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Abstract. Complementing Büchi automata is an intriguing and in-
tensively studied problem. Complementation suffers from a theoretical
super-exponential complexity. From an applied point of view, however,
there is no reason to assume that the target language is more complex
than the source language. The chance that the smallest representation
of a complement language is (much) smaller or (much) larger than the
representation of its source should be the same; after all, complementing
twice is an empty operation. With this insight, we study the use of learn-
ing for complementation. We use a recent learning approach for FDFAs,
families of DFAs, that can be used to represent ω-regular languages, as
a basis for our complementation technique. As a surprising result, it has
proven beneficial not to learn an FDFA that represents the complement
language of a Büchi automaton (or the language itself, as complement-
ing FDFAs is cheap), but to use it as an intermediate construction in
the learning cycle. While the FDFA is refined in every step, the target
is an associated Büchi automaton that underestimates the language of
a conjecture FDFA. We have implemented our approach and compared
it on benchmarks against the algorithms provided in GOAL. The com-
plement automata we produce for large Büchi automata are generally
smaller, which makes them more valuable for applications like model
checking. Our approach has also been faster in 98% of the cases. Finally
we compare the advantages we gain by the novel techniques with ad-
vantages provided by the high level optimisations implemented in the
state-of-the-art tool SPOT.

1 Introduction

The complementation of Büchi automata [15] is a classic problem that has been
extensively studied for more than half a century; see [56] for a survey. The classic
line of research on complementation has started with a proof on the existence of
complementation algorithms [38,40] and continued to home in on the complexity
of Büchi complementation, finally leading to matching upper [47] and lower [57]
bounds (≈ (0.76n)n) for complementing Büchi automata. This line of research
has been extended to more general classes of automata, notably parity [49] and
generalised Büchi [48] automata.

The complementation of Büchi automata is a valuable tool in formal verifica-
tion (cf. [34]), in particular when a property that all runs of a model shall have is



provided as a Büchi automaton (one tests if the automaton that recognises the
runs of a system has an empty intersection with the automaton that recognises
the complement of the property language) and when studying language inclusion
problems of ω-regular languages [3, 4, 52].

With the growing understanding of the worst case complexity, the practical
cost of complementing Büchi automata has become a second line of research.
In particular the GOAL tool suite [54] provides a platform for comparing the
behaviour of different complementation techniques on various benchmarks [53].

Traditional complementation techniques use the automaton they seek to com-
plement as a starting point for complex state space transformations. These trans-
formations may lead to a super-exponential growth in the size. While this is
generally unavoidable [57], we believe that there is no inherent reason to assume
that the complement language is harder than the initial language; after all, com-
plementing twice does not change the language1. This begs to ask the question,
if we can—and if we should—avoid or reduce the dependency on the syntactic
representation of the language we want to complement by a Büchi automaton.

This puts the focus on learning based approaches. The classic DFA learning
algorithm L* has been proposed by Angluin in [6]. Based on L*, improvements
and extensions have been made in [12,32,44]. They have been successfully applied
in formal verification, for instance in compositional reasoning [17,21,23], system
synthesis [2, 5, 13], and error localisation [20, 22]. Recently, Angluin’s learning
algorithm has been extended to ω-regular languages [8, 25,35].

Families of DFAs [8, 35] (FDFAs), introduced in [7], have emerged as an
excellent tool to represent ω-regular languages based on the representation of
ultimately periodic words uvω as pairs (u, v). Based on the experience that
DFAs tend not to be much larger than NFAs in practice, there is reasonable hope
that FDFAs relate similarly to Büchi automata. Indeed, we have observed that,
when we complement Büchi automata using existing determinisation techniques,
it is often the case that their corresponding complement Büchi automata are
much larger than themselves, while their complements by learning corresponding
FDFAs have similar size to them, see Table 2 in Section 4. Moreover, FDFAs have
proven to be well suited for learning [8,35], which makes them an ideal starting
point for developing a learning based automata complementation approach.

In a surprising twist, we found that FDFAs do not have to be learned to
exploit them in a learning approach. Instead, we use candidate FDFAs F that
are produced during the learning to infer Büchi automata B(F) that accept
a subset of the ultimately periodic words represented by F . Thus, while our
learning algorithm is driven by a core that tries to learn a corresponding FDFA
F , it often terminates well before such an FDFA is found. This is possible, be-
cause the correspoinding FDFA is only a tool in the complementation algorithm.
Broadly speaking, the algorithm uses a candidate F , its complement F c, and un-

1 The typical model checking approach to complement the specification first also as-
sumes that the translation into a Büchi automaton is equally efficient for the formula
and its negation.
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Fig. 1. The learning framework for complementing a Büchi automaton B. The learner
makes membership queries MQ(u, v), followed by the teacher revealing whether uvω is
in the complement of L(B), and equivalence queries EQ(F), upon which the teacher
either replies that B(F) complements B, or produces a counterexample CE: (u, v),
such that the learner can refine F by either removing (u, v) from the language of F (if
uvω ∈ L(B)), or by adding it to the language of F (otherwise).

derapproximations B(F) and B(F c) of their respective ω-languages as its main
components, and it can stop as soon as B(F c) complements the given NBA.

This is feasible because complementing an FDFA F into an FDFA F c is triv-
ial (see Definition 5), and, while a Büchi automaton B(F) accepts only a subset
of the ultimately periodic words defined by the FDFA F it under-approximates,
we observe that the union of B(F) and B(F c) accepts all infinite words, which
is justified by Proposition 2 in Section 3.3.

On first glance, this may sound as if this means that B(F) precisely captures
the language represented by F , but this is not always the case: an ultimately
periodic word uvω has many representations as pairs, including e.g. (u, v), (uv, v),
and (u, v7), and it can happen that some are accepted by an FDFA F , while
others are accepted by its complement F c. In this case, we show that uvω will
be accepted by B(F) or B(F c)—and possibly by both of them (Proposition 2
in Section 3.3).

We use a variation of Angluin’s classic DFA learning algorithm [6] to learn
F . Our learning approach, outlined in Figure 1, uses membership queries for F
until a consistent automaton is created. It then turns to equivalence queries. For
the membership queries, we use—cheap—standard queries [8, 35]. The novelty
lies in a careful design of equivalence queries that make use of cheap operations
whenever possible.

These equivalence queries are not executed with the FDFA F and its com-
plement F c, but with the Büchi automata B(F) and B(F c) that underestimate
them. We first check if B(F) has an empty language intersection with the au-
tomaton B we want to complement. This step is cheap, and if the answer is
negative, then we get an ultimately periodic word uvω in the language of B,
where at least some representations of uvω are accepted by F . We remove the
representative provided by the teacher from the language of F and continue.



We then check if the language of B(F c) is included in the language of B. This
is an interesting twist, as language inclusion is one of the traditional justifications
for complementing Büchi automata. But while the problem is PSPACE complete,
it can usually be handled well by using efficient tools like RABIT [3, 4, 52].
Non-inclusion comes with a witness in the form of an ultimately periodic word
uvω accepted by B(F c), but not by B. Thus, some representations of uvω are
(incorrectly) rejected by F . We add them to the language of F and continue.
Otherwise we have L(B(F c)) ⊆ L(B). We then conclude that L(B(F)) = Σω \
L(B) and terminate the algorithm with B(F) as the complement of B, which is
justified by Theorem 2.

In a final bid for optimisation, we observe that this learning procedure can
only terminate if B(F) and B(F c) are disjoint, which is justified by Corollary 2
in Section 3.4. If they are not, each ultimately periodic word uvω in their in-
tersection will, in the final check, be a witness for language non-inclusion. It is,
however, much cheaper to find. We therefore suggest that we check disjointness
first and proceed to the more expensive language inclusion test only when the
disjointness test fails.

Remark. We have also experimented with checking universality of L(B) ∪
L(B(F)) instead of checking language inclusion of B(F c) in B in the framework
since this is a simple and more intuitive algorithm for complementing Büchi
automata based on our learning framework. It has proven to be slower than
the algorithm depicted in Figure 1 which confirms that our handling with the
equivalence queries is more practical.

Contribution. The complementation of Büchi automata is a heavily researched
field. However, to the best of our knowledge, all methods applied to it so far
have been automata based. While this focus is natural, it is an important con-
ceptional contribution to consider methods that do not focus on manipulating
the automata we seek to complement.

Technically, publications about L*-style algorithms can be divided into two
main classes: extensions of the L* family to new classes of automata [1,8,12,25,35,
36] and the works that provide suitable—and usually well-performing—teachers
for a class of learning problems (e.g. [2,5,12,13,17–23,26,27,31,32,35,41,43,44]).
This paper belongs to the latter class of contributions: we propose a simple and
practical learning algorithm for complementing Büchi automata.

The performance of learning algorithms depends heavily on the implemen-
tation of the teacher. In line with other applications of L*-style algorithms, our
contribution is the careful design of an FDFA teacher. In our context, member-
ship queries are straight forward, and the challenge is exclusively in the equiva-
lence queries. The PSPACE equivalence queries the teacher has to answer look
like a show stopper. Adding the theoretical super-exponential blow-up incurred
by complementing a Büchi automaton to the mix, it is like having the cards
stacked against you.

Looking more closely at the challenges posed by equivalence queries, however,
reveals that the high costs of equivalence checking can often be avoided. First and
foremost, we can check if the candidate language intersects with the language of



the automaton we want to complement by a cheap emptiness query (L(B(F))∩
L(B) =? ∅). When the emptiness holds, we check if L(B(F)) and L(B(F c)) in-
tersect, using a second cheap emptiness query (L(B(F)) ∩ L(B(F c)) =? ∅). The
teacher only uses PSPACE-hard language inclusion queries (L(B(F c)) ⊆? L(B))
once both previous queries are passed. These are usually few queries, and we
found that, in spite of the theoretical complexity, existing tools can check inclu-
sion sufficiently fast for this approach to be efficient.

We have implemented the learning-based approach in the tool Buechic based
on ROLL [35]. Although we do not improve the theoretical complexity of comple-
menting Büchi automata, our careful design of the FDFA teacher makes learning
complement Büchi automata work reasonably well in practice. This is confirmed
by the experiments we have performed on the roughly 500 Büchi automata from
Büchi Store [55], the generated Büchi automata by SPOT for formulas in [50]
and NCSB-Complementation [11].

In the performance evaluation, we were particularly interested in a compari-
son with GOAL [54]—considering the time to generate the complement automata
and their size—as GOAL provides a comprehensive collection of the state-of-the-
art techniques as well as a collection of benchmarks. It is therefore well suited
for serving as a point of comparison with our novel technique.

In order to give a complete picture of the Büchi automata complementation
state of the art, we have also compared Buechic against SPOT [24]. Differently
from GOAL, SPOT only implements the most successful technique, and is a
highly engineered state-of-the-art tool that has used the insight from GOAL
and other automata manipulation techniques to obtain powerful heuristics for
state space reduction on top of the principle techniques. While we consider the
comparison with GOAL to be fair, comparing with SPOT is over-stretching what
our tool can achieve—a bit like comparing a prototype for a new model checking
approach with NuSMV. Moreover, SPOT takes advantage of a symbolic rep-
resentation of the automata, by means of Ordered Binary Decision Diagrams
(OBDDs) [14], while both Buechic and GOAL use an explicit graph data struc-
ture to represent the automata. This means that SPOT can work on multiple
states and transitions simultaneously while Buechic and GOAL can only work
on a single state/transition at a time. This is another reason why we consider the
comparison of Buechic with GOAL to be fairer than with SPOT. Since SPOT
does not provide a complementation function for general automata, but only for
deterministic ones, we have derived one based on the implemented techniques
(determinisation, complementation of deterministic automata, transformation to
Büchi) to compare the advancement obtained by our technique with the advance-
ment obtained by using symbolic encoding, states reduction, powerful heuristics,
and performance optimisation.

The complement automata we produce are generally smaller for large Büchi
automata than those generated by GOAL and SPOT, which makes them more
valuable for applications like model checking. Moreover, Buechic has also been
faster in 98% of the cases when compared to GOAL, though SPOT is often
considerably faster due to its maturity and use of symbolic data structures.



Related Work. Current algorithms [15,28–30,33,38–40,42,45–47,51,53,54,56,
57] for the complementation of Büchi automata are based on a direct comple-
mentation approach, which is quite different from learning. For a given Büchi
automaton B, these approaches use the structure of B as a base to construct a
new Büchi automaton that recognises the complement language Σω \ L(B).

We use the learning algorithm instead to directly obtain an automaton that
recognises Σω \ L(B). It relies mainly on the language of B instead of on its
structure. This allows for obtaining a small automaton for Σω \ L(B), even one
that is much smaller than B.

Regarding the use of learning algorithms, there is a vast literature about
regular languages (see, e.g., [2, 5, 6, 12, 13, 17, 20–23, 32, 44]); learning ω-regular
languages [8, 25, 35] is a young and emerging field. In [25], they learn a Büchi
automaton for an ω-regular language L by learning a DFA defined in [16]. The
work proposed in [8] sets the general framework for learning ω-regular languages
by means of FDFAs while [35] proposes a practical implementable framework by
providing the appropriate FDFA teacher: it assumes that there exists an oracle
for the target ω-regular language L and constructs an automaton accepting
L. In this paper we design the oracle for the FDFA teacher used in [35]; the
oracle knows the complement of the language of B and is able to produce the
appropriate counterexamples that are then analysed and returned to the learner.

Organisation of the Paper. After starting with some background and nota-
tion in Section 2, we describe our learning based complementation technique in
Section 3. In Section 4, we evaluate our technique on standard complementation
benchmarks and against the competitor algorithms from the GOAL suite and
SPOT, before concluding the paper with Section 5.

2 Preliminaries

Let X and Y be two sets; we denote by X 	 Y their symmetric difference, i.e.
the set (X \ Y ) ∪ (Y \X).

Let Σ be a finite set of letters called alphabet. A finite sequence of letters
is called a (finite) word. An infinite sequence of letters is called an ω-word. We
use |α| to denote the length of the finite word α and we denote by last(α) the
last letter of α. We use ε to represent an empty word. The set of all finite words
on Σ is denoted by Σ∗, and the set of all ω-words is denoted by Σω. Moreover,
we also denote by Σ+ the set Σ∗ \ {ε}. Given a finite word α = a0a1 . . . and
i, k < |α|, we denote by α(i) the letter ai and we use α[i : k] to denote the
subword α′ = ai . . . ak of α, when i ≤ k, and the empty word ε when i > k.

Definition 1. A nondeterministic Büchi automaton (NBA) is a tuple B =
(Σ,Q, I,T,F), consisting of a finite alphabet Σ of input letters, a finite set Q of
states with a non-empty subset I ⊆ Q of initial states, a set T ⊆ Q×Σ ×Q of
transitions, and a set F ⊆ Q of accepting states.



We denote the generic elements of an NBA B by Σ, Q, I, T, F, and we propagate
primes and indices when necessary. Thus, for example, the NBA B′i has states
Q′i, initial states I ′i, input letters Σ′i, transition set T′i, and accepting states F′i;
we use a similar notation for the other automata we introduce later.

An run of an NBA B over an ω-word α = a0a1a2 · · · ∈ Σω is an infinite
sequence of states ρ = q0q1q2 · · · ∈ Qω such that q0 ∈ I and, for each i ≥ 0,(
ρ(i), ai, ρ(i+1)

)
∈ T where ρ(i) = qi. A run ρ is accepting if it contains infinitely

many accepting states, i.e. Inf(ρ) ∩ F 6= ∅, where Inf(ρ) = { q ∈ Q | ∀i ∈ N.∃j >
i : ρ(j) = q }. A ω-word α is accepted by B if B has an accepting run on α, and
the set of words L(B) = {α ∈ Σω | α is accepted by B } accepted by B is called
its language.

We call a subset of Σω is an ω-language and the language of an NBA an ω-
regular language. Words of the form uvω are called ultimately periodic words. We
use a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w. For an ω-language L, let UP(L) =
{uvω ∈ L | u ∈ Σ∗, v ∈ Σ+ } be the set of all ultimately periodic words in L.

Theorem 1 (Ultimately Periodic Words [15]). Let L, L′ be two ω-regular
languages. Then L = L′ if, and only if, UP(L) = UP(L′).

An immediate consequence of the above theorem is that, for any two ω-regular
languages L1 and L2, if L1 6= L2 then there is an ultimately periodic word
xyω ∈ UP(L1)	UP(L2).

Definition 2. A deterministic finite automaton (DFA) is a tuple A =
(Σ,Q, q̄,T, F ), consisting of a finite alphabet Σ of input letters, a finite set Q
of states with an initial state q̄ ∈ Q, a total transition function T: Q×Σ → Q,
and a set F ⊆ Q of accepting (final) states.

The complement Ac of a DFA A = (Σ,Q, q̄,T, F ) is the DFA Ac =
(Σ,Q, q̄,T, Q \ F ).

Given a DFA A and two states s and f , let As
f = (Σ,Q, s,T, {f}) be the DFA

obtained from A by setting its initial and accepting states to s and {f}, respec-
tively.

A run of a DFA A over a word α = a0 · · · ak ∈ Σ∗ is a finite sequence of states
ρ = q0 · · · qk+1 ∈ Q∗ such that q0 = q̄ and for every 0 ≤ i ≤ k, qi+1 = T(qi, ai)
where k ≥ 0. The run ρ of A on α is accepting if qk+1 ∈ F . We denote by
L(A) the language of A, i.e., the set of all words whose corresponding runs are
accepted by A. We call the language of a DFA a regular language. Given an input
word α ∈ Σ∗ and the run ρ of A on α, we denote by A(α) the last reached state
last(ρ). Given a DFA A with alphabet Σ, it holds that L(Ac) = Σ∗ \ L(A).

Note that we require T to be total so to simplify the definitions in the re-
mainder of the paper. Each DFA A with a non-total transition function can be
transformed to a DFA A′ as by Definition 2 such that L(A′) = L(A) by adding
a fresh non-final sink state, and by letting T′ agree with T where T is defined
and mapping to this fresh sink state otherwise.
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Fig. 2. An NBA B and an FDFA F = (M, {Aε}) recognising the same language L =
Σ∗ · bω.

Learning regular languages via DFAs was first proposed in [6], and the right
congruence is the theoretical foundation for it to discover states in a regular
language. A right congruence is an equivalence relation ∼ on Σ∗ such that x ∼ y
implies xv ∼ yv for every x, y, v ∈ Σ∗. We denote by |∼| the index of ∼, i.e.
the number of equivalence classes of ∼. We use Σ∗/∼ to denote the equivalence
classes of the right congruence ∼. A finite right congruence is a right congruence
with a finite index. For a word u ∈ Σ∗, we denote by [u]∼ the class of ∼ in which
u resides.

The main obstacle to learn ω-regular languages via Büchi automata is that
there is a lack of right congruence for Büchi automata. Inspired by the work
of Arnold [9], Maler and Stager [37] proposed the notion of family of right-
congruences. Based on this, Angluin and Fisman [8] further proposed to learn
ω-regular languages via a formalism called family of DFAs, in which every DFA
corresponds to a right congruence.

Definition 3 (Family of DFAs [8]). A family of DFAs (FDFA) over an alpha-
bet Σ is a pair F = (M, {Aq}) consisting of a leading DFA M = (Σ,Q, q̄,T, ∅)
and of a progress DFA Aq = (Σ,Qq, q̄q,Tq, F q) for each q ∈ Q.

In the remainder of the paper we may just write M = (Σ,Q, q̄,T) for a leading
DFA. We say that a decomposition (u, v) is accepted by an FDFA F if M(u) =
M(uv) and Aq(v) ∈ F q where q = M(u). An ultimately periodic word α ∈ Σω

is accepted by an FDFA F if there exists a decomposition (u, v) of α that is
accepted by F . Then we define UP(F) = {α ∈ Σω | α is accepted by F }. As an
example of FDFAs, consider the FDFA F shown in Figure 2: the leading DFA
M has only one state, ε, and the corresponding progress DFA for state ε is Aε.
The word abω is accepted by F since there exists the decomposition (a, b) of
abω being accepted by F . It is easy to see that UP(F) = Σ∗ · bω, which is also
recognised by the NBA B depicted in Figure 2.

In [8], Angluin and Fisman propose to use three canonical FDFAs to recognise
ω-regular languages, namely periodic FDFAs, syntactic FDFAs, and recurrent
FDFAs. In this paper, we only use syntactic FDFAs since they can be expo-
nentially smaller than their periodic counterpart [8] and have proved to be well
suited for converting to Büchi automata [35]. The right congruence ∼L of a given
ω-regular language L is defined such that x ∼L y if for each w ∈ Σω, it holds
that xw ∈ L if and only if yw ∈ L.



Definition 4 (Syntactic FDFA [8]). Given an ω-regular language L, the syn-
tactic FDFA F = (M, {Au}) for L is defined as follows. The leading DFA M
is the tuple M = (Σ,Σ∗/∼L

, [ε]∼L
,T, ∅), where T([u]∼L

, a) = [ua]∼L
for all

u ∈ Σ∗ and a ∈ Σ.
The right congruence ≈u

S for a progress DFA Au of the syntactic FDFA is
defined as follows.

x ≈u
S y iff ux ∼L uy ∧ ∀v ∈ Σ∗.uxv ∼L u =⇒ (u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L).

The progress DFA Au is the tuple (Σ,Σ∗/≈u
S
, [ε]≈u

S
,TS , FS), where, for each

v ∈ Σ∗ and a ∈ Σ, TS([v]≈u
S
, a) = [va]≈u

S
. The set of accepting states FS is the

set of equivalence classes [v]≈u
S

, for which uv ∼L u and uvω ∈ L hold.

Given an ω-regular language L, the corresponding syntactic FDFA for L has
finite states [8].

Lemma 1 (cf. [8]). Let F = (M, {Aq}) be a syntactic FDFA recognising the
ω-regular language L. Then we have UP(F) = UP(L) and if xyω ∈ L, then every
decomposition (u, v) of xyω with M(u) = M(uv) is accepted by F .

An example of syntactic FDFAs is the FDFA F shown in Figure 2. This
FDFA F recognises the ω-regular language Σ∗ · bω. Since abω is accepted by F ,
we have that every decomposition of abω is accepted by F .

Definition 5 (Complement of FDFA [7]). Given an FDFA F = (M, {Aq}),
the complement F c of F is the FDFA F c = (M, {Aqc}).

In contrast to [7], we consider general FDFAs instead of only canonical FDFAs in
this paper. As a consequence, though we call F c the complement of F , actually
it is possible to have UP(F)∩UP(F c) 6= ∅. This complicates the use of F c. More
details will be given in Section 3.

Transforming FDFAs to Büchi Automata. According to [35, Section 6],
an FDFA F does not necessarily recognise an ω-regular language. Thus one
cannot construct an NBA B for an arbitrary FDFA F such that UP(F) =
UP(L(B)). To overcome this obstacle, the authors of [35] propose two methods
to approximate UP(F) by means of two Büchi automata B(F) and B(F) that
accept an under- and an over-approximation, respectively, of UP(F). We use the
under-approximation method, because this ensures that UP(L(B(F))) = UP(F)
holds whenever F is a canonical FDFA (cf. [35, Lemma 3]). No such property
has been established for the over-approximation method.

We now present the idea underlying the construction of the under-approxima-
tion B(F) proposed in [35], to which we refer for details. Recall that As

f denotes
the DFA A where s is the initial state and f the only accepting state; recall
that an FDFA F = (M, {Aq}) consists of a leading DFA M = (Σ,Q, q̄,T, ∅)
and of a progress DFA Aq = (Σ,Qq, q̄q,Tq, F q) for each q ∈ Q; recall also that
UP(F) = {α ∈ Σω | α is accepted by F }, where α is accepted if there exists a
decomposition (u, v) of α, such that uvω = α, M(u) = M(uv), and Aq(v) ∈ F q,



where q = M(u). This implies that every word α in UP(F) can be decomposed
into two parts u and v, such that u is consumed by a run of M and v by a
run of Aq. Note that, if we consider M q̄

q , then we have that uvω is accepted by
F if M q̄

q (u) = M q̄
q (uv), u ∈ L(M q̄

q ), and Aq(v) ∈ F q, where q = M(u). This
means that we can write UP(F) as UP(F) =

⋃
q∈Q,f∈F q L(M q̄

q ) · N(q,f) where

N(q,f) = { vω ∈ Σω | v ∈ Σ+ ∧ q = Mq
q (v) ∧ v ∈ L((Aq)q̄

q

f ) } is the set of all

infinite repetitions of the finite words v accepted by Aq
f .

In order to under-approximate UP(F), it is enough to match exactly L(M q̄
q )

and to under-approximateN(q,f). The former is trivial, since we already haveM q̄
q ;

for the latter, consider the DFA P (q,f) = Mq
q×(Aq)q̄

q

f ×(Aq)ff , where × stands for

the standard intersection product between DFAs: the DFA Mq
q × (Aq)q̄

q

f ensures

that for any v ∈ L(Mq
q × (Aq)q̄

q

f ) and u ∈ L(M q̄
q ), we have q = M(u) = M(uv)

while (Aq)ff guarantees that v, v2 ∈ L((Aq)q̄
q

f ). Then, by the construction in [35,
Definition 4], it is possible to construct an NBA B(F) such that L(B(F)) =⋃

q∈Q,f∈F q L(M q̄
q ) ·N (q,f) where N (q,f) = L(P (q,f))

ω. B(F) under-approximates
the language of F :

Lemma 2 ([35, Lemma 3]). For every FDFA F , UP(L(B(F))) ⊆ UP(F)
holds. If F is canonical, then UP(L(B(F))) = UP(F) holds.

3 Learning to Complement Büchi Automata

In this section we present the details of our learning framework, depicted in
Figure 1, to learn the complement language L = Σω \ L(B) of a given NBA
B. We first outline the general framework. We then continue with the technical
part, where we first show that the counterexamples are correct in Section 3.2,
and then establish termination and correctness in Section 3.3, before we finally
discuss an optimisation in Section 3.4.

3.1 The Learning Framework

We begin with an introduction of the learning framework for L, depicted in
Figure 1. The framework consists of two components, namely the learner and
the teacher for complementing Büchi automaton.

The learner is a standard FDFA learner (see, e.g. [8,35]). He tries to learn an
FDFA that recognises an ω-regular language L by means of two types of queries:
membership queries of the form MQ(u, v) that provide him with information
about whether the word uvω has to be included in L; and equivalence queries of
the form EQ(F), aimed to find differences between the current conjecture F and
the language he shall learn. The learner is oblivious of the fact that the NBA
B(F) is sought after, not F itself.

The teacher provides answers to these queries based on a definition of the
complement of L by an NBA B. Answering a membership query MQ(u, v) is
easy: it reduces to checking whether uvω ∈ L, i.e. whether uvω /∈ L(B).



The innovation is in the way the equivalence queries EQ(F) are answered.
For checking equivalence, the teacher works with two NBAs B(F) and B(F c)
that underestimate the ω-languages recognised by F and F c, respectively. She
reports equivalence to the learner, when she is satisfied that L(B(F)) = L holds.
For algorithmic reasons, this is the case when L(B(F c)) = L(B) holds, too.

In her first step in answering an equivalence query EQ(F), she constructs the
NBA B(F) from the conjecture F and then checks whether L(B(F))∩L(B) = ∅
holds. If this is not the case, then a witness xyω ∈ L(B(F))∩L(B) is constructed.
Since UP(L(B(F))) ⊆ UP(F) is established in Lemma 2, this implies xyω ∈
UP(F) ∩UP(L(B)).

She then analyses the witness xyω to get a decomposition (u, v) of xyω that
is accepted by F . She then returns (u, v) to the learner as a counterexample
(that matches Definition 6), for him to remove (u, v) from the current FDFA F ,
since uvω ∈ L(B).

When the first check L(B(F)) ∩ L(B) = ∅ has been passed successfully, the
teacher constructs B(F c) and checks whether L(B(F c)) ⊆ L(B) holds. This
language inclusion test is delegated to the off-the-shelf tool RABIT [3, 4, 52].
Note that RABIT does not complement either of the two input languages. If
language inclusion holds, we exploit L(B(F)) ∪ L(B(F c)) = Σω (a property
we establish in Proposition 2) to infer L(B(F)) ∪ L(B) = Σω. Since we know
that L(B(F)) ∩ L(B) = ∅ holds from the first check, this implies that B(F)
complements B.

If the second check fails, the teacher gets a witness xyω ∈ L(B(F c)) \ L(B),
such that UP(L(B(F c))) ⊆ UP(F c) (Lemma 2) implies xyω ∈ UP(F c) \
UP(L(B)). She then analyses the witness xyω to derive a decomposition (u, v) of
xyω that is accepted by F c. She then returns (u, v) to the learner as a counterex-
ample (that matches Definition 6), for him to add (u, v) to the current FDFA
F , since uvω /∈ L(B) and (u, v) is not accepted by F .

3.2 Correctness of the Counterexample Analysis

One important task of the teacher in the learning framework depicted in Figure 1
is the construction of the appropriate counterexample (u, v) in case the equiv-
alence query EQ(F) has to be answered negatively. Note that this is the only
step in our learning loop that depends on the representation of the complement
language by B—a much looser connection than for the off-the-shelf complementa-
tion algorithms implemented in GOAL [54] and SPOT [24]. The counterexample
we receive is an ultimately periodic word xyω. We cannot, however, simply re-
turn (x, y) but we have to infer an appropriate counterexample (u, v) such that
uvω = xyω. For this, we first recall the notion of counterexamples for FDFA
learners.

Definition 6 (Counterexample for the FDFA learner [35]). Given a con-
jectured FDFA F = (M, {Aq}) and the target language L, we say that a coun-
terexample (u, v) is

– positive if M(u) = M(uv), uvω ∈ UP(L), and (u, v) is not accepted by F ,



– negative if M(u) = M(uv), uvω /∈ UP(L), and (u, v) is accepted by F .

Note that, when a pair (u, v) is accepted by F , then M(u) = M(uv) holds.
The FDFA learner underlying the Büchi automaton complementation learner
can use the counterexample for the FDFA learner to refine the conjecture F for
the target language L. Intuitively, if a counterexample (u, v) is positive, then F
should accept it, while F should reject it when it is negative. Our goal is to infer
a valid decomposition (u, v) from xyω, which matches the cases in Definition 6,
to be able to refine F . Proposition 1 guarantees that, if there exists xyω violating
the checks performed in our learning framework, then we can always construct
a decomposition (u, v) from xyω—that satisfies uvω = xyω—to refine F .

Proposition 1. Given an NBA B with alphabet Σ, let L = Σω \ L(B) be its
complement language and target ω-regular language. Suppose F is the current
FDFA conjecture. Whenever the teacher returns (u, v) as answer to an equiva-
lence query EQ(F), then (u, v) is either a positive or negative counterexample.

3.3 Termination and Correctness of the Learning Algorithm

Based on Proposition 1, the learner can refine the current FDFA F with the
returned counterexample (u, v) from the teacher. Since the learner is the same
as the FDFA learner proposed in [8, 35], in the worst case, we have to get the
canonical FDFA that recognises L in order to complete the learning task. More-
over, the number of membership queries and equivalence queries are polynomial
in the size of the canonical periodic FDFA [8,35].

In order to establish the correctness of our learning algorithm, we first intro-
duce a result that, while being used for proving the correctness of the algorithm,
is of interest in its own right: we establish in Proposition 2 that, for a (not neces-
sarily canonical) FDFA F , the NBAs B(F) and B(F c) that underapproximate
the languages of F and its complement F c, respectively, cover the whole Σω.
This generalises a simpler result for canonical FDFAs from [7].

Proposition 2. Given an FDFA F with alphabet Σ, it is L(B(F)) ∪
L(B(F c)) = Σω.

Proof. First one can show that for each pair of ω-regular languages L1 and L2, we
have that UP(L1 ∪ L2) = UP(L1) ∪UP(L2). By Theorem 1, it suffices to prove
that UP(L(B(F))) ∪ UP(L(B(F c))) = UP(Σω) = {uvω ∈ Σω | u ∈ Σ∗, v ∈
Σ+ } holds in order to show that L(B(F))∪L(B(F c)) = Σω holds. That is, we
need to show that, for all finite words u ∈ Σ∗ and v ∈ Σ+, uvω ∈ UP(L(B(F)))
or uvω ∈ UP(L(B(F c))).

Given an FDFA F = (M, {Aq}), for any u ∈ Σ∗ and v ∈ Σ+, by [8] we can
always find a normalised decomposition (x, y) of uvω such that q = M(x) =
M(xy) and xyω = uvω since M is a complete DFA with a finite set of states.
Then, one can show that there exists some j ≥ 1 such that yj is either accepted
by Aq or Aqc. Therefore, we can conclude that (x, yj) is either accepted by
F or F c. Consequently, we get that xyω = x(yj)ω ∈ UP(L(B(F))) or that
xyω = x(yj)ω ∈ UP(L(B(F c))), as required. ut



The following theorem guarantees the main result about the termination and
correctness of the proposed framework. That is, the learning algorithm always
returns an NBA that accepts the complement language of the given B.

Theorem 2. Given an NBA B with alphabet Σ, the learning algorithm depicted
in Figure 1 terminates and returns an NBA B(F) such that L(B(F)) = Σω \
L(B).

Note that the algorithm can terminate before we have learned the canonical
FDFA that represents Σω \ L(B): on termination L(B(F)) = Σω \ L(B) is
guaranteed since the conjecture F satisfies L(B(F))∩L(B) = ∅ and L(B(F c)) ⊆
L(B). When a conjectured F does not satisfy L(B(F)) = Σω \ L(B), then it is
easy to conclude, together with L(B(F)) ∪ L(B(F c)) = Σω by Proposition 2,
that L(B(F)) ∩ L(B) 6= ∅ or L(B(F c)) 6⊆ L(B) holds.

Corollary 1. The learning algorithm terminates with L(B(F c)) = L(B) = Σω\
L(B(F)).

From Corollary 1, we can get a Büchi automaton B(F c) accepting the same
language of B as a for-free by-product of the complementing algorithm. This
means that we have also provided an alternative oracle that can be used to
learn the language of B, which can be another method to reduce the size of B.
Therefore, our learning based complementation algorithm has proven beneficial
not to learn an FDFA that represents the complement language of a Büchi
automaton (or the language itself, as complementing FDFAs is cheap), but to
use it as an intermediate construction in the learning cycle.

3.4 An Improved Algorithm

Once the learning algorithm terminates we have that L(B(F)) ∩ L(B) = ∅ and
L(B(F c)) ⊆ L(B). It trivially follows that L(B(F)) ∩ L(B(F c)) = ∅ holds.

Corollary 2. The learning algorithm terminates with L(B(F))∩L(B(F c)) = ∅.

Therefore, L(B(F))∩L(B(F c)) = ∅ is a necessary condition for the termination
of the learning framework. Since the most expensive step is checking language
inclusion between L(B(F c)) and L(B), we should avoid this check whenever
possible. To do so, we can simply check whether L(B(F))∩L(B(F c)) = ∅ holds
right before checking the language inclusion.

If there exists some xyω ∈ L(B(F)) ∩ L(B(F c)), then we have in particular
that some decomposition (u, v) of xyω is accepted by F c, as well as xyω ∈
L(B(F)). The latter implies with L(B(F))∩L(B) = ∅ (recall that this is checked
first) that xyω ∈ L (since L(B(F)) ⊆ L was shown). We can therefore return
the decomposition (u, v) as a positive counterexample for the FDFA learner to
refine F . Otherwise, we just proceed to check the language inclusion.

This optimisation preserves the correctness of the algorithm, and we apply
it by default.



Table 1. Comparison between GOAL, SPOT, and Buechic on complementing
Büchi Store. The average number of letters in each alphabet is about 9.

Block
Experiments GOAL

Buechic SPOT
(States, Transitions) Ramsey Determinisation Rank Slice

1
287 NBAs
(928, 2071)

|Q| 21610 3919 21769 4537 2428 1629
|T| 964105 87033 179983 125155 35392 13623
tc 992 300 203 204 105 6

2
5 NBAs
(55, 304)

|Q|
–to–

926 38172 1541 165 495
|T| 21845 384378 50689 5768 4263
tc 28 42 12 474 <1

3
2 NBAs
(20, 80)

|Q|
–to– –to–

27372 11734 96 2210
|T| 622071 1391424 6260 102180
tc 56 152 7 1

4 Experimental Evaluation

We have implemented a prototype, Buechic, of our learning approach based on
the ROLL learning library [35]. We use RABIT [3,4,52] to perform the inclusion
check L(B(F c)) ⊆ L(B) that occurs in the evaluation of the equivalence query
EQ(F) (cf. Figure 1). The machine we used for the experiments is a 3.6 GHz
Intel i7-4790 with 16 GB of RAM, of which 8 GB were assigned to the tool.
The timeout has been set to 300 seconds in this section. In the experiments, we
compare our Büchi complementation algorithm with two tools. The first tool is
GOAL (the latest version 2015-10-18) [54], which is a mature and well-known
tool for manipulating Büchi automata. We consider four different complementing
algorithms implemented in GOAL, see [54] for more details.

We have used SPOT (the stable version 2.3.5) [24] as a second point of com-
parison. SPOT is the state-of-the-art platform for manipulating ω-automata,
including Büchi automata. Recall that SPOT does not provide a complemen-
tation function for generic Büchi automata directly, thus we first use SPOT
to get a deterministic automaton from the given Büchi automaton, then com-
plement the resulting deterministic automaton (for parity automata this simply
means adding 1 to all priorities), and finally transform the resulting complement
automaton to an equivalent Büchi automaton. (This follows one of the classic
approaches for complementing Büchi automata.)

The automata we used in this section for the experiments are taken from the
benchmark sets provided by Büchi Store [55] and the Büchi automata generated
by SPOT from the formulas in [50]. The former contains 295 NBAs with 1 to
17 states and with 0 to 123 transitions; the latter comprises 90 NBAs with 1
to 165 states and with 0 to 493 transitions. We then considered 300 randomly
generated Büchi automata generated by SPOT. All automata are represented in
the Hanoi Omega-Automata (HOA) format [10].

4.1 Complementation for Büchi Store

Büchi Store provides 295 nondeterministic Büchi automata; however, since one
of such automata has only one state without transitions and GOAL fails in recog-



nising it as a Büchi automaton, we decided to exclude it from the experiments
and consider only the remaining 294 cases. In practice, such an automaton ac-
cepts the empty language, so its complement accepts the whole Σω. Our tool
learns a complement automaton with 3 states and 12 transitions in just 0.16
seconds, so it mildly contributes to demonstrate the efficiency of Buechic. SPOT
can also output a complement automaton with 1 state and 1 transition in just
0.02 seconds, which is the smallest Büchi automaton recognising Σω.

The experiments shown in Table 1 are organised by blocks of rows; each block
reports the experiments it represents together with the total number of states
and transitions of the considered input NBAs and comprises three rows, marked
with |Q|, |T|, tc, reporting the overall number of states and transitions, and the
total time in seconds, respectively, spent by the different tools for computing
the complement automata. For each row, we mark in bold the minimum value
among all entries.

By inspecting the entries in Table 1 we can see that our learning based com-
plementation method always outperforms the complementation methods offered
by GOAL when we consider the number of states and transitions. If we compare
Buechic with SPOT, we can find that for 287 out of the 294 tasks, SPOT pro-
duces smaller complement automata than other competitors. Moreover, SPOT
is generally faster than the other competitors on all tasks. The results are not
surprising since SPOT has implemented a lot of optimisations to reduce the size
of the automata and it makes use of very efficient data structure called OBDDs.
We note that for Block 2 and Block 3, our complementation method produces
much smaller automata than the other tools. We explain later why this happens.

Block 1 reports the results relative to 287 NBAs which can be solved by all
algorithms. For those automata, the complement NBAs learned by Buechic have
much fewer states and transitions than the automata constructed by the algo-
rithms from GOAL. Moreover, our learning algorithm spent less time than the
four complementation algorithms from GOAL. Since on average only 7 equiva-
lence queries are needed for the learning procedure for each NBA and the size
of the corresponding FDFA is small, our learning based complementation al-
gorithms perform well for those cases. Nevertheless, SPOT is faster than our
learning algorithms and even produces smaller automata. This is because that
on average there are only 3.2 states in each Büchi automaton and the opti-
misations in SPOT work quite well in reducing the size of their deterministic
automata as well as their complement Büchi automata.

Block 2 refers to five NBAs on which only the Ramsey-based complemen-
tation approach fails. The NBAs in this block induce quite large complement
automata, as we can see from the other GOAL solvers, thus quite some work is
required for constructing them; this means that a failure can be expected also
because the approach is rather slow compared with the other GOAL approaches.
This is justified by the fact that, as mentioned in [11], the Ramsey-based com-
plementation is the first complementation method proposed by Büchi [15] and
was later improved in [51]. Our approach is much slower than GOAL and SPOT
since on average 56 equivalence queries for the learning algorithm are posed



before obtaining the appropriate conjecture F . However, the complement au-
tomata we learned have much fewer states than all approaches implemented in
GOAL—and even SPOT—since the corresponding FDFAs we learned are small.
It is worth mentioning that the reduction optimisations in SPOT are less effec-
tive here since the constructed automata by SPOT are relatively large. In our
experiments, more states in an automaton usually go along with more transi-
tions. The constructed automata by SPOT have fewer transitions since SPOT
merges all transitions which have the same source state and target state as one
transition, which is different from GOAL and Buechic.

Block 3 contains two NBAs on which both Ramsey- and determinisation-
based complementation fail. For one NBA, the determinisation method can com-
plete in 430 seconds and returns a Büchi automaton with 243 states. Regarding
the other NBA, the determinisation method cannot terminate in 600 seconds.
The bottleneck in this case is the transformation of the NBA to a determinis-
tic parity automaton. In this block, our learning algorithm learns much smaller
automata than its competitors since the corresponding FDFAs are very small.

For the given automata of Block 2 and Block 3, which are larger than the au-
tomata in Block 1, our algorithm can learn much smaller complement automata
than its competitors. This is particularly important when the complementation
is used by a model checker to check a system against a property that has been
provided as a Büchi automaton or as an ω-regular language, since it helps in
limiting the state-explosion problem the model checking algorithms are subject
to.

4.2 Complementation for Büchi Automata Generated from
Formulas

In order to compare our algorithms with GOAL and SPOT on larger Büchi au-
tomata than those in Büchi Store, we consider the Büchi automata generated by
SPOT from the formulas in paper [50]. Table 2 gives the complementation results
for the Büchi automata of 18 formulas that are explicitly given in [50]. From Ta-
ble 2, we can conclude that our algorithm can learn much smaller automata than
GOAL and SPOT on the large Büchi automata except for the formula pattern
f(0, k) where k ∈ {0, 2, 4}.

We have also considered 72 further Büchi automata generated from 72 formu-
las from [50]. In summary, Ramsey-based, Determinisation-based, Rank-based
and Slice-based GOAL approaches solve 49, 58, 61, and 62 complementation
tasks, respectively, within the time limit, while SPOT solves 66 tasks and Buechic
solves 65 tasks. The results are similar as those in Table 2; we thus only discuss
the comparison between SPOT and Buechic as best performing tools. Note that
there are 64 tasks solved by both SPOT and Buechic and those tasks solved only
by SPOT and Buechic separately are disjoint, which implies that our algorithm
complements existing complementation approaches very well. Due to the large
number of cases, in order to present the experimental results in a more intuitive
and compact way for all generated automata, we provide here the scatter plots
of Buechic and SPOT in Figure 3 for the 64 commonly solved tasks.



Table 2. Comparison between GOAL, SPOT, and Buechic on complementing gener-
ated Büchi automata. The average number of letters in each alphabet is about 29.

Block
Experiments GOAL

Buechic SPOT
(States, Transitions) Ramsey Determinisation Rank Slice

1
gf (j=1)

(4, 8)

|Q| 17 26 34 30 4 12
|T| 75 95 167 156 16 40
tc <1 <1 <1 <1 <1 <1

2
gf (j=2)
(6,14)

|Q| 275 405 808 467 12 82
|T| 4609 5881 11408 9440 158 736
tc 10 6 2 3 <1 <1

3
gf (j=3)
(8,21)

|Q|
–to– –to–

25248 15691 34 1547
|T| 1097400 1270016 1512 60973
tc 99 175 2 2

4
gf (j=4)
(10,29)

|Q|
–to– –to– –to– –to–

95
–to–|T| 14922

tc 45

5
gffg1 (j=2)

(9,22)

|Q| 559 1497 5773 1333 22 242
|T| 9027 17386 44277 25760 210 2613
tc 48 19 6 6 <1 <1

6
gffg2 (j=3)

(21,59)

|Q|
–to– –to– –to– –to–

118 20558
|T| 2662 806312
tc 6 9

7
phi1

(4,10)

|Q| 17 5 5 5 4 5
|T| 77 15 22 22 16 11
tc <1 <1 <1 <1 <1 <1

8
phi2

(4,10)

|Q| 31 21 32 19 3 8
|T| 149 70 126 84 9 22
tc <1 <1 <1 <1 <1 <1

9
phi3

(6,14)

|Q| 39 6 9 8 4 6
|T| 165 19 38 36 16 13
tc 1 <1 <1 <1 <1 <1

10
f(0, 0)
(5,9)

|Q| 29 5 7 7 8 5
|T| 135 20 32 32 36 9
tc <1 <1 <1 <1 <1 <1

11
f(0, 2)
(9,13)

|Q| 214 13 141 56 10 7
|T| 1164 51 538 268 44 11
tc 37 <1 <1 <1 <1 <1

12
f(0, 4)
(13,17)

|Q|
–to–

15 234 101 12 9
|T| 59 854 456 52 13
tc <1 <1 <1 <1 <1

13
f(1, 0)
(12,35)

|Q|
–to–

105 8121 581 10 100
|T| 534 36685 5096 69 563
tc 1 5 2 2 <1

14
f(1, 2)
(31,88)

|Q|
–to– –to–

83050 8413 16 175
|T| 367699 82832 109 1034
tc 86 25 <1 <1

15
f(1, 4)

(107, 306)

|Q|
–to– –to– –to– –to–

18 2723
|T| 125 20442
tc 2 3

16
f(2, 0)
(18,56)

|Q|
–to– –to– –to–

31281 10 840
|T| 529216 133 6460
tc 103 26 <1

17
f(2, 2)

(47,141)

|Q|
–to– –to– –to– –to–

9 1161
|T| 144 10630
tc 2 <1

18
f(2, 4)

(165, 493)

|Q|
–to– –to– –to– –to– –to– –to–|T|

tc
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Fig. 3. Comparison between the number of states and transitions of automata gener-
ated by SPOT and Buechic on 72 automata corresponding to formulas from [50]. The
average number of letters in each alphabet is about 301.

In Figure 3, the coordinate values of the y axis and x axis are the correspond-
ing number of states (resp. transitions) in the complement automata of Buechic
and SPOT. All points below the dotted diagonal indicate that the complement
automata learned by our algorithm have smaller values than the complement
automata constructed by SPOT, which is the case for almost all large examples.
We recall that SPOT merges transitions that share the same source state and
target state as one transition, so in the right scatter plot of Figure 3, many points
are above the diagonal line. Nevertheless, we can learn from the plots that only
SPOT produces those automata with more than 104 transitions, which indicates
that the reduction optimisations of SPOT do not work well on large automata
and our algorithm performs much better on large automata. Figure 4 is simi-
lar to Figure 3 but it refers to 300 randomly generated Büchi automata with
size ranging between 1 and 69 states and between 0 and 263 transitions. The
behaviour of SPOT on these automata is similar to the one shown in Figure 3.

In order to show how the growing trend of the number of states in the com-
plement automata of the complementation algorithms behaves when we increase
the size of the given Büchi automata in some cases, we take the generated Büchi
automata of the formula pattern

∧k
i=1(GFai) → GFb. The growing trend of the

number of states in the complement automata for the approaches in GOAL,
SPOT, and Buechic are plotted in Figure 5. The number of states in the com-
plement automaton constructed by GOAL and SPOT is growing exponentially
with respect to the parameter k, while the number of states in the complement
automaton learned by our learning algorithm grows much more slowly than oth-
ers. The experimental results show that the performance of our algorithm can
be much more stable for some automata with their growth of the states. Thus an
advantage of our learning approach is that it has potentially better performance
on large automata compared to classic complementation techniques.
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Fig. 4. Comparison between the number of states and transitions of automata con-
structed by SPOT and Buechic on 300 randomly generated automata. The average
number of letters in each alphabet is about 7.
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Fig. 5. States comparison of GOAL, SPOT, and Buechic on the formula pattern∧k
i=1(GFai)→ GFb. The number of letters in the alphabet is 2k+1 for case k.

4.3 Further Experimental Results

We have conducted further experiments. We have considered double complemen-
tation on the automata from Büchi Store and generated automata by SPOT.
We define double complementation as first using a complementation algorithm
to complement the input NBA B to get the complement Bc of B; and then
complementing Bc using the same algorithm. It is actually an empty opera-
tion. From the experiments, in particular where the complement automata were
large, we gained advantage over the competitor algorithms. As another set of



benchmarks, we have also considered the complementation of semi-deterministic
automata (sometimes called limit-deterministic automata). We considered all
106 SDBAs from [11], and additionally compared them with the NCSB method
from [11], which is implemented in GOAL. Note that this is a specialist method
and we compete on its soil. This becomes quite clear when comparing with the
other general complementation techniques. The experimental evaluation shows
that we are competitive with the specialised method from [11] and the highly
optimised tool SPOT. Finally, we considered a variation of our learning algo-
rithm, that is, we experimented with checking completeness of L(B(F)) ∪ L(B)
instead of testing language inclusion L(B(F c)) ⊆ L(B), as proposed in Figure 1.
The universality check for L(B(F))∪L(B) is only invoked after the disjointness
test for L(B(F)) and L(B) is passed. According to the experimental results, our
handling with the equivalence queries in Figure 1 is more practical.

5 Conclusion

We have introduced a learning based approach for the complementation of Büchi
automata. We expected that learning based approaches provide small comple-
mentations, that they are less perceptive of the initial representation of the
ω-regular language to complement, and that they tend to be fast. In short: that
they are practical.

Our experimental evaluation has confirmed our expectation that learning
based complementation usually provides smaller complements. More surpris-
ingly, the language inclusion checks in the loop are usually quite fast. As a result,
the running time displayed by Buechic is competitive. We have also seen that,
while we did gain a clear advantage over the basic techniques as implemented
in GOAL, the comparison with SPOT shows that this advantage is not quite in
the same league as the advantages one can obtain by high level optimisations
implemented in SPOT. We expect that, after the pure technique has proven to
be a very strong competitor, many improvements will follow. One improvement
is to make the approach symbolic since learning algorithms usually become slow
when dealing with large alphabets. This needs a symbolic learning algorithm for
FDFAs, which is an interesting future work.
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D. Parker, and J. Strejcek. The Hanoi omega-automata format. In CAV, vol-
ume 9206 of LNCS, pages 479–486, 2015.

11. F. Blahoudek, M. Heizmann, S. Schewe, J. Strejček, and M.-H. Tsai. Complement-
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