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Dynamical equations describing physical systems in contact with the thermal bath

are commonly extended by mathematical tools called ‘thermostats”. These tools are

designed for sampling ensembles in statistical fiechanicse Here we propose a dynamic

principle underlying a range of thermostatsaw is Qerived using fundamental laws
of statistical physics and insures invarian t‘@ canonical measure. The principle
covers both stochastic and determiuistic er’ﬁ)stat schemes. Our method has a
clear advantage over a range of propg.éwt

are based on formal mathematic m'cning. Following the derivation of proposed

widely used thermostat schemes which

principle we show its genera Ml lustrate its applications including design of
temperature control toolsgN cr from the Nosé-Hoover-Langevin scheme.
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Publishihg INTRODUCTION

Analysis of molecular systems is an essential part of research in a range of disciplines
in natural sciences and in engineering!?. As molecular systems affected by environmental
thermodynamic conditions, they are studied in the context of statigfical physics ensembles.
Methods of dynamical sampling of the corresponding probability measures are important

nt3 2. The traditional

for applications and they are under extensive study and deve
application of thermostats is molecular dynamics (MD), thatsg sampling of equilibrium

systems with known potential energy functions, V'(q), re’ guis_a system’s configuration.

However, the ability to sample equilibrium ensemble aaon tant temperature 1" would also
imply the ability to sample arbitrary probability sireasu §ndeed7 as an alternative to the
conventional MD practice, one may use a pro abC:y aaisity o(q), theoretical or extracted
from experimental data, to define the poter&% ti?)-ﬁ as V(q) = —kpgT Ino(q), where kg

is the Boltzmann constant.

Thermostats embedded into dyn mic\a;\mons bring in the so-obtained dynamics rich
mathematical content. Such dynamical systems with an invariant probability measure have

become increasingly popular for m natical studies in a wide range of applications includ-

}rhphenomena‘r”l?”lg, mathematical biology models?® 23,

ing investigation of non-equili

24-28 28-31
) ;

multiscale models

ayes'%l statistics and Bayesian machine learning applications

32,33

superstatistics

£

Here, we preseut a iﬁeﬁ( approach for derivation of thermostats sampling the canonical

ensemble. The.corresponding method is derived using fundamental physical arguments that

facilitate understanding physics of thermostat schemes in general, and elucidate physics

of the N@gé-Hoover (NH) and the Nosé-Hoover-Langevin (NHL) dynamics in particular.
Besidgs, our L’Kod allows to build a plethora of thermostats, stochastic as well as deter-

minist1 incﬁlding those previously proposed. We expect that it can also be adjusted to

itrar%probability measures.

\fll\assmal mechanics and equilibrium statistical physics are adequately described in terms
ofi\the Hamiltonian dynamics. Dynamic thermostat schemes involve modified Hamiltonian

equations of motion where certain temperature control tools are included. The modified

1-12,21,34-38

dynamics can be deterministic as well as stochastic Recently proposed NHL

3,7-9

thermostats combine deterministic dynamics with stochastic perturbations. This com-
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Publishihigiation ensures ergodicity and allows “gentle” perturbation of the physical dynamics that

is often desired®?.

To introduce our scheme, we consider a dynamical system S consisting of N particles in
d-dimensional space (N = dN degrees of freedom) described by the Hamiltonian function
H(z), where © = (p,q) is a point in the phase space M = R*,

~ {pz Rd} are mo-

mentum variables and ¢ = {qi € Rd}].v are position variables, \s;ltoman dynamics

has the form, # = JV H(z) in the phase space M, where \ symplectic unit. The
heatb

canonical ensemble describes the system S in contact with/t ath 3 (an energy reser-

voir permanently staying in the thermal equilibrium with the ?h‘e’fmodynamlc temperature

T), and S may exchange energy with ¥ only in the form of Sea . Thus, the temperature of
the system S is fixed while its energy, F, is allowed to ﬂuc ate. The canonical distribution
has the form p.(z) x exp[—FH (x)], where ~1. On average along an ergodic
trajectory (E(t)) = E(T) = const. Rate qof € %change between the system S and the
thermal bath Y depends on the temp a\ﬂ ote that Hamiltonian system is unable
to sample the canonical distributio '\h(re is no energy exchange between the system

and the heat bath. To describe ghe ht?ansfer, it is necessary to modify the equations
ax

of motion in a way that the ccomes non-Hamiltonian®. Suppose 2 = G(z) is a

modified law of motion and H - VH(z) is the rate of energy change (depend-
ing on T') such that ( T\S = 0, that is the energy is constant on average. Let
G(z) -V , cre' the temperature dependence is a key. In order to state the
dynamic pr1nc1p nmg/temperature control tools, a few definitions are required.

3\

II. MICROS IC TEMPERATURE EXPRESSIONS
4
ﬂ

Co ider}j(:v,ﬁ) such that (F(z,)) = 0 for all 5 > 0. This condition is denoted as
ﬁ

z, B) Sv 0 while the function F(x,() is called the microscopic temperature expression
{% :
F(E the system with H(z) = K(p) + V(¢) examples of TEs include the kinetic TE,
Fiin(p, B) = 2K (p)3 — N, and the configurational TE, F...;(q, 8) = (VV(q))?8 — AV (q)*°
Various TEs can be obtained in the following manner. Suppose that F(x, ) is a poly-
nomial in 3, F(x,8) = Y250 . (2) " ~ 0, where L € Zsq and functions {¢,(z)}224 are

n=0

3
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Publishisighject to specification. Rewrite F'(z, 8) in the form

F(z,8) = (par(z) + Boawii(x)) 5% ~ 0 (1)

Mh

e
Il

0

for all > 0. Thus, from (1) it follows that @ox(z) + Bpari1(z) ~ 0for all k € {0,1,...,L}.
To find por(z) and @o41(x) satisfying this condition consider the prression

wo(r) + B pi(x) ~ 0, \

that means that [, [po(z) + B¢1(x)]e ?@)dz = 0. _Su tlt\tmg o(x)0;H(z) for ¢1(x),
where o(z) is an arbitrary function, and then utilizing@tlt , 0, PH@) = 30, H (1)e PH@)
for all i = 1,...,2dN, where 0; = 9/aa;, we get ( a

/ {lpo() + Dip(x))e ‘W’”\ (T)e PH@ N dz = 0.

Since [, 0i[p(x)e 1 )]dz = 0 provid x)exp[—fH(x)] — 0 as |z| — oo, then we

arrive at the relationship S

K% + Oip(x
Taklng into account this relat%%jbetween wo(z) and p(z) the basic TE takes the form,
h

B o(x) Qﬂnsze we substitute d;¢(x) for ¢o(x). This TE can be straight-
res

forwardly altered to FE d in terms of T,

kBT@go( ) ~ 0,

for each a ) x; in M. In what follows we use only TE expressed in terms of 7'

This result’ can represented in a compact form. Suppose ¢,(x) is a vector field on M

such that ¢, eXp ] = 0 as |z| — oo. Then
_‘ )

5 ,T) = () - VH(z) = kgT'V - y(z) ~ 0. (2)

sform of TE was previously discussed?!. More general TEs are allowed, e.g. vector fields
= fVH(z) x p(x) = V X ¢(z) ~ 0, and so on. As a further generalization we

introduce the notation

Fi(2,T) = ¢y(x) - VH(2) = kpT'V - (),

4
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Publishiwgcre I = 0,1,...,L, ¢,(z) = (), and {cpl(:c)}leo is a set of vector fields such that
p,(x)exp[—SH(z)] — 0 as |z| — oo. Then the general scalar TE can be represented as

L

Fi(x,T) =Y F(z,T)(ksT)" ~ 0 (3)

1=0
for all L € Zs. A particular example of the use of such a TE iné’sli\t‘efl context (L =1
liter

and ¢,(x) x (p,0) leading to the kinetic TE) can be found@;{
t o

ture’?. In what
follows we focus mainly on Fy(z,T') and only to a certain ex 7(x,T) where L > 1.

Although the expression (2) implies the existence irﬁl‘iﬁi mber of TEs, they all
are equivalent from the thermodynamic perspectivef However, the time interval required
to achieve a specified accuracy in (F(z,T)) = 0 can differ h)r different TEs*®. In general,

physical systems are often distinguished by multimédal distributions and by existence of

ith dynamical processes occurring on

timescales. We assume that TEs can be

various time scales, and thus, they can‘@\ ined in multiscale models.
\

III. DYNAMIC PRINCIP‘K

Now we claim the following MC principle for ensemble control tools:  Let F'(xz,T)
be a TE. Then there e@ynamieal system, © = G(x), such that
/ £ 4 VH(z) G(z) x F(z,T). (4)

Relationship )}sta ;s that the rates of dynamical fluctuations in energy and in TE are
t

metastable states. Their dynamics is characteri by=processes occurring on a number of
oclated

proportional, are zero on average and there is no energy release along a whole trajectory

in M. ItNg afnecessary condition for any thermostat. In what follows, with implication of
the fundamental requirements of statistical physics, we show that the relationship (4) leads
t a...;ggaklblethod for obtaining stochastic and deterministic thermostats.

et u§ consider the exchange of energy between the system S and the thermal bath
E)A\ny system placed in the heat bath should to some extent perturb it and be affected
by backward influence of this perturbation. There exists a subsystem S,q of ¥ such that
S.q is involved in a joint dynamics with S. The rest of the heat bath is assumed to be
unperturbed, permanently staying in thermal equilibrium. This is an approximation that is

based on separation of relevant time scales. For instance, Brownian dynamics assumes that

5
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Publishidga -acteristic time scales of S and X are well separated and the system S does not perturb
Y. If the time scale is refined (which is of particular importance for small systems) then we
have to take into account joint dynamics of S and S,q. We will show that this case is closely
related to NHL™® and NH dynamics3®37.

Thus, we have two cases: (A) the system S doesn’t perturb th?/thermal bath and there

are no new dynamic variables. The thermal bath in this case ca v besgaken into account

implicitly via stochastic perturbations (similar to the Langeyin amics); (B) the system

S perturbs a part (S,q) of the thermal bath 3, while the :sé\O\Qe hermal bath remains

unperturbed. We assume that there is no direct energy ange between S and Y. Fun-
S

damentals of the statistical mechanics require that the systems S and S,q are statistically

independent at thermal equilibrium. Let us con@” cas and B in detail.

A. Stochastic dynamics \‘\\

Suppose VH(x) & = AFy(z,T), W}ls a constant. Without loss of generality,
we can consider modified Hamiltonia %ﬂcs in the form, & = JVH(x) + ¢ (z, \), and

consequently: \
=
v ) TP(-’L",)\) :)‘FO(:B>T)’ <5>

where the vector field 1 })is to be found. Since the thermal bath does not appear

in equation (5) explicitly, oﬁly stochastic thermal noise may be involved in the dynamics.

To find v, we ntroduce 2N -vector of independent thermal white noises, &(t), such that

(&(t)) =0, D)@(t’)) = 2MkgT0;;6(t — t'), and the vector field, ®(x), such that
£
K/ (€(t) - ®(x)) = MpT (V - (),

ﬂ
whiere (- i?the Gaussian average over all realizations of £(t). Using Novikov’s formula?®45,

wesget 3
wx (0 20 = 3 (Grsed Y i

Suppose % = (i(2)d;x, where the vector field {(z) is such that each component (;(z) does

not depend on x;, that is
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Publishiwg( re o denotes the component-wise (Hadamard) product of two vectors and 0 is the null

vector. Then V - p(z) = V - ({(z) o ®(z)). Thus, we get ¢(z) = {(z) o ®(x) and it follows
that ®(x) = ¢~ '(z) o (x), where ¢~ !(x) is the vector field such that ¢ ~*(z) o ¢(z) = 1.
Assuming ¢(x) = n(z) o VH(x), where n(z) = {(z) o {(x), we get

Y(x,A) = =An(z) o VH(z) + ((z) 0 £(t/\

and the modified Hamiltonian dynamics takes the form of toc tic differential equation

(SDE):
i=JVH(z)— M(z)o VH(x %ﬁt (6)

The Fokker-Planck equation (FPE) correspondmg 0 SD ) has the form 0,p = F*p,

where

F'p=—JVH(z)- x) o VH(x) p]

+Ak TV\N(x Vp]

Note that the last term here was foun \&e following specific relationship for the vector

field ¢(z): \(
(¢ % )0 Vp) = V-[n(z) o V.
fo

r dynamics (6) is determined by the equation F*p = 0.

/

Invariant probability

It is expected that this i 8,46

the

unl ue invariant densfcy

We claim that efined above vector field {(y) the canonical density, ps

for the stochastic dynamics given by (6), that is F*po = 0.

exp [-0H (z )qqa
The proof is ect calculation.
e}/m

ng uation is a particular case of (6). For example, for the system with
/2 , where z = (p, q) € R? we have:
X 0), then

Q —V'(q) = Mofm 4 (L), G = P/m;

S i ¢ = (0,1), then
=—V'(q), ¢ =#/m = \V'(q) +£(1).

The procedure for obtaining stochastic dynamics (6) is essentially a general and can

be a quite straightforwardly extended to other TEs, for example, the general scalar TE

7
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Publishifd). Indeed, let us introduce the set of 2N -vectors of independent thermal white noises,
{6(l;)}y, L € Zsp, such that (&(1;1)) =0, (& 0)E(5t)) = 2NkpT;;006(t — t'), and
the set of vector fields, {¢(/; x)}lL:O , L € Z>, such that Vo {(l;z) = 0 for any [ > 0, where
o denotes the component-wise (Hadamard) product of two vectors and 0 is the null vector.

Starting from the relationship,

(o) = =D Am(lio) 0 VH(@) (ke T)? (:(\h}

") L
\L... +ZC(Z;x)o§(Z;t) (kgT)*.
1=0
where n(z) = {(x) o {(x). Thus, we ar 'v&llov&ring stochastic dynamics

i =JVH(x) =Y An(liz)o Q%ﬁ)”
=0
\\ +> Clx) o &(Lt) (kpT)'. (7)

=0

One can verify that t ‘onél measure is invariant for this stochastic equation of motion.

Generally speaking, ‘shedynantics (7) includes 2\ (L +1) independent white noise processes.
This seems impZ ical.

timescale staChas :}mlations. As a simple example, let H(x) = ?’/am + V(q), L = 1,
¢(0;2) = 1,9), d ¢(1;z) = (0,1), then we arrive at the stochastic dynamics with two

timescales 1 olv/d,
ji\) = —V(q) = o +£,0:0),
k’ ¢ ===\ (ksT)" V'(q) + kT &(1;1),

NI

ere (§,(0;¢)) = 0, (§(1;1)) = 0, (§(0;8)&4(152)) = 0, (§(0;)&,(0;')) = 2AokpTo(t — 1),
(& (L)€, (15t)) = 2MkgTo(t — t'), as specified above. Analysis of p— and g—dynamics can

owever, we can point out that (7) potentially useful for multi-

St

be performed in reduced systems following the separation of these variables according to

their time scales®”.
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PublishiBg Deterministic and stochastic dynamics

Let S.q be associated with an even-dimensional phase space M,q, the Hamiltonian func-
tion h(y), y € Maq, and the Hamiltonian dynamics, y = J,V,h(y), where J, is the
symplectic unit. Without loss of generality, we can assume that t}ﬁ modified Hamiltonian

& =J, Vo H(x) +(z,y), \
y:JyVyh( )+¢ y7 a
where ¥ (x,y) and ¥*(y,x) are vector fields on M % correspondingly. To derive

deterministic dynamics, let us temporarily ignore

dynamics of the system composed by S and S.q has the form,

ange between S,q and X2, that
is, V,h(y) - ¥ (y,z) = N*F*(y,T) and V_ H (g)
these relationships lead to the stochastic dyfiamics: S‘btems S and S,q must be statistically
independent in the thermal equilibrium, Na +H(z) -2 ~0and V,h(y) -y ~ 0 are
satisfied simultaneously. Thus, we assumm\

V. H > y)Y=g(x)F: (y,T),
& (y)Fo(x,T),
e vague functions, and
; H(z) = kgT 'V, - p(z),

@, T) = Q(y) - Vyh(y) = ksT'V, - Qy), (8)

x@ = AF(z,T). As discussed above,

where g(z) and g*(y) ar

5’0

are TEs for )rh S and S,q correspondingly. These relationships are valid for any
H(x) an h(y?) specify ¥ (x,y) and " (y, ), we assume that g(x) = a(x) - V. H(z),
g (y) =b(y Vﬁ(y), where a(z) and b(y) are vector fields on M and M,gq, respectively.
It folleKth§

ks ’l,b(l’,y) :Cl,(l') F(;k(%T)’ ¢*(y,a:) :b(y) FO('x7T)'

>d@termine the relationship between the vector fields a(x), b(y) and TEs Fy(x,T),
F:ly,T), recall that if the combined system S + S,q is isolated, then H(x) = —h(y); and if
T # 0, then H(z) + h(y) ~ 0. Straightforward calculations show that
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Publishimgvided that b(y) exp[—B8h(y)] — 0 as |y| — oo and a(x)exp[—SH (z)] — 0 as |z| — oo.

As a result, we have the equations of motion

&= J. V. H(x) + F5(y, T)p(x), (9)

i =J,V,h(y) = Fo(x, T)Qy), /\
which are generalized NH equations.

The Liouville equation associated with the system (9 op = —L*p, where
L¥p=V,-(zp)+ V- (yp). Invariant probablhty den81 e~de;cerm1ned by the equation

Lp = 0. We claim that if Q(y ) and @(x) are deﬁn bove wvector fields, then the

canonical density ps x exp|[—FH (x)] - exp [— }( mant for dynamics (9), that is
L*ps, = 0. The proof is by direct calculation. ‘)
? -

As a particular case, let Q(y) be an inco Eb’o vector field (i.e. V,-Q(y) = 0 for all

y € M,q). Then we arrive at the NH ¢ uatl

(10)
Now we include into nsideration the effect of the thermal bath > on S,q dynamics,
that is the relationshi <" = AF7(y,T). Following the arguments and notations
used to derive S/ We ive at the stochastic dynamics:
&= J Vo H(x) + F(y, T) p(),
4 g =JyVyh(y) = Fo(z, T) Qy) — An(y) o Vyh(y)
N/ +¢(y) 0 £(2), (11)
)

1ich ai generalized NHL equations™. In the particular case of an incompressible vector

% we get the NHL equations:
~
i =J,V.H(z) + (Qy) - Vyh(y)) (),
= JyVyh(y) = Fo(z, T) Qy) — An(y) o Vyh(y)

+C(y) 0 &(1), (12)

h
A
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Publishing!"PE corresponding to (11) has the form 9,p = F*p, where

Fp=-J;V.H(z) Vup—J,Vyh(y) - Vyp
—F5(y, T)Va - [p(2)p] + Fo(z, T)Vy - Q(y)p]
ATV, - [n(y) 0 Vo] + AV, - [n(y) o V,h(

Invariant probability density for the SDE (11) is determined b t‘h‘aﬁon Fp=0

We claim that if Q(y), p(x), and {(y) are the deﬁned%vector fields , then the

canonical density, p., x exp[—pH (z)] - exp [—Lh (y)], i ZWM' for the NHL dynamics
(11), that is F*pss = 0. The proof is by direct calculation. -
Besides, we expect that this dynamics is ergodic®*, 5
Commonly used NH3¢:37 and NHL"? thermost@are articular cases of thermostats given
by (10) and (12) correspondingly. For exampleydy substituting ¢*/2¢ for h(y), y = (¢, n) €
36,37

R?, (—Q,0) for Q(y) and (p,0) for ¢(x) i\New\e t classical NH equations
It is worth to note that the case of‘i%\ral TE can be considered straightforwardly
1

following the method of dynamic p Q% developed above. Assume that
N

1#%\ a(@) ' (y, T) (ksT)?,
\\l lzoL
P (y,

)=—Y g (yFE@,T) (ksT)*.

These relatlonshlps us)a be id for any H(z) and h(y). To specify @(x,y) and ™ (y, x),

we set g(z = bi(y) - V,h(y), from what follows that a;(x) = ¢;(x)
and b;(y
L
{4 P(z,y) =D Fy.T) (k)¢ (x),
-~ V. =0
3 L
— ¢*(y7 Jf) = —ZE(I',T) (kBT)ZlQlQJ)
1=0
ga e arrive at the deterministic equations of motion (modified Hamiltonian dynamics),
N

& =J, V. H(z +ZE y, T) (ksT)* @) (z),
g =J,V ,h(y ZFl (z,T) (ksT)*Q,(y). (13)

11
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PublishiWg will not discuss the equations (13) in detail and only note that the canonical measure
is invariant for this dynamics, and a generalization to stochastic NHL type dynamics can
be obtained. Strictly speaking, such a generalization is important since it simulates an
equilibrium reservoir of the energy and ensures the ergodicity of dynamics. To outline a

424851 o

connection between equations of motion (13) and known determinis% thermostats
), = 77(2)/2@0 +77%/2Q1,
=< (0,—(1,0,0), then

provide the following simple example. Let L = 1, H(z) = P*/2m

i=L. QS
1o = Qo <p—2 @T%
= Q (% \i@gﬁmﬁ

the dynamic equations equipped with t e_comtrol of first two moments of the equilibrium

kinetic energy*?*?. Similarly, we can namic equations that control the configura-

in
.
tional temperature moments. \\

IV. REDESIGN O N‘H.STH RMOSTAT

In this Section cofisider*an alternative to the conventional NH and NHL thermostat

schemes. This alt seen as a particular case of dynamical equations (11)) is based

ativ
on the consi er@:,}physically reasonable chain of interactions, S «~ S,q «~ X, that is,
the syste Saﬂ is“a buffer between the physical system S and the infinite energy reservoir ..
Consider the t(ynamical equations (9) and (11), and assume that V, - p(z) =0, V,, -
Qy) #0. 1\§)te, that these assumptions are opposite to the requirements for the NH and
?dy amics, where V- (x) # 0, V,, - Q(y) = 0. We get

NI

i=J,V,H(z)
+ Q) - Vyh(y) — ksT V- Q(y)] (),
y=J,V,h(y) — (p(z) V. H(z)) Qy), (14)

12
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Publishiag
i=J, V. H(z)

+ Q) - Vyh(y) — ksT V, - Q(y)] (),

y=J,V,h(y) — (p(x)  V.H(z)) Qy)
5

= An(y) o Vyh(y) + C(y) o £(1),
where vector fields involved are such as indicated above. Thlxe is plenty of freedom in

specification of particular thermostat equations of motions
To illustrate the redesigned NH and NHL thermo tgi fiamieal systems (described by

the equations (14) and (15) correspondingly) let us ¢ 1siderisys em S with the Hamiltonian

function H (p, q), ( -
2 1

H(p.q) = 2 + —mw?® g =p.q) eR x R,

2m 2
that is a harmonic oscillator of mass m anh\ﬁg ¢y w, and system S,q with the Hamilto-

nian function h(v,u), . -

“y=(v,u) e R xR,

v
h(v,w) =
(0= §
that is a free particle of ma@onic oscillators are among central instruments in

analysis of many physical proble classical as well as quantum mechanical. It is known

that generating the ca onq(ﬁjvtatistics for a harmonic oscillator is a hard problem. For
example, the NH scﬁéis gven to be non-ergodic®® and the NHL scheme”®, and earlier
the NHC schem(% wa rop/osed to overcome this difficulty. Anyway, it is important for any
dynamic ther

The detér
a plethor ffurt
et Q(y) = (v,0), V-Q =1, and () = (v,0), where ~ is a dimensional

dynarfiics, 5 y ,0),
paramie - ¢ = 0. Thus, we arrive at the following equations of motion:
3 ; 2 v?
p=—mwq+y E_kBT ;

NI !

aﬁa‘c correctly generate the canonical statistics for a harmonic oscillator.

Stic thermostat dynamics (14) as well as stochastic dynamics (15) allow

specifications. To be as close as possible to redesign of original NH

q: —Dp,
m
. p
V= —y—0,
m
v
U= —; (16)
1
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p=—mwiq+y b - kBT:| ,

1

@:TV%U—AE—Ff(t), /
0= ' 5\ (17)

I
where ¢ = (1,0) and (£(¢)&(t')) = 2MkgTé(t — t'). Notes ﬂ%ﬁtions (16) and (17) are
redesign of NH (denote RNH) and NHL (RNHL) thermaest ‘?Jﬁespondingly.

System (16) has two integrals of motion, that is

9& +
e%@f all parameters of the system (16) are set

él,,@BT = 1, and initial conditions are p = 1,q =

0,v = 1, then the phase trajectory ig représented by the closed curve and the Poincaré section

indicating the lack of ergodicity. Fo

equal to unity, m = l,w = 1,u = 1,
(p,q) shown on Figure 1. Thi Mcted from the existence of two integrals of motion,
that is [; and 5. It is ¢ that the trajectory does not explore the phase space available
for the harmonic osci Q ergodicity problem is not surprising, the conventional NH
dynamic suffer fro Qéi? roblem. It is questionable that the situation can be improved
with a more codp}1 Y a , for example, ¢ = (71,72), ¢ = (’ylmqu,w%p), Q = (v,u),

%(717 73), then we get

2
4 p=—mwq+m {U— — kBT} :

- / K
2
_\b q:%‘i"Yz[%—kBT}’
b b= (71% + ’wwzq) v,

\ u:—’

1
and it is easy to show that this dynamics is not ergodic.
Our next illustration will be devoted to the system described by thermostat dynamical

equations (17). We will show, by means of numerical simulations, that a certain realization

14
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of the whole length chain of physically reas naélg in‘tjractions, that is S «w S,q e X,
o

generates the correct statistics.
Let us consider the case when all p rah‘%*ﬁt the system (17) are set equal to unity,
m=lw=1pu=1,~v=1,kgT =1 )\l@;‘bhe initial conditions are: p = 0,q = 0,v =
eLa

0. Phase trajectories of length 10° a Eﬂ ed using the Euler method with a time step
of At =0.0005. We have repeate
with a random contribution he Nfor the entire interval from ¢ to ¢t + At, and arrive at

the same result.

Figure 2(a) shows hegQré section (p,q) for a harmonic oscillator equipped with the
temperature cont{bl ((17) his figure demonstrates that the trajectory generates proper
sampling of the ful

momentum position distribution functions from simulations as compared with the exact

ulagions using the fourth-order Runge-Kutta method

ase space of the harmonic oscillator. Figures 2(b) and 2(c) show the

analytical expressiops. In both cases, the Gaussian distribution is generated in agreement
with the“the t%al prediction. Presented results serve as an evidence of ergodic sampling
th ca nicabstatistics.

ke;ﬁdifference between the NHL and RNHL schemes is that the latter relates the tem-

?’e?at\ure control tool to the system S,q rather than to the system S, and the corresponding

[iable, v, must be Gaussian, according to the equations (17). Thus, it is important that the
RNHL dynamical equations properly generate the Gaussian statistics of v variable. Figure
3 shows the v-distribution function from simulations as compared with the exact analytical

solution and indicates a good agreement between them.

15
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Figure 2. (a) Po caré section (p,q) for a harmonic oscillator coupled to the redesigned

NHL thermbstate(17). (b) The generated momentum density function (dots) as compared to

the analyt /res% solid cover filled in gray). (c) The same for the generated position density
ﬂ

function.

\Q\ICLUSION

In conclusmn, we emphasize that the method proposed in this work is based on the
fundamental laws of statistical physics and offers a unified approach in developing stochastic
and deterministic thermostats. For clarity of presentation we have illustrated our method

using a few simple TEs and restricted our consideration by Markov dynamics. The presented

16
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0.4
0.3
0.2

0.1~

Figure 3. The density function for momentum v (in the system‘ﬂ& m simulations (dots) as

compared with the analytical solution (solid cover filled in ggay).

—

method allowed us to obtain a wide spectrum of st hastﬁ and deterministic dynamical

systems with the invariant canonical measure. \(’e note_that the idea of presented method

is general and adaptable to a variety of TEs sNt_can be used to produce thermostats
th

of novel types. For example the thermost&\e ystem with non-Markov dynamics, i.e.

the one described by the equation VH WE(1) ox fot dt'G(t —t')F(z(t'),T). As a second
example of new type of thermosta ention the one for the gradient dynamical
\

system. \
We realize that nontrivialetats should be verified by test simulations. In our

follow up work we will focus on thege and other applications of the presented method.
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