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Abstract

This thesis mainly studies stochastic neutral differential equations with delays,
which can be studied in the fields of existence, uniqueness, controllability and

stability of mild solutions.

In Chapter 1, we give a short introduction for the materials in each chapter. We
introduce the new models we developed. In Chapter 2, we begin by introducing
some definitions and results. To present the proofs of all the results here would
require preparatory background material, which would significantly increase both
the size and scope of this dissertation. Although this chapter introduces very
important theorems, required proofs are omitted here. However, these related
proofs can be found from book in Liu [41] and you can also find most of these
basic mathematical concepts and their proofs in many well-known text books
such as Pazy [32] and Da Prato and Zabczyk [22] or to be found in the literature

reviews.

In Chapter 3, we will generalise the previous theory to consider a stochastic
optimal control problem for a class of neutral type stochastic systems, which is
very important from both theoretic and practical point of view (see, e.g., [39]).
We formulate a stochastic optimal control problem with the aim of maximising
the objective functional at a given time horizon T' > 0. This chapter is organised
as follows. In Section 3.2, we formulate the optimal problem with the objective

functional as an optimal problem with neutral type for an SDDE both in state



and the control. In Section 3.3, we use a representation result that allows us to
“lift” this non-Markovian optimisation problem to a Markovian control problem
on a Hilbert space and deal with the general case of delays in the state and in
the control and the verification result is given. In Section 3.4, we construct an
example of a controlled SDDE, whose HJB equation admits an integral solution.
Therefore, there exists an optimal control form for the control problem. In Section
3.5, we establish a linear delay differential equation to obtain solutions. In Section

3.6, we have a summary to state the contribution and development of the chapter.

In Chapter 4, we will concentrate on the existence and uniqueness of the
square-mean almost periodic mild solutions. This chapter is organised as follows.
In Section 4.2, we review and introduce some concepts, basic properties of square-
mean almost periodicity and the proofs of two theorems. In Section 4.3, under
some suitable conditions, we prove the existence and uniqueness of square-mean
almost periodic mild solutions for some stochastic differential equations driven
by Poisson jumps. In Section 4.4, we have a summary to state the contribution

and development of the chapter.

In Chapter 5, we study the problem of determining the attracting sets of
neutral stochastic partial differential equations driven by a-stable noise with im-
pulses. Therefore, the techniques and methods for the global attracting set and
stability for neutral SPDEs driven by a-stable processes with impulses should be
developed. This chapter is organised as follows. In Section 5.2, we review and
introduce the concepts and basic properties of a-stable processes. In Section 5.3,
we study the global attracting set and stability of the stochastic neutral differ-
ential equations with impulses. In Section 5.4, we have a summary to state the

contribution and development of the chapter.

In Chapter 6, we have a conclusion to summarise the contribution and devel-

opment of this thesis.
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Chapter 1

Introduction

In modern society, the modelling of stochastic systems has gained significant at-
tention due to its many applications in physics, economics, finance, engineering,
etc. However, there also exist many phenomena, which are characteristics of past
dependence, that is, their present value depends not only on the present situa-
tion but also on past history. Qualitative properties such as existence, uniqueness,
controllability and stability for various stochastic differential systems have been
investigated by many authors and have already achieved fruitful results (see for
example [45], [46], [41], [14], [53]). On the other hand, it is known that a class of
stochastic differential equations with neutral type involve derivatives with delays
as well as the function itself. Many interesting results about neutral stochastic
delay differential equations have been obtained by many researchers, see, for ex-
ample, Liu [38] has considered standard optimal control problems for a class of
neutral functional differential equations in Banach spaces and it turns out that
based on a systematic theory of neutral models, the fundamental solution is con-
structed and a variation of constants formula of mild solutions is established.
Balasubramaniam and Ntouyas [4] have given sufficient conditions for the con-

trollability of a class of stochastic partial functional differential inclusions with



infinite delay in an abstract space.

Dynamic stochastic optimisation is the study of dynamical systems subject to
random perturbations, and which can be controlled in order to optimise some per-
formance criterion. It arises in decision-making problems under uncertainty. His-
torically, based on Bellman’s and pontryagin’s optimality principles, the research
on control theory has developed considerably over recent years. The dynamic
programming principle (DPP) to a stochastic control problem for Markov pro-
cesses in continuous-time leads to a nonlinear partial differential equation (PDE),
called the Hamilton-Jacobi Bellman (HJB) equation, satisfied by the value func-
tion. One typical example of this optimal control problem is introduced by the

following controlled SDDE in advertising models [29] of the form:

"

0 0

dy(t) = [aoy(t)nL / ar(0)y(t + 0) + bou(t) + / b1(0)u(t+0)d0]dt

-r -r

YodB(t), Vte[0,T]

y(0) = 20, y(0) = 1(0), u(0) = ~(0), V0 € [-r,0],

\

where ag € R, ay(-) € L?([-7,0];R), by € R, by() € L*([-7,0];R), z1(-) € L*([-r,0]; R)
and v(-) € L*([-r,0]; R).

In this work, the optimal advertising problem as an optimal control problem
for an SDDE with delays both in the state and the control is considered. The
problem is formulated by lifting this non-Markovian optimisation problem to
an infinite-dimensional Markovian control problem without involving delays in a

suitable product Hilbert space and solutions are derived in an example.

Motivated by the above works, we aim to consider the following neutral stochas-



tic differential equations with control delays in R:

0

'd[ya) - / Lot + 0)d8) = [aoy(t) + / ar(0)y(t + 6) + bou(t)

—r —r

- /0 bilB)ult + 9)‘”] dt +odB(t), vielo,7] (L1)

-

y(0) = 20, y(0) = 21(0), u(0) = ~(0), V0 € [-r,0],

\

where the Brownian motion B(t) is defined on a filtered probability space (2, F, {F; }+>0, P)
with (F;):>0 being the completion of the filtration generated by B(t),¢ > 0. It is
assumed that u(¢) is an admissible control that belongs to U := L?([0, T]; R), the
space of square integrable non-negative stochastic processes adapted to { F; }icpo,77-

In addition, we need to assume the following conditions:
i. a9 € R;

ii. ai(-) € L*([-r,0;R);

iii. a(-) € CY([—r,0];R);

iv. by € R;

v. bi(-) € L*([-r,0];R);

vi. z1(-) € L*([-r,0; R);

vil. y(-) € L*([~r,0]; R).

We adopt a method that allows us to “lift” this non-Markovian optimisation
problem to an infinite-dimensional Markovian control problem. Let us consider
the following abstract SDE on a Hilbert space H (see Chapter 3), which is equiv-
alent to the SDE (1.1):

dY (t) = (A*Y (t) + B*u(t))dt + G*dB(t)

Y(0) =z = (zg,21) € H,



where the operators A*, B*, G* are defined properly in Chapter 3.

In this chapter, we will generalise the previous theory to consider a stochastic
optimal control problem for a class of neutral type stochastic systems, which is
very important from both theoretic and practical point of view (see, e.g., [39]).
We formulate a stochastic optimal control problem with the aim of maximising

the objective functional at a given time horizon 7" > 0.

On the other hand, solutions with recurrence property (e.g. almost periodicity
and almost automorphy), which enable us to understand the impact of the noise
or stochastic perturbation on the corresponding recurrent motions, are of great
concern in the study of stochastic differential equations and random dynamical
systems. Periodicity often appears in implicit ways in various phenomena. For
example, this is the case when one studies the effects of fluctuating environments
on population dynamics. Although people can calculate the periodic fluctua-
tions of environmental parameters in controlled laboratory experiments, almost

periodicity is more likely to accurately describe natural fluctuations [23].

Recently, Bezandry and Diagana introduced the concept of square-mean al-
most periodic stochastic process and applied it to study stochastic differential
equations (see [9]). In [10], Bezandry and Diagana proved the existence of al-
most periodic solutions to some stochastic differential equations. Bezandry and
Diagana [11] studied the existence of square-mean almost periodic solutions to
some stochastic hyperbolic differential equations with infinite delay. Bezandry
and Diagana [12| were concerned with the square-mean almost periodic solutions
nonautonomous stochastic differential equations. However, many dynamical sys-
tems not only depend on the present states, but also on past states and involve
derivative with delays. Therefore, it is necessary to consider the stochastic evo-
lution system with infinite delays and the neutral type as well, see ([40], [44],

[?], [19]). One typical example is to deal with the existence and uniqueness of



square-mean almost periodic solutions to a class of neutral stochastic evolution

equations with infinite delay [34] of the form:
d(z(t) — G(z(t),x1)) = (Ax(t) + f(t,x(t), z¢))dt + g(t, x(t), x:)dW (), teR,

where x; = x(t +6) : —0o < 6§ < 0 can be regarded as a %B-valued stochastic
process. Assume that f :Rx Hx A — H,g: Rx Hx B — L (Kg,H) and
G : H x # — H, (see Chapter 4).

In addition, Lévy processes are essentially stochastic processes with stationary
and independent increments, and they are particular useful, as they can describe
discontinuous and dramatic fluctuations in practical situations. Also, Wiener pro-
cesses and Poisson processes are the important special cases of Lévy processes.
Stochastic differential equations with Poisson jumps have become popular in mod-
elling those phenomena arising in the field of economics, where jump processes
are widely used to describe the asset and commodity price dynamics (see [18]).
However, for stochastic partial differential equations with Poisson jumps and in-
finite delay, as far as we know, there exist only a few results about the existence
and stability of mild solutions. One is referred to ([51], [20], [52]). One typi-
cal example is to deal with the existence and uniqueness of square-mean almost
periodic solutions to a class of stochastic differential equations with Lévy noise

without delays [42] of the form:

dx(t) = f(t,x(t))dt + g(t, z(t))dW (t) + /| 1 F(t,z(t—), z)N(dt, dz)

+/ G(t,x(t—),z)N(dt,dz), teER,
|zlu>1

where F' and GG are H-valued.

Motivated by the above works, we shall study the existence and uniqueness of

square-mean almost periodic solutions to a class of neutral stochastic differential



equations with Poisson jumps and infinite delay

d(z(t) — G(z(t),xr)) = (Ax(t) + f(t, (), z¢))dt + g(t, x(t), x)dW (t)

+/ h(t,x(t=),z,—, 2)N(dt,dz), t€R,
H

where z; = x(t +6) : —oo < 6 < 0 can be regarded as a Z-valued stochastic
process. Assume that f - RXx H X% — H, g: Rx Hx % — L(Kg, H),G :
Hx%A — H,and h: R x H x % x H — H, are appropriate mappings for all
t € R,z € H, which will be specified in Chapter 4. We will prove the existence
and uniqueness of square-mean almost periodic mild solutions for some stochastic
differential equations driven by Poisson jumps under some suitable conditinos by

using methods of semi-group and Banach fixed-point theorem.

From the discussions above, we can see that the stochastic differential evolu-
tion equations driven by Brownian motions and Lévy processes have been stud-
ied by many researchers. However, since Wiener noise and Poisson-jump noise
have arbitrary finite moments, while a-stable noise only has finite p-th moment
for p € (0,a) with o < 2. Recently, stochastic differential equations driven by
a-stable processes have plenty of applications in physics due to the fact that
a-stable noise exhibits the heavy tailed phenomenon. For example, Priola and
Zabczyk [50] gave a proper starting point on the investigation of structural prop-
erties of stochastic partial differential equations (SPDEs) driven by an additive
cylindrical stable noise. Dong, Xu and Zhang [25] studied the invariant measures
of stochastic 2D Navier-Stokes equation driven by a-stable processes. Xu studied
[61] Ergodicity of the stochastic real Ginzburg-Landau equation driven by a-
stable noise and Zhang [67] proved a derivative formula of Bismut-Elworthy-Li’s
type as well as gradient estimate for stochastic differential equations driven by
a-stable noises. One the other hand, Wang [55| derived the gradient estimate for

Ornstein-Uhlenbeck jump processes and Wang [58| established so-called Harnack



inequalities for SDEs driven by cylindrical a-stable processes. However, there
are few papers on the asymptotic behaviour of mild solution of SPDEs driven by
a-stable processes, so we shall discuss the stability property of mild solutions of
a class of SPDEs driven by a-stable processes to complete the theory. The fact is
that a-stable noise only has finite p-th moment for p € (0, a) and the stochastic
evolution does not admit a stochastic differential, which leads to some powerful
tools such as the It6 formula being unavailable, then some new methods should
be used to overcome the difficulties. It is worthwhile to mention that, Wang and
Rao [56] discussed the stability of mild solutions for a class of SPDEs driven by
a-stable noises and generalised to deal with the SPDEs driven by subordinated
cylindrical Brownian motion and fractional Brownian motion, respectively by the

Minkovski inequality.

In addition, many researchers have studied attracting sets of dynamical sys-
tems extensively. Xu and Long [60] studied the attracting and quasi-invariant
sets of non-autonomous neutral networks with delays. Long, Teng and Xu [43]
investigated the global attracting set and stability of stochastic neutral partial
functional differential equations with impulses. They first established a new
impulsive-integral inequality, which improved the inequality established by Chen
[16]. On the other hand, impulsive phenomenon can be found in a wide variety of
evolutionary processes, for example, medicine and biology, economics, mechan-
ics, electronics and telecommunications, etc., in which many sudden and abrupt
changes occur instantaneously, in the form of impulses. Many interesting results
haven been found, e.g., (|66], [47]), etc. One typical example is to consider a class

of neutral stochastic partial differential equations driven by a-stable processes on



a separable Hilbert space [36] of the form:

dlz(t) — g(t,x(t — )] = (Az(t) + f(t,z(t —r)))dt + o(t)dZ(t),t > 0,

zo() = () € D([=r,0], H),

where r > 0 and A generates a strongly continuous semigroup S(t) or e!4,t > 0,
on H. Assume that f,¢g: R, x H — H are two given measurable mappings and

o(t) : Ry — R is a locally integrable function.

But, to the best of my knowledge, there is no result on the Global attracting
set and exponential decay of neutral SPDEs driven by a-stable processes with
impulses. Motivated by the above discussions, in Chapter 5, we shall consider
the following neutral stochastic partial differential equations driven by an additive

a-stable with impulses on a separable Hilbert space H,

.

dlz(t) — g(t,x(t —r)] = (Az(t) + f(t,z(t — r)))dt
+o(t)dZ(t),t > 0,t # ty,

Az(ty) = z(t]) —x(ty) = L(z(ty), t = te, k= 1,2, ...,

zo(+) = ¢(-) € D([—r,0], H),

\

where r > 0 and A generates a strongly continuous semigroup S(t) or e!4,t > 0,
on H. Assume that f,g : R, x H — H are two given measurable mappings
and o(t) : Ry — R is a locally integrable function; the fixed moments of time
ty satisfies 0 < t; < tg < ... < t), < ..., and limy o tp = oo;x(t)) and z(t;)
represent the right and left limits of z(t) at t = ¢,k = 1,2, ..., respectively;
Ax(ty) = () — x(t; ) represents the jump in the state = at time ¢, with I,
determining the size of the jump. We will consider the global attracting set
and stability of the neutral stochastic partial differential equations with impulses

driven by an additive a-stable with impulses on a separable Hilbert space H.



Chapter 2

Preliminaries

The knowledge of stochastic processes and stochastic analysis has played an im-
portant role in the real world. Stochastic differential equations are used to model
diverse phenomena such as fluctuating stock prices or physical systems subject
to thermal fluctuations, which draw great attentions from researchers to develop

the things which are getting more complicated.

In this chapter, we begin by recalling some definitions and results, especially
those from functional analysis and theories of stochastic process and stochastic
differential equations along with probability theories in infinite dimensions. We
introduce mild solutions for stochastic differential equations and investigate the
existence and uniqueness of solutions under appropriate assumptions. We intro-
duce and clarify definitions and develop our theory in Hilbert spaces. To present
the proofs of all the results here would require preparatory background material,
which would significantly increase both the size and scope of this dissertation.
Although this chapter introduces very important theorems, required proofs are
omitted here. However, these related proofs can be found from book written by
Liu [41] and you can also find most of these basic mathematical concepts and

their proofs in many well-known text books such as Pazy [32| and Da Prato and



Zabczyk [22] or to be found in the literature reviews.

2.1 Some Results from Functional Analysis

A Banach space (X, | - |[x) (real or complex) is a complete normed linear space
over (R or C). If the norm || - || x is induced by an inner product (-,-)x, then X
is called a Hilbert space. We say that X is separable if there exists a countable
set S C X such that the closure S = X. For a Hilbert space X, a collection
{e;} of elements in X is called an orthonormal set if (e;,e;)x = 1 for all 7, and
(ei,ej)x = 0if i # j. If S is an orthonormal set and no other orthonormal set
contains S as a proper subset, then S is called an orthonormal basis for X. A

Hilbert space X is separable if and only if it has a countable orthonormal basis

{61},@21,2,"'

Example 2.1.1 (Sobolev space) Let [a,b] be an interval in R and a differentiable

function f(z) of one derivative exists at each point in its domain. Now, we define

W'2([a,b); X) = {f :a,b) = X, f(x) is differentiable,

b b
/ 1 (@) &dz < oo and / 17/(@) fd < o).

If X is a Hilbert space, then WY%([a, b]; X) is a Hilbert space under the norm

e = ([ 1)+ ([ @), s ew (o)

and under the inner product

b b
(f: 9012 =/ (f(x),g($)>xd$+/ (f'(2).g'(x))xdz,  f.g € W"([a,b]; X).

10



Definition 2.1.1 Let X and Y be two Banach spaces and D(A) a subspace of
X. Amap A:D(A) C X — Y is called a linear operator if the following relation
holds:

Alax + py) = aAz + Ay forany x,y € D(A), a,8€R orC.

The subspace D(A) is called the domain of A. If A maps any bounded subsets
of D(A) into bounded subsets of Y, we say A is a bounded linear operator. We
denote by L£(X,Y) the set of all bounded linear operators A from X to Y with
D(A) = X. In particular, if X =Y, we write £(X) for £(X, X). In this case,

L(X,Y) is a Banach space equipped with the operator norm || - ||z(x,y) given by

Al = | Allzcxy) == sup Azlly <oo forany A€ L(X,Y).

ll=]lx <1
For any linear operator A : D(A) C X — Y, we define R(A) := {Az : z €
D(A)}. It is called the range of the operator A.

Definition 2.1.2 Let Y = K where K =R or C. Any f € L(X, K) is called a

bounded linear functional on X. In this case, we put X* = L(X, K), which is a

Banach space under the norm || - ||x+ and X* is called the dual space of X.

Theorem 2.1.1 [63] (Riesz’s Theorem) Let X be a Hilbert space, then X* = X.
That is, every bounded linear functional f on X can be represented in terms of

the inner product by

flz) =(x,z) forany x€X,

where z 1s uniquely determined by f and has norm

I2llx = [If]

X*-.

11



For any Banach space, we can further define X** = (X*)* and if X = X**, X is

called reflexive. We can conclude that a Hilbert space X is reflexive.

Definition 2.1.3 Let X and Y be two Banach spaces. A linear operator A :

D(A) C X =Y is said to be closed if whenever

r, € D(A),n>1, and lim x, =z, lim Az, =y,

n—00 n—oo

then x € D(A) and Az = y.

Definition 2.1.4 Let X and Y be two Banach spaces and a linear operator A :

D(A) C X — Y is called densely defined if the closure D(A) = X.

Definition 2.1.5 Let A be a densely defined linear operator on a Hilbert space
X. Then the Hilbert adjoint operator A* : X — X is defined by

<Ax7y>X = <1’,A*y>x

for any x € D(A),y € D(A*). In particular, if A is bounded, the adjoint operator

A* of A exists and is unique and bounded with ||A*|| = ||A]|.

Definition 2.1.6 Let X be a Hilbert space and a densely defined linear operator
A:D(A) C X — X is symmetric if for all x,y € D(A), (Az,y)x = (z, Ay)x. A

symmetric operator A is called self-adjoint if D(A*) = D(A).

A linear operator A on the Hilbert space X is called non-negative, denoted by
A >0, if (Az,z) > 0 for all x € D(A). It is called positive if (Az,z) > 0 for all
x € D(A) and coercive if (Az, x) > c||z||% for some ¢ > 0 and # € D(A). A linear

operator B is called the square root of A if B* = A.

Theorem 2.1.2 Let A be a linear operator on the Hilbert space X . If A s self-

adjoint and nonnegative, then it has a unique square root, denote it by AY?, which

12



is self-adjoint and nonnegative such that D(A) C D(AY?). Furthermore, if A is

positive, so is AY2.

Theorem 2.1.3 Let X be a Hilbert space. Suppose that A is self-adjoint and
nonnegative on X. Then A is coercive if and only if it has a bounded inverse

A7l e L(X). In this case, A™' is self-adjoint and nonnegative.

Definition 2.1.7 Let X and Y be two Banach spaces. An operator A € L(X,Y)
is compact if for any bounded sequence {x,}n>1 in X, the sequence { Axy,}n>1 has

a convergent subsequence in Y.

Let X be a separable Hilbert space. A linear bounded operator A € L(X,Y)

is a compact operator if and only if

ALE:ZAZ<$,€Z>X51 VLUGX,
i=1
where {e;};>1 and {é;};>1 are two orthonormal bases in X and Y, respectively
and \; > 0 for each ¢ > 1. The operator A is called trace class if Z;’il A < 00

and A is Hilbert-Schmidt if > ;7 A\? < oo.

Let £ (X) be the family of all trace class operators on X. It can be shown that
Z(X) is a Banach space under the trace norm ||All; := > ;2 A;. The space of
Hilbert-Schmidt operators denoted by %(X) has the norm || Ay := (3 5, A2)1/2.

All the Hilbert-Schmidt operators form a Hilbert space .

In this dissertation, we would use the Banach fixed point theorem or contrac-
tion theorem, which concerns mappings of a Banach space into itself. It states

sufficient conditions for the existence and uniqueness of a fixed point.

Definition 2.1.8 (Contraction) Let (X, ||| x) be a Banach space. A bounded

linear operator T : X — X s called a contraction on X if there is a positive

13



number a < 1 such that for all z,y € X
[Tz =Tyl x < allz —yllx.

Theorem 2.1.4 (Banach Fixed Point Theorem) Consider a Banach space
(X, |- llx) and let T : X — X be a contraction on X. Then T has a unique fized

point. That s, there exists a unique v € X such that

2.2 (Cpy-Semigroups

Definition 2.2.1 A strongly continuous or Cy-semigroup S(-) : [0,00) = L(X)

15 a family of bounded linear operators on a Banach space X satisfying:
(i) S(0) =1, where I is the identity operator on X ;
(i) S(t+s) = S(t)S(s) for allt,s > 0;

(111) S(t) is strongly continuous, i.e., for any x € X,S(t)x : [0,00) — X s

continuous.

It is known that for any Cy-semigroup S(t) on X, there exist constants M > 1

and p € R such that

IS < Me™,  t>0.

14



In association with the Cy-semigroup S(¢), we define a linear operator A :

D(A) C X = X by

B L Sty —2
D(A) = {x € X: lgﬁ)l exists },
Ar = tim 2WT=T L pay.

tl0 t

The operator A is called the infinitesimal generator, or simply generator, of the

semigroup {S(t)};>0. We frequently write it as e, ¢ > 0.

Suppose that A is linear, but not necessarily bounded, operator on a Banach
space X. The resolvent set p(A) of A is defined as the set of all complex numbers
A € C such that (A] — A)~! exists and (A — A)~! is a bounded linear operator
in X. The family R(\, A) = (A\[ — A)™', X € p(A) of bounded linear operators is

called the resolvent operator of A. The spectrum of A is defined to be o(A) =
C\p(4).

Theorem 2.2.1 (Hille-Yosida) A linear operator A on a Banach space X is the

infinitesimal generator of a Cy-semigroup S(t),t > 0 if and only if
1. A is densely defined and closed;

2. the resolvent set p(A) of A contains the ray (u,00) and

M

IR, A)" || < P

forA>p, n=12 ..

for some M > 0.

Proposition 2.2.1 Suppose that A generates a Cy-semigroup et > 0, on a

15



Banach space X . It is valid that if x € D(A), then Az € D(A) and in this case

d
%emx = e Ax = Ae'tx,  for allt > 0.

Let X be a Banach space and consider the following deterministic linear

Cauchy problem on X,

dil_it) — Ay(t), t>0, (2.1)
y(0) = yo € X,

where A is a linear operator which generates a Cy-semigroup e!4,¢ > 0, on X. If

Yo € D(A), then by Proposition 2.2.1, we have ey, € D(A) and

d

E(emyo) = Ac'y,, t > 0. (2.2)

Hence, y(t) = ey, t > 0, is a solution of the differential equation (2.1). If
Yo ¢ D(A), the equality (2.2) is not necessarily true. However, for any yo € X it
does make sense to define y(t) = e'4yy,t > 0, which is called a mild solution of

(2.1).

Definition 2.2.2 Let ¢4t > 0, be a Cy-semigroup on a Banach space X with
the generator A: D(A) C X — X.

(i) The semigroup e, t > 0, is called compact if for any t € (0,00), the oper-
ator 't € L(X) is compact.

(ii) The semigroup e t > 0, is called analytic if it admits an estension e** on

2z € Ng:={z€C:larg z| <0} for some § € (0,7, such that z — e** is

analytic on Ng and satisfies:

(a) e1t22)4 = en1dend for any 21, 2 € Ay;
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(b) lima,5. 0 ||e*2 — 2|[x =0 for allz € X and 0 < 0 < 6.

Let us define fractional powers of certain unbounded linear operators and study
some of their properties. Let A : D(A) C X — X be the infinitesimal generator
of an analytic semigroup {S(t)}+>0 in H. Suppose that 0 € p(A) is the resolvent
set of A, then, for a € (0,1], it is possible to define the fractional power (—A)“
as a closed linear operator on its domain D((—A)%). Furthermore, the subspace

D((—A)*) is dense in H, and the expression
[2llo = I(=A)*[m, @ eD{(=A)),

defines a norm in D((—A)%). We let H, = D((—A)*) endowed with the norm
- la-

We need the following assumption.

(A1) Let —A be a densely defined closed linear operator for which
p(A) DS ={N:0<w<|argA| <7}UV

and

RN A < for A e S
” ( ? )H—l_'_‘)\’ or e Y
where V' is a neighborhood of 0.
For 0 < a < 1, we can define
(—A) = Smm/ ol — AN, 0<a< 1.
T 0

17



Definition 2.2.3 Let — A satisfy (A1) with w < w/2. For every a > 0, we define

Fora =0,(—A)* = I.

Lemma 2.2.1 Suppose 0 € p(A), then we know that there exist constants M >

1,A>0, for every 0 < g <1,

(1) we have for each x € D(—A)?,

(2) there exists Mz > 0 such that

(=AW < Mst™Pe™, ¢ >0;

(3) for any 5 € [0,1],

I(=A) 7 < C.

2.3 Probability Theory and Stochastic Processes

Let Q be a non-empty set and F a collection of subsets of 2. We call F a

o-algebra if the following hold:
(1) 0 € F, where () is the empty set;
(2) Ae F= A° € F, where A° = Q — A is the complement of A in ;

(3) {Aitiz>1 CF=UX A € F.

18



The pair (€2, F) is called a measurable space and the elements of F are called
measurable. A probability measure P on (€2, F) is a mapping P : F — [0,1]

satisfying that
(1) P(Q) =1, and

(2) (countable additivity) for any disjoint sequence {A;};>1 C F (i.e. A;NA; =10
if ¢ # j), then

P(UZ,4) = iP(Ai)-

The triple (2, F,P) is called a probability space.

Suppose that C is a collection of subsets of {2, then there exists a smallest
o-algebra o(C) on €2 which contains C. Hence, this ¢(C) is called the o-algebra
generated by C. If Q = R? and C is the collection of all open sets in RY, then
o(C) is called the Borel o-algebra, denote it by B(R?) and the elements of B(R?)

are called Borel sets and any measure on (R¢, B(R?)) is called a Borel measure.

If (Q,F) and (S, B(S)) are two measurable spaces, then a mapping £ from €2
into S such that the set {w € Q: ¢ € A} = {{ € A} belongs to F for arbitrary
A € B(9) is called measurable from (2, F) into (S, B(S)). Hence, B(S) is a Borel
o-algebra on S, where S is a complete metric space. If £ is a measurable mapping
from (2, F) into (S, B(S)) or an S-valued random variable and P a probability

measure on (€2, F), then we will denote by D¢(-) the image of P under the mapping
&

De(A) =P{w e Q:{(w) € A}, VA e B(S).

It may be shown that D¢(-) is a probability measure which is called the distribu-

tion or the law of &.

19



The triple (2, F,P) is called a probability space. If (€2, F,P) is a probability
space, we set F = {A C Q:3IB,C € F such that B C A C C,P(B) = P(C)}.
Then F is a o-algebra and is called the completion of F. If F = F, then
probability space (€2, F, P) is said to be complete. In general, if F is not complete,
we can extend P to F by defining P(4) = P(B) = P(C) for A € F, where
B,C € F with BC A C C and P(B) = P(C). In this way, (2, F,P) becomes a
complete probability space. A family {F;},t > 0, for which each {F;} is a sub-
o-field of F and forms an increasing family of o-fields, is called a filtration of
F. With this {F;},¢ > 0, one can associate another filtration by setting o-fields
Fiy = NsstFs for t > 0. We say that the filtration {F;}+>0 is normal or satisfies
the usual conditions if F;, = F; for each t > 0, that is, the filtration is a right

continuous increasing family and contains all P-null sets of F.

Now assume that S = H is a separable Hilbert space with norm || - ||g
and £ is an H-valued random variable on (£, F,P). We can define the integral
Jo, §(w)P(dw) of & with respect to the probability measure P. We often denote it
by E(), which is called the expectation. The integral defined in this way is called
a Bochner’s integral. We denote by LP(Q, F,P; H),p € [1,00), the set of all equiv-
alence classes of H-valued random variables with respect to equivalent relation
of almost sure equality. Then it can be verified that LP(Q, F,P; H),p € [1,00),

equipped with the norm

1€ll, = (EIEIE)Y?, pe[l,o0), &€ LP(QF,PH),

is a Banach space. If € is an interval [0,7], F = B([0,7]) and P is the usual
Lebesgue measure L/T on [0, 7] for L?([0,T],B([0,T]),L/T; H),0 <T < oo, we
also write L*([0,T]; H).

Next, we introduce some useful results.
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(1) Holder inequality (for p = 2 it is called Cauchy Schwarz’s inequality)

IEEO < (EEI)P (BN,

where p > 1,%—1—% =1 for any £ € LP(Q); H), ¢ € LY(Q); H).

(2) Minkowski’s inequality
(EllE + ¢IP) VP < (EllEIP)Y? + (ElCIIP) 7,

where p > 1 for any &, € LP(Q; H).

Theorem 2.3.1 (Monotonic convergence theorem): If {&,} is an increasing se-

quence of nonnegative random variables, then
lim E = E{ i .
i EAG ) = E{ lim &}

Theorem 2.3.2 (Dominated convergence theorem): Let p > 1,{,} C LP(Q; H)
and ¢ € LP(C;R). Assume that ||€,||n < ¢ almost surely and {&,} converges to &

in probability. Then & C LP(Q; H), {&,} converges to & in LP, and
lim E{¢.} = E{ lim &} = E{¢}.
n—o0o n—o0

Lemma 2.3.1 (Fatou’s Lemma): If the random wvariable’s &, satisfy &, > ¢

almost surely ( ¢ € LP(§;R)), Vn, we have
E{h}f_l}golf &nt < hrrlri}golf E{¢,.}.

If the random wvariable’s &, satisfy &, < ¢ almost surely ( ¢ € LP(Q;R)),Vn, we
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have

E{limsup&,} > limsup E{,}.

n—oc0 n—oco

An arbitrary family M = {M (t)},t > 0, of H-valued random variables defined
on a probability space (€, F,P) is called a stochastic process. Sometimes, we also
write M (t,w) or My in place of M (t) for all ¢ > 0. A stochastic process M is called
measurable if the mapping M(-,-) : Ry x Q — H is B(R,) x F-measurable. Let
{Fi},t > 0, be an increasing family of sub-o-fields of F. The process M is called
{Fi}i>0-adapted if M (t) is Fy-measurable for each ¢t > 0. Clearly, if o{M(t)}:>0
is the family of o-fields generated by M = {M(t) }1>0, M is o{ M (t) }+>o-adapted.
For any w € 2, the function M(-,w) is called a path or trajectory of M. Let P
denote the smallest o-algebra on R, x ) with respect to every left continuous

process is a measurable function of (f,w). A stochastic process is said to be

predictable if the process regarded as a function of (¢,w) is P-measurable.

Definition 2.3.1 Suppose M = {M(t)},t > 0, is an H-valued process and
{Fi}i>0 is a filtration of F. The process M is said to be progressively measurable

with respect to {Fi}i>o if for every t > 0, the mapping

[0,t] x Q@ — H, (s,w) = M(s,w),

is B([0,t]) x Fi-measurable.

Definition 2.3.2 Let {F;}i>0 be a filtration of F. A mapping 7 : Q — [0, 00] is

called a stopping time with respect to {Fi},t > 0, if

{w:T(w) <t} € F for each t > 0.
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The o-field of events before T, denoted by F, is defined as
FT:{AE]—":AH{Tgt}E]—"tforeverytZO}.

Theorem 2.3.3 Let M = {M(t)},t > 0, be an H-valued progressively measur-
able process with respect to {Fi}i>0, and let T be a finite stopping time. Then the

random variable X, is Fr-measurable.

Theorem 2.3.4 (Fubini Theorem): Let M(t) be an H-valued measurable stochas-

tic process.
(1) If E{M (t)} exists for all t, then it is measurable as a function of t;

(2) if [VE|M(#)||adt < oo for all a < b,

/a E{M (1)}t = / Mty

If E[|M(t)||g < o