NiTa2O6. The Law model
was used to fit the experimental pattern.

between the measured pattern (red dots) and the calculated one (black line). These discrepancies
between the observed and calculated profiles are similar to those observed for the refinement follow-
ing the Ehrenberg’s model. The discrepancies are highlighted by the blue circles.

It should be noted that the magnetic structure which is derived from Law’s model220 is clearly
different to the structure proposed by Ehrenberg et al.102. The two sublattice magnetisation unit
cells derived from the two models are compared in Figure 6.18 on page 167. In both models the
blue spheres represent the the Ni2+ ions whereas the red arrows correspond to the magnetic mo-
ments. These supercells are the unit cell of the magnetic structures associated with Ehrenberg and
Law models, respectively. Firstly, the crystal systems for both magnetic structures are different:
orthorhombic (Ehrenberg) and monoclinic (Law). Secondly, although one notes the presence of
antiferromagnetic chains on both magnetic structures, their sequence of magnetic moments differ.
For the Law’s model, Figure 6.17 (bottom), one notes an -up-up-down-down- sequence of magnetic
moments along the [1 0 0] and [0 1 0] directions. This is not the case for the Ehrenberg model,
Figure 6.18 (top) where there is an an -up-down-up-down- sequence within the antiferromagnetic
chains. The sublattice magnetisation derived from the Ehrenberg model shows some ferromagnetic
chains whereas there are no ferromagnetic chains within the magnetic structure derived from the
Law’s model. Eventually, the comparison of the two models with the is summed up in Table 6.7 and
Table 6.8, for the Ehrenberg and Law models, respectively .
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Figure 6.18: Magnetic structure of NiTa2O6 according to the Ehrenberg’s (top) and Law’s (bottom) model.
The latter has a monoclinic type structure, whereas for the Ehrenberg model the moments are within an
orthorhombic lattice.
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Table 6.7: Comparison between magnetic structures: refined from Ehrenberg models and reported by
Ehrenberg102.

Date 1998 2016
Authors Ehrenberg et al.102 Us
propagation ~k = ( 1

4 , −1
4 , 1

2 ) ~k = ( 1
4 , −1

4 , 1
2 )

vector
Magnetic Abba2 Abba2
space group
Lattice system orthorhombic orthorhombic

Magnetic moments [1 1 0] [1 1 0]
direction and [1 -1 0] and [1 -1 0]
Ni1 1 Wyckoff (0, 0, 0) (0, 0, 0)
positions
Ni2 1 Wyckoff (0, 1

4 , 1
4 ) (0, 1

4 , 1
4 )

positions
Magnetic 1.6(1) 1.488(2)
moment µB/Ni2+

Relation between perpendicular perpendicular
ferro- and
antiferromagnetic chains
RB (%) - 5.42
Rmag (%) - 17.96

Table 6.8: Comparison between magnetic structures: refined from Law’s models and reported by Law220.
Date 2014 2016
Authors Law et al.220 Us
propagation ~k = ( 1

4 , −1
4 , 1

2 ) ~k = ( 1
4 , −1

4 , 1
2 )

vector
Magnetic Pc21/c Pc21/c
space group
Lattice system monoclinic monoclinic

Magnetic moments [1 1 0] [1 1 0]
direction and [1 -1 0] and [1 -1 0]
Ni1 1 Wyckoff (0, 0, 0) (0, 0, 0)
positions
Ni2 1 Wyckoff ( 1

8 , 1
8 , 1

4 ) ( 1
8 , 1

8 , 1
4 )

positions
Magnetic 1.93(5) 1.473(2)
moment µB/Ni2+

Relation between parallel parallel
ferro- and
antiferromagnetic chains
RB (%) - 5.11
Rmag (%) - 18.49
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To summarise, the modulation vector for the magnetic structure of NiTa2O6 was determined
from the magnetic reflections in neutron powder patterns below TN = 10.3 K. The propagation
vector ~k = (1

4 , −1
4 , 1

2) is identical to that reported by Ehrenberg220 and Law220. The Ehrenberg’s
and Law’s models are both a superposition of the primary IRs Γ2 and Γ4. The Shubnikov space
group Ab ba2 (41.217) was used as a model to fit the experimental neutron diffractogram below
TN . Law’s model was also tested and it was found that the corresponding magnetic space group
is Pc21/c (14.82). Discrepancies (high values of Rmag) between the experimental data and fitting
curves indicate that both models are not appropriate for the description of the magnetic structure
of the prepared powdered NiTa2O6 sample.

6.5.3 A new magnetic model for the trirutile NiTa2O6

As the Ehrenberg’s102 and Law’s models220 were both unsatisfactory for the research purpose further
investigations were undertaken. The contribution of other primary IRs and their superpositions was
investigated. The representation analysis method was used to determine a magnetic structure which
would best fit the data set. There will be a derivation of the Γperm and Γaxial of the system. The
Γmag will then be decomposed onto IRs. The magnitude and orientations of the magnetic ions will
then be refined.

6.5.3.1 Orbits and irreducible representation

The primary IRs of G~k were derived via the tool BasIreps in the program Fullprof, see Table 6.6. In
addition BasIreps informs on the number of non-equivalent positions for magnetic atoms within the
magnetic structure. The latter are called orbits. The orbits of the magnetic structure of the nickel
ditantalate are shown in Table 6.9. The first orbit Ni1 1 (black font) represents atoms at the edges
of the tetragonal unit cell whereas atoms in the centre of the cell are associated with the second and
last position Ni2 1 (red font).

Table 6.9: The two orbits of the Ni2+ under the operations of the little group G~k.
Wyckoff positions

Atom Type x y z Occ
Ni1 1 Ni 0 0 0 1/4

Ni2 1 Ni 1/2 1/2 1/2 1/4

6.5.3.2 Derivation of Γperm and ΓṼ

The magnetic representation Γmag of the whole magnetic structure is obtained by determining the
Γmag at each orbit. Therefore for Ni1 1 and Ni2 1, one needs to derive the magnetic representation
related to the symmetry elements of G~k.
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Figure 6.19: Non-equivalent positions of Ni2+ within the magnetic structure of NiTa2O6.Ni1 1 corresponds
to the red atom, whereas the blue atoms are all equivalent and represent Ni2 1.

Table 6.10: Characters of the magnetic representation at the orbit Ni1 1.
REPS Symmetry elements

1 2 x,-x, 0 m x,y,0 m x, -x, z
{1‖0, 0, 0} {2‖0, 0, 0} {m‖0, 0, 0} {m‖0, 0, 0}

Γmag 3 -1 -1 -1

BasIreps not only enables the calculations of the IRs and the orbits, it also computes the per-
mutation and axial representations for each magnetic orbit. The permutation and axial vector
representations associated with the first orbit Ni1 1 are the following:

Γperm = Γ3

ΓṼ = Γ1 ⊕ Γ2 ⊕ Γ4

Mathematically, Γmag is the direct product of the permutation Γperm and ΓṼ . The model
describing the sublattice magnetisation at Ni1 1 is therefore:

Γmag = (Γ3 ⊗ Γ1)⊕ (Γ3 ⊗ Γ2)⊕ (Γ3 ⊗ Γ4). (6.36)

To determine the characters of Γmag (typically χΓmag) one multiplies the characters χΓpermν and
χṼν , for each symmetry operation. The result can be found in Table 6.10.

The Wonderful Orthogonality Theorem was used to reduce this magnetic representation into
IRs of the little group G~k. The calculations to determine whether or not a primary representation
contribute to Γmag are presented below:

For Γ1: 1*1*3 + −1*1*−1 + 1*1*−1 + −1*1*−1 = 4 = 1*4.
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Table 6.11: The basis vectors of the magnetic irreducible representations for the two orbits of Ni2+.
IRREPS 2a equivalent sites

basis Ni1 1 Ni2 1
Vectors (x, y, z) (x, y, z)

Γ1 BASR (0 0 1) (1 -1 0)
BASI (0 0 0) (0 0 0)

Γ2 BASR (110)
BASI (000)

Γ3 BASR (110)
BASI (000)

Γ4 BASR (1 -1 0) (0 0 1)
BASI (0 0 0) (0 0 0)

For Γ2: 1*1*3 + −1*1*−1 + −1*1*−1 + 1*1*−1 = 4 = 1*4.

For Γ3: 1*1*3 + 1*1*−1 + 1*1*−1 + 1*1*−1 = 0 = 0*4.

For Γ4: 1*1*3 + 1*1*−1 + −1*1*−1 + −1*1*−1 = 4 = 1*4.

The numbers in red represent the number of times an IR appears in the reduction of Γmag.The
numbers in blue and in green correspond the characters of the IRs and the representation Γmag,
respectively. Hence, the magnetic representation associated with Ni1 1 (0, 0, 0) is:

Γmag = Γ1 ⊕ Γ2 ⊕ Γ4. (6.37)

Likewise the magnetic representation for Ni2 1 (1
2 , 1

2 , 1
2) is:

Γmag = Γ1 ⊕ Γ3 ⊕ Γ4. (6.38)

The permutation representation for this second orbit is Γ2.

6.5.3.3 From magnetic representations to basis vectors

The last step of the representation analysis method was a mapping from the framework of the IRs
to the framework of the parent nuclear structure. One expresses the magnetic moments as function
of the basis vectors of the IRs. For this purpose one ought to determine the basis vectors of the four
IRs of the little group. The software ”BasIreps” enables the calculation of the basis vectors of the
irreducible representation of a space group. The basis of the IRs of G~k are presented in Table 6.11.

All basis vectors only have a real part (BASR) contribution, i.e, their imaginary contribution
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(BASI) is equal to zero. Consequently, the basis vectors directly represent the projections of the
magnetic moments along the crystallographic axes. Nevertheless, the moments orientations of Ni1 1
and Ni2 1 are completely different under the representation Γ1 and Γ4. For instance, the moment
orientations of the atoms at the orbit Ni1 1 are parallel to the c-axis under Γ1’s framework. On the
other hand under the same representation the moments of the atoms at the second site (Ni2 1) lie
in the ab-plane. An ordering of the moments can therefore not be established for this representation.
The reverse configuration of moments orientations on both orbits is observed for Γ4. This is a proof
that Γ1 and Γ4 are inactive, magnetically. Table 6.10 shows that Γ2 acts only on the magnetic
atoms which are in the Ni1 1 site. Their moments lie in the ab-plane. Likewise the Ni2+ in the
Ni2 1 orbit also have their moments in the ab-plane and they are only associated with the IR Γ3.
This coherence in the orientation of the magnetic moments on both orbits suggest that Γ2 and Γ3

are magnetically active. Hence, the model to describe the unknown magnetic structure ofNiTa2O6

depends on these two IRs.

The fitting curve and experimental pattern greatly differed, when Γ2 and Γ3 were individually
used as models. The two models were thus ruled out. However a better match was observed when
the two primary IRs were superposed. A Rietveld refinement of the 1.5 K-neutron diffractogram was
performed, based on the crystallographic parameters associated with this combination. The result
of the refinement is illustrated in Figure 6.20 on the next page.

In Figure 6.20, the measured and calculated profiles are displayed with red dots and black line,
respectively. A difference curve (observed-calculated) is illustrated at the bottom by the blue line.
The green tick marks indicate the Bragg peak positions associated with an orthorhombic lattice.
Figure 6.20 emphasises that the model (the black line) for the magnetic structure of NiTa2O6 fits
well the experimental data (red dots). The agreement between calculated and measured profiles is
confirmed by the very low value of the fitting parameters: RB= 2.51 % and Rmag = 7.48 %. The
refinement factor values are smaller to those of the refinement by the Ehrenberg and Law models,
indicating this model is better than the previous ones.

ISODISTORT was then used to derived all the subgroups associated with the combination be-
tween Γ2 and Γ3. It turned out the sublattice magnetisation of the subgroup Abma2 was identical
to the one obtained from the Rietveld refinement. Hence, this Shubnikov can be seen as a model for
the magnetic structure of NiTa2O6. To confirm the new model, a refinement of the 1.5 K-neutron
diffraction pattern was performed with Jana, based on the magnetic space group Abma2. The result
of the latter refinement was identical to that of the one in Figure 6.19. The sublattice magnetisation
associated with the black profile in this Figure is depicted in Figure 6.21 on page 174.

In Figure 6.21 the blue spheres represent the nickel ions and the red arrows correspond to the
magnetic moments. The smallest lattice represents the nuclear unit cell whereas the largest one is
the magnetic structure. Note that the magnetic moments lie in the ab-plane, and are along the [1 1
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Figure 6.20: Rietveld refinement of the diffractogram recorded at 1.5 K. The theoretical model used for
the fitting is a representation which is the superposition of Γ2 and Γ3.
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Figure 6.21: Representation of the unit cell of the sublattice magnetisation for NiTa2O6 following the new
model. The latter is a superposition of Γ1 and Γ3.

0] direction as predicted by the representation analysis (see Table 1.10). magnetisation crystallises in
an orthorhombic-type structure like the one reported by Ehrenberg and coworkers. This is different
to the Law’s model in which the lattice is monoclinic. The chains show an ”-up-up-down-down-”
sequence along the a- and b-axes but there is a ”-up-down-” sequence along the c-axis. The new
magnetic structure and the one reported by Ehrenberg both have a polar symmetry along the c-axis.
Since NiTa2O6 is an insulator it is to be expected that it has some magnetically induced electric
polarisation along c-axis (type II multiferroic). Details on multiferroic can be found in the reports
by Khomskii221,222or other reviews223,224.

Since measurements at the LLB, on the G4.1 were carried without the application of any magnetic
field one deduces that the extracted structure is the magnetic structure ground state of the system.
This ground state magnetic structure exhibits an antiferromagnetic ordering. This finding is in
agreement with previous results such as those published by Ehrenberg et al.102, and those from of
Law et al.220. Table 6.12 summarises the relationship between the magnetic structures of NiTa2O6.
One of the striking difference between the three models is the refined magnetic moment of Ni2+ ions.
The evolution of µeff is presented and discussed in the following and last section.

6.5.4 Magnetic moment study

All neutron diffraction patterns below the Néel temperature (10.3 K) were refined with the superpo-
sition of Γ1 and Γ3 (Abma2) as model. Figure 6.22 shows the temperature dependence of the total
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Table 6.12: Comparison between the Ehrenberg, Law and the new models. a, b, c represent the lattice
parameters of the nuclear unit cell.

Date 1998 2014 2016
Authors Ehrenberg et al. Lawet al. Us
propagation ~k = ( 1

4 , −1
4 , 1

2 ) ~k = ( 1
4 , −1

4 , 1
2 ) ~k = ( 1

4 , −1
4 , 1

2 )
vector
Magnetic Abba2 Pc21/c Ab ma2
space group
Lattice system orthorhombic monoclinic orthorhombic

Magnetic moments [1 1 0] [1 1 0] [1 1 0]
direction and [1 -1 0] and [1 -1 0] and [1 -1 0]
Ni1 1 Wyckoff (0, 0, 0) (0, 0, 0) (0, 0, 0)
positions
Ni2 1 Wyckoff (0, 1

4 , 1
4 ) ( 1

8 , 1
8 , 1

4 ) ( 1
2 , 1

2 , 1
2 )

positions
Magnetic 1.488(2) 1.473(3) 1.85(2)
moment µB/Ni2+

Relation between perpendicular parallel parallel
ferro- and
antiferromagnetic chains
RB (%) 5.42 5.11 2.51
Rmag (%) 17.96 18.49 7.48

magnetisation of NiTa2O6. The intensity of magnetic reflections decreases with increasing temper-
ature it then vanishes as the temperature reaches past 10.3 K. This is agreement with evolution of
the magnetisation of an ordered magnetic system as function of the temperature.

An exponential function was used to fit the magnetic moment below the Néel temperature. The
function is given by equation (6.38)

M(T ) = Mo(1−
T

TN
)β (6.39)

Where Mo is the maximal magnitude of the moment and β the critical exponent. β is one
of the critical exponents introduced by Landau to describe the critical properties of a magnetic
system showing a second order phase transition. Its derivation can be found in the paper by Landau
and Lifshitz225. β ∼ 0.365 for an Heisenberg Hamiltonian. If the fluctuations are neglected, the
Heisenberg Hamiltonian can be approximated to a model known as the Mean field theory model.
In this model β = 1

2 . The value of the Néel temperature, the exponent and were extracted from
the fitting in Figure 1.16. Mo and β are equal to 1.831µB per Ni2+ ion and 0.10(0), respectively.
The present β value differs from to one reported by Law et al. who reported values of 0.22(1).
This discrepancy suggests that the Heisenberg model may not be sufficient to explain the magnetic
interactions between Ni2+ ions. Furthermore, in the above equation TN is the critical temperature
at which the fitting line intercepts the horizontal axes. A value of 9.60(0) K is refined for TN the
prepared NiTa2O6 polycrystalline samples. This TN value is in agreement with the previous values.
Eventually the resulting magnetic moment of 1.831(5)µB per Ni2+ ion is in good agreement with
the expected value of 2µB for S=1 system with a g-factor of 2.2. It indicates that the prepared
NiTa2O6 is an ordered trirutile.
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Figure 6.22: Evolution of magnetic moment as function of temperature. The solid line is the fitting curve
obtained with the formula in equation (6.40).

6.6 Conclusion

Joint x-ray and neutron refinement confirmed the phase purity of the polycrystalline NiTa2O6 sample.
In addition Rietveld refinement demonstrated that the prepared NiTa2O6 is a fully ordered trirutile.
The highlight of this work is the discovery of a new magnetic structure for this compound. The
corresponding Shubnikov space group of the new sublattice magnetisation is Abma2. There is a
polar symmetry along the c-axis within the new model, the one reported by Ehrenberg et al.102.
The breaking of the polar symmetry suggest the multiferroic (type II) character of this material,
as it is insulator. Further studies on this sample are envisaged. Firstly, polarisation measurement
is envisaged as it will confirm or infirm the ferroelectric behaviour of NiTa2O6. Secondly this
commensurately trirutile is associated with three different magnetic structures below TN . This
gives rises to the following questions: (a) Does the magnetic ions in a given trirutile material
order themselves in more than one magnetic structure, below the critical temperature? And (b)
Is NiTa2O6 an exception? Therefore further studies need to be pursued in order to determine the
relationship between the modulation of a trirutile and its magnetic structure(s). Eventually, the
growth of large single crystals226 via the floating zone technique is envisaged as measurements on
singles crystals inform on the intrinsic properties of a material. Polarised neutron diffraction on
these single crystals will shed the orientations of the magnetic moments but also the relationships
between the three models.
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Chapter 7

The magnetic structure of nickel metaniobate
NiNb2O6

7.1 Motivation

Recently solid state physicists have developed an interest in exploring, theoretically and experimen-
tally, the magnetic properties of AB2O6

227,228,229 materials with M = Fe, Co, Ni. The interplay
between the magnetic, electronic, and structural degrees of freedom, within some of the compounds
in this family gives rise low-dimensionalities. For instance, NiTa2O6

81,102,220 and FeTa2O6
71,74,75

are 1D- and quasi-2D antiferromagnets, respectively.

Nickel metaniobate (NiNb2O6) belongs to the AB2O6 family. This material crystallises in a
columbite-type structure. The unit cell of its crystal structure is displayed in Figure 7.1. Within the
orthorhombic lattice the Ni2+ ( blue sphere) and Nb5+ (grey sphere) ions occupy the 4c and 8d sites,
respectively. Both cations are surrounded by six oxygen O2− anions (red sphere), forming NiO6 and
NbO6 octahedra. The transparent and green edge shared octahedra emphasise the -Ni-Nb-Nb-Ni-
arrangement along the [1 0 0] direction.

Heid et al.85 investigated the magnetic properties of this columbite compound by means of pow-
der neutron diffraction, magnetic susceptibility and specific heat measurements on polycrystalline
NiNb2O6 samples. The magnetic susceptibility data demonstrated that NiNb2O6 exhibits an antifer-
romagnetic ordering below TN = 5.7 K. However, Heid and coworkers did not establish its magnetic
structure. Since Heid et al.85 early work there have been no further reported studies on magnetic
structures for NiNb2O6. Therefore this investigations carried out on powdered NiNb2O6 aimed to
shine light on the sublattice magnetisation of nickel metaniobate. Firstly, there is a literature review
on NiNb2O6. It is followed by a structural characterization of the prepared polycrystalline sample,
by powder x-ray diffraction. The neutron diffraction pattern measured below TN are refined using
both representation and magnetic symmetry analysis methods. The presentation and comparison of
several models for the magnetic structure of NiNb2O6 are discussed in the chapter last sections.

177



Chapter 7. The magnetic structure of nickel metaniobate NiNb2O6

Figure 7.1: The nuclear structure NiNb2O6 structure. The orthorhombic unit cell consists of nickel (blue),
niobium (grey) and oxygen (red) atoms (spheres).

7.2 A literature review of NiNb2O6

7.2.1 Methods of synthesis

One of the first reports on the properties of NiNb2O6 was done by Emmenegger and Petermann230

in 1968. Emmenegger and Petermann investigated the crystal structure of ANb2O6 oxides (with
A = Mg, Fe, Mn, Zn, Co, Cd, Ca and Ni) by means of x-ray diffraction. Single crystals of nickel
metaniobate were prepared by chemical transport technique. Cl2 was the solvent used the growth
process, which occurred in a two-zone furnace. Using the same solvent, the researchers also prepared
NiNb2O6 single crystals by vapor transport pulling technique in a vertical furnace.

Additionally, polycrystalline NiNb2O6 samples have been prepared via a solid state reaction
between stoichiometric amounts of NiO and Nb2O5. Stoichiometric amounts of nickel oxide and
niobium oxide were heated at 1250 °C for 48 hr84. Eventually Prabhakaran and coworkers84 have
grown single crystals of NiNb2O6 via the floating zone method. The growth was carried out under
O2 atmosphere in a optical vertical furnace.

Recently Lei et. al.87 measured the temperature-dependence susceptibility and magnetisation
hysteresis loop of NiNb2O6 nanoparticles. The nanoparticles were prepared by a hydrothermal
method followed by a calcination.
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7.2.2 Physical properties

Borromei et. al.231 investigated the optical properties of nickel metaniobate in the range 5000-
30 000 cm−1 at temperatures from 4.2 to 300 K. The absorption spectrum of Ni2+ in NiNb2O6 is
similar to that of the same ion in MWO4 samples (M = Mg, Zn, Cd)232. The main features of
the spectra are due to a Oh → C2v perturbation. This transition corresponds to a reduction of the
symmetry which causes a static distortion of the NiO6 and Nb2O5 octahedra. The ground state of
nickel ions in the Oh symmetry environment is 3A2g (t62e2). This ground state becomes 3B2 due
to the distortion, which gives rise to the C2v symmetry. In order to fully explain the experimental
results Borromei and coworkers added the contributions of the distortion C2v → C2, the spin-orbit
coupling and the vibrational interactions. It should be noted that the state 3B2 of the Ni2+ becomes
3B as the lattice undergoes a symmetry reduction from C2v to C2.

There has been few reports of investigations of the magnetic properties of this AB2O6 oxide.
Temperature-dependence susceptibility84,85,87 measurements on polycrystalline NiNb2O6 samples
reveal an antiferromagnetic type curve, which can be fitted by χ(T ) = C

T−Θ . Lei and coworkers87

reported values of 1.31 and −42.78 for C and Θ, respectively. In addition to that Lei et. al.87 found
a value of 6 K as Néel temperature for this antiferromagnet, which is in agreement with 5.7 K re-
ported by Heid et al.85. Lei and coworkers refined a value of 3.3µB/Ni2+ for the effective magnetic
moment µeff of Ni2+ ions. This is in agreement with the theoretical value of 3.2µB/Ni2+.

Neutron diffraction and specific heat measurements85 were also performed on NiNb2O6 powders.
Both confirmed the Néel temperature of this columbite material to be about ∼6 K. The observed
magnetic reflections in the neutron powder diffraction (NDP) patterns can be indexed using two
propagation vectors: ~k1 = (1

2 , 1
2 , 0) and ~k2 = (0, 1

2 , 0). The peaks indexed by ~k1 are more intense
than those indexed by ~k2. Heid and et al. refined a value of 2.4µB for µeff of Ni2+ ions. Heid
and coworkers did not establish a model for the magnetic structure of nickel metaniobate, due to
broadened Lorentzian-shape type of peaks indexed by the modulation vector (0, 1

2 , 0). Nevertheless
Heid and et al. made the hypothesis that the sublattice magnetisation of this compound was similar
to that of FeNb2O6: a non collinear magnetic structure where the magnetic moments lie in the a-c
plane. These magnetic moments have a canting angle of 31° to the c-axis.

7.3 Synthesis

In accordance with the solid state reaction by Prabhakaran et al.84Polycrystalline NiNb2O6 samples
have been prepared, by mixing stoichiometric amounts of NiO (99.9%) and Nb2O5 (99.99%). The
precursors (nickel oxide (II) and niobium oxide (V)) have green and white colours, respectively. The
solid state reaction is described by the following reaction:

NiO + Nb2O5
air−−→ NiNb2O6 (7.1)
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The precursors have been mixed with a pestle in an agate mortar under acetone. The mixture
has been heated at 1250 °Cfor 48 h in order to form nickel metaniobate. In order to insure phase
purity multiple re-grinding and annealing (at 1300 °C) processes have been performed. The resulting
powder has the same colour of that of Prabhakaran and coworkers NiNb2O6 powders: a dark yellow
colour, as seen in Figure 7.2a.

7.4 Powder x-ray diffraction

The crystal structure of the prepared sample has been determined by x-ray diffraction, using a
PANalytical diffractometer. Details on this instrument can be found in the Chapter 2. Figure 7.2b
presents a Rietveld refinement of a room-temperature x-ray diffraction pattern of NiNb2O6. Jana
program has been used to perform the Rietveld refinement.

In Figure 7.2b the red dots correspond to the measured or experimental x-ray diffraction pattern,
whereas the continuous black line is the calculated profile. The difference between these two curves
is illustrated by the blue line. It was noted that there were some discrepancies between measured
and calculated profiles for 2θ ∼ 35° and at 45°. The plane associated with the peak at 35° is (3 1 1);
and (6 0 0) is the corresponding plane for the peak at 45°. The intensity of this peak is greater than
that its theoretical value, whereas the the calculated value for the (3 1 1) reflection is higher than its
theoretical value. These two mismatches suggest the presence of preferential orientations within the
lattice. Nevertheless, there is good level of agreement be the measured and theoretical profiles. As
all reflections in the x-ray diffractogram, in Figure 7.2b, are those of a orthorhombic lattice, whose
space group symmetry is Pbcn (60).The Bragg peak positions of such lattice are indicated by the
green ticks. The good level of agreement is indicated by the low values of the ”R” coefficients: χ2

= 1.93, RB = 11.35 % and RF = 15.34 %.

The Wyckoff positions of Ni, Nb and O - extracted from the joint x-ray and neutron diffraction
- are presented in Table 7.1.

Table 7.1: Wyckoff positions of atoms within the orthorhombic unit cell of NiNb2O6, obtained from
Rietveld refinement of a room-temperature x-ray diffraction patterns. Site occupancy (site occu.) is the
ratio between the site multiplicity and the general multiplicity. Space group: Pbcn (60).

atom atom Wyckoff x y z site occu.
label type symbol
Ni Ni 4c 0 0.15718(4) 1/4 0.500
Nb Nb 8d 0.15931(1) 0.31997(3) 0.75578(9) 1.000
O1 O 8d 0.09525(2) 0.39321(5) 0.42280(8) 1.000
O2 O 8d 0.07945(3) 0.11693(6) 0.90819(8) 1.000
O3 O 8d 0.25599(3) 0.12205(7) 0.57673(8) 1.000

The low values of RB and RF confirm the phase purity of the prepared nickel metaniobate powder.
Its physical properties can then be investigated. The physical property examined in this chapter
is the sublattice magnetisation of the columbite NiNb2O6, as there is not yet reports of it in the
literature.
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(a)

(b)

Figure 7.2: a) Powdered NiNb2O6 sample. (b) Rietveld refinement of a room-temperature x-ray diffraction
pattern of NiNb2O6. The red dots and the black line correspond to the measured and calculated profiles.
The difference between these two curves is the blue line. The green ticks represent the Bragg peak
positions.
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7.5 The magnetic structure of NiNb2O6

7.5.1 The Néel temperature

Neutron powder diffraction (NDP) has been performed on the prepared powder sample. Informations
on the orientations of moments in NiNb2O6 can be obtained from this experiment, as the spin 1

2

of neutrons can interact with the unpaired electrons of Ni2+. In addition, the neutrons can tell on
the sublattice magnetisation. This is due to the fact that their wavelength is similar to that of the
distances between atoms within this columbite. Zero-field neutron powder diffraction has therefore
been performed on the two-axes G4.1 diffractometer, across a temperature range between 1.5 and
300 K. Details on this instrument are given in the Chapter 2. They are depicted in Figure 7.3.

Figure 7.3: Neutron powder diffraction patterns of NiNb2O6 recorded on the two-axes G4.1 diffractometer
in Saclay (France).

The diffractograms measured from 1.5 K to 9.6 K are displayed in the heat map in Figure 7.3.
The heat map in Figure 7.3 illustrates the NDPs of NiTa2O6 from 1.5 to 300 K. The axis on the left
indicates the temperature at which the NDP was recorded, the intensity an angle of the reflections
are on the left and bottom axes, respectively. The vertical lines are Bragg reflections and they are two
types of vertical lines (or peaks). They are the intense and weak vertical lines. The intense vertical
lines correspond to Bragg peaks which appear on all NDP patterns, for all temperatures: these
peaks are the nuclear reflections. On the other hand, the weak vertical lines vanish at about 5.6 K.
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Like in Figure 6.15, these vertical lines are the magnetic reflections. Observed on low-temperature
NDPs, these reflections are associated with the ordering of Ni2+ ions. From Figure 7.3 one deduces
that the Néel temperature TN of NiNb2O6 is about 5.6 K. This is in agreement wit the results from
Heid and coworkers85, who reported a value of 5.7 K.

7.5.2 Magnetic representations and magnetic models

The representation analysis was used to determine the magnetic structure of the columbite NiNb2O6.
This method describes the magnetic structure of a material as function of a modulation vector and
its nuclear structure. Consequently the first step of this approach is to identify the propagation
vector(s) related to the sublattice magnetisation. The program k search enables the calculation
of a modulation vector from a sets of magnetic reflections. It was not possible to index all the
magnetic peaks using a single modulation vector ~k. Nevertheless this was possible using the mod-
ulation vectors ~k1 = (1

2 , 1
2 , 0) and ~k2 = (0, 1

2 , 0). This is in agreement with the work of Heid et. al.85.

The derivation of the little group G~k associated with the propagator vector(s) is the second step
of the representation analysis. One focuses on the magnetic irreducible representations of Gveck,
especially those whose periodicity matches the nuclear structure’s periodicity. These primary IRs
and their superposition are potential models for the magnetic structure of a material. In the case of
nickel metaniobate there are two modulation vectors ~k1 = (1

2 , 1
2 , 0) and ~k2 = (0, 1

2 , 0). Hence, one
needs to first treat these modulation vectors separately. The Bilbao Crystallographic server was used
for the derivation of the magnetic irreducible representations (IRs) associated with each propagation.
There are two primary IRs derived related to ~k1 and the latter are mS1+ and mS1−. Similarly ~k2

generates two primary irreducible representations, which are mY1 and mY2. The magnetic model
for the magnetic structure of NiNb2O6 is therefore the result of a combination between the primary
IRs of ~k1 and those of ~k2. ISODISTORT is a versatile tool of the Bilbao Crystallographic Server, as it
enables one to combine two IRs, and also to explore the different isotropy subgroups generated from
this mixture. Figure 7.4 summarises the derivation of magnetic models from the primary irreducible
representations of the two propagation vectors.

In Figure 7.4 the symbols Is1, Is2, Is3 andIs4 represent the four groups derived from the mixture
of the IRs of the propagation vectors ~k1 = (1

2 , 1
2 , 0) and ~k2 = (0, 1

2 , 0). Each of these Ii contains
isotropy subgroups. The latter can all be derived from the nuclear structure space group Pbcn (60),
according to the powerful Landau theorem122,225 on second order phase transitions. Since one deals
with a magnetic structure these isotropy subgroups are in fact Shubnikov groups derived Pbcn (60).

Each group Isi (i = 1, 2, 3, 4) consists of 6 isotropy groups so there are 24 possible subgroups for
the magnetic structure of NiNb2O6. Four of these 6 subgroups have a monoclinic symmetry whereas
the two others have a triclinic symmetry. One of the four monoclinic subgroups appears twice in
each Isi. The two monoclinic subgroups in each group Isi differ by the origin of the unit cell. In
addition to that mS1+ and mS1− are co-primary irreducible representations. In others words acting
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Figure 7.4: Tree of isotropy subgroups of NiNb2O6 derived from the irreducible representations of the two
modulation vectors.

Table 7.2: Isotropy subgroups derived from the mixture of the primary IRs of the propagation vectors ~k1
= ( 1

2 , 1
2 , 0) and ~k2 = (0, 1

2 , 0).
Is1 Is2 Is3 Is4

Number of 6 6 6 6
subgroups
Repetition Pb2/c Pb2/c Pb21/c Pb21/c
subgroup

Distinct

subgroups: Pb21/c, Pb2/c, Pa21, Pb21, Pb2, PS − 1 and PS1

alone, either one leads to the same isotropy subgroup. When one of them acts to lower the symmetry,
the other is able to follow along without lowering the symmetry further. There are therefore several
equivalent subgroups within the 24 subgroups. By taking into account the redondance of subgroups
and the co-primary characters of mS1+ and mS1−, there are only 7 unique isotropy subgroups.
These subgroups are models for the sublattice magnetisation of NiNb2O6. Table 7.2 summarises the
relationship between the isotropy subgroups of the mixture between mS1+, mS1− and mY1, mY2.

The 7 distinct subgroups derived from the mixture of the IRs of ~k1 and ~k2 are: Pb21/c, Pb2/c,
Pa21, Pb21, Pb2, PS − 1 and PS1. The subgroups PS − 1 and PS1 are associated with a triclinic-
type structure and have the lowest symmetry. On the other hand the first five subgroups have a
monoclinic-type structure and have a higher symmetry than the ”triclinic subgroups”. Note that
Pb21/c has the highest symmetry.

7.5.3 NiNb2O6: a multi-~k magnetic structure

Prior to the establishment of the magnetic structure of the columbite NiNb2O6 several discussion
questions need to be addressed. Is a combination of ~k1 and ~k2 necessary to describe the magnetic
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structure from all magnetic peaks? Does the magnetic structure consist of domains? It domains
there are, how do they relate to two propagation propagation vector? Investigations related to these
questions were carried out and the results are presented in the next lines of this subsection. Lebail
fits have been performed for these two cases and the results are presented below. The case for a
one-~k structure are first assessed.

Firstly a Lebail fit - bases on ~k1 - was performed in order to fit all reflections of the a neutron
diffraction pattern measured below 5.6 K. Parallely to that another Lebail fit associated with the
~k2 was also performed with the program Jana. The result for ~k1 is illustrated in Figure 7.5.

Figure 7.5: LeBail fit of 1.5 K-neutron diffraction pattern, associated with ~k1 = ( 1
2 , 1

2 , 0). The red dots
and the continuous black line correspond the experimental data and the theoretical profile, respectively.
The difference between these two curves is indicated by the blue line. The green ticks index the Bragg
reflections associated with the propagation vector ( 1

2 , 1
2 , 0).

Figure 7.5 displays a Lebail fit of the SI1.5K-neutron diffraction pattern. The red dots and the
continuous black line correspond the measured and calculated profiles, respectively. The blue line
corresponds to a difference between the experimental and theoretical data. The latter is and is
a straight line for a perfect matching between the red dots and the black line. The green ticks
correspond to the reflections indexed by ~k1 = (1

2 , 1
2 , 0). There are apparent differences between the

observed intensities (red dots) and calculated ones (black line), as the blue line is not a straight line.
These discrepancies are highlighted by the yellow ellipse. The reflections which occur at 2θ equal
12.2, 15.7 and 23.4° are not at taking into account by the Lebail fit. One encounters similar issues
as one performs a Lebail fit of the same neutron diffraction pattern based on ~k2 = (0, 1

2 , 0). Figure
6.6 illustrates a Lebail fit of the 1.5 K-neutron diffraction, with ~k2 as framework. The discrepancy
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between the red dots and the black line are observed for the reflections at 2θ equal 13.1, 19.3 and
27.9°. Note there is a good agreement between the Lebail fit and the experimental pattern for 2θ
equal 12.2, 15.7 and 23.4°. Consequently all magnetic reflections can not be indexed with only either
(1

2 , 1
2 , 0) or (0, 1

2 , 0). Hence, these cases can not be considered as framework for models for the
magnetic structure of NiNb2O6.

Figure 7.6: LeBail fit of 1.5 K-neutron diffraction pattern, associated with only ~k2 = (0, 1
2 , 0). The

red dots and the continuous black line correspond the experimental data and the theoretical profile,
respectively. The difference between these two curves is indicated by the blue line. The green ticks index
the Bragg reflections associated with the propagation vector (0, 1

2 , 0).

Furthermore the frameworks involving both ~k1 and ~k2 were explored. The first one is the two-
phase framework. In such case the magnetic structure of NiNb2O6 consists of two types of domains.
Each type of domain is related to only one of the modulation vectors: either ~k1 or ~k1. Consequently
the peaks associated with this model are the sum of the reflections generated by (1

2 , 1
2 , 0) and those

by (0, 1
2 , 0). These reflections can be called ”pure” reflections. The second framework corresponds to

~k1+ ~k2 model. It is called the 2~k-structure. Within this framework one expects to observe the ”pure”
reflections and some extra ones. The latter are mixed terms which originate from the combination
of the propagation vectors. Both models were tested and the results of their respective Lebail fit are
displayed in Figure 7.7 on page 187.

The diagrams in Figure 7.7 correspond to the Lebail fits associated with the two phases (a) and
2~k-structure frameworks (b), respectively. The red dots and the continuous black line correspond
the experimental data and the theoretical profile, respectively. The blue line is expected to be a
straight line if the theoretical model (black line) fits perfectly the experimental data. The green
and magenta ticks in Figure 7.7 a) refer to ”pure” reflections generated by ~k1 and ~k2, respectively.
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7.5. The magnetic structure of NiNb2O6

(a)

(b)

Figure 7.7: LeBail fits of 1.5 K-neutron diffraction pattern, associated with the two-phase (a) and one
phase (b) frameworks. The red dots and the continuous black line correspond the experimental data and
the theoretical profile, respectively. The difference between these two curves is indicated by the blue line.
The green, magenta and orange ticks index the magnetic Bragg reflections.
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The mixture between two modulation vectors generate the orange Bragg peaks in Figure 7.7 b). All
magnetic reflections in both Lebail fits are well fitted. This is different to the Lebail presented in
Figure 7.5 and Figure 7.6. Low values of the refinement factors indicated a good agreement between
measured pattern and calculated profile, see Table 7.3. The GOF, RB, and Rwp are the lowest for
the 2~k-structure. Hence, this framework is better than the three other frameworks, see Table 6.3.
GOF stands for the goodness of fit and is defined as:

GOF =
∑
i

wi(yio − yic)2

N − P
, (7.2)

where N is the number of data points in the diffraction pattern and P is the number of parameters
refined. yio (yic) is the observed (calculated) intensity at the ith incremental step of the pattern.

Note that the mixed terms, although weak, are present in Figure 7.7 b). This low intensity may
be due to a lost of magnetic information, which originates from an average of the intensity over all
directions as one performs powder diffraction. The one phase (2~k-structure) was therefore used as
framework for the determination of the magnetisation of NiNb2O6.

Table 7.3: Fitting parameters associated with different ~k-models for the refinement of NiNb2O6’s magnetic
structure. The volume fractions of the two types of domains are presented at the bottom of the table.

propagation GOF Rp Rwp
vector (%) (%)
( 1

2 , 1
2 , 0) 3.64 5.11 7.44

(0, 1
2 , 0) 6.04 6.75 12.35

( 1
2 , 1

2 , 0)+(0, 1
2 , 0) 2.96 4.12 6.06

Two phases 3.17 4.52 6.48

7.5.4 A new model for the magnetic structure of NiNb2O6

The 7 isotropy subgroups were utilised as models (within the 2~k-structure framework) for the deter-
mination of the magnetic structure of NiNb2O6. Rietveld refinements of the 1.5 K-neutron diffraction
pattern, with Jana, were thus performed for each Shubnikov space groups.

Consider the case where the model is the isotropy subgroup Pb2/c. The Rietveld refinement
of a NDP based on this model is presented in Figure 7.8. The red dots and the continuous black
represent the measured and theoretical patterns, respectively. The green ticks are the Bragg peak
positions of a lattice with the space symmetry Pb2/c. The blue line at the bottom of Figure 7.8 is
derived by subtracting the measured profile from the calculated profile.

There are clear discrepancies between the experimental (red dots) and calculated (black line)
profiles. This is illustrated by the presence of peaks in the blue curve. The dissimilarities occur
at 2θ equal 12.2, 39.3, 49.1 and around 67.7°. For instance, the fit doesn’t take into account the
reflection (0 1 0) at 12.2°. Elsewhere there is a difference between the intensity of the experimental
data (red dots) and the theoretical model (black line), for the reflection (0 2 6) at 39.3°;in fact
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Figure 7.8: Rietveld refinement of the 1.5 K-neutron powder diffraction, using the isotropy subgroup
Pb2/c as model. The red dots and the continuous black represent the measured and theoretical patterns,
respectively. The difference between the measured and calculated profile is illustrated by the blue line.
The green ticks are the Bragg peak positions.
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Figure 7.9: Rietveld refinement of the 1.5 K-neutron powder diffraction, using the isotropy subgroup
Pb21 as model. The red dots and the continuous black represent the measured and theoretical patterns,
respectively. The green ticks are the Bragg peak positions and the blue line corresponds to the difference
between the measured and calculated profile.

the calculated intensity value is about two thirds of the measured value. All these discrepancies
indicate that the subgroup Pb2/c can not be considered as model for the sublattice magnetisation of
NiNb2O6. Consequently Rietveld refinements based on the other 6 subgroups have been performed.

Additionally, a Rietveld refinement based isotropy subgroup Pb21 was performed with Jana.
The result is presented in Figure 7.9. The red dots and black line illustrate the experimental and
calculated data, respectively. The difference between these two values at each 2θ angle corresponds
to the blue line. The Bragg peak positions of a lattice whose space group symmetry is Pb21 are
indicated by the green ticks.

The fit (black line) in Figure 7.9 fits well the experimental data recorded at 1.5 K, as the blue
line is almost a straight line except at 39.3 and 67.7°. The reflection ( 0 1 0) which appears 12.2°
is well fitted in comparison with the fit in Figure 7.8. Although some of discrepancies in intensity
encountered in Figure 7.8 persist, they are improved. For instance, the ratio between the intensity
values of the calculated and experimental profile at 39.3° is no longer 2

3 but 9
10 . However, the re-

finement factors associated with Pb21 fluctuate throughout the refinement. GOF, Rp, Rnucl and
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Figure 7.10: Rietveld refinement of the 1.5 K-neutron powder diffraction, using the isotropy subgroup
Pb21/c as model. The red dots and the continuous black represent the measured and theoretical patterns,
respectively. The green ticks are the Bragg peak positions and the blue line corresponds to the difference
between the measured and calculated profile.

Rmag oscillate around the respective following values: 4.29, 5.54 %, 5.82 % and 14.62 %. GOF is the
goodness of fit. As the refinement did not converge this Shubnikov subgroup was ruled out.

The best fitting of the neutron diffraction patterns measured below TN was obtained for the
isotropy subgroup Pb21/c. The latter is the subgroup with the highest symmetry space group. The
result of the Rietveld refinement of the 1.5 K-neutron diffraction pattern, is presented in Figure 7.10.

The fitting curves (black and blue lines) in Figure 7.10 are very similar to those in Figure 6.9.
For instance, the ratio between the intensity values of the calculated and measured profile at 39.3°
is around 9

10 . This refinement differs from the previous as the refinements converge; in addition the
values of GOF, Rp, Rnucl and Rmag obtained at the end of the refinement were the lowest ones.
GOF, Rp, Rnucl and Rmag converge to 3.71, 5.39 %, 5.47 % and 12.80 % respectively. Hence, the
best candidate (model) for the magnetic structure of NiNb2O6 is Pb21/c.

The magnetic structure associated with this model is presented in Figure 7.11. In this figure
the bigger cell represents the unit cell of the magnetic structure and its lattice parameters are a
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Table 7.4: Wyckoff positions and projections of magnetic moments of Ni2+ ions in the monoclinic unit cell.
Atom Wyckoff positions

x y z
Ni1 0 0.0776(0) 1/4
Ni2 1/2 0.0776(0) 1/4
Ni3 1/4 0.1724(0) 3/4

Magnetic moments projections
Mx My Mz

Ni1 -0.891(6) 0 -3.547(2)
Ni2 1.715(3) 0 1.208(1)
Ni3 0.288(5) 0.108(2) -0.032(2)

= 27.941(4) Å, b = 11.326(0) Å and c = 5.005(0) Å. The small cell is the unit cell of the nuclear
structure.The magnetic unit cell is obtained from the nuclear unit cell by doubling the lengths along
the [1 0 0] and [0 1 0] directions. The blue spheres and the red arrows represent the magnetic
Ni2+ ions and their magnetic moments, respectively. The magnetic moments lie in the a-c plane.
In addition the magnetic moments (red arrows) do not all have the same magnitude nor the same
orientations. The magnitude of the magnetic moments of Ni2+ ions which are situated at x = 0 and
x = 1 is higher than those which are in the middle of unit the unit cell. However, the magnitude and
orientation of Ni2+ ions located at x = 0 and x = 1 are identical. For the sake of simplicity these
ions will be called Ni1.These ions have an antiferromagnetic arrangement of the magnetic moments
with the sequence -up-up-down- along the b-axis.

There are three orbits or non-equivalent Ni2+ in the magnetic structure of NiNb2O6. The first
orbit corresponds to the position on the facets of the monoclinic unit cell along the b-[c plane. These
nickel ions are represented by atom 1 in Figure 7.11 and refer to Ni1. Ni2 refer to Ni2+ ions located
at the middle of the unit cell: x = 1

2 . The other non-equivalent nickel ions are designated by Ni3

and corresponds to nickel ions located at x = 1
4 . Ni2 and Ni3 are illustrated by the numbers 2

and 3 in Figure 7.11, respectively. The magnitudes of the magnetic moments of Ni2+ ions located
in the parallelepiped in Figure 7.11 are lower than that of those which belong to the facets of the
parallelepiped. Ni2 have a bigger magnetic moment than that of Ni3. The Wyckoff positions and
the magnetic moments of orbits of NiNb2O6 are displayed in Table 7.4.
Mx, My and Mz are the projections of a magnetic moment along the [1 0 0], [0 1 0] and [0 0 1]
directions. Table 7.4 shows that the magnitude of the magnetic moments is not uniform throughout
the unit cell. Ni1, Ni2 and Ni3 exhibit a magnetic moment of the order of 3.657(6), 2.098(6) and
0.309(5)µB/Ni2+, respectively. For the sake of simplicity an uniform magnitude of the magnetic
moments within the lattice is one of the assumptions often made. Several Rietveld refinements
were made under that constraints. However these refinements were mostly not successful, as the
calculations did not converge.
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7.6. Conclusion

Figure 7.11: Magnetic structure unit cell of NiNb2O6 with Pb21/c as model. The blue spheres represent
the Ni2+ ions and a red arrow is the magnetic moment it carries. 1, 2 and 3 refer to non-equivalent
magnetic Ni2+ ions: Ni1, Ni2 and Ni3, respectively.

7.6 Conclusion

Representation analysis and magnetic symmetry methods were both used to determine a model
for the magnetic structure of NiNb2O6. Rietveld refinements suggest that the Shubnikov subgroup
Pb21/c is the best model to describe the ordering of Ni2+ below TN = 5.6 K. The growth of NiNb2O6

single crystals via the floating zone technique84 is highly considered as perspective work. It is due
to the fact that single crystals are the best type of crystal solid there exists to investigate the
intrinsic properties of a material. For better understanding of the sublattice magnetic structure of
the columbite NiNb2O6 polarised neutron diffraction on the grown single crystals is envisaged. This
measurement will help establish the relationship between the two modulation vectors ~k1 and ~k1; but
also the relationship between magnetic ion and propagation vectors. Polarised neutron diffraction
will also enable the determination of the direction of the magnetic moments. Finally, magnetic
susceptibility and field dependence magnetisation on the single crystals are envisaged, as they will
shine light on the magnetic anisotropy in NiNb2O6.
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Chapter 8

Conclusions and Outlook

This PhD thesis was about the measurement of thermoelectric transport properties - Seebeck coef-
ficient, electrical and thermal conductivities - and the determination of the magnetic properties of
some polycrystalline AB2O6 oxides. The temperature dependence of the thermoelectric properties
and their analysis with several models helped to make significant conclusions, in the scope of the
use of the AB2O6 semiconducting oxides in high-temperature thermoelectric applications. The core
of this work was dedicated to magnetic structure determination from neutron powder diffraction.
Two methods were used for this purpose and they are the representation analysis and magnetic
symmetry refinement. These methods helped to shine a light on the magnetic structures of two
nickel-based AB2O6 oxides. This Chapter briefly recounts the main contributions that the work
contained in this thesis has made to the fields of thermoelecrtrics and powder neutron diffraction.
It also throws light on few unanswered questions, which can be the beginning of future investigations.

The first novel contribution of the work contained herein is the determination a new magnetic
structure for NiTa2O6. As previously never done before for this antiferromagnetic compound, both
a Shubnikov group and a magnetic structure are attributed to the ordering of the magnetic moments
within the magnetic lattice. In addition, the two previous magnetic models are compared to the
new model derived in this study. Eventually the symmetry of the magnetic lattice indicates that
the insulator NiTa2O6 has some magnetically induced electric polarisation along the c-axis.

The second novel contribution, previously never reported before, is the establishment of a mag-
netic model for the magnetic structure of the columbite NiNb2O6. Two propagation vectors are
needed to describe the antiferromagnetic ordering below the Néel temperature. The 2-~k sublattice
magnetisation is characterised by non collinear magnetic moments, whose magnitude varies with
respect to the Wyckoff positions in the magnetic lattice.

However, a few points related to these two new magnetic structures need to be addressed. The
models were derived from powder neutron diffraction. Hence, these sublattice magnetisations are
not intrinsic properties of NiTa2O6, nor NiNb2O6. Single crystals neutron diffraction is therefore
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highly envisaged to confirm or refute the herein results. For instance, the use of polarised neutrons
on NiNb2O6 single crystals will help better understand the relationship between the two modulation
vectors and the magnetic moments. It will also shine light on the magnitude of the Ni2+ magnetic
moments within the lattice. Polarisation measurements on NiTa2O6 should confirm the multiferroic
character of the new magnetic structure model. To go further, the present work can be resumed
by establishing a model, which will systematically relates the transitions between the possible sub-
lattice magnetizations of a trirutile and its modulation in trirutile. It seems that the distribution
of the cations in NiTa2O6 is at the origin of the discrepancies between the three magnetic structures.

The third novel contribution of this PhD thesis is the report of thermoelectric properties of
Y-doped CdSb2O6 and WV2O6. This study aimed to identify new materials for thermoelectric
technology, which may impact our society positively, in the foreseeable future. The temperature
dependence of the thermopower data reveal that these compounds behave as n-type semiconduc-
tor materials. Analysis of the thermal conductivity of tungsten divanadate oxide indicates that
the lattice contribution dominates the electronic contribution. The electrical conductivity data of
WV2O6 was well reproduced by the variable range hopping (tunneling process) and the band model
(delocalised electrons in closely stacked energy levels). These models are valid at low and high tem-
perature, respectively. The power factors of both compounds, although few orders of magnitude
lower than that of the state-of-the-art thermoelectric oxides, are comparable to that of some estab-
lished TE materials.

In order for these two oxides to reach and/or outperform the best TE oxides, few points need
to be addressed. First and foremost, the thermal conductivities of Y-doped CdSb2O6 need to mea-
sure for a complete characterization of their thermoelectric properties. It would thus lead to the
determination of their figures of merit (ZT) for each of the compounds. Besides, the search for
Cd1−xYxSb2O6 systems with optimal thermoelectric properties will be restricted to compositions
in which x is between 0 and 0.05 %. Regarding the trirutile WV2O6, this herein work discusses the
TE properties of the intrinsic WV2O6. Appropriate doping of this columbite may therefore lead to
an enhance of its thermoelectric properties. Single crystals growth of various compositions of the
trirutile VxW1−xO6 (with 1.7 ≤ x ≤ 2) are envisaged. The study of the effect of the compositions
on their Seebeck coefficient, electrical and thermal conductivities will then be explored.

Finally, this thesis emphasizes the importance of the structural-property relationship; as un-
derstanding the bond between microscopic (atoms) and macroscopic scales (physical properties) is
essential to tailor materials for specific applications. For the herein work the application is the power
generation via the thermoelectric effect. To understand and predict the properties of a material one
ought to seek for the intrinsic transformations which are embedded in the studied material itself:
the crystal structure symmetries.
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Poster presentation

During my doctorate in physics I have participated at various conferences. I presented a poster
on the work on Y-doped CdSb2O6 at the following conferences:

• Electro Ceramics XV in Limoges, 27-29 June in 2016.

• NANOENERGY 2016 programme in Liverpool, 27-29 July 2016 .

• EPSRC Thermoelectric Network UK Meeting, 14-15 Feb 2017, Manchester.

• Electro-chemistry (ECS) conference, 8th June 2017, Liverpool.

Articles

Paper, on the magnetic structure of NiTa2O6, in progress.
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Appendix A

Group Theory fundamentals

The application of a symmetry operation leaves an object unchanged. A set of symmetry elements
{g1, g2, ...,gn} form a group if there exists an operation which assigns to each ordered pair gi, gj ∈
G another element of G202. In addition, a group must fulfill the following four criteria:

• The product of any two elements of the group is itself an element of the group, e.g. gigj= gk,
where gk is another member of the group.

• The associative law must be valid: (gigj)gk = gi(gjgk).

• There exists a unit element e (also called the identity element) such that the product of e with
any element of the group leaves that element unchanged202, i.e. gie = egi = gi.

• Finally for every member gi of G there exists an inverse element g−1
i , such that g−1

i gi = gig
−1
i

= e.

Definition: A class is defined as all the elements in the group that are related by conjuga-
tion202,207. Two elements gi and gj are conjugate to each other if they fulfill the relation:

gi = g−1
k gjgk (A.1)

where gk is any arbitrary element of the group.

Figure A.1: Symmetry operations of a square. An object exhibits a symmetry if the application of the
corresponding symmetry operation leaves the object unchanged. This is the case of a rotation of 90°, 4+,
which transforms the square on the left into the second on the right.
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There exist different types of symmetry operations: rotations, reflections, inversions and improper
rotations202. A symmetry operation transforms an object into a new object which is identical to
the original one - it leaves it invariant. For example consider the group associated with a square,
see Figure 1.7. The numbers 1, 2, 3 and 4 label the vertices and help to visualize the symmetry
operations. There are 8 symmetry operations which transform the vertices but leave the square
unchanged and they form a group:

G = {1, 2, 4+, 4−,mx,my,md,m
′

d}. (A.2)

The first four symmetry elements are the identity, and 4-fold and 2-fold rotation axes, respectively.
The 4-fold and 2-fold rotations rotate the square about its centre by ∼90 and 180 ◦, respectively.
mx and my represent two mirror planes - perpendicular to each other - intersecting the middle of
two opposites sides of the square. The diagonal mirror planes md and m

′

d are located along the
diagonal lines in black in Figure 1.7. In condensed matter physics one deals with crystallographic
structures, also called nuclear structures, which arrange atoms within a specific lattice (orthorhom-
bic, cubic, monoclinic, etc). The symmetries of the crystal then place it in a specific group. A
group of symmetry operations which leave a fixed point in space are called point group operations.
Certain symmetry operations may require translations which leave no point fixed. All crystal struc-
tures can be described by one of the 230 space groups, tabulated in the International Tables for
Crystallography233. The point group of the square shown in Figure 1.2 is 4mm.
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Appendix B

Magnetism Fundamental

B.1 Introduction

In 1907 Pierre Weiss published his work on magnetic materials234. This work highlighted the idea
of a molecular field: it stipulates that the observed magnetization (sum of all magnetic moments)
originates from an intense magnetic field of internal origin. This was the birth of the concept of
ferromagnetism and ultimately the start of the study of magnetic structure. Magnetic structures
comprise an ensemble of ordered magnetic atoms within a particular crystallographic lattice. The
magnetism originates from the presence of unpaired electrons in these atoms. This is typically seen
in some transition metal elements such as Fe, Ni and Co. Below a critical temperature - the Curie
temperature - the internal field forces the moments to align in the same direction. Later on Louis
Néel235 extended this idea by conjecturing that the internal field can take a positive or negative
value. In the latter case he showed that below a critical temperature known as the Néel temperature
it was possible to observe an ordered arrangement of equal numbers of oppositely directed magnetic
moments. Materials showing such behaviour are called antiferromagnetic systems. The blue arrows
in Figure 1.6 represent the magnetic moments of some magnetic atoms. In the first configuration
Figure 1.6a) one deals with a ferromagnetic ensemble, as all ordered magnetic moments have the
same direction. On the other hand the number of arrows pointing up is an equal to the number of
arrows pointing down: it is an antiferromagnetic ensemble.

B.2 Magnetic interactions in magnetic ordered systems

To understand the different magnetic states, it is important to review the different microscopic mech-
anisms related to the magnetic moments. Hence this section reviews the types of interactions which
lead to a long-range ordering of the moments.

B.2.1 The direct exchange interaction

The direct exchange arises from the overlap of the wave functions of two neighbouring magnetic
atoms. It is known as direct exchange because the interaction occurs without the need for an
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B.2. Magnetic interactions in magnetic ordered systems

Figure B.1: Illustration of two magnetic states. An arrow represents a magnetic moment. The top
part a) shows an ensemble of blue arrows all pointing down: one deals with a ferromagnetic system. b)
corresponds to a antiferromagnetic system, as there is an equal number of oppositely directed magnetic
moments.

intermediary66. It is due to the electrostatic or Coulomb potential, and Pauli principle between the
electrons. The Pauli principle states that two or more identical fermions (particles with half-integer
spin) cannot occupy the same quantum state within a quantum system simultaneously. For instance,
if two electrons reside in the same orbital they must have opposite half-integer spins of 1

2 (↑) and -1
2

(↓). Consider the system which consists of two orbitals φi and φj centred on two different atoms (A
and B) and two electrons (1 and 2), see Figure B.1.

Figure B.2: Electrons 1 and 2 orbiting around the nucleus of atoms A and B, respectively.

The resulting wave function ψi is given by:

ψ(r1, r2) = 1√
2

[φi(r1)φj(r2)± φi(r2)φj(r1)]. (B.1)

This function must be symmetrical (+) or anti-symmetrical (-) according to the Pauli principle.
The distance r1 is the distance between electron 1 and the nuclei of atom A. r2 plays the same role
for electron 2 and atom B. The Coulomb repulsion between electrons 1 and 2 can be expressed by:

〈 e2

4πε0|r1 − r1|
〉 = J ±K, (B.2)
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with J been the exchange integral between the two electrons over the two orbitals, and K been a
constant. J is also known as the exchange coupling constant. Eq. (1.1) shows that the magnitude of
the direct exchange becomes negligible as the distance between the atoms (hence electrons) increases.
Nevertheless the exchange is valid for all neighbouring atoms. This is expressed by the following
Hamiltonian:

H = −1
2

∑
i,j

Ji,jSi.Sj. (B.3)

Eq. (1.3) is known as the Heisenberg Hamiltonian. Jij is the exchange coupling constant be-
tween the ith and jth. The pre-factor 1

2 is there to avoid the double-counting over the set of spins.
Note that this equation corresponds to the Ising model of ferromagnetism except that in the Ising
model one deals with a one- or two-dimensional systems236,237. However in many materials, such
as the transition metal compounds, the magnetic ions are separated by non-magnetic ions . The
magnitude of the direct exchange becomes negligible because of the larger distance between mag-
netic ions. Another mechanisms are, therefore, required to explain the magnetism in these structures.

B.2.2 The indirect exchange interaction

In ionic solids the indirect exchange is one of the interactions between magnetic ions, which need to be
taken into account to explain the long-range order in these systems. One speaks of indirect exchange
as an intermediate is required for ”the communication” between magnetic ions. The intermediate
are typically non-magnetic ions (for instance O2−) placed between the magnetic ions. Since the
interaction operates over longer-ranged distances with respect to the short-ranged distances of the
direct exchange the indirect exchange interaction is often called superexchange interaction.
The ordering of the magnetic moments in MnO illustrates well the importance of the superexchange.
MnO crystallizes in a face centered cubic lattice, as shown in Figure B.2(a). The black and red
spheres represent the Mn and O atoms, respectively.

Superexchange occurs as there is overlap between the p orbitals of O2− ions and d orbitals of
Mn2+ ions. Consider the case where the magnetism in a Mn2+ ion is due to a single unpaired
electron. In the antiferromagnetic configuration, electrons of two neighbouring manganese ions can
both hybridize with 1 p-electron of ceO2−, see Figure 1.2(b). Hence the antiferromagnetic ordering
is favoured in this compound, as it lowers the energy of the system; and allows a delocalization of
electrons over the whole structure. Note that the p- and d-orbitals are said to be hybridized. The
superexchange66 is a second-order process and is derived from second-order perturbation theory.
From second order pertubation theory, it can be shown that the energy of the indirect exchange
interaction is related to the hopping t of the electron between magnetic and non-magnetic ions, with
the average repulsive Coulomb interaction U between electrons. More details on the superexchange
interaction can be found in the papers by Anderson238,239, Goodenough240,241 and Kanamori242.
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B.2. Magnetic interactions in magnetic ordered systems

(a) (b)

Figure B.3: (a) Unit cell of the crystal structure of MnO. Neighbouring manganese Mn2+ ions
are connected via O2− ions. (b) Superexchange between O p-orbital and Mn d-orbitals. Source:
http://magnetism.eu/esm/2013/.

B.2.3 The Ruderman-Kittel-Kassuya-Yosida (RKKY) interaction

In some materials the conduction electrons are responsible for the ordering of the magnetic moments.
A localized magnetic moment polarizes the conduction electrons . The polarization of the conduction
electrons is then transferred to a localized magnetic moment at distance r away from the original
magnetic moment. This interaction is therefore indirect like the superexchange, as there is no
direct connection between the magnetic ions. This interaction is known as the RKKY interaction,
after the discoverers of the phenomena: Ruderman and Kittel243, Kasuya244 and Yosida244. It is
the dominant exchange interaction in metals. For a 3-dimensional free electron gas the coupling
constant of the RKKY interaction is given by :

J3D
RKKY (r) = − 1

π
Jno(εF )cos(2kF r)(2kF r)3 , (B.4)

where kF is the radius of the conduction electrons Fermi surface, no (εF ) is the density of states of
electrons near the Fermi energy. J is the direct exchange coupling. Eq. (1.4) shows that the RKKY
is a long range interaction. Moreover the interaction strength J3D

RKKY oscillates with distance r from
between the spins due to a specific Fermi wavelength of electrons.
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