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I. INTRODUCTION

Analysis of molecular systems is an essential part of research in a range of disciplines

in natural sciences and in engineering1,2. As molecular systems affected by environmental

thermodynamic conditions, they are studied in the context of statistical physics ensembles.

Methods of dynamical sampling of the corresponding probability measures are important

for applications and they are under extensive study and development3–12. The traditional

application of thermostats is molecular dynamics (MD), that is sampling of equilibrium

systems with known potential energy functions, V (q), where q is a system’s configuration.

However, the ability to sample equilibrium ensembles at constant temperature T would also

imply the ability to sample arbitrary probability measures. Indeed, as an alternative to the

conventional MD practice, one may use a probability density σ(q), theoretical or extracted

from experimental data, to define the potential function as V (q) = −kBT lnσ(q), where kB

is the Boltzmann constant.

Thermostats embedded into dynamical equations bring in the so-obtained dynamics rich

mathematical content. Such dynamical systems with an invariant probability measure have

become increasingly popular for mathematical studies in a wide range of applications includ-

ing investigation of non-equilibrium phenomena5,13–19, mathematical biology models20–23,

multiscale models24–28, Bayesian statistics and Bayesian machine learning applications28–31,

superstatistics32,33.

Here, we present a unified approach for derivation of thermostats sampling the canonical

ensemble. The corresponding method is derived using fundamental physical arguments that

facilitate understanding physics of thermostat schemes in general, and elucidate physics

of the Nosé-Hoover (NH) and the Nosé-Hoover-Langevin (NHL) dynamics in particular.

Besides, our method allows to build a plethora of thermostats, stochastic as well as deter-

ministic, including those previously proposed. We expect that it can also be adjusted to

arbitrary probability measures.

Classical mechanics and equilibrium statistical physics are adequately described in terms

of the Hamiltonian dynamics. Dynamic thermostat schemes involve modified Hamiltonian

equations of motion where certain temperature control tools are included. The modified

dynamics can be deterministic as well as stochastic1–12,21,34–38. Recently proposed NHL

thermostats3,7–9 combine deterministic dynamics with stochastic perturbations. This com-
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bination ensures ergodicity and allows “gentle” perturbation of the physical dynamics that

is often desired3,8.

To introduce our scheme, we consider a dynamical system S consisting of N particles in

d-dimensional space (N = dN degrees of freedom) described by the Hamiltonian function

H(x), where x = (p, q) is a point in the phase space M = R2dN , p =
{
pi ∈ Rd

}N

i=1
are mo-

mentum variables and q =
{
qi ∈ Rd

}N

i=1
are position variables. The Hamiltonian dynamics

has the form, ẋ = J∇H(x) in the phase space M, where J is the symplectic unit. The

canonical ensemble describes the system S in contact with the heat bath Σ (an energy reser-

voir permanently staying in the thermal equilibrium with the thermodynamic temperature

T ), and S may exchange energy with Σ only in the form of heat. Thus, the temperature of

the system S is fixed while its energy, E, is allowed to fluctuate. The canonical distribution

has the form ρ∞(x) ∝ exp [−βH (x)], where β = (kBT )
−1. On average along an ergodic

trajectory ⟨E(t)⟩ = E(T ) = const. Rate of energy exchange between the system S and the

thermal bath Σ depends on the temperature T . Note that Hamiltonian system is unable

to sample the canonical distribution since there is no energy exchange between the system

and the heat bath. To describe the heat transfer, it is necessary to modify the equations

of motion in a way that the dynamics becomes non-Hamiltonian39. Suppose ẋ = G(x) is a

modified law of motion and Ḣ(x) = G(x) · ∇H(x) is the rate of energy change (depend-

ing on T ) such that ⟨G(x) ·∇H(x)⟩ = 0, that is the energy is constant on average. Let

G(x) ·∇H(x) ∝ F (x, β) where the temperature dependence is a key. In order to state the

dynamic principle governing temperature control tools, a few definitions are required.

II. MICROSCOPIC TEMPERATURE EXPRESSIONS

Consider F (x, β) such that ⟨F (x, β)⟩ = 0 for all β > 0. This condition is denoted as

F (x, β) ∼ 0 while the function F (x, β) is called the microscopic temperature expression

(TE).

For the system with H(x) = K(p) + V (q) examples of TEs include the kinetic TE,

Fkin(p, β) = 2K(p)β −N , and the configurational TE, Fconf (q, β) = (∇V (q))2β −∆V (q)40.

Various TEs can be obtained in the following manner. Suppose that F (x, β) is a poly-

nomial in β, F (x, β) =
∑2L+1

n=0 φn(x)β
n ∼ 0, where L ∈ Z≥0 and functions {φn(x)}2L+1

n=0 , are

3

http://dx.doi.org/10.1063/1.4993976


subject to specification. Rewrite F (x, β) in the form

F (x, β) =
L∑

k=0

(φ2k(x) + βφ2k+1(x)) β
2k ∼ 0 (1)

for all β > 0. Thus, from (1) it follows that φ2k(x)+βφ2k+1(x) ∼ 0 for all k ∈ {0, 1, . . . , L}.

To find φ2k(x) and φ2k+1(x) satisfying this condition consider the basic expression

φ0(x) + β φ1(x) ∼ 0,

that means that
´
M[φ0(x) + β φ1(x)]e

−βH(x)dx = 0. Substituting φ(x)∂iH(x) for φ1(x),

where φ(x) is an arbitrary function, and then utilizing the identity, ∂ie
−βH(x) = −β∂iH(x)e−βH(x)

for all i = 1, . . . , 2dN , where ∂i ≡ ∂/∂xi, we get

ˆ
M
{[φ0(x) + ∂iφ(x)]e

−βH(x) − ∂i[φ(x)e
−βH(x)]}dx = 0.

Since
´
M ∂i[φ(x)e

−βH(x)]dx = 0 provided that φ(x) exp[−βH(x)] → 0 as |x| → ∞, then we

arrive at the relationship

φ0(x) + ∂iφ(x) ∼ 0.

Taking into account this relationship between φ0(x) and φ(x) the basic TE takes the form,

β φ(x)∂iH(x)− ∂iφ(x) ∼ 0, where we substitute ∂iφ(x) for φ0(x). This TE can be straight-

forwardly altered to TE expressed in terms of T ,

φ(x)∂iH(x)− kBT∂iφ(x) ∼ 0,

for each and every xi in M. In what follows we use only TE expressed in terms of T .

This result can be represented in a compact form. Suppose φ0(x) is a vector field on M

such that φ0(x) exp[−βH(x)] → 0 as |x| → ∞. Then

F0(x, T ) = φ0(x) ·∇H(x)− kBT∇ ·φ0(x) ∼ 0. (2)

This form of TE was previously discussed41. More general TEs are allowed, e.g. vector fields

F (x, β) = β∇H(x) × φ(x) − ∇ × φ(x) ∼ 0, and so on. As a further generalization we

introduce the notation

Fl(x, T ) = φl(x) ·∇H(x)− kBT∇ ·φl(x),
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where l = 0, 1, ..., L, φ0(x) = φ(x), and {φl(x)}
L
l=0 is a set of vector fields such that

φl(x) exp[−βH(x)] → 0 as |x| → ∞. Then the general scalar TE can be represented as

FL(x, T ) =
L∑
l=0

Fl(x, T )(kBT )
2l ∼ 0 (3)

for all L ∈ Z≥0. A particular example of the use of such a TE in a limited context (L = 1

and φl(x) ∝ (p, 0) leading to the kinetic TE) can be found in the literature42. In what

follows we focus mainly on F0(x, T ) and only to a certain extent on FL(x, T ) where L ≥ 1.

Although the expression (2) implies the existence of infinite number of TEs, they all

are equivalent from the thermodynamic perspective. However, the time interval required

to achieve a specified accuracy in ⟨F (x, T )⟩ = 0 can differ for different TEs43. In general,

physical systems are often distinguished by multimodal distributions and by existence of

metastable states. Their dynamics is characterized by processes occurring on a number of

timescales. We assume that TEs can be associated with dynamical processes occurring on

various time scales, and thus, they can be combined in multiscale models.

III. DYNAMIC PRINCIPLE

Now we claim the following dynamic principle for ensemble control tools: Let F (x, T )

be a TE. Then there exists the dynamical system, ẋ = G(x), such that

∇H(x) ·G(x) ∝ F (x, T ). (4)

Relationship (4) states that the rates of dynamical fluctuations in energy and in TE are

proportional, both are zero on average and there is no energy release along a whole trajectory

in M. It is a necessary condition for any thermostat. In what follows, with implication of

the fundamental requirements of statistical physics, we show that the relationship (4) leads

to a general method for obtaining stochastic and deterministic thermostats.

Let us consider the exchange of energy between the system S and the thermal bath

Σ. Any system placed in the heat bath should to some extent perturb it and be affected

by backward influence of this perturbation. There exists a subsystem Sad of Σ such that

Sad is involved in a joint dynamics with S. The rest of the heat bath is assumed to be

unperturbed, permanently staying in thermal equilibrium. This is an approximation that is

based on separation of relevant time scales. For instance, Brownian dynamics assumes that
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characteristic time scales of S and Σ are well separated and the system S does not perturb

Σ. If the time scale is refined (which is of particular importance for small systems) then we

have to take into account joint dynamics of S and Sad. We will show that this case is closely

related to NHL7,8 and NH dynamics36,37.

Thus, we have two cases: (A) the system S doesn’t perturb the thermal bath and there

are no new dynamic variables. The thermal bath in this case can only be taken into account

implicitly via stochastic perturbations (similar to the Langevin dynamics); (B) the system

S perturbs a part (Sad) of the thermal bath Σ, while the rest of the thermal bath remains

unperturbed. We assume that there is no direct energy exchange between S and Σ. Fun-

damentals of the statistical mechanics require that the systems S and Sad are statistically

independent at thermal equilibrium. Let us consider cases A and B in detail.

A. Stochastic dynamics

Suppose ∇H(x) · ẋ = λF0(x, T ), where λ is a constant. Without loss of generality,

we can consider modified Hamiltonian dynamics in the form, ẋ = J∇H(x) + ψ(x, λ), and

consequently:

∇H(x) ·ψ(x, λ) = λF0(x, T ), (5)

where the vector field ψ(x, λ) is to be found. Since the thermal bath does not appear

in equation (5) explicitly, only stochastic thermal noise may be involved in the dynamics.

To find ψ, we introduce 2N -vector of independent thermal white noises, ξ(t), such that

⟨ξ(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2λkBTδijδ(t− t′), and the vector field, Φ(x), such that

⟨ξ(t) ·Φ(x)⟩ = λkBT ⟨∇ ·φ(x)⟩,

where ⟨· · · ⟩ is the Gaussian average over all realizations of ξ(t). Using Novikov’s formula44,45,

we get

⟨ξ(t) ·Φ(x)⟩ =
∑
i,k

⟨
∂Φk

∂xi

δxi(t)

δξk(t)

⟩
λkBT.

Suppose δxi(t)
δξk(t)

= ζi(x)δik, where the vector field ζ(x) is such that each component ζi(x) does

not depend on xi, that is

∇ ◦ ζ(x) = 0,
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where ◦ denotes the component-wise (Hadamard) product of two vectors and 0 is the null

vector. Then ∇ ·φ(x) = ∇ · (ζ(x) ◦Φ(x)). Thus, we get φ(x) = ζ(x) ◦Φ(x) and it follows

that Φ(x) = ζ−1(x) ◦ φ(x), where ζ−1(x) is the vector field such that ζ−1(x) ◦ ζ(x) = 1.

Assuming φ(x) = η(x) ◦∇H(x), where η(x) ≡ ζ(x) ◦ ζ(x), we get

ψ(x, λ) = −λη(x) ◦∇H(x) + ζ(x) ◦ ξ(t)

and the modified Hamiltonian dynamics takes the form of stochastic differential equation

(SDE):

ẋ = J∇H(x)− λη(x) ◦∇H(x) + ζ(x) ◦ ξ(t). (6)

The Fokker-Planck equation (FPE) corresponding to SDE (6) has the form ∂tρ = F∗ρ,

where

F∗ρ = −J∇H(x) ·∇ρ+ λ∇ · [η(x) ◦∇H(x) ρ]

+λkBT∇· [η(x) ◦∇ρ].

Note that the last term here was found using the following specific relationship for the vector

field ζ(x):

(ζ(x) ◦∇) · (ζ(x) ◦∇ρ) = ∇·[η(x) ◦∇ρ].

Invariant probability density for dynamics (6) is determined by the equation F∗ρ = 0.

It is expected that this is a unique invariant density8,46.

We claim that for the defined above vector field ζ(y) the canonical density, ρ∞ ∝

exp [−βH (x)], is invariant for the stochastic dynamics given by (6), that is F∗ρ∞ = 0.

The proof is by direct calculation.

The Langevin equation is a particular case of (6). For example, for the system with

H(x) = p2/2m + V (q), where x = (p, q) ∈ R2 we have:

if ζ = (1, 0), then

ṗ = −V ′(q)− λp/m + ξ(t), q̇ = p/m;

if ζ = (0, 1), then

ṗ = −V ′(q), q̇ = p/m − λV ′(q) + ξ(t).

The procedure for obtaining stochastic dynamics (6) is essentially a general and can

be a quite straightforwardly extended to other TEs, for example, the general scalar TE
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(3). Indeed, let us introduce the set of 2N -vectors of independent thermal white noises,

{ξ(l; t)}Ll=0 , L ∈ Z≥0, such that ⟨ξ(l; t)⟩ = 0, ⟨ξi(l; t)ξj(l′; t′)⟩ = 2λlkBTδijδll′δ(t− t′), and

the set of vector fields, {ζ(l;x)}Ll=0 , L ∈ Z≥0, such that ∇ ◦ ζ(l; x) = 0 for any l ≥ 0, where

◦ denotes the component-wise (Hadamard) product of two vectors and 0 is the null vector.

Starting from the relationship,

∇H(x) ·ψ(x, λ) =
L∑
l=0

λlFl(x, T ) (kBT )
2l,

and then strictly following arguments as stated above, we get

ψ(x, λ) = −
L∑
l=0

λlη(l;x) ◦∇H(x) (kBT )
2l

+
L∑
l=0

ζ(l; x) ◦ ξ(l; t) (kBT )l.

where η(x) ≡ ζ(x) ◦ ζ(x). Thus, we arrive at the following stochastic dynamics

ẋ = J∇H(x)−
L∑
l=0

λlη(l;x) ◦∇H(x) (kBT )
2l

+
L∑
l=0

ζ(l;x) ◦ ξ(l; t) (kBT )l. (7)

One can verify that the canonical measure is invariant for this stochastic equation of motion.

Generally speaking, the dynamics (7) includes 2N (L+1) independent white noise processes.

This seems impractical. However, we can point out that (7) potentially useful for multi-

timescale stochastic simulations. As a simple example, let H(x) = p2/2m + V (q), L = 1,

ζ(0;x) = (1, 0), and ζ(1;x) = (0, 1), then we arrive at the stochastic dynamics with two

timescales involved,

ṗ = −V ′(q)− λ0
p

m
+ ξp(0; t),

q̇ =
p

m
− λ1 (kBT )

2 V ′(q) + kBT ξq(1; t),

where ⟨ξp(0; t)⟩ = 0, ⟨ξq(1; t)⟩ = 0, ⟨ξp(0; t)ξq(1; t)⟩ = 0, ⟨ξp(0; t)ξp(0; t′)⟩ = 2λ0kBTδ(t− t′),

⟨ξq(1; t)ξq(1; t′)⟩ = 2λ1kBTδ(t− t′), as specified above. Analysis of p− and q−dynamics can

be performed in reduced systems following the separation of these variables according to

their time scales47.
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B. Deterministic and stochastic dynamics

Let Sad be associated with an even-dimensional phase space Mad, the Hamiltonian func-

tion h(y), y ∈ Mad, and the Hamiltonian dynamics, ẏ = Jy∇yh(y), where Jy is the

symplectic unit. Without loss of generality, we can assume that the modified Hamiltonian

dynamics of the system composed by S and Sad has the form,

ẋ = Jx∇xH(x) +ψ(x, y),

ẏ = Jy∇yh(y) +ψ
∗(y, x),

where ψ(x, y) and ψ∗(y, x) are vector fields on M and Mad correspondingly. To derive

deterministic dynamics, let us temporarily ignore the heat exchange between Sad and Σ, that

is, ∇yh(y) · ψ∗(y, x) = λ∗F ∗(y, T ) and ∇xH(x) · ψ(x, y) = λF (x, T ). As discussed above,

these relationships lead to the stochastic dynamics. Systems S and Sad must be statistically

independent in the thermal equilibrium, so that ∇xH(x) · ẋ ∼ 0 and ∇yh(y) · ẏ ∼ 0 are

satisfied simultaneously. Thus, we assume that

∇xH(x) ·ψ(x, y) = g(x)F ∗
0 (y, T ),

∇yh(y) ·ψ∗(y, x) = −g∗(y)F0(x, T ),

where g(x) and g∗(y) are some vague functions, and

F0(x, T ) = φ(x) ·∇xH(x)− kBT ∇x ·φ(x),

F ∗
0 (y, T ) = Q(y) ·∇yh(y)− kBT ∇y ·Q(y), (8)

are TEs for the systems S and Sad correspondingly. These relationships are valid for any

H(x) and h(y). To specify ψ(x, y) and ψ∗(y, x), we assume that g(x) = a(x) · ∇xH(x),

g∗(y) = b(y) ·∇yh(y), where a(x) and b(y) are vector fields on M and Mad, respectively.

It follows that

ψ(x, y) = a(x)F ∗
0 (y, T ), ψ∗(y, x) = b(y)F0(x, T ).

To determine the relationship between the vector fields a(x), b(y) and TEs F0(x, T ),

F ∗
0 (y, T ), recall that if the combined system S + Sad is isolated, then Ḣ(x) = −ḣ(y); and if

T ̸= 0, then Ḣ(x) + ḣ(y) ∼ 0. Straightforward calculations show that

a(x) = φ(x), b(y) = Q(y),
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provided that b(y) exp[−βh(y)] → 0 as |y| → ∞ and a(x) exp[−βH(x)] → 0 as |x| → ∞.

As a result, we have the equations of motion

ẋ = Jx∇xH(x) + F ∗
0 (y, T )φ(x), (9)

ẏ = Jy∇yh(y)− F0(x, T )Q(y),

which are generalized NH equations.

The Liouville equation associated with the system (9) has the form ∂tρ = −L∗ρ, where

L∗ρ = ∇x · (ẋρ) +∇y · (ẏρ). Invariant probability densities are determined by the equation

L∗ρ = 0. We claim that if Q(y) and φ(x) are the defined above vector fields, then the

canonical density ρ∞ ∝ exp [−βH (x)] · exp [−βh (y)] is invariant for dynamics (9), that is

L∗ρ∞ = 0. The proof is by direct calculation.

As a particular case, let Q(y) be an incompressible vector field (i.e. ∇y ·Q(y) = 0 for all

y ∈ Mad). Then we arrive at the NH equations

ẋ = Jx∇xH(x) + (Q(y) ·∇yh(y))φ(x), (10)

ẏ = Jy∇yh(y)− F0(x, T )Q(y).

Now we include into our consideration the effect of the thermal bath Σ on Sad dynamics,

that is the relationship ∇yh(y) · ψ∗ = λF ∗
0 (y, T ). Following the arguments and notations

used to derive SDE (6), we arrive at the stochastic dynamics:

ẋ = Jx∇xH(x) + F ∗
0 (y, T )φ(x),

ẏ = Jy∇yh(y)− F0(x, T )Q(y)− λη(y) ◦∇yh(y)

+ζ(y) ◦ ξ(t), (11)

which are generalized NHL equations7,8. In the particular case of an incompressible vector

field Q(y) we get the NHL equations:

ẋ = Jx∇xH(x) + (Q(y) ·∇yh(y)) φ(x),

ẏ = Jy∇yh(y)− F0(x, T )Q(y)− λη(y) ◦∇yh(y)

+ζ(y) ◦ ξ(t), (12)
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FPE corresponding to (11) has the form ∂tρ = F∗ρ, where

F∗ρ = −Jx∇xH(x) ·∇xρ− Jy∇yh(y) ·∇yρ

−F ∗
0 (y, T )∇x · [φ(x)ρ] + F0(x, T )∇y · [Q(y)ρ]

+λkBT∇y · [η(y) ◦∇yρ] + λ∇y · [η(y) ◦∇yh(y)ρ].

Invariant probability density for the SDE (11) is determined by the equation F∗ρ = 0.

We claim that if Q(y), φ(x), and ζ(y) are the defined above vector fields , then the

canonical density, ρ∞ ∝ exp [−βH (x)] · exp [−βh (y)], is invariant for the NHL dynamics

(11), that is F∗ρ∞ = 0. The proof is by direct calculation.

Besides, we expect that this dynamics is ergodic8,46.

Commonly used NH36,37 and NHL7–9 thermostats are particular cases of thermostats given

by (10) and (12) correspondingly. For example, by substituting ζ2/2Q for h(y), y = (ζ, η) ∈

R2, (−Q, 0) for Q(y) and (p, 0) for φ(x) in (9) we get classical NH equations36,37.

It is worth to note that the case of the general TE can be considered straightforwardly

following the method of dynamic principle, as developed above. Assume that

∇xH(x) ·ψ(x, y) =
L∑
l=0

gl(x)F
∗
l (y, T ) (kBT )

2l,

∇yh(y) ·ψ∗(y, x) = −
L∑
l=0

g∗l (y)Fl(x, T ) (kBT )
2l.

These relationships must be valid for any H(x) and h(y). To specify ψ(x, y) and ψ∗(y, x),

we set gl(x) = al(x) ·∇xH(x), g∗l (y) = bl(y) ·∇yh(y), from what follows that al(x) = φl(x)

and bl(y) = Ql(y). Thus,

ψ(x, y) =
L∑
l=0

F ∗
l (y, T ) (kBT )

2lφl(x),

ψ∗(y, x) = −
L∑
l=0

Fl(x, T ) (kBT )
2lQl(y).

Finally, we arrive at the deterministic equations of motion (modified Hamiltonian dynamics),

ẋ =Jx∇xH(x) +
L∑
l=0

F ∗
l (y, T ) (kBT )

2lφl(x),

ẏ =Jy∇yh(y)−
L∑
l=0

Fl(x, T ) (kBT )
2lQl(y). (13)
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We will not discuss the equations (13) in detail and only note that the canonical measure

is invariant for this dynamics, and a generalization to stochastic NHL type dynamics can

be obtained. Strictly speaking, such a generalization is important since it simulates an

equilibrium reservoir of the energy and ensures the ergodicity of dynamics. To outline a

connection between equations of motion (13) and known deterministic thermostats42,48–51, we

provide the following simple example. Let L = 1, H(x) = p2/2m+V (q), h(y) = η20/2Q0+η21/2Q1,

φ0(x) = (p, 0), φ1(x) = (p3, 0), Q0(y) = (−Q0, 0, 0, 0), and Q1(y) = (0,−Q1, 0, 0), then

ṗ = −V ′(q)− η0p− η1kBT p3,

q̇ =
p

m
,

η̇0 = Q0

(
p2

m
− kBT

)
,

η̇1 = Q1

(
p4

m
− 3kBTp

2

)
(kBT )

2,

the dynamic equations equipped with the control of first two moments of the equilibrium

kinetic energy42,49. Similarly, we can obtain dynamic equations that control the configura-

tional temperature moments.

IV. REDESIGN OF NHL THERMOSTAT

In this Section we consider an alternative to the conventional NH and NHL thermostat

schemes. This alternative (seen as a particular case of dynamical equations (11)) is based

on the consideration of physically reasonable chain of interactions, S ! Sad ! Σ, that is,

the system Sad is a buffer between the physical system S and the infinite energy reservoir Σ.

Consider the dynamical equations (9) and (11), and assume that ∇x · φ(x) = 0, ∇y ·

Q(y) ̸= 0. Note, that these assumptions are opposite to the requirements for the NH and

NHL dynamics, where ∇x ·φ(x) ̸= 0, ∇y ·Q(y) = 0. We get

ẋ = Jx∇xH(x)

+ [Q(y) ·∇yh(y)− kBT ∇y ·Q(y)] φ(x),

ẏ = Jy∇yh(y)− (φ(x) ·∇xH(x))Q(y), (14)
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and

ẋ = Jx∇xH(x)

+ [Q(y) ·∇yh(y)− kBT ∇y ·Q(y)] φ(x),

ẏ = Jy∇yh(y)− (φ(x) ·∇xH(x)) Q(y)

− λη(y) ◦∇yh(y) + ζ(y) ◦ ξ(t), (15)

where vector fields involved are such as indicated above. Thus, there is plenty of freedom in

specification of particular thermostat equations of motion.

To illustrate the redesigned NH and NHL thermostat dynamical systems (described by

the equations (14) and (15) correspondingly) let us consider system S with the Hamiltonian

function H (p, q),

H (p, q) =
p2

2m
+

1

2
mω2q2, x = (p, q) ∈ R× R,

that is a harmonic oscillator of mass m and frequency ω, and system Sad with the Hamilto-

nian function h(v, u),

h(v, u) =
v2

2µ
, y = (v, u) ∈ R× R,

that is a free particle of mass µ. Harmonic oscillators are among central instruments in

analysis of many physical problems, classical as well as quantum mechanical. It is known

that generating the canonical statistics for a harmonic oscillator is a hard problem. For

example, the NH scheme is proven to be non-ergodic52 and the NHL scheme7,8, and earlier

the NHC scheme53, was proposed to overcome this difficulty. Anyway, it is important for any

dynamic thermostat to correctly generate the canonical statistics for a harmonic oscillator.

The deterministic thermostat dynamics (14) as well as stochastic dynamics (15) allow

a plethora of further specifications. To be as close as possible to redesign of original NH

dynamics36, we set Q(y) = (v, 0), ∇ ·Q = 1, and φ(x) = (γ, 0), where γ is a dimensional

parameter, ∇ ·φ = 0. Thus, we arrive at the following equations of motion:

ṗ = −mω2q + γ

[
v2

µ
− kBT

]
,

q̇ =
1

m
p,

v̇ = −γ
p

m
v,

u̇ =
v

µ
; (16)
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and

ṗ = −mω2q + γ

[
v2

µ
− kBT

]
,

q̇ =
1

m
p,

v̇ = −γ
p

m
v − λ

v

µ
+ ξ(t),

u̇ =
v

µ
; (17)

where ζ = (1, 0) and ⟨ξ(t)ξ(t′)⟩ = 2λkBTδ(t − t′). Note, that equations (16) and (17) are

redesign of NH (denote RNH) and NHL (RNHL) thermostats correspondingly.

System (16) has two integrals of motion, that is

I1 = v exp (γq) = const,

I2 =
p2

2m
+

1

2
mω2q2 +

v2

2µ
+

γkBT

m
q = const,

indicating the lack of ergodicity. For example, if all parameters of the system (16) are set

equal to unity, m = 1, ω = 1, µ = 1, γ = 1, kBT = 1, and initial conditions are p = 1, q =

0, v = 1, then the phase trajectory is represented by the closed curve and the Poincaré section

(p,q) shown on Figure 1. This is expected from the existence of two integrals of motion,

that is I1 and I2. It is clear that the trajectory does not explore the phase space available

for the harmonic oscillator. This ergodicity problem is not surprising, the conventional NH

dynamic suffer from the same problem. It is questionable that the situation can be improved

with a more complex φ and Q, for example, φ = (γ1, γ2), φ =
(
γ1mω2q, γ2

1
m
p
)
, Q = (v, u),

and so on. If φ = (γ1, γ2), then we get

ṗ = −mω2q + γ1

[
v2

µ
− kBT

]
,

q̇ =
p

m
+ γ2

[
v2

µ
− kBT

]
,

v̇ = −
(
γ1

p

m
+ γ2µω

2q
)
v,

u̇ =
v

µ
,

and it is easy to show that this dynamics is not ergodic.

Our next illustration will be devoted to the system described by thermostat dynamical

equations (17). We will show, by means of numerical simulations, that a certain realization
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Figure 1. The Poincaré section (p,q) for deterministic dynamic thermostat (16) where all system

parameters are set equal to unity and initial condition are: p = 1, q = 0, v = 1.

of the whole length chain of physically reasonable interactions, that is S ! Sad ! Σ,

generates the correct statistics.

Let us consider the case when all parameters of the system (17) are set equal to unity,

m = 1, ω = 1, µ = 1, γ = 1, kBT = 1, λ = 1, and the initial conditions are: p = 0, q = 0, v =

0. Phase trajectories of length 106 are generated using the Euler method with a time step

of ∆t = 0.0005. We have repeated simulations using the fourth-order Runge-Kutta method

with a random contribution held once for the entire interval from t to t+∆t, and arrive at

the same result.

Figure 2(a) shows the Poincaré section (p,q) for a harmonic oscillator equipped with the

temperature control tool (17). This figure demonstrates that the trajectory generates proper

sampling of the full phase space of the harmonic oscillator. Figures 2(b) and 2(c) show the

momentum and position distribution functions from simulations as compared with the exact

analytical expressions. In both cases, the Gaussian distribution is generated in agreement

with the theoretical prediction. Presented results serve as an evidence of ergodic sampling

the canonical statistics.

A key difference between the NHL and RNHL schemes is that the latter relates the tem-

perature control tool to the system Sad rather than to the system S, and the corresponding

variable, v, must be Gaussian, according to the equations (17). Thus, it is important that the

RNHL dynamical equations properly generate the Gaussian statistics of v variable. Figure

3 shows the v-distribution function from simulations as compared with the exact analytical

solution and indicates a good agreement between them.
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Figure 2. (a) The Poincaré section (p,q) for a harmonic oscillator coupled to the redesigned

NHL thermostat (17). (b) The generated momentum density function (dots) as compared to

the analytical result (solid cover filled in gray). (c) The same for the generated position density

function.

V. CONCLUSION

In conclusion, we emphasize that the method proposed in this work is based on the

fundamental laws of statistical physics and offers a unified approach in developing stochastic

and deterministic thermostats. For clarity of presentation we have illustrated our method

using a few simple TEs and restricted our consideration by Markov dynamics. The presented
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Figure 3. The density function for momentum v (in the system Sad) from simulations (dots) as

compared with the analytical solution (solid cover filled in gray).

method allowed us to obtain a wide spectrum of stochastic and deterministic dynamical

systems with the invariant canonical measure. We note that the idea of presented method

is general and adaptable to a variety of TEs so that it can be used to produce thermostats

of novel types. For example the thermostat for the system with non-Markov dynamics, i.e.

the one described by the equation ∇H(x(t)) · ẋ(t) ∝
´ t

0
dt′G(t− t′)F (x(t′), T ). As a second

example of new type of thermostats we can mention the one for the gradient dynamical

system.

We realize that non-trivial new thermostats should be verified by test simulations. In our

follow up work we will focus on these and other applications of the presented method.
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