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Abstract

We present an ab initio numerical tool to simulate surface resonant x-ray diffrac-

tion experiments. The crystal truncation rods and the spectra around a given x-ray

absorption edge are calculated at any position of the reciprocal space. Density func-

tional theory is used to determine the resonant scattering factor of an atom within its

local environment, and to calculate the diffraction peak intensities for surfaces covered

with a thin film or with one or several adsorbed layers. Besides the sample geometry,

the collected data also depend on several parameters, such as beam polarization and

incidence and exit angles. In order to account for these factors, a numerical diffrac-

tometer mimicking the experimental operation modes has been created. Finally two

case studies are presented in order to compare our simulations with experimental spec-
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tra: i) a magnetite thin film deposited on a silver substrate, and ii) an electrochemical

interface consisting of bromine atoms adsorbed on copper.

1 Introduction

Surface x-ray diffraction (SXRD) is widely used to solve the atomic structure at the surface

of single-crystals.1 The use of synchrotron radiation is mandatory in order to get a sufficient

sensitivity all along the crystal truncation rods (CTR), that is in between the bulk Bragg

peaks perpendicularly to the investigated surface. One of its advantage is that in situ

and even operando measurements can be performed, for example within an electrochemical

environment or during a catalytic reaction.2,3 On the other hand, X-ray absorption near

edge spectroscopy (XANES) is highly sensitive to the oxidation states considering the edge

energy shift compared to a known reference.4 This sensitivity is even higher when using

resonant x-ray diffraction (RXD). For instance RXD was used to quantitatively evaluate the

charge ordering in the case of magnetite at low temperature5. Recording spectra across an

energy range corresponding to an absorption edge is also possible in SXRD configuration.

In this case, measurements are performed at specific points of the CTR, sensitive to the

surface atoms to be probed and as in 3D diffraction, spectra exhibit large intensity variations

around the edge. The so-called surface resonant x-ray diffraction (SRXRD) is therefore

expected to be sensitive on both the surface and the electronic structure around the absorbing

elements. For instance Chu et al.6 have observed the core-level energy shift associated to

the oxidation state at the surface of Pt(111). Nevertheless, a thorough understanding of the

recorded spectra has not been achieved yet and remains only qualitative.7 Menzel et al. used

the FEFF ab initio simulation code to get the atomic form factors. Due to the lack of a

complete simulation framework, they are calculated without accounting for their dependence

on the momentum transfer, and additionally, non-equivalent absorbing atoms with their own

geometrical surrounding and symmetry can not be considered.

2

Page 2 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The SXRD data can be refined using existing fitting tools, such as ROD developed by

E. Vlieg8. This program has been extended in order to include anomalous atomic form

factors implying to record two sets of data: one far from any absorption edge and one at a

specific edge.9 This increases the sensitivity on the surface parameters, especially the ones

concerning the resonant atom. But it does not give access to the electronic parameters. Up

to now, the rare simulations already performed7 did not include all the non-equivalent atoms

or the complete dependence on the momentum transfer. This work aims at filling this lack

and presents an ab initio way to simulate the corresponding spectra, as well as the CTR,

acquired at different incident x-ray energies.

FDMNES10,11 is a self-consistent ab initio code, already extensively used to simulate

XANES and RXD. Its Density Functional Theory (DFT) full potential approach makes it

especially appropriate for simulating absorption edges of chemical elements embedded in

non-close packed surroundings or in low symmetry sites. Relativistic calculations including

spin-orbit give access to the heaviest chemical elements. Additionally, SRXRD, as XANES,

is only poorly sensitive to the band gap or to the finest features specific to correlated mate-

rials. This all together makes the FDMNES code suitable for any kind of materials without

restrictions. We present here a new capability of FDMNES, keeping the user-friendly phi-

losophy. The experimental conditions must be easily reproduced in order to retrieve the

relevant parameters governing the recorded signal. For this purpose the code now includes

a virtual diffractometer mimicking the operation modes of most experiments. By this way,

the beam polarization, incident and exit angles are automatically calculated for any value

of the diffraction vector and all along the crystal truncation rods.

The paper is organized as follows: in section 2 the main theoretical elements of SRXRD

are recalled. Section 3 is devoted to the implementation in the FDMNES code and to

the characteristics of the calculation. We present in section 4, the virtual diffractometer.

Section 5 presents two applications, showing the comparison between experimental data and

simulated spectra of the Fe K-edge in magnetite on silver and K-edge of bromine on copper.
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2 Surface resonant x-ray diffraction

The theory of SRXRD is mostly common with the one of SXRD which can be found in

review papers12,13; therefore in this section, we just recall its basic relations, with some focus

related to the resonant extension and some practical specificity related to our technique of

calculation. Because we want to perform simulations at crystal surfaces, but also for ultra

thin films deposited on substrate, some overlap will occur with resonant x-ray reflectivity as

done by Elzo, Grenier and collaborators in the Dyna code14, using a dynamical approach.

Nevertheless remaining in the hard x-ray energy range, we keep the kinematic approxima-

tion, except for the damping inside the bulk discussed later. We neglect the refraction and

consequently results at grazing incidence are not yet valid. This limitation will be overcome

in the very near future. We now present the different components governing this technique.

2.1 Bulk and Surface

In surface crystallography it is convenient to separate the 2D unit cell between the bulk

contribution where the atomic (and electronic) structure is supposed as in an infinite crystal

and the surface which includes the substrate topmost atomic layers and the eventual adsorbed

layers. In all this paper we thus call bulk, the semi-infinite part of the substrate keeping the

non-distorted bulk geometry. The substrate contains thus the bulk, plus some layers possibly

with relaxation or super-structure. Note that even with very weak geometrical distortions,

the electronic structure of the topmost substrate layer is different from the ones deeper in

the bulk. This implies a high level of anisotropy in the scattering amplitude, which must be

calculated separately. The structure factor can thus be written as:

F (Q , ω) = Fsurf + Fbulk , (1)

were Q = k s−k i is the momentum transfer, or scattering vector, k i(s), being the momentum

of the incoming (outgoing) photon beam. h̄ω is the photon energy. The bulk structure factor,
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Fbulk, is obtained by summing the structure factors of all the individual 3D unit cells, Fu,

up to the infinity deep in the bulk. By this way we simply get:

Fbulk =
1

1− e−iQ ·c.e−η
Fu , (2)

where we use a bulk unit cell (a , b, c) with a and b parallel to the surface, and c not

necessarily perpendicular to it. The e−η term represents the wave damping between two

unit cells, described later in section 3.3.

2.2 Thin film

When a film, thicker than typically 2 or 3 unit cell parameters is deposited on a substrate,

the parametrization of all the inter-layer distances becomes pointless. More importantly, in

our DFT approach, as shown in section 3, the calculation of the resonant form factor of all

the non-equivalent absorbing sites becomes too time consuming, but also in fact unnecessary.

Indeed, for an atom which is inside the film but at distances to both interfaces higher than

typically 5 or 6 Å, its form factor is nearly identical to the one in a perfect bulk material.

We thus have built the possibility to split the film in 3 parts. The first one contains the top

most atomic layers of the film where all form factors are calculated in their 2D periodical

environment. The second one is the inner part of the film and the 3D periodicity applies,

thus the form factors are calculated as in a 3D bulk geometry. The third part is the interface

between the film and the bulk which typically contains the film deepest and substrate topmost

atomic layers. The form factors are calculated, as for the surface, using the local atomic

geometry and not the 3D undistorted bulk one.

2.3 Cap layer

It is quite common to use a cap layer to protect the film from contamination (see example

in section 5.1). This layer must be weakly adsorbed on the film, but it can happen that it
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is partially ordered. Fortunately this order is, most often incommensurate with the studied

surface itself. It nonetheless can be seen in the specular reflection. We have thus also

introduced this possibility in our calculations.

2.4 Structure factor

Including all terms considered here, the total structure factor can be written as:

F = Fcap + Fsurf + Fper + Fint + Fbulk , (3)

where the subscripts cap, per and int stand respectively for the cap layer, the inner (period-

ical) part of the film, and the interface between film and bulk. Each of these contributions

can be written as:

FA (Q , ω) = nAφA (Q)
∑

a

paratae
−iQ ·Ra (fa + f ′

a (ω)− if ′′
a (ω)) , (4)

where the index A means any of the slabs cap, surf , per, int or bulk. a indexes the atoms,

at position Ra, in absolute unit, of A. fa is the non resonant form factor, sum of the

Thomson term and the magnetic non resonant term. f ′
a− if ′′

a is the resonant, or anomalous,

contribution. We have kept the common convention in x-ray diffraction: f ′′
a > 0. It is seen

as a simple correction in standard SXRD. It is, in this paper, the important term because

it depends strongly on the photon energy. It also depends on the incoming (outgoing) beam

polarizations, ǫi(s) when symmetry is not cubic as it is always the case in presence of surface

or interfaces.

pa is the occupancy rate of the atom a. For the substrate, the film and the cap layer,

surfaces or interfaces roughness can be used. We have just coded the model corresponding

to a Gaussian distribution of the terrace heights, which is equivalent to the occupancy rate

ra = 0.5erfc
(

za−z0√
2σ

)

. σ is the root mean square roughness parameter, z the direction

perpendicular to the surface, z0 the interface origin and za the atom position. In practice,

6
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Fbulk (Eq. 2) is calculated for a semi-infinite bulk with full occupancy. z0 is set at the half

of the inter-reticular distance from the topmost bulk layer. Then, the roughness is obtained

first, by adding layers with za > z0, giving ra < 0.5, second subtracting the atomic form

factor weighted by the missing occupancy (1 − ra) for the same number of layers but with

za < z0.

The effect of the thermal disorder is given by ta (Q) = e−0.5u2
aQ

2

, where u2a is the atomic

mean square displacement.

It is possible to describe the different components with their own unit cell parameters.

When they are different, it is possible to choose either the bulk or the film lattice parameters

as reference (ref). When they are commensurate, the super-cell is automatically taken into

account. The ratio between the surface of the 2D unit cell, of the reference, Sref , and

of the considered slab, SA, that is nA = Sref/SA, gives the correct relative weight, when

summing all components. When the ratio is not rational, this number becomes zero when

we are considering neither a diffraction peak nor a CTR from the reference unit cell, nor the

specular reflection. φA (Q) = e−iQ ·OA is the phase factor associated to the chosen origin,

OA, of the slab A. It is related to the inter-layer distance (in the 3 directions) between A

and the slab just below.

3 Ab initio calculation

3.1 FDMNES

The specificity of SRXRD versus SXRD, is that the resonant form factors of the absorbing

atoms strongly depend on the local environment, both geometrical and electronic. To retrieve

useful information, it is better to calculate these terms following a first principle theory.

The FDMNES code is an ab initio software, which allows simulation of x-ray absorption

spectroscopy as well as x-ray resonant and non-resonant scattering spectroscopies. One of its

main characteristics is that two different techniques can be independently used to solve the

7
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electronic structure. The full potential finite difference method (FDM) precisely applies for

arbitrarily shaped potentials15, while full multiple scattering theory (MST) gives rise to less

precise but faster calculations. The calculations can be applied for all classes of materials and

it is especially efficient for the K-edge of all elements and the L23 edges of the heavy ones.4

Note that a Time Dependent DFT (TDDFT) extension expands the scope of the software

to the other edges16. Importantly a recent numerical development in FDMNES within the

FDM framework17 makes this code up to 40 times faster than it was before. The response

functions of most materials can thus now be computed on conventional personal computers.

3.2 The resonant form factor

Here we have to calculate the resonant atomic form factor:

f ′ − if ′′ = mω2
∑

n,g

〈ϕg |ô
∗
s|ϕn〉 〈ϕn |ôi|ϕg〉

h̄ω − (En − Eg) + iΓ/2
, (5)

where g indexes the atomic core states whereas n indexes the excited (or intermediate)

states, above the Fermi level. Eg and En are their energies, m is the electron mass and Γ an

energy dependent broadening related to the hole and intermediate state lifetimes. We have

directly written the formula within a mono-electronic approach avoiding thus a summation

over all the electrons of the system. When considering only the electric transition up to the

quadrupolar term, the transition operator is given by ô = ǫ · r + i
2
(ǫ · r) (k · r), where r

is the position. In Eq. 5, the index on the operator recalls that the incoming and outgoing

polarizations and wave vectors are in general different. Their orientation in the sample frame

results from the chosen operation mode as seen in section 4.

What is calculated using the first principle approach are the photoelectron states n in the

formula above. Whatever the method, FDM or MST, FDMNES uses a cluster approach. In

this one, the absorbing atom is, by default, set at the center of the cluster of atoms according

to its surrounding geometry and with a radius typically up to 5 to 7 Å. Inside this cluster the

8
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electronic structure is solved, possibly in self-consistently way, then a last step calculates the

n states from the Fermi level up to the energy covered by the experiment. The calculation of

Eq. 5 is then fast and direct. This procedure is repeated for all the non equivalent absorbing

atoms of the 2D unit cell. The core level energies of all the atomic sites being calculated, the

spectra are calculated versus the photon energy and not the photoelectron kinetic energy,

giving thus sensitivity on the edge shifts related to the different oxidation states.

3.3 Self absorption in the bulk

As seen from Eq. 2, one needs to calculate the self absorption in the bulk, taking into account

the incoming and outgoing beam absorption, and given by e−η where η is:

η (ω) = cos (γz) c

(

µi (ω)

sin (α)
+

µs (ω)

sin (β)

)

, (6)

where γz is the angle between the normal to the surface and c. µi and µs are the linear

absorption coefficients corresponding to the incoming and scattered beams. When the bulk is

not cubic or when we consider the quadrupolar term, they are most often different. Anyway,

at this stage it is sufficient to take their spherical average.

When there is no atom of the calculated edge in the bulk, this scheme can be simplified,

and the linear absorption coefficient can be taken as isotropic and constant. Otherwise, this

one is calculated following our DFT procedure. It is important because its value at the edge

changes dramatically, and consequently the sensitivity on the bulk itself strongly decreases

when the absorption is maximum, typically at the white line just after the edge.

3.4 Intensity calculation

The final intensities I (Q , ω) = |F/Sref |
2 are then calculated according to the equations 2,

3, 4, 5, and 6, including both resonant and non resonant atoms, and using the polarization

conditions resulting from the different operation modes. Calculations can be performed

9
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using only a bulk and some surface layers, or using a thicker film as stated above. Special

outputs to get both the CTR at any energy or the spectra at any L value of the CTR are

offered. Note also that FDMNES allows the comparison of data and calculated spectra using

R-factor. A complete fitting procedure is nevertheless still in progress.

4 Virtual diffractometer

The operator ô of the resonant atomic form factor in Eq. 5, depends on the polarization and

wave vector direction of both the incoming and scattered waves. The self-absorption in the

bulk related to the η factor in Eq.2 depends on paths of the beam, that is on the incidence

and exit angles. To perform the simulation of SRXRD, one thus needs to know all these

vector directions and angles at any value of the scattering vector, that is at any point on the

truncation rods.

Furthermore, the experiments are performed using different diffractometer types with

3, 4, 5 or 6 circles, each of them bringing one of the angles governing the position of the

sample or of the detector. A series of papers has demonstrated the formulas giving all these

angles: Busing and Levy for the classical 3 and 4 circle18, followed by systems specifically

designed for surface crystallography as the one by Evans and Lutterodt for the so-called

’2+2’ diffractometer19, E. Vlieg and coworkers for a 520, and Lohmeier and Vlieg for a 6

circle diffractometer21. Specific geometry often used in surface diffraction as the z-axis mode

has been studied by Mati Block22 and finally H. You23 did a study concerning also up to the

6-circle diffractometer, but in fact general. This paper also contains a table specifying in a

general way the possible operation modes. This same table, slightly modified, was further

implemented by the authors of the c©Spec software24 driving many of the diffractometers

used widely. Because most users use the operation modes defined by this table, in our coding,

we have followed You’s relations given in his paper, amended for some typo mistakes and

extended for not studied cases. These relations give the diffractometer angles, but also the
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incidence and exit angles and the direction of the polarizations and wave vectors.

We will not remake here the demonstration which can be found in You’s paper but this

one is obtained making the equality between the scattering vector and the reciprocal space

vector, H , for a given orientation by the diffractometer rotation circles, in the laboratory

frame where ǫi and ki are known:

Q = ZUBH , (7)

where B is the matrix to write H in Cartesian coordinates, U , the orientation matrix, which

relates the crystal Cartesian coordinate system to the laboratory frame and finally Z is the

product of all rotation matrices. From this plus 3 chosen conditions on the angles, all the

other angles can be calculated. These chosen conditions on the angles are called operation

modes. The You’s table, modified in c©Spec, allowing their definition is:

Table 1: Diffractometer angles or condition on the angles governing the possible operation
modes. The choice of 3 of them in 3 different columns defines the operation mode.

Detector Reference Sample Sample Sample
1 δ α = β η η η
2 ν α µ µ µ
3 Qz β χ χ χ
4 Nz ψ φ φ φ
5 . . η = δ/2 η = δ/2 η = δ/2
6 . . µ = ν/2 µ = ν/2 µ = ν/2

In the table, δ and ν, are the polar and azimuthal angles of the detector, Qz and Nz are

the azimuthal rotation angles of the scattering vector and of the normal with respect to the

sample surface in the laboratory reference frame. α and β are the incidence and exit angles

to the surface, ψ is a pseudo angle giving the sample azimuth around the scattering vector.

φ, χ, µ and η are the 4 sample rotation angles. A figure showing all these angles can be

found in You’s paper. The operation mode is done by fixing 3 of these angles or conditions

on these angles, taking them in 3 different columns of the table 1.

It is important to note that many setups use in fact only 4 circles. This means that 2
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angles are imposed by construction and the freedom on the operation modes concerns thus

in practice only one condition, very often chosen in the Reference column of the table. For

example in the 4-circle z-axis mode diffractometer, χ is fixed to zero and thus, the sample

is vertical in the laboratory frame. Consequently, the sample, µ, and detector, ν, rotation

circles, not stacked in the same way, give directly the incidence and exit angles α and β.

Another consequence is that φ is by convention fixed to zero because it has the same rotation

axis than η and becomes redundant, except for the correction of small misalignment. Note

also that, in this mode, the incoming polarization is usually π, that is in the incidence plane.

The interest for us is that using this way, as stated above, we recreate the corresponding

experimental conditions, and thus the orientations of the vectors k i, k s, ǫi, ǫs in the sample

frame, and the angles α and β. In addition, the obtained diffractometer angles allow the

comparison of their values with the experiment and thus to check that all is consistent.

5 Application

5.1 Magnetite thin film

At TV ≈ 120 K, magnetite undergoes a metal-insulator transition explained by a charge

ordering phenomenon.25 The context of this study concerns the searching of this transition for

a very thin film, grown by molecular beam epitaxy on Ag(001). In this paper we nevertheless

just want to give an example of our simulation technique in a complex system and we analyze

thus only the data recorded at 130 K, that is above TV . The film thickness is supposed to

be about 74 Å, that is 8.75 unit cells of the room temperature phase. A gold cap layer

covers the film in order to protect it. The SRXRD measurements were conducted at BM02

(D2AM), a French-CRG beamline at the ESRF, Grenoble.

The film grows epitaxially, (001) oriented and with unit cell parameters incommensurate

with the substrate. It presents a tetrahedral distortion from the room temperature (RT)

3D cubic phase, where a = 8.394 Å. Indeed we found a = b = 8.29(1) Å and c = 8.454 Å.
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We used these Fe3O4 unit cell parameters as reference for the reciprocal space indexation.

For the Ag substrate, we found a = 4.0675(40) Å , thus slightly contracted as it must be,

compared with its RT value. Fig. 1 shows the specular truncation rod, recorded at 130 K

and at 7112 eV. Experiments were performed for this reflexion using the so-called 242 mode

that is following the table 1, with ν = 0, ψ = 0 and µ = 0. Polarization is thus parallel to

the surface. Dependence on the azimuth (given by ψ) is in this case very small but at L = 2,

not considered here. It is corrected to take into account the sample surface illuminated by

the x-ray beam and the small slit width. We observe the film Kiessig fringes related to the

film thickness as in traditional reflectivity. The growth along the Fe3O4(001) direction is

revealed by its Q = (004) Bragg peak, while the Ag(002) stands at L = 4.14. At about

L = 3.5, a broad Au(111) reflection can be seen, showing that the cap layer presents some

small correlation length along this direction. It nevertheless presents no of its own Kiessig

fringes, and thus a very large roughness, potentially with a 3D morphology. It is indeed

known that Au forms 3D clusters on magnetite in this thickness range.26 Moreover we also

found that the fringes mainly correspond to the magnetite which is of high quality.

To calculate the spectra it is mandatory to have first a satisfactory accord on the CTR,

because it gives the contribution on the scattered amplitude of the substrate and of the cap

layer. We used 5 Å cluster radius and the Multiple Scattering Theory to get the Fe form

factors. Larger radius and FDM usually give better agreement but the number of unknown

structural parameters makes for the moment more precise calculation non useful. In such

system it is quite complex, because the morphology of the cap layer is itself rather unknown.

In order to get the agreement shown in Fig. 1, we used a 20 Å cap thickness but with a

0.18 occupancy rate and a 8 Å root mean square roughness at the Au/vacuum interface.

The distance between top most magnetite layer and bottom most gold layer is 2.7 Å. To

describe the magnetite film we used a simple periodical model without interface and surface

slabs. The corresponding film is found to be 71.2 Å thick at 2.4 Å from the Ag substrate

and with a 2 Å root mean square roughness at its interface with gold. The roughness at the
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film/Ag interface is small (0.8 Å) but mandatory to get the resulting agreement, specially

between L = 0.5 and 3.5 where the resulting decrease of Fbulk is the stronger. We also found

a sensitivity on the phase factor of the film versus the Ag substrate one and we found a

better agreement when the bottom most atom of the film is a Fe octahedral site than when

it is an Fe tetrahedral site or an oxygen site. We nevertheless think that the data set is not

sufficient to give a full description of the Fe3O4/Ag interface.

Figure 1: Crystal truncation rod of the specular reflection in Fe3O4 on Ag(001). The photon
energy is 7112 eV and the polarization is perpendicular to the incident plane. The L index
is calculated using the magnetite unit cell parameters. Black dots are the experimental data
corrected to take into account the slit width, and the red full line is the simulation. The Au
cap layer being partially ordered participates to the signal around L = 3.5.

In Fig. 2, we show the spectra measured at L = 1 and 130 K and the fluorescence signal.

The simulations were performed using the usual RT phase but tetrahedraly distorted as

stated above. We clearly see the main features of the iron K-edge in magnetite despite the

noisy and low intense signal. The (001) reflection is forbidden in the RT space group. Thus

magnetite signal, at this L value, comes from the atomic layers which are not cancelled out,

due to the roughness at both magnetite interfaces, and by the remaining un-complete 0.42

unit cell, on top of the 8 complete ones and corresponding to a 3.568 Å magnetite slab.

Another possibility can be conjectured: the strain decreases more the symmetry than the
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simple tetrahedral transformation, making the (001) reflection not anymore forbidden even

above TV . Note also that in the (001) data, the fluorescence being far less intense than

the scattering cross section, the increase at the energy edge cannot be attributed to this

phenomenon.

Figure 2: Fluorescence (bottom) and Q = (001) SRXRD spectra (top) around the Fe K-edge
in Fe3O4 on Ag(001). Black dotted line is the experiment, red full line is the simulation.
Despite the very low signal at the forbidden L value, the signal is mainly reproduced.

Our most important result is that we are able to simulate both resonant spectra and

truncation rods in a very complex system. The agreement on the spectra is not excellent

in this case, the full structure being not well known and the data itself being not very

well resolved. Better reproduction of the spectra could nevertheless be obtained using the

interface and surface options as proposed in section 2.2. This will also need a larger data

set with non-specular CTR and more importantly a large number of spectra recorded at

different L values on the CTR. Next section show a better agreement on another system.

Nevertheless we open the possibility of the analysis of data recorded at temperatures below

the Verwey transition and thus the way, using simulations, to verify the charge ordering
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phenomena observed in bulk magnetite.

5.2 Bromine on copper

The context of this study concerns the probe of charge transfer and nature of the chemical

bonding at an electrochemical interface.27 Br adsorption onto Cu(001) is an ideal system

for attempting SRXRD measurements, as the Br halide anions form simple ordered c(2x2)

adlayers on the Cu(001) surface with adsorption uniquely into the 4-fold Cu hollow site28,29.

The data were recorded in situ at the BM28 (XMaS), the UK-CRG beamline at the ESRF,

Grenoble. The (0,1,0.2) position in reciprocal space which corresponds to the signal of the

c(2x2) superstructure induced by adsorption of the bromine was recorded at the Br K-edge

in the Cu(001)-halide electrochemical systems. The (1,1,0.2) position was probed for the

Cu K-edge, as this is the most surface sensitive position of the CTR. The measurements

performed with polarization parallel and perpendicular to the scattering plane, show strong

differences giving thus a clear sensitivity on the local electronic structure (Fig. 3).

For the simulation we have used the atomic positions and mean square displacements from

Saracino and coworkers28,29. At this stage, we have performed a self-consistent simulation to

get the electronic structure and calculated the unoccupied states to obtain the form factors,

using the finite difference method. This point is mandatory to get a satisfactory agreement

in this kind of system where symmetry is very low. The cluster radius was fixed to 6 Å for

both steps. This simple approach gives a good agreement for both polarizations and at both

edges without any further optimization.

Though the comparison is difficult between studies on different compounds and at dif-

ferent edges, the agreement between the data and the model presented in Fig 3 is clearly

better than the one found by Menzel et al.7 using partly an ab initio procedure. On the

contrary the agreement obtained by Chu and coworkers6 is very good. Nevertheless their

study is not ab initio, the atomic form factor was deduced from the fluorescence spectra and

the oxidation of the metal was mimicked by a simple shift in the energy scale corresponding
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Figure 3: SRXRD spectra at the Br (bottom, Q = (0, 1, 0.2)) and Cu (top, Q = (1, 1, 0.2))
K-edges in the Br c(2x2) adlayer on Cu(001). The linear dichroism is strong and show the
sensitivity on the local electronic structure. The agreement between simulation (full line)
and experiment (dotted) is good on both polarizations and at both absorption edges.
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to a change in the bounding energy. This shift was found to be 9 eV which is higher than

typical values in metal oxides.

The ab initio simulation includes the calculation of the electronic states around the

absorbing atoms. Their projection can be obtained , resolved in ℓ and m, the quantum

number of the spherical harmonics, inside the atoms. To illustrate this, we show in Fig.

3 the density of states (DOS) integrated in the Br atom as well as in the different non

equivalent copper atoms. Only the energy range below the Fermi level is shown; above the

Fermi level the p-DOS is nearly proportional to the imaginary part of the form factor. Br

presents a peculiar feature, mainly 4px and 4py below -7 eV. More importantly we can see

the correspondences of several peaks at the same energy as -2.80 and -2.68 eV between the

Br and the copper atoms in layer 1 (Cu1) and layer 2, Cu2a which is in the 2nd atomic

Copper layer below the Br atom, and Cu2b, which is in the 2nd atomic copper layer below

an unoccupied hollow site. We have also plotted the 3dz2 and 4pz-Cu states and the 4pz-Br

states to check the hybridization and band effect on these peculiar projections. The peak at

-4.6 eV in Cu2a and Br reveal the hybridization 3dz2-4pz-Cu2a giving a slight electric moment

on this atom toward the apical Br. At the same energy a peak in the 4pz-Br states is found

which reveals a specific bonding. Because it is a de-localized state, it can also be seen in the

other components of the 3d states of Cu2b. One can also verify that at the second Cu layer,

surface states are still important, the DOS being not yet similar to the Cu bulk atom ones.

FDMNES does not give Mullikan analysis of the orbital occupancy, but the integration up

to the atomic radius is nevertheless a good indication of it for the localized orbital. We found

a 3d9.7 configuration for Cu1. The results for the other copper atoms are close but to have a

more realistic convergence, we would have to include the effect of the disordered counter-ions,

the so-called Helmholtz layer above the Br atoms. The interest of this approach is that when

the fitting of the structural parameter by comparison to the data is good, the associated DOS

must also be correct. In this way, one gets at the same time the geometric structure and

the electronic structure of the investigated surface, which opens up the possibility to obtain
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Figure 4: Density of state of the non equivalent atoms, from the Br (top), to the top most
Cu1, the second layer Cu2a and Cu2b and the bulk copper, CuBulk. This scheme illustrates
the surface states in the top most Cu and Br layers, before converging to the bulk copper
states. The origin of the energy scale is the Fermi energy.
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detailed insight into the bonding at electrochemical surfaces and for surfaces under reactive

condition which do not allow for UHV spectroscopic studies.

6 Conclusion

We have presented a new tool allowing the ab initio simulation of surface resonant x-ray

diffraction. This one, written to be user friendly allows the simulation of both the crys-

tal truncation rods and the spectra at any point on them. This has been included in the

FDMNES code which allows full potential calculation and thus to be very precise for calcula-

tion at the K-edge of all elements and at the L23 edges of the heavy ones. Being also adapted

to magnetic calculation, many applications can be considered. The TDDFT approach in-

cluded in FDMNES could also allow such simulations at the L23 edges of 3d transition metal

atoms. Some extensions still need to be included as for example easy fit procedure on the

crystallographic parameters, non-spherical Debye model for the surface atoms, or dynamical

aspects giving the refraction effect at the interfaces. This last point can be important when

working at grazing incidence, close to the critical angle. Around an edge, it is even possible

that the refraction index value can be greater or less than 1. In the case of electrochemical

interface, we can also add that a completely satisfactory evaluation of surface atoms valence

state must need the taking into account of the Helmholtz layer. Nevertheless we have already

shown in this paper that our approach works for the study of two very different systems:

a thin magnetite film on silver and a Br layer adsorbed on copper in an electrochemical

interface.
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(16) Bunău, O.; Joly, Y. Time-dependent density functional theory applied to x-ray absorp-

tion spectroscopy. Phys. Rev. B 2012, 85, 155121, The code.

(17) Guda, S. A.; Guda, A. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lam-

berti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y. Finite

difference method accelerated with sparse solvers for structural analysis of the metal-

organic complexes. J. Phys.: Conf. Ser. 2016, 712, 012004.

(18) Busing, W. R.; Levy, H. A. Angle calculations for 3- and 4-circle X-ray and neutron

diffractometers. Acta Crystallographica 1967, 22, 457–464.

(19) Evans-Lutterodt, K. W.; Tang, M. T. Angle Calculations for a ‘2+2’ Surface X-ray

Diffractometer. Journal of Applied Crystallography 1995, 28, 318–326.

22

Page 22 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(20) Vlieg, E.; Van der Veen, J. F.; Macdonald, J. E.; Miller, M. Angle calculations for a

five-circle diffractometer used for surface X-ray diffraction. Journal of Applied Crystal-

lography 1987, 20, 330–337.

(21) Lohmeier, M.; Vlieg, E. Angle calculations for a six-circle surface X-ray diffractometer.

Journal of Applied Crystallography 1993, 26, 706–716.

(22) Bloch, J. M. Angle and index calculations for ‘z-axis’ X-ray diffractometer. Journal of

Applied Crystallography 1985, 18, 33–36.

(23) You, H. Angle calculations for a ‘4S+2D’ six-circle diffractometer. J. Appl. Cryst. 1999,

32, 614.

(24) Inquiry on this code can be obtained at the web address:

https://www.certif.com/content/contact/.

(25) Verwey, E. J. W. Electronic Conduction of Magnetite (Fe3O4) and its Transition Point

at Low Temperatures. Nature 1939, 144, 327–328.

(26) Spiridis, N.; Socha, R.; Handke, B.; Haber, J.; Szczepanik, M.; Korecki, J. Clustersup-

port interaction in AuFe3O4 system. Catalysis Today 2011, 169, 24 – 28.

(27) Gründer, Y.; Lucas, C. A. Probing the charge distribution at the electrochemical inter-

face. Phys. Chem. Chem. Phys. 2017, 19, 8416–8422.

(28) Gründer, Y.; Kaminski, D.; Golks, F.; Krug, K.; Stettner, J.; Magnussen, O. M.;

Franke, A.; Stremme, J.; Pehlke, E. Reversal of chloride-induced Cu(001) subsurface

buckling in the electrochemical environment: An in situ surface x-ray diffraction and

density functional theory study. Phys Rev B 2019, 81, 174114.

(29) Saracino, M.; Broekmann, P.; Gentz, K.; Becker, M.; Keller, H.; Janetzko, F.; Bre-

dow, T.; Wandelt, K.; Dosch, H. Surface relaxation phenomena at electrified interfaces:

23

Page 23 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Revealing adsorbate, potential, and solvent effects by combined x-ray diffraction, STM

and DFT studies. Phys. Rev. B 2009, 79, 115448.

24

Page 24 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

 

 

85x48mm (96 x 96 DPI)  

 

 

Page 25 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


