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Derivation of the PHD and CPHD filters based on
direct Kullback-Leibler divergence minimisation

Ángel F. García-Fernández, Ba-Ngu Vo

Abstract—In this paper, we provide novel derivations of the
probability hypothesis density (PHD) and cardinalised PHD
(CPHD) filters without using probability generating functionals
or functional derivatives. We show that both the PHD and CPHD
filters fit in the context of assumed density filtering and implicitly
perform Kullback-Leibler divergence (KLD) minimisations after
the prediction and update steps. We perform the KLD min-
imisations directly on the multitarget prediction and posterior
densities.

Index Terms—Random finite sets, PHD filter, CPHD filter,
multiple target tracking, Kullback-Leibler divergence

I. INTRODUCTION

Inference in multi-target systems has a host of applications
in many different disciplines such as radar/sonar tracking,
navigation, air traffic control, computer vision and robotics
[1]–[5]. The random finite set (RFS) formulation of the multi-
target tracking problem is a widely used approach that allows
us to model the appearance and disappearance of targets,
misdetection of measurements and false alarms within the
Bayesian framework [3]. More specifically, the objective is
to estimate the current state of a dynamic system, which is a
set that contains target states at the current time step, based
on a sequence of measurements. State estimation is based on
the posterior probability density function (PDF), i.e., the PDF
of the current state given the sequence of measurements, as
it contains all information of interest about the target states.
Theoretically, the posterior can be calculated recursively by
the prediction and update steps [3]. However, in general, these
steps cannot be computed in closed-form so approximations
are necessary [3].

Two popular approximations to the posterior are provided
by the probability hypothesis density (PHD) filter [6] and the
cardinalised PHD (CPHD) filter [7]. There are some extensions
of the PHD/CPHD filters [8] but, in this paper, we always
refer to their classical forms [6], [7]. These filters have been
succesfully applied in different fields such as multitarget track-
ing [9], [10], robotics [4], computer vision [5], road mapping
[11] and sensor control [12], [13]. Importantly, they admit
elegant expressions which avoid the computational complexity
of evaluating measurement-to-target association hypotheses.
Implementations of these filters based on Gaussian mixtures,
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sequential Monte Carlo methods or splines have been proposed
[10], [14]–[16]. However, the topic of this paper is not PHD
and CPHD filter implementations but their derivation.

Both filters were originally derived by Mahler using proba-
bility generating functionals (PGFLs) and functional deriva-
tives [6], [7]. The Faà di Bruno’s formulae for functional
derivatives [8], [17], [18] provide elegant derivations of the
original, as well as more general PHD/CPHD filters, based
on PGFLs. To facilitate implementations, the resulting CPHD
equations are usually rewritten in the form given in [10]. Alter-
native derivations for the PHD filter based on measure theory
have been proposed in [19], [20]. While these derivations are
mathematically rigorous, they have not been extended to the
CPHD filter. An interesting interpretation of the PHD/CPHD
formulae in terms of the probability existence of targets on
infinitesimal regions of the state space is given in [21].

In this paper, we present novel derivations of the PHD
and CPHD filters that do not require the use of PGFLs or
functional derivatives. We believe that the new derivations are
more accessible, thereby bringing the PHD/CPHD filters to
a wider audience. In addition, we cast these filters into the
assumed density filtering (ADF) framework [22], [23]. In ADF,
we propagate a certain type of PDF in the Bayesian filtering
recursion. As the output PDF of the prediction and/or update
steps might not be of the considered type, we have to approx-
imate it by a PDF of the type under consideration to continue
with the filtering recursion. Ideally, this approximation is
obtained by some optimality criterion such as minimising
the Kullback-Leibler divergence (KLD) w.r.t. the true PDF
[24], [25]. KLD minimisations are sometimes referred to as
moment projection (M-projection) or information-projection
(I-projection) depending on the order of the PDFs in the
KLD [24] and are also used in consensus algorithms [26],
[27]. The PHD and CPHD filters follow this scheme with M-
projections for Poisson and independent identically distributed
(IID) cluster PDFs, respectively [3]. The KLD minimisation
property of the PHD filter has been known since its inception
[6] but, for the CPHD filter, it is proved in this paper and
also independently in [28]. We proceed to explain this more
thoroughly.

The Poisson point process is perhaps the best known of the
RFSs [29]. In this case, the number of elements in the set
is Poisson distributed and its elements are IID. This is the
type of PDF that the PHD filter propagates. If the prior is
Poisson, the result of Bayes’ rule is no longer Poisson so the
PHD filter performs KLD minimisation to approximate the
posterior [6]. In the prediction step with the usual modelling
assumptions and Poisson input, the output is Poisson if there is
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Figure 1: PHD filter with Poisson births and no target spawning diagram.
The PHD filter assumes that the PDFs involved are Poisson. The output of
Bayes’ rule, which is given by Eq. (1), is no longer Poisson but, in order
to be able to perform filtering, it obtains the best Poisson approximation
to the posterior by minimising the KLD divergence (M-projection).

no target spawning and the RFS of new born targets is Poisson.
Otherwise, KLD minimisation is performed to obtain a Poisson
PDF. The resulting recursions are illustrated in Figures 1 and
2. By applying KLD minimisation to the output PDF of the
prediction and update steps, we directly obtain the PHD filter
recursion. In contrast, the CPHD filter propagates an IID
cluster PDF, which is more general than the Poisson PDF.
In an IID cluster PDF, targets are also IID but the cardinality
distribution is arbitrary. We show in this paper that both the
prediction and update steps of the CPHD filter can be directly
obtained by applying KLD minimisation to the output PDF
of the prediction and update steps. The resulting recursion is
illustrated in Figure 3.

The rest of this paper is organised as follows. In Section
II, we review the Bayesian filtering recursion using RFSs.
In Section III, we provide two useful theorems for KLD
minimisation. The PHD and CPHD filter equations are derived
in Sections IV and V, respectively. Finally, conclusions are
given in Section VI.

II. BAYESIAN FILTERING WITH RANDOM FINITE SETS

In this section we review the Bayesian filtering recursion
with RFSs, which consists of the usual prediction and update
steps. As we only need to consider one prediction and update
step, we omit the time index of the filtering recursion for
notational simplicity.

In the standard RFS framework to target tracking, a single
target state x ∈ Rnx and the state X ∈ F (Rnx), which
denotes the space of all finite subsets of Rnx , so X is a
set whose elements are single target state vectors. In the
update step, the state is observed by measurements that are
represented as a set Z ∈ F (Rnz ). Given a prior PDF ν (·)
and the PDF f(Z|X) of the measurement Z given the state
X , the posterior PDF of X after observing Z is given by
Bayes’ rule [6]

q(X) =
f(Z|X)ν(X)

p(Z)
(1)

where the PDF p(Z) of the measurement is given by the set
integral

p(Z) =

ˆ
f(Z|X)ν(X)δX (2)

=

∞∑
n=0

1

n!

ˆ
f (Z |{x1, ..., xn} )

× ν ({x1, ..., xn}) d (x1, ..., xn) . (3)

The Bayesian filtering recursion is completed with the pre-
diction step. Given a posterior PDF q (·), the prior PDF ω (·)
at the next time step is given by the Chapman-Kolmogorov
equation

ω (X ′) =

ˆ
γ (X ′|X) q (X) δX (4)

where X ′ ∈ F (Rnx) denotes the state at the next time step
and γ (X ′|X) is the PDF of the state X ′ given the state X .

As in single target filtering, the prediction and update steps
cannot be computed in closed-form in general. In single target
filtering, a well-known technique is assumed density filtering
[22], [23], in which the PDF before the prediction and update
step is assumed to be of a certain form. Then, we compute the
output PDF via Bayes’ rule or Chapman-Kolmogorov equation
and project it to the same family of PDFs so that the Bayesian
recursion can be performed. Ideally, the projection should
be performed by minimising the Kullback-Leibler divergence
[25]. This is exactly what the PHD and CPHD filters do with
Poisson and IID cluster PDFs, respectively, see Figures 1,
2 and 3. An equivalent idea in single target filtering with
Gaussian PDFs was proposed in [30].

We also want to remark at this point the similarity between
the PDF of the measurement (2) and the prediction step (4). As
we will see, unless we consider target spawning/non-Poisson
births in the PHD filter (target spawning is not considered
in the CPHD filter), both equations are identical. Therefore,
when we derive the filters, we first compute the update step,
which requires the calculation of (2), and use this knowledge
to derive the prediction step.

III. KULLBACK-LEIBLER MINIMISATION

As indicated in the previous section, in both the PHD and
CPHD filtering recursions, there are several KLD minimi-
sations. As a result, in order to derive the filters based on
this framework, we need to indicate how KLD minimisations
are performed. In Section III-A, we first review the concepts
of PHD and cardinality distribution of an RFS density. In
Section III-B, we review a known result for KLD minimisation
for Poisson RFS. In Section III-C, we provide a theorem
that indicates how KLD minimisations are performed for IID
cluster RFS.

A. PHD and cardinality distribution

Given an RFS density π (·), its PHD is [3, Eq. (16.33)]

Dπ(x) =

ˆ
π ({x} ∪X) δX

=

∞∑
n=0

1

n!

ˆ
π ({x, x1, ..., xn}) d (x1, ..., xn) . (5)

The PHD is also called intensity function in stochastic ge-
ometry [31]. The cardinality distribution of π (·) is [3, Eq.
(11.115)]

ρπ (n) =
1

n!

ˆ
π ({x1, ..., xn}) d (x1, ..., xn) . (6)



3

Bayes' rule
M-Projection 

(KLD 

minimisation)

General 

density

PHD filter update step

M-Projection 

(KLD 

minimisation)

PHD filter prediction step

General 

density
Poisson Poisson

Prediction 

(with spawning 

 /non-Poisson 

births)

Figure 2: PHD filter with non-Poisson births and/or target spawning diagram. The PHD filter assumes that the PDFs involved are Poisson. The output
of the prediction and Bayes’ rule, which are given by Eqs. (4) and (1), are no longer Poisson but, in order to be able to perform filtering, it obtains the
best Poisson approximation to the corresponding density by minimising the KLD divergence (M-projection).
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Figure 3: CPHD filter diagram. The CPHD filter assumes that the PDFs involved are IID cluster. The output of the prediction and Bayes’ rule, which are
given by Eqs. (4) and (1), are no longer IID clusters but the CPHD filter obtains the best IID cluster approximation by minimising the KLD divergence
(M-projection).

B. Poisson RFS

The PHD filter propagates a Poisson PDF. If ν (·) is Poisson,
it can be written as [3, Eq. (11.122)]

ν ({x1, ..., xn}) = e−λνλnν

n∏
j=1

ν̆ (xj) (7)

where ν̆ (·) is a PDF on the single target state space and
λν ≥ 0. A Poisson PDF is characterised by its PHD Dν(x) =
λν ν̆ (x).

Theorem 1. Given an RFS density π (·), the Poisson density
ν (·) that minimises the KLD

D (π ‖ν ) =

ˆ
π (X) log

π (X)

ν (X)
δX

is characterised by its PHD Dν (·) = Dπ (·).

Theorem 1 is proved in [6, Theorem 4].

C. IID cluster RFS

The CPHD filter propagates an IID cluster PDF. If ν (·) is
the density of an IID cluster RFS, it can be written as [3, Eq.
(11.121)]

ν ({x1, ..., xn}) = ρν (n)n!

n∏
j=1

ν̆ (xj) (8)

where ρν (·) is the cardinality distribution and ν̆ (·) is a PDF
on the single target state space. It should be noted that if ρν (·)
is Poisson, then (8) reduces to (7). The PHD of (8) is given
by [8]

Dν (x) = ν̆ (x)

∞∑
n=0

nρν (n)

where the second term corresponds to the expected number
of targets. Clearly, an IID cluster density can be characterised
either by ρν (·) and ν̆ (·) or ρν (·) and Dν (·).

Theorem 2. Given an RFS density π (·), the IID cluster
density ν (·) that minimises the KLD D (π ‖ν ) is characterised

by its PHD Dν (·) = Dπ (·) and its cardinality distribution
ρν (·) = ρπ (·).

Theorem 2 is proved in the Appendix.

IV. PHD FILTER DERIVATION

In this section, we provide the derivation of the PHD filter
based on direct KLD minimisation. In Section IV-A, we review
the PHD filter update and the proposed proof is provided
in Section IV-B. Lastly, in Section IV-C, we address the
prediction step.

A. Review of the PHD filter update

The PHD filter update is developed under the assumptions
• U1 The set Z = Z1 ∪ Z2 where Z1 and Z2 are the

independent RFSs of measurements coming from targets
and clutter, respectively.

• U2 Given X = {x1, ..., xn}, Z1 = ∪ni=1Z̃1,i where
Z̃1,i = � with probability 1− pD (xi), otherwise Z̃1,i =
{zi} where zi has a PDF l (·|xi) and sets Z̃1,i i = 1, ..., n
are independent.

• U3 The set Z2 of clutter measurements is Poisson with
RFS density c (·).

• U4 The prior is Poisson.
Under Assumptions U1, U2 and U3, which define the standard
measurement model, the PDF of the measurement given the
state is [3, Eq. (12.42)]

f ({z1, ..., znz} |{x1, ..., xn} )

= eλc

[
nz∏
i=1

λcc̆ (zi)

][
n∏
i=1

(1− pD (xi))

]

×
∑

σ∈Ξn,nz

∏
i:σi>0

pD (xi) l (zσi |xi)
(1− pD (xi))λcc̆ (zσi)

(9)

where Ξn,nz is a set which contains all the vectors σ =
(σ1, ..., σn) that indicate associations of nz measurements to
n targets, which can be either detected or undetected, taking
into account that only one measurement can be associated with
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a given target. If σ ∈ Ξn,nz , σi ∈ {1, ..., nz} indicates the
measurement associated with target i and σi = 0 indicates
that target i has not been detected.

The PHD filter update equation is [6]

Dq (x) = (1− pD (x))Dν (x) + pD (x)

×
∑
z∈Z

l (z|x)Dν (x)

Dc (z) +
´
pD (x′) l (z|x′)Dν (x′) dx′

(10)

where x′ ∈ Rnx . Note that (10) is the PHD of the posterior
q (·), see (1), under Assumptions U1-U4. This is proved in the
next subsection.

B. Proof of the PHD filter update

The aim is to compute the PHD of the posterior, which
characterises the best Poisson approximation to the posterior
in the KLD sense, see Theorem 1. Using (1) and (5), we get

Dq(x) =
1

p (Z)

∞∑
n=0

1

n!

ˆ
f(Z| {x, x1, ..., xn})

× ν ({x, x1, ..., xn}) d (x1, ..., xn) . (11)

First, we compute the denominator in Section IV-B1 and
then we complete the proof in Section IV-B2.

1) Density of the measurement: The denominator of (11)
corresponds to the PDF p (·) of Z. This PDF can be obtained
from well-known results of Poisson point processes theory
[20]. According to Assumption U1, Z is the union of two
independent sets Z1 and Z2. Under Assumption U2, set Z1

comes from performing thinning [31] on X with a probability
pD (·) followed by a displacement [29] with Markov transition
l (·|x). As X is Poisson distributed, see Assumption U4, we
can apply the thinning and displacement theorems [29], [31]
so that we get that Z1 is Poisson distributed with intensity

λν

ˆ
pD (x) l (z|x) ν̆ (x) dx.

Under Assumption U1, Z is the union of two independent
Poisson RFSs. Consequently, we can apply the superposition
theorem [29], which says that Z is Poisson distributed with
intensity given by the sum of the intensities

Dp (z) =λcc̆ (z) + λν

ˆ
pD (x) l (z|x) ν̆ (x) dx. (12)

Therefore, the denominator of (11) is given by

p (Z) = e−λν
´
pD(x)ν̆(x)dx−λc∏

z∈Z

[
λcc̆ (z) + λν

ˆ
pD (x) l (z|x) ν̆ (x) dx

]
. (13)

2) Rest of the proof: We perform the following decompo-
sition

f (Z |{x, x1, ..., xn} )

= (1− pD (x)) f (Z |{x1, ..., xn} )

+ pD (x)
∑
z∈Z

l (z|x) f (Z \ {z} |{x1, ..., xn} ) (14)

where B \ A = {z ∈ B| z /∈ A}. Note that f (Z |X ) goes
through all the possible data association hypotheses, see (9).
There are two hypotheses for target x, it can be either detected
or not detected. If it is not detected, which happens with
probability (1− pD (x)), all the measurements have originated
from the rest of the targets or clutter. This is represented by the
first term of (14). The other hypothesis is that x is detected,
which happens with probability pD (x). If it is detected, it can
be associated with any of the z ∈ Z measurements and the
rest Z \ {z} of the measurements have originated from the
rest of the targets or clutter. This is represented by the second
term of (14).

Substituting (7) and (14) into (11), we obtain

Dq(x) =
1

p (Z)

∞∑
n=0

1

n!
(1− pD (x))

ˆ
f (Z |{x1, ..., xn} )

× e−λνλn+1
ν ν̆ (x)

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

+
1

p (Z)

∞∑
n=0

1

n!
pD (x)

∑
z∈Z

l (z|x)

×
ˆ
f (Z \ {z} |{x1, ..., xn} )

× e−λλn+1
ν ν̆ (x)

n∏
j=1

ν̆ (xj) d (x1, ..., xn) . (15)

Using (3) and (7) in (15), we obtain

Dq(x) = (1− pD (x))λν ν̆ (x)

+
1

p (Z)
pD (x)

∑
z∈Z

l (z|x)λν ν̆ (x) f (Z \ {z}) .

(16)

Finally, we substitute (13) into (16) to get

Dq(x) = (1− pD (x))λν ν̆ (x) + pD (x)λν ν̆ (x)∑
z∈Z

l (z|x)

λcc̆ (z) +
´
pD (x′) l (z|x′)λν ν̆ (x′) dx′

.

which completes the proof of (10).

C. PHD filter prediction

The PHD prediction assumes
• P1 The set X ′ = X ′1∪X ′2∪X ′3 where X ′1, X ′2 and X ′3 are

the independent sets of surviving targets, newborn targets
and spawned targets, respectively.

• P2 Given X = {x1, ..., xn}, X ′1 = ∪ni=1X̃
′
1,i where

X̃ ′1,i = � with probability 1 − pS (xi), otherwise
X̃ ′1,i = {x′i} where x′i has a PDF g (·|xi) and sets X̃ ′1,i
i = 1, ..., n are independent.

• P3 The set X ′2 of new born targets has an RFS density
b (·).

• P4 Given X = {x1, ..., xn}, X ′3 = ∪ni=1X
′′
3,i where X ′′3,i

has PHD Dξ (· |xi ) and X ′′3,i i = 1, ..., n are independent.
• P5 The posterior q (·) is Poisson.

The PHD of the prior at the next time step is [6]

Dω (x′) = Db (x′)
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+

ˆ
[pS (x) g (x′|x) +Dξ (x′ |x )]Dq (x) dx.

(17)

If there is no target spawning and the density b (·) is
Poisson, we see that U1-U4 are equivalent to P1-P3 and P5,
therefore, the PDF of the measurement (2) and the prediction
step (4) are analogous. Consequently, in this case, it can be
directly established that the density ω (·) is Poisson, with PHD
given by (17) setting Dξ (·) = 0, and there is no need to
perform KLD minimisation, as illustrated by Figure 1. Under
Assumption P4, the set X ′3 of spawned targets constitutes a
cluster process with centers given by q (·) [32, Chap. 6]. As
a result, its PHD is given by

Dξ (x′) =

ˆ
Dξ (x′ |x )Dq (x) dx

where we have used (6.3.3) in [32]. By the superposition
theorem [31] and Assumption P1, the PHD of X ′ is given
by the sum of the PHDs of X ′1, X ′2, X ′3 so we get (17). Due
to the fact that (17) is the PHD of the prior, it represents the
best Poisson fit to the prior in the KLD sense, see Theorem
1, as illustrated in Figure 2.

V. CPHD FILTER DERIVATION

In this section, we provide the derivation of the CPHD filter
based on direct KLD minimisation. In Section V-A, we review
the CPHD filter update and the proposed proof is provided in
Section V-B. Lastly, in Section V-C, we address the prediction
step.

A. Review of the CPHD filter update

The CPHD filter update is developed under Assumptions
U1-U2 and
• U5 The set Z2 of clutter measurements is IID cluster with

RFS density c (·).
• U6 The prior is IID cluster.

Given two sequences a (n) and b (n) n ∈ N∪ {0}, we denote

〈a, b〉 =

∞∑
n=0

a (n) b (n) .

The CPHD filter update equation for the cardinality and
PHD are [10]

ρq (n) =
Υ0 [Dν , Z] (n) ρν (n)

〈Υ0 [Dν , Z] , ρν〉
(18)

Dq (x) =

〈
Υ1 [Dν , Z] , ρν

〉
〈Υ0 [Dν , Z] , ρν〉

(1− pD (x))Dν (x)

+
∑
z∈Z

〈
Υ1 [Dν , Z \ {z}] , ρν

〉
〈Υ0 [Dν , Z] , ρν〉

l (z|x)

c̆ (z)
pD (x)Dν(x)

(19)

where

Υu [Dν , Z] (n) =

min(|Z|,n−u)∑
j=0

(|Z| − j)!ρc (|Z| − j)

×
[´

(1− pD(x))Dν(x)dx
]n−(j+u)[´

Dν(x)dx
]n

× n!

(n− j − u)!
ej (Ξ (Dν , Z)) (20)

Ξ (Dν , Z) =

{ˆ
l (z|x)

c̆ (z)
pD (x)Dν(x)dx : z ∈ Z

}
and the elementary symmetric function is

ej (Z) =
∑

S⊆Z,|S|=j

∏
ζ∈S

ζ

 (21)

with e0 (Z) = 1 by convention. Note that there are two
typographical errors in the definition of Υu [Dν , Z] (n) in [10].
Value (|Z| − j) should have a factorial and the upper value of
the sum should be min (|Z| , n− u) instead of min (|Z| , n).
While the first one has been usually corrected in later sources,
the second still appears in many of them [21], [33]–[38].

B. Proof of the CPHD filter update

1) Density of the measurement: We first proceed to cal-
culate the density of the measurement. Under Assumptions
U1-U2, given {x1, ..., xn}, Z = Z1 ∪ Z2 where Z1 are the
measurements originated from the targets, Z2 are the clutter
measurements, and these two sets are independent. We use
t (·) to denote the RFS density of Z1 given {x1, ..., xn} and
c (·) for the clutter measurements, as stated in Assumption U5.
Then, we apply the convolution formula to obtain the PDF of
Z given {x1, ..., xn} [3, page 385]:

f (Z |{x1, ..., xn} )

=
∑
S⊆Z

t (S |{x1, ..., xn} ) c (Z \ S) (22)

=

min(|Z|,n)∑
j=0

∑
S⊆Z,|S|=j

t (S |{x1, ..., xn} ) c (Z \ S) . (23)

In the sum in (23), we use the auxiliary variable j that indicates
the number of measurements associated with targets. The
minimum number value of j is zero and its maximum value is
the minimum between the number of measurements or number
of targets.

Under Assumption U2, the density of the measurement set
S = {s1, ..., sj} coming from target set {x1, ..., xn} can be
written as [8, Eq. (7.24)]

t ({s1, ..., sj} |{x1, ..., xn} )

=

[
n∏
i=1

(1− pD (xi))

] ∑
σ∈Γn,j

j∏
i=1

l (si |xσi ) pD (xσi)

(1− pD (xσi))

=
∑

σ∈Γn,j

nz∏
i=1

l (si |xσi ) pD (xσi)

n−j∏
i=1

(
1− pD

(
xσ′

i

))
(24)

where Γn,j is the set that contains all possible selections σ =
(σ1, ..., σj) of j ordered elements from (1, ..., n) and σ′ =
{1, ..., n}\{σ1, ..., σj}. It should be noted that the cardinality
of set Γn,j is

|Γn,j | = j!

(
n
j

)
. (25)
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That is, there are
(
n
j

)
possible ways to select j elements

from n elements and the resulting j elements can be ordered
in j! different ways. First, we calculate the density of j
measurements generated by n targets, without considering
clutter. According to (8), given n targets, they are distributed
according to a PDF

∏n
j=1 ν̆ (·) so we can use (24) and compute

ˆ
t ({s1, ..., sj} |{x1, ..., xn} )

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

=
∑

σ∈Γn,j

ˆ j∏
i=1

l (zi |xσi ) pD (xσi)

n−j∏
i=1

(
1− pD

(
xσ′

i

))
×

n∏
l=1

ν̆ (xl) d (x1, ..., xn) (26)

=
∑

σ∈Γn,j

j∏
i=1

[ˆ
l (zi |xσi ) pD (xσi) ν̆ (xσi) dxσi

]

×
n−j∏
i=1

ˆ [(
1− pD

(
xσ′

i

))
ν̆
(
xσ′

i

)
dxσ′

i

]
(27)

=

[ˆ
(1− pD (x)) ν̆ (x) dx

]n−j
×

j∏
i=1

[ˆ
l (si |x ) pD (x) ν̆ (x) dx

] ∑
σ∈Γn,j

1

 (28)

=

[ˆ
(1− pD (x)) ν̆ (x) dx

]n−j
j!

(
n
j

)
×

j∏
i=1

[ˆ
l (si |x ) pD (x) ν̆ (x) dx

]
. (29)

From Eq. (26) to (27), we write the integral as the product of
n integrals. In the next step, we use the fact that the integrals
inside the summatory do not depend on σ so the last term in
(28) represents the number of elements in Γn,j , which is given
by (25).

Second, we calculate the density of the measurements given
that there are n targets, considering clutter. We use (23) to getˆ

f(Z| {x1, ..., xn})
n∏
j=1

ν̆ (xj) d (x1, ..., xn)

=

min(|Z|,n)∑
j=0

∑
S⊆Z,|S|=j

c (Z \ S)

ˆ
t (S |{x1, ..., xn} )

×
n∏
j=1

ν̆ (xj) d (x1, ..., xn) . (30)

Under Assumption U5 and using (29), (30) becomesˆ
f(Z| {x1, ..., xn})

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

=
∏
z∈Z

c̆ (z)

min(|Z|,n)∑
j=0

(|Z| − j)!ρc (|Z| − j) j!
(
n
j

)

×
[ˆ

(1− pD (x)) ν̆ (x) dx

]n−j

×
∑

S⊆Z,|S|=j

∏
z∈S

[´
l (z |x ) pD (x) ν̆ (x) dx

]∏
z∈S c̆ (z)

=
∏
z∈Z

c̆ (z) Υ0 [Dν , Z] (n) (31)

where we have used (20) in the last equality.
Under Assumption U6, we can use (3) and (31) to obtain

the PDF of the measurement, which becomes

p (Z) =

∞∑
n=0

ρν (n)

ˆ
f (Z| {x1, ..., xn})

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

=
∏
z∈Z

c̆ (z)

∞∑
n=0

ρν (n) Υ0 [Dν , Z] (n)

=
∏
z∈Z

c̆ (z)
〈
ρν ,Υ

0 [Dν , Z]
〉
. (32)

2) Cardinality of the posterior: The cardinality of the
posterior is obtained by (1) and (6):

ρq (n) =
1

n!

ˆ
q ({x1, ..., xn}) d (x1, ..., xn)

=
1

n!p (Z)

ˆ
f(Z| {x1, ..., xn})

× ν ({x1, ..., xn}) d (x1, ..., xn) . (33)

Under Assumption U6, we can write (33) as

ρq (n) =
ρν (n)

p (Z)

ˆ
f(Z| {x1, ..., xn})

×
n∏
j=1

ν̆ (xj) d (x1, ..., xn) . (34)

We finish the proof of (18) by substituting (31) and (32)
into (34).

3) PHD of the posterior: The PHD of the posterior can be
obtained using (11) and Assumption U6 as

Dq(x) =
1

p (Z)

∞∑
n=0

(n+ 1)

ˆ
f (Z| {x, x1, ..., xn})

× ρν (n+ 1) ν̆ (x)

n∏
j=1

ν̆ (xj) d (x1, ..., xn) . (35)

As in the PHD filter derivation, we use decomposition (14)
in (35) to obtain

Dq(x) =
(1− pD (x)) ν̆ (x)

p (Z)

∞∑
n=0

(n+ 1) ρν (n+ 1)

×
ˆ
f (Z| {x1, ..., xn})

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

+
pD (x) ν̆ (x)

p (Z)

∑
z∈Z

l (z|x)

∞∑
n=0

(n+ 1) ρν (n+ 1)

×
ˆ
f (Z \ {z} |{x1, ..., xn} )

n∏
j=1

ν̆ (xj) d (x1, ..., xn) .

(36)
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Before simplifying (36), from (20), we get the equality

Υ1 [Dν , Z] (n) =
n´

Dν(x)dx
Υ0 [Dν , Z] (n− 1) . (37)

We now proceed to simplify one of the terms in (36)
∞∑
n=0

(n+ 1) ρν (n+ 1)

×
ˆ
f (Z| {x1, ..., xn})

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

=
∏
z∈Z

c̆ (z)

∞∑
n=0

(n+ 1) ρν (n+ 1) Υ0 [Dν , Z] (n) (38)

=
∏
z∈Z

c̆ (z)

∞∑
n=1

nρν (n) Υ0 [Dν , Z] (n− 1)

=
∏
z∈Z

c̆ (z)

ˆ
Dν(x)dx

∞∑
n=1

ρν (n) Υ1 [Dν , Z] (n)

=
∏
z∈Z

c̆ (z)

ˆ
Dν(x)dx

〈
ρν ,Υ

1 [Dν , Z]
〉

(39)

where we have used that Υ1 [Dν , Z] (0) = 0, see (20).
Plugging (32) and (39) into the first and second term of (36)

completes the proof

Dq(x) =

〈
ρν ,Υ

1 [Dν , Z]
〉

〈ρν ,Υ0 [Dν , Z]〉
(1− pD (x))Dν (x)

+
∑
z∈Z

〈
Υ1 [Dν , Z \ {z}] , ρν

〉
〈Υ0 [Dν , Z] , ρν〉

l (z|x)

c̆ (z)
pD (x)Dν(x).

4) Interpretation: We can easily interpret some of the
terms of the CPHD filter update (18)-(19). From (31), we
see that Υ0 [Dν , Z] (n) is proportional to the density of the
measurements given that there are n targets evaluated at Z
so
〈
Υ0 [Dν , Z] , ρν

〉
in (18)-(19) is proportional to p (Z).

From (23), variable j in Υ0 [Dν , Z] (n), see (20), indicates
the number of measurements associated to targets. Therefore,
the cardinality update (18) can be seen as a Bayes’ update, as
pointed out in [10]. On the contrary, Υ1 [Dν , Z] (n) does not
admit such an easy interpretation. From (37), Υ1 [Dν , Z] (n)
is proportional to the density of the measurements given that
there are n − 1 targets evaluated at Z multiplied by n and
divided by the a priori expected number of targets.

It is also interesting to see the steps of the derivation in
which the data association problem is removed and only one
hypothesis given the number of target generated measurements
must be considered by the use of elementary symmetric
functions, which are defined by (21). This can be clearly seen
when we derive the PDF of the measurement from Equations
(26) to (29). It is a consequence of the fact that targets are
IID and, therefore, all data associations in (27) are alike so
we just need to evaluate one. The same effect appears in the
updated PHD in (38).

C. CPHD filter prediction

The CPHD filter prediction is obtained under Assumption
P2 and

• P6 The set X ′ = X ′1 ∪ X ′2 where X ′1 and X ′2 are the
independent sets of surviving targets and newborn targets,
respectively.

• P7 The set X ′2 of new born targets is IID cluster with
RFS density b (·).

• P8 The posterior q (·) is IID cluster.

The CPHD filter prediction equations for the cardinality and
PHD are [10]

ρω (m) =

m∑
j=0

ρb (m− j)
∞∑
n=j

(
n
j

)
ρq (n)

×
[´

(1− pS(x))Dq(x)dx
]n−j[´

Dq(x)dx
]n (40)

×
[ˆ

pS (x)Dq(x)dx

]j
(41)

Dω (x′) = Db (x′) +

ˆ
pS (x) g (x′|x)Dq (x) dx. (42)

It should be noted that the assumptions of the CPHD filter
prediction (P2, P6-P8) are analogous of the CPHD filter update
(U1-U2, U5-U6). Therefore, the prior PDF ω (·) is analogous
to the PDF of the measurements (32). Clearly, this density is
not IID cluster but we can obtain the IID cluster approximation
that minimises the KLD by using Theorem 2. The result for
the PHD (42) can be established directly based on thinning,
displacement and superposition of point processes [31]. In the
rest of the section, we derive the equation for the cardinality.
With the objective of not introducing more notation, we
calculate the cardinality of the density of the measurements
(32), which is an equivalent formula to the cardinality of the
prior.

1) Cardinality of the prior: We calculate the cardinality
of the measurements, whose PDF is given by (32), which is
analogous to the cardinality of the prior. We use (6) and (32)
to get

ρp (m)

=
1

m!

ˆ
p ({z1, ..., zm}) d (z1, ..., zm)

=
1

m!

ˆ m∏
i=1

c̆ (zi)

∞∑
n=0

ρν (n)

min(m,n)∑
j=0

(m− j)!ρc (m− j)

× n!

(n− j)!

[´
(1− pD(x))Dν(x)dx

]n−j[´
Dν(x)dx

]n
×

∑
S⊆{z1,...,zm},|S|=j

∏
z∈S

[´
l (z |x ) pD (x)Dν(x)dx

]∏
z∈S c̆ (z)

× d (z1, ..., zm) . (43)

Integrating out z1...zm in (43), we obtain

ρp (m) =
1

m!

∞∑
n=0

ρν (n)

min(m,n)∑
j=0

(m− j)!ρc (m− j) n!

(n− j)!

×
[´

(1− pD(x))Dν(x)dx
]n−j[´

Dν(x)dx
]n
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×
∑

S⊆{z1,...,zm},|S|=j

[ˆ
pD (x)Dν(x)dx

]j
. (44)

As there are
(
m
j

)
subsets of {z1, ..., zm} with cardinality

j, (44) becomes

ρp (m) =
1

m!

∞∑
n=0

ρν (n)

min(m,n)∑
j=0

(m− j)!ρc (m− j)

× n!

(n− j)!

[´
(1− pD(x))Dν(x)dx

]n−j[´
Dν(x)dx

]n
×
[ˆ

pD (x)Dν(x)dx

]j (
m
j

)
=

∞∑
n=0

ρν (n)

min(m,n)∑
j=0

ρc (m− j)
(
n
j

)

×
[´

(1− pD(x))Dν(x)dx
]n−j[´

Dν(x)dx
]n

×
[ˆ

pD (x)Dν(x)dx

]j
. (45)

We use the fact that
∑∞
n=0

∑min(m,n)
j=0 =

∑m
j=0

∑∞
n=j in

(45) so

ρp (m) =

m∑
j=0

ρc (m− j)
∞∑
n=j

(
n
j

)
ρν (n)

×
[´

(1− pD(x))Dν(x)dx
]n−j[´

Dν(x)dx
]n

×
[ˆ

pD (x)Dν(x)dx

]j
.

By changing ρc (·), pD (·) and ν (·) for ρb (·), pS (·) and q (·),
respectively, we obtain (41).

VI. CONCLUSIONS

In this paper, we have examined the PHD and CPHD filters
in the context of assumed density filtering, which enabled
us to derive these filters based on KLD minimisation of the
PDFs, without resorting to PGFLs or functional derivatives.
Our derivations use an intuitive decomposition of the multi-
target likelihood function and shed some insights into how
data association is avoided in the CPHD filter update, which
performs a Bayes update with an IID prior followed by a
KLD minimisation. Avoiding data association has important
practical implications as the computational burden of the filter
is significantly lowered, albeit with some drawbacks such as
the spooky effect [39]. For the CPHD filter, we only need
to evaluate one hypothesis for target generated measurements.
For the PHD filter, further simplifications are possible.

It should also be noted that the resulting minimised KLD
is an indicator of the performance of the filter. The lower
this KLD is, the closer the approximated posterior is to the
true posterior and performance improves. This analysis for the
(non-linear) Kalman filter update in single target applications
was performed in [40]. Unfortunately, even though we can

minimise the KLD to obtain the PHD/CPHD filters, we
cannot obtain closed-form formulas for the resulting KLD.
Nevertheless, we could always approximate the resulting KLD
using Monte Carlo integration by drawing samples from the
prior so that we could analyse the performance for different
parameters/implementations in a mathematically rigorous way.

APPENDIX

In this appendix we prove Theorem 2. A general RFS
density π (·) can be written as [6]

π ({x1, ..., xn}) = ρπ (n)n!πn (x1, ..., xn) (46)

where πn (·) is a permutation invariant vector density. Note
that given π (·) we can recover ρπ (·) by (6) [7].

Using (8), we get

D (π ‖ν ) =

ˆ
π (X) log

π (X)

ν (X)
δX

=

∞∑
n=0

1

n!

ˆ
π ({x1, ..., xn})

× log
π ({x1, ..., xn})
ν ({x1, ..., xn})

d (x1, ..., xn)

=

∞∑
n=0

ρπ (n)

ˆ
πn (x1, ..., xn)

× log
ρπ (n)πn (x1, ..., xn)

ρν (n)
∏n
j=1 ν̆ (xj)

d (x1, ..., xn)

=

∞∑
n=0

ρπ (n) log
ρπ (n)

ρν (n)

+

∞∑
n=0

ρπ (n)

ˆ
πn (x1, ..., xn)

× log
πn (x1, ..., xn)∏n

j=1 ν̆ (xj)
d (x1, ..., xn) .

The objective is to find ρν (·) and ν̆ (·) that minimise
D (π ‖ν ). From KLD minimisation over discrete variables, it
is clear that ρν (n) = ρπ (n) minimises the KLD. Minimising
the KLD w.r.t. ν̆ (·) is equivalent to minimising the functional

L [ν̆] = −
∞∑
n=0

ρπ (n)

ˆ
πn (x1, ..., xn)

× log

n∏
j=1

ν̆ (xj) d (x1, ..., xn)

= −
∞∑
n=0

ρπ (n)

n∑
j=1

ˆ
πn (x1, ..., xn)

× log ν̆ (xj) d (x1, ..., xn) .

As πn (·) is permutation invariant, the n integrals have the
same value. In addition, the marginal PDF of πn (·) over any of
its variables is the same. Therefore, if we denote the marginal
as

π̃n (x) =

ˆ
πn (x, x2..., xn) d (x2, ..., xn)

=
1

ρπ (n)n!

ˆ
π ({x, x2, ..., xn}) d (x2, ..., xn)
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we obtain

L [ν̆] = −
ˆ ∞∑

n=0

ρπ (n)nπ̃n (x) log ν̆ (x) dx.

By KLD minimisation over vector densities, we know that this
functional is minimised if [41]

ν̆ (x) =

∑∞
n=0 ρπ (n)nπ̃n (x)∑∞

n=0 ρπ (n)n

=

∑∞
n=0

n
n!

´
π ({x, x2, ..., xn}) d (x2, ..., xn)∑∞

n=0 ρπ (n)n

=

∑∞
n=0

1
n!

´
π ({x, x1, ..., xn}) d (x1, ..., xn)∑∞

n=0 ρπ (n)n

=
Dπ (x)∑∞

n=0 ρπ (n)n
.

As in the minimum ρν (·) = ρπ (·), we get Dν (·) = Dπ (·),
which completes the proof of Theorem 2.
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