
ar
X

iv
:1

00
6.

29
29

v2
  [

m
at

h.
C

V
] 

 1
9 

N
ov

 2
01

0

QUASICIRCLES AND BOUNDED TURNING CIRCLES
MODULO BI-LIPSCHITZ MAPS

DAVID A HERRON AND DANIEL MEYER

Abstract. We construct a catalog, of snowflake type metric circles, that
describes all metric quasicircles up to bi-Lipschitz equivalence. This is a
metric space analog of a result due to Rohde. Our construction also works
for all bounded turning metric circles; these need not be doubling. As
a byproduct, we show that a metric quasicircle with Assouad dimension
strictly less than two is bi-Lipschitz equivalent to a planar quasicircle.

1. Introduction

By definition, a metric quasicircle is the quasisymmetric image of the unit
circle S1. (See Section 2 for definitions and basic terminology.) We exhibit a
catalog that contains a bi-Lipschitz copy of each metric quasicircle. This is
a metric space analog of recent work by Steffen Rohde [Roh01], so we briefly
describe his result. He constructed a collection R of snowflake type planar
curves with the intriguing property that each planar quasicircle (the image
of S1 under a global quasiconformal self-homeomorphism of the plane) is
bi-Lipschitz equivalent to some curve in R.

Rohde’s catalog is R :=
⋃

Rp, where p ∈ [1/4, 1/2) is a snowflake param-
eter. Each curve in Rp is built in a manner reminiscent of the construction
of the von Koch snowflake. Thus, each R ∈ Rp is the limit of a sequence
(Rn) of polygons where Rn+1 is obtained from Rn by using the replacement
rule illustrated in Figure 1: for each of the 4n edges E of Rn we have two
choices, either we replace E with the four line segments obtained by dividing
E into four arcs of equal diameter, or we replace E by a similarity copy of
the polygonal arc Ap pictured at the top right of Figure 1. In both cases E
is replaced by four new segments, each of these with diameter (1/4) diam(E)
in the first case or with diameter p diam(E) in the second case. The second
type of replacement is done so that the “tip” of the replacement arc points
into the exterior of Rn. This iterative process starts with R1 being the unit
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Figure 1. Construction of a Rohde-snowflake.

square, and the snowflake parameter, thus the polygonal arc Ap, is fixed
throughout the construction. See the discussion at the beginning of §4.C for
more details.

The sequence (Rn) of polygons converges, in the Hausdorff metric, to
a planar quasicircle R that we call a Rohde snowflake constructed with
snowflake parameter p. Then Rp is the collection of all Rohde snowflakes
that can be constructed with snowflake parameter p.

Rohde [Roh01, Theorem 1.1] proved the following.

A planar Jordan curve is a quasicircle if and only if it is
the image of some Rohde snowflake under a bi-Lipschitz
self-homeomorphism of the plane.

Thanks to a celebrated theorem of Ahlfors [Ahl63], there is a simple geo-
metric criterion that characterizes planar quasicircles: a planar Jordan curve
Γ is a quasicircle if and only if it satisfies the bounded turning condition,
which means that there is a constant C ≥ 1 such that for each pair of points
x, y on Γ, the smaller diameter subarc Γ[x, y] of Γ that joins x, y satisfies

(BT) diam(Γ[x, y]) ≤ C |x− y| .

We say Γ is C-bounded turning to emphasize the constant C.
Tukia and Väisälä [TV80] introduced the notion of a quasisymmetry be-

tween metric spaces. In this same paper they established the following metric
space analog of Ahlfors’ result.

A metric Jordan curve is a metric quasicircle if and only if it
is both bounded turning and doubling (that is, of finite Assouad
dimension).

Our catalog S of metric snowflake curves is a collection of metric circles
(S1, d) where the metrics d are given in a simple way by specifying the
diameter of each dyadic subarc of S1. See (3.1) and the end of §3.B for
precise details.
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Our catalog is S :=
⋃

Sσ, and we also employ an auxiliary snowflake
parameter σ ∈ [1/2, 1]. Each (S1, dσ) in Sσ has a metric dσ that is obtained
by the assignment of diameters to each dyadic subarc of S1. As in Rohde’s
construction, at each step there are two choices: the diameter (with respect
to dσ) of a given dyadic subarc is either one-half, or σ, times the diameter
of its parent subarc.

Each (S1, dσ) is a bounded turning circle. Moreover, when σ < 1, (S1, dσ)
has Assouad dimension α ≤ log 2/ log(1/σ) < ∞ (so, 2−1/α ≤ σ < 1), hence
(S1, dσ) is doubling and thus a metric quasicircle; see Lemma 3.2(e). In fact,
each collection Sσ (with σ < 1) contains a bi-Lipschitz copy of every metric
quasicircle with Assouad dimension strictly less than log(2)/ log(1/σ). In
addition, the sub-catalog S1 contains a bi-Lipschitz copy of every bounded
turning circle.

Here is our main result.

Theorem. Let Γ be a metric Jordan curve.

(A) If Γ is bounded turning, then Γ is bi-Lipschitz equivalent to some
curve in S1.

(B) If Γ is a metric quasicircle with Assouad dimension α := dimA(Γ)
and σ ∈ (2−1/α, 1), then Γ is bi-Lipschitz equivalent to a curve in Sσ.

(C) A metric quasicircle is bi-Lipschitz equivalent to a planar quasicircle
if and only if it has Assouad dimension strictly less than two.

This result is quantitative in that the bi-Lipschitz constants depend only on
the given data. For example, if Γ is C-bounded turning, then the bi-Lipschitz
constant in (A) is

L = 8Cmax{diam(Γ), diam(Γ)−1}.

Minor modifications to our proofs reveal that the analogous results hold for
bounded turning Jordan arcs and metric quasiarcs.

In addition, we explain how to recover Rohde’s theorem from our result.
This provides an alternative proof of Rohde’s result that avoids the tech-
nical construction of a “uniform doubling measure” appearing in [Roh01,
Theorem 1.2]. In view of this, our argument somewhat simplifies the proof
of Rohde’s theorem.

We mention that Bonk, Heinonen, and Rohde have established a result
that gives metric quasicircles as metric boundaries of certain metric disks;
see [BHR01, Lemma 3.7].

The novel ideas in our approach include the following. We make exten-
sive use of the fact that every bounded turning metric space is bi-Lipschitz
equivalent to its associated diameter distance space; see Lemma 2.2. In
particular, this permits us to restrict attention to 1-bounded turning Jor-
dan curves. In this setting, the metrics are characterized, up to bi-Lipschitz
equivalence, by knowledge of the diameters of certain subarcs, provided we
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have a sufficiently plentiful collection of subarcs; see Lemma 3.2. Finally,
there is a straightforward way to build a bi-Lipschitz homeomorphism from
one of our model curves onto such a metric Jordan curve; see Proposition 2.6
and Lemma 3.6.

This document is organized as follows. Section 2 contains preliminary
information including background material on Assouad dimension (in §2.B)
and on quasisymmetric homeomorphisms (in §2.C). We prove a result about
dividing an arc into subarcs of equal diameter (in §2.E) and (in §2.F) give
a useful tool for constructing homeomorphisms between Jordan curves. We
construct our dyadic models in §3.B and prove our Theorem in Section 4.
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2. Preliminaries

Here we set forth our (relatively standard) notation and terminology and
present fundamental definitions and basic information. First we provide
some background on quasisymmetric maps, doubling, and bounded turning.
In §2.D we show that we can restrict attention to 1-bounded turning circles.
In §2.E we prove that one can divide an arc into subarcs of equal diameter.
In §2.F we establish a useful proposition for constructing homeomorphisms
between Jordan arcs or curves.
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2.A. Basic Information. For the record, N denotes the set of natural num-
bers, i.e., the positive integers.

We view the unit circle S1 as the unit interval with its endpoints identified;
that is, S1 = [0, 1]/{0∼1} = [0, 1]/∼ where s ∼ t if and only if either s = t
or {s, t} = {0, 1}. Then λ denotes the (normalized) arc-length metric on S1:
for s, t ∈ S1 with say 0 ≤ s ≤ t ≤ 1,

λ(s, t) := min{t− s, 1− (t− s)} .

A (closed) Jordan curve is the homeomorphic image of the circle S1 and
a metric Jordan curve is a Jordan curve with a metric on it. A Jordan arc
is the homeomorphic image of the unit interval [0, 1] and a metric Jordan
arc is a Jordan arc with a metric on it. Thus Jordan curves and arcs are
non-degenerate compact spaces, where non-degenerate means not a single
point.

Given distinct points x, y on a metric Jordan curve Γ, we write Γ[x, y] to
denote the closure of the smaller diameter component of Γ \ {x, y}; when
both components have the same size, we randomly pick one. We often fix
an orientation on Γ, and then [x, y] stands for the subarc of Γ that joins x
to y.

We note the following easy consequence of uniform continuity.

2.1. Lemma. Let Γ be a metric Jordan curve or arc. Then for each ε > 0,
there are at most finitely many non-overlapping subarcs of Γ that all have
diameter at least ε.

Proof. Suppose Γ = ϕ(S1) for some homeomorphism ϕ. Let ε > 0 be given.
Choose δ > 0 so that for each subarc I ⊂ S1 with diamλ(I) < δ we have
diam(ϕ(I)) < ε/2. Pick N ∈ N with 1/N < δ. Partition S1 into adjacent
equal length subarcs I1, . . . , IN .

Let A be a subarc of Γ with diam(A) ≥ ε. Then A must contain at least
one of the subarcs ϕ(Ii). Thus there are at most N such subarcs A.

A similar argument applies when Γ is an arc. �

Throughout this article we employ the Polish notation |x − y| for the
distance between points x, y in a metric space. The bounded turning con-
dition (BT), also called Ahlfors’ three point condition, makes sense in any
connected metric space: this holds whenever points can be joined by con-
tinua whose diameters are no larger than a fixed constant times the distance
between the original points. To be precise, given a constant C ≥ 1, we say
that X has the C-bounded turning property if each pair of points x, y ∈ X
can be joined by a continuum Γ[x, y] satisfying (BT). The bounded turn-
ing condition has a venerable position in quasiconformal analysis; see for
example [TV80], [Geh82a], [NV91], [Tuk96] and the references therein.
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A metric Jordan curve that is bounded turning is called a bounded turning
circle, or a C-bounded turning circle if we wish to indicate the bounded
turning constant C.

2.B. Assouad Dimension. A metric space is doubling if there is a number
N such that every subset of diameter D has a cover that consists of at most
N subsets each having diameter at most D/2. It follows that every set of
diameter D has a cover by (at most) Nk sets each of diameter at most D/2k.

The Assouad dimension dimA(X) of a metric space X is the infimum of
all numbers α > 0 with the property that there exists a constant C > 0 such
that for all D > 0, each subset of diameter D has a cover consisting of at
most Cε−α sets each of diameter at most εD.

An equivalent description can be given in terms of separated sets. A subset
S ⊂ X is r-separated provided it is non-degenerate, meaning card(S) > 1,
and for all distinct x, y ∈ S, |x− y| ≥ r; in particular, diam(S) ≥ r. Then
dimA(X) is the infimum of all numbers α > 0 with the property that there
exists a constant C > 0 such that for all r > 0, each r-separated set S ⊂ X
has card(S) ≤ C(diam(S)/r)α.

Evidently, a metric space has finite Assouad dimension if and only if it
is doubling. The Assouad dimension was introduced by Assouad in [Ass77]
(see also [Ass79]). A comprehensive overview is given in [Luu98]. The role of
doubling spaces in the general theory of quasisymmetric maps is explained
in [Hei01]. The Assouad dimension of a space is a bi-Lipschitz invariant,
and it is always at least the Hausdorff dimension.

2.C. Quasisymmetric Homeomorphisms. A homeomorphism X
f
→ Y

of metric spaces X, Y is called a quasisymmetry if there is a homeomorphism
η : [0,∞) → [0,∞) such that for all distinct x, y, z ∈ X and t ∈ [0,∞),

|x− y|

|x− z|
≤ t =⇒

|f(x)− f(y)|

|f(x)− f(z)|
≤ η(t).

This notion of quasisymmetry was introduced by Tukia and Väisälä in
[TV80] where they also studied weak-quasisymmetries. A homeomorphism
f : X → Y is a weak-quasisymmetry if there is a constant H ≥ 1, such that
for all distinct x, y, z ∈ X ,

|x− y|

|x− z|
≤ 1 =⇒

|f(x)− f(y)|

|f(x)− f(z)|
≤ H.

Clearly every quasisymmetry is a weak-quasisymmetry. Tukia and Väisälä
proved that each weak-quasisymmetry from a pseudo-convex space to a
doubling space is a quasisymmetry [TV80, Theorem 2.15]; Heinonen has
a similar result for maps from a connected doubling space to a doubling
space [Hei01, Theorem 10.19]. In particular, this holds for maps between
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Euclidean spaces. However, a weak-quasisymmetry may fail to be quasisym-
metric if the target space is not doubling, as illustrated by an example in
the paper by Tukia and Väisälä.

As discussed in the Introduction, a metric quasicircle is the quasisymmet-
ric image of S1; thanks to work of Tukia and Väisälä, we know that these
are precisely the doubling bounded turning circles. Recently the second au-
thor [Mey10] established the following characterization of bounded turning
circles.

A metric Jordan curve is bounded turning if and only if it is a
weak-quasisymmetric image of the unit circle.

2.D. Diameter Distance. Here we show that we can always restrict atten-
tion to 1-bounded turning circles. More precisely, we show that any bounded
turning circle is bi-Lipschitz equivalent to a 1-bounded turning circle. The
relevant tool employed is the notion of diameter distance† dd that is defined
on any path connected metric space (X, |·|) by

dd(x, y) := inf{diam(γ) | γ a path in X joining x, y } .

It is not hard to see that dd is a metric on X . Here are some additional
properties of dd.

2.2. Lemma. Let (Γ, |·|) be a metric Jordan curve or a metric Jordan arc
and let dd be the associated diameter distance.

(a) The dd-diameter of any subarc A of Γ equals its diameter with respect
to the original metric on X; that is, diamdd(A) = diam(A).

(b) For all points x, y ∈ Γ, diamdd(Γ[x, y]) = dd(x, y). In particular,
(Γ, dd) is 1-bounded turning.

(c) (Γ, |·|) is C-bounded turning if and only if the identity map (Γ, dd)
id
→

(Γ, |·|) is C-bi-Lipschitz.

Proof. To prove (a), first observe that for all x, y ∈ Γ, |x − y| ≤ dd(x, y),
so diam(A) ≤ diamdd(A). Next, for all x, y ∈ A, dd(x, y) ≤ diam(A), so
diamdd(A) ≤ diam(A).

Now (b) follows directly from (a) since

dd(x, y) = diam(Γ[x, y]) = diamdd(Γ[x, y]) .

It remains to establish (c). If (Γ, |·|) is C-bounded turning, then for all
x, y ∈ Γ

dd(x, y) = diam(Γ[x, y]) ≤ C |x− y| ≤ C dd(x, y)

so the identity map is C-bi-Lipschitz. Conversely, if this map is C-bi-
Lipschitz, then for all x, y ∈ Γ

diam(Γ[x, y]) = diamdd(Γ[x, y]) = dd(x, y) ≤ C |x− y|

†This is also called inner diameter distance.
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and therefore (Γ, |·|) is C-bounded turning. �

We remark that in general the identity map (X, dd)
id
−→ (X, |·|) need not

be a homeomorphism. A simple example of this is the planar comb space

X := ([0, 1]× {0}) ∪ ({0} × [0, 1])

∞
⋃

n=1

({1/n} × [0, 1]) ⊂ R
2

equipped with Euclidean distance |·|. If zn := (1/n, 1) and a := (0, 1), then
|zn − a| → 0 as n → ∞, whereas dd(zn, a) ≥ 1 for all n. Also, (X, |·|) is
compact but (X, dd) is not.

2.E. Division of Arcs. Here we prove that any metric Jordan arc can
be divided into any given number of subarcs each having exactly the same
diameter.

The problem of finding points on a metric Jordan arc such that consecutive
points are at the same distance is non-trivial. In 1930 Menger gave a proof
[Men30, p. 487], that is short, simple and natural, but wrong. It was proved
for arcs in Euclidean space in [AB35], and in the general case (indeed in
more generality) in [Sch40, Theorem 3]; see also [Väi82].

For the case at hand, i.e., for bounded turning arcs, it suffices to find
adjacent subarcs that have equal diameter. We give the following elementary
proof for this problem.

2.3. Proposition. Let A be a metric Jordan arc and N ≥ 2 an integer.
Then we can divide A into N subarcs of equal diameter.

Proof. We may assume that A is the unit interval [0, 1] equipped with some
metric d. We claim that there are points 0 = s0 < s1 < · · · < sN−1 < sN = 1
such that

diam[s0, s1] = diam[s1, s2] = · · · = diam[sN−1, sN ]

where diam denotes diameter with respect to the metric d. When N = 2
this follows by applying the Intermediate Value Theorem to the function
[0, 1] ∋ s 7→ diam[0, s]− diam[s, 1].

According to Lemma 2.2(a), we may replace d by its associated diameter
distance; thus we may assume from the start that for any [s, t] ⊂ [0, 1]

(2.4) d(s, t) = diam[s, t] .

Next, we modify d to get a metric dε that is strictly increasing in the sense
that

(2.5) [s, t] ( [s′, t′] ⊂ [0, 1] =⇒ dε(s, t) < dε(s
′, t′) .

The crucial point here is the strict inequality, which need not hold in general.
To this end, fix ε > 0 and for all s, t ∈ [0, 1] set

dε(s, t) := d(s, t) + ε|t− s| .
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Then from (2.4) it follows that

diamε[s, t] = diam[s, t] + ε|t− s| = dε(s, t) ,

where diamε denotes diameter with respect to dε. This immediately implies
(2.5).

We now show that [0, 1] can be divided into N subintervals of equal dε-
diameter. Consider the compact set S := {s = (s1, . . . , sN−1) | 0 ≤ s1 ≤
· · · ≤ sN−1 ≤ 1}. Set s0 := 0, sN := 1. The function ϕ : S → R defined by

ϕ(s) := max
0≤i≤N−1

diamε[si, si+1]− min
0≤j≤N−1

diamε[sj, sj+1]

assumes a minimum on S. If this minimum is zero, we are done. Otherwise,
there are adjacent intervals [si−1, si], [si, si+1] that have different dε-diameter.
Using the Intermediate Value Theorem as before, we can find s′i ∈ [si−1, si+1]
such that diamε[si−1, s

′
i] = diamε[s

′
i, si+1]. Then from (2.5) it follows that

min
0≤j<N

diamε[sj, sj+1] < diamε[si−1, s
′
i]

= diamε[s
′
i, si+1] < max

0≤i<N
diamε[si, si+1].

Applying this procedure to all subintervals of maximal dε-diameter we obtain
a strictly smaller minimum for the function ϕ, which is impossible. Thus the
minimum must be zero, and so we can subdivide [0, 1] into N subintervals
of equal dε-diameter.

Consider now a sequence εn ց 0, as n → ∞. Let sn1 < · · · < snN−1 be the
points that divide [0, 1] into N subintervals of equal diameter with respect
to dεn. We can assume that for all 1 ≤ j < N , all points snj converge to sj
as n → ∞. It follows that for all 1 ≤ i, j < N ,

diam[si, si+1] = lim
n→∞

diamεn[s
n
i , s

n
i+1] = lim

n→∞
diamεn[s

n
j , s

n
j+1] = diam[sj , sj+1]

as desired. �

The previous Lemma is also true for metric Jordan curves Γ. In this case
we are free to choose any point in Γ to be an endpoint of one of the subarcs.

2.F. Shrinking Subdivisions. Here we present a useful tool for construct-
ing homeomorphisms between Jordan curves; see Proposition 2.6.

We begin with some terminology. Let Γ be a metric Jordan curve or arc.
A sequence (An)∞1 is a shrinking subdivision for Γ provided:

• Each An is a finite decomposition of Γ into compact arcs. Thus each
An is a finite set of non-overlapping non-degenerate compact subarcs
of Γ that cover Γ. (Here non-overlapping means disjoint interiors and
non-degenerate means not a single point.)

• Each An+1 is a subdivision of An; i.e., for each arc A in An+1 there
is a (unique) arc in An, called the parent of A, that contains A.
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• The subdivisions shrink, meaning that max
A∈An

diam(A) → 0 as n → ∞.

Assume (An)∞1 is a shrinking subdivision for Γ. We call (An)∞1 a descen-
dant sequence if A1 ⊃ A2 ⊃ . . . and An ∈ An for all n ∈ N; thus each An is
the parent of An+1. Note that for any descendant sequence (An)∞1 ,

⋂∞
1 An is

a single point. Also, for each point x ∈ Γ, there exists a descendant sequence
(An

x)
∞
1 with {x} =

⋂∞

1 An
x; such a descendant sequence need not be unique,

but there can be at most two such sequences.
Shrinking subdivisions are useful for constructing homeomorphisms be-

tween metric Jordan curves; see §4.A, §4.B, §4.C.

2.6. Proposition. Let A and B both be metric Jordan curves or metric
Jordan arcs. Suppose (An)∞1 and (Bn)∞1 are shrinking subdivisions for A and
B respectively. Assume these subdivisions are combinatorially equivalent,
meaning that for each n ∈ N there are bijective maps Φn : An → Bn such
that for all A, Ã ∈ An and A0 ∈ An+1

A ∩ Ã = ∅ ⇐⇒ Φn(A) ∩ Φn(Ã) = ∅ ,

A0 ⊂ A ⇐⇒ Φn+1(A0) ⊂ Φn(A) .

Then the sequence (Φn)∞1 induces a homeomorphism A
ϕ
→ B with the prop-

erty that

for all n ∈ N and all A ∈ An , ϕ(A) = Φn(A) .

Proof. Let a ∈ A and select a descendant sequence (An)∞1 with {a} =
⋂∞

1 An. Setting Bn := Φn(An) we obtain a descendant sequence (Bn)∞1 with,

say, {b} :=
⋂∞

1 Bn. Suppose (Ãn)∞1 is a second descendant sequence with

{a} =
⋂∞

1 Ãn. Let B̃n := Φn(Ãn) and {b̃} =
⋂∞

1 B̃n. Since An ∩ Ãn 6= ∅,

Bn ∩ B̃n 6= ∅ and therefore

|b− b̃| ≤ diam(Bn) + diam(B̃n) → 0 as n → ∞ .

Thus b̃ = b and so there is a well defined map ϕ : A → B given by setting
ϕ(a) := b.

Two distinct points a1, a2 ∈ A lie in disjoint arcs A1, A2 ∈ An, for suffi-
ciently large n ∈ N, and then ϕ(A1)∩ϕ(A2) = ∅, so ϕ(a1) 6= ϕ(a2) verifying
that ϕ is injective.

Given b ∈ B and a descendant sequence (Bn)∞1 with {b} =
⋂∞

1 Bn, An :=
(Φn)−1(Bn) defines a descendant sequence (An)∞1 with, say, {a} :=

⋂∞
1 An,

and then ϕ(a) = b. Thus ϕ is surjective.
Let ε > 0 be arbitrary. Fix an n ∈ N such that max{diam(B) | B ∈

Bn} < ε/2. Let δ := min{dist(A1, A2) | A1, A2 ∈ An ; A1 ∩ A2 = ∅}.
Suppose a1, a2 ∈ A with |a1 − a2| < δ. Pick Ak ∈ An with ak ∈ Ak. The
definition of δ ensures that A1 ∩A2 6= ∅. Therefore,

|ϕ(a1)− ϕ(a2)| ≤ diam(ϕ(A1)) + diam(ϕ(A2)) ≤ ε
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and so ϕ is (uniformly) continuous and hence a homeomorphism. �

3. Dyadic Subarcs and Diameter Functions

Here we give precise definitions of our model curves, i.e., our model circles.
These are given by defining metrics on S1. Since we can restrict attention
to 1-bounded turning circles (thanks to Lemma 2.2(b,c)), it suffices to only
know the diameters of certain subarcs, provided we have a sufficiently plenti-
ful collection of subarcs; for this purpose we use the dyadic subarcs described
in §3.A. We introduce the notion of a dyadic diameter function in §3.B; these
provide a simple method for constructing metrics on S1. Then in §3.D we
establish a convenient way to detect when two such metrics are bi-Lipschitz
equivalent, and also when a given metric Jordan curve is bi-Lipschitz equiv-
alent to S1 with such a metric.

3.A. Dyadic Subarcs. With our convention that S1 = [0, 1]/{0∼1}, the
nth-generation dyadic subarcs of S1 (obtained by dividing S1 into 2n subarcs
of equal diameter) are the subarcs of the form

Ink := [k/2n, (k + 1)/2n] where k ∈ {0, 1, . . . , 2n − 1}.

Noting that I0 := I00 := S1, we define

In := {Ink | k ∈ {0, 1, . . . , 2n − 1}} and then I :=

∞
⋃

n=0

In.

Each dyadic subarc In ∈ In contains exactly two In+1, Ĩn+1 ∈ In+1 that we
call the children of In, and then In is the parent of each of In+1, Ĩn+1.

It is convenient to introduce some terminology. Often, we denote the
children or sibling or parent of a generic I ∈ I by

I0 , I1 or Ĩ or Î

respectively; implicit in the use of the latter two notations is the requirement
that I 6= S1.

Clearly, (In)∞1 is a shrinking subdivision for S1 in the sense of §2.F. Recall
too that a sequence (In)∞n=0 of dyadic subarcs In ∈ In is a descendant
sequence provided I0 ⊃ I1 ⊃ I2 ⊃ . . . ; that is, for each n, In+1 is a child
of In. We note that for each x ∈ S1 there is a descendant sequence (Inx )

∞
n=0

with {x} =
⋂∞

n=0 I
n
x ; such a sequence is unique unless x is a dyadic endpoint

in which case there are exactly two such sequences.
By connecting each arc to its parent, we can view I as the vertex set of a

rooted binary tree. In this connection, we use the following elementary fact
on various subtrees.

Kőnig’s Lemma. A rooted tree with infinitely many vertices, each of finite
degree, contains an infinite simple path.
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In our setting this means that each infinite subtree contains a descendant
sequence.

In the proof of part (B) of our Theorem it will be convenient to “do m
steps at once”. This means that instead of dividing an arc into two subarcs,
we will divide it into 2m subarcs. With this in mind, we also consider the
family J of all 2m-adic subarcs; thus

J :=
∞
⋃

n=0

J n where J n = Imn.

Each J n contains the 2mn subarcs of the form Jn
k := [k/2mn, (k + 1)/2mn]

in Imn with k ∈ {0, 1, . . . , 2mn − 1}. Each such arc Jn has 2m children, i.e.,
arcs Jn+1 ∈ Im(n+1), all of which are contained in Jn.

3.B. Dyadic Diameter Functions. A dyadic diameter function ∆ assigns
a diameter ∆(I) to each dyadic subarc I ∈ I. More precisely, we call
∆ : I → (0, 1] a dyadic diameter function constructed using the snowflake
parameter σ ∈ [1/2, 1] provided ∆(S1) = 1 and

∀ I ∈ I , either ∆(I0) = ∆(I1) :=
1

2
∆(I) or ∆(I0) = ∆(I1) := σ∆(I)

where I0, I1 are the two children of I. When σ = 1, we also require

lim
n→∞

max {∆(I) | I ∈ In} = 0 .

If σ < 1, this latter condition is automatically true. The snowflake parameter
σ is kept fixed throughout the construction.

Each dyadic diameter function ∆ produces a distance function d = d∆ on
S
1 defined by

(3.1) d(x, y) = d∆(x, y) := inf

N
∑

k=1

∆(Ik)

where the infimum is taken over all xy-chains I1, . . . , IN in I; thus x and y
lie in I1∪· · ·∪IN , each Ik belongs to I, and for all 2 ≤ k ≤ N , Ik−1∩Ik 6= ∅.

Now we present various properties of this metric. Our ‘diameter function’
terminology is motivated by item (d) below.

3.2. Lemma. Let I
∆
→ (0,∞) be a dyadic diameter function and define

d := d∆ as in (3.1). Then:

(a) d is a metric on S1.
(b) The identity map id : (S1, d) → (S1, λ) is a 1-Lipschitz homeomor-

phism; recall that λ is the normalized length metric on S1; see §2.A.
(c) (S1, d) is 1-bounded turning (so d is its own diameter distance).
(d) The diameter (with respect to d) of each dyadic subarc is given by ∆;

i.e., for all n ∈ N and all I ∈ In, diamd(I) = ∆(I).
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(e) If ∆ is constructed using a snowflake parameter σ ∈ [1/2, 1), then
the Assouad dimension of (S1, d) is at most log 2/ log(1/σ). Equal-
ity holds for the “extremal model” where we take ∆(I0) = ∆(I1) =
σ∆(I) for both children I0, I1 of each I ∈ I.

Proof. (a) It is clear that d is non-negative, symmetric, and satisfies the
triangle inequality. Given x ∈ S

1 and n ∈ N, let Inx ∈ In be a dyadic
subarc containing x. Since (Inx )

∞
1 is an xx-chain, d(x, x) ≤ ∆(Inx ) → 0 (as

n → ∞), so d(x, x) = 0. Since ∆(In) ≥ 2−n = diamλ(I
n), it follows that

d(x, y) ≥ λ(x, y). Thus d(x, y) = 0 if and only if x = y.

(b) This follows from Proposition 2.6 and the penultimate sentence in the
proof of (a).

(d) Fix I ∈ In with n ≥ 1. For all points x, y ∈ I, I is an xy-chain, so
d(x, y) ≤ ∆(I) and thus diamd(I) ≤ ∆(I). The opposite inequality follows
from the observation that any chain joining the endpoints of I must cover
either I or its sibling Ĩ.

(c) To demonstrate that (S1, d) is 1-bounded turning, fix distinct points
x, y ∈ S1. Let [x, y] and [y, x] be the two closed arcs on S1 between x, y (i.e.,
the closures of the components of S1 \ {x, y}). Assume that diamd([x, y]) ≤
diamd([y, x]). Next let I1, . . . , IN be any xy-chain. Then I1 ∪ · · · ∪ IN ⊃ A,
where either A = [x, y] or A = [y, x], so diamd([x, y]) ≤ diamd(A).

For any a, b ∈ A, I1, . . . , IN is an ab-chain; therefore

d(a, b) ≤
N
∑

n=1

∆(In) , and thus diamd([x, y]) ≤ diamd(A) ≤
N
∑

n=1

∆(In) .

Taking the infimum over all such xy-chains I1, . . . , IN yields

diamd([x, y]) ≤ d(x, y) .

(e) First, suppose ∆ is constructed using a snowflake parameter σ ∈ [1/2, 1).
Let α := log 2/ log(1/σ), so σ−α = 2. Fix an arbitrary ε ∈ (0, 1]. Choose
n ∈ N so that σn < ε ≤ σn−1. Consider a dyadic subarc In ∈ In. Then
diamd(I

n) = ∆(In) ≤ σn < ε.
Now let A be any ε-separated set in (S1, d). Then A contains at most one

point in each dyadic subarc In ∈ In. Thus

card(A) ≤ 2n =
(

σ−α
)n

= σ−α
(

σn−1
)−α

≤ 2 ε−α .

It follows that the Assouad dimension of (S1, d) is at most α; see §2.B.

Finally, consider the dyadic diameter function given by setting ∆(In+1) :=
σ∆(In) (for each child In+1 ∈ In+1 of every In ∈ In) and its corresponding
metric d = d∆. Then for each n ∈ N, the set An := {k/2n | 0 ≤ k < 2n}
of nth-generation endpoints is σn-separated in (S1, d). Assume constants
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C > 0, α > 0 are given so that the number of ε-separated points is at most
Cε−α. Taking ε := σn we obtain

Cε−α = C(σn)−α = C(σ−α)n ≥ card(An) = 2n , so α ≥
log 2

log(1/σ)
. �

Given σ ∈ [1/2, 1], we let Sσ be the collection of all metric circles (S1, d),
where the metric d = d∆ is defined as in (3.1) and ∆ : I → (0, 1] is any dyadic
diameter function constructed using the snowflake parameter σ. Then

S :=
⋃

σ∈[1/2,1]

Sσ

is our catalog of snowflake type metric circles. Thanks to the Tukia-Väisälä
characterization, Lemma 3.2(c,e) imply that for σ ∈ [1/2, 1), each curve in
Sσ is a metric quasicircle.

The curves in S1 are bounded turning circles, but need not be metric
quasicircles since they may fail to be doubling. There is a simple test for
doubling that we give below in Lemma 3.10.

3.C. 2m-adic Diameter Functions. We also require 2m-adic diameter func-
tions; recall (see the end of §3.A) that J denotes the family of 2m-adic sub-
arcs of S1. We call ∆ : J → (0, 1] a 2m-adic diameter function constructed
using the snowflake parameter τ ∈ [1/2m, 1] provided ∆(S1) = 1 and

∀ J ∈ J , either ∆(J0) = ∆(J1) = · · · = ∆(J2m−1) :=
1

2m
∆(J)

or ∆(J0) = ∆(J1) = · · · = ∆(J2m−1) := τ ∆(J)

where J0, . . . , J2m−1 are the children of J . The snowflake parameter τ is
fixed throughout the construction. If τ = 1, we also require

lim
n→∞

max {∆(J) | J ∈ J n} = 0 .

When τ < 1 this latter condition is automatically true.

Just as for dyadic diameter functions, each 2m-adic diameter function ∆
has an associated distance function d∆ defined as in (3.1) but now we only
consider xy-chains chosen from J . Lemma 3.2 remains valid for 2m-adic
diameter functions; however, in part (e) we must take σ = τ 1/m, where
the 2m-adic diameter function is constructed using the snowflake parameter
τ ∈ [1/2m, 1].

We note the following useful fact. For each dyadic arc I ∈ I, there exist
2m-adic arcs Jn ∈ J n and Jn+1 ∈ J n+1 such that

(3.3) Jn+1 ⊂ I ⊂ Jn .

Each 2m-adic diameter function ∆ : J → (0, 1], with snowflake parameter
τ , has a natural extension to a dyadic diameter function ∆ : I → (0, 1],
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with snowflake parameter σ := τ 1/m, that is defined as follows. Fix a subarc
Jn ∈ J and let Jn+1 ⊂ Jn be any child of Jn. Let Jn =: Imn ⊃ Imn+1 ⊃
· · · ⊃ Im(n+1) := Jn+1 be the finite descendant sequence from I determined
by Jn+1 and Jn. Set

ρ := [∆(Jn+1)/∆(Jn)]1/m (so, ρ ∈ {1/2, τ 1/m})

and for each i ∈ {0, 1, . . . , m} define

∆(Imn+i) := ρi∆(Jn) .

In view of (3.3), this procedure defines ∆(I) for each I ∈ I. Note that
∆(Imn+0) = ∆(Jn) and ∆(Imn+m) = ∆(Jn+1), so ∆ : I → (0, 1] is an
extension of ∆: J → (0, 1]. Clearly this extension is a dyadic diameter
function constructed with the snowflake parameter σ = τ 1/m.

3.4. Lemma. Let ∆: J → (0, 1] be a 2m-dyadic diameter function that has
been extended to all dyadic intervals, i.e., to a dyadic diameter function
∆: I → (0, 1], as described above. Let dI and dJ be the metrics defined via
∆|I and ∆|J respectively, meaning by (3.1) and using chains from I and J
respectively. Then for all x, y ∈ S1,

1

2m
dJ (x, y) ≤ dI(x, y) ≤ dJ (x, y) .

Proof. The right-hand inequality holds because there are more xy-chains
available when we use subarcs from I. To prove the left-hand inequality,
let I1, . . . , IN be an xy-chain from I. Now use (3.3) to get a corresponding
xy-chain J1, . . . , JN from J and with J ′

k ⊂ Ik ⊂ Jk where J ′
k is some child

of Jk. Then for each k

∆(Ik) ≥ ∆(J ′
k) ≥ 2−m∆(Jk) , so dJ (x, y) ≤

N
∑

k=1

∆(Jk) ≤ 2m
N
∑

k=1

∆(Ik) .

Taking an infimum gives dJ (x, y) ≤ 2mdI(x, y). �

The previous lemma and prior discussion reveal that in order to prove
that a given metric circle (Γ, |·|) is bi-Lipschitz equivalent to a curve in Sσ,
it is sufficient to construct a 2m-adic model circle (with snowflake parameter
τ = σm) that is bi-Lipschitz equivalent to (Γ, |·|); this will yield a dyadic
model circle (with snowflake parameter σ) bi-Lipschitz equivalent to (Γ, |·|).

3.5. Remark. Rohde’s construction is based on 4-adic arcs rather than dyadic
arcs. Results similar to the above also hold in this case. Namely each
4m-adic diameter function

⋃

k I
4mk

→ (0, 1], with snowflake parameter τ
in [1/4m, 1], has an extension to a 4-adic diameter function with snowflake
parameter σ := τ 1/m ∈ [1/4, 1]. The analog of Lemma 3.4 holds: the metrics
constructed from these two diameter functions are bi-Lipschitz equivalent.
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3.D. Bi-Lipschitz Equivalence. Let (Γ, |·|) be a bounded turning circle
and (S1, d∆) be a model circle where ∆ is some dyadic diameter function. In
the following we show that to prove bi-Lipschitz equivalence of (Γ, |·|) and
(S1, d∆), it is enough to show bi-Lipschitz equivalence for dyadic subarcs.
More precisely, we establish the following result.

3.6. Lemma. Let (Γ, |·|) be a C-bounded turning circle and d = d∆ a metric
on S1 defined via a 2m-adic diameter function ∆. Let ϕ : S1 → Γ be a
homeomorphism. Suppose there exists a constant K ≥ 1 such that for all
J ∈ J ,

K−1 diam(ϕ(J)) ≤ ∆(J) ≤ K diam(ϕ(J)) .

Then (S1, d)
ϕ
→ (Γ, |·|) is L-bi-Lipschitz where L := 2m+1C K.

Before proving this lemma (see 3.9), we first give a simple way to estimate
the diameter of an arc in terms of the diameters of dyadic subarcs.

3.7. Lemma. Let J
∆
→ (0, 1] be a 2m-adic diameter function with associated

metric d = d∆. For each arc A ⊂ S
1, define

δ(A) = δ∆(A) := max{∆(I) | I ⊂ A, I ∈ J }.

Then for all arcs A ⊂ S1,

δ(A) ≤ diamd(A) ≤ 2m+1 δ(A).

In fact, there are 2m-adic arcs I, J ∈ J such that I ∪ J ⊂ A ⊂ Î ∪ Ĵ ,
∆(I) = δ(A), and either I = J or Î , Ĵ are adjacent. Here Î , Ĵ ∈ J are the
parents of I, J relative to J .

Proof. Let A be a subarc of S1. Suppose we have verified the existence of
the described 2m-adic arcs I, J ∈ J . Then

δ(A) = ∆(I) = diamd(I) ≤ diamd(A) ≤ diamd(Î ∪ Ĵ)

≤ diamd(Î) + diamd(Ĵ) = ∆(Î) + ∆(Ĵ)

≤ 2m[∆(I) + ∆(J)] ≤ 2m+1∆(I) = 2m+1 δ(A) .

Thus it suffices to exhibit such I and J .

Suppose F ⊂ J is some family of 2m-adic arcs (e.g., defined by certain
properties). We say that an arc In ∈ J n is maximal with respect to F
provided In ∈ F and for all J l ∈ J l with J l ∈ F , either ∆(J l) < ∆(In) or

∆(J l) = ∆(In) and l ≥ n .

Thus In is the “largest” arc in F , and when there are several such large
arcs, “seniority wins”. Note that the parent of such a maximal In will not
belong to F .

Now assume A is the oriented arc [a, b] ⊂ S
1 = [0, 1]/∼ with 0 < a < b < 1.

Pick I = In ∈ J so that I ⊂ A, ∆(I) = δ(A), and such that I is maximal
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among all such arcs. Let Î ⊃ I be the J -parent of I. If A ⊂ Î, then upon
setting J := I we are done.

Assume that A 6⊂ Î. The maximality of I ensures that one endpoint of Î,
without loss of generality the left endpoint, is not contained in A. Let y be
the right endpoint of Î. Then [a, y] ⊂ Î.

Now consider subarcs J ∈ J that lie in A and to the right of y, and select
the largest of these. More precisely, let J = J l ∈ J be the maximal 2m-adic
subarc that contains y as its left endpoint and is contained in [y, b]. Note
that the maximality of I implies that

(3.8) either l ≥ n or ∆(J) < ∆(I) .

Consider the parent Ĵ of J . We claim that Ĵ contains a point to the right
of b, and then since A = [a, y] ∪ [y, b] ⊂ Î ∪ Ĵ , we are done. If Ĵ did not
contain a point to the right of b, then it would have to contain a point to
the left of y, but as we now show this would lead to a contradiction.

So, suppose Ĵ contains a point to the left of y. Then in particular, y is
an interior point of Ĵ . Since y is an endpoint of Î, we cannot have Î ⊃ Ĵ
nor Î = Ĵ , and therefore Î ( Ĵ . This implies that n > l. However, it
also implies that some 2m-adic sibling J̃ of J satisfies J̃ ⊃ Î, and therefore
∆(I) ≤ ∆(Î) ≤ ∆(J̃) = ∆(J). In view of (3.8), one of these last two

implications does not hold, so Ĵ cannot contain a point to the left of y. �

3.9. Proof of Lemma 3.6. An appeal to Lemma 2.2(b,c) permits us to assume
that (Γ, |·|) is 1-bounded turning. Write Γ[x, y] for the smaller diameter
subarc joining points x, y on Γ; so |x− y| = diam(Γ[x, y]). Fix points s, t on
S1 and put x := ϕ(s), y := ϕ(t). Let [s, t], [t, s] be the two arcs in S1 joining
s, t and assume that diamd([t, s]) ≥ diamd([s, t]) = d(s, t).

First we show that |x − y| ≤ 2m+1K d(s, t). Using Lemma 3.7 we select

2m-adic subarcs I, J ∈ J with I ∪ J ⊂ [s, t] ⊂ Î ∪ Ĵ , Î ∩ Ĵ 6= ∅, and

∆(J) ≤ ∆(I) = δ([s, t]) ≤ diamd([s, t]) = d(s, t) .

Here Î , Ĵ ∈ J are the parents of I, J relative to J . Then

|x− y| = diam(Γ[x, y]) = min{diam(ϕ[s, t]), diam(ϕ[t, s])} ≤ diam(ϕ[s, t])

≤ diam(ϕ(Î ∪ Ĵ)) ≤ K[∆(Î) + ∆(Ĵ)] ≤ 2mK[∆(I) + ∆(J)]

≤ 2m+1K∆(I) ≤ 2m+1K d(s, t) .

Next we show that d(s, t) ≤ 2m+1K |x − y|. Let A be the subarc of
S
1—either A = [s, t] or A = [t, s]—with ϕ(A) = Γ[x, y]. Again we use

Lemma 3.7 to pick a subarc I ∈ J with I ⊂ A and ∆(I) = δ(A). Then
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ϕ(I) ⊂ ϕ(A) = Γ[x, y], so

d(s, t) ≤ diamd(A) ≤ 2m+1 δ(A) = 2m+1∆(I) ≤ 2m+1K diam(ϕ(I))

≤ 2m+1K diam(Γ[x, y]) = 2m+1K |x− y| .
�

We end this subsection with a criterion that describes when a metric circle
in S1 is doubling. Roughly speaking, we get doubling if and only if diameters
are always at least halved after a fixed number of steps.

3.10. Lemma. Let I
∆
→ (0, 1] be a dyadic diameter function with snowflake

parameter σ = 1 and define d := d∆ as in (3.1). Then (S1, d) is doubling if
and only if there exists an n0 ∈ N such that

∀ n ∈ N , ∀ In , ∀ In+n0 ⊂ In , ∆(In+n0) ≤
1

2
∆(In) .

Proof. Suppose (S1, d) is doubling. Then there are constants C ≥ 1 and
α ≥ 1 such that for each r-separated set E in (S1, d),

card(E) ≤ C (diamd(E)/r)α .

Let I := In ∈ In be given. Suppose (Im)n+k
m=n is a descendant sequence with

∆(Im) ≥ r := 1
2
∆(I) for all m ∈ {n, n + 1, . . . , n + k}. Let E be the set

of endpoints of all the subarcs In, . . . , In+k. To see that E is r-separated,
let e1, e2 be two distinct points in E. We can assume that e1 is an endpoint
of some I i and e2 ∈ Ij ⊂ I i, where n ≤ i < j ≤ n + k, and that Ij does
not contain e1 but Ij−1 does. Then the sibling Ĩj of Ij separates e1 and e2.
Thus d(e1, e2) ≥ ∆(Ĩj) = ∆(Ij) ≥ r.

Now diamd(E) = diamd(I) = ∆(I) = 2 r, so by doubling

k ≤ card(E) ≤ C (diamd(E)/r)α = 2αC .

Therefore n0 := ⌈2αC⌉ + 1 is the desired number.

Conversely, suppose there is such an n0 ∈ N. Let A ⊂ S1 be any arc.
Let I ∈ In, J ∈ Im be dyadic subarcs with parents Î ∈ In−1, Ĵ ∈ Im−1

as in Lemma 3.7; thus I ∪ J ⊂ A ⊂ Î ∪ Ĵ . Let I1, . . . , I2n0+1 ∈ In+n0 ,
J1, . . . , J2n0+1 ∈ Im+n0 be the dyadic subarcs contained in Î and Ĵ respec-
tively. Then for all 1 ≤ k ≤ 2n0+1

diamd(Ik) = ∆(Ik) ≤
1

2
diamd(I) ≤ diamd(A)

and similarly diamd(Jk) ≤ (1/2) diamd(A). Thus we obtain the doubling
condition with N := 2n0+2. �
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4. Proof of the Main Theorem

Here we establish parts (A), (B), (C) of the Theorem stated in the Intro-
duction; see §4.A, §4.B, §4.C respectively. In addition, in §4.C we explain
how to recover Rohde’s Theorem.

Recall from §3.B that Sσ is the collection of all metric circles (S1, dσ) where
the metrics dσ = d∆ are defined as in (3.1) and ∆ : I → (0, 1] is any dyadic
diameter function constructed using the snowflake parameter σ ∈ [1/2, 1].
Recall too that for σ ∈ [1/2, 1) each curve in Sσ is a metric quasicircle that
has Assouad dimension at most log 2/ log(1/σ); see Lemma 3.2(c,e).

For the remainder of this section, (Γ, |·|) is a bounded turning circle. Our
three proofs share the following common theme: We define an appropri-
ate shrinking subdivision for Γ and then appeal to Proposition 2.6 and
Lemma 3.6 to obtain the necessary bi-Lipschitz homeomorphisms. In each
case this involves constructing a dyadic diameter function ∆ using some
snowflake parameter.

To start, we fix an orientation on Γ. All subarcs inherit this orientation,
and [a, b] denotes the oriented subarc of Γ with endpoints a, b. Next, an
appeal to Lemma 2.2(b,c) permits us to replace |·| with its associated diam-
eter distance thereby obtaining a bi-Lipschitz equivalent 1-bounded turning
circle; the bi-Lipschitz constant for this change of metric equals the original
bounded turning constant. Thus we may, and do, assume that (Γ, |·|) is
1-bounded turning. This means that

diam([a, b]) = |a− b| whenever diam([a, b]) ≤ diam(Γ \ [a, b]) .

We also assume that diam(Γ) = 1; this involves another bi-Lipschitz change
of metric with bi-Lipschitz constant max{diam(Γ), diam(Γ)−1}.

4.A. Proof of (A). We assume (Γ, |·|) is 1-bounded turning with diam(Γ) =
1; it need not be doubling. We construct a dyadic diameter function ∆ on
I, using the snowflake parameter σ = 1, so that (Γ, |·|) is bi-Lipschitz equiv-
alent to (S, d∆).

First, we divide Γ into two arcs A1
0, A

1
1 that both have diameter one. Then

we inductively divide each arc into two subarcs of equal diameter. Appealing
to Proposition 2.3, we divide each An

i into two subarcs An+1
2i , An+1

2i+1 of equal
diameter. This defines subarcs An

k for each k ∈ {0, 1, . . . , 2n − 1} and all
n ∈ N. Here we label so that the An

k are ordered successively along Γ with
the initial point of An

0 the same for all n ∈ N.
We claim that limn→∞maxk diam(An

k) = 0. For suppose this does not
hold. Then there is an ε > 0 such that the set Γε := {An

k | diam(An
k) ≥ ε} is

infinite. Noting that each parent of an arc in Γε also belongs to Γε, we may
appeal to Kőnig’s Lemma to obtain a descendent sequence S1 =: A0 ⊃ A1 ⊃
A2 ⊃ . . . (where An = An

kn
is some arc in Γε). By construction An is divided
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into two subarcs An+1 and Bn+1 of equal diameter, so diam(Bn+1) ≥ ε. Then
{B1, B2, . . . } is an infinite collection of non-overlapping subarcs of Γ each
with diameter at least ε. This contradiction to Lemma 2.1 implies that our
claim must hold

By setting An := {An
k | k ∈ {0, 1, . . . , 2n − 1}} (for each n ∈ N) we

obtain a shrinking subdivision (An)∞1 for Γ; see §2.F. In fact, (In)∞1 and
(An)∞1 are combinatorially equivalent shrinking subdivisions, and thus by
Proposition 2.6 there is an induced homeomorphism ϕ : S1 → Γ with ϕ(Ink ) =
An

k for all n ∈ N and all k ∈ {0, 1, . . . , 2n − 1}.

It remains to construct a dyadic diameter function ∆ using the snowflake
parameter σ = 1 and so that ∆ also satisfies the following: for all n ∈ N,

(4.1) for all k ∈ {0, 1, . . . , 2n − 1} ,
1

2
∆(Ink ) ≤ diam(An

k) ≤ 2∆(Ink ) .

Having accomplished this task, we can appeal to Lemma 3.6 (with C = 1,
m = 1, K = 2) to assert that ϕ : (S1, d∆) → (Γ, |·|) is 8-bi-Lipschitz.

We start by setting ∆(S1) = ∆(I10 ) = ∆(I11 ) := 1 and note that (4.1) holds
for n = 1. Now assume that for some n ∈ N and all k ∈ {0, 1, . . . , 2n − 1},
∆(Ink ) has been defined so that (4.1) holds. Consider a dyadic subarc In =

Ink , its two children In+1, Ĩn+1 ⊂ In, and its corresponding arc An = An
k =

ϕ(Ink ) ⊂ Γ. We note that by construction each child An+1 of An satisfies

1

2
diam(An) ≤ diam(An+1) ≤ diam(An) .

We examine two cases. If ∆(In) ≤ diam(An), then we define

∆(In+1) = ∆(Ĩn+1) := ∆(In) .

We see that (4.1) holds (for n + 1) , since

1

2
∆(In+1) =

1

2
∆(In) ≤

1

2
diam(An) ≤ diam(An+1)

≤ diam(An) ≤ 2∆(In) = 2∆(In+1) .

Here (4.1) was used for n in the last inequality.

If ∆(In) > diam(An), then we define

∆(In+1) = ∆(Ĩn+1) :=
1

2
∆(In) .

Again one checks that (4.1) holds (for n + 1), since

1

2
∆(In+1) =

1

4
∆(In) ≤

1

2
diam(An) ≤ diam(An+1)

≤ diam(An) < ∆(In) = 2∆(In+1) .

Here (4.1) was used for n in the first inequality. �
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4.B. Proof of (B). We assume (Γ, |·|) is 1-bounded turning with diam(Γ) =
1 and doubling with finite Assouad dimension α. Fix any σ ∈ (2−1/α, 1)
(equivalently, α < log 2/ log(1/σ)). We construct a dyadic diameter function
∆ on I, using the snowflake parameter σ, so that (Γ, |·|) is bi-Lipschitz
equivalent to (S, d∆). In contrast to our above proof of (A), here we do “m
steps at the same time”; i.e., each arc will be divided into 2m subarcs of
the same diameter. That is, we will in fact construct a 2m-adic diameter
function; see §3.C.

Put β := log 2/ log(1/σ), so σ = 2−1/β. Then since β > α = dimA(Γ),
there exists an ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0), the cardinality of any
εD-separated set S ⊂ Γ with D = diam(S) satisfies

card(S) < ε−β .

Since σ = 2−1/β < 1, we may select an m ∈ N so that

τ := σm =
(

2−1/β
)m

= (2m)−1/β < ε0 .(4.2)

In particular, if S is a τD-separated subset of Γ, with D = diam(S), then
card(S) < τ−β = 2m =: M .

It now follows that whenever we divide an arc A of Γ into M subarcs Ak

all with equal diameters, then

(4.3) M−1 diam(A) ≤ diamAk ≤ τ diam(A) .

The left-hand inequality follows directly from the triangle inequality whereas
the right-hand inequality holds because there are at least M distinct end-
points of the subarcs Ak (which are separated by diamAk) and so, by the
above, these endpoints cannot be τD-separated with D := diam(A)

We use Proposition 2.3 to divide Γ into M arcs A1
0, A

1
1, . . . , A

1
M−1 all of

equal diameter. We iterate this procedure: assuming that arcs An
k (with

k ∈ {0, 1, . . . ,Mn− 1}) have been so constructed, each arc An
k is subdivided

into M subarcs An+1
kM+j (with j ∈ {0, 1, . . . ,M − 1}) all of equal diameter;

the subarcs An+1
kM+j are labeled successively along An

k . To avoid possible con-
fusion, we note that all subarcs of the same arc An

k have the same diameters,
however, subarcs of different arcs An

i , A
n
j do not necessarily have the same

diameters.

Let J =
⋃∞

n=0 J
n be the family of all M-adic subarcs of S1; here M = 2m

and J n = Imn consists of the Mn = 2mn subarcs of the form Jn
k :=

[k/2mn, (k + 1)/2mn] ∈ Imn with k ∈ {0, 1, . . . , 2mn − 1}. See the last para-
graph of §3.A.

Setting An := {An
k | k ∈ {0, 1, . . . ,Mn − 1}} (for each n ∈ N) we obtain

a shrinking subdivision (An)∞1 for Γ; see §2.F. In fact, (J n)∞1 and (An)∞1
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are combinatorially equivalent shrinking subdivisions, and thus by Proposi-
tion 2.6 there is an induced homeomorphism ϕ : S1 → Γ with ϕ(Jn

k ) = An
k

for all n ∈ N and all k ∈ {0, 1, . . . ,Mn − 1}.

Now we construct an M-adic diameter function J
∆
→ (0, 1] using the

snowflake parameter τ and so that ∆ also satisfies the following: for all
n ∈ N and for all k ∈ {0, 1, . . . ,Mn − 1},

(4.4) K−1∆(Jn
k ) ≤ diam(An

k) ≤ K∆(Jn
k ) ,

where K := τ M . Once this task is completed, we can appeal to Lemma 3.6
(with C = 1 and 2m = M) to assert that ϕ : (S1, d∆) → (Γ, |·|) is L-bi-
Lipschitz with L = 2M K = 2 τ M2.

To start, we set ∆(S1) := 1 and then for each k ∈ {0, 1, . . . ,M − 1}, we
put ∆(J1

k ) := τ . To check (4.4) for n = 1 we use (4.3) and the fact that
diam(Γ) = 1 to see that

1

K
∆(J1

k ) =
τ

K
=

1

M
≤ diam(A1

k) ≤ τ = ∆(J1
k ) .

Assume that for some n ∈ N and all k ∈ {0, 1, . . . ,Mn − 1}, ∆(Jn
k ) has

been defined so that (4.4) holds. Fix any M-adic subarc Jn = Jn
k and let

An = An
k = ϕ(Jn

k ) be the corresponding subarc of Γ. We consider two cases.
First, suppose ∆(Jn) ≤ diam(An). Then we define the diameter of each

child Jn+1 of Jn by
∆(Jn+1) := τ ∆(Jn) .

To confirm that (4.4) is still satisfied for all these children, we observe that

1

K
∆(Jn+1) =

1

M
∆(Jn) ≤

1

M
diam(An) ≤ diam(An+1)

≤ τ diam(An) ≤ τ K∆(Jn) = K∆(Jn+1) .

Here the initial inequality holds by supposition, the next two inequalities
follow from (4.3), and the induction hypothesis gives the last inequality.

Next, suppose ∆(Jn) > diam(An). Now we define the diameter of each
child Jn+1 of Jn by

∆(Jn+1) :=
1

M
∆(Jn) =

1

2m
∆(Jn) .

To check that (4.4) holds for all these children, we again observe that

1

K
∆(Jn+1) =

1

KM
∆(Jn) ≤

1

M
diam(An) ≤ diam(An+1)

≤ τ diam(An) ≤ τ ∆(Jn) = K∆(Jn+1) .

Here the initial inequality holds by the induction hypothesis, the next two
inequalities follow from (4.3), and our supposition gives the last inequality.

This finishes the construction of an M-adic diameter function ∆ for which
(4.4) holds for all n ∈ N and all k ∈ {0, 1, . . . ,Mn − 1}.



QUASI AND BT CIRCLES MODULO BI-LIPSCHITZ MAPS 23

Having defined an appropriate M-adic diameter function ∆ on J , we use
Lemma 3.6 to deduce that ϕ : (S1, dτ) → (Γ, |·|) is L-bi-Lipschitz, where
dτ := d∆. The M-adic diameter function ∆, constructed using the snow-
flake parameter τ , can be extended to a dyadic diameter function ∆ that
is constructed with the snowflake parameter σ = τ 1/m. See the discussion
in §3.C. Let dσ be the metric associated with the dyadic diameter function
∆. According to Lemma 3.4, the identity map id : (S1, dσ) → (S1, dτ) is
M-bi-Lipschitz. It now follows that (Γ, |·|) is (ML)-bi-Lipschitz equivalent
to the metric quasicircle (S1, dσ) ∈ Sσ. �

4.5. Remark. We can easily adjust the previous proof to obtain a model
circle constructed from a 4-adic diameter function. To do so, we choose m
in (4.2) to be even; say, m = 2k, so M = 4k. Then we extend the M-adic
diameter function J → (0, 1] to a 4-adic diameter function with snowflake
parameter p := τ 1/k = σ2 ∈ (4−1/α, 1) as described in Remark 3.5. This
yields a metric d, constructed via the 4-adic diameter function, such that
the original metric quasicircle (Γ, |·|) is bi-Lipschitz equivalent to (S1, d).
Thus the following variant of (B) holds.

4.6. Corollary ((B′)). Let (Γ, |·|) be a metric quasicircle with finite Assouad
dimension α. Then for each p ∈ (4−1/α, 1) there is a 4-adic diameter func-
tion ∆, constructed with snowflake parameter p, and an associated metric
d = d∆, such that (S1, d) is bi-Lipschitz equivalent to (Γ, |·|).

Note that 1 ≤ α < 2 is equivalent to 1/4 ≤ 4−1/α < 1/2, so in this case we
can choose p ∈ (4−1/α, 1/2) ⊂ (1/4, 1/2).

4.C. Planar Quasicircles. In 4.10 below we corroborate part (C) of our
Theorem. Then we explain how to recover Rohde’s theorem. We begin with
a precise description for the construction of Rohde snowflakes that includes
some useful geometric estimates.

Everywhere throughout this subsection J denotes the family of 4-adic
subarcs of the circle S

1.

Each Rohde snowflake R, constructed using a parameter p ∈ [1/4, 1/2), is
the Hausdorff limit of a sequence (Rn)∞1 of polygons where Rn+1 is obtained
from Rn by using the replacement choices illustrated in Figure 1. Both the
snowflake parameter p and the polygonal arc Ap are kept fixed throughout
the construction.

We start with the unit square R1 = E1
0 ∪ E1

1 ∪ E1
2 ∪ E1

3 , so each E1
k is a

Euclidean line segment of diameter one and these are labeled successively
along R1. Suppose we have constructed Rn as a union of 4n Euclidean line
segments En

k , k ∈ {0, 1, . . . , 4n − 1} (labeled successively along Rn). Then
for each of the edges En

k of Rn we have two choices: either we replace En
k

with the four line segments obtained by dividing En
k into four segments of
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equal diameter, or we replace En
k by a similarity copy of the polygonal arc

Ap pictured at the top right of Figure 1. In both cases En
k is replaced by four

new line segments En+1
4k+j (with j ∈ {0, 1, 2, 3}) that we call the children of

En
k , so En

k is the parent of each of En+1
4k , En+1

4k+1, E
n+1
4k+2, E

n+1
4k+3. Each of these

children has Euclidean diameter equal to either (1/4) diam(En
k ) in the first

case or p diam(En
k ) in the second case. The second type of replacement is

done so that the “tip” of the replacement arc points into the exterior of Rn.
Then Rn+1 is the union of the 4n+1 arcs En+1

i (with i ∈ {0, 1, . . . , 4n+1−1}).
We call the line segments En

k the 4-adic edges of Rn. We note that different
replacement rules can be used for different edges En

i , E
n
j of Rn. Thus, for

example, one edge could have diameter 1/4n while an adjacent edge might
have diameter pn (which could be much larger). In any event, for each n ∈ N

there is a natural homeomorphism ϕn : S1 → Rn that is given by mapping
each 4-adic subarc Jn

k ⊂ S1 to the 4-adic edge En
k ⊂ Rn. We say that the

edge En
k corresponds to the subarc Jn

k .

Set θ = θ(p) := 2 arcsin((2p)−1 − 1); this is the interior angle at the “tip”
of the arc Ap in Figure 1, but see also the left-most picture in Figure 2.
Also, notice that if Ap is normalized to have diameter one, then its height is
(p− 1/4)1/2.

Let E be one of the 4-adic edges of some Rn. We write T (E) = Tp(E) for
the closed isosceles triangle with base E and height diam(E)(p−1/4)1/2; we
orient T (E) so that it “points” into the exterior of the polygon Rn. Thus if
E were to be replaced by a similarity copy of the arc Ap, then T (E) would
be the closed convex hull of this affine copy of Ap (see the left-most picture
in Figure 2) and the third vertex of T (E) would correspond to the “tip” of
this image of Ap. We call this third vertex the “tip” of T (E).

Next, let E0, E1, E2, E3 be the four children of E. Not only are these
children contained in T (E), but elementary geometric considerations reveal
that the associated triangles T (E0), T (E1), T (E2), T (E3) are also contained

T (E)

E

θ

T (E0)

T (E1) T (E2)

T (E3)θ

θ

θ

T (E0)
T (E1) T (E2) T (E3)

Figure 2. Triangles enclosing an arc.
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in T (E). See the two right-most pictures in Figure 2. A standard argument
now reveals that the sequence (ϕn)

∞
1 is uniformly Cauchy, and hence it

converges to a continuous surjection ϕ : S1 → R and the planar curve R is
the Hausdorff limit of the sequence (Rn)∞1 .

Consider a subcurve A := ϕ(J) of R where J is some 4-adic subarc of S1.
Let E be the 4-adic edge that corresponds to J . We see that A is “built
on top of E” in the sense that the replacement choices used to construct R,
applied to the edge E, produce A. We write A := R(E) and call A the 4-
adic subarc of R corresponding to E (and to J). (This abuse of notation will
be justified below—see (4.9)—where we prove that ϕ is injective, hence a
homeomorphism, so R is a Jordan curve and A is an arc.) By induction, we
deduce that A also lies in T (E) and has the same endpoints as E, therefore

diam(A) = diam(T (E)) = diam(E) .

Looking again at the right-most pictures in Figure 2, and appealing to
elementary geometric considerations, we see that the angle between any pair
of consecutive triangles T (E0), . . . , T (E3) is at least θ. It is also elementary
to check that

dist(T (E0), T (E3)) ≥ dist(T (E1), T (E3))

= dist(T (E0), T (E2)) ≥ c(p) diam(E)
(4.7)

where c(p) := 1
2
− p.

As final preparation for our proof of part (C), suppose Î , Ĵ are two adja-

cent 4-adic subarcs of S1, say with Î ∩ Ĵ = {ξ}. (These arcs might be from

different generations; i.e., possibly Î = Jn
k and Ĵ = Jm

ℓ where n 6= m.) Let

Ê, F̂ be the corresponding 4-adic edges, so Ê ∩ F̂ = {a} where a := ϕ(ξ).
It follows from the above remarks that the angle between the two triangles

T (Ê) and T (F̂ ), at their common vertex a, is at least θ. See Figure 3. More

precisely, let S be the closed sector, with vertex at a, that contains T (Ê)
and is such that θ is the angle between each edge of ∂S and the nearest edge
of T (Ê). Then T (F̂ ) lies in the closure of R2 \ S.

Now suppose there is a child E of Ê that does not contain a. Then T (E)
is compactly contained in the sector S and in fact

(4.8) dist(T (E), T (F̂ )) ≥ dist(T (E), ∂S) ≥ c(p) diam(E)

where again c(p) := 1
2
− p. This follows from the estimates

dist(T (E), ∂S) ≥ dist(b, ∂S) ≥ c(p) diam(E)

where b is the “tip” of the appropriate T (E0) as pictured in Figure 3.

Finally, fix points s, t ∈ Î∪Ĵ . Suppose there is a child I of Î whose interior,
int(I), separates s, t in Î ∪ Ĵ (meaning that s, t lie in different components
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θ

θ

S

∂S

∂S
T (Ê)

T (F̂ )

E0

T (E)

✉✉b

✉

a

Figure 3. Separating points.

of (Î ∪ Ĵ) \ int(I)). We claim that

(4.9) |ϕ(s)− ϕ(t)| ≥ c(p) diam(ϕ(I)) .

This follows from (4.7) if both ϕ(s), ϕ(t) lie in T (Ê); otherwise it follows
from (4.8). Also, see Figure 3.

Notice that injectivity of ϕ follows from (4.9).

Having established the above terminology and geometric estimates, we
now turn to the following.

4.10. Proof of (C). We use the notation and terminology introduced above.

It is well-known that planar quasicircles have Assouad dimension strictly
less than two; see [Roh01, Lemma 4.1] or [Luu98, Theorem 5.2]. Further-
more, Assouad dimension is unchanged by bi-Lipschitz maps. Thus every
metric quasicircle that is bi-Lipschitz equivalent to a planar quasicircle has
Assouad dimension strictly less than two.

Let (Γ, |·|) be a metric quasicircle with Assouad dimension α ∈ [1, 2). We
prove that (Γ, |·|) is bi-Lipschitz equivalent to a planar quasicircle. In fact,
we show that it is bi-Lipschitz equivalent to a Rohde snowflake.

Fix p ∈ (4−1/α, 1/2) ⊂ (1/4, 1/2). According to part (B) of our Theorem—
more precisely, the version (B′) stated as Corollary 4.6—there is a 4-adic
diameter function ∆ with snowflake parameter p and associated metric dp
such that (Γ, |·|) is bi-Lipschitz equivalent to (S1, dp).

We use the 4-adic diameter function ∆ to construct a Rohde snowflake R
with snowflake parameter p, and we prove that (S1, dp) is bi-Lipschitz equiv-
alent to R. Hence (Γ, |·|) is bi-Lipschitz equivalent to a planar quasicircle.

Recall that J is the set of all 4-adic subarcs of S1; similarly, J n := I4n.

It is convenient to scale the metric dp—so also the diameter function ∆—
by the factor 1/p. This bi-Lipschitz change in our metric means that for
each J1

k ∈ J 1, ∆(J1
k ) = 1. See the paragraph immediately following (4.4).



QUASI AND BT CIRCLES MODULO BI-LIPSCHITZ MAPS 27

The desired Rohde snowflake R is the limit of a sequence (Rn)∞1 of poly-
gons, and we must describe how to replace each edge of Rn to obtain Rn+1.
Of course, we start with the unit square R1 := E1

0∪E
1
1∪E

1
2∪E

1
3 , so each edge

E1
k satisfies ∆(J1

k ) = 1 = diam(E1
k). Now suppose that we have constructed

polygons R1, R2, . . . , Rn := En
0 ∪ · · · ∪ En

4n−1 so that

for each k ∈ {0, 1, . . . , 4n − 1} , ∆(Jn
k ) = diam(En

k ) .

Fix any J = Jn
k and consider its four children J0, J1, J2, J3. Since ∆ is a

4-adic diameter function (constructed with the snowflake parameter p),

either ∆(J0) = ∆(J1) = ∆(J2) = ∆(J3) :=
1

4
∆(J)

or ∆(J0) = ∆(J1) = ∆(J2) = ∆(J3) := p∆(J) .

In the first case, we replace the edge En
k with the four segments En+1

4k ,
En+1

4k+1, E
n+1
4k+2, E

n+1
4k+3 obtained by dividing En

k into four line segments of equal

diameter. Thus here diam(En+1
j ) = (1/4) diam(En

k ). In the second case, we
replace En

k by a similarity copy of the polygonal arc Ap pictured at the top
right of Figure 1; again En

k is replaced by four new segments En+1
j , but now

each of these has diameter diam(En+1
j ) = p diam(En

k ). The second type of
replacement is done so that the “tip” of the replacement arc points into the
exterior of Rn.

It is now straightforward to check that

for each k ∈ {0, 1, . . . , 4n+1 − 1} , ∆(Jn+1
k ) = diam(En+1

k ) .

In particular, we can iterate this construction and thus obtain a sequence
(Rn)∞1 of planar polygons. As explained above, the sequence (Rn)∞1 con-
verges, in the Hausdorff metric, to a Rohde snowflake R that has been
constructed using the snowflake parameter p.

Let S1 ϕ
→ R be the natural homeomorphism induced by the correspon-

dences between the 4-adic subarcs of S1, all 4-adic edges, and the 4-adic
subarcs of R (see the paragraphs just before (4.7)). Thus each 4-adic edge
En

k (of Rn) corresponds to a 4-adic subarc An
k = R(En

k ) = ϕ(Jn
k ) of R and

diam(An
k) = diam(T (En

k )) = diam(En
k ) = ∆(Jn

k ) .

We claim that (S1, dp)
ϕ
→ (R, |·|) is bi-Lipschitz with

(4.11) [c(p)/8] dp(s, t) ≤ |ϕ(s)− ϕ(t)| ≤ 8 dp(s, t) for all s, t ∈ S
1

where c(p) := 1
2
− p.

To verify this claim, let s, t be two points in S
1 and write [s, t] for the

smaller diameter subarc of S1 joining s, t. Appealing to Lemma 3.7, we get
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4-adic subarcs I, J of S1 such that:

I ∪ J ⊂ [s, t] ⊂ Î ∪ Ĵ ,

∆(I) ≤ diamdp([s, t]) = dp(s, t) ≤ 8∆(I) ,

∆(I) is maximal among all 4-adic subarcs in [s, t] ,

either I = J or Î , Ĵ are adjacent subarcs .

Here Î, Ĵ are the 4-adic parents of I, J . Put x := ϕ(s), y := ϕ(t). Let
A := ϕ(I), B := ϕ(J) and E, F be the 4-adic subarcs of R and 4-adic edges

(respectively) that correspond to I, J ; also, Â = ϕ(Î), B̂ = ϕ(Ĵ) are the
parents of A,B.

Since x, y ∈ Â ∪ B̂,

|x− y| ≤ diam(Â ∪ B̂) ≤ diam(Â) + diam(B̂) = ∆(Î) + ∆(Ĵ)

≤ 4 [∆(I) + ∆(J)] ≤ 8∆(I) ≤ 8 dp(s, t)

which establishes the upper estimate in (4.11). To prove the lower estimate

in (4.11), we observe that int(I) separates s, t in Î ∪ Ĵ and thus (4.9) yields

|x− y| ≥ c(p) diam(ϕ(I)) = c(p)∆(I) ≥ [c(p)/8] dp(s, t) . �

It is worthwhile to observe that the above provides an independent proof
that each Rohde snowflake is a quasicircle; in fact, each R in Rp is C-
bounded turning with C = C(p) := 8/c(p) = 16/(1− 2p).

We close this paper by explaining how Rohde’s theorem follows from our
Theorem. From the proof of part (C) of our Theorem, each planar quasicircle
is bi-Lipschitz equivalent to a Rohde snowflake. Therefore, Rohde’s theorem
follows from the fact that a bi-Lipschitz homeomorphism between planar
quasicircles has a bi-Lipschitz extension to the entire plane. Below we state
this extension theorem, due to Gehring [Geh82b, Theorem 7, Corollary 2], as
Theorem 4.12. The construction of the extension essentially follows from the
Beurling-Ahlfors extension [BA56]. See also [Tuk81, Lemma 3] and [TV84,
Theorems 2.12,2.19].

Interestingly, the property of there being such a bi-Lipschitz extension,
for every bi-Lipschitz self-homeomorphism, is a characteristic property of
quasicircles among all closed (that is, bounded, so compact) planar Jordan
curves. See [Geh86, Theorem 5.1].

4.12. Theorem ([Geh82b]). Each bi-Lipschitz homeomorphism between pla-
nar quasicircles extends to a bi-Lipschitz self-homeomorphism of the plane.
The bi-Lipschitz constant for the extension depends only on the original bi-
Lipschitz constant and the two original bounded turning constants.

We end by remarking that the previous theorem is false for Jordan curves.
Namely a bi-Lipschitz map between planar Jordan curves Γ1,Γ2 need not
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have a bi-Lipschitz extension to the plane. For example let Γ1 be a circle
with two outward pointing cusps and let Γ2 be a circle with one outward and
one inward pointing cusp. It is elementary that Γ1 and Γ2 are bi-Lipschitz
equivalent, but any such map cannot be extended to a bi-Lipschitz map of
the whole plane. This example appears already in [Ric69, p.388].

Acknowledgements

Saara Lehto and David Freeman helped the authors to understand Stef-
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