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Abstract

This thesis mainly studies stochastic neutral differential equations with delays,

which can be studied in the fields of existence, uniqueness, controllability and

stability of mild solutions.

In Chapter 1, we give a short introduction for the materials in each chapter. We

introduce the new models we developed. In Chapter 2, we begin by introducing

some definitions and results. To present the proofs of all the results here would

require preparatory background material, which would significantly increase both

the size and scope of this dissertation. Although this chapter introduces very

important theorems, required proofs are omitted here. However, these related

proofs can be found from book in Liu [41] and you can also find most of these

basic mathematical concepts and their proofs in many well-known text books

such as Pazy [32] and Da Prato and Zabczyk [22] or to be found in the literature

reviews.

In Chapter 3, we will generalise the previous theory to consider a stochastic

optimal control problem for a class of neutral type stochastic systems, which is

very important from both theoretic and practical point of view (see, e.g., [39]).

We formulate a stochastic optimal control problem with the aim of maximising

the objective functional at a given time horizon T > 0. This chapter is organised

as follows. In Section 3.2, we formulate the optimal problem with the objective

functional as an optimal problem with neutral type for an SDDE both in state
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and the control. In Section 3.3, we use a representation result that allows us to

“lift” this non-Markovian optimisation problem to a Markovian control problem

on a Hilbert space and deal with the general case of delays in the state and in

the control and the verification result is given. In Section 3.4, we construct an

example of a controlled SDDE, whose HJB equation admits an integral solution.

Therefore, there exists an optimal control form for the control problem. In Section

3.5, we establish a linear delay differential equation to obtain solutions. In Section

3.6, we have a summary to state the contribution and development of the chapter.

In Chapter 4, we will concentrate on the existence and uniqueness of the

square-mean almost periodic mild solutions. This chapter is organised as follows.

In Section 4.2, we review and introduce some concepts, basic properties of square-

mean almost periodicity and the proofs of two theorems. In Section 4.3, under

some suitable conditions, we prove the existence and uniqueness of square-mean

almost periodic mild solutions for some stochastic differential equations driven

by Poisson jumps. In Section 4.4, we have a summary to state the contribution

and development of the chapter.

In Chapter 5, we study the problem of determining the attracting sets of

neutral stochastic partial differential equations driven by α-stable noise with im-

pulses. Therefore, the techniques and methods for the global attracting set and

stability for neutral SPDEs driven by α-stable processes with impulses should be

developed. This chapter is organised as follows. In Section 5.2, we review and

introduce the concepts and basic properties of α-stable processes. In Section 5.3,

we study the global attracting set and stability of the stochastic neutral differ-

ential equations with impulses. In Section 5.4, we have a summary to state the

contribution and development of the chapter.

In Chapter 6, we have a conclusion to summarise the contribution and devel-

opment of this thesis.

ii



Contents

Abstract i

Contents iv

Acknowledgement v

1 Introduction 1

2 Preliminaries 9

2.1 Some Results from Functional Analysis . . . . . . . . . . . . . . . 10

2.2 C0-Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Probability Theory and Stochastic Processes . . . . . . . . . . . . 18

2.4 Wiener Processes and Stochastic Integral . . . . . . . . . . . . . . 24

2.5 SDEs and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Stochastic Optimal Control Problem with Neutral Type and

Control Delays 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Equivalent Infinite-Dimensional Markovian Representation . . . . 37

3.4 An explicit case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Example with solutions . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



4 Almost Periodic Solutions for Neutral Stochastic Evolution Equa-

tions with Poisson Jumps and Infinite Delay 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Almost Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Existence and Uniqueness of Almost Periodic Solutions . . . . . . 63

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Global Attracting Set and Stability of Neutral SPDEs Driven by

α-Stable Processes with Impulses 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 α-stable processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Global attracting set and stability . . . . . . . . . . . . . . . . . . 99

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions 112

Bibliography 121

Index 121

iv



Acknowledgement

I would like to express my sincere gratitude to my primary supervisor, Dr Kai

Liu, for his greatly valued teaching, supervision, patience and encouragement

during the course of my studies. Helpful suggestions have been received from my

secondary supervisor Dr Yi Zhang.

I am also incredibly indebted to my parents and my grandparents for their

consistent supports and encouragements and the same words to all my friends as

well.

I would like to thank other staff members from the Department of Mathemat-

ical Sciences and other departments at University of Liverpool, who helped me

in various ways during my study periods.

Finally, I am grateful to all the people who helped me before, whatever in study

or in life. They encouraged me to overcome difficulties and made me always be

positive towards life.

v



Chapter 1

Introduction

In modern society, the modelling of stochastic systems has gained significant at-

tention due to its many applications in physics, economics, finance, engineering,

etc. However, there also exist many phenomena, which are characteristics of past

dependence, that is, their present value depends not only on the present situa-

tion but also on past history. Qualitative properties such as existence, uniqueness,

controllability and stability for various stochastic differential systems have been

investigated by many authors and have already achieved fruitful results (see for

example [45], [46], [41], [14], [53]). On the other hand, it is known that a class of

stochastic differential equations with neutral type involve derivatives with delays

as well as the function itself. Many interesting results about neutral stochastic

delay differential equations have been obtained by many researchers, see, for ex-

ample, Liu [38] has considered standard optimal control problems for a class of

neutral functional differential equations in Banach spaces and it turns out that

based on a systematic theory of neutral models, the fundamental solution is con-

structed and a variation of constants formula of mild solutions is established.

Balasubramaniam and Ntouyas [4] have given sufficient conditions for the con-

trollability of a class of stochastic partial functional differential inclusions with
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infinite delay in an abstract space.

Dynamic stochastic optimisation is the study of dynamical systems subject to

random perturbations, and which can be controlled in order to optimise some per-

formance criterion. It arises in decision-making problems under uncertainty. His-

torically, based on Bellman’s and pontryagin’s optimality principles, the research

on control theory has developed considerably over recent years. The dynamic

programming principle (DPP) to a stochastic control problem for Markov pro-

cesses in continuous-time leads to a nonlinear partial differential equation (PDE),

called the Hamilton-Jacobi Bellman (HJB) equation, satisfied by the value func-

tion. One typical example of this optimal control problem is introduced by the

following controlled SDDE in advertising models [29] of the form:



dy(t) =
[
a0y(t) +

∫ 0

−r
a1(θ)y(t+ θ) + b0u(t) +

∫ 0

−r
b1(θ)u(t+ θ)dθ

]
dt

+σdB(t), ∀t ∈ [0, T ]

y(0) = x0, y(θ) = x1(θ), u(θ) = γ(θ), ∀θ ∈ [−r, 0],

where a0 ∈ R, a1(·) ∈ L2([−r, 0];R), b0 ∈ R, b1(·) ∈ L2([−r, 0];R), x1(·) ∈ L2([−r, 0];R)

and γ(·) ∈ L2([−r, 0];R).

In this work, the optimal advertising problem as an optimal control problem

for an SDDE with delays both in the state and the control is considered. The

problem is formulated by lifting this non-Markovian optimisation problem to

an infinite-dimensional Markovian control problem without involving delays in a

suitable product Hilbert space and solutions are derived in an example.

Motivated by the above works, we aim to consider the following neutral stochas-
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tic differential equations with control delays in R:



d
[
y(t)−

∫ 0

−r
a(θ)y(t+ θ)dθ

]
=
[
a0y(t) +

∫ 0

−r
a1(θ)y(t+ θ) + b0u(t)

+

∫ 0

−r
b1(θ)u(t+ θ)dθ

]
dt+ σdB(t), ∀t ∈ [0, T ]

y(0) = x0, y(θ) = x1(θ), u(θ) = γ(θ), ∀θ ∈ [−r, 0],

(1.1)

where the Brownian motionB(t) is defined on a filtered probability space (Ω,F , {Ft}t≥0,P)

with (Ft)t≥0 being the completion of the filtration generated by B(t), t ≥ 0. It is

assumed that u(t) is an admissible control that belongs to U := L2([0, T ];R), the

space of square integrable non-negative stochastic processes adapted to {Ft}t∈[0,T ].

In addition, we need to assume the following conditions:

i. a0 ∈ R;

ii. a1(·) ∈ L2([−r, 0];R);

iii. a(·) ∈ C1([−r, 0];R);

iv. b0 ∈ R;

v. b1(·) ∈ L2([−r, 0];R);

vi. x1(·) ∈ L2([−r, 0];R);

vii. γ(·) ∈ L2([−r, 0];R).

We adopt a method that allows us to “lift” this non-Markovian optimisation

problem to an infinite-dimensional Markovian control problem. Let us consider

the following abstract SDE on a Hilbert space H (see Chapter 3), which is equiv-

alent to the SDE (1.1):


dY (t) = (A∗Y (t) +B∗u(t))dt+G∗dB(t)

Y (0) = x = (x0, x1) ∈ H,
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where the operators A∗, B∗, G∗ are defined properly in Chapter 3.

In this chapter, we will generalise the previous theory to consider a stochastic

optimal control problem for a class of neutral type stochastic systems, which is

very important from both theoretic and practical point of view (see, e.g., [39]).

We formulate a stochastic optimal control problem with the aim of maximising

the objective functional at a given time horizon T > 0.

On the other hand, solutions with recurrence property (e.g. almost periodicity

and almost automorphy), which enable us to understand the impact of the noise

or stochastic perturbation on the corresponding recurrent motions, are of great

concern in the study of stochastic differential equations and random dynamical

systems. Periodicity often appears in implicit ways in various phenomena. For

example, this is the case when one studies the effects of fluctuating environments

on population dynamics. Although people can calculate the periodic fluctua-

tions of environmental parameters in controlled laboratory experiments, almost

periodicity is more likely to accurately describe natural fluctuations [23].

Recently, Bezandry and Diagana introduced the concept of square-mean al-

most periodic stochastic process and applied it to study stochastic differential

equations (see [9]). In [10], Bezandry and Diagana proved the existence of al-

most periodic solutions to some stochastic differential equations. Bezandry and

Diagana [11] studied the existence of square-mean almost periodic solutions to

some stochastic hyperbolic differential equations with infinite delay. Bezandry

and Diagana [12] were concerned with the square-mean almost periodic solutions

nonautonomous stochastic differential equations. However, many dynamical sys-

tems not only depend on the present states, but also on past states and involve

derivative with delays. Therefore, it is necessary to consider the stochastic evo-

lution system with infinite delays and the neutral type as well, see ([40], [44],

[?], [19]). One typical example is to deal with the existence and uniqueness of
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square-mean almost periodic solutions to a class of neutral stochastic evolution

equations with infinite delay [34] of the form:

d(x(t)−G(x(t), xt)) = (Ax(t) + f(t, x(t), xt))dt+ g(t, x(t), xt)dW (t), t ∈ R,

where xt = x(t + θ) : −∞ < θ ≤ 0 can be regarded as a B-valued stochastic

process. Assume that f : R ×H ×B → H, g : R ×H ×B → L2(KQ, H) and

G : H ×B → Hα (see Chapter 4).

In addition, Lévy processes are essentially stochastic processes with stationary

and independent increments, and they are particular useful, as they can describe

discontinuous and dramatic fluctuations in practical situations. Also, Wiener pro-

cesses and Poisson processes are the important special cases of Lévy processes.

Stochastic differential equations with Poisson jumps have become popular in mod-

elling those phenomena arising in the field of economics, where jump processes

are widely used to describe the asset and commodity price dynamics (see [18]).

However, for stochastic partial differential equations with Poisson jumps and in-

finite delay, as far as we know, there exist only a few results about the existence

and stability of mild solutions. One is referred to ([51], [20], [52]). One typi-

cal example is to deal with the existence and uniqueness of square-mean almost

periodic solutions to a class of stochastic differential equations with Lévy noise

without delays [42] of the form:

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t) +

∫
|z|U<1

F (t, x(t−), z)Ñ(dt, dz)

+

∫
|z|U≥1

G(t, x(t−), z)Ñ(dt, dz), t ∈ R,

where F and G are H-valued.

Motivated by the above works, we shall study the existence and uniqueness of

square-mean almost periodic solutions to a class of neutral stochastic differential

5



equations with Poisson jumps and infinite delay

d(x(t)−G(x(t), xt)) = (Ax(t) + f(t, x(t), xt))dt+ g(t, x(t), xt)dW (t)

+

∫
H

h(t, x(t−), xt−, z)Ñ(dt, dz), t ∈ R,

where xt = x(t + θ) : −∞ < θ ≤ 0 can be regarded as a B-valued stochastic

process. Assume that f : R × H ×B → H, g : R × H ×B → L2(KQ, H), G :

H ×B → Hα and h : R × H ×B × H → H, are appropriate mappings for all

t ∈ R, z ∈ H, which will be specified in Chapter 4. We will prove the existence

and uniqueness of square-mean almost periodic mild solutions for some stochastic

differential equations driven by Poisson jumps under some suitable conditinos by

using methods of semi-group and Banach fixed-point theorem.

From the discussions above, we can see that the stochastic differential evolu-

tion equations driven by Brownian motions and Lévy processes have been stud-

ied by many researchers. However, since Wiener noise and Poisson-jump noise

have arbitrary finite moments, while α-stable noise only has finite p-th moment

for p ∈ (0, α) with α < 2. Recently, stochastic differential equations driven by

α-stable processes have plenty of applications in physics due to the fact that

α-stable noise exhibits the heavy tailed phenomenon. For example, Priola and

Zabczyk [50] gave a proper starting point on the investigation of structural prop-

erties of stochastic partial differential equations (SPDEs) driven by an additive

cylindrical stable noise. Dong, Xu and Zhang [25] studied the invariant measures

of stochastic 2D Navier-Stokes equation driven by α-stable processes. Xu studied

[61] Ergodicity of the stochastic real Ginzburg-Landau equation driven by α-

stable noise and Zhang [67] proved a derivative formula of Bismut-Elworthy-Li’s

type as well as gradient estimate for stochastic differential equations driven by

α-stable noises. One the other hand, Wang [55] derived the gradient estimate for

Ornstein-Uhlenbeck jump processes and Wang [58] established so-called Harnack
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inequalities for SDEs driven by cylindrical α-stable processes. However, there

are few papers on the asymptotic behaviour of mild solution of SPDEs driven by

α-stable processes, so we shall discuss the stability property of mild solutions of

a class of SPDEs driven by α-stable processes to complete the theory. The fact is

that α-stable noise only has finite p-th moment for p ∈ (0, α) and the stochastic

evolution does not admit a stochastic differential, which leads to some powerful

tools such as the Itô formula being unavailable, then some new methods should

be used to overcome the difficulties. It is worthwhile to mention that, Wang and

Rao [56] discussed the stability of mild solutions for a class of SPDEs driven by

α-stable noises and generalised to deal with the SPDEs driven by subordinated

cylindrical Brownian motion and fractional Brownian motion, respectively by the

Minkovski inequality.

In addition, many researchers have studied attracting sets of dynamical sys-

tems extensively. Xu and Long [60] studied the attracting and quasi-invariant

sets of non-autonomous neutral networks with delays. Long, Teng and Xu [43]

investigated the global attracting set and stability of stochastic neutral partial

functional differential equations with impulses. They first established a new

impulsive-integral inequality, which improved the inequality established by Chen

[16]. On the other hand, impulsive phenomenon can be found in a wide variety of

evolutionary processes, for example, medicine and biology, economics, mechan-

ics, electronics and telecommunications, etc., in which many sudden and abrupt

changes occur instantaneously, in the form of impulses. Many interesting results

haven been found, e.g., ([66], [47]), etc. One typical example is to consider a class

of neutral stochastic partial differential equations driven by α-stable processes on
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a separable Hilbert space [36] of the form:


d[x(t)− g(t, x(t− r)] = (Ax(t) + f(t, x(t− r)))dt+ σ(t)dZ(t), t ≥ 0,

x0(·) = φ(·) ∈ D([−r, 0], H),

where r > 0 and A generates a strongly continuous semigroup S(t) or etA, t ≥ 0,

on H. Assume that f, g : R+ ×H → H are two given measurable mappings and

σ(t) : R+ → R is a locally integrable function.

But, to the best of my knowledge, there is no result on the Global attracting

set and exponential decay of neutral SPDEs driven by α-stable processes with

impulses. Motivated by the above discussions, in Chapter 5, we shall consider

the following neutral stochastic partial differential equations driven by an additive

α-stable with impulses on a separable Hilbert space H,



d[x(t)− g(t, x(t− r)] = (Ax(t) + f(t, x(t− r)))dt

+σ(t)dZ(t), t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, ...,

x0(·) = φ(·) ∈ D([−r, 0], H),

where r > 0 and A generates a strongly continuous semigroup S(t) or etA, t ≥ 0,

on H. Assume that f, g : R+ × H → H are two given measurable mappings

and σ(t) : R+ → R is a locally integrable function; the fixed moments of time

tk satisfies 0 < t1 < t2 < ... < tk < ..., and limk→∞ tk = ∞;x(t+k ) and x(t−k )

represent the right and left limits of x(t) at t = tk, k = 1, 2, ..., respectively;

∆x(tk) = x(t+k ) − x(t−k ) represents the jump in the state x at time tk with Ik

determining the size of the jump. We will consider the global attracting set

and stability of the neutral stochastic partial differential equations with impulses

driven by an additive α-stable with impulses on a separable Hilbert space H.
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Chapter 2

Preliminaries

The knowledge of stochastic processes and stochastic analysis has played an im-

portant role in the real world. Stochastic differential equations are used to model

diverse phenomena such as fluctuating stock prices or physical systems subject

to thermal fluctuations, which draw great attentions from researchers to develop

the things which are getting more complicated.

In this chapter, we begin by recalling some definitions and results, especially

those from functional analysis and theories of stochastic process and stochastic

differential equations along with probability theories in infinite dimensions. We

introduce mild solutions for stochastic differential equations and investigate the

existence and uniqueness of solutions under appropriate assumptions. We intro-

duce and clarify definitions and develop our theory in Hilbert spaces. To present

the proofs of all the results here would require preparatory background material,

which would significantly increase both the size and scope of this dissertation.

Although this chapter introduces very important theorems, required proofs are

omitted here. However, these related proofs can be found from book written by

Liu [41] and you can also find most of these basic mathematical concepts and

their proofs in many well-known text books such as Pazy [32] and Da Prato and
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Zabczyk [22] or to be found in the literature reviews.

2.1 Some Results from Functional Analysis

A Banach space (X, ‖ · ‖X) (real or complex) is a complete normed linear space

over (R or C). If the norm ‖ · ‖X is induced by an inner product 〈·, ·〉X , then X

is called a Hilbert space. We say that X is separable if there exists a countable

set S ⊆ X such that the closure S̄ = X. For a Hilbert space X, a collection

{ei} of elements in X is called an orthonormal set if 〈ei, ei〉X = 1 for all i, and

〈ei, ej〉X = 0 if i 6= j. If S is an orthonormal set and no other orthonormal set

contains S as a proper subset, then S is called an orthonormal basis for X. A

Hilbert space X is separable if and only if it has a countable orthonormal basis

{ei}, i = 1, 2, · · ·.

Example 2.1.1 (Sobolev space) Let [a, b] be an interval in R and a differentiable

function f(x) of one derivative exists at each point in its domain. Now, we define

W 1,2([a, b];X) =
{
f : [a, b]→ X, f(x) is differentiable,∫ b

a

‖f(x)‖2
Xdx <∞ and

∫ b

a

‖f ′(x)‖2
Xdx <∞

}
.

If X is a Hilbert space, then W 1,2([a, b];X) is a Hilbert space under the norm

‖f‖1,2 =
(∫ b

a

‖f(x)‖2
Xdx

)1/2

+
(∫ b

a

‖f ′(x)‖2
Xdx

)1/2

, f ∈ W 1,2([a, b];X),

and under the inner product

〈f, g〉1,2 =

∫ b

a

〈f(x), g(x)〉Xdx+

∫ b

a

〈f ′(x), g′(x)〉Xdx, f, g ∈ W 1,2([a, b];X).
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Definition 2.1.1 Let X and Y be two Banach spaces and D(A) a subspace of

X. A map A : D(A) ⊆ X → Y is called a linear operator if the following relation

holds:

A(αx+ βy) = αAx+ βAy for any x, y ∈ D(A), α, β ∈ R or C.

The subspace D(A) is called the domain of A. If A maps any bounded subsets

of D(A) into bounded subsets of Y , we say A is a bounded linear operator. We

denote by L(X, Y ) the set of all bounded linear operators A from X to Y with

D(A) = X. In particular, if X = Y , we write L(X) for L(X,X). In this case,

L(X, Y ) is a Banach space equipped with the operator norm ‖ · ‖L(X,Y ) given by

‖A‖ = ‖A‖L(X,Y ) := sup
‖x‖X≤1

‖Ax‖Y <∞ for any A ∈ L(X, Y ).

For any linear operator A : D(A) ⊆ X → Y , we define R(A) := {Ax : x ∈

D(A)}. It is called the range of the operator A.

Definition 2.1.2 Let Y = K where K = R or C. Any f ∈ L(X,K) is called a

bounded linear functional on X. In this case, we put X∗ = L(X,K), which is a

Banach space under the norm ‖ · ‖X∗ and X∗ is called the dual space of X.

Theorem 2.1.1 [63] (Riesz’s Theorem) Let X be a Hilbert space, then X∗ = X.

That is, every bounded linear functional f on X can be represented in terms of

the inner product by

f(x) = 〈x, z〉 for any x ∈ X,

where z is uniquely determined by f and has norm

‖z‖X = ‖f‖X∗ .
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For any Banach space, we can further define X∗∗ = (X∗)∗ and if X = X∗∗, X is

called reflexive. We can conclude that a Hilbert space X is reflexive.

Definition 2.1.3 Let X and Y be two Banach spaces. A linear operator A :

D(A) ⊆ X → Y is said to be closed if whenever

xn ∈ D(A), n ≥ 1, and lim
n→∞

xn = x, lim
n→∞

Axn = y,

then x ∈ D(A) and Ax = y.

Definition 2.1.4 Let X and Y be two Banach spaces and a linear operator A :

D(A) ⊆ X → Y is called densely defined if the closure D(A) = X.

Definition 2.1.5 Let A be a densely defined linear operator on a Hilbert space

X. Then the Hilbert adjoint operator A∗ : X → X is defined by

〈Ax, y〉X = 〈x,A∗y〉X

for any x ∈ D(A), y ∈ D(A∗). In particular, if A is bounded, the adjoint operator

A∗ of A exists and is unique and bounded with ‖A∗‖ = ‖A‖.

Definition 2.1.6 Let X be a Hilbert space and a densely defined linear operator

A : D(A) ⊆ X → X is symmetric if for all x, y ∈ D(A), 〈Ax, y〉X = 〈x,Ay〉X . A

symmetric operator A is called self-adjoint if D(A∗) = D(A).

A linear operator A on the Hilbert space X is called non-negative, denoted by

A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ D(A). It is called positive if 〈Ax, x〉 > 0 for all

x ∈ D(A) and coercive if 〈Ax, x〉 > c‖x‖2
X for some c > 0 and x ∈ D(A). A linear

operator B is called the square root of A if B2 = A.

Theorem 2.1.2 Let A be a linear operator on the Hilbert space X. If A is self-

adjoint and nonnegative, then it has a unique square root, denote it by A1/2, which
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is self-adjoint and nonnegative such that D(A) ⊂ D(A1/2). Furthermore, if A is

positive, so is A1/2.

Theorem 2.1.3 Let X be a Hilbert space. Suppose that A is self-adjoint and

nonnegative on X. Then A is coercive if and only if it has a bounded inverse

A−1 ∈ L(X). In this case, A−1 is self-adjoint and nonnegative.

Definition 2.1.7 Let X and Y be two Banach spaces. An operator A ∈ L(X, Y )

is compact if for any bounded sequence {xn}n≥1 in X, the sequence {Axn}n≥1 has

a convergent subsequence in Y.

Let X be a separable Hilbert space. A linear bounded operator A ∈ L(X, Y )

is a compact operator if and only if

Ax =
∞∑
i=1

λi〈x, ei〉X ẽi ∀x ∈ X,

where {ei}i≥1 and {ẽi}i≥1 are two orthonormal bases in X and Y , respectively

and λi ≥ 0 for each i ≥ 1. The operator A is called trace class if
∑∞

i=1 λi < ∞

and A is Hilbert-Schmidt if
∑∞

i=1 λ
2
i <∞.

Let L1(X) be the family of all trace class operators onX. It can be shown that

L1(X) is a Banach space under the trace norm ‖A‖1 :=
∑∞

i=1 λi. The space of

Hilbert-Schmidt operators denoted by L2(X) has the norm ‖A‖2 := (
∑∞

i=1 λ
2
i )

1/2.

All the Hilbert-Schmidt operators form a Hilbert space .

In this dissertation, we would use the Banach fixed point theorem or contrac-

tion theorem, which concerns mappings of a Banach space into itself. It states

sufficient conditions for the existence and uniqueness of a fixed point.

Definition 2.1.8 (Contraction) Let (X, ‖ · ‖X) be a Banach space. A bounded

linear operator T : X → X is called a contraction on X if there is a positive

13



number α < 1 such that for all x, y ∈ X

‖Tx− Ty‖X ≤ α‖x− y‖X .

Theorem 2.1.4 (Banach Fixed Point Theorem) Consider a Banach space

(X, ‖ · ‖X) and let T : X → X be a contraction on X. Then T has a unique fixed

point. That is, there exists a unique x ∈ X such that

Tx = x.

2.2 C0-Semigroups

Definition 2.2.1 A strongly continuous or C0-semigroup S(·) : [0,∞) → L(X)

is a family of bounded linear operators on a Banach space X satisfying:

(i) S(0) = I, where I is the identity operator on X;

(ii) S(t+ s) = S(t)S(s) for all t, s ≥ 0;

(iii) S(t) is strongly continuous, i.e., for any x ∈ X,S(t)x : [0,∞) → X is

continuous.

It is known that for any C0-semigroup S(t) on X, there exist constants M ≥ 1

and µ ∈ R such that

‖S(t)‖ ≤Meµt, t ≥ 0.
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In association with the C0-semigroup S(t), we define a linear operator A :

D(A) ⊆ X → X by

D(A) =
{
x ∈ X : lim

t↓0

S(t)x− x
t

exists
}
,

Ax = lim
t↓0

S(t)x− x
t

, x ∈ D(A).

The operator A is called the infinitesimal generator, or simply generator, of the

semigroup {S(t)}t≥0. We frequently write it as etA, t ≥ 0.

Suppose that A is linear, but not necessarily bounded, operator on a Banach

space X. The resolvent set ρ(A) of A is defined as the set of all complex numbers

λ ∈ C such that (λI − A)−1 exists and (λI − A)−1 is a bounded linear operator

in X. The family R(λ,A) = (λI −A)−1, λ ∈ ρ(A) of bounded linear operators is

called the resolvent operator of A. The spectrum of A is defined to be σ(A) =

C\ρ(A).

Theorem 2.2.1 (Hille-Yosida) A linear operator A on a Banach space X is the

infinitesimal generator of a C0-semigroup S(t), t ≥ 0 if and only if

1. A is densely defined and closed;

2. the resolvent set ρ(A) of A contains the ray (µ,∞) and

‖R(λ,A)n‖ ≤ M

(λ− µ)n
, for λ > µ, n = 1, 2, ...

for some M > 0.

Proposition 2.2.1 Suppose that A generates a C0-semigroup etA, t ≥ 0, on a

15



Banach space X. It is valid that if x ∈ D(A), then etAx ∈ D(A) and in this case

d

dt
etAx = etAAx = AetAx, for all t ≥ 0.

Let X be a Banach space and consider the following deterministic linear

Cauchy problem on X,


dy(t)

dt
= Ay(t), t ≥ 0,

y(0) = y0 ∈ X,
(2.1)

where A is a linear operator which generates a C0-semigroup etA, t ≥ 0, on X. If

y0 ∈ D(A), then by Proposition 2.2.1, we have etAy0 ∈ D(A) and

d

dt
(etAy0) = AetAy0, t ≥ 0. (2.2)

Hence, y(t) = etAy0, t ≥ 0, is a solution of the differential equation (2.1). If

y0 /∈ D(A), the equality (2.2) is not necessarily true. However, for any y0 ∈ X it

does make sense to define y(t) = etAy0, t ≥ 0, which is called a mild solution of

(2.1).

Definition 2.2.2 Let etA, t ≥ 0, be a C0-semigroup on a Banach space X with

the generator A : D(A) ⊆ X → X.

(i) The semigroup etA, t ≥ 0, is called compact if for any t ∈ (0,∞), the oper-

ator etA ∈ L(X) is compact.

(ii) The semigroup etA, t ≥ 0, is called analytic if it admits an extension ezA on

z ∈ ∆θ := {z ∈ C : |arg z| < θ} for some θ ∈ (0, π], such that z → ezA is

analytic on ∆θ and satisfies:

(a) e(z1+z2)A = ez1Aez2A for any z1, z2 ∈ ∆θ;
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(b) lim∆θ̄3z→0 ‖ezAx− x‖X = 0 for all x ∈ X and 0 < θ̄ < θ.

Let us define fractional powers of certain unbounded linear operators and study

some of their properties. Let A : D(A) ⊆ X → X be the infinitesimal generator

of an analytic semigroup {S(t)}t≥0 in H. Suppose that 0 ∈ ρ(A) is the resolvent

set of A, then, for α ∈ (0, 1], it is possible to define the fractional power (−A)α

as a closed linear operator on its domain D((−A)α). Furthermore, the subspace

D((−A)α) is dense in H, and the expression

‖x‖α = ‖(−A)αx‖H , x ∈ D((−A)α),

defines a norm in D((−A)α). We let Hα = D((−A)α) endowed with the norm

‖ · ‖α.

We need the following assumption.

(A1) Let −A be a densely defined closed linear operator for which

ρ(−A) ⊃ S = {λ : 0 < ω < |argλ| ≤ π} ∪ V

and

‖R(λ,A)‖ ≤ M

1 + |λ|
for λ ∈ S,

where V is a neighborhood of 0.

For 0 < α < 1, we can define

(−A)α =
sinπα

π

∫ ∞
0

t−α(tI − A)−1dt, 0 < α < 1.
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Definition 2.2.3 Let −A satisfy (A1) with ω < π/2. For every α > 0, we define

(−A)α = ((−A)−α)−1.

For α = 0, (−A)α = I.

Lemma 2.2.1 Suppose 0 ∈ ρ(A), then we know that there exist constants M ≥

1, λ > 0, for every 0 < β ≤ 1,

(1) we have for each x ∈ D(−A)α,

S(t)(−A)αx = (−A)αS(t)x;

(2) there exists Mβ > 0 such that

‖(−A)βS(t)‖ ≤Mβt
−βe−λt, t > 0;

(3) for any β ∈ [0, 1],

‖(−A)−β‖ ≤ C.

2.3 Probability Theory and Stochastic Processes

Let Ω be a non-empty set and F a collection of subsets of Ω. We call F a

σ-algebra if the following hold:

(1) ∅ ∈ F , where ∅ is the empty set;

(2) A ∈ F ⇒ Ac ∈ F , where Ac = Ω− A is the complement of A in Ω;

(3) {Ai}i≥1 ⊂ F ⇒ ∪∞i=1Ai ∈ F .
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The pair (Ω,F) is called a measurable space and the elements of F are called

measurable. A probability measure P on (Ω,F) is a mapping P : F → [0, 1]

satisfying that

(1) P(Ω) = 1, and

(2) (countable additivity) for any disjoint sequence {Ai}i≥1 ⊂ F (i.e. Ai∩Aj = ∅

if i 6= j), then

P(∪∞i=1Ai) =
∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space.

Suppose that C is a collection of subsets of Ω, then there exists a smallest

σ-algebra σ(C) on Ω which contains C. Hence, this σ(C) is called the σ-algebra

generated by C. If Ω = Rd and C is the collection of all open sets in Rd, then

σ(C) is called the Borel σ-algebra, denote it by B(Rd) and the elements of B(Rd)

are called Borel sets and any measure on (Rd,B(Rd)) is called a Borel measure.

If (Ω,F) and (S,B(S)) are two measurable spaces, then a mapping ξ from Ω

into S such that the set {ω ∈ Ω : ξ ∈ A} = {ξ ∈ A} belongs to F for arbitrary

A ∈ B(S) is called measurable from (Ω,F) into (S,B(S)). Hence, B(S) is a Borel

σ-algebra on S, where S is a complete metric space. If ξ is a measurable mapping

from (Ω,F) into (S,B(S)) or an S-valued random variable and P a probability

measure on (Ω,F), then we will denote by Dξ(·) the image of P under the mapping

ξ:

Dξ(A) = P{ω ∈ Ω : ξ(ω) ∈ A}, ∀A ∈ B(S).

It may be shown that Dξ(·) is a probability measure which is called the distribu-

tion or the law of ξ.
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The triple (Ω,F ,P) is called a probability space. If (Ω,F ,P) is a probability

space, we set F̄ = {A ⊂ Ω : ∃B,C ∈ F such that B ⊂ A ⊂ C,P(B) = P(C)}.

Then F̄ is a σ-algebra and is called the completion of F . If F = F̄ , then

probability space (Ω,F ,P) is said to be complete. In general, if F is not complete,

we can extend P to F̄ by defining P(A) = P(B) = P(C) for A ∈ F̄ , where

B,C ∈ F with B ⊂ A ⊂ C and P(B) = P(C). In this way, (Ω,F ,P) becomes a

complete probability space. A family {Ft}, t ≥ 0, for which each {Ft} is a sub-

σ-field of F and forms an increasing family of σ-fields, is called a filtration of

F . With this {Ft}, t ≥ 0, one can associate another filtration by setting σ-fields

Ft+ = ∩s>tFs for t ≥ 0. We say that the filtration {Ft}t≥0 is normal or satisfies

the usual conditions if Ft+ = Ft for each t ≥ 0, that is, the filtration is a right

continuous increasing family and contains all P-null sets of F .

Now assume that S = H is a separable Hilbert space with norm ‖ · ‖H

and ξ is an H-valued random variable on (Ω,F ,P). We can define the integral∫
Ω
ξ(ω)P(dω) of ξ with respect to the probability measure P. We often denote it

by E(ξ), which is called the expectation. The integral defined in this way is called

a Bochner’s integral. We denote by Lp(Ω,F ,P;H), p ∈ [1,∞), the set of all equiv-

alence classes of H-valued random variables with respect to equivalent relation

of almost sure equality. Then it can be verified that Lp(Ω,F ,P;H), p ∈ [1,∞),

equipped with the norm

‖ξ‖p = (E‖ξ‖pH)1/p, p ∈ [1,∞), ξ ∈ Lp(Ω,F ,P;H),

is a Banach space. If Ω is an interval [0, T ],F = B([0, T ]) and P is the usual

Lebesgue measure L/T on [0, T ] for Lp([0, T ],B([0, T ]), L/T ;H), 0 ≤ T ≤ ∞, we

also write Lp([0, T ];H).

Next, we introduce some useful results.
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(1) Hölder inequality (for p = 2 it is called Cauchy Schwarz’s inequality)

‖E(ξζ)‖ ≤ (E‖ξ‖p)1/p(E‖ζ‖q)1/q,

where p > 1, 1
p

+ 1
q

= 1 for any ξ ∈ Lp(Ω;H), ζ ∈ Lq(Ω;H).

(2) Minkowski’s inequality

(E‖ξ + ζ‖p)1/p ≤ (E‖ξ‖p)1/p + (E‖ζ‖p)1/p,

where p ≥ 1 for any ξ, ζ ∈ Lp(Ω;H).

Theorem 2.3.1 (Monotonic convergence theorem): If {ξn} is an increasing se-

quence of nonnegative random variables, then

lim
n→∞

E{ξn} = E{ lim
n→∞

ξn}.

Theorem 2.3.2 (Dominated convergence theorem): Let p ≥ 1, {ξn} ⊂ Lp(Ω;H)

and ζ ∈ Lp(Ω;R). Assume that ‖ξn‖H ≤ ζ almost surely and {ξn} converges to ξ

in probability. Then ξ ⊂ Lp(Ω;H), {ξn} converges to ξ in Lp, and

lim
n→∞

E{ξn} = E{ lim
n→∞

ξn} = E{ξ}.

Lemma 2.3.1 (Fatou’s Lemma): If the random variable’s ξn satisfy ξn ≥ ζ

almost surely ( ζ ∈ Lp(Ω;R)),∀n, we have

E{lim inf
n→∞

ξn} ≤ lim inf
n→∞

E{ξn}.

If the random variable’s ξn satisfy ξn ≤ ζ almost surely ( ζ ∈ Lp(Ω;R)),∀n, we
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have

E{lim sup
n→∞

ξn} ≥ lim sup
n→∞

E{ξn}.

An arbitrary familyM = {M(t)}, t ≥ 0, of H-valued random variables defined

on a probability space (Ω,F ,P) is called a stochastic process. Sometimes, we also

writeM(t, ω) orMt in place ofM(t) for all t ≥ 0. A stochastic processM is called

measurable if the mapping M(·, ·) : R+ × Ω→ H is B(R+)×F -measurable. Let

{Ft}, t ≥ 0, be an increasing family of sub-σ-fields of F . The process M is called

{Ft}t≥0-adapted if M(t) is Ft-measurable for each t ≥ 0. Clearly, if σ{M(t)}t≥0

is the family of σ-fields generated by M = {M(t)}t≥0, M is σ{M(t)}t≥0-adapted.

For any ω ∈ Ω, the function M(·, ω) is called a path or trajectory of M . Let P

denote the smallest σ-algebra on R+ × Ω with respect to every left continuous

process is a measurable function of (t, ω). A stochastic process is said to be

predictable if the process regarded as a function of (t, ω) is P-measurable.

Definition 2.3.1 Suppose M = {M(t)}, t ≥ 0, is an H-valued process and

{Ft}t≥0 is a filtration of F . The process M is said to be progressively measurable

with respect to {Ft}t≥0 if for every t ≥ 0, the mapping

[0, t]× Ω→ H, (s, ω)→M(s, ω),

is B([0, t])×Ft-measurable.

Definition 2.3.2 Let {Ft}t≥0 be a filtration of F . A mapping τ : Ω→ [0,∞] is

called a stopping time with respect to {Ft}, t ≥ 0, if

{ω : τ(ω) ≤ t} ∈ Ft for each t ≥ 0.
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The σ-field of events before τ , denoted by Fτ is defined as

Fτ =
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for every t ≥ 0

}
.

Theorem 2.3.3 Let M = {M(t)}, t ≥ 0, be an H-valued progressively measur-

able process with respect to {Ft}t≥0, and let τ be a finite stopping time. Then the

random variable Xτ is Fτ -measurable.

Theorem 2.3.4 (Fubini Theorem): LetM(t) be an H-valued measurable stochas-

tic process.

(1) If E{M(t)} exists for all t, then it is measurable as a function of t;

(2) if
∫ b
a
E‖M(t)‖Hdt <∞ for all a < b,

∫ b

a

E{M(t)}dt = E
{∫ b

a

M(t)dt
}
.

If E‖M(t)‖H <∞ for all t ≥ 0, then the process is called integrable.

Proposition 2.3.1 Assume that H is a separable Hilbert space. Let ξ be a

Bochner integral H-valued random variable defined on (Ω,F ,P) and let G be a

sub-σ-field of F . There exists a unique, up to a set of P-probability zero, integrable

H-valued random variable ζ, which is G-measurable such that

∫
A

ξdP =

∫
A

ζdP, ∀A ∈ G.

This random variable ζ is denoted by E(ξ | G), which is called the conditional

expectation of ξ given G.
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An integrable and adapted H-valued process M(t), t ≥ 0, is said to be a

martingale with respect to {Ft}t≥0 if

E(M(t) | Fs) = M(s), P− a.s.

for arbitrary t, s ∈ T, t ≥ s.

A real-valued integrable and adapted process M(t), t ≥ 0 is said to be a sub-

martingale (resp. a supermartingale) if

E(M(t) | Fs) ≥M(s) ( resp. E(M(t) | Fs) ≤M(s)), P− a.s.

2.4 Wiener Processes and Stochastic Integral

Let K be a real separable Hilbert space with inner product 〈·, ·〉K . A probability

measure N on (K,B(K)) is called Gaussian if for arbitrary u ∈ K, there exist

numbers µ ∈ R, σ > 0, such that

N{x ∈ K : 〈u, x〉K ∈ A} = N(µ, σ)(A), A ∈ B(R),

where N(µ, σ) is the standard one dimensional normal distribution with mean µ

and variance σ. If N is Gaussian, there exist an element m ∈ K and a nonnegative

self-adjoint operator Q ∈ L1(K), the family of all trace class operators in K, such

that the characteristic function of N is given by

∫
K

ei〈λ,x〉KN(dx) = ei〈λ,m〉K−
1
2
〈Qλ,λ〉K , λ ∈ K.

Therefore, the measure N is uniquely determined by m and Q and denoted by

N(m,Q). In particular, in this case, we call m the mean and Q the covariance
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operator of N(m,Q).

The proofs for this section can be founded in Chapter 4, [22] .

For a self-adjoint and nonnegative operator Q ∈ L(K), we assume that there

exists an orthonormal basis {ek}k≥1 in K, and a bounded sequence of positive

number λk such that

Qek = λkek, k = 1, 2, · · · .

A stochastic process W (t), t ≥ 0 on K is called Q-Wiener process if

(i) W (0) = 0;

(ii) W (t) has continuous trajectories;

(iii) the law DW (t)−W (s) = N(0, (t− s)Q) for all t ≥ s ≥ 0.

If the trace Tr Q is finite, then W is genuine Wiener process. It is possible that

Tr Q =∞, e.g., Q = I, and in this case we call W a cylindrical Wiener process.

Assume that the probability space (Ω,F ,F = (Ft)t≥0,P) is equipped with a

normal filtration {Ft}t≥0. Let W (t), t ≥ 0, be a Q-Wiener process on K which is

assumed to be adapted to {Ft}t≥0 and for every t > s ≥ 0 the increments W (t)−

W (s) are independent of {Fs}. Then, W (t), t ≥ 0, is a continuous martingale

relative to {Ft}t≥0 and W has the following representation:

W (t) =
∞∑
i=1

√
λiw

i(t)ei, t ≥ 0,

where (λi ≥ 0, i ∈ N+) are the eigenvalues of Q with the corresponding eigen-

vectors (ei, i ∈ N+), and (wi(t), i ∈ N+) is a sequence of independent real-valued

one-dimensional standard Brownian motions.

We introduce the subspace KQ = R(Q1/2) ⊂ K, the range of Q1/2, which is a
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Hilbert space endowed with the inner product

〈u, v〉KQ = 〈Q−1/2u,Q−1/2v〉K for any u, v ∈ KQ.

Let L2(KQ, H) denote the space of all Hilbert-Schmidt operators from KQ into

H, then L2(KQ, H) becomes a separable Hilbert space under the inner product

〈L, P 〉L2(KQ,H) = Tr[LQP ∗] for any L, P ∈ L2(KQ, H).

For arbitrarily given T ≥ 0, let Φ(t, ω), t ∈ [0, T ], be an L2(KQ, H)-valued pro-

cess. We define the following norm for arbitrary t ∈ [0, T ],

‖Φ‖t :=
{
E
∫ t

0

Tr
[
Φ(s)QΦ(s)∗

]
ds
} 1

2
.

In particular, we denote all L2(KQ, H)-valued measurable processes, adapted to

the filtration {Ft}t∈[0,T ], satisfying ‖Φ‖T <∞ by U2([0, T ]; L2(KQ, H)).

The stochastic integral
∫ t

0
Φ(s)dW (s) ∈ H, t ≥ 0, may be defined for all Φ ∈

U2([0, T ]; L2(KQ, H)) by

∫ t

0

Φ(s)dW (s)
L2

= lim
n→∞

n∑
i=1

∫ t

0

√
λiΦ(s)eidw

i(s), t ∈ [0, T ]. (2.3)

By the definition of stochastic integrals and using standard limiting procedure,

we can establish some useful properties of stochastic integrals.

Proposition 2.4.1 For arbitrary T ≥ 0, assume that Φ(·) ∈ U2([0, T ];L2(KQ, H)).

Then the stochastic integral
∫ t

0

Φ(s)dW (s) is a continuous, square integrable H-

valued martingale on [0, T ]. Moreover,

E
∥∥∥∫ t

0

Φ(s)dW (s)
∥∥∥2

H
= ‖Φ‖2

t , t ∈ [0, T ].
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Lévy Processes, Let Z = {Z(t) : t ≥ 0} be an H-valued stochastic process

defined on a probability space (Ω,F ,P). We say that it has independent incre-

ments if for each n ∈ N and each 0 ≤ t1 < t2 ≤ ... < tn+1 < ∞, the random

variables (Ztj+1
− Ztj , 1 ≤ j ≤ n) are independent and that it has stationary

increments if each Ztj+1
− Ztj and Ztj+1−tj − Z(0) has the same distribution.

We say that Z is a Lévy process if

1. Z(0) = 0 a.s;

2. Z(t) has independent and stationary increments;

3. Z is stochastically continuous, i.e., for any δ > 0 and for all s ≥ 0

lim
t→s

P(‖Z(t)− Z(s)‖H > δ) = 0.

Related to the Lévy process Z, we have the following Lévy-Khintchine formula

(see, e.g., [1]),

E
(
ei〈h,Z(t)〉H

)
= etηb,Q,ν(h), ∀t ≥ 0 and h ∈ H,

with the exponent

ηb,Q,ν(h) = i〈b, h〉H −
1

2
〈h,Qh〉H

+

∫
H

[
ei〈h,x〉H − 1− i〈h, x〉H · I‖x‖H<1(x)

]
ν(dx), (2.4)

where b ∈ H,Q is a positive, self-adjoint and trace class operator on H, and ν is

called a Lévy measure on H satisfying

ν({0}) = 0 and
∫
H

min(1, ‖x‖2
H)ν(dx) <∞,
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We use the symbol IE(x) to denote the characteristic function on set E ⊂

H, i.e., IE(x) = 1 if x ∈ E and IE(x) = 0 if x /∈ E. The triple (b,Q, ν) is

called the characteristics of the process Z and the mapping ηb,Q,ν(h) is called the

characteristic exponent of Z.

It can be proved that Lévy process has a càdlàg version. If Z is a Lévy process

on H, we write ∆Z(t) = Z(t) − Z(t−) for all t ≥ 0 where Z(t−) := lims↑t Z(s).

We then obtain a counting Poisson random measure N on H\{0} by

N(t, E) := #{0 ≤ s ≤ t : ∆Z(s) ∈ E} <∞, t ≥ 0,

almost surely for any E ∈ B(H\{0}). Here # is the counting and B(H\{0}) is the

Borel σ-field on H\{0}. Now we denote by Ñ(t, dx) the associated compensating

Poisson random martingale measure by

Ñ(t, dx) := N(t, dx)− tν(dx).

Let O ∈ B(H\{0}) and V2([0, T ] × O;H) denote the space of all predictable

processes L : [0, T ]×O × Ω→ H with

∫ T

0

∫
O
E‖L(t, x)‖2

Hν(dx)dt <∞.

Then we can define the random finite sum

∫ T

0

∫
O
L(t, x)N(dt, dx) =

∑
0≤t≤T

L(t,∆Z(t))IO(∆Z(t)),

which enables us to define the stochastic integral

∫ T

0

∫
O
L(t, x)Ñ(dt, dx) :=

∫ T

0

∫
O
L(t, x)N(dt, dx)−

∫ T

0

∫
O
L(t, x)ν(dx)dt.
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It is known that

∫ T

0

∫
O
L(t, x)Ñ(dt, dx), t ≥ 0,

is an H-valued square-integrable martingale satisfying

E
(∥∥∥∫ T

0

∫
O
L(t, x)Ñ(dt, dx)

∥∥∥2

H

)
≤ κ

∫ T

0

∫
O
E‖L(t, x)‖2

Hν(dx)dt, (2.5)

where κ > 0 for all T ≥ 0 and ∀x ∈ H.

The Lévy-Itô decomposition theorem on a separable Hilbert space H was in-

troduced in [3] as follows:

Theorem 2.4.1 Suppose that Z(t), t ≥ 0, is a càdlàg H-valued Lévy process with

characteristic exponent given by (2.4), then for each t ≥ 0,

Z(t) = bt+WQ(t) +

∫
‖x‖H<1

xÑ(t, dx) +

∫
‖x‖H≥1

xN(t, dx),

where WQ(t) is a Q-Wiener process, independent of N .

Let Z(t), t ≥ 0, be a càdlàg H-valued Lévy process and assume that J is a

measurable function from R+ to L(H) such that the mapping t→ ‖J‖ is locally

square integrable. Now we define the stochastic integral

∫ t

0

J(s)dZ(s) ∀t ≥ 0.

We use the Lévy-Itô decomposition theorem (2.6) to write

∫ t

0

J(s)dZ(s) =

∫ t

0

J(s)bds+

∫ t

0

J(s)dWQ(s) +

∫ t

0

∫
‖x‖H<1

xJ(s)Ñ(ds, dx)

+

∫ t

0

∫
‖x‖H≥1

J(s)xN(ds, dx).
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2.5 SDEs and Solutions

The theory of stochastic differential equations in Hilbert spaces is a nautral gener-

alisation of the classic finite dimensional stochastic differential equations (SDEs)

introduced by Itô. Readers are referred to Da Prato and Zabczyk [22] for more

details. Here, we only analyse a formulation how one can regard a SPDE as some

SDE in some Hilbert spaces.

Let O be a bounded domain in Rn, n ∈ N+, with smooth boundary ∂O. Con-

sider the following initial-boundary value problem for the randomly heat equation


∂y

∂t
(t, x) =

n∑
i=1

∂2y

∂x2
i

(t, x) +
∂W

∂t
(t, x), t ≥ 0, x ∈ O,

y(0, x) = y0(x), x ∈ O; y(t, x) = 0, t ≥ 0, x ∈ ∂O,
(2.6)

where W (t, x) is a standard Wiener random field.

We consider the solution for this stochastic differential equation as a stochastic

process indexed by time t with values in a space of functions of spatial variable

x, say L2(O;R). Here, we can use some knowledge from functional analysis to

develop a stochastic process theory on a Hilbert space.

Let H = L2(O;R). Assume that the initial condition y0 ∈ H = L2(O;R) and

let W (t), t ≥ 0, be a Q-Wiener process on H, then we may reformulate (2.6) into

the form: 
dy(t) = Ay(t)dt+ dW (t), t ≥ 0,

y(0) = y0 ∈ L2(O;R),

where A is
∑n

i=1
∂2

∂x2
i
in (2.6).

Now we consider the following non-linear stochastic system on a Hilbert space
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H,


dy(t) = (Ay(t) + F (t, y(t))dt+B(t, y(t))dW (t), t ≥ 0,

y(0) = y0 ∈ H,
(2.7)

where A is the infinitesimal generator of a C0-semigroup etA, t ≥ 0, of bounded

linear operators on the Hilbert space H. The coefficients F (·, ·) and B(·, ·) are

two nonlinear measurable mappings from [0, T ] × H into H and L2(KQ, H),

respectively.

Definition 2.5.1 Let T ≥ 0 and an {Ft}t≥0-adapted stochastic process y(t), t ∈

[0, T ], defined on some probability space (Ω,F ,F = (Ft)t≥0,P) is called a mild

solution of (2.7) if it satisfies

P
{∫ T

0

‖y(t)‖2
Hdt <∞

}
= 1, (2.8)

P
{∫ T

0

(
‖F (t, y(t))‖H + ‖B(t, y(t))‖2

L2(KQ,H)

)
dt <∞

}
= 1, (2.9)

and

y(t) = etAy0 +

∫ t

0

e(t−s)AF (s, y(s))ds+

∫ t

0

e(t−s)AB(s, y(s))dW (s), t ∈ [0, T ],

for any y0 ∈ H almost surely.

By the Banach fixed-point theorem, we can establish an existence and uniqueness

theorem of mild solutions for (2.7). Precisely, we suppose that for any y, z ∈ H
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and t ∈ [0, T ],

‖F (t, y)− F (t, z)‖H + ‖B(t, y)−B(t, z)‖L2(KQ,H) ≤ α(T )‖y − z‖H ,

‖F (t, y)−B(t, y)‖2
L2(KQ,H) ≤ β(T )(1 + ‖y‖2

H), (2.10)

where α(T ) > 0 and β(T ) > 0.

Theorem 2.5.1 Let T ≥ 0 and assume that condition (2.10) holds. Then there

exists a unique mild solution y ∈ C([0, T ];Lp(Ω;H)) to (2.7). Moreover if

E‖y0‖pH <∞, p ≥ 2, then the solution y satisfies

E
(

sup
0≤t≤T

‖y(t, y0)‖pH
)
<∞, p ≥ 2.
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Chapter 3

Stochastic Optimal Control

Problem with Neutral Type and

Control Delays

3.1 Introduction

In the classical case, many random phenomena are described by stochastic differ-

ential equations, such as the evolution of stock prices. However, there also exist

many phenomena which are characteristics of past dependence, that is, their

present value depends not only on the present situation but also on the past

history. Such models may be identified as stochastic differential delay equations

arising in a wide range of applications in physics, biology, engineering, economics

and finance. For instance, let us mention the influence of the ocean in a cou-

pled atmospheric ocean model of the climate, see, e.g., [59], or population growth

where the non null finite information transmission times may lead to delay.

Recently, the optimal control problem of deterministic infinite dimensional
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systems has attracted a lot of attentions (see, e.g., [8], [21], [35], [48], and refer-

ences cited therein). For stochastic systems without memory, the same or similar

problems have been considered by many researchers, e.g., [27], [33], in which it

is clearly enough to consider only the state control i.e., b1(·) ≡ 0 in (3.1) of the

equations under investigation. Apart from this, we also need to deal with time

delays in the control: this is interesting from the practical point of view and new

mathematical difficulties arise in the problem. In [29] and [30], a class of stochas-

tic optimal control problems were considered. The state equation is a stochastic

delay differential equation. One typical example of this problem introduces the

optimal control of delay equations arising in advertising models.

On the other hand, it is known that the neutral type effects in which the class

of stochastic equations involve derivatives with delays as well as the function it-

self exist widely. Many interesting results about neutral type to stochastic delay

differential differential equations have been obtained by many authors, see, for

example, Liu [38] has considered standard optimal control problems for a class of

neutral functional differential equations in Banach spaces and it turns out that

based on a systematic theory of neutral models, the fundamental solution is con-

structed and a variation of constants formula of mild solutions is established.

Balasubramaniam and Ntouyas [4] have given sufficient conditions for the con-

trollability of a class of stochastic partial functional differential inclusions with

infinite delay in an abstract space with the help of the Leray-Schnauder nonlin-

ear alternative. The problem is formulated by lifting this non-Markovian opti-

mization problem to an infinite-dimensional Markovian control problem without

involving delays in a suitable product Hilbert space and the solutions are derived

in an explicit example.

In this chapter, we will generalise the previous theory to consider a stochastic

optimal control problem for a class of neutral type stochastic systems, which is
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very important from both theoretic and practical point of view (see, e.g., [39]).

We formulate a stochastic optimal control problem aiming at maximising the

objective functional at a given time horizon T > 0.

This chapter is organised as follows. In Section 3.2, we formulate the optimal

problem with the objective functional as an optimal problem with neutral type

for an SDDE both in state and the control. In Section 3.3, we use a representa-

tion result that allows us to “lift” this non-Markovian optimisation problem to an

Hilbert space-valued Markovian control problem and deal with the general case

of delays in the state and in the control and the verification result is given. In

Section 3.4, we construct an example of a controlled SDDE in the state and in

the control, whose HJB equation admits an integral solution. Therefore, there

exists an optimal control form for the control problem. In Section 3.5, we calcu-

late solutions by a linear delay differential equation. In Section 3.6, we have a

summary to state the contribution and development of the chapter.

3.2 Model

Let r > 0 and L2([−r, 0];R) be the space of all R-valued equivalent classes of

measurable functions γ(·) : [−r, 0] → R such that
∫ 0

−r |γ(θ)|2Rdθ < ∞. We also

denote by W 1,2([−r, 0];R) the Sobolev space of all R-valued functions x(·) on

[−r, 0] such that x(·) and its derivatives belong to L2([−r, 0];R). We consider the

following stochastic differential equations with neutral type and control delay on

R.

d
[
y(t)−

∫ 0

−r
a(θ)y(t+ θ)dθ

]
=
[
a0y(t) +

∫ 0

−r
a1(θ)y(t+ θ)dθ + b0u(t)

+

∫ 0

−r
b1(θ)u(t+ θ)dθ

]
dt+ σdB(t), ∀t ∈ [0, T ],

y(0) = x0, y(θ) = x1(θ), u(θ) = γ(θ), ∀θ ∈ [−r, 0],

(3.1)
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where the Brownian motion B(t) is defined on a filtered probability space

(Ω,F , {Ft}t≥0,P) with (Ft)t≥0 being the completion of the filtration generated

by B(t), t ≥ 0. It is assumed that u(t) is an admissible control that belongs

to U := L2([0, T ];R+), the space of square integrable nonnegative stochastic

processes adapted to {Ft}t∈[0,T ]. In addition, we need to assume the following

conditions:

i. a0 ∈ R;

ii. a1(·) ∈ L2([−r, 0];R);

iii. a(·) ∈ C1([−r, 0];R);

iv. b0 ∈ R;

v. b1(·) ∈ L2([−r, 0];R);

vi. x1(·) ∈ L2([−r, 0];R);

vii. γ(·) ∈ L2([−r, 0];R+).

Our aim is to study the optimal control problem for (3.1). Setting x := (x0, x1(·)) ∈

X and denoting by y(t, x, u(·)), t ∈ [0, T ], a solution of (3.1). The objective func-

tional is given as follows:

J(x, u(·)) = Es,x
[
ϕ(Y (T, x, u(·))) +

∫ T

0

h(u(t))dt
]
, (3.2)

where ϕ0 is a concave utility function, which is twice continuously differentiable

and satisfies ϕ′′0(x) < 0 for all x ∈ R, and h0 is a convex cost function, which is

twice continuously differentiable and satisfies h′′0(x) > 0 for all x ∈ R. Moreover,

h0 is superlinear at infinity, i.e.

lim
x→+∞

h0(x)

x
= +∞,
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and the dynamics of y is determined by (3.1).

Let us also define the value function V for this problem as follows:

V (t, x) = sup
u∈U

J(t, x;u).

We say that u∗ ∈ U is an optimal strategy if it is satisfies

V (t, x) = J(t, x;u∗).

The problem that we will deal with is the maximisation of the objective functional

J over all admissible strategies u ∈ U and the characterisation of the value

function V and of the optimal strategy u∗.

3.3 Equivalent Infinite-Dimensional Markovian Rep-

resentation

In this section, we shall adapt the approach of Vinter and Kwong [54] to the

stochastic case to recast SDDE (3.1) as an abstract SDE on a product Hilbert

space H to reformulate the optimal control problem.

Let H be a product Hilbert space defined as

H = R× L2([−r, 0];R),

with inner product

〈x, y〉H = x0y0 +

∫ 0

−r
x1(θ)y1(θ)dθ,
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and norm

‖x‖H =
(
|x0|2 +

∫ 0

−r
|x1(θ)|2dθ

)1/2

,

for all x = (x0, x1), y = (y0, y1) ∈ H, that is, x0 and x1(·) denote the R-valued

and the L2([−r, 0];R)-valued components, respectively.

We start by considering the deterministic delay differential equation with neu-

tral type on R,


d
[
y(t)−

∫ 0

−r
a(θ)y(t+ θ)dθ

]
= a0y(t) +

∫ 0

−r
a1(θ)y(t+ θ)dθ, ∀t > 0,

y(0) = x0, y(θ) = x1(θ), x = (x0, x1(·)) ∈ H.
(3.3)

The mild solution y(t) of (3.3) requires us to introduce a C0-semigroup on product

Hilbert space H. Now, we define a mapping S(t), t ≥ 0, associated with y(t) by

S(t)(x0, x1(·)) = (y(t), y(t+ ·)), ∀t ≥ 0.

Moreover, Y (t) = (y(t), yt(·)), where yt(·) = y(t + ·), t ≥ 0, is the H-valued mild

solution of an abstract equation without delays


dY (t) = AY (t)dt

Y (0) = x ∈ H.

Here the operator A is the infinitesimal generator of the strongly continuous

C0-semigroup S(t), t ≥ 0 on the Hilbert space H (see the proof in Liu [37]) as

follows:

A : (x0, x1(·))→
(
a0x0 +

∫ 0

−r
a(θ)x′1(θ)dθ +

∫ 0

−r
a1(θ)x1(θ)dθ, x′1(θ)

)
(3.4)
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and the domain of A is given by

D(A) = {(x0, x1(·)) ∈ R×W 1,2([−r, 0];R) : x0 = x1(0)}

for any x = (x0, x1) ∈ D(A).

Moreover, we recall the adjoint operator A∗ which is proved in Liu [39], in

which, the operator A∗ : D(A∗) ⊂ H → H generates a C0-semigroup etA∗ .

Theorem 3.3.1 The operator A∗ of the C0-semigroup etA∗ : D(A∗) ⊂ H → H

is given by: for almost all θ ∈ [−r, 0],

A∗ : (x0, x1(θ))→
(
a0x0 + x1(0) + a(0)x0, a1(θ)x0 −

d

dθ

[
x1(θ)− a(θ)x0

])
,

and the domain of A∗ is given by

D(A∗) = {(x0, x1(·)) ∈ H, x1(·)+a(·)x0 ∈ W 1,2([−r, 0];R), x1(−r)+a(−r)x0 = 0}.

Moreover, we need to define the bounded linear control operator B∗ : U → H as

B∗ : u→ (b0u, b1(·)u),

where U := R+ and the elements (b0, b1(·)) ∈ H.

Finally G∗ : R→ H is defined as

G∗ : x0 → (σx0, 0), ∀x0 ∈ R.

We adopt a method that allows us to “lift” this non-Markovian optimisation

problem to an infinite-dimensional Markovian control problem. Let us consider

the following abstract SDE on the Hilbert space that is equivalent to the SDE
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(3.1):


dY (t) = (A∗Y (t) +B∗u(t))dt+G∗dB(t)

Y (0) = x = (x0, x1) ∈ H,
(3.5)

where A∗ is given as in Theorem 3.2.1.

In Da Prato and Zabczyk [22], it is known that the equation (3.5) has exactly

one mild solution, which is given by the variation of constants formula

Y (t) = etA
∗
x+

∫ t

0

e(t−s)A∗
B∗u(s)ds+

∫ t

0

e(t−s)A∗
G∗dB(s).

We now relate the solution of the delayed differential equation (3.1) to the mild

solution of the abstract evolution equation (3.5) when the initial condition on the

abstract evolution equation is appropriately chosen.

Proposition 3.3.1 [39] Let Y (t) = (Y0(t), Y1(t + θ)) ∈ H, θ ∈ [−r, 0], be the

mild solution of the abstract evolution equation (3.5) with arbitrary initial data

Y (0) = x ∈ H and control u ∈ U . Then, for t ≥ 0, one has the relation

Y1(t)(θ) =

∫ θ

−r
[a1(s) + a′(s)]Y0(t+ s− θ)ds+

∫ θ

−r
b1(s)u(t+ s− θ)ds, θ ∈ [−r, 0].

Moreover, consider the equation (3.5) with initial

x̄ = (x̄0, x̄1) :=
(
x0,

∫ θ

−r
[a1(s)+a′(s)]x1(s−θ)ds+

∫ θ

−r
b1(s)u(s−θ)ds, θ ∈ [−r, 0]

)
,

then there is the equality

Y0(t, x̄) = y(t, x), t ∈ [0, T ], (3.6)

where y(t, x), t ≥ −r, is the unique mild solution of the equation (3.1) with initial
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x = (x0, x1) ∈ H.

Using this equivalence result, we can now give a Markovian reformulation on the

product Hilbert space H of the problem of maximising (3.2). Since we want to

use the dynamic programming approach, from now on we let the initial time vary,

denote it by s with 0 ≤ s ≤ T.

The state space is H = R × L2([−r, 0];R), the control space is U := R+ and

the control strategy is u(·) ∈ U . The state equation is (3.5) with initial condition

at s as follows 
dY (t) = (A∗Y (t) +B∗u(t))dt+G∗dB(t)

Y (s) = x ∈ H,
(3.7)

and its unique mild solution with initial data (s, x) and the control strategy u(·),

will be denoted by Y (·; s, x, u(·)), so (3.2) is equivalent to

J(s, x, u(·)) = Es,x
[
ϕ(Y (T, s, x, u(·))) +

∫ T

s

h(u(t))dt
]
,

where the function h : U → R and ϕ : H → R are defined as

h(u) = −h0(u),

ϕ(x0, x1(·)) = ϕ0(x0).

Our aim is to maximise the objective function J(s, x;u(·)) over all u(·) ∈ U . We

also define the value function V for this problem as

V (s, x) = sup
u(·)∈U

J(s, x;u(·)).
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Moreover, we shall say that u∗ ∈ U is an optimal strategy if it is such that

V (s, x) = J(s, x;u∗(·)).

According to the dynamical programming approach, we need first to charac-

terise the value function V as the unique solution of the following HJB equation


vt +

1

2
Tr(Q∗vxx) + 〈A∗x, vx〉+H0(vx) = 0,

v(T, x) = ϕ(x), x ∈ H, T ≥ 0,

(3.8)

where Q∗ = G∗G, and

H0(p) = sup
u∈U

(〈B∗u, p〉H + h(u)), p ∈ H.

In general, it is hard to solve the equation (3.8) with x defined in a Hilbert

space and obtain regular solutions of the HJB equation (3.8) by using the existing

theory. But in this case, we only consider the situation that the regular solutions

of the HJB equation exist. Here we define two solutions of a HJB equation.

Definition 3.3.1 A function v is said to be

i. A classical solution of the HJB equation (3.8) if v ∈ C1,2([0, T ] ×H) and v

satisfies (3.8) pointwise;

ii. An integral solution if v ∈ C0,2([0, T ]×H), and moreover, for t ∈ [0, T ] and

x ∈ D(A∗), we have

ϕ(x)−v(t, x)+

∫ T

t

[1

2
Tr(Q∗vxx(t, x))+〈A∗x, vx(s, x)〉+H0(vx(s, x))

]
ds = 0.

(3.9)

In addition, we use the verification theorem (see the proof in [29]) to find the
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value function V and the optimal control u∗.

Theorem 3.3.2 (Verification Theorem) Let v be an integral solution of the

HJB (3.8) and let V be the value function of the optimal control problem. Then

(1) v ≥ V on [0, T ]×H;

(2) if a control u∗ ∈ U is such that, at starting point (t, x),

H0(vx(s, Y (s))) = sup
u∈U
〈B∗u, vx(s, Y (s))〉+ h(u)

= 〈B∗u∗(s), vx(s, Y (s))〉+ h(u∗(s)),

for almost every s ∈ [t, T ],P-a.s., then this control is optimal and v(t, x) =

V (t, x);

(3) if we know a priori that V = v, then (2) is a necessary (and sufficient)

condition of optimality.

3.4 An explicit case

In this section, we study the optimal control problem by an specific example with

a linear function ϕ and a quadratic function h.

In particular, we assume that

h(u) = −βu2, and ϕ(x) = ϕ0(x0) = γx0,

with β, γ > 0.

We define the bounded linear control operator B∗ : U → H as

B∗ : u→ (b0u, b1(·)u),
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where U := R+ and the elements (b0, b1(·)) ∈ H.

Let HCV (p, u) be defined by

HCV (p, u) = 〈B∗u, p〉+ h(u) = 〈B∗, p〉Hu− βu
2, p ∈ H.

Then

H0(p) = sup
u∈U

HCV (p, u) =


〈B∗, p〉2

4β
, 〈B∗, p〉 ≥ 0,

0, 〈B∗, p〉 < 0,

(3.10)

or equvalently,

H0(p) =
(〈B∗, p〉+)2

4β
.

We guess a solution of the HJB equation (3.8) of the form

v(t, x) = 〈µ(t), x〉+ c(t), t ∈ [0, T ], x ∈ H, (3.11)

where µ(·) = (µ0(·), µ1(·)) : [0, T ]→ H and c(·) : [0, T ]→ R. Hence, for t ∈ [0, T ]

and x ∈ H, we assume that all objects are well defined, and

vt(t, x) = 〈µ′(t), x〉+ c′(t), (3.12)

vx(t, x) = µ(t), (3.13)

vxx = 0. (3.14)
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Then, by substituting (3.12), (3.13) and (3.14) into (3.8), we obtain


〈µ′(t), x〉+ c′(t) + 〈A∗x, µ(t)〉+

(〈B∗, µ(t)〉+)2

4β
= 0, ∀t ∈ [0, T ), x ∈ D(A∗),

〈µ(T ), x〉+ c(T ) = γx0, ∀x ∈ H.

(3.15)

Assume that µ(t) ∈ D(A) for all t ∈ [0, T ], so (3.15) is equivalent to


〈µ′(t), x〉+ 〈x,Aµ(t)〉 = 0, t ∈ [0, T ),

µ(T ) = (γ, 0),

(3.16)

and 
c′(t) +

(〈B∗, µ(t)〉+)2

4β
= 0, t ∈ [0, T ),

c(T ) = 0.

(3.17)

Then it implies


µ′(t) + Aµ(t) = 0, t ∈ [0, T ),

µ(T ) = (γ, 0).

(3.18)

Recalling (3.4), we obtain that (3.18) is equivalent to


µ′0(t) + a0µ0(t) +

∫ 0

−r
a(θ)

∂µ1(t, θ)

∂θ
dθ +

∫ 0

−r
a1(θ)µ1(t, θ)dθ = 0, t ∈ [0, T ),

µ0(T ) = γ,

(3.19)
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and 

∂µ1(t, θ)

∂t
+
∂µ1(t, θ)

∂θ
= 0, t ∈ [0, T ), θ ∈ [−r, 0),

µ1(T, θ) = 0, θ ∈ [−r, 0),

µ1(t, 0) = µ0(t), t ∈ [0, T ].

(3.20)

The solution of (3.20) is given by

µ1(t, θ) = µ0(t− θ)I[0,T ](t− θ), (3.21)

from which we can solve the equation (3.19) to obtain µ0(·). Hence,

v(t, x) = 〈µ(t), x〉+ c(t)

is an integral solution of of HJB equation (3.8). Since v ∈ C0,2([0, T ]×H), which

is twice differentiable in x and it satisfies the hypotheses of Verification Theorem.

Moreover, the optimal strategy is

u∗(t) =
〈B∗, vx(t)〉+

2β
=
〈B∗, µ(t)〉+

2β
, t ∈ [0, T ].

Hence, by the Theorem 3.3.2, u∗(·) is optimal.

3.5 Example with solutions

Now we extend the analysis of this specific situation to a rather explicit solution

of the optimal control problem, which could be solved numerically by solving a

linear ODE with delay. In particular, let µ = (µ0, µ1) be the solution of (3.11).

Let us consider the system (3.1) with a(·) =a and a1(·) = 0, precisely, the
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following controlled stochastic differential equation with neutral type



d
[
y(t)−

∫ 0

−r
ay(t+ θ)dθ

]
=
[
a0y(t) +

∫ 0

−r
b1(θ)u(t+ θ)dθ

]
dt

+σdB(t), ∀t ∈ [0, T ],

y(0) = x0, y(θ) = x1(θ) ∈ L2([−r, 0];R), u(θ) = γ(θ), θ ∈ [−r, 0],

(3.22)

Now the equation (3.19) has become


µ′0(t) + a0µ0(t) + a

∫ 0

−r

∂µ1(t, θ)

∂θ
dθ = 0, t ∈ [0, T )

µ0(T ) = γ,

(3.23)

where a, a0 are constants.

Step 1: For t ∈ [T − r, T ], we need to consider the solutions in two cases.

(i) If t ∈ [T − r, T ] and t− θ /∈ [0, T ], µ1(t, θ) = 0, and (3.23) is equivalent to


µ′0(t) + a0µ0(t) = 0, t ∈ [T − r, T ],

µ0(T ) = γ.

(3.24)

Multiplying ea0t on both sides of the first equation in (3.24), we obtain

ea0tµ′0(t) + a0e
a0tµ0(t) = 0. (3.25)

Integrating the equation (3.25) on the interval [t, T ], t ∈ [T − r, T ], we get

∫ T

t

(µ0(u)ea0u)′du = 0, t ∈ [T − r, T ],
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and further

µ0(T )ea0T − µ0(t)ea0t = 0.

Hence, on the interval T − r ≤ t ≤ T , the function µ0(t) is given uniquely by

µ0(t) = γea0(T−t), t ∈ [T − r, T ]. (3.26)

(ii) If t ∈ [T − r, T ] and t− θ ∈ [0, T ], µ1(t, θ) = µ0(t− θ), then

a

∫ 0

−r

∂µ1(t, θ)

∂θ
dθ = a

∫ 0

−r
It−θ∈[0,T ]

∂µ1(t, θ)

∂θ
dθ

= a

∫ 0

t−T
(µ0(t− θ)′θdθ

= a(µ0(t)− µ0(t− t+ T ))

= a(µ0(t)− µ0(T ))

= a(µ0(t)− γ).

Then (3.23) reduces to


µ′0(t) + a0µ0(t) + a(µ0(t)− γ) = 0, t ∈ [T − r, T ),

µ0(T ) = γ.

This is an ordinary differential equation with respect to t, which has the form


µ′0(t) + (a+ a0)µ0(t) = aγ, t ∈ [T − r, T )

µ0(T ) = γ.

(3.27)

where a, a0 are constants. Multiplying e(a0+a)t on both sides of the first equation
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of (3.27), we obtain

e(a0+a)tµ′0(t) + (a0 + a)e(a0+a)tµ0(t) = ae(a0+a)tγ.

Integrating on the interval [t, T ],

∫ T

t

(µ0(u)e(a0+a)u)′du = a

∫ T

t

e(a0+a)uγdu,

then

µ0(T )e(a0+a)T − µ0(t)e(a0+a)t = a

∫ T

t

e(a0+a)uγdu.

Rearranging this equation, we obtain

µ0(t) = γe(a0+a)(T−t) − a
∫ T

t

e(a0+a)(u−t)γdu

= γe(a0+a)(T−t) − aγ

a0 + a

∫ T

t

e(a0+a)(u−t)d(a0 + a)u

= γe(a0+a)(T−t) − aγ

a0 + a
(e(a0+a)(T−t) − e(a0+a)(t−t))

= γe(a0+a)(T−t) − aγ

a0 + a
(e(a0+a)(T−t) − 1)

=
a0γ

a0 + a
e(a0+a)(T−t) +

aγ

a0 + a
, t ∈ [T − r, T ].

On the interval t ∈ [T − r, T ], the function µ0(t) is given uniquely by

µ0(t) =
a0γ

a0 + a
e(a0+a)(T−t) +

aγ

a0 + a
. (3.28)

Hence, on the interval t ∈ [T − r, T ], the function µ0(t) is given uniquely by

(µ0(t), µ1(t)) = (γea0(T−t), 0) for t ∈ [T − r, T ] and t− θ /∈ [0, T ],
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and

(µ0(t), µ1(t)) =
( a0γ

a0 + a
e(a0+a)(T−t) +

aγ

a0 + a
,
a0γ

a0 + a
e(a0+a)(T−(t−θ)) +

aγ

a0 + a

)
,

for any t ∈ [T − r, T ] and t− θ ∈ [0, T ].

Let κ(t) := µ0(t), t ∈ [T − r, T ]. Once (µ0(t), µ1(t)(·)) is known on interval

[T − r, T ], the function κ(t) on interval [T − r, T ] can be used to obtain µ0(t) on

[T − 2r, T − r].

Step 2: For t ∈ [T − 2r, T − r], it is clearly that t − θ ∈ [0, T ]. Then

µ1(t, θ) = µ0(t− θ), and

a

∫ 0

−r

∂µ1(t, θ)

∂θ
dθ = a

∫ 0

−r
It−θ∈[0,T ]

∂µ1(t, θ)

∂θ
dθ

= a

∫ 0

−r
(µ0(t− θ)′θdθ

= a(µ0(t)− µ0(t+ r)).

Then (3.23) reduces to


µ′0(t) + a0µ0(t) + a(µ0(t)− µ0(t+ r)) = 0, t ∈ [T − 2r, T − r],

µ0(T ) = γ.

This is a linear delay differential equation which has the form


µ′0(t) + (a+ a0)µ0(t) = aµ0(t+ r), t ∈ [T − 2r, T − r],

µ0(T ) = γ,

(3.29)

where a, a0 and r are constants with r > 0.
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Multiplying e(a0+a)t on both sides of the first equation of (3.29), we obtain

e(a0+a)tµ′0(t) + (a0 + a)e(a0+a)tµ0(t) = ae(a0+a)tµ0(t+ r).

Integrating on the interval [t, T − r], t ∈ [T − 2r, T − r],

∫ T−r

t

(µ0(u)e(a0+a)u)′du = a

∫ T−r

t

e(a0+a)uµ0(u+ r)du,

then

µ0(T − r)e(a0+a)(T−r) − µ0(t)e(a0+a)t = a

∫ T−r

t

e(a0+a)uµ0(u+ r)du.

Rearranging this equation, we have

µ0(t) = κ(T − r)e(a0+a)(T−t−r) − a
∫ T−r

t

e(a0+a)(s−t)κ(s+ r)ds. (3.30)

Since T − r ∈ [T − r, T ] and s+ r ∈ [T − r, T ] for s ∈ [t, T − r], we can derive the

values of κ(T − r) and κ(s+ r) from equation (3.28) in Step 1.

Step 3: For t ∈ [T − 3r, T − 2r], multiplying e(a0+a)t on both sides of the first

equation of (3.29), we obtain

e(a0+a)tµ′0(t) + (a0 + a)e(a0+a)tµ0(t) = ae(a0+a)tµ0(t+ r).

Integrating on the interval [t, T − 2r], t ∈ [T − 3r, T − 2r],

∫ T−2r

t

(µ0(s)e(a0+a)s)′ds = a

∫ T−2r

t

e(a0+a)sµ0(s+ r)ds,

then

µ0(T − 2r)e(a0+a)(T−2r) − µ0(t)e(a0+a)t = a

∫ T−2r

t

e(a0+a)sµ0(s+ r)ds,
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and

µ0(t) = µ0(T − 2r)e(a0+a)(T−t−2r) − a
∫ T−2r

t

e(a0+a)(s−t)µ0(s+ r)ds. (3.31)

Here µ0(T − 2r) and µ0(s + r), s ∈ [t, T − 2r], t ∈ [T − 3r, T − 2r] are given in

Step 2.

Hence, on the interval T − 3r ≤ t ≤ T − 2r , the function µ0(t) is given

uniquely by

µ0(t) = µ0(T − 2r)e(a0+a)(T−t−2r) − a
∫ T−2r

t

e(a0+a)(s−t)µ0(s+ r)ds.

According the methods of steps, we can derive the unique solution µ0(t) on

the interval T − 4r ≤ t ≤ T − 3r, which is

µ0(t) = µ0(T − 3r)e(a0+a)(T−t−3r) − a
∫ T−3r

t

e(a0+a)(s−t)µ0(s+ r)ds.

We can conclude that, in general, the explicit solution µ0(t) on the interval T −

nr ≤ t ≤ T − (n− 1)r, may be written in this form

µ0(t) = µ0(T − (n− 1)r)e(a0+a)(T−t−(n−1)r) − a
∫ T−(n−1)r

t

e(a0+a)(s−t)µ0(s+ r)ds.
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3.6 Summary

In this chapter, we made the first attempt to study solutions of stochastic delay

differential equations with neutral type. Our work extended the work of Gozzi and

Marinelli (2006) where the optimal control solutions cannot be solved explicitly.

In addition, we also discussed the system with neutral type which has not yet

been discussed in the context of stochastic delay differential equations in terms of

optimal control problem. Finally, we obtained solutions in an explicit example.
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Chapter 4

Almost Periodic Solutions for

Neutral Stochastic Evolution

Equations with Poisson Jumps and

Infinite Delay

4.1 Introduction

Stochastic evolution differential equations have attracted much attention because

of their applications in many areas such as physics, population dynamics, elec-

trical engineering, medicine biology, ecology and other areas of science and en-

gineering. Qualitative properties such as existence, uniqueness, controllability

and stability for various stochastic differential systems have been investigated by

many authors and have already achieved fruitful results (see for example [45],

[46], [41], [14], [53]). In particular, solutions with recurrence property (e.g. al-

most periodicity and almost automorphy), which enable us to understand the

impact of the noise or stochastic perturbation on the corresponding recurrent
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motions, are of great concern in the study of stochastic differential equations and

random dynamical systems. The existence of almost periodic solutions for de-

terministic differential equations has been considerably investigated in a lots of

publications. To be specific, Abbas and Bahuguna [2] studied the almost periodic

solutions of neutral functional differential equations in Banach spaces. Diagana,

Mahop, N’Guerekata, Toni [24] discussed the existence and uniqueness of pseudo

almost periodic solutions to some classes of semilinear differential equations and

applications.

Recently, Bezandry and Diagana introduced the concept of square-mean al-

most periodic stochastic process and applied it to the study of stochastic differ-

ential equations (see [9]). In [10], Bezandry and Diagana proved the existence

of almost periodic solutions to some stochastic differential equations. Bezandry

and Diagana [11] studied the existence of square-mean almost periodic solutions

to some stochastic hyperbolic differential equations with infinite delay. Bezandry

and Diagana [12] were concerned with the square-mean almost periodic solutions

nonautonomous stochastic differential equations. However, many dynamical sys-

tems not only depend on the present states, but also on past states and involve

derivative with delays. Therefore, it is necessary to talk about the stochastic

evolution system with infinite delays and neutral type as well, see ([40], [44], [?],

[19]).

In addition, Poisson processes are essentially stochastic processes with station-

ary and independent increments. Stochastic differential equations with Poisson

jumps have become popular in modelling the phenomena arising in such field, as

economics, where jump processes are widely used to describe the asset and com-

modity price dynamics (see [18]). However, as for stochastic partial differential

equations with Poisson jumps and infinite delay, as for as we know, there exist

only a few results about the existence and stability of mild solution. Readers are
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referred to ([51], [20], [52]).

Motivated by the above works by using the method of semigroups and Banach

fixed point theorems. The main purpose of this chapter is to study the existence

and uniqueness of square-mean almost periodic solutions to a class of neutral

stochastic differential equations with Poisson jumps and infinite delay

d(x(t)−G(x(t), xt)) = (Ax(t) + f(t, x(t), xt))dt+ g(t, x(t), xt)dW (t)

+

∫
H

h(t, x(t−), xt−, z)Ñ(dt, dz), t ∈ R.

We assume some conditions to make sure the existence and uniqueness of square-

mean almost periodic solutions.

This chapter is organised as follows. In Section 4.2, we review and introduce

some concepts, basic properties of square-mean almost periodicity and the proofs

of two theorems. In Section 4.3, under some suitable conditions, we prove the

existence and uniqueness of square-mean almost periodic mild solutions for some

stochastic differential equations driven by Poisson jumps. In Section 4.4, we have

a summary to state the contribution and development of the chapter.

4.2 Almost Periodicity

Let (Ω,F , {Ft}t≥0,P) be a complete probability space. An axiomatic definition

of the phase space B is introduced by Hale and Kato, see [32].

Definition 4.2.1 The axioms of the phase space B((−∞, 0], H) (simply denoted

by B) are defined for continuous functions mapping from (−∞, 0] into H endowed

with a norm ‖ · ‖B, and B, satisfying the following conditions:

(1) For any T > 0, if x : (−∞, T ] → H, is continuous on [0, T ] and x0 ∈ B,
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then, for every t ∈ [0, T ], the following properties hold:

(a) xt(·) := x(t+ ·) ∈ B;

(b) ‖x(t)‖H ≤ K‖xt‖B, ∀t > 0, where K > 0 is a constant;

(c) ‖xt‖B ≤M0 sup0≤s≤t ‖x(s)‖H , where M0 > 0 is a constant.

(2) The space B is complete.

For a Hilbert space (H, ‖ · ‖), we denote by L2(Ω, H) the Hilbert space of all

H-valued random variable ξ such that

E‖ξ(ω)‖2 =

∫
Ω

‖ξ(ω)‖2P(dω) <∞.

For ξ ∈ L2(Ω, H), let

‖ξ(ω)‖2 =
(∫

Ω

‖ξ(ω)‖2P(dω)
)1/2

.

Definition 4.2.2 A stochastic process x : R×Ω→ H is said to be L2-continuous

if for any s ∈ R,

lim
t→s

E‖x(t)− x(s)‖2
H = 0.

Definition 4.2.3 An L2-continuous stochastic process x : R×Ω→ H satisfying

E‖x(t)‖2
H < ∞ for any t ∈ R is said to be square-mean almost periodic if for

every sequence of real numbers {s′n}, there exists a subsequence {sn} and an L2-

continuous stochastic process x̃ : R× Ω→ Hsuch that

lim
n→∞

sup
t∈R

E‖x(t+ sn)− x̃(t)‖2
H = 0.
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The collection of all square-mean almost periodic stochastic processes x : R×

Ω→ H will be denoted by AP (R× Ω;H).

Definition 4.2.4 A function f : R × H × B → H, is said to be square-mean

almost periodic in t ∈ R, uniformly for (x, y) ∈ K, where K ⊂ H ×B is compact

if for every sequence of real numbers {s′n}, there exists a subsequence {sn} and a

function f̃ : R×H ×B → Hsuch that

lim
n→∞

sup
t∈R
‖f(t+ sn, x, y)− f̃(t, x, y)‖2

H = 0.

The collection of all square mean almost periodic functions f : R×H×B → H

will be denoted by AP (R×H ×B;H).

Definition 4.2.5 A function h : R × H ×B × H → H, is said to be Poisson

square-mean almost periodic in t ∈ R, uniformly for (x, y) ∈ K, where K ⊂ H×B

is compact if h satisfies:

∫
H

‖h(t, x, y, z)− h(t′, x, y, z)‖2
Hν(dz)→ 0 as t′ → t, t ∈ R, (4.1)

and for every sequence of real numbers {s′n}, there exists a subsequence {sn} and

a function h̃ : R×H ×B×H → H, (t, x, y, z) 7→ h(t, x, y, z) satisfying (4.1) and

satisfies

lim
n→∞

sup
t∈R

∫
H

‖h(t+ sn, x, y, z)− h̃(t, x, y, z)‖2
Hν(dz) = 0.

The collection of all Poisson almost periodic functions h : R×H×B×H → H

will be denoted by PAP (R×H ×B ×H;H).

The proof for Proposition 4.2.1 is similar to [57].

Proposition 4.2.1 If h, h1, h2 : R×H×B×H → H are Poisson almost periodic
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functions in t ∈ R, uniformly for (x, y) ∈ K, then

1. h1 + h2 is Poisson almost periodic.

2. λh is Poisson almost periodic for every scalar λ.

3. For any compact subset K ⊂ H ×B, there exists a constant M > 0 such

that

sup
t∈R

∫
H

‖h(t, x, y, z)‖2
Hν(dz) ≤M.

By the proposition above, the following proposition can be obtained .

Proposition 4.2.2 If f, f1, f2 : R × H × B → H are all square-mean almost

periodic functions in t ∈ R, uniformly for (x, y) ∈ K,

1. f1 + f2 is square-mean almost periodic.

2. λf is square-mean almost periodic for every scalar λ.

3. For any compact subset K ⊂ H ×B, there exists a constant N > 0 such

that

sup
t∈R
‖f(t, x, y)‖2

H ≤ N.

Proposition 4.2.3 AP (R×Ω;H) is a Banach space which is equipped with the

norm

‖x‖∞ =: sup
t∈R
‖x(t)‖2 = sup

t∈R
(E‖x(t)‖2

H)
1
2 ,

for x ∈ AP (R× Ω;H).

The proof of Proposition 4.2.3 is similar to [34] with minor modifications.
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Theorem 4.2.1 Let K ⊂ H ×B be a compact set and the function (t, x, y) →

F (t, x, y) : R×H ×B → H be square-mean almost periodic in t ∈ R, uniformly

for (x, y) ∈ K. Furthermore, there exists a constant K > 0 such that

‖F (t, x, y)− F (t, x̃, ỹ)‖2
H ≤ K(‖x− x̃‖2

H + ‖y − ỹ‖2
B),

for t ∈ R, uniformly for (x, y), (x̃, ỹ) ∈ H ×B, then for any square-mean almost

periodic stochastic process φ : R × Ω → H with φt ∈ B, t ∈ R, the stochastic

process t→ F (t, φ(t), φt) is square-mean almost periodic.

Proof: Let {s′n} be a sequence of real numbers. Assume thatD(t) = F (t, φ(t), φt),

where φt = {φ(t+ θ) : −∞ < θ ≤ 0} is regarded as B-valued stochastic process.

Consider the function D̃(t) : R × H ×B → H given by D̃(t) := F̃ (t, φ̃(t), φ̃t).

Since the process φ(t) is square-mean almost periodic, there exists a subsequence

{sn} of {s′n} and a continuous process φ̃ : R× Ω→ H such that

lim
n→∞

sup
t∈R

E‖φ(t+ sn)− φ̃(t)‖2
H = 0,

lim
n→∞

sup
t∈R

E‖φt+sn − φ̃t‖2
B = 0,

and

lim
n→∞

sup
t∈R

E‖F (t+ sn, x, y)− F̃ (t, x, y)‖2
H = 0.

Note that

F (t+ sn, φ(t+ sn), φt+sn)− F̃ (t, φ̃(t), φ̃t) = F (t+ sn, φ(t+ sn), φt+sn)

−F (t+ sn, φ̃(t), φ̃t) + F (t+ sn, φ̃(t), φ̃t)− F̃ (t, φ̃(t), φ̃t).
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Hence, we have

E‖D(t+ sn)− D̃(t)‖2
H

= E‖F (t+ sn, φ(t+ sn), φt+sn)− F̃ (t, φ̃(t), φ̃t)‖2

≤ 2E‖F (t+ sn, φ(t+ sn), φt+sn)− F (t+ sn, φ̃(t), φ̃t)‖2

+ 2E‖F (t+ sn, φ̃(t), φ̃t)− F̃ (t, φ̃(t), φ̃t)‖2.

(4.2)

Letting n→∞ and using Definition 4.2.4 , we have from (4.2) that

lim
n→∞

sup
t∈R

E‖D(t+ sn)− D̃(t)‖2
H

≤ 2K lim
n→∞

sup
t∈R

E(‖φ(t+ sn)− φ̃(t)‖2
H + ‖φt+sn − φ̃t‖2

B)

+ 2 lim
n→∞

sup
t∈R

E‖F (t+ sn, φ̃(t), φ̃t)− F̃ (t, φ̃(t), φ̃t)‖2

= 0.

Thus, the stochastic process F (t, φ(t), φt) is square-mean almost periodic. �

Theorem 4.2.2 Let K ⊂ H ×B be a compact set and the function (t, x, y, z)→

h(t, x, y, z) : R × H ×B × H → H be Poisson square-mean almost periodic in

t ∈ R, uniformly for (x, y) ∈ K. Furthermore, there exists a constant K > 0 such

that

∫
H

‖h(t, x, y, z)− h(t, x̃, ỹ, z)‖2
Hν(dz) ≤ K(‖x− x̃‖2

H + ‖y − ỹ‖2
B)

for all (x, y), (x̃, ỹ) ∈ H ×B and for each t ∈ R. Then for any almost periodic

stochastic process φ : R × Ω → H with φt ∈ B, t ∈ R, the stochastic process

t→ h(t, φ(t), φt, z) is square-mean Poisson almost periodic.
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Proof: Let {s′n} be a sequence of real numbers. let U(t) = h(t, φ(t), φt, z),

where φt = {φ(t+ θ) : −∞ < θ ≤ 0} is regarded as B-valued stochastic process.

Consider the function Ũ(t) : R×H×B×H → H given by Ũ(t) := h̃(t, φ̃(t), φ̃t, z).

Since the process φ(t) is square-mean almost periodic and h is Poisson almost

periodic, there exists a subsequence {sn} of {s′n} and a continuous process φ̃ :

R× Ω→ H such that

lim
n→∞

sup
t∈R

E‖φ(t+ sn)− φ̃(t)‖2
H = 0,

and

lim
n→∞

sup
t∈R

E‖φt+sn − φ̃t‖2
B = 0,

and

lim
n→∞

sup
t∈R

∫
H

E‖h(t+ sn, x, y, z)− h̃(t, x, y, z)‖2
Hν(dz) = 0,

uniformly in (x, y) ∈ K, z ∈ H.

Note that

h(t+ sn, φ(t+ sn), φt+sn , z)− h̃(t, φ̃(t), φ̃t, z) = h(t+ sn, φ(t+ sn), φt+sn , z)

−h(t+ sn, φ̃(t), φ̃t, z) + h(t+ sn, φ̃(t), φ̃t, z)− h̃(t, φ̃(t), φ̃t, z).
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Hence, we have

∫
H

E‖U(t+ sn)− Ũ(t)‖2
Hν(dz)

=

∫
H

E‖h(t+ sn, φ(t+ sn), φt+sn , z)− h̃(t, φ̃(t), φ̃t, z)‖2ν(dz)

≤ 2

∫
H

E‖h(t+ sn, φ(t+ sn), φt+sn , z)− h(t+ sn, φ̃(t), φ̃t, z)‖2ν(dz)

+ 2

∫
H

E‖h(t+ sn, φ̃(t), φ̃t, z)− h̃(t, φ̃(t), φ̃t, z)‖2ν(dz).

(4.3)

Letting n→∞ and using Definition 4.2.5, we have from (4.3) that

lim
n→∞

sup
t∈R

∫
H

E‖U(t+ sn)− Ũ(t)‖2
Hν(dz)

≤ 2K lim
n→∞

sup
t∈R

∫
H

E(‖φ(t+ sn)− φ̃(t)‖2 + ‖φt+sn − φ̃t‖2)ν(dz)

+ 2 lim
n→∞

sup
t∈R

∫
H

E‖h(t+ sn, φ̃(t), φ̃t, z)− h̃(t, φ̃(t), φ̃t, z)‖2ν(dz)

= 0.

Thus, the stochastic process h(t, φ(t), φt, z) is square-mean Poisson almost peri-

odic. �

4.3 Existence and Uniqueness of Almost Periodic

Solutions

In this section, we study the existence and uniqueness of square-mean almost peri-

odic solutions for neutral stochastic functional differential equations with infinite

delay and Poisson jumps. Consider the following stochastic differential equation
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in H:

d(x(t)−G(x(t), xt)) = (Ax(t) + f(t, x(t), xt))dt+ g(t, x(t), xt)dW (t)

+

∫
H

h(t, x(t−), xt−, z)Ñ(dt, dz), t ∈ R, (4.4)

where xt = x(t + θ) : −∞ < θ ≤ 0 can be regarded as a B-valued stochastic

process. Assume that f : R ×H ×B → H, and g : R ×H ×B → L2(KQ, H)

and h : R × H ×B × H → H, are appropriate mappings for all t ∈ R, z ∈ H,

which will be specified later.

Definition 4.3.1 An Ft-measurable stochastic process x(t), t ∈ R is called the

mild solution for (4.4) if

1. x(t) is adapted to Ft and xt is a B-valued stochastic process;

2.
∫ T
−∞ ‖x(u)‖2

Hdu <∞ almost surely for any T ≥ 0;

3. for any a ∈ R and t ≥ a, x(t) satisfies the following integral equation:

x(t) = S(t− a)(x(a)−G(x(a), xa)) +G(x(t− a), xt−a)

+

∫ t

a

AS(t− s)G(x(s), xs)ds

+

∫ t

a

S(t− s)f(s, x(s), xs)ds+

∫ t

a

S(t− s)g(s, x(s), xs)dW (s)

+

∫ t

a

S(t− s)
∫
H

h(s, x(s−), xs−, z)Ñ(ds, dz).

(4.5)

In what follows, we need the following assumptions:

(A) Assume that A is the infinitesimal generator of an analytic semigroup S(t)t>0,

of bounded linear operator on H, satisfying

‖S(t)‖ ≤Me−γt, t ≥ 0 (4.6)
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for some γ > 0,M > 0.

(B) The function f ∈ AP (R ×H ×B, H), and there exists a constant Mf > 0

such that for any (x, y), (x̃, ỹ) ∈ H ×B and t ∈ R,

‖f(t, x, y)− f(t, x̃, ỹ)‖H ≤Mf (‖x− x̃‖H + ‖y − ỹ‖B). (4.7)

(C) The function g ∈ AP (R×H ×B,L2(KQ, H)), and there exists a constant

Mg > 0 such that for any (x, y), (x̃, ỹ) ∈ H ×B and t ∈ R,

‖g(t, x, y)− g(t, x̃, ỹ)‖L2(KQ,H) ≤Mg(‖x− x̃‖H + ‖y − ỹ‖B). (4.8)

(D) There exists a constant α ∈ (1
2
, 1) and a constant MG > 0 such that the

mapping G ∈ AP (H ×B, Hα) and for any (x, y), (x̃, ỹ) ∈ H ×B,

‖(−A)αG(x, y)− (−A)αG(x̃, ỹ)‖H ≤MG(‖x− x̃‖H + ‖y − ỹ‖B). (4.9)

(E) The function h ∈ PAP (R×H×B×, H), and there exists a constantMh > 0

such that for any (x, y, z), (x̃, ỹ, z) ∈ H ×B ×H and t ∈ R,

∫
H

‖h(t, x, y, z)ν(dz)− h(t, x̃, ỹ, z)‖2
Hν(dz) ≤Mh(‖x− x̃‖2

H + ‖y − ỹ‖2
B).

(4.10)

(A′) The function f̃ ∈ AP (R×H ×B, H), and there exists a constant Mf > 0

such that for any (x, y), (x̃, ỹ) ∈ H ×B and t ∈ R,

‖f̃(t, x, y)− f̃(t, x̃, ỹ)‖H ≤Mf (‖x− x̃‖H + ‖y − ỹ‖B).

(B′) The function g̃ ∈ AP (R×H ×B,L2(KQ, H)), and there exists a constant

65



Mg > 0 such that for any (x, y), (x̃, ỹ) ∈ H ×B and t ∈ R,

‖g̃(t, x, y)− g̃(t, x̃, ỹ)‖L2(KQ,H) ≤Mg(‖x− x̃‖H + ‖y − ỹ‖B).

(C ′) There exists a constant α ∈ (1
2
, 1) and a constant MG > 0 such that the

mapping G ∈ AP (H ×B, Hα) and for any (x, y), (x̃, ỹ) ∈ H ×B,

‖(−A)αG̃(x, y)− (−A)αG̃(x̃, ỹ)‖H ≤MG(‖x− x̃‖H + ‖y − ỹ‖B).

(D′) The function h̃ ∈ PAP (R×H×B×, H), and there exists a constantMh > 0

such that for any (x, y, z), (x̃, ỹ, z) ∈ H ×B ×H and t ∈ R,

∫
H

‖h̃(t, x, y, z)− h̃(t, x̃, ỹ, z)‖2
Hν(dz) ≤Mh(‖x− x̃‖2

H + ‖y − ỹ‖2
B).

Theorem 4.3.1 Suppose that (A) − (E) hold. Then (4.4) has a unique square-

mean almost periodic mild solution whenever

4M2
fM

2(1 +M0)

γ2
+ 4M2

1−αM
2
G(1 +M0) · Γ(2α− 1)

γ2α
+

2M2
gM

2(1 +M0)

γ

+
2MhM

2κ(1 +M0)

γ
< 1.

66



Proof: Consider a mapping L on the Banach space AP (R×Ω;H) defined by

(L x)(t) =: S(t− a)[x(a)−G(x(a), xa)] +G(x(t− a), xt−a)

+

∫ t

a

S(t− s)f(s, x(s), xs)ds

+

∫ t

a

AS(t− s)G(x(s), xs)ds+

∫ t

a

S(t− s)g(s, x(s), xs)dW (s)

+

∫ t

a

S(t− s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

=: S(t− a)[x(a)−G(x(a), xa)] +G(x(t− a), xt−a) + I1x(t) + I2x(t)

+I3x(t) + I4x(t), ∀x ∈ AP (R× Ω;H). (4.11)

We want to show that L x(t) ∈ AP (R× Ω;H) for any x ∈ AP (R× Ω;H).

Step 1. The L2-continuity of L x(t) .

We first verify that G(x(t−a), xt−a) is L2-continuous in t ∈ R. From condition

(D), we have

E‖G(x, y)−G(x̃, ỹ)‖H

= E‖(−A)−α · (−A)α[G(x, y)−G(x̃, ỹ)]‖H

≤ E‖(−A)−α‖ · ‖(−A)α[G(x, y)−G(x̃, ỹ)]‖H

≤ CE‖(−A)αG(x, y)− (−A)αG(x̃, ỹ)‖H

≤ CMGE(‖x− x̃‖H + ‖y − ỹ‖B). (4.12)

Since G ∈ AP (H×B;Hα) and x ∈ AP (R×Ω;H), we have by Theorem 4.2.1

that G(x(t− a), xt−a) ∈ AP (H ×B;Hα), and

E‖G(x(t+ r − a), xt+r−a)−G(x(t− a), xt−a)‖2
H → 0, as r → 0.

Hence, we just show that G(x(t− a), xt−a) is L2-continuous.
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Next we verify that I1x(t) is L2-continuous in t ∈ R. Letting r − s = −u, we

have that for any t ∈ R,

R1(t) := E‖I1x(t+ r)− I1x(t)‖2
H

= E
∥∥∥∫ t+r

a

S(t+ r − s)f(s, x(s), xs)ds−
∫ t

a

S(t− s)f(s, x(s), xs)ds
∥∥∥2

H

= E
∥∥∥∫ t

a−r
S(t− u)f(u+ r, x(u+ r), xu+r)du−

∫ t

a

S(t− s)f(s, x(s), xs)ds
∥∥∥2

H

= E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

+

∫ t

a

S(t− s)f(s+ r, x(s+ r), xs+r)ds−
∫ t

a

S(t− s)f(s, x(s), xs)ds
∥∥∥2

H
.

By the relation that (a+ b)2 ≤ 2a2 + 2b2, for any a, b ∈ R, we have for any t ∈ R

that

R1(t) ≤ 2E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+2E
∥∥∥∫ t

a

S(t− s)f(s+ r, x(s+ r), xs+r)ds−
∫ t

a

S(t− s)f(s, x(s), xs)ds
∥∥∥2

H

= 2E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+2E
∥∥∥∫ t

a

S(t− s)[f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)]ds
∥∥∥2

H
,
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which, by Hölder inequality, further implies that for any t ∈ R,

R1(t) ≤ 2E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+2E
(∫ t

a

‖S(t− s)‖‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖Hds
)2

≤ 2E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+2E
(∫ t

a

‖S(t− s)‖2ds ·
∫ t

a

‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖2
Hds

)
.

(4.13)

On the other hand, letting t− s = u, we have

∫ t

a

‖S(t− s)‖2ds = −
∫ 0

t−a
‖S(u)‖2du =

∫ t−a

0

‖S(u)‖2du

≤
∫ ∞

0

‖S(u)‖2du ≤
∫ ∞

0

M2e−2γudu ≤ M2

2γ
.

(4.14)

Substituting (4.14) into (4.13), we have for any t ∈ R,

R1(t) ≤ 2E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+2
M2

2γ
E
(∫ t

a

‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖2
Hds

)
= 2E

∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H

+
M2

γ

(∫ t

a

E‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖2
Hds

)
.

Since f ∈ AP (R×H ×B;H) and x ∈ AP (R×Ω;H), we have by Theorem 4.2.1

that f(t, x(t), xt) ∈ AP (R×H ×B;H) and

E‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖2
H → 0, as r → 0.
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By dominated convergence theorem, letting r → 0, we have

∫ t

a

E‖f(s+ r, x(s+ r), xs+r)− f(s, x(s), xs)‖2
Hds→ 0. (4.15)

On the other hand, it is easy to see that for any t ≥ a,

E
∥∥∥∫ a

a−r
S(t− s)f(s+ r, x(s+ r), xs+r)ds

∥∥∥2

H
→ 0, as r → 0.

Hence, we just show that I1x(t) is L2-continuous.

Next we verify that I2x(t) is L2-continuous in t ∈ R. To this end, for any

t ∈ R, we have by letting r − s = −u that

R2(t) := E‖I2x(t+ r)− I2x(t)‖2
H

= E
∥∥∥∫ t

a

AS(t+ r − s)G(x(s), xs)ds−
∫ t

a

AS(t− s)G(x(s), xs)ds
∥∥∥2

H

= E
∥∥∥∫ t

a−r
AS(t− u)G(x(u+ r), xu+r)du

−
∫ t

a

AS(t− s)G(x(s), xs)ds
∥∥∥2

H

= E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

+

∫ t

a

(−A)1−α(−A)αS(t− s)G(x(s+ r), xs+r)ds

−
∫ t

a

(−A)1−α(−A)αS(t− s)G(x(s), xs)ds
∥∥∥2

H
.
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By the relation that (a+ b)2 ≤ 2a2 + 2b2, for any a, b ∈ R, we have for any t ∈ R

R2(t) ≤ 2E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2E
∥∥∥∫ t

a

(−A)1−α(−A)αS(t− s)G(x(s+ r), xs+r)ds

−
∫ t

a

(−A)1−α(−A)αS(t− s)G(x(s), xs)ds
∥∥∥2

H

= 2E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2E
∥∥∥∫ t

a

(−A)1−αS(t− s)
[
(−A)αG(x(s+ r), xs+r)

−(−A)αG(x(s), xs)
]
ds
∥∥∥2

H

≤ 2E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2E
(∫ t

a

‖(−A)1−αS(t− s)‖‖(−A)αG(x(s+ r), xs+r)

−(−A)αG(x(s), xs)‖Hds
)2

.

By using Hölder inequality and Lemma 2.2.1 (2), we have that for any t ∈ R,

R2(t) ≤ 2E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2E
(∫ t

a

‖(−A)1−αS(t− s)‖2ds ·
∫ t

a

‖(−A)αG(x(s+ r), xs+r)

−(−A)αG(x(s), xs)‖2
Hds

)
≤ 2E

∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2M2
1−α

∫ t

a

e−2γ(t−s)(t− s)2(α−1)ds ·
∫ t

a

E‖(−A)αG(x(s+ r), xs+r)

−(−A)αG(x(s), xs)‖2
Hds.

(4.16)
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On the other hand, letting t− s = u, we have

∫ t

a

e−2γ(t−s)(t− s)2(α−1)ds = −
∫ 0

t−a
e−2γuu2(α−1)du

=

∫ t−a

0

e−2γuu2(α−1)du ≤
∫ ∞

0

e−2γuu2(α−1)du

=
1

2γ

∫ ∞
0

e−2γuu2(α−1)d(2γu).

=
1

2γ

∫ ∞
0

e−s(
s

2γ
)2(α−1)ds =

1

(2γ)1+2(α−1)

∫ ∞
0

e−ss2(α−1)ds

=
1

(2γ)2α−1
· Γ(2α− 1).

(4.17)

Hence, from (4.16) and (4.17), we have for any t ∈ R,

R2(t) ≤ 2E
∥∥∥∫ a

a−r
AS(t− s)G(x(s+ r), xs+r)ds

∥∥∥2

H

+2M2
1−α ·

Γ(2α− 1)

(2γ)2α−1
·
∫ t

a

E‖(−A)αG(x(s+ r), xs+r)

−(−A)αG(x(s), xs)ds‖2
H .

Since x ∈ AP (R× Ω;H), we have by using condition (D) that

E‖(−A)αG(x(s+ r), xs+r)− (−A)αG(x(s), xs)‖2
H

≤ MGE(‖x(s+ r)− x(s)‖2
H + ‖xs+r − xs‖2

B)→ 0, as r → 0.

Hence, by dominated convergence theorem when r → 0, we have

∫ t

a

E‖(−A)αG(x(s+ r), xs+r)− (−A)αG(x(s), xs)‖2
Hds→ 0.
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On the other hand, it is easy to see that for any t ≥ a,

E
(∫ a

a−r
‖AS(t− s)G(x(s+ r), xs+r)‖Hds

)2

→ 0, as r → 0.

Hence, we just show that I2x(t) is L2-continuous.

Next we verify that I3x(t) is L2-continuous in t ∈ R. To this end, for any

t ∈ R, we have

R3(t) := E‖I3x(t+ r)− I3x(t)‖2
H

= E
∥∥∥∫ t+r

a

S(t+ r − s)g(s, x(s), xs)dW (s)−
∫ t

a

S(t− s)g(s, x(s), xs)dW (s)
∥∥∥2

H

= E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s) +

∫ t

a

S(t+ r − s)g(s, x(s), xs)dW (s)

−
∫ t

a

S(t− s)g(s, x(s), xs)dW (s)
∥∥∥2

H

= E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)

+

∫ t

a

[S(t+ r − s)− S(t− s)]g(s, x(s), xs)dW (s)
∥∥∥2

H

≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2E
∥∥∥∫ t

a

[S(t+ r − s)− S(t− s)]g(s, x(s), xs)dW (s)
∥∥∥2

H
.

By using isometry property of stochastic integral, we have for any t ∈ R,

R3(t) ≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2

∫ t

a

E‖[S(t+ r − s)− S(t− s)]g(s, x(s), xs)‖2
L2(KQ,H)ds

= 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2

∫ t

a

E‖[S(t− s)S(r)− S(t− s)]g(s, x(s), xs)‖2
L2(KQ,H)ds.
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Then, by the property of C0-semigroup, we have for any t ∈ R,

R3(t) ≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2

∫ t

a

E‖(S(t− s)(S(r)− I))g(s, x(s), xs)‖2
L2(KQ,H)ds

≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2

∫ t

a

E‖S(t− s)‖2 · ‖(S(r)− I)g(s, x(s), xs)‖2
L2(KQ,H)ds.

(4.18)

By using condition (A), we have

‖S(t− s)‖2 ≤M2e−2γ(t−s) ≤M2, for any t ≥ s.

(4.19)

Substituting (4.19) into (4.18), we have for any t ∈ R,

R3(t) ≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H

+2M2
(∫ t

a

E‖(S(r)− I)g(s, x(s), xs)‖2
L2(KQ,H)ds

)
.

By the property of strong continuity of C0-semigroup of S(t), t ≥ 0, we have for

s ∈ R,

E‖(S(r)− I)g(s, x(s), xs)‖2
L2(KQ,H) → 0, as r → 0.

By dominated convergence theorem when r → 0,

∫ t

a

E‖(S(r)− I)g(s, x(s), xs)‖2
L2(KQ,H)ds→ 0.
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On the other hand, it is easy to see that for any t ≥ a,

E
∥∥∥∫ t+r

t

S(t+ r − s)g(s, x(s), xs)dW (s)
∥∥∥2

H
→ 0, as r → 0.

Hence, we just show that I3x(t) is L2-continuous.

Finally, we verify that I4x(t) is L2-continuous in t ∈ R. To this end, for any

t ∈ R, we have

R4(t) : = E‖I4x(t+ r)− I4x(t)‖2
H

= E
∥∥∥∫ t+r

a

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

−
∫ t

a

S(t− s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

= E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(du, dz)

+

∫ t

a

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(du, dz)

−
∫ t

a

S(t− s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

+2E
∥∥∥∫ t

a

S(t+ r − s)− S(t− s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

= 2E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

+2E
∥∥∥∫ t

a

S(t− s)(S(r)− I)

∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H
.

By using the isometry property of the compensating Poisson random measure
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(2.5), we have that for t ≥ a,

R4(t) ≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

+2κ

∫ t

a

∫
H

E‖S(t− s)(S(r)− I)h(s, x(s), xs, z)‖2
Hν(dz)ds

≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

+2κ

∫ t

a

E‖S(t− s)‖2‖(S(r)− I)

∫
H

h(s, x(s), xs, z)‖2
Hν(dz)ds.

By using condition (A), we have

‖S(t− s)‖2 ≤M2e−2γ(t−s) ≤M2, for any t ≥ s.

Hence, we have for any t ∈ R,

R4(t) ≤ 2E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H

+2κM2

∫ t

a

∫
H

E‖(S(r)− I)h(s, x(s), xs, z)‖2
Hν(dz)ds.

By the property of strong continuity of C0-semigroup of S(t), t ≥ 0 and dom-

inated convergence theorem, we have for s ∈ R,

∫
H

E‖(S(r)− I)h(s, x(s), xs)‖2
Hν(dz)→ 0, as r → 0,

and

∫ t

a

∫
H

E‖(S(r)− I)h(s, x(s), xs, z)‖2
Hν(dz)ds→ 0, as r → 0.
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On the other hand, it is easy to see that for any t ≥ a,

E
∥∥∥∫ t+r

t

S(t+ r − s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz)
∥∥∥2

H
→ 0, as r → 0.

Hence, I4x(t) is L2-continuous in t.

Step 2. L x(t) ∈ AP (R × Ω;H) for any x ∈ AP (R × Ω;H). Denote by

AP (R×Ω;H) the Banach space of all L2-continuous square-mean almost periodic

mappings from R to H endowed with the norm

‖x‖∞ = sup
t∈R

(E‖x(t)‖2
H)

1
2 .

Let us consider the mild solution of (4.4) given by

x(t) : = S(t− a)[x(a)−G(x(a), xa)] +G(x(t− a), xt−a)

+

∫ t

a

S(t− s)f(s, x(s), xs)ds

+

∫ t

a

AS(t− s)G(x(s), xs)ds+

∫ t

a

S(t− s)g(s, x(s), xs)dW (s)

+

∫ t

a

S(t− s)
∫
H

h(s, x(s), xs, z)Ñ(ds, dz), (4.20)

for all t ≥ a, x ∈ AP (R× Ω;H).

Note that the process for any t ∈ R,

x(t) : =

∫ t

−∞
S(t− s)f(s, x(s), xs)ds+

∫ t

−∞
AS(t− s)G(x(s), xs)ds

+

∫ t

−∞
S(t− s)g(s, x(s), xs)dW (s)

+

∫ t

−∞
S(t− s)

∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

(4.21)
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is a mild solution of (4.4). Indeed, as a→ −∞ in (4.20), and by the property of

exponential stability, (4.21) satisfies (4.20). Therefore, we just need to prove the

desired result for the stochastic process (4.21).

We show that L x(t) is square-mean almost periodic whenever x ∈ AP (R ×

Ω;H). Since f, g,G are square-mean almost periodic and h is Poisson square-

mean almost periodic, then for an arbitrary sequence {s′n} of real numbers there

exists a subsequence {sn} of {s′n} and certain functions f̃ , g̃, G̃ and h̃ such that

lim
n→∞

sup
s∈R
‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖2

H = 0, (4.22)

lim
n→∞

sup
s∈R

E‖(−A)αG(x(s+ sn), xs+sn)− (−A)αG̃(x̃(s), x̃s)‖2
H = 0, (4.23)

lim
n→∞

sup
s∈R

E‖g(s+ sn, x(s+ sn), xs+sn)− g̃(s, x̃(s), x̃s)‖2
L2(KQ,H) = 0, (4.24)

and

lim
n→∞

sup
s∈R

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)− h̃(s, x̃(s), x̃s, z)‖2
Hν(dz) = 0. (4.25)

Let x̃(t) satisfy the integral equation for any t ∈ R,

x̃(t) : =

∫ t

−∞
S(t− s)f̃(s, x̃(s), x̃s)ds+

∫ t

−∞
AS(t− s)G̃(x̃(s), x̃s)ds

+

∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

+

∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz).
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Note that for any t ∈ R,

lim
n→∞

sup
t∈R

E‖x(t+ sn)− x̃(t)‖2
H

≤ 4 lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)f(s, x(s), xs)ds−

∫ t

−∞
S(t− s)f̃(s, x̃(s), x̃s)ds

∥∥∥2

H

+4 lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
AS(t+ sn − s)G(x(s), xs)ds−

∫ t

−∞
AS(t− s)G̃(x̃(s), x̃s)ds

∥∥∥2

H

+4 lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)g(s, x(s), xs)dW (s)

−
∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

∥∥∥2

H

+4 lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)

∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

−
∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz)
∥∥∥2

H

:= 4J1(t) + 4J2x(t) + 4J3x(t) + 4J4x(t).

Firstly, we show that J1(t) is square-mean almost periodic when x ∈ AP (R×

Ω;H).

J1(t) = lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)f(s, x(s), xs)ds−

∫ t

−∞
S(t− s)f̃(s, x̃(s), x̃s)ds

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− u)f(u+ sn, x(u+ sn), xu+sn)du

−
∫ t

−∞
S(t− s)f̃(s, x̃(s), x̃s)ds

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− s)f(s+ sn, x(s+ sn), xs+sn)ds

−
∫ t

−∞
S(t− s)f̃(s, x̃(s), x̃s)ds

∥∥∥2

H

≤ lim
n→∞

sup
t∈R

E
(∫ t

−∞
‖S(t− s)‖‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖Hds

)2

≤ lim
n→∞

sup
t∈R

E
(∫ t

−∞
Me−

γ(t−s)
2 ‖e−

γ(t−s)
2 [f(s+ sn, x(s+ sn), xs+sn)

−f̃(s, x̃(s), x̃s)]‖Hds
)2

.
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By using Hölder inequality, we have from (4.14) that for any t ∈ R,

J1(t) ≤ lim
n→∞

sup
t∈R

∫ t

−∞
M2e−γ(t−s)ds ·

∫ t

−∞
e−γ(t−s)E‖f(s+ sn, x(s+ sn), xs+sn)

−f̃(s, x̃(s), x̃s)‖2
Hds

=
M2

γ
lim
n→∞

sup
t∈R

∫ t

−∞
e−γ(t−s)d(−γ(t− s)) ·

∫ t

−∞
e−γ(t−s)E‖f(s+ sn, x(s+ sn), xs+sn)

−f̃(s, x̃(s), x̃s)‖2
Hds

=
M2

γ
lim
n→∞

sup
t∈R

∫ t

−∞
e−γ(t−s)E‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖2

Hds

≤ M2

γ
lim
n→∞

sup
t∈R

∫ t

−∞
e−γ(t−s) sup

s∈R
E‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖2

Hds

≤ M2

γ
lim
n→∞

sup
s∈R

E‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖2
H

·
(

sup
t∈R

∫ t

−∞
e−γ(t−s)ds

)
.

(4.26)

On the other hand, letting t− s = u, we have

sup
t∈R

∫ t

−∞
e−γ(t−s)ds = − sup

t∈R

∫ 0

+∞
e−γudu

= − sup
t∈R

∫ +∞

0

e−γudu

= −1

γ
sup
t∈R

∫ +∞

0

e−γud(−γu) =
1

γ
.

(4.27)

Hence, from (4.26), (4.27) and version of (4.22), we have for any t ∈ R,

J1(t) ≤ M2

γ2
lim
n→∞

sup
s∈R

E‖f(s+ sn, x(s+ sn), xs+sn)− f̃(s, x̃(s), x̃s)‖2
H

= 0.

This implies that J1(t) is square-mean almost periodic in t ∈ R.
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Next, we show that J2(t) is square-mean almost periodic when x ∈ AP (R ×

Ω;H).

J2(t) = lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
AS(t+ sn − s)G(x(s), xs)ds

−
∫ t

−∞
AS(t− s)G̃(x̃(s), x̃s)ds

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
AS(t− u)G(x(u+ sn), xu+sn)du

−
∫ t

−∞
AS(t− s)G̃(x̃(s), x̃s)ds

∥∥∥2

H
.

Since −A = (−A)1−α(−A)α, so we have for any t ∈ R,

J2(t) = lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
(−A)1−α(−A)αS(t− s)G(x(s+ sn), xs+sn)ds

−
∫ t

−∞
(−A)1−α(−A)αS(t− s)G̃(x̃(s), x̃s)ds

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
(−A)1−αS(t− s)(−A)αG(x(s+ sn), xs+sn)ds

−
∫ t

−∞
(−A)1−αS(t− s)(−A)αG̃(x̃(s), x̃s)ds

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
(−A)1−αS(t− s)

[
(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)
]
ds
∥∥∥2

H

≤ lim
n→∞

sup
t∈R

E
(∫ t

−∞
‖(−A)1−αS(t− s)‖‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖Hds
)2

.

81



By using Lemma 2.2.1 (2), we have that for any t ∈ R,

J2(t) ≤ lim
n→∞

sup
t∈R

E
(∫ t

−∞
M1−αe

−γ(t−s)(t− s)(α−1)‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖Hds
)2

= lim
n→∞

sup
t∈R

E
(∫ t

−∞
M1−αe

− γ(t−s)
2 (t− s)(α−1)

∥∥∥e− γ(t−s)
2

[
(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)
]∥∥∥

H
ds
)2

.

Then by using Hölder inequality, we have that for any t ∈ R,

J2(t) ≤ lim
n→∞

sup
t∈R

M2
1−α

∫ t

−∞
e−γ(t−s)(t− s)2(α−1)ds ·∫ t

−∞
e−γ(t−s)E‖(−A)αG(x(s+ sn), xs+sn)− (−A)αG̃(x̃(s), x̃s)‖2

Hds.

(4.28)

On the other hand, letting t− s = u, we have

∫ t

−∞
e−γ(t−s)(t− s)2(α−1)ds

= −
∫ 0

+∞
e−γuu2(α−1)du

=

∫ +∞

0

e−γuu2(α−1)du =
1

γ

∫ ∞
0

e−γuu2(α−1)d(γu)

=
1

γ

∫ ∞
0

e−s(
s

γ
)2(α−1)ds =

1

γ1+2(α−1)

∫ ∞
0

e−ss2(α−1)ds

=
1

γα−1
· Γ(2α− 1).

(4.29)
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Hence, from (4.28), (4.29) and version of (4.23), we have for any t ∈ R,

J2(t) ≤ M2
1−α ·

Γ(2α− 1)

γ2α−1
· lim
n→∞

sup
t∈R

∫ t

−∞
e−γ(t−s)E‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖2
Hds

≤ M2
1−α ·

Γ(2α− 1)

γ2α−1
· lim
n→∞

sup
t∈R

∫ t

−∞
e−γ(t−s) sup

s∈R
E‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖2
Hds

≤ M2
1−α ·

Γ(2α− 1)

γ2α−1
· lim
n→∞

sup
s∈R

E‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖2
H · sup

t∈R

∫ t

−∞
e−γ(t−s)ds

≤ M2
1−α ·

Γ(2α− 1)

γ2α−1
· 1

γ
· lim
n→∞

sup
s∈R

E‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖2
H ,

which by (4.23) is equivalent to

J2(t) = M2
1−α ·

Γ(2α− 1)

γ2α
· lim
n→∞

sup
s∈R

E‖(−A)αG(x(s+ sn), xs+sn)

−(−A)αG̃(x̃(s), x̃s)‖2
H

= 0.

This implies that J2(t) is square-mean almost periodic in t ∈ R.

Next, we show that J3(t) is square-mean almost periodic for all t ∈ R. Let

W̃ (u) = W (u + u0) −W (u0), for all u0 ∈ R. By Proposition and definition of

Q-Wiener process, it is easy to know that W̃ (u) is also a Q-Wiener process and
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has the same distribution as W (u+ sn)−W (sn). Here, we have for any t ∈ R,

J3(t) = lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)g(s, x(s), xs)dW (s)

−
∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− u)g(u+ sn, x(u+ sn), xu+sn)dW (u+ sn)

−
∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− u)g(u+ sn, x(u+ sn), xu+sn)d(W (u+ sn)− dW (sn))

−
∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− s)g(s+ sn, x(s+ sn), xs+sn)dW̃ (s)

−
∫ t

−∞
S(t− s)g̃(s, x̃(s), x̃s)dW (s)

∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− s)[g(s+ sn, x(s+ sn), xs+sn)− g̃(s, x̃(s), x̃s)]dW (s)

∥∥∥2

H
.

By the isometry property of Q-Wiener process, we have for any t ∈ R,

J3(t) ≤ lim
n→∞

sup
t∈R

∫ t

−∞
E‖S(t− s)[g(s+ sn, x(s+ sn), xs+sn)

−g̃(s, x̃(s), x̃s)]‖2
L2(KQ,H)ds

≤ lim
n→∞

sup
t∈R

∫ t

−∞
E‖S(t− s)‖2‖g(s+ sn, x(s+ sn), xs+sn)

−g̃(s, x̃(s), x̃s)‖2
L2(KQ,H)ds.

By condition (A), we have

‖S(t− s)‖2 ≤M2e−2γ(t−s), for any t ≥ s.
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Hence, we have for any t ∈ R,

J3(t) ≤ M2 lim
n→∞

sup
t∈R

∫ t

−∞
e−2γ(t−s)E‖g(s+ sn, x(s+ sn), xs+sn) (4.30)

−g̃(s, x̃(s), x̃s)‖2
L2(KQ,H)ds

≤ M2 lim
n→∞

sup
t∈R

∫ t

−∞
e−2γ(t−s) sup

s∈R
E‖g(s+ sn, x(s+ sn), xs+sn)

−g̃(s, x̃(s), x̃s)‖2
L2(KQ,H)ds

= M2 lim
n→∞

sup
s∈R

E‖g(s+ sn, x(s+ sn), xs+sn)

−g̃(s, x̃(s), x̃s)‖2
L2(KQ,H)

(
sup
t∈R

∫ t

−∞
e−2γ(t−s)ds

)
.

(4.31)

On the other hand, letting t− s = u, we have

sup
t∈R

∫ t

−∞
e−2γ(t−s)ds = − sup

t∈R

∫ 0

+∞
e−2γudu = sup

t∈R

∫ +∞

0

e−2γudu

= − 1

2γ
sup
t∈R

∫ +∞

0

e−2γud(−2γu) =
1

2γ
.

(4.32)

Therefore, we further have by (4.30), (4.32) and version of (4.24) for any t ∈ R,

J3(t) ≤ M2

2γ
lim
n→∞

sup
s∈R

E‖g(s+ sn, x(s+ sn), xs+sn)

−g̃(s, x̃(s), x̃s)‖2
L2(KQ,H)

= 0.

This implies that J3(t) is square-mean almost periodic in t ∈ R.

Finally, we show that J4(t) is square-mean almost periodic for all t ∈ R. Let

u = s − sn, N̄(u, dz) = Ñ(u + u0, dz) − Ñ(u0, dz), for any u0 ∈ R. Note that

N̄(u) is also a Lévy process and has the same distribution as Ñ(u+ sn)− Ñ(sn).
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Hence, we have for all t ∈ R,

J4(t) = lim
n→∞

sup
t∈R

E
∥∥∥∫ t+sn

−∞
S(t+ sn − s)

∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

−
∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz)
∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− u)

∫
H

h(u+ sn, x(u+ sn), xu+sn , z)Ñ(d(u+ sn), dz)

−
∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz)
∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− u)

∫
H

h(u+ sn, x(u+ sn), xu+sn , z)Ñ(d(u+ sn)− dsn, dz)

−
∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz)
∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− s)

∫
H

h(s+ sn, x(s+ sn), xs+sn , z)N̄(ds, dz)

−
∫ t

−∞
S(t− s)

∫
H

h̃(s, x̃(s), x̃s, z)Ñ(ds, dz)
∥∥∥2

H

= lim
n→∞

sup
t∈R

E
∥∥∥∫ t

−∞
S(t− s)

∫
H

[h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)]Ñ(ds, dz)
∥∥∥2

H
.

By using the isometry property of the compensating Poisson random measure

(2.5), we have that for t ∈ R,

J4(t) ≤ κ lim
n→∞

sup
t∈R

∫ t

−∞

∫
H

E‖S(t− s)h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)ds

≤ κ lim
n→∞

sup
t∈R

∫ t

−∞
‖S(t− s)‖2

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)ds.

(4.33)
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By condition (A), we have

‖S(t− s)‖2 ≤M2e−2γ(t−s), for any t ≥ s.

(4.34)

Hence, we further have by (4.33), (4.34) and version of (4.25) for any t ∈ R,

J4(t) ≤ M2κ lim
n→∞

sup
t∈R

∫ t

−∞
e−2γ(t−s)

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)ds

≤ M2κ lim
n→∞

sup
t∈R

∫ t

−∞
e−2γ(t−s) sup

s∈R

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)ds

= M2κ lim
n→∞

sup
s∈R

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)

(
sup
t∈R

∫ t

−∞
e−2γ(t−s)ds

)
=

M2κ

2γ
lim
n→∞

sup
s∈R

∫
H

E‖h(s+ sn, x(s+ sn), xs+sn , z)

−h̃(s, x̃(s), x̃s, z)‖2
Hν(dz)

= 0.

This implies that J4(t) is square-mean almost periodic in t ∈ R.

By above discussions, it is clear that L maps AP (R×Ω;H) into AP (R×Ω;H)

itself.

Step 3. L is a contraction mapping and has a unique fixed point.

Assume that (L x)(t) and (L y)(t) are defined as in (4.11), respectively. By the

relation that (a + b + c + d)2 ≤ 4a2 + 4b2 + 4c2 + 4d2, for any a, b, c, d ∈ R, we
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have for any t ∈ R that

E‖(L x)(t)− (L y)(t)‖2
H

= E
∥∥∥∫ t

−∞
S(t− s)f(s, x(s), xs)ds+

∫ t

−∞
AS(t− s)G(x(s), xs)ds

+

∫ t

−∞
S(t− s)g(s, x(s), xs)dW (s) +

∫ t

−∞
S(t− s)

∫
H

h(s, x(s), xs, z)Ñ(ds, dz)

−
(∫ t

−∞
S(t− s)f(s, y(s), ys)ds+

∫ t

−∞
AS(t− s)G(y(s), ys)ds

+

∫ t

−∞
S(t− s)g(s, y(s), ys)dW (s) +

∫ t

−∞
S(t− s)

∫
H

h(s, y(s), ys, z)Ñ(ds, dz)
)∥∥∥2

H

= E
∥∥∥∫ t

−∞
S(t− s)[f(s, x(s), xs)− f(s, y(s), ys)]ds

+

∫ t

−∞
AS(t− s)[G(x(s), xs)−G(y(s), ys)]ds

+

∫ t

−∞
S(t− s)[g(s, x(s), xs)− g(s, y(s), ys)]dW (s)

+

∫ t

−∞
S(t− s)

∫
H

[h(s, x(s), xs, z)− h(s, y(s), ys, z)]Ñ(ds, dz)
∥∥∥2

H

≤ 4E
∥∥∥∫ t

−∞
S(t− s)[f(s, x(s), xs)− f(s, y(s), ys)]ds

∥∥∥2

H

+4E
∥∥∥∫ t

−∞
AS(t− s)[G(x(s), xs)−G(y(s), ys)]ds

∥∥∥2

H

+4E
∥∥∥∫ t

−∞
S(t− s)[g(s, x(s), xs)− g(s, y(s), ys)]dW (s)

∥∥∥2

H

+4E
∥∥∥∫ t

−∞
S(t− s)

∫
H

[h(s, x(s), xs, z)− h(s, y(s), ys, z)]Ñ(ds, dz)
∥∥∥2

H

:= A1(t) + A2(t) + A3(t) + A4(t).

From the previous definition , we know AP (R × Ω, H) is a Banach space

equipped with the norm

‖x‖∞ = sup
s∈R

(E‖x(s)‖2
H)

1
2 .
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Then, for every x, y ∈ AP (R× Ω, H), we have

‖x− y‖2
∞ = sup

s∈R
E‖x(s)− y(s)‖2

H .

We first evaluate A1(t), by using (4.6), (4.7) and Hölder inequality, we have

for any t ∈ R,

A1(t) = 4E
∥∥∥∫ t

−∞
S(t− s)[f(s, x(s), xs)− f(s, y(s), ys)]ds

∥∥∥2

H

≤ 4E
(∫ t

−∞
‖S(t− s)[f(s, x(s), xs)− f(s, y(s), ys)]‖Hds

)2

≤ 4E
(∫ t

−∞
‖S(t− s)‖‖[f(s, x(s), xs)− f(s, y(s), ys)]‖Hds

)2

≤ 4E
(∫ t

−∞
Me−

γ(t−s)
2 · ‖e−

γ(t−s)
2 f(s, x(s), xs)− f(s, y(s), ys)‖Hds

)2

≤ 4

∫ t

−∞
M2e−γ(t−s)ds ·

∫ t

−∞
e−γ(t−s)E‖f(s, x(s), xs)− f(s, y(s), ys)‖2

Hds

=
4M2

γ

∫ t

−∞
e−γ(t−s)E‖f(s, x(s), xs)− f(s, y(s), ys)‖2

Hds

≤ 4M2

γ

∫ t

−∞
e−γ(t−s) sup

s∈R
E‖f(s, x(s), xs)− f(s, y(s), ys)‖2

Hds

≤ 4M2

γ
sup
s∈R

E‖f(s, x(s), xs)− f(s, y(s), ys)‖2
H

(∫ t

−∞
e−γ(t−s)ds

)
≤

4M2
fM

2

γ
sup
s∈R

E(‖x(s)− y(s)‖2
H + ‖xs − ys‖2

B)
(∫ t

−∞
e−γ(t−s)ds

)
=

4M2
fM

2

γ2
sup
s∈R

E(‖x(s)− y(s)‖2
H + ‖xs − ys‖2

B)

≤
4M2

fM
2(1 +M0)

γ2
sup
s∈R

E‖x(s)− y(s)‖2
H

=
4M2

fM
2(1 +M0)

γ2
‖x− y‖2

∞.
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Next, we evaluate A2(t). By Lemma 2.2.1 (2), we have for any t ∈ R,

A2(t) = 4E
∥∥∥∫ t

−∞
AS(t− s)[G(x(s), xs)−G(y(s), ys)]ds

∥∥∥2

H

= 4E
∥∥∥∫ t

−∞
(−A)1−α(−A)αS(t− s)[G(x(s), xs)−G(y(s), ys)]ds

∥∥∥2

H

= 4E
∥∥∥∫ t

−∞
(−A)1−αS(t− s)(−A)α[G(x(s), xs)−G(y(s), ys)]ds

∥∥∥2

H

= 4E
(∫ t

−∞
‖(−A)1−αS(t− s)‖‖(−A)α[G(x(s), xs)−G(y(s), ys)]‖Hds

)2

≤ 4E
(∫ t

−∞
M1−α(t− s)α−1e−γ(t−s)‖(−A)α[G(x(s), xs)−G(y(s), ys)]‖Hds

)2

= 4E
(∫ t

−∞
M1−αe

− γ(t−s)
2 (t− s)(α−1)

∥∥∥e− γ(t−s)
2

[
(−A)αG(x(s), xs)

−(−A)αG(y(s), ys)
]∥∥∥

H
ds
)2

.

By using Hölder inequality and (4.29), we have that for any t ∈ R,

A2(t) ≤ 4M2
1−α

∫ t

−∞
e−γ(t−s)(t− s)2(α−1)ds ·

∫ t

−∞
e−γ(t−s)E‖(−A)αG(x(s), xs)

−(−A)αG(y(s), ys)‖2
Hds

≤ 4M2
1−α ·

Γ(2α− 1)

γ2α−1
·
∫ t

−∞
e−γ(t−s)E‖(−A)αG(x(s), xs)− (−A)αG(y(s), ys)‖2

Hds

≤ 4M2
1−α ·

Γ(2α− 1)

γ2α−1
·
∫ t

−∞
e−γ(t−s) sup

s∈R
E‖(−A)αG(x(s), xs)

−(−A)αG(y(s), ys)‖2
Hds

≤ 4M2
1−α ·

Γ(2α− 1)

γ2α−1
· sup
s∈R

E‖(−A)αG(x(s), xs)− (−A)αG(y(s), ys)‖2
H

·
(∫ t

−∞
e−γ(t−s)ds

)
= 4M2

1−α ·
Γ(2α− 1)

γ2α−1
· 1

γ
· sup
s∈R

E‖(−A)αG(x(s), xs)− (−A)αG(y(s), ys)‖2
H

= 4M2
1−α ·

Γ(2α− 1)

γ2α
· sup
s∈R

E‖(−A)αG(x(s), xs)− (−A)αG(y(s), ys)‖2
H .
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Then, by using (4.9), we have for any t ∈ R,

A2(t) ≤ 4M2
GM

2
1−α ·

Γ(2α− 1)

γ2α
· sup
s∈R

E(‖x(s)− y(s)‖2
H + ‖xs − ys‖2

B)

= 4M2
GM

2
1−α(1 +M0) · Γ(2α− 1)

γ2α
· sup
s∈R

E‖x(s)− y(s)‖2
H

= 4M2
GM

2
1−α(1 +M0) · Γ(2α− 1)

γ2α
‖x− y‖2

∞.

For A3(t), using isometry identity and (4.6), we obtain that for any t ∈ R,

A3(t) = 4E
∥∥∥∫ t

−∞
S(t− s)[g(s, x(s), xs)− g(s, y(s), ys)]dW (s)

∥∥∥2

H

≤ 4

∫ t

−∞
E‖S(t− s)[g(s, x(s), xs)− g(s, y(s), ys)]‖2

L2(KQ,H)ds

= 4E
(∫ t

−∞
‖S(t− s)[g(s, x(s), xs)− g(s, y(s), ys)]‖2

L2(KQ,H)ds
)

≤ 4
(∫ t

−∞
‖S(t− s)‖2E‖g(s, x(s), xs)− g(s, y(s), ys)‖2

L2(KQ,H)ds
)

≤ 4
(∫ t

−∞
‖S(t− s)‖2 sup

s∈R
E‖g(s, x(s), xs)− g(s, y(s), ys)‖2

L2(KQ,H)ds
)

≤ 4M2 sup
s∈R

E‖g(s, x(s), xs)− g(s, y(s), ys)‖2
L2(KQ,H)

(∫ t

−∞
e−2γ(t−s)ds

)
.

Then, by using (4.8), we have for any t ∈ R,

A3(t) ≤ 4M2
gM

2 sup
s∈R

E(‖x(s)− y(s)‖2
H + ‖xs − ys‖2

B)
(∫ t

−∞
e−2γ(t−s)ds

)
=

4M2
gM

2

2γ
(1 +M0) sup

s∈R
E‖x(s)− y(s)‖2

H

=
2M2

gM
2(1 +M0)

γ
‖x− y‖2

∞.

Finally, for A4(t), by using (4.6), (4.10) and the properties of Poisson random
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measures, we have for any t ∈ R,

A4(t) = 4E
∥∥∥∫ t

−∞
S(t− s)

∫
H

[h(s, x(s), xs, z)− h(s, y(s), ys, z)]Ñ(ds, dz)
∥∥∥2

H

≤ 4κ
(∫ t

−∞

∫
H

E‖S(t− s)[h(s, x(s), xs, z)− h(s, y(s), ys, z)]‖2
Hν(dz)ds

)
≤ 4κ

(∫ t

−∞

∫
H

E‖S(t− s)‖2‖h(s, x(s), xs, z)− h(s, y(s), ys, z)‖2
Hν(dz)ds

)
≤ 4M2κ

∫ t

−∞
e−2γ(t−s)

∫
H

E‖h(s, x(s), xs, z)

−h(s, y(s), ys, z)‖2
Hν(dz)ds

≤ 4M2κ

∫ t

−∞
e−2γ(t−s) sup

s∈R

∫
H

E‖h(s, x(s), xs, z)− h(s, y(s), ys, z)‖2
Hν(dz)ds

= 4M2κ sup
s∈R

∫
H

E‖h(s, x(s), xs, z)− h(s, y(s), ys, z)‖2
Hν(dz)

·
(∫ t

−∞
e−2γ(t−s)ds

)
=

4M2κ

2γ
sup
s∈R

∫
H

E‖h(s, x(s), xs, z)− h(s, y(s), ys, z)‖2
Hν(dz)

≤ 2MhM
2κ

γ
sup
s∈R

E(‖x(s)− y(s)‖2
H + ‖xs − ys‖2

B)

=
2MhM

2κ(1 +M0)

γ
sup
s∈R

E‖x(s)− y(s)‖2
H

=
2MhM

2κ(1 +M0)

γ
‖x− y‖2

∞.

Thus, by combining A1(t), A2(t), A3(t) and A4(t), it follows that in Banach

space AP (R× Ω, H), we have for t ∈ R,

E‖(L x)(t)− (L y)(t)‖2
H

≤
(4M2

fM
2(1 +M0)

γ2
+ 4M2

1−αM
2
G(1 +M0) · Γ(2α− 1)

γ2α
+

2M2
gM

2(1 +M0)

γ

+
2MhM

2κ(1 +M0)

γ

)
‖x− y‖2

∞,
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which implies that

‖(L x)− (L y)‖2
∞ = sup

t∈R
E‖(L x)− (L y)‖2

H

≤
(4M2

fM
2(1 +M0)

γ2
+ 4M2

1−αM
2
G(1 +M0) · Γ(2α− 1)

γ2α
+

2M2
gM

2(1 +M0)

γ

+
2MhM

2κ(1 +M0)

γ

)
‖x− y‖2

∞.

Let

4M2
fM

2(1 +M0)

γ2
+ 4M2

1−αM
2
G(1 +M0) · Γ(2α− 1)

γ2α
+

2M2
gM

2(1 +M0)

γ

+
2MhM

2κ(1 +M0)

γ
< 1,

as we know that L is a contraction mapping. Therefore, by the contraction

mapping principle, L has a unique fixed point x(t), which obviously means that

it is the unique square-mean almost periodic mild solution to equation (4.4). The

proof is completed. �

4.4 Summary

In this chapter, we made the first attempt to study the square-mean almost

periodic solutions for a class of neutral stochastic evolution equations with Poisson

jumps and infinite delay. Our work extended that of Li, Liu and Luo (2014) where

the neutral stochastic evolution equation without Poisson jumps is investigated.

We also extended that of Wang and Liu (2012) where the infinite delay for a class

of stochastic differential equation with Lévy process is not studied. In addition,

we discussed the existence and uniqueness of the square-mean almost periodic

solutions for the stochastic evolution system with Poisson jumps.
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Chapter 5

Global Attracting Set and Stability

of Neutral SPDEs Driven by

α-Stable Processes with Impulses

5.1 Introduction

Th stability of stochastic partial differential equations (SPDEs) driven by Brow-

nian motions or Lévy processes have been well established. Especially, the study

of stochastic neutral functional differential equations have received a great deal

of attention in recent year. For example, Bao and Yuan [7] extended the stochas-

tic stabilization problems of PDEs that is perturbed by Lévy noise from finite

dimension to infinite dimension. Bao and Hou [5] extended the existence and

uniqueness of mild solutions to a class of general stochastic neutral partial func-

tional differential equations under non-Lipschitz conditions. Caraballo, Real and

Taniguchi [15] investigated the exponential stability and ultimate boundedness of

the solutions to a class of neutral stochastic semilinear partial delay differential

equations. Yuan and Bao [64] focused on the path wise stability of mild solu-
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tions for a class of stochastic partial differential equations which are driven by

switching-diffusion processes with jumps.

However, such restriction clearly rules out the interesting α-stable processes

since Wiener noise and Poisson-jump noise have arbitrary finite moments, while

α-stable noise only has finite p-th moment for p ∈ (0, α) with α < 2. Recently,

stochastic equations driven by α-stable processes have plenty of applications in

physics due to the fact that α-stable noise exhibits the heavy tailed phenomenon,

e.g., Priola and Zabczyk [50] gave a proper starting point on the investigation of

structural properties of stochastic partial differential equations (SPDEs) driven

by an additive cylindrical stable noise. Dong, Xu and Zhang [25] studied the

invariant measures of stochastic 2D Navier-Stokes equation driven by α-stable

processes, Xu studied [61] Ergodicity of the stochastic real Ginzburg-Landau

equation driven by α-stable noise and Zhang [67] proved a derivative formula of

Bismut-Elworthy-Li’s type as well as gradient estimate for stochastic differen-

tial equations driven by α-stable noises. One the other hand, Wang [55] derived

the gradient estimate for Ornstein-Uhlenbeck jump processes and Wang [58] es-

tablished so-called Harnack inequalities for SDEs driven by cylindrical α-stable

processes. However, there are few papers on the asymptotic behaviour of mild

solution of SPDEs driven by α-stable processes, so we shall discuss the stability

property of mild solutions of a class of SPDEs driven by α-stable processes to

complete the theory. The fact is that α-stable noise only has finite p-th mo-

ment for p ∈ (0, α) and the stochastic evolution does not admit a stochastic

differential , which leads to some powerful tools such as the Itô formula being

unavailable, then some new methods should be used to overcome the difficulties.

It is worthwhile to mention that, Wang and Rao [56] discussed the stability of

mild solutions for a class of SPDEs driven by α-stable noises and generalized to

deal with the SPDEs driven by subordinated cylindrical Brownian motion and

fractional Brownian motion, respectively by the Minkovski inequality and Zang
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and Li [65] proved the existence and uniqueness of the mild solution to a class of

neutral SPDEs.

In addition, attracting sets of dynamical systems have been studied extensively

by many researchers. Xu and Long [60] studied the attracting and quasi-invariant

sets of non-autonomous neutral networks with delays. Xu and Xu [62] considered

the P -attracting and p-invariant sets for a class of impulsive stochastic functional

differential equations. Long, Teng and Xu [43] investigated the global attracting

set and stability of stochastic neutral partial functional differential equations

with impulses. They first established a new impulsive-integral inequality, which

improved the inequality established by Chen [16]. On the other hand, impulsive

phenomenon can be found in a wide variety of evolutionary processes, for example,

medicine and biology, economics, mechanics, electronics and telecommunications,

etc., in which many sudden and abrupt changes occur instantaneously, in the form

of impulses. Many interesting results haven been found, e.g., ([66], [47]). But to

the best of my knowledge, there are no results on the Global attracting set and

exponential stability of neutral SPDEs driven by α-stable processes with impulses.

On the basis of this, this chapter is devoted to the discussion of this problem. The

problem of determining the attracting sets of neutral stochastic partial differential

equations driven by α-stable noise with impulses is more complicated. Therefore,

the techniques and methods for the global attracting set and exponential stability

of neutral SPDEs driven by α-stable processes with impulses should be developed.

Motivated by the above discussions, we shall consider the following neutral

stochastic partial differential equations driven by an additive α-stable with im-

pulses on a separable Hilbert space H,
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d[x(t)− g(t, x(t− r)] = (Ax(t) + f(t, x(t− r)))dt

+σ(t)dZ(t), t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, ...,

x0(·) = φ(·) ∈ D([−r, 0], H),

(5.1)

where r > 0 and A generates a strongly continuous semigroup S(t) or etA, t ≥ 0,

on H. Assume that f, g : R+ ×H → H are two given measurable mappings and

σ(t) : R+ → R is a locally integrable function; IK : H → H is a measurable

mapping for k = 1, 2, ...; the fixed moments of time tk satisfies 0 < t1 < t2 < ... <

tk < ..., and limk→∞ tk = ∞;x(t+k ) and x(t−k ) represent the right and left limits

of x(t) at t = tk, k = 1, 2, ..., respectively; ∆x(tk) = x(t+k )− x(t−k ) represents the

jump in the state x at time tk with Ik determining the size of the jump.

This chapter is organised as follows. In Section 5.2, we review and introduce

the concept and basic property of α-processes. In Section 5.3, we consider the

global attracting set and stability of the neutral stochastic differential equations

with impulses. In Section 5.4, we have a summary to state the contribution and

development of the chapter.

5.2 α-stable processes

Recall that X is a random variable defined on (Ω,F ,P) and takes values in R

with probability law pX . Its characteristic function φX : R→ C is defined by

φX(u) = E(ei(u,X)) =

∫
Ω

ei(u,X(ω))P(dω)

=

∫
R
ei(u,y)pX(dy),
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for each u ∈ R. Particularly, a real-valued stochastic process {X(t) : t ≥ 0} is

called an Lévy α-stable process if

1. X(0) = 0 a.s;

2. X(t) has independent and stationary increments;

3. φX(t)(u) = eη(t,u) = etη(1,u), for each u ∈ R, t ≥ 0,

where η(1, ·) is the Lévy symbol of X(1) and X(1) is uniquely determined by its

characteristic function involved with four parameters: α ∈ (0, 2), the index of

stability; β ∈ [−1, 1], the skewness parameter; σ ∈ (0,∞), the scale parameter

and µ ∈ (−∞,∞), the shift. We call η strictly α-stable whenever u = 0, and in

addition, if β = 0, η is said to be symmetric α-stable.

Theorem 5.2.1 A real-valued random variable X is α-stable if and only if there

exist σ > 0,−1 ≤ β ≤ 1 and µ ∈ R such that for all u ∈ R :

(1) when α = 2,

φX(u) = exp(iµu− 1

2
σ2u2);

(2) when α 6= 1, 2,

φX(u) = exp
(
iµu− σα|u|α

[
1− iβsgn(u)tan

(πα
2

)])
;

(3) when α = 1,

φX(u) = exp
(
iµu− σ|u|

[
1− iβ 2

π
sgn(u)log(|u|)

])
.

It can be shown that E(X2) < ∞ if and only if α = 2 (i.e. X is Gaussian) and

that E(|X|) <∞ if and only if 1 < α ≤ 2. For more details on α-stable processes,
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we refer to [1].

Let Z(t) be a cylindrical α-stable process, α ∈ (0, 2), defined by

Z(t) :=
∞∑
m=1

βmZm(t)em. (5.2)

Here {em}m≥1 is an orthonormal basis of H, {Zm(t)}m≥1 is a group of i.i.d. real-

valued, symmetric α-stable Lévy processes with α > 1 defined on a complete

probability space (Ω,F , {Ft}t≥0,P), and {βm}m≥1 is a sequence of positive num-

bers which denote the intensity of the noise so that the series (5.2) is well-defined

in a proper sense.

5.3 Global attracting set and stability

Throughout this chapter, we use the following notations. Let (H, ‖ · ‖) be a real

separable Hilbert space. Recall that a function f : [−r, 0]→ H is called the càdlàg

if it is right-continuous and has finite left-hand limits. Denote by D([−r, 0], H)

the space of all H-valued càdlàg functions defined on [−r, 0], equipped with the

uniform norm ‖φ‖D := sup−r≤s≤0 ‖φ(s)‖, φ ∈ D([−r, 0], H).

In this section, we shall consider the global attracting set of the neutral stochas-

tic differential equation with impulses (5.1). We first give the following definition

of mild solutions to equation (5.1).

Definition 5.3.1 An Ft-adapted càdlàg H-valued stochastic process x(t), t ≥ 0,

is called the mild solution for (5.1) if it has the following properties:

1. x0(·) = φ(·) ∈ D([−r, 0];H);

2.
∫ T

0
‖x(u)‖2

Hdu <∞ almost surely;

3. for each tk, x(t+k ) = limt→tk+ x(t) exists and x(t−k ) = limt→tk− x(t) exists;
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4. for arbitrary t ≥ 0, x(t) satisfied the following integral equation:

x(t) = S(t)[φ(0) + g(0, φ(−r))]− g(t, x(t− r))−
∫ t

0

AS(t− s)g(s, x(s− r))ds

+

∫ t

0

S(t− s)f(s, x(s− r))ds+

∫ t

0

S(t− s)σ(s)dZ(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )).

(5.3)

Here for the solution process {x(t)}t≥−r with initial value φ ∈ D([−r, 0];H), we

put xt(φ) := {x(t+ θ;φ) : −r ≤ θ ≤ 0} for all t ≥ 0. Quite frequently, stochastic

process {xt(φ)}t≥−r is called the segment process of {x(t, φ)}t≥−r.

In what follows, we need the following assumptions:

(H1) The operator (A,D(A)) is a self-adjoint operator on the separable Hilbert

space H admitting a discrete spectrum

−∞ ← −λm ≤ −λm−1 ≤ ... ≤ −λ2 ≤ −λ1 < 0 with corresponding eigen-

vector basis {em}m≥1 ofH and generating an analytic semigroup S(t), t ≥ 0,

such that ‖S(t)‖ ≤Me−λ1t,M ≥ 1 for all t ≥ 0.

(H2) There exists a positive constant K1 such that for all x, y ∈ H and t ≥ 0,

‖f(t, x)− f(t, y)‖ ≤ K1‖x− y‖, ‖f(t, x)‖ ≤ K1(1 + ‖x‖).

(H3) There exists a constant κ ∈ (0, 1) and a positive constant K2 such that and

for all x, y ∈ H and t ≥ 0,

‖(−A)κg(t, x)− (−A)κg(t, y)‖ ≤ K2‖x− y‖, g(t, 0) = 0,

where (−A)κ is the fractional power of operator −A.

100



(H4) There exists a sequence of positive numbers qk(k = 1, 2, ...) such that for

any x, y ∈ H and
∑+∞

k=1 qk <∞,

‖Ik(x)− Ik(y)‖ ≤ qk‖x− y‖, Ik(0) = 0, k = 1, 2, ....

Definition 5.3.2 Let p ≥ 1and a set S ⊂ H is called the p-th global attract-

ing set of (5.1) if for all initial value φ(·) ∈ D([−r, 0], H), the solution process

{x(t, φ)}t≥−r of (5.1) converges to S as t→∞, i.e.,

dist (x(t, φ), S)→ 0 t→∞,

where dist x(t, S) = infy∈S E‖x− y‖p, p ≥ 1.

Lemma 5.3.1 [36] Let Z be a cylindrical α-stable process, α ∈ (0, 2). Assume

that the condition (H1) holds, then for any t ≥ 0 and p > 0,

E
∥∥∥∫ t

0

S(t− s)σ(s)dZ(s)
∥∥∥p ≤ Cp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α (5.4)

where {βk}k≥1 is the sequence given in (5.2) and the constant Cp,α > 0 depends

only on p and α.

Lemma 5.3.2 [43] Suppose that g : R+ → R+ is a Lipschitz continuous function.

Let y : [−r,∞)→ R+ be a Borel measurable function which is a solution of delay

integral inequality

y(t) ≤


g(‖φ‖D)e−γt + b1‖yt‖D + b2

∫ t
0
e−γ(t−s)‖ys‖Dds+

∑
0<tk<t

cke
−γ(t−tk)y(t−k )

+J, t ≥ 0,

φ(t), t ∈ [−r, 0],

(5.5)

where φ ∈ D([−r, 0],R+), γ > 0, b1, b2 and J are nonnegative constants. Then for
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any φ ∈ D([−r, 0],R+) satisfying ‖φ‖D ≤ K for some constant K > 0 and

b1 +
b2

γ
+

+∞∑
k=1

ck := ρ < 1.

Then there are constants λ ∈ (0, γ) and N ≥ K such that

y(t) ≤ Ne−γt +
J

1− ρ
, ∀t ≥ 0,

where λ and N satisfy that

ρλ := b1e
λr +

b2e
λr

γ − λ
+

+∞∑
k=1

ck < 1 and N ≥ K

1− ρλ
,

or if b2 6= 0, that

ρλ := b1e
λr +

b2e
λr

γ − λ
+

+∞∑
k=1

ck ≤ 1 and N ≥
(γ − λ)[K − b2J

γ(1−ρ)
]

b2eλr
.

Theorem 5.3.1 Let φ(·) ∈ D([−r, 0], H). Assume that the conditions (H1) -

(H4) are satisfied. Then the set

S =
{
y ∈ H : ‖y‖ ≤ (

J

1− ρ
)

1
p

}
(5.6)

is a global attracting set of (5.1) provided that the following relations

ρ : = 6‖(−A)−κ‖pKp
2 + 6M1−κK

p
2λ

p(1−κ)− p+q
q

1 [Γ(1− q(1− κ))]
p
q + 12MpKp

1λ
− p+q

q

1

+
+∞∑
k=1

6Mp
( +∞∑
k=1

qk

) p
q
qk < 1, (5.7)

where 1
p

+ 1
q

= 1, 00 = 1,
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and

sup
t≥0

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
)
<∞ (5.8)

hold for κ ∈ (0, 1), α ∈ (1, 2), p ∈ (1, α) where Γ(·) is the standard Gamma

function,

J = 6Cp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α

+ 12MpKp
1λ
− p+q

q

1

and Cp,α > 0 is the constant given in (5.4).

Proof: From Remark 1.1 in [6] and Theorem 5.4 in [50], we know that under

the conditions (H1)-(H4), (5.7) and (5.8), the equation (5.1) has a unique mild

solution. Hence, from (5.3) and the relation that (a + b + c + d + e + f)p ≤

6p(ap + bp + cp + dp + ep + fp), for any a, b, c, d, e, f ∈ R, we have

E‖x(t)‖p = E
∥∥∥S(t)[φ(0) + g(0, φ(−r))]− g(t, x(t− r))−

∫ t

0

AS(t− s)g(s, x(s− r))ds

+

∫ t

0

S(t− s)f(s, x(s− r))ds+

∫ t

0

S(t− s)σ(s)dZ(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k ))
∥∥∥p

≤ 6pE‖S(t)[φ(0) + g(0, φ(−r))]‖p + 6pE‖g(t, x(t− r))‖p

+6pE
∥∥∥∫ t

0

AS(t− s)g(s, x(s− r))ds
∥∥∥p + 6pE

∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥p

+6pE
∥∥∥∫ t

0

S(t− s)σ(t)dZ(s)
∥∥∥p + 6pE‖

∑
0<tk<t

S(t− tk)Ik(x(t−k ))‖p

:= 6p(J1(t) + J2(t) + J3(t) + J4(t) + J5(t) + J6(t)), ∀t ≥ 0. (5.9)
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It follows from (H3) for any t ≥ 0 that

J1(t) = E‖S(t)[φ(0) + g(0, φ(−r))]‖p

≤ E‖φ(0) + g(0, φ(−r))‖p‖S(t)‖p

≤ E‖φ(0) + (−A)−κ(−A)κg(0, φ(−r))‖pMpe−pλ1t

≤ E[‖φ(0)‖+ ‖(−A)−κ‖ · ‖(−A)κg(0, φ(−r))‖]pMpe−pλ1t

≤ E[‖φ(0)‖+ ‖(−A)−κ‖K2‖φ(−r)‖]pMpe−pλ1t

≤ E[‖φ(0)‖+K2‖(−A)−κ‖ · ‖φ‖D]pMpe−pλ1t

≤ Mpe−pλ1t2pE(‖φ(0)‖p +Kp
2‖(−A)−κ‖p · ‖φ‖pD)

≤ Mpe−pλ1t2pE(‖φ‖pD +Kp
2‖(−A)−κ‖p · ‖φ‖pD)

= 2pMp(1 +Kp
2‖(−A)−κ‖p)‖φ‖pDe

−pλ1t

= C∗‖φ‖pDe
−pλ1t,

(5.10)

where C∗ = 2pMp(1 +Kp
2‖(−A)−κ‖p) > 0 is a positive constant.

It follows from (H3) for any t ≥ 0 that

J2(t) = E‖g(t, x(t− r))‖p

= E‖(−A)−κ(−A)κg(t, x(t− r))‖p

≤ E[‖(−A)−κ‖‖(−A)κg(t, x(t− r))‖]p

≤ E[‖(−A)−κ‖K2‖x(t− r)‖]p

≤ ‖(−A)−κ‖pKp
2E‖x(t− r)‖p

≤ ‖(−A)−κ‖pKp
2 sup
−r≤θ≤0

E‖x(t+ θ)‖p.

(5.11)
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For J3(t), by using Lemma 2.2.1 (2) and (H3) for any t ≥ 0, we have

J3(t) = E
∥∥∥∫ t

0

AS(t− s)g(s, x(s− r))ds
∥∥∥p

= E
∥∥∥∫ t

0

(−A)1−κS(t− s)(−A)κg(s, x(s− r))ds
∥∥∥p

≤ E
(∫ t

0

‖(−A)1−κS(t− s)(−A)κg(s, x(s− r))‖ds
)p

≤ E
(∫ t

0

‖(−A)1−κS(t− s)‖‖(−A)κg(s, x(s− r))‖ds
)p

≤ E
(∫ t

0

M1−κe
−λ1(t−s)

(t− s)1−κ K2‖x(s− r)‖ds
)p

= E
(∫ t

0

M1−κe
−λ1(t−s)· 1

q

(t− s)1−κ · e−λ1(t−s)· 1
pK2‖x(s− r)‖ds

)p
.

Then, by using Hölder inequality, we have for any t ≥ 0,

J3(t) ≤ Mp
1−κE

([ ∫ t

0

e−λ1(t−s)· 1
q
·q

(t− s)q(1−κ)
ds
] 1
q ·
[ ∫ t

0

e−λ1(t−s)· 1
p
·pKp

2‖x(s− r)‖pds
] 1
p
)p

= Mp
1−κE

([ ∫ t

0

e−λ1(t−s)

(t− s)q(1−κ)
ds
] 1
q ·
[ ∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

] 1
p
)p

= Mp
1−κ

[ ∫ t

0

e−λ1(t−s)

(t− s)q(1−κ)
ds
] p
qE
([ ∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

] 1
p
)p

= Mp
1−κ

[ ∫ t

0

e−λ1(t−s)

(t− s)q(1−κ)
ds
] p
qE
(∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

)
= Mp

1−κ

[ ∫ t

0

λ
q(1−κ)
1 e−λ1(t−s)

[λ1(t− s)]q(1−κ)
ds
] p
q · E

(∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

)
.

(5.12)

On the other hand, letting λ1(t− s) = u, we have

∫ t

0

λ
q(1−κ)
1 e−λ1(t−s)

[λ1(t− s)]q(1−κ)
ds =

∫ 0

λ1t

λ
q(1−κ)
1 e−u

uq(1−κ)
(− 1

λ1

)du

=

∫ λ1t

0

λ
q(1−κ)
1 e−u

uq(1−κ)
(

1

λ1

)du

≤ 1

λ1

∫ ∞
0

λ
q(1−κ)
1 e−uu−q(1−κ)du. (5.13)
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Then substituting (5.13) into (5.12), and by using the definition of Gamma func-

tion, we have for any t ≥ 0,

J3(t) ≤ Mp
1−κ(λ

q(1−κ)−1
1 )

p
q

[ ∫ ∞
0

e−uu−q(1−κ)du
] p
q ·

E
(∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

)
= Mp

1−κλ
p(1−κ)− p

q

1

[ ∫ ∞
0

e−uu−q(1−κ)du
] p
q ·

E
(∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

)
= Mp

1−κλ
p(1−κ)− p

q

1 [Γ(1− q(1− κ))]
p
q · E

(∫ t

0

e−λ1(t−s)Kp
2‖x(s− r)‖pds

)
= Mp

1−κλ
p(1−κ)− p

q

1 [Γ(1− q(1− κ))]
p
qKp

2

∫ t

0

e−λ1(t−s)E‖x(s− r)‖pds

≤ Mp
1−κK

p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q

∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E‖x(s+ θ)‖pds,

where 1
p

+ 1
q

= 1.

From (H2) for any t ≥ 0 , we obtain

J4(t) = E
∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥p

≤ E
(∫ t

0

‖S(t− s)‖‖f(s, x(s− r))‖ds
)p

≤ E
(∫ t

0

Me−λ1(t−s)K1(1 + ‖x(s− r)‖)ds
)p

= E
(∫ t

0

Me−λ1(t−s)· 1
q · e−λ1(t−s)· 1

pK1(1 + ‖x(s− r)‖)ds
)p

= MpE
(∫ t

0

e−λ1(t−s)· 1
q · e−λ1(t−s)· 1

pK1(1 + ‖x(s− r)‖)ds
)p
.
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Then, by using Hölder inequality, we have for any t ≥ 0,

J4(t) ≤ MpE
([ ∫ t

0

e−λ1(t−s)· 1
q
·qds
] 1
q ·
[ ∫ t

0

e−λ1(t−s)· 1
p
·pKp

1 (1 + ‖x(s− r)‖)pds
] 1
p
)p

= MpE
([ ∫ t

0

e−λ1(t−s)ds
] 1
q ·
[ ∫ t

0

e−λ1(t−s)Kp
1 (1 + ‖x(s− r)‖)pds

] 1
p
)p

= Mp
[ ∫ t

0

e−λ1(t−s)ds
] p
qE
([ ∫ t

0

e−λ1(t−s)Kp
1 (1 + ‖x(s− r)‖)pds

] 1
p
)p

= Mp
[ ∫ t

0

e−λ1(t−s)ds
] p
qE
(∫ t

0

e−λ1(t−s)Kp
1 (1 + ‖x(s− r)‖)pds

)
≤ Mp

[
λ−1

1 ·
∫ t

0

e−λ1(t−s)d[−λ1(t− s)]
] p
qE
(∫ t

0

e−λ1(t−s)Kp
1 (1 + ‖x(s− r)‖)pds

)
= Mpλ

− p
q

1

[ ∫ t

0

e−λ1(t−s)d[−λ1(t− s)
] p
qE
(∫ t

0

e−λ1(t−s)Kp
1 (1 + |x(s− r)‖)pds

)
≤ Mpλ

− p
q

1

[ ∫ t

−∞
e−λ1(t−s)d[−λ1(t− s)

] p
q · E

(∫ t

0

e−λ1(t−s)Kp
1 (1 + ‖x(s− r)‖)pds

)
= MpKp

1λ
− p
q

1

∫ t

0

e−λ1(t−s)E(1 + ‖x(s− r)‖)pds

≤ MpKp
1λ
− p
q

1

∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E(1 + ‖x(s+ θ)‖)pds

≤ 2pMpKp
1λ
− p
q

1

∫ t

0

e−λ1(t−s)
(

1 + sup
−r≤θ≤0

E‖x(s+ θ)‖p
)
ds,

(5.14)

where 1
p

+ 1
q

= 1.

For J5(t), from Lemma 5.3.1, we have

E
∥∥∥∫ t

0

S(t− s)σ(s)dZ(s)
∥∥∥p ≤ Cp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α
, (5.15)

where the constant Cp,α > 0 depends only on p and α.
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From (H4) and Hölder inequality for any t ≥ 0 , we obtain

J6(t) = E‖
∑

0<tk<t

S(t− tk)Ik(x(t−k ))‖p

≤ E
( ∑

0<tk<t

‖S(t− tk)‖‖Ik(x(t−k ))‖
)p

≤ E
( ∑

0<tk<t

Me−λ1(t−tk)‖Ik(x(t−k ))‖
)p

≤ MpE
( ∑

0<tk<t

qke
−λ1(t−tk)‖x(t−k )‖

)p
= MpE

( ∑
0<tk<t

q
1
q

k · q
1
p

k e
−λ1(t−tk)‖x(t−k )‖

)p
≤ MpE

(
(
∑

0<tk<t

(q
1
q

k )q)
1
q · (

∑
0<tk<t

(q
1
p

k e
−λ1(t−tk)‖x(t−k )‖)p)

1
p

)p
= Mp

( ∑
0<tk<t

qk

) p
q · E

( ∑
0<tk<t

qk(e
−λ1(t−tk)‖x(t−k )‖)p

)
,

which is equivalent to

J6(t) ≤ Mp
( ∑

0<tk<t

qk

) p
qE
( ∑

0<tk<t

qke
−λ1p(t−tk)‖x(t−k )‖p

)
≤ Mp

( +∞∑
k=1

qk

) p
q
∑

0<tk<t

qke
−λ1p(t−tk)E‖x(t−k )‖p

≤ Mp
( +∞∑
k=1

qk

) p
q
∑

0<tk<t

qke
−λ1p(t−tk)E‖x(t−k )‖p,

(5.16)

where 1
p

+ 1
q

= 1.
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By substituting (5.10) to (5.16) into (5.9), we have for any t ≥ 0,

E‖x(t)‖p ≤ 6pC∗‖φ‖pDe
−pλ1t + 6‖(−A)−κ‖pKp

2 sup
−r≤θ≤0

E‖x(t+ θ)‖p

+6pMp
1−κK

p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q

∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E‖x(s+ θ)‖pds

+12pMpKp
1λ
− p
q

1

∫ t

0

e−λ1(t−s)
(

1 + sup
−r≤θ≤0

E‖x(s+ θ)‖p
)
ds

+6pCp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α

+6pMp
( +∞∑
k=1

qk

) p
q
∑

0<tk<t

qke
−λ1p(t−tk)E‖x(t−k )‖p

≤ 6pC∗‖φ‖pDe
−pλ1t + 6p‖(−A)−κ‖pKp

2 sup
−r≤θ≤0

E‖x(t+ θ)‖p

+6pMp
1−κK

p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q

∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E‖x(s+ θ)‖pds

+12pMpKp
1λ
− p
q

1

∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E‖x(s+ θ)‖pds

+6pCp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α

+ 12pMpKp
1λ
− p
q

1

∫ t

−∞
e−λ1(t−s)ds

+6pMp
( +∞∑
k=1

qk

) p
q
∑

0<tk<t

qke
−λ1p(t−tk)E‖x(t−k )‖p,

which is equivalent to

E‖x(t)‖p ≤ 6pC∗‖φ‖pDe
−pλ1t + 6p‖(−A)−κ‖pKp

2 sup
−r≤θ≤0

E‖x(t+ θ)‖p

+
[
6pMp

1−κK
p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q + 12pMpKp

1λ
− p
q

1

]
×
∫ t

0

e−λ1(t−s) sup
−r≤θ≤0

E‖x(s+ θ)‖pds

+
∑

0<tk<t

6pMp
( +∞∑
k=1

qk

) p
q
qke
−λ1(t−tk)E‖x(t−k )‖p

+6pCp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α

+ 12pMpKp
1λ
− p+q

q

1 .

(5.17)
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Let y(t) = E‖x(t)‖p and use Lemma 5.3.2, then we have

b1 := 6p‖(−A)−κ‖pKp
2 ,

b2 := 6pM1−κK
p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q + 12pMpKp

1λ
− p
q

1 ,

ck := 6pMp
( +∞∑
k=1

qk

) p
q
qk,

J = 6pCp,α

( ∞∑
k=1

βαk

∫ t

0

e−αλk(t−s)σα(s)ds
) p
α

+ 12pMpKp
1λ
−(1+ p

q
)

1 .

From Lemma 5.3.2, we know that if φ ∈ D([−r, 0],R+) satisfying ‖φ‖D ≤ K

for some constant K > 0 and

ρ = b1 +
b2

λ1

+
+∞∑
k=1

ck < 1,

that is,

ρ = 6p‖(−A)−κ‖pKp
2 +

6pM1−κK
p
2λ

p(1−κ)− p
q

1 [Γ(1− q(1− κ))]
p
q + 12pMpKp

1λ
− p
q

1

λ1

+
+∞∑
k=1

6pMp
( +∞∑
k=1

qk

) p
q
qk

= 6p‖(−A)−κ‖pKp
2 + 6pM1−κK

p
2λ

p(1−κ)− p+q
q

1 [Γ(1− q(1− κ))]
p
q + 12MpKp

1λ
− p+q

q

1

+
+∞∑
k=1

6pMp
( +∞∑
k=1

qk

) p
q
qk < 1.

Therefore, by Lemma 5.3.2, there exist some constants K > 0, λ ∈ (0, λ1) and
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N ≥ K such that

E‖x(t)‖p ≤ Ne−λ1t +
J

1− ρ
, ∀t ≥ 0,

when t→∞, we have

lim
t→∞

E‖x(t)‖p ≤ J

1− ρ
.

Hence, we obtain the global attracting set

S =
{
y ∈ H : ‖y‖ ≤ (

J

1− ρ
)

1
p

}
.

Therefore, by Definition 5.3.2 we know S in (5.6) is a global attracting set of the

mild solution {x(t, φ)}, t ≥ −r, φ ∈ D([−r, 0], H) to equation (5.1). The proof is

complete. �

5.4 Summary

In this chapter, we made the first attempt to study the global attracting set for a

class of neutral stochastic evolution equations with impulses. Our work extended

that of Li and Liu (2016) where the neutral stochastic functional evolution equa-

tion without impulses is investigated. We also extended that of Long, Teng and

Xu (2012) where the class of stochastic differential equation driven by Wiener

processes rather than α-stable processes.
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Chapter 6

Conclusions

This research program focused on the several stochastic delay evolution equa-

tions dealing with the optimal control problem and asymptotics for the stochas-

tic systems. Therefore, we have adopted the methods of stochastic analysis and

semi-group which help us to study and understand the existence, uniqueness,

controllability and stability for various stochastic differential systems. There, we

aim to generalise and develop the existing stochastic models based on the some

certain assumptions. Clearly, these stochastic delay differential equations defined

on Hilbert spaces can also be simplified to do many applications in financial

mathematics.

For the first model, we generalise the previous theory to consider a stochas-

tic optimal control problem for a class of neutral stochastic system. We adopt

a method that allows us to “lift” this non-Markovian optimisation problem to

an infinite-dimensional Markovian control problem. The aim of the stochastic

optimal control problem is to maximise the objective functional at a given time

horizon T > 0. In practice, the explicit solution to this model is not computable.

Thus, we establish a linear differential difference equation to obtain the solutions

to this model.
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On the other hand, solutions with recurrence property (e.g. almost periodicity

and almost automorphy) enable us to understand the impact of the noise or

stochastic perturbation on the corresponding recurrent motions. For the second

model, the neutral stochastic evolution equations with Poisson jumps and infinite

delays are considered. We study the existence and uniqueness of the stochastic

system, which satisfy the Lipschitz conditions. The constant coefficients with

parameters Mf ,MG,Mg and Mh for the model are constrained based on the

method of Banach fixed-point theory. Therefore, we have proved the existence

and uniqueness of mild solutions.

From the models above, we have seen the stochastic differential evolution equa-

tions driven by Brownian motions and Lévy processe. However, since Wiener

noise and Poisson-jump noise have arbitrary finite moments, while α-stable noise

only has finite p-th moment for p ∈ (0, α) with α < 2. For the third model. we

consider the global attracting set and stability of the neutral stochastic partial

differential equations with impulses driven by an additive α-stable with impulses

on a separable Hilbert space H. Thus, new techniques have been established and

developed to a stochastic system driven by α-stable processes. Then, we have

proved the existence and uniqueness of mild solutions.
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