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Abstract

In this paper we advance the state-of-the-art on the application of second-order propo-
sitional modal logic (SOPML) in the representation of individual and group knowledge,
as well as temporal and spatial reasoning. The main theoretical contributions of the
paper can be summarized as follows. Firstly, we introduce the language of (multi-modal)
SOPML and interpret it on a variety of different classes of Kripke frames according to the
features of the accessibility relations and of the algebraic structure of the quantification
domain of propositions. We provide axiomatisations for some of these classes, and show
that SOPML is unaxiomatisable on the remaining classes. Secondly, we introduce novel
notions of (bi)simulations and prove that they indeed preserve the interpretation of for-
mulas in (the universal fragment of) SOPML. We also define (bi)simulation games and
show them as powerful as (bi)simulation relations. Then, we apply this formal machinery
to study the expressiveness of SOPEL in representing higher-order knowledge, i.e., the
knowledge agents have about other agents’ knowledge, as well as graph-theoretic notions
(e.g., 3-colorability, Hamiltonian paths, etc.) The final outcome is a rich formalism to
represent and reason about relevant concepts in artificial intelligence, while still having
a model checking problem that is no more computationally expensive than that of the
less expressive quantified boolean logic.
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1. Introduction

Modal logic is nowadays a well-established area in mathematical logic, which has also
become one of the most popular formal frameworks in artificial intelligence for knowledge
representation and reasoning [9, 31]. This success is due to several reasons, including an
expressive and flexible formal language, which enjoys nice computational properties. In5

particular, at the core of the semantics of modal logic lies the notion of world, or state.
Indeed, this concept is very natural when studying computational notions (a system
evolving over time from a previous to a successive state), accounts of agency (states
that are preferred, desired, or epistemically possible), and of interaction (states that can
be winning, losing, terminal, initial, etc.) Indeed, distributed computing [29], reactive10

systems [47], multi-agent systems [37], and game theory [36] have all benefited from
the application of tools and techniques from modal logic, and this list is by no means
exhaustive. Most importantly, the worlds in the models for modal logic are connected
by means of indexed relations Ra, for some index a, which model (program) transitions,
epistemic or desired alternatives, or the effect of possible moves, where index a can assume15

a number of readings: a specific program, a dimension of time, say, future or past, an
agent, a move, etc. Each accessibility relation Ra in the semantics is then paired with a
necessity operator ◻a in the modal language, where a formula ◻aϕ is then true in a world
w of a model, if ϕ is true in every world v that is a-accessible from w (see Definition 9 for
a formal definition). Informally, this may be read as: after every execution of a, in each20

future time along dimension a, in every world considered possible or desired by agent a,
or in every world that is the result of performing move a, formula ϕ holds.

The language of modal logic provides a crisp, variable-free way of expressing a variety
of properties of interest. It is also important to realise that there is not just one modal
logic: although the well-known normal axiomatisation K characterises the class of va-25

lidities on all models for modal logic, this does not mean that all logics for, say, agency,
are the same and correspond to K. It only means that they are typically extensions of
K. As a simple example, the property (i) ◻aϕ→ ϕ appears reasonable when ◻a denotes
‘agent a knows that . . . ’, but is perhaps less desirable when it is read as ‘agent a believes
that . . . ’, as philosophically knowledge is analysed as truthful belief [33]. One of the30

reasons for the success of modal logic is that in many relevant cases a syntactic scheme
corresponds to an additional constraint on the accessibility relation Ra: in the case of
(i), reflexivity of Ra is, in a precise sense, sufficient and necessary for its validity.

To appreciate this point, we use a little bit more detail (we assume some familiarity
with modal logic, precise definitions are given in Section 2.) As already mentioned, central35

in the semantics of modal logic is the notion of (Kripke) frame F , which comprises of a
set W of worlds and accessibility relations Ra, for indices a ∈ I. We can then define a
notion of validity ⊧ on frames and formulate the result mentioned above as follows:

Ra is reflexive iff F ⊧ ◻aϕ→ ϕ, for all formulas ϕ (1)

Characterisations such as (1) are referred to as correspondence results [8], because
they establish a correspondence between a first-order property on frames (i.e., reflexivity)40

and a modal validity (i.e., (i)). Another example of correspondence is that between the
first-order formula ∀x∀y(Ra(x, y) → Rb(x, y)) and modal schema ◻bϕ → ◻aϕ, which
intuitively says that, e.g., whatever is achieved by program b, is also achieved by a, or
that a knows at least as much as b.
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Mathematically elegant and powerful as correspondence theory may be, it also has45

shortcomings. Firstly, note that in the case of (1), correspondence is defined globally, i.e.,
(i) has to be valid throughout the frame. This means that for instance (using a doxastic
reading of (i)), we cannot model situations in which a’s beliefs are true, but b does not
know that. Indeed, if the truthfulness of agent a’s beliefs is tantamount to the validity
of (i), then (ii) Kb(◻aϕ→ ϕ) is also a validity, enforcing agent b’s knowledge.50

Secondly, in (1) quantification appears at the meta-, and therefore the outermost,
level. It is therefore impossible to distinguish (and to express in the language of modal
logic) the following two situations: in the first, b knows that a has perfect information
and is a perfect reasoner, and therefore, b knows a priori that whatever a believes must
be correct. Informally, this would be represented as Kb( for all φ (◻aφ → φ)), which is55

not a well-formed formula however. In the second situation b has verified, for every ϕ
that a happens to believe, that ϕ is in fact true. Informally, this would be represented
as (for all φ, Kb(◻aφ→ φ)).

As observed in [3], by allowing for quantification over propositions – and thus ob-
taining the language of second-order propositional modal logic (sopml) – both issues60

mentioned above can be addressed. The formal definition of ∀pψ is given in Defini-
tion 9, but informally, given a valuation V which tells us in which worlds V (p) the atom
p is true, ∀pψ holds if for every V ′ that differs from V in at most the set V (p) (i.e.,
V ′(q) = V (q) for all q ≠ p), the formula ψ holds. As regards to the first example, the
sopml formula ∀p(◻ap → p) ∧ ¬Kb∀p(◻ap → p) intuitively expresses that all beliefs of65

agent a are correct, but b does not know this fact. Moreover, the two different readings in
the second example can be represented by formulas Kb∀p(◻ap→ p) and ∀pKb(◻ap→ p),
respectively. Readers familiar with the philosophy literature on the topic may recognize
the difference between Kb∀p(◻ap → p) and ∀pKb(◻ap → p) as the distinction between
de dicto and de re quantification.70

Importantly, the truth of ∀p(◻ap → p) at world w enforces the truthfulness of agent
a’s beliefs in w only, therefore this is a local property of the frame, as opposed to the global
validity of (i). This fact allows agent b to consider (epistemically) possible a different
world w′ in which (i) does not hold.

The aim of this paper is to further the applications of propositional quantification75

and second-order propositional modal logic in knowledge representation and reasoning,
through exploring and securing their theoretical foundations. In particular, the original
contributions of the paper can be summarised as follows.

Firstly, in Section 2 we introduce the language of multi-agent second-order proposi-
tional modal logic, and provide it with a semantics in terms of Kripke frames extended80

with a domain D of sets of worlds for the interpretation of quantification. The differences
between our definition and the existing definitions of sopml (e.g. [12, 22, 41]) are that
(i) in addition to the full, boolean and unrestricted domains of quantification that were
studied before, we also consider modal domains, and (ii) we use a multi-agent language,
which allows us to express higher-order properties of knowledge, i.e., knowledge about85

other agents’ knowledge, including truthfulness of knowledge, inclusion of one agent’s
knowledge in that of another.

In Section 3 we illustrate the richness of the formal framework, particularly to express
local properties in modal logic (lpml) [17, 18]. We compare and contrast our approach
with [19], and show that the latter can be subsumed in the account here put forward.90

This validates our endeavour from the viewpoint of applications. However, we maintain
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that for sopml to be adopted as a specification language in artificial intelligence and
knowledge representation, appropriate theoretical results and formal tools need to be
developed.

To this end, in Section 4 we present a number of results about the axiomatisation of95

several classes of validites. The key findings are that (i) with the exception of single-
agent S5, sopml is unaxiomatisable over all of the commonly used classes of frames,
when a full domain of quantification is considered; (ii) on frames with a coarser domain
of quantification, sopml without a common knowledge operator is axiomatisable, but
sopml* with common knowledge is unaxiomatisable in general. As a by-product we100

obtain several undecidability results.
Furthermore, in Section 5 we develop original truth-preserving bisimulations for

sopml. Bisimulations bring to the fore when two models can be considered the same,
and they can be used to test the limits of what can be expressed: when two models for
a language L are bisimilar but disagree on some property Φ ∈ L′, it shows that Φ is not105

expressible in L. We provide several instances of such occurrences. Then, in Section 5.3
we introduce games which characterise exactly these new notion of (bi)simulations. To
conclude, our main aim in this paper is to provide formal tools so as to facilitate the use
of sopml as a language for knowledge representation, as well as temporal and spatial
reasoning in artificial intelligence.110

1.1. Related Work.

This contribution is inspired by a series of papers on lpml, an extension of proposi-
tional modal logic to express local properties [17, 18, 19]. Here, instead of introducing
an ad hoc language (with an adjustment for each local property one has in mind), we
make use of the general framework of second-order propositional multi-modal logic. In115

Section 3 we provide a detailed comparison of the two approaches.
Mono-modal sopml was first considered in [12, 22, 41], mainly in relation with ax-

iomatisability and (un)decidability questions. In particular, [22] provided several axioma-
tisations for normal modal logics interpreted on a variety of classes of frames. However,
it considered only mono-modal languages, whereas here we adopt a multi-modal per-120

spective. Then, [41] proved an independence result on the axiomatisation of a class
of epistemic frames. Notwithstanding these early, significant results, the high compu-
tational complexity of sopml and some undecidability and unaxiomatisability results
might partially explain why sopml has been studied far less than propositional modal
logic, and it has been virtually unexplored as a specification language for knowledge rep-125

resentation and reasoning. For instance, only recently sopml has been proved complete
w.r.t. the algebraic semantics in which quantification is interpreted on arbitrary meets
and joints [38]. Here we consider a multi-modal version of sopml, and its epistemic
counterpart: second-order propositional epistemic logic (sopel).

Among the more recent contributions, [40] shows that there is a validity-preserving130

translation from second-order logic to sopml, for modalities weaker than or equal to
S4.2, implying that for these modalities sopml is unaxiomatisable. Hereafter we add
to the picture and show that multi-modal S5 is unaxiomatisable as well. Further, [13]
provided sopml with analogues of the van Benthem-Rosen and Goldblatt-Thomason
theorems; while in [23] propositional quantification and bisimulations are analysed in the135

context of modal logic. However, the kind of quantification considered in [23] is preserved
by standard bisimulations, and therefore the resulting logic is provably as expressive as
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epistemic logic, strictly weaker than sopml. In [43, 44] the author proves that the quan-
tifier alternation hierarchy of sopml formulas induces an infinite corresponding semantic
hierarchy over the class of finite directed graphs. As a by product, he obtains that, for140

this class of structures, sopml with the universal modality and Monadic Second-Order
Logic are equally expressive.

Propositional quantification has also been considered in the context of richer modal
languages, namely the temporal logics ltl and ctl. A quantified version of ltl, called
qltl, has been introduced and analysed in [53, 52], mainly in relation with the verifica-145

tion of reactive systems. In particular, the model-checking problem for the k-alternation
fragment was proved to be k-EXPSPACE-complete. More recently, [45] discusses qctl,
a quantified version of the braching-time temporal logic ctl. The authors prove sev-
eral complexity and expressivity results for a logic that has more modal operators than
sopml. They also consider two different kinds of semantics for their logic: the former150

is comparable to sopml on full frames, while the latter is based on tree-unwindings. To
our knowledge, no results are known about the relative expressivity of qctl and sopml.
It is also outside the scope of this paper to find such results, although it is an interesting
question for future research.

More directly related to the present contribution are [3, 4] by some of the authors.155

In [3] we introduced epistemic quantified boolean logic (eqbl), an epistemic variant of
sopml, and provided axiomatisability and model-checking results. Differently from the
reference, here we tackle general sopml, defined also on modalities strictly weaker than
S5. Indeed, in this paper we analyse all normal modalities. Moreover, we provide novel
unaxiomatisability and undecidability results, as well as give full details on the construc-160

tion of the canonical models to prove completeness. As regards [4], we define a novel
notion of (bi)simulation that generalises the one given therein. Most importantly, for
this new definition we are actually able to prove equivalence with (bi)simulation games.
This is in marked contrast with [4], where (bi)simulation relations are strictly stronger
than (bi)simulation games. Finally, we apply these results to analyse the expressivity of165

sopml in capturing relevant properties in temporal and spatial reasoning.
These investigations have been extended to public announcement logic (pal). Specif-

ically, in [5] the authors applied propositional quantification to pal to analyses arbitrary
public announcements and to formalise notions such as preservation, successfulness, and
knowability. Hereafter we do not consider such extensions and keep on a purely epistemic170

setting.

2. Preliminaries

In this section we introduce the formal machinery that will be used throughout the
rest of the paper, and we prove some preliminary results. First, we present the language
of second-order propositional modal logic (sopml), some of its fragments, and their175

interpretation on Kripke frames and models.

2.1. The Formal Languages

To introduce the language of second-order propositional modal logic, we fix a set AP
of atomic propositions and a finite set I of indices. Any language L built upon AP (using
connectives and modal operators) is said to be a language over AP .180
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Definition 1 (sopml). The language Lsopml contains formulas ψ as defined by the fol-
lowing BNF:

ψ ∶∶= p ∣ ¬ψ ∣ (ψ → ψ) ∣ ◻aψ ∣ ∀pψ

where p ∈ AP and a ∈ I.

For this language and those to be introduced shortly, we will omit parenthesis if doing
so causes no confusion. The language Lsopml contains modal formulas ◻aψ, for every185

index a ∈ I. A general reading of this would be ‘according to the aspect or dimension a,
formula ψ holds’. The box can have more concrete interpretations, for instance dynamic
(after execution of program or action a, ψ holds), temporal or spatial (along dimensions a,
ψ), or deontic (in all situations that abide to norm a, ψ is true). Indices may also denote
agents, in which case ◻aψ can represent attitudes that relate to goals (‘agent a desires ψ’,190

or ‘has ψ as a goal’), that are intentional (agent a intends to achieve ψ), or informational
(‘agent a believes ψ’ or ‘a knows that ψ’). The latter, epistemic interpretation of ◻a will
obtain some special attention in this paper, and we will write Kaψ rather than ◻aψ.

Further, the quantified formula ∀pψ informally says that ‘for all propositions, ψ is
true’, or, ‘for all interpretations of p, ψ obtains’. As standard, the quantifier ∃ is dual to195

∀: ∃pψ ∶∶= ¬∀p¬ψ. Analogously, in Lsopml , ◇aφ is a shorthand for ¬ ◻a ¬φ, and Ma is
dual to Ka.

Hereafter we consider also the extension L∗sopml of Lsopml obtain by adding the follow-
ing clause: if ψ is a formula, then ◻∗ψ is also a formula. Instead of ◻∗ψ, in the epistemic
interpretation we will write Cψ (it is common knowledge that ψ). To give a hint of what200

this operator means in epistemic logic, define Eψ (everybody knows that ψ) as ⋀a∈IKaψ.
Then, formula Cψ intuitively captures the infinite conjunction ψ∧Eψ∧EEψ∧EEEψ∧. . .
(the usual definitions for ⊺,�,∨,∧, and ↔ apply). To sum up, whenever we consider the
epistemic interpretation of modal operators, we write Ka and C, and define formulas ψ
in the language L∗sopel of second-order propositional epistemic logic (sopel) according to205

the following BNF:

ψ ∶∶= p ∣ ¬ψ ∣ (ψ → ψ) ∣Kaψ ∣ Cψ ∣ ∀pψ

for p ∈ AP and a ∈ I. Standard references for modal logic are [9, 10], while for epistemic
logic we refer to [21, 49].

We write sopml for the family of logics that are based on the languages Lsopml

and L∗sopml . Throughout most of the paper, it is not very important whether we are210

considering a language with or without a transitive closure operator ◻∗. In the places
where the difference between Lsopml and L∗sompl is important, we write sopml∗ for the
logic based on L∗sopml .

The name ‘second-order propositional modal (epistemic) logic’ is related to second-
order quantification, as will become apparent in Section 3. In particular, this formalism215

has been studied in relation to monadic second-order logic – mso, see [13, 40] and also
Section 3.

Example 2. To give a flavour of the expressivity of L∗sopml , we present some specifica-
tions written in this language. We use variants of ◻a in our notation: their meaning will
be clear from the context. Using L∗sopml one can for instance express that agents a believes220
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that agent b will always have some desire p that will remain unfulfilled: Ba◻
∗∃p(Dbp∧¬p),

where operators Ba and Db are used to represent the doxastic and desire dimensions for
agent a and b respectively, whereas ◻∗ is interpreted on the reachability relation w.r.t. all
agents’ moves.

As a further example, formula (i) ∀p(◻ap → ◻bp) expresses, in a dynamic context,225

that everything brought about by program a is also brought about by program b, or, provided
a doxastic interpretation of the box operator, agent b believes everything that agent a
believes. Deontically, the formula ∃p(Op ∧ ¬p) expresses that the current world is not
ideal: there are facts that ought to hold, but they do not. Finally, the doxastic-epistemic
formula (ii) Kb∃p(Bap∧¬p) intuitively expresses that agent b knows that agent a’s beliefs230

are incorrect, while (iii) ∀p(Bap → p) ∧ ◻α∃q(Baq ∧ ¬q)) denotes that currently, agent
a’s beliefs are correct, but after executing program α, this ceases to be the case. We
remark that by using propositional quantification we can reason about general properties
of knowledge, e.g., truthfulness, inclusion, equivalence, of agents’ knowledge and beliefs,
as in specifications (i), (ii), and (iii).235

In this paper we consider various fragments of L∗sopml and Lsopml . To begin with, the
languages Lml of (propositional) modal logic and Lel of (propositional) epistemic logic
(L∗ml and L∗el , respectively) are obtained by removing clause ∀pψ from the definitions
of Lsopml and Lsopel (L∗sopml and L∗sopel , respectively). Likewise, the language Lqbf of
quantified boolean formulas omits clauses ◻aψ from Lsopml ; while propositional logic240

Lpl is defined as standard by considering only propositional connectives. Moreover, the
universal fragment L∗a−sopml of L∗sopml is defined by the following BNF:

ψ ∶∶= p ∣ ¬p ∣ (ψ ∧ ψ) ∣ (ψ ∨ ψ) ∣ ◻aψ ∣ ◻∗ψ ∣ ∀pψ

Notice that in L∗a−sopml negation applies to atoms only. Hence, L∗a−sopml contains no
formula of the form ∃pψ, ◇aψ, or ◇∗ψ. For convenience, we will also denote the set of
atoms AP by Lap . A special role in this paper will be played by the languages Lx of sort245

x, the set of sort symbols being {ap,pl ,ml , sopml}. We will shortly see that for each sort
x, the language Lx is linked to an interesting class of frames (defined in terms of types
y: see the paragraph above Definition 9). This connection is made precise in Lemma 12,
item 2. We summarise the main inclusions between languages in Figure 1. We observe
that languages L∗x are defined only for x ∈ {ml , a − sopml, sopml}.250

We now introduce some syntactic notions that will be used throughout the paper.
Hereafter we use ♯ as a placeholder for any unary operator ¬, ◻a, ◻∗, and Q for any
quantifier ∀, ∃.

Definition 3 (Subformula and free atoms). The sets Sub(φ) and fr(φ), for the sub-
formulas and free atoms of formula φ ∈ L∗sopml , respectively, are recursively defined as255

follows:

Sub(p) = {p} fr(p) = {p}
Sub(♯φ) = {♯φ} ∪ Sub(φ) fr(♯φ) = fr(φ)
Sub(φ→ φ′) = {φ→ φ′} ∪ Sub(φ) ∪ Sub(φ′) fr(φ→ φ′) = fr(φ) ∪ fr(φ′)
Sub(∀pφ) = {∀pφ} ∪ Sub(φ) fr(∀pφ) = fr(φ) ∖ {p}

A sentence is a formula φ with an empty set of free atoms, i.e., fr(φ) = ∅. The set
bnd(φ) of bound atoms in φ is defined as standard as the set of all atoms q appearing in

8



Lap

Lpl

Lqbf

Lsopml

La−sopml

Lml

L∗ml

L∗a−sopml

L∗sopml

Figure 1: Scheme of inclusions among the different languages.

the scope of any quantifier Qq. We assume that for each formula φ ∈ L∗sopml , fr(φ) and
bnd(φ) are disjoint. Actually, we impose that each quantifier binds a different variable.260

Both constraints can be enforced without loss of generality by renaming bound variables.

Definition 4 (Free for . . . ). Given an atom p ∈ fr(φ), a formula ψ is free for p in φ iff
p does not appear in φ within the scope of any quantifier Qq for q ∈ fr(ψ). Alternatively,
we can define whether ψ is free for p in φ by induction on the structure of φ as follows:

for φ atomic, ψ is free for p in φ
for φ = ♯φ′, ψ is free for p in φ iff it is in φ′

for φ = φ′ → φ′′, ψ is free for p in φ iff it is in φ′ and φ′′

for φ = ∀qφ′, ψ is free for p in φ iff q ∉ fr(ψ) and ψ is free for p in φ′

We finally introduce a notion of substitution for free formulas.265

Definition 5 (Substitution). Whenever ψ is free for p ∈ fr(φ), the substitution φ[p/ψ]
is inductively defined as follows:

q[p/ψ] =

⎧⎪⎪
⎨
⎪⎪⎩

q for q different from p

ψ otherwise

(♯φ′)[p/ψ] = ♯(φ′[p/ψ])
(φ′ → φ′′)[p/ψ] = (φ′[p/ψ])→ (φ′′[p/ψ])
(∀rφ′)[p/ψ] = ∀r(φ′[p/ψ]), where r is assumed different from p as p ∈ fr(φ)

9



Intuitively, ψ being free for p in φ means that a substitution of p by ψ in φ does
not create any new binding. As an example, ¬q is free for p in ∃r(r → p) but not in
φ = ∃q(p ↔ q). After we have introduced our semantics, it will be clear that, while270

∃q(p↔ q) is actually a validity, if we were to blindly substitute p with ¬q in φ, we would
obtain ∃q(¬q↔ q), which is tantamount to a contradiction. But note that, since ¬q is not
free for p in φ, by Definition 5, φ[p/¬q] is not well-defined. Also note that the procedure
above does not guarantee that after a substitution a variable r only occurs in the scope
of a single quantifier Qr. For instance, ∀r(r → p)[p/∀r(q → r)] = ∀r(r → ∀r(q → r)).275

However, reading the semantics, it will become clear that the latter formula is equivalent
to ∀r(r → ∀s(q → s)): bounded variables can always be renamed (so that, in particular,
every formula is equivalent to one in which every formula is bound at most once).

Example 6. As a further example of the expressive power of sopel, consider the fol-
lowing specification: agent b knows everything that a knows, and agent c knows this fact,
but d does not. This epistemic situation can be recast in Lsopel as the following formula:

∀p(Kap→Kbp) ∧Kc∀p(Kap→Kbp) ∧ ¬Kd∀p(Kap→Kbp)

In particular, we can reason further about agent d’s knowledge. Indeed, agent d might
know that a knows something ignored by b, without being able to explicitly point out the280

content of a’s extra knowledge. This can be recast in Lsopel by the following formula:

Kd∃p(Kap ∧ ¬Kbp) (2)

However, d could actually know about a specific fact that a knows, but b ignores, as
expressed in the following formula:

∃pKd(Kap ∧ ¬Kbp) (3)

We remark that (3) corresponds to the de re reading of our specification, while (2) is its
de dicto formalisation. Here we do not discuss in detail the de re/de dicto distinction, as285

it is beyond the scope of the present contribution, and refer instead to the seminal paper
[50]. In particular, according to our semantics (to be introduced next), (3) is strictly
stronger than (and entails) (2). Indeed, the implication (3) ⇒ (2) is a validity, but the
converse implication (2) ⇒ (3) does not hold in general. Thus, among other things,
sopel allows us to distinguish the two readings – de re and de dicto – of individual290

knowledge.

2.2. Kripke Frames and Models

To provide a meaning to formulas of second-order propositional modal logic, we con-
sider multi-modal Kripke frames and models, extended with a domain for the interpre-
tation of quantifiers.295

Definition 7 (Kripke frame). A Kripke frame is a tuple F = ⟨W,D,R⟩ where

� W is a set of possible worlds;

� D is the domain of propositions, i.e., a subset of 2W ;

� R ∶ I → 2W×W assigns a binary relation on W to each index in I.
10



As standard in propositional modal logic (pml), for every index a ∈ I, Ra is an ac-300

cessibility relation between worlds in W [9]. Differently from standard Kripke frames,
Definition 7 includes a set D ⊆ 2W of “admissible” propositions for the interpretation of
atoms and quantifiers. Clearly, the Kripke frames in Definition 7 are related to general
frames [9, 48]. However, there are some notable differences. Firstly, in general frames
the domain D of propositions is a boolean algebra with operators, whereas no such as-305

sumption holds in the present case. Secondly, the language interpreted on general frames
is usually a plain modal logic, while here we address quantification as well. Indeed,
propositional quantification makes our language strictly more expressive than proposi-
tional modal logic interpreted on general frames, as will become apparent later on (see
for instance Examples 10 and 11 and recall that pml on general frames is as expressive310

as pml).
The accessibility relations can satisfy various properties, e.g., seriality, symmetry,

transitivity, reflexivity, etc. When interpreting the language L∗sopel we assume that each
Ra is an equivalence relation (i.e., symmetric, transitive and reflexive), in line with the
epistemic reading of modal operators [49]. Finally, for each agent index a ∈ I and w ∈W ,315

we let Ra(w) = {w′ ∣ Ra(w,w
′)}. If Ra is an equivalence relation, then Ra(w) is the

equivalence class of w according to Ra.
To interpret formulas in L∗sopml on Kripke frames, we introduce assignments as func-

tions V ∶ AP →D. Also, for U ∈D, the assignment V pU assigns U to p and coincides with V
on all other atoms. Hence, atoms can only be assigned propositions in D ⊆ 2W . A Kripke320

model over F is then defined as a pair M = ⟨F , V ⟩. In the rest of the paper we consider
specific classes of Kripke frames and models, which feature pre-eminently in the literature
on sopml [22, 48]. To introduce them, we first define operators [a] ∶ 2W → 2W , for every
a ∈ I, such that [a](U) = {w ∈W ∣ Ra(w) ⊆ U}; while operator [ ]∗ ∶ 2W → 2W is intro-
duced so that [ ]∗(U) = {w ∈W ∣ for every n ∈ N, for every sequence w0, . . . ,wn, if w0 =325

w and for every i < n,wi = wi+1 or Ra(wi,wi+1) for some a ∈ I, then wn ∈ U}.

Definition 8. A Kripke frame F is
boolean iff D is a boolean algebra, i.e., it is closed under intersection, union

and complement
modal iff D is a boolean algebra closed under operators [a], for every a ∈ I,

and [ ]∗

full iff D = 2W

A Kripke model M = ⟨F , V ⟩ is boolean (modal, full, respectively) whenever the un-
derlying frame F is. We distinguish the class Kall of all Kripke frames, the class Kbool330

of all boolean frames, the class Kmodal of all modal frames, and the class Kfull of all full
frames. Observe that, by using an analogy with monadic second-order logic, the class of
full frames corresponds to the basic interpretation of sopml, where any frame is uniquely
identified by fixing the set W of worlds and accessibility relations, as the domain D is
equal to 2W . On the other hand, the other classes of frames are related to the Henkin335

interpretation of mso, where D can be a possibly strict subset of 2W (cf. [55]).
Furthermore, within each of the classes in Definition 8, we will consider further con-

ditions on the accessibility relations Ra: reflexivity r, transitivity t, and symmetry s.
Hereafter, given type y ∈ Y = {all , bool ,modal , full} and subset τ ⊆ {r, t, s}, Kτy denotes
the corresponding class of frames satisfying the properties in τ . For simplicity, Key denotes340
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class K
{r,t,s}
y (which we also write as Krtsy ) of frames in which all accessibility relations

are equivalences, that is, the class of epistemic frames for the interpretation of sopel.
We define a function ̂∶ X → Y from language sort symbols to type symbols as follows:
âp = all ; p̂l = bool ; m̂l = modal ; and ŝopml = full . In total, we obtain 32 classes Kτy of
frames. However, we only consider 20 of them: the subsets τ ⊆ {r, t, s} corresponding345

to the 5 normal modalities K, T, S4, B, and S5, combined with the 4 types all , bool ,
modal , and full . Further classes of frames could be introduced, for instance the class
where every formula in L∗sopml defines a proposition in D. However, such a class is not
directly relevant for the results below and its introduction requires a non-trivial general-
isation of Kripke frames [48]. Thus, such extensions are beyond the scope of the present350

paper.
We finally define the notion of satisfaction for formulas in L∗sopml .

Definition 9 (Semantics). We define whether Kripke model M = ⟨F , V ⟩ satisfies for-
mula ϕ ∈ L∗sopml at world w, or (M,w) ⊧ ϕ, as follows:

(M,w) ⊧ p iff w ∈ V (p)
(M,w) ⊧ ¬ψ iff (M,w) /⊧ ψ
(M,w) ⊧ ψ → ψ′ iff (M,w) /⊧ ψ or (M,w) ⊧ ψ′

(M,w) ⊧ ◻aψ iff for all w′ ∈ Ra(w), (M,w′) ⊧ ψ
(M,w) ⊧ ◻∗ψ iff for all w′ ∈ (⋃a∈I Ra)

∗(w), (M,w′) ⊧ ψ
(M,w) ⊧ ∀pψ iff for all U ∈D, (Mp

U ,w) ⊧ ψ

where (⋃a∈I Ra)
∗ is the reflexive and transitive closure of ⋃a∈I Ra, and Mp

U = ⟨F , V pU ⟩.355

By Definition 9, a quantified formula ∀pψ (respectively, ∃pψ) is true at world w iff for
every (respectively, some) assignment of propositions in D to atom p, ψ is true. Further,
as is the case for the common knowledge operator C, (M,w) ⊧ ◻∗ψ iff (M,w′) ⊧ ψ for
every world w′ reachable from w, i.e., for every w′ such that for some sequence w0, . . . ,wk
of worlds, (i) w0 = w, (ii) wk = w

′, and (iii) for every i < k, wi = wi+1 or Ra(wi,wi+1)360

for some a ∈ I. Hence, in non-epistemic contexts, ◻∗ can be interpreted as a reachability
operator, analogous to the common knowledge operator C.

The satisfaction set ⟦ϕ⟧M of formula ϕ in model M is defined as {w ∈W ∣ (M,w) ⊧
ϕ}. We omit the subscript M whenever clear by the context. We now introduce var-
ious notions of truth and validity. First, we write (F , V,w) ⊧ φ as a shorthand for365

(⟨F , V ⟩,w) ⊧ φ. Then, we say that φ is true at w, or (F ,w) ⊧ φ, iff (F , V,w) ⊧ φ for
every assignment V ; φ is valid in a frame F , or F ⊧ φ, iff (F ,w) ⊧ φ for every world w
in F ; φ is valid in a class K of frames, or K ⊧ φ, iff F ⊧ φ for every F ∈ K. Also, φ is
true in a model M, or M ⊧ φ, iff (M,w) ⊧ φ for every world w. Finally, φ is satisfiable
iff for some model M and world w, (M,w) ⊧ φ.370

Observe that if we define Th(K) = {φ ∈ L∗sopml ∣ K ⊧ φ}, then clearly

Th(Kall) ⊆ Th(Kbool) ⊆ Th(Kmodal) ⊆ Th(Kfull) (4)

In Section 4.1 we show that these inclusions are strict, but first we illustrate some
applications of sopel in reasoning about knowledge.
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w1 w2
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b, d

Figure 2: the frame F for Example 10. (reflexive edges and directions of edges are omitted for simplicity,
all relations are equivalences).

Example 10. Consider a set I = {a, b, d} of agents and AP = {p} of atoms. The
epistemic frame F = ⟨W,D,R⟩ in Keall is given with components W and R as de-
picted in Fig. 2. Moreover, if we suppose that D = {{w1},{w2}}, then for every as-375

signment V , (F , V,w1) ⊧ ∃p(Kap ∧ ¬Kbp), as (F , V p{w1},w1) ⊧ Kap ∧ ¬Kbp. Simi-

larly, (F , V,w2) ⊧ ∃p(Kap ∧ ¬Kbp) by considering assignment V p{w2}. As a consequence,

(F ,w1) ⊧ Kd∃p(Kap ∧ ¬Kbp), that is, the de dicto formula in Example 6 holds at w1.
However, this is not the case for its de re counterpart, as (F ,w1) /⊧ ∃pKd(Kap ∧ ¬Kbp).
To see the latter, note that Kd(Kap ∧ ¬Kbp) is not true at w1 for any valuation of p380

being {w1} or {w2}.
On the other hand, if we suppose that F is a full frame in Kefull , that is, D = 2W , then

we obtain that (F , V,w1) ⊧ ∃pKd(Kap ∧ ¬Kbp), as both (F , V p{w1,w2},w1) ⊧ Kap ∧ ¬Kbp

and (F , V p{w1,w2},w2) ⊧Kap ∧ ¬Kbp.

Example 11. To assess the expressivity of sopel in knowledge representation, we con-385

trast it with comparative epistemic logic – cel [19]. cel extends propositional modal
logic with formulas a ≽ b, the intuitive interpretation of which is: agent b knows at least
as much as agent a. Semantically, the clause for satisfaction of such formulas at world
w in model M is given as

(M,w) ⊧ a ≽ b iff Ra(w) ⊇ Rb(w) (5)

In this sense a ≽ b also expresses a local property of frame F , namely the inclusion390

Rb(w) ⊆ Ra(w).
We show that the comparison between agent a’s and agent b’s knowledge can be recast

in sopel as
∀p(Kap→Kbp) (6)

In particular, the RHS of (5) is tantamount to the satisfaction of (6) at w, whenever
model M is full. More precisely, for an arbitrary model M we have

(M,w) ⊧ a ≽ b ⇒ (M,w) ⊧ ∀p(Kap→Kbp)

while the converse only holds for full M. As a result, formulas a ≽ b and (6) have the
same meaning in the class of full models, and therefore cel can indeed be mimicked in395

sopel. We discuss this fact in more detail in Section 3.
Moreover, in sopel we can make distinctions that are not expressible in epistemic

logic. Related to Example 2, in Lsopel we can state that b knows that a’s beliefs are not
13
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(a) frame G

u′w′ a
b

(b) frame G′

Figure 3: Frames G and G′ in Example 11.

truthful by using formula

Kb∃p(Bap ∧ ¬p) (7)

Notice that (7) expresses that b knows that there exists some fact believed by a, which400

is false, possibly without being able to explicitly point out the actual content of a’s false
belief. On the other hand, b could actually be aware of some fact which is believed by a
but false, as expressed in the following:

∃pKb(Bap ∧ ¬p) (8)

The formula displayed at (7) is usually referred to as a de dicto reading of the state-
ment above, where quantifier ∃p appears within the scope of modal operator Ka, while405

(8) corresponds to the de re reading of the same statement, in which ∃p appears outside
the scope of Ka (we refer the interested reader in the two different readings to [50]). We
remark that (7) and (8) are not equivalent in general, (8) being strictly stronger than
(7). Specifically, to account for the difference between (7) and (8), consider frame G in
Fig. 3(a), where the W - and R-components are as depicted, and D = {{w} ∣ w ∈ W}.410

Clearly, (G, V,w1) ⊧ Bap ∧ ¬p for V (p) = {u1}, and similarly (G, V ′,w2) ⊧ Bap ∧ ¬p for
V ′(p) = {u2}. Hence, (G,w) ⊧ (7) for w ∈ {w1,w2}. On the other hand, for no U ∈ D,
(G, V pU ,w) ⊧ Bap ∧ ¬p. Therefore, (G,w) /⊧ (8) for w ∈ {w1,w2}. Finally, we observe
that ∃pKaφ → Ka∃pφ is a validity in every class of frames. As a result, in sopel (8)
is strictly stronger than (7), and we can distinguish the de dicto and de re readings of415

agent b’s higher-level knowledge.
Finally, consider frame G′ in Fig. 3(b) with D′ = {{w′} ∣ w′ ∈W ′}. Let M and M′ be

models based on G and G′ respectively, in such a way that assignments V and V ′ make
the same atoms true in w1, w2, and w′, and similarly for u1, u2 and u′. One can check
that (M′,w′) ⊧ (8) (and (7) as well). However, (M,w2) and (M′,w′), satisfy the same420

formulas in Lml (indeed, the two models are bisimilar), implying that the de re formula
(8) cannot be expressed in pml. We return to this example in Section 5.

2.3. Preliminary Results

In this section we prove some preliminary results on the model-theory of second-order
propositional modal logic, that will be frequently used in the rest of the paper. To start425

with, in Lemma 12 we extend some basic but useful results in the theory of quantification.
In particular, in first-order logic item 1 of Lemma 12 is known as the coincidence lemma,
and item 2b as the substitution lemma (cf. [20]).

14



Lemma 12.

1. Let φ be a formula in L∗sopml and F a frame in Kall . If assignments V and V ′
430

coincide on fr(φ), then

(F , V,w) ⊧ φ iff (F , V ′,w) ⊧ φ

2. Recall that X = {ap,pl ,ml , sopml} and ̂= {(ap,all), (pl , bool), (ml ,modal), (sopml ,
full)}. Let x ∈X. Then,

(a) For every ψ ∈ L∗x and model M over F ∈ Kx̂, we have ⟦ψ⟧M ∈D.

(b) If F ∈ Kx̂ and ψ ∈ L∗x is free for p in φ, then435

(F , V p⟦ψ⟧⟨F,V ⟩
,w) ⊧ φ iff (F , V,w) ⊧ φ[p/ψ]

The proof of this lemma is immediate, so we include it only in the appendix. These
results show that quantification in sopml is “well-behaved”: by item 1 of Lemma 12,
models built over the same frame and agreeing on the interpretation of free atoms, satisfy
the same formulas. It follows in particular that a sentence φ is either satisfied by any
assignment or none, that is, (F ,w) ⊧ φ iff for every model M over F , (M,w) ⊧ φ, iff440

for some model M over F , (M,w) ⊧ φ. As a consequence of Lemma 12, item 2a, the
domain of quantification in a model includes the set of denotations of formulas in that
model, according to the various fragments of L∗sopml . Moreover, by Lemma 12, item 2b,
the syntactic operation of substitution φ[p/ψ] corresponds to the semantic notion of
reinterpretation Mp

⟦ψ⟧.445

In Section 4 we will make use of generated submodels, a concept that is commonly
used in modal logic.

Definition 13 (Submodel). Given model M = ⟨W,D,R,V ⟩ and world w ∈ W , the
submodel generated by w is the model Mw = ⟨Ww,Dw,Rw, Vw⟩ such that

� Ww is the set of worlds reachable from w, i.e., Ww = (⋃a∈I Ra)
∗(w);450

� Dw = {Uw ⊆Ww ∣ Uw = U ∩Ww for some U ∈D};

� for every a ∈ I, Rw,a = Ra ∩W
2
w;

� for every p ∈ AP , Vw(p) = V (p) ∩Ww.

The relevant property of a submodelMw is that (M,w) ⊧ ◻∗φ if and only if (Mw,w
′) ⊧

φ for every w′ ∈ Ww. It is also important to note that if M is full, modal or boolean,455

then so is Mw.

Proposition 14. For y ∈ {all , bool ,modal , full} and τ ⊆ {r, t, s}, if a frame F belongs to
Kτy then also Fw ∈ Kτy .

The proof is immediate, so we omit it.
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2.3.1. Model Checking460

In order to explore the computational properties of sopml, we consider the complexity
of its model checking problem. Then, in the next section we analyse the (lack of) finite
model property for sopml. Before we can determine – or even define – the complexity
of model checking, however, we first need to define the size of formulas and models. Our
definition of the former is entirely as usual.465

Definition 15 (Formula Size). Let φ ∈ L∗sopml be a formula. The size of φ, denoted
∣φ∣, is given by induction on the length of φ as: ∣p∣ = 1, ∣ψ1 → ψ2∣ = ∣ψ1∣ + ∣ψ2∣ + 1, and
∣ ♯ψ∣ = ∣∀pψ∣ = ∣ψ∣ + 1.

Defining the size of a model is slightly more difficult, since we have to deal with the
domain of quantification, which, when counted naively, can be exponentially larger than470

the other parts of the model. As such, defining ∣⟨W,D,R,V ⟩∣ to be equal to ∣W ∣ + ∣D∣ +
∣R∣ + ∣V ∣ would result in an inflated estimate of model size. With respect to this inflated
estimate, the model checking problem can even be solved in polynomial time. So it seems
more reasonable to exclude D from the size of M and define ∣M∣ as follows.

Definition 16 (Model Size). The size ∣M∣ of model M = ⟨W,D,R,V ⟩ is given by475

∣M∣ = ∣W ∣ +∑a∈I ∣Ra∣ +∑p∈AP ∣V (p)∣.
A model M is finite if ∣M∣ <∞.

Now that we have defined the seizes of formulas and models, we can define the model
checking problem and determine its complexity.

Definition 17 (Model Checking for sopml). Given a formula φ ∈ L∗sopml , a finite480

model M and a world w of M, determine whether (M,w) ⊧ φ.

Then, we are able to prove the following complexity result.

Theorem 18 (Model Checking Complexity).
The model checking problem for sopml is PSPACE-complete.

Proof. As regards hardness, we reduce satisfiability of quantified boolean for-485

mulas to sopml model checking. Given a formula φ ∈ Lqbf , consider the frame F =
⟨{w}, (w,w),{{w},∅}⟩ and an arbitrary assignment V , and define M = ⟨F , V ⟩. Then,
we have that φ is satisfiable iff (M,w) ⊧ ∃p⃗φ, where p⃗ are all the atoms in φ. Because
the satisfiability problem for quantified boolean formulas is PSPACE-hard, it follows that
model checking sopml is PSPACE-hard as well.490

As regards completeness, an algorithm in PSPACE for model checking sopml is shown
as Algorithm 1. It is based on standard model checking algorithms for modal logic, which
run in polynomial time. Algorithm 1 takes as input a formula φ ∈ L∗sopml and a finite
model M, and returns the set ⟦φ⟧M ⊆W of worlds satisfying φ in M. Then, the model
checking problem has a positive answer iff w ∈ ⟦φ⟧M. The case of modal operators is495

dealt with by computing pre-images of sets according to the accessibility relation, which
can be done in polynomial time. The case of propositional quantification is dealt with
by exhaustively searching all possible valuations. That is, in order to compute ⟦∀pψ⟧M
we first compute ⟦ψ⟧Mp

U
for every U ∈ D, and then return the intersection of all these

extensions. As long as we go through the for loop in the ∀pψ case depth-first, this500
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algorithm takes only polynomial space. So the model checking problem is in PSPACE,
which together with the PSPACE-hardness that we established before implies that the
model checking problem for sopml is PSPACE-complete.

Algorithm 1 Computation of the satisfaction set ⟦φ⟧M

switch (φ):
case p:

return V (p);
case ¬ψ:

return W ∖ ⟦ψ⟧M;
case ψ ∧ ψ′:

return ⟦ψ⟧M ∩ ⟦ψ′⟧M;
case ◻aψ:

return {w ∈W ∣ Ra(w) ⊆ ⟦ψ⟧M};
case ◻∗ψ:

return {w ∈W ∣ (⋃a∈AgRa)
∗(w) ⊆ ⟦ψ⟧M};

case ∀pψ:
initialise X =W
for U ∈D do

set X =X ∩ ⟦ψ⟧Mp
U

end for
return X

As a result, model checking sopml is no more computationally complex than the
corresponding problem for quantified boolean formulas. Thus, the enhanced expressive-505

ness comes at no extra computational cost, when compared with qbf. With respect
to propositional modal logic, the complexity increases from PTIME to PSPACE. How-
ever, this is something to be expected given the extra expressive power of propositional
quantification.

2.3.2. Finite Model Property510

We now briefly argue why sopml does not have the final model property. Consider
the following set of formulas:

Γ = {◇a⊺,◻a◇a ⊺,∀p(◻ap→ ◻a ◻a p),◻a∃p(p ∧ ◻a¬p)}

Now suppose that Γ holds at some pointed model (M,w). Then the first two formulas
of Γ require Ra to be serial on {w} ∪ Ra(w), and the third enforces transitivity of Ra
(also at w). Finally, if world w satisfies ◻a∃p(p ∧ ◻a¬p), then, by Example 24 item 1,
we know that ¬Ra(v, v) for all v ∈ Ra(w), which implies that ¬Ra(w,w), so that Ra
is irreflexive over {w} ∪ Ra(w). But it is easy to verify that a transitive, serial, and515

irreflexive relation on Ra(w) requires Ra(w) to be infinite. In other words, we found a
finite set Γ of formulas in sopml that only has infinite models.

Theorem 19. The logic sopml does not have the finite model property.
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Theorem 19 is a generalisation of a result presented in [44, Section 3]. As the name of
that section (‘SOPMLE = MSO’) suggests, it demonstrates that sopmle, which is sopml520

with a universal modality, has the same expressive power as mso. And obviously, mso
can force a model to be infinite (use the relational properties of our example above), and
therefore sopmle can. Note that in our example, we don’t assume a universal modality
in our language, though.

3. Local Properties in Modal Logic525

In the introduction we discussed the difference between a global property as expressed
by the modal schema (i) ◻aϕ→ ϕ, whose validity entails that the accessibility relation in
a given frame is reflexive, and a local property such as the one represented by the sopml
formula ∀p(◻ap→ p) that, as we shall see, on full frames holds exactly in reflexive worlds.
Along this line, in [17, 18, 19] a sophisticated account was put forward to express local530

properties, by adding dedicated modal operators to a basic propositional modal logic.
To present the language of local properties in modal logic, or lpml, to compare the two
approaches, and more generally to discuss the expressive power of sopml, we consider a
monadic second-order logic and a first-order fragment interpreted on Kripke frames.

Given a frame F = ⟨W,D,R⟩ and a set AP of atoms, we define an mso alphabet535

containing binary predicate constants Ra for every agent index a ∈ I, a unary predicate
variable P for every atom p ∈ AP , and a set X of individual variables. Then, mso
formulas Θ in Lmso are defined in BNF as follows:

Θ ∶∶= P (x) ∣ x = y ∣ Ra(x, y) ∣ ¬Θ ∣ Θ→ Θ ∣ ∀xΘ ∣ ∀PΘ

where a ∈ I and x, y ∈ X . Note that the transitive closure R∗ of R can be easily defined
in mso.540

We also consider the first-order fragment Lfo of mso obtain by removing clause ∀PΘ
from the BNF above. This is indeed the first-order language considered in [19]. Moreover,
we denote as L1

fo the fragment of Lfo containing formulas with at most one free individual
variable. This fragment is well-known to be rich enough to express properties of frames
such as reflexivity, symmetry, and transitivity (note that more than one variable is needed545

for e.g. transitivity, but at most one is free).
As regards the interpretation of mso and fo (First-Order) formulas, an assignment

ρ now is a function associating a world w ∈W to every individual variable x, and a set
U ∈ D to every predicate variable P . For w ∈W and U ∈ D, the variants ρxw and ρPU are
defined similarly to sopml.550

Definition 20 (Semantics of mso). We define whether frame F = ⟨W,D,R⟩ satisfies
formula Θ ∈ Lmso for an assignment ρ, or (F , ρ) ⊧ Θ, as follows:

(F , ρ) ⊧ P (x) iff ρ(x) ∈ ρ(P )
(F , ρ) ⊧ x = y iff ρ(x) = ρ(y)
(F , ρ) ⊧ Ra(x, y) iff Ra(ρ(x), ρ(y))
(F , ρ) ⊧ ¬Θ iff (F , ρ) /⊧ Θ
(F , ρ) ⊧ Θ→ Θ′ iff (F , ρ) /⊧ Θ or (F , ρ) ⊧ Θ′

(F , ρ) ⊧ ∀xΘ iff for all w ∈W , (F , ρxw) ⊧ Θ
(F , ρ) ⊧ ∀PΘ iff for all U ∈D, (F , ρPU) ⊧ Θ
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Obviously Definition 20 induces an interpretation of formulas in Lfo as well. In
particular, for a formula Θ(x) ∈ L1

fo , we write (F ,w) ⊧ Θ to denote that (F , ρ) ⊧ Θ for
ρ(x) = w, and F ⊧ Θ if (F ,w) ⊧ Θ for all w ∈ W . The different interpretation of the555

satisfaction relation ⊧ for sopml and mso respectively will be clear from the context.
We now briefly recall some basic modal theory on local definability: we refer the

interested reader to [9, 10] for further details. We use θ (or θ(a⃗, p⃗) to emphasise sequences
a⃗ of indices and p⃗ of atoms) for formulas in Lml . Likewise, we use Θ ∈ L1

fo for first-order
formulas with at most one free variable interpreted over states (or Θ(a⃗, x) to denote that560

Θ mentions a⃗ as indices and has x as the free variable).

Definition 21. Let θ ∈ Lml and Θ ∈ L1
fo,

1. θ defines frame property Θ iff for all frames F , F ⊧ θ iff F ⊧ Θ.

2. θ locally defines Θ iff for all F and all w ∈ F , (F ,w) ⊧ θ iff (F ,w) ⊧ Θ.

As examples of Definition 21, consider the well-known schemes T ◻aϕ→ ϕ, 4 ◻aϕ→565

◻a◻aϕ, and B ϕ→ ◻a◇aϕ, that (locally) define the properties of reflexivity, transitivity,
and symmetry on frames.

In the theory of pml, when formula θ locally defines Θ and some other mild conditions
hold, one obtains the following connection between axiomatisation and completeness: if
an axiomatisation Ax is complete for a class K of frames, then Ax+θ is complete for class570

{F ∈ K ∣ F ⊧ ∀xΘ} of frames satisfying condition Θ. So for instance, taking the basic
modal logic K, which is sound and complete with respect to the class K of all frames, the
logic K +T is sound and complete with respect to class {F ∈ K ∣ F ⊧ ∀xRa(x,x)}, that
is, the class of reflexive frames. As further examples, whereas S5 = K+T+4+B is sound
and complete with respect to class S5 = {F ∈ K ∣ Ra is an equivalence relation}, the logic575

S5+(◻bϕ→ ◻cϕ) is sound and complete with respect to {F ∈ S5 ∣ F ⊧ ∀xRc(x) ⊆ Rb(x)}.
This is an appealing modular feature of modal logic. Yet, as also remarked by van

Ditmarsch et al. ([17, 18, 19]) this can only be applied if one adds formula θ as a global
property: assuming θ as an axiom implies that it becomes a validity. For instance, adding
formula Baϕ→ ϕ to an axiom system, in order to model that agent a’s beliefs are correct,
implies that in the resulting logic, it is common knowledge that a’s beliefs are correct,
and this fact will remain true no matter what happens. Likewise, by adding Kbϕ→Kcϕ
as an axiom for modelling that c is at least as knowledgeable as b, in the resulting frames
and models it will be common knowledge that c knows whatever b knows, and this will
again remain true no matter what happens. Thus, it is of interest to study formalisms
that can express properties like: ‘although a’s beliefs are correct, b does not know this’
and – for those familiar with dynamic propositional logic [30] – ‘c knows everything
that b knows, but after b opens the letter, this ceases to hold’. By using propositional
quantification we can intuitively formalise such expressions as

∀p(Bap→ p) ∧ ¬Kb∀p(Bap→ p) (9)

and

∀p(Kbp→Kcp) ∧ [readb]∃q(Kbq ∧ ¬Kcq) (10)
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θ(a⃗, p⃗) Θ(a⃗, x) ⊡(a⃗)
◻ap→ ◻bp ∀y(Rb(x, y)→ Ra(x, y)) Sup(a, b)
◻cp→ ◻a ◻b p ∀y, z(Ra(x, y) ∧Rb(y, z)→ Rc(x, z)) Trans(a, b, c)
¬ ◻a � ∃yRa(x, y) Ser(a)
◻ap→ p Ra(x, x) Refl(a)
¬ ◻a p→ ◻b¬ ◻c p ∀y, z(Ra(x, y) ∧Rb(x, z)→ Rc(y, z)) Eucl(a, b, c)
¬ ◻a p→ ¬ ◻b ◻cp ∀z(Ra(x, z)→ ∃yRb(x, y) ∧Rc(y, z)) Dens(a, b, c)
(¬ ◻a p ∧ ¬ ◻b q)→ ¬ ◻c (p ∨ q) ∀y, z((Ra(x, y) ∧Rb(x, z))→ (y = z ∧Rc(x, y))) Func(a, b, c)

Table 1: as in [19, Table 1], Θ(a⃗, x) is a property of state x, and ⊡(a⃗) is a name in the object language
such that ⊡(a⃗) holds at w iff Θ(a⃗, x) holds in M for ρ(x) = w.

respectively1.
To compare our approach based on sopml to van Ditmarsch et al.’s lpml, we first

provide a brief account of the latter.580

3.1. Local properties and lpml

This section on lpml is based on [17, 18, 19]: we refer the reader to these references for
a more extensive exposition. The term ‘logic’ is maybe not appropriate for lpml; rather,
it is a specific approach to ‘connect’, in a modal object language, a modal formula θ ∈ Lml

and a first-order property Θ ∈ L1
fo through the introduction of a relational atom ⊡ (or585

⊡(a⃗)), in such a way that on Kripke models ⊡ is interpreted as Θ locally. More precisely,
the language of lpml extends Lml with formulas of type ⊡(a⃗), whose interpretation is
provided by an associated formula Θ⊡(a⃗, x) ∈ L

1
fo , according to the following satisfaction

clause:

(M,w) ⊧ ⊡(a⃗) iff (F ,w) ⊧ Θ⊡(a⃗, x) (11)

By clause (11) we say that formula ⊡(a⃗) expresses locally first-order property Θ⊡ (at590

w).
Then, lpml investigates how operator ⊡ can help us, in the object language, to build

a bridge between modal formulas θ⊡ and first-order properties Θ⊡ that θ⊡ locally defines.
So, for instance, we can have ⊡(a) = Refl(a) for Θ⊡(a, x) = Ra(x,x), or ⊡(b, c) = Sup(b, c)
for Θ⊡(b, c, x) = ∀y(Rc(x, y) → Rb(x, y)) (for more examples, see Table 1). In lpml,595

property (9) is then represented as Refl(a)∧¬KbRefl(a), while property (10) is given as
Sup(b, c) ∧ [readb]¬Sup(b, c).

Recalling that operator ⊡ is part of the object language of lpml, [19] then adds to the
basic modal logic K, for specific formulas θ⊡ ∈ Lml , an axiom Ax⊡ and an inference rule
R⊡. Further, [19, Theorem 2] provides a sufficient condition on the relationship between600

θ⊡,⊡ and Θ⊡, called local harmony, under which K+Ax⊡ +R⊡ is a sound and complete
axiomatisation for the class of models that satisfy Θ⊡.

Definition 22 (Local Harmony). Formulas θ(a⃗, p⃗) ∈ Lml , Θ(a⃗, x) ∈ L1
fo, and ⊡(a⃗) in

lpml are in local harmony iff (i) θ (locally) defines Θ, and (ii) ⊡ expresses Θ locally.

1Observe that our framework can accommodate the operators of dynamic logic as well: actions are
indices α in the set I, which label the different accessibility relations. The interpretation of the associated
modal operator [α] is the same as ◻a, for a ∈ I.
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A model M for lpml is a tuple ⟨W,R, I, V ⟩ where W,R and V are as for pml and I605

assigns a first order property to each relational atom ⊡. We follow [19] in assuming that
for each symbol ⊡θ(a⃗), there is a Lml -formula θ(a⃗, p⃗) and a L1

fo-formula Θ(a⃗, x) such
that the three are in local harmony and I(⊡θ(a⃗) = Θ(a⃗, x). To be explicit about this, we
call such a model M an intended model for lpml.

One could say that lpml as a language is at least as expressive as first-order logic over610

binary relations, as there are no restrictions, in the object language, on the relational
atoms ⊡ that can be added to standard pml. However, the aim of lpml is not to express
arbitrary first-order properties Θ, but to reason locally about properties like truthfulness
of agent a’s beliefs, or an agent c knowing more than b. In particular, there has to exists
a modal formula θ that (locally) defines Θ. lpml expresses such first-order properties by615

adding atoms like Refl(a) and Sup(b, c), respectively. We reckon that sopml, allowing for
quantification over propositions as in ∀p(Bap→ p) and ∀p(Kbp→Kap), is an alternative
way to study local properties which is at least as natural as lpml and provably as
expressive, in a sense we explain below.

3.2. Local properties, lpml and sopml on full frames620

We first compare lpml to sopml on full frames. On the other classes of frames there
are some notable differences that we discuss in Section 3.3.

Here we show that if formulas Θ⊡(a⃗, x) and θ⊡(a⃗, p⃗) are in local harmony with some
atom ⊡(a⃗), then formula ⊡(a⃗) is equivalent to ∀p⃗θ(a⃗, p⃗) ∈ L∗sopml , within the class of
full frames. Hence, sopml is at least as expressive as lpml. To make this more precise,
note that lpml is only able to reason about local properties if all triples θ(a⃗, p⃗), ⊡(a⃗),
and Θ(a⃗) are in local harmony. Recall that a lpml model M that guarantees this is
an intended model. We will also interpret such an intended model M as a model for
sopml: one just discards the lpml information connecting ⊡(a⃗) and Θ⊡(a⃗, x), and then
adds the constraint that the model is full. Now, consider the translation t from lpml
formulas to sopml formulas that distributes over all connectives and modal operators,
and moreover says

t(⊡(a⃗)) = ∀p⃗θ(a⃗, p⃗)

We then obtain the following equivalence result.

Theorem 23. For every intended lpml model M, w ∈M, and formula ϕ in lpml, we
have625

(M,w) ⊧ ϕ iff (M,w) ⊧ τ(ϕ)

A proof of Theorem 23 is given in Appendix A. This theorem implies, in a sense,
that what can be done in lpml, can also be done in sopml: if θ(a⃗, p⃗), ⊡(a⃗) and Θ(a⃗)
are in local harmony, then, to reason locally about a scheme θ, one can either use the
universal closure ∀p⃗θ in sopml, or atom ⊡(a⃗) in lpml. The result also suggests ways in
which sopml may be more appropriate to reason about local properties, namely cases630

where Θ is not locally defined by any formula θ ∈ Lml , or, conversely, when θ does not
define a first-order property Θ locally. Hereafter we consider some similar cases.

Example 24. Consider the following first-order formulas:

� Θ1 = ¬Ra(x,x) (irreflexivity)
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� Θ2 = ∃x1, . . . , xn⋀i≤n(Ra(x,xi) ∧⋀i≠j≤n xi ≠ xj) (having at least n a-successors)635

� Θ3 = ∀y(Ra(x, y) ∧Ra(y, x)→ x = y) (anti-symmetry)

� Θ4 = ∀y(Rb(x, y)→ ¬Ra(x, y)) (Ra and Rb have empty intersection)

� Θ5 = ∀y(Ra(x, y) ∧ Rb(x, y) → Rc(x, y)) (Rc contains the intersection of Ra and
Rb).

It is well-known that these first-order properties are not definable in modal logic [9,640

10]. However, consider the following formulas in sopml:

� ϕ1 = ∃p(◻ap ∧ ¬p)

� ϕ2 = ∃p1, . . . , pn(⋀i≤n◇a(pi ∧⋀j≤n,j≠i ¬pj))

� ϕ3 = ∃p(p ∧ ∀q(◇a(q ∧◇ap)→ q))

� ϕ4 = ∃p(◻ap ∧ ◻b¬p)645

� ϕ5 = ∀p(◻cp→ ∃q(◻aq ∧ ◻b(q → p)))

which are such that each ϕi locally defines Θi (1 ≤ i ≤ 5). We formalise this result in the
following lemma.

Lemma 25. Consider formulas ϕi ∈ Lsopml and Θi ∈ L
1
fo in Example 24, for i = 1, . . . ,5.

Let x be the only free variable in Θi and assume ρ(x) = w. Assume F is a full frame,650

then,

(F ,w) ⊧ ϕi iff (F , ρ) ⊧ Θi

The proof of some items of the lemma is to be found in Appendix A. In particular,
sopml can express properties that are not definable in standard modal logic.

Example 26. [Distributed Knowledge] To come back to an example from epistemic logic,
an interesting notion in collective knowledge is that of distributed knowledge Dϕ. The
intuition here is that distributed knowledge is the knowledge of a ‘wise man’ (cf. [21])
with whom all agents have shared their knowledge. The typical example is a situation
where, for instance, one agent knows ϕ, another knows that ϕ→ ψ, implying distributed
knowledge of ψ. A more concrete example goes as follows: it is distributed knowledge in
every group of agents (provided everybody knows their own birthday) whether two agents
share their birthday. The notion of distributed knowledge Dϕ for n agents has an ax-
iomatisation that is sound and complete with respect to models where the corresponding
relation RD is the intersection of all the individual agents’ accessibility relations. How-
ever, intersection is not locally definable in modal logic (for more on modal properties of
distributed knowledge, or implicit knowledge as it is sometimes called, see for instance
[35, 51].) However, in sopml, using Example 24.5 we can express that agent c knows
exactly what the distributed knowledge of agents a and b is:

∀p(Kap→Kcp) ∧ ∀p(Kbp→Kcp) ∧ ∀p(Kcp→ ∃q(Kaq ∧Kb(q → p))) (12)
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Notice that (12) uses exactly the idea of the typical example of distributed knowledge
between two agents discussed above: if agent c knows some fact p, i.e., p is distributed655

knowledge between a and b, then there exists some fact q such that a knows q and b knows
q → p. So, they are able to derive p by pooling together their knowledge.

Can we generalise this to n agents? Indeed we can, as follows. Define

ϕ = ∀p(Dp→ ∃q1 . . .∃qn−1(K1q1 ∧ ⋅ ⋅ ⋅ ∧Kn−1qn−1 ∧Kn(⋀
i<n

qi → p))

and let
Θ = ∀y((R1(x, y) ∧ ⋅ ⋅ ⋅ ∧Rn(x, y)→ RD(x, y))

Then, we can prove the following result.

Proposition 27. For every full frame F , (F ,w) ⊧ ϕ iff (F ,w) ⊧ Θ(x).

The proof is a generalisation of the proof of Lemma 25 for Θ5. It follows that operator
D locally expresses the distributed knowledge of ψ among agents 1, . . . , n:

⋀
i≤n

∀p(Kip→Dp) ∧ ϕ ∧Dψ

Discussion. From Examples 24 and 26 it follows that sopml is strictly more expres-660

sive than propositional modal logic, and it can also express local properties that cannot
be dealt with in lpml. Example 24 also indicates when sopml can axiomatise frames
that cannot be characterised in pml: for instance, formula ∃p(◻p ∧ ¬p) characterises
irreflexive frames, in the same way as ∃p(◻p∧◇◇¬p) characterises intransitive frames.
Venema [56] calls such characterisations negatively definable. The idea here is the fol-665

lowing: suppose that formula θ ∈ Lml locally defines some property Θ; is there a formula
that locally defines ¬Θ? As an example, whereas Ra(x,x) is (locally) defined by ◻ap→ p,
the negation ¬R(x,x) is not (locally) defined by ¬(◻p → p), or equivalently, ◻ap ∧ ¬p,
since this would require that on frames for this formula, atom p were false. Gabbay [24]
came up with a derivation rule, rather than an axiom, to characterise irreflexivity; while670

[56] analyses more generally when a negative characterisation of some class of frames also
leads to an axiomatisation of such class. For our discussion, it is important to realise that
reflexivity is actually characterised by a modal scheme ◻aϕ → ϕ, and, in contrast, by
formula ∀p(◻ap → p) in sopml. But then, irreflexivity is characterised by the negation
of that sopml formula: ∃p(◻p∧¬p). Moreover, notice that sopml allows us to interpret675

such formulas locally, so that we can reason about models that have both reflexive and
irreflexive points.

From Example 24 we also learn that there are first-order properties Θ that cannot
be characterised by any modal formula θ ∈ Lml , while we do have a formula in sopml
characterising it. It is also possible to come up with formulas in sopml that do not680

correspond to any first-order formula (hence, in sopml one could reason locally about
them, but not in lpml.) A first example of such formulas is ∃p¬δ for δ = (◇p∧◇◻¬p)→
◇(◻−1◇p∧◻¬p) (here ◻−1 is interpreted as the converse of relation R for ◻). As argued
in [56], although δ as a scheme characterises Dedekind-complete frames among the linear
orderings, the frames for ¬δ are not elementary, that is, not first-order definable. A685

further example is the Löb formula ∀p(◻(◻p → p) → ◻p): this formula characterises
frames with R being transitive and its converse well-founded [56, p. 8].
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To conclude our comparison between sopml and lpml, we observe that the ⊡ opera-
tors act in fact as a sort of linguistic black boxes, bringing the metalanguage of the theory
of first-order logic into the object language of modal logic. In contrast, sopml is more690

transparent, as everything is done in the object language. In addition, for the first-order
conditions in [19] there must always be a suitable modal counterpart. Indeed, the axioms
Ax⊡ ∶ ⊡(a⃗) → θ⊡(a⃗, p⃗) in [19] make sense only as long as there is a propositional modal
formula θ⊡ related to ⊡, and this is not always the case as discussed above. We will see
later that none of this has to be assumed to axiomatise sopml.695

Revisiting Example 24, it is no surprise that the sopml formulas in this example all
use existential quantification, because we have the following.

Lemma 28. For a finite set {p1, . . . , pn} of atoms, define ∀p⃗ as ∀p1 . . .∀pn (this is well-
defined because ∀p∀qφ is equivalent to ∀q∀pφ). Then for all frames F , worlds w, and
assignments V , we have700

1. (F ,w) ⊧ φ iff (F ,w) ⊧ ∀p⃗φ

2. (F ,w) ⊧ ∀f⃗r(φ) φ iff (F , V,w) ⊧ ∀f⃗r(φ) φ

3. (F ,w) ⊧ φ iff (F , V,w) ⊧ φ, where φ is a sentence (i.e., fr(φ) = ∅).

3.3. Local properties and sopml on non-full frames

So far, we have only looked at how SOPML can represent local properties on full
frames. Here, we consider local properties on frames with a coarser domain of quantifi-
cation. Let us return to formula

∀p(Kap→ p), (13)

which is intended to express that everything a knows is true. Looking at the semantics
of sopml, we can see that (13) holds in (M,w) if and only if

for all U ∈D,Ra(w) ⊆ U implies w ∈ U. (14)

If the domain D contains the singleton w, then (14) is equivalent to w ∈ Ra(w), so705

to Ra being locally reflexive. In general, however, there is no guarantee that D contains
all, or any singletons. So on non-full frames, (13) does not characterize reflexivity. In
fact, on non-full frames there is no sopml formula that characterizes reflexivity.

Whether this is an important downside of sopml on non-full frames depends on the
object of study. If one is after a logic that can reason about graph-theoretic properties710

like reflexivity, then one should consider sopml only on full frames, since on other frames
sopml cannot express these properties. If, on the other hand, the goal is to reason about
a particular subject (such as knowledge) and only use graphs to represent that subject,
then sopml is useful even on non-full frames. After all, even though (13) does not, in
general, correspond to reflexivity, it does still express the fact that everything known by715

a is true—with one caveat.
The quantor ∀p quantifies only over those valuations of p that are part of the domain

D. So, strictly speaking, (13) means that “for every element U ∈ D, if a knows U then
U is true.” There are three main ways to interpret this.
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1. We could explicitly retain the reference to D, and interpret (13) as “every atomic720

(resp. boolean, modal) proposition that a knows is true” if D is any (resp. boolean,
modal) domain of quantification.

2. We could consider D to be the set of properties that are relevant for the problem
that we are modeling. In this interpretation, the formula ∀p(Kap→ p) might hold
even if there is some proposition T ∈ 2W ∖D such that T is false but known by a.725

However, because T /∈ D it is not a relevant property, we don’t care whether a is
wrong about it.

3. We could interpret D as the set of propositions that can be conceptualized. This
allows us to interpret (13) as “everything that a knows is true”, where it is under-
stood that being able to conceptualize a proposition is a precondition for knowing730

that proposition.

As an example of the latter situation, suppose that Alice is looking at a blue object.
However, due to a trick of the light, the object seems green to her. She forms the belief
that the object is green. This belief is false, so ∀p(Kap → p) does not hold. Now,
suppose that Bob is looking at the same object, but that Bob is from a culture that does735

not distinguish between green and blue. Instead, Bob’s culture uses a single concept for
these colours that we will translate as “grue”. Bob makes the same observation as Alice,
but based on that observation he forms the belief that the object is grue. This belief is
correct, so, assuming that b’s other beliefs are correct as well, ∀p(Kbp→ p) holds.2 The
difference between Alice and Bob does not lie in their accessibility relations. Instead,740

it is caused by the different ways in which they divide the set of possible worlds into
concepts.

The conditions on D then place restrictions on the conceptual space that we assume
the agents to have. If D is boolean, then the concepts “green” and “blue” need to be
accompanied by concepts “not green” and “green or blue”. If D is modal, then the745

concept “green” needs to be accompanied by a concept “knowing to be green”, and if D
is full then every set of worlds corresponds to some concept.

Regardless of the interpretation that we choose, every formula discussed in Table 1
expresses a property of sopml models. The properties that are expressed by these
formulas can be found in Table 2. Note that the properties in Table 2 are generalisations750

of those in Table 1, and that they are equivalent to their counterparts when D is full. The
properties in question require some slightly awkward notation, but conceptually they are
not very hard to grasp: they correspond to the properties in Table 1, except that here
we allow ourselves to substitute a world v for the current world w if both are elements
of U .3755

2We are somewhat over-simplifying here. Bob is probably capable of conceptualizing several different
subsets of grue, such as dark grue and light grue. Regardless, it is quite possible for Bob to have no
conceptual distinction between the actual and perceived colours of the object while Alice does have such
a distinction.

3Admittedly, this correspondence is sometimes rather hard to see due to the aforementioned awkward
notation.
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sopml formula Model property
∀p(◻ap→ ◻bp) ∀U ∈ D(Ra(w) ⊆ U → Rb(w) ⊆ U)

∀p(◻cp→ ◻a ◻b p) ∀U ∈ D(Rc(w) ⊆ U → (Rb ○Ra)(w) ⊆ U)

∀p(¬ ◻a �) ∃vRa(w, v)
∀p(◻ap→ p) ∀U(Ra(w) ⊆ U → w ∈ U)

∀p(¬ ◻a p→ ◻b¬ ◻c p) ∀U(Rb(w) /⊆ U → ∀v(Ra(w, v)→ Rc(v) /⊆ U))

∀p(¬ ◻a p→ ¬ ◻b ◻cp) ∀U(Ra(w) /⊆ U → (Rc ○Rb)(w) /⊆ U)

∀p((¬ ◻a p ∧ ¬ ◻b q)→ ¬ ◻c (p ∨ q)) ∀U1∀U2((Ra(w) /⊆ U1 ∧Rb(w) /⊆ U2)→ (Rc(w) /⊆ U1 ∪U2))

Table 2: The model properties expressed by several sopml formulas.

3.4. Monadic Second-order Logic

We conclude this section by analysing the expressiveness of second-order propositional
modal logic through a correspondence between sopml and monadic second-order logic
(mso), that extends the standard translation between modal and first-order logic [9].
More specifically, ST is the translation between sopml and mso defined as follows:760

STx(p) = P (x)
STx(¬φ) = ¬STx(φ)
STx(φ→ φ′) = STx(φ)→ STx(φ

′)
STx(◻aφ) = ∀y(Ra(x, y)→ STy(φ))
STx(◻

∗φ) = ∀y(R∗(x, y)→ STy(φ))
STx(∀pφ) = ∀P (STx(φ))

(Recall from page 18 that R∗ can be defined in mso). Clearly, for every formula
φ ∈ L∗sopml , STx(φ) ∈ Lmso is a formula where x is the only free individual variable.
If ψ ∈ Lml is a purely propositional modal formula, then STx(ψ) ∈ Lfo is a first-order
formula, as obtained via the standard translation. In particular, STx(ψ) belongs to L1

fo .
We now get the following preservation result for the standard translation, that will765

be used in the completeness proof.

Lemma 29. For every model M = ⟨F , V ⟩, world w ∈W , and formula ψ ∈ L∗sopml ,

(M,w) ⊧ ψ iff (F , ρ) ⊧ STx(ψ)

whenever ρ(x) = w and ρ(Pi) = V (pi).

The proof is mostly standard, and can be found in Appendix A. As a consequence
of Lemma 29, there is a one-to-one correspondence between formulas in sopml and their770

standard translations in mso in the following sense: a frame F validates the universal
closure ∀p⃗ψ of a formula ψ ∈ L∗sopml iff property ∀x∀P⃗STx(ψ) ∈ Lmso holds in F , where

P⃗ are all the unary predicates appearing in STx(ψ). As an example, take the McKinsey
formula ◻◇ p → ◇◻ p. Its translation into mso is ∀y(R(x, y) → ∃z(R(y, z) ∧ P (z))) →
∃u(R(x,u) ∧ ∀v(R(u, v) → P (v))). This is well-known from two independent results in775

modal logic ([7, Theorem 1] and [26, Section 3]).

4. (In)completeness

One well-established way to understand a logic is to introduce an axiomatisation for
it. After all, since there is an infinite number of valid formulas, we cannot explicitly
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S5 (∣I ∣ = 1) S5 (∣I ∣ ≥ 2) K
full axiomatisable [22] unaxiomatisable (Thm. 51) unaxiomatisable [22]
modal axiomatisable (Thm. 44)
boolean axiomatisable [22] axiomatisable (Thm. 44)
all axiomatisable (Thm. 44)

Table 3: Axiomatisation results for languages L without common knowledge.

S5 (∣I ∣ = 1) S5 (∣I ∣ ≥ 2) K
full axiomatisable [22] unaxiomatisable (Thm. 51) unaxiomatisable [22]
modal axiomatisable (Thm. 44) unaxiomatisable (Thm. 63) unaxiomatisable (Thm. 58)
boolean axiomatisable [22]

unaxiomatisable (Cor. 64) unaxiomatisable (Cor. 61)
all axiomatisable (Thm. 44)

Table 4: Axiomatisation results for languages L∗ with common knowledge.

enumerate all of them. But if we have a complete axiomatisation, then we can at least780

implicitly know the valid formulas and understand why they are valid.
It turns out that not all variants of SOPML are axiomatisable. Still, even if a logic

is unaxiomatisable it is worthwhile to prove that it is so, for two reasons. Firstly, of
course, if we have a proof that no axiomatisation exists, then we can stop trying to find
an axiomatisation. Secondly, even though an unaxiomatisability result arguably provides785

less insight regarding the theorems of the logic than an axiomatisation, it does still tell
us something about the logic, particularly about its computational complexity.

In this paper we discuss many different variants of sopml, which differ on the domain
of quantification (full, modal, boolean, any), restrictions on the accessibility relations
(reflexive, transitive, symmetric), availability of common knowledge, and the number of790

indices. For some of these variants, axiomatisability and unaxiomatisability results are
known from [22, 40, 41]. In particular, [22] provides axiomatisations for all single agent
normal logics interpreted on boolean and generic frames, as well as an axiomatisation for
epistemic full frames. Here we extend several of these results to the multi-modal case for
the first time. Tables 3 and 4 give an overview of these results. In summary, the results795

are that sopml without common knowledge is unaxiomatisable on full frames (with the
exception of the special case of single-agent S5), but axiomatisable on modal, boolean
and the class of all frames; while sopml with common knowledge is unaxiomatisable
regardless of the domain of quantification4. Note that, if ∣I ∣ = 1 then ◻∗ reduces to ◻
on S5 frames, so the entries in the first column of Table 4 follow immediately from the800

results in the first column of Table 3.
So in most cases, adding common knowledge makes the validity problem harder. This

is in contrast to the model checking problem, where adding common knowledge is “free”,
in the sense that model checking for sopml is PSPACE-complete, whether or not we
have a common knowledge operator (see Theorem 18).805

We restrict ourselves to the classes of models for logics S5 and K in these tables. This
is because these two classes are the most relevant for our analysis. Our axiomatisability

4Again, with the exception of the single agent S5 case.
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results are slightly more general, see Theorem 44 for the exact statement. Our unax-
iomatisability results are stated for logics S5 and K, but with a few minor modifications
these proofs could easily be adapted to other normal modalities, including KD45 and810

S4.2. Such results give us useful insights into the computational properties of sopml,
as well as its amenability for knowledge representation and reasoning.

Remark 30. In most of this paper, we use different notation for sopml (◻a,◊a,◻
∗) and

sopel (Ka,Ma,C). In this section we discuss both sopml and sopel, so for the sake of
readability we only use the sopml notation.815

Also, we write sopml to denote generically logics without operator ◻∗; while sopml∗

refers to logics with ◻∗. The distinction will be clear from the context.

4.1. Complete Axiomatisations

This section is devoted to axiomatise several classes of validities on Kripke frames
built on sets I of agent indexes and AP of atomic propositions. We first present a class of820

logics Kx, one for each x ∈ {ap,pl ,ml}. In this section all logics are defined on languages
without common knowledge.

Definition 31 (Logics Kx). For each x ∈ {ap,pl ,ml}, the axioms and inference rules
of Kx are as follows:

825

Prop all instances of propositional tautologies
K ◻a(φ→ ψ)→ (◻aφ→ ◻aψ)
Exx ∀pφ→ φ[p/ψ], where ψ ∈ Lx
BF ∀p ◻a φ→ ◻a∀pφ
MP from φ→ ψ and φ infer ψ
Nec from φ infer ◻aφ
Gen from φ→ ψ infer φ→ ∀pψ, for p not free in φ

The axioms Prop and K are standard of any modal logic, as are the rules Modus
Ponens (MP) and Necessitation (Nec). Note how axiom Exx is parameterised by
x ∈ {ap,pl ,ml}. The axiom specifies the language Lx which acts as the domain of
quantification, or, more precisely, what kind of formulas can be substituted as an in-830

stance for the universal quantifier. Axiom BF is known as the Barcan formula and it
says the following. In our models M = ⟨W,D,R,V ⟩ the domain of quantification D is
defined globally, and does not depend on the world w of evaluation. To give an example
where the dependence of D on world w would cease BF to hold, consider a structure
N = ⟨W,{Dw}w∈W ,R, V ⟩, with W = {x, y, z} and R = {(x, y), (y, z)}. Also, suppose835

Dx = {{x},{y, z}} and Dy = 2W ≠ Dx. Then, by restricting the clause for quantification
in Definition 9 to each Dw, we have (N , x) ⊧ ∀p◻(p→ ◻p) but not (N , x) ⊧ ◻∀p(p→ ◻p).
In Example 32 we prove that the converse of BF is derivable in all Kx.

The scheme of axioms Exx and the Generalisation rule Gen are typical principles
of quantification. Axiom Exx is the elimination axiom for ∀: if something holds for all840

allowed valuations, then it also holds for each instance from the domain (which can be
the set of all atoms, boolean formulas, or modal formulas.) The rule of Generalisation
is the introduction rule for ∀: if ψ follows from φ for an arbitrary p, we infer that ∀pψ
follows from φ.
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As customary in pml, by considering a suitable combination of axioms845

T ◻aφ→ φ
B φ→ ◻a ◇a φ
4 ◻aφ→ ◻a ◻a φ

we can introduce the following normal extensions of Kx, also for x ∈ {ap,pl ,ml}:
850

Tx ∶= Kx +T
S4x ∶= Kx +T + 4
Bx ∶= Kx +T +B
S5x ∶= Kx +T +B + 4

This gives us 15 logics, 5 for each type x ∈X.
The notions of proof and theoremhood are defined as standard. A formula φ is derivable

in logic L from a set ∆ of formulas, or ∆ ⊢L φ, iff for some φ0, . . . , φm ∈ ∆, formula855

⋀i≤m φi → φ is a theorem in L, or ⊢L ⋀i≤m φi → φ.

Example 32. As an example, we provide proofs in logic Kap of the following theorems
and derived inference rules, which will be routinely used in the rest of the section, often
without explicit mention:

� converse of the Barcan formula CBF ◻∀pφ→ ∀p ◻ φ:860

1. ∀pφ→ φ by axiom Exap

2. ◻a(∀pφ→ φ)→ (◻a∀pφ→ ◻aφ) by axiom K
3. ◻a(∀pφ→ φ) from (1) by rule Nec
4. ◻a∀pφ→ ◻aφ from (2), (3) by rule MP
5. ◻a∀pφ→ ∀p ◻a φ from (4) by rule Gen, as p is not free in ◻a∀pφ

� vacuous quantification φ→ ∀pφ, whenever p does not appear in φ:

1. φ→ φ propositional tautology
2. φ→ ∀pφ by axiom Gen

By axiom Exap we then obtain φ↔ ∀pφ, whenever p does not appear in φ.

� distribution of quantification ∀p(φ→ ψ)→ (∀pφ→ ∀pψ):

1. ∀p(φ→ ψ)→ (φ→ ψ) by axiom Exap

2. ∀pφ→ φ by axiom Exap

3. φ→ (∀p(φ→ ψ)→ ψ) from (1) by tautology (A→ (B → C))↔ (B → (A→ C))
4. ∀pφ→ (∀p(φ→ ψ)→ ψ)) from (2), (3) by transitivity of implication
5. ∀p(φ→ ψ)→ (∀pφ→ ψ) from (4) by tautology (A→ (B → C))↔ (B → (A→ C))
6. (∀p(φ→ ψ) ∧ ∀pφ)→ ψ from (5) by tautology (A→ (B → C))↔ ((A ∧B)→ C)
7. (∀p(φ→ ψ) ∧ ∀pφ)→ ∀pψ from (6) by Gen
8. ∀p(φ→ ψ)→ (∀pφ→ ∀pψ) from (7) by tautology (A→ (B → C))↔ ((A ∧B)→ C)
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Since CBF, vacuous quantification and distribution of quantification are provable in
Kap, they are theorems in all the other 14 logics above. We also recall that inferring865

◻aφ → ◻aψ from φ → ψ is a derivable rule in modal logic, and whenever p does not
appear free in φ, formula ∀p(φ→ ψ)→ (φ→ ∀pψ) is a theorem in all our logics.

We now prove the soundness and completeness results for logics Lx w.r.t. the cor-
responding class K of Kripke frames, starting with soundness. In the rest of the paper
L ranges over {K,T,S4,B,S5}. Given a logic Lx, let τ(Lx) be a subset of {r, t, s},870

such that Lx includes axiom T iff τ contains r (for reflexivity), Lx includes axiom 4 iff τ
contains t (for transitivity), and Lx includes axiom B iff τ contains s (for symmetry).

Theorem 33 (Soundness). For x ∈ {ap,pl ,ml}, for every logic Lx and formula φ ∈
Lsopml ,

⊢Lx φ implies K
τ(Lx)
x̂ ⊧ φ

Proof. As customary, the axioms of each logic Lx are shown to be valid in the

corresponding class K
τ(Lx)
x̂ of frames, and the inference rules are shown to preserve

validity in K
τ(Lx)
x̂ . Specifically, axioms Prop, K, MP, and Nec are valid in any frame.875

The validity of axioms T, 4, and B in specific classes of frames follows as in standard
propositional modal logics [9]. The validity of axioms Exx in each corresponding class
of frames follows by Lemma 12.(2); while the validity of Gen follows by Lemma 12.(1).
We provide a proof for Exap : suppose that (M,w) ⊧ ∀pφ, that is, for every U ∈ D,
(Mp

U ,w) ⊧ φ. By Lemma 12.(2a), ⟦ψ⟧ ∈ D, hence in particular (Mp
⟦ψ⟧,w) ⊧ φ. Then,880

by Lemma 12.(2b), (M,w) ⊧ φ[p/ψ]. As regards Gen, suppose that (M,w) ⊧ φ and
p ∉ fr(φ). In particular, for every U ∈D, V (fr(φ)) = V pU (fr(φ)), and by Lemma 12.(1), we
have (Mp

U ,w) ⊧ φ as well. By MP we obtain that (Mp
U ,w) ⊧ ψ, and since U is arbitrary,

(M,w) ⊧ ∀pψ. Moreover, the Barcan formula BF is valid as in any frame all worlds
have the same domain of quantification, namely D ⊆ 2W . Indeed, (M,w) ⊧ ∀p ◻a φ iff885

for all U ∈ D, (Mp
U ,w) ⊧ ◻aφ, iff for every w′ ∈ Ra(w), (Mp

U ,w
′) ⊧ φ. But this means

that for every w′ ∈ Ra(w), (M,w′) ⊧ ∀pφ, that is, (M,w) ⊧ ◻a∀pφ.

As a consequence of Theorem 33, all our 15 logics are sound w.r.t. the corresponding
classes of frames. Moreover, as a by-product of soundness, we obtain that the inclu-
sions (4) between theories put forward in Section 2.2 are all strict:

Th(Kall) ⊂ Th(Kbool) ⊂ Th(Kmodal) ⊂ Th(Kfull) (15)

To prove this, observe that each axiom Exx holds in Kx , but in no more general class
of frames. Finally, let Exsopml be the scheme ∀pφ → φ[p/ψ], for ψ ∈ Lsopml . It is easy
to check that Exsopml ∈ Th(Kfull), but Exsopml ∉ Th(Kmodal).890

Next we state the completeness result. Here we use the notation of Theorem 33.

Theorem 34 (Completeness). For x ∈ {ap,pl ,ml}, and every formula φ ∈ Lsopml ,

K
τ(Lx)
x̂ ⊧ φ implies ⊢Lx φ

Theorem 34 guarantees completeness of a logic of sort x, with respect to models of
type x̂, for the sorts of atomic propositions and propositional and modal formulas. Com-
pleteness also holds if we add properties such as reflexivity, transitivity, and symmetry895
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to the frames, as long as we add the corresponding axioms from {T,4,B} to the logic.
To our knowledge this is the first completeness result for sopml in a multi-agent setting.

To prove Theorem 34 for x ∈ {ap,pl ,ml}, we show that if a formula φ is Lx-consistent,
then we can construct an appropriate modelMLx that satisfies φ. For logic Lap (respec-
tively, Lpl , Lml) this amounts to finding models whose underlying frame is any frame900

(respectively, a boolean algebra or a boolean algebra with operators). We begin with the
cases for Lap for clarity’s sake.

4.1.1. Completeness of Lap

In this section we show that if a formula φ is Lap-consistent, that is, ⊬Lap ¬φ, then we
can construct a (canonical) modelMLap = ⟨F , V ⟩ that satisfies φ. Moreover, F is shown905

to belong to the class Kall of all frames. This implies that Kall /⊧ ¬φ.

Definition 35. Let Λ ⊆ Lsopml be sets of formulas over set AP of atoms, and Y a
denumerable set of atoms. We say that Λ is

Lap-consistent iff Λ /⊢Lap �
complete iff for every formula φ ∈ Lsopml , φ ∈ Λ or ¬φ ∈ Λ
maximal iff Λ is consistent and complete
Y -rich iff for every φ ∈ Lsopml , if ∃pφ ∈ Λ then φ[p/q] ∈ Λ for some q ∈ Y
saturated iff Λ is maximal and Y -rich for some Y ⊆ AP

We omit the subscript Lap whenever clear by the context.

We remark that, by the definition of derivability, a set Λ is inconsistent iff for some910

φ0, . . . , φm ∈ Λ, ⊢ ⋀i≤m φi → �, that is, ⊢ ⋀i≤m φi → ¬ψ for every ψ ∈ Λ.
We now prove that every consistent set can be saturated.

Lemma 36 (Saturation). Let ∆ be a maximal set of formulas over AP . Then there
exists a saturated set of formulas Φ over AP ∪Y , such that ∆ ⊂ Φ, where Y is an infinite
set of new atoms (i.e., disjoint from AP ).915

Proof. Let θ0, θ1, . . . be an enumeration of the formulas over AP ∪ Y , and q0, q1, . . .
an enumeration of atoms in Y . We define by induction a sequence Φ0,Φ1, . . . of sets of
formulas over AP ∪ Y as follows:

Φ0 = ∆

Φn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φn ∪ {θn} if Φn ∪ {θn} is consistent and θn is not of the form ∃pχ;

Φn ∪ {θn, χ[p/q]} if Φn ∪ {θn} is consistent, θn is of the form ∃pχ,

and q ∈ Y is the first atom not appearing in Φn ∪ {θn};

Φn ∪ {¬θn} otherwise.

Notice that, since Y is an infinite set of new atoms and finitely many θ appear
in Φn ∖ Φ0, for each n ∈ N, we can always find an atom q ∈ Y that does not appear in920

Φn∪{θn}. Now we prove by induction on n that every Φn is consistent. First of all, Φ0 = ∆
is consistent by hypothesis. As to the inductive step, suppose that Φn is consistent, we
consider the various cases. If Φn+1 = Φn ∪ {θn} and θn is not of the form ∃pχ, then
Φn∪{θn} = Φn+1 has to be consistent, by construction. Further, Φn+1 = Φn∪{θn, χ[p/q]}
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if Φn ∪ {θn} is consistent, θn is of the form ∃pχ, and q is the first atom that does not925

appear in Φn ∪ {θn}. To obtain a contradiction, suppose that Φn+1 is inconsistent. In
particular, for some ϕ0, . . . , ϕm ∈ Φn,

⊢ (⋀
i≤m

ϕi ∧ θn)→ ¬χ[p/q]

Since q is assumed not to appear in Φn nor in θn, by an application of Gen we obtain

⊢ (⋀
i≤m

ϕi ∧ θn)→ ∀p¬χ

i.e., ⊢ (⋀i≤m ϕi ∧ θn) → ¬θn, and, since ⊢ (⋀i≤m ϕi ∧ θn) → θn trivially, we obtain that
⊢ (⋀i≤m ϕi ∧ θn) → �, that is, Φn ∪ {θn} is not consistent, against hypothesis. Hence,930

Φn+1 = Φn ∪ {θn, χ[p/q]} is indeed consistent.
Finally, Φn+1 = Φn ∪ {¬θn} only if Φn ∪ {θn} is not consistent. Indeed, if Φn is

consistent, Φn ∪ {θn} and Φn ∪ {¬θn} cannot be both inconsistent, since otherwise for
some ϕ0, . . . , ϕm, ϕ

′
0, . . . , ϕ

′
m′ ∈ Φn,

⊢ ⋀
i≤m

ϕi → ¬θn

⊢ ⋀
i≤m′

ϕ′i → ¬¬θn

and by propositional reasoning,935

⊢ ⋀
i≤m

ϕi ∧ ⋀
i≤m′

ϕ′i → (¬θn ∧ θn)

and therefore Φn itself is inconsistent, a contradiction. Hence, Φn ∪ {¬θn} = Φn+1 is
indeed consistent.

Now let Φ = ⋃n∈N Φn: Φ is consistent as each Φn is. If that were not the case, there
would be ϕ0, . . . , ϕm ∈ Φ such that ⊢ ⋀i≤m ϕi → �. Then suppose that k is the smallest
index such that all φi appear in Φk. It follows that Φk is inconsistent as well, against940

hypothesis. Moreover, Φ extends ∆ and it is maximal and Y -rich by construction.

We now describe informally the construction of the canonical model for a formula φ
such that ⊬ ¬φ. First, define W as the set of all saturated sets w of formulas over AP ∪Y
as obtained in Lemma 36. Notice that W is non-empty as the set {φ} is consistent by
hypothesis, and by Lemma 36 there exists a saturated set Φ ⊇ {φ} in W . Further, for945

w,w′ ∈ W and a ∈ I, define Ra(w,w
′) iff {ψ ∣ ◻aψ ∈ w} ⊆ w′. Finally, for every atom

p ∈ AP ∪ Y , we consider set Up = {w ∈ W ∣ p ∈ w} ⊆ W and define the domain D of
propositions as {Up ∣ p ∈ AP ∪ Y }.

Definition 37 (Canonical Model). The canonical model L is a tuple ML = ⟨W, D,
R, V ⟩ where (i) W , D and R are defined as above; and (ii) V is the assignment such950

that V (p) = Up.

Note that every consistent formula φ must be contained in some Φ ∈W . Next we prove

that the canonical model w.r.t. any Lap is indeed a model based on a frame in K
τ(Lap)
all

(recall that âp = all and that Lap represents 5 different logics: Kap ,Tap ,S4ap ,Bap , and
S5ap).955
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Lemma 38. The canonical model MLap in Definition 37 is a Kripke model based on a

frame in K
τ(Lap)
all .

Proof. By the remarks above, W is a non-empty set of saturated sets, D is a subset
of 2W , and V is a function from AP ∪ Y to D. Moreover, axiom T (respectively, 4, B)
enforces relation Ra on W to be reflexive (respectively, transitive, symmetric), as it is960

the case for propositional modal logic. As an illustrative example, we consider the case
for T: by maximality, for every w ∈ W , ◻aψ → ψ ∈ w for every formula ψ ∈ Lsopml , and
by closure under MP we have {ψ ∈ Lsopml ∣ ◻ψ ∈ w} ⊆ w, that is, Ra(w,w) by definition.

We can finally prove the truth lemma for logics Lap . Here we adapt the proof in [21]965

for propositional epistemic languages without common knowledge.

Lemma 39 (Truth lemma). For every logic Lap, in the canonical model MLap , for
every w ∈W and every formula ψ over AP ∪ Y ,

(MLap ,w) ⊧ ψ iff ψ ∈ w

Proof. The proof is by induction on the length of ψ. As to the base of induction
for ψ = p, by definition of satisfaction, (MLap ,w) ⊧ p iff w ∈ V (p) iff p ∈ w.970

For ψ = ¬χ, (MLap ,w) ⊧ ψ iff (MLap ,w) /⊧ χ, iff by induction hypothesis χ ∉ w. Since
w is maximal, this is the case iff ψ ∈ w.

For ψ = χ → χ′, (MLap ,w) ⊧ ψ iff (MLap ,w) /⊧ χ or (MLap ,w) ⊧ χ′. By induction
hypothesis this is the case iff χ ∉ w or χ′ ∈ w; in both cases we have that ψ ∈ w, as w is
maximal.975

Suppose that ψ = ∀pχ. ⇐ Let ψ ∈ w. By axiom Exap we have that χ[p/q] ∈ w
for every q ∈ AP ∪ Y . By induction hypothesis (MLap ,w) ⊧ χ[p/q] for every q. Now,
take an arbitrary Uq = {w ∈ W ∣ q ∈ w} in the domain D of the canonical model. By
Lemma 12.(2b), ((MLap)

p
Uq
,w) ⊧ χ, and since variant V pUq

was chosen arbitrarily, we

obtain that (MLap ,w) ⊧ ψ. ⇒ Assume that ψ ∉ w. Since w is maximal, ∃p¬χ ∈ w,980

and w is Y -rich, so ¬χ[p/q] ∈ w for some atom q ∈ Y . Then, by induction hypothesis,
(MLap ,w) /⊧ χ[p/q], and by Lemma 12.(2b), ((MLap)

p
V (q),w) /⊧ χ. In particular, for

Uq = V (q) ∈D, ((MLap)
p
Uq
,w) /⊧ χ, i.e., (MLap ,w) /⊧ ψ.

Suppose that ψ = ◻aχ. ⇐ Assume that ψ ∈ w and v ∈ Ra(w). By definition of
Ra, χ ∈ v; therefore by induction hypothesis (MLap , v) ⊧ χ. Thus, (MLap ,w) ⊧ ψ.985

⇒ Assume that ψ ∉ w and consider set {φ ∣ ◻aφ ∈ w} ∪ {¬χ}. This set is consistent,
for if not, then for some φ1, . . . , φn ∈ {φ ∣ ◻aφ ∈ w}, ⊢ ⋀φ → χ. Then, by axiom
K, ⊢ ⋀◻aφ → ◻aχ and since ⋀◻aφ ∈ w, also ◻aχ ∈ w against hypothesis. Now we
want to saturate ∆ = {φ ∣ ◻aφ ∈ w} ∪ {¬χ} to obtain v ∈ W such that Ra(w, v) and
¬χ ∈ v. However, we cannot directly apply Lemma 36 to ∆, as it is a set of formulas over990

AP ∪ Y . We prove that ∆ can nonetheless be extended to a saturated set Φ of formulas
over AP ∪ Y . The proof structure is similar to the one for Lemma 36, namely, we define
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a sequence Φ0,Φ1, . . . of sets of formulas over AP ∪ Y as follows:

Φ0 = ∆

Φn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φn ∪ {θn} if Φn ∪ {θn} is consistent and θn is not of the form ∃pζ;

Φn ∪ {θn, ζ[p/q]} if Φn ∪ {θn} is consistent, θn is of the form ∃pζ,

and q ∈ AP ∪ Y is the first atom such that

Φn ∪ {θn, ζ[p/q]} is consistent;

Φn ∪ {¬θn} otherwise.

We prove by induction on n that every Φn is consistent (and well-defined). First of
all, Φ0 = ∆ is consistent as shown above. As to the inductive step, suppose that Φn995

is consistent. We only consider the case where Φn ∪ {θn} is consistent and θn is of the
form ∃pζ, and show that Φn+1 is well-defined, that is, there exists q ∈ AP ∪ Y such that
Φn ∪ {θn, ζ[p/q]} is consistent as well. To obtain a contradiction, suppose that for every
q ∈ AP ∪ Y , there exist ◻aϕ0, . . . ,◻aϕm in w such that

⊢ ⋀
i≤m

ϕi → (⋀
i≤n

ψi ∧ θn → ¬ζ[p/q])

where ψ0, . . . , ψn are all the formulas in Φn ∖∆.1000

By axiom K we obtain

⊢ ⋀
i≤m

◻aϕi → ◻a(⋀
i≤k
ψi ∧ θn → ¬ζ[p/q])

and since all ◻aϕi belong to w, by maximality we derive that ◻a(⋀i≤k ψi∧θn → ¬ζ[p/q]) ∈
w for all q ∈ AP ∪ Y (*). Take an atom q not occurring in ⋀i≤k ψi ∧ θn and consider the
formula ∀q ◻a (⋀i≤k ψi ∧ θn → ¬ζ[p/q]). We claim that this formula is a member of w,
because, if not, by maximality, ∃q◇a (⋀i≤k ψi ∧ θn ∧ ζ[p/q]) ∈ w, and, by saturation, for1005

some q′ ∈ AP ∪ Y , we have ◇a(⋀i≤k ψi ∧ θn ∧ ζ[p/q
′]) ∈ w, contradicting (*).

Since ∀q◻a (⋀i≤k ψi ∧ θn → ¬ζ[p/q]) ∈ w by axiom BF we obtain that ◻a∀q(⋀i≤k ψi ∧
θn → ¬ζ[p/q]) ∈ w as well, and since q is assumed not to appear in ⋀i≤k ψi ∧ θn we derive
◻a(⋀i≤k ψi ∧ θn → ∀q¬ζ[p/q]) ∈ w, and therefore ⋀i≤k ψi ∧ θn → ∀q¬ζ[p/q] ∈ ∆. Further,
since ψ0, . . . , ψn belong to Φn, we obtain that Φn∪{θn} ⊢ ∀q¬ζ[p/q]. But this contradicts1010

the fact that Φn ∪ {θn} is consistent (recall that θn = ∃pζ). As a result, Φn ∪ {θn, ζ[p/q]}
is indeed consistent for some q ∈ AP ∪ Y .

The other inductive cases of the construction go as in Lemma 36. Finally, Φ = ⋃n∈N Φn
is consistent as each Φn is so. In particular, Φ is a saturated set in W such that Φ ∈ Ra(w)
by construction. By induction hypothesis (MLap ,Φ) /⊧ χ, that is, (MLap ,w) /⊧ ψ.1015

By Lemma 39, if ⊬Lap ¬φ then there exists a saturated set w ⊇ {φ} such that in the
canonical model MLap , we have (MLap ,w) ⊧ φ. Moreover, MLap is based on a frame
F ∈ Kall . Thus, Kall /⊧ ¬φ. This concludes the completeness proof for Lap .

4.1.2. Completeness of Lpl and Lml

In this section we discuss how to adapt the completeness proof for Lap in the previous1020

section to logics Lpl and Lml . As regards Lpl , we need to modify the definition of the
canonical model and the proof of the truth lemma, starting with the former.
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Definition 40 (Canonical Model). The canonical model for Lpl is a tuple MLpl
=

⟨W,D,R,V ⟩ where

� W , R and V are given as in Definition 37;1025

� D is the domain of sets Uψ = {w ∈W ∣ ψ ∈ w} ⊆W , for every propositional formula
ψ ∈ Lpl over AP ∪ Y .

Given Definition 40 of canonical model, we can show that it is indeed based on a
boolean frame.

Lemma 41. The canonical model MLpl
is boolean.1030

Proof. We have to prove that domain D is closed under boolean operations. Let Uφ
and Uφ′ be sets in D, we show that Uφ∩Uφ′ = Uφ∧φ′ ∈D. Clearly, w ∈ Uφ∩Uφ′ iff φ ∈ w and
φ′ ∈ w, and by maximality, this is the case iff φ∧φ′ ∈ w as well. Closure under disjunction
is proved similarly. As to taking complement, we show that W ∖ Uφ = U¬φ ∈ D. Again,
w ∉ Uφ iff φ ∉ w, and by maximality, this is the case iff ¬φ ∈ w.1035

As a consequence of Lemma 41,MLpl
is based on a frame in Kbool . Moreover, we are

able to prove the following version of the truth lemma.

Lemma 42 (Truth lemma). For every logic Lpl , in the canonical model MLpl
, for

every w ∈W and every formula ψ over AP ∪ Y ,

(MLpl
,w) ⊧ ψ iff ψ ∈ w

Proof. To prove the truth lemma for Lpl we have to modify the proof of Lemma 39.1040

Specifically, we can first prove that for every ψ ∈ Lpl , (MLpl
,w) ⊧ ψ iff ψ ∈ w, as in

Lemma 39. In particular, we obtain that Uϕ = ⟦ϕ⟧MLpl
= {w ∈W ∣ (MLpl

,w) ⊧ ϕ} ∈ D.

Then, the proof for any ψ ∈ Lsopml is given by induction on the length of ψ, similarly as
in Lemma 39, the only case of interest being quantified formulas. For ψ = ∀pχ, if ψ ∈ w
then by axiom Expl we have that χ[p/ϕ] ∈ w, for any φ ∈ Lpl . By induction hypothesis,1045

(MLpl
,w) ⊧ χ[p/ϕ]. Now consider the set Uϕ = ⟦ϕ⟧MLpl

∈ D. By Lemma 12.(2b), it is

the case that ((MLpl
)pUϕ

,w) ⊧ χ, and since the choice of ϕ (and therefore of variant V pUϕ
)

is arbitrary, we obtain that (MLpl
,w) ⊧ ∀pχ. As to the implication from left to right,

the proof is the same as in Lemma 39, as each w is maximal and rich.

As a consequence of Lemma 42, the truth lemma also holds for boolean frames and1050

we obtain a completeness proof for Lpl .
We now discuss how to modify the procedure above to obtain completeness results

for the logics Lml . Firstly, the canonical model for Lml is now defined as a tupleMLpl
=

⟨W,D,R,V ⟩ where (i) W , R and V are given as in Definition 37; and (ii) D is the
domain of sets Uψ = {w ∈W ∣ ψ ∈ w} ⊆W , for every modal formula ψ ∈ Lml over AP ∪Y .1055

In particular, it is easy to check that the domain D in MLpl
is a boolean algebra with

operators. Secondly, by adapting the proof of Lemma 42, we can prove the truth lemma
for MLml

:

Lemma 43 (Truth lemma). For every logic Lml , in the canonical model MLml
, for

every w ∈W and every formula ψ over AP ∪ Y ,1060

(MLml
,w) ⊧ ψ iff ψ ∈ w
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This completes the completeness proof for the logics Lml .
We conclude the section by summarising the soundness and completeness results for

our logics w.r.t. the relevant classes of frames.

Theorem 44 (Soundness and Completeness). For x ∈ {ap,pl ,ml}, each logic Lx
is sound and complete w.r.t. the class K

τ(Lx)
x̂ of frames that are reflexive (respectively,1065

transitive, symmetric), whenever Lx includes axiom T (respectively, 4, B).

As a result, for types ap, pl , and ml we are able to prove soundness and completeness
for all normal modalities (i.e., K,T,S4,B, and S5) in a multi-modal setting.

4.1.3. Generalised Completeness

We now extend the completeness results in the previous section by considering extra1070

axioms expressing properties of frames. Specifically, let L be any axiomatisation men-
tioned in Theorem 44. Then, if we extend L with the universal closure ∀p⃗ψ of a formula
ψ ∈ Lsopml , the resulting calculus L + ∀p⃗ψ is sound and complete w.r.t. the class of

frames satisfying the mso condition ∀x∀P⃗STx(ψ), where P⃗ are all the unary predicates
appearing in STx(ψ).1075

Theorem 45. Let ψ be a formula in sopml, then the logic L+∀p⃗ψ is sound and complete
w.r.t. the corresponding class K of frames satisfying ∀x∀P⃗STx(ψ).

Proof. Soundness follows immediately by Lemma 29, as every frame that satisfies
condition ∀x∀P⃗STx(ψ) = ∀xSTx(∀p⃗ψ), also validates ∀p⃗ψ. As to completeness, if ∀p⃗ψ
is an axiom, then it appears in every state of the canonical model M, and by the truth1080

lemma, M validates ∀p⃗ψ. Finally, by another application of Lemma 29, F validates
∀x∀P⃗STx(ψ).

By the result above we immediately obtain that for every formula θ(a⃗, p⃗) appear-
ing in Table 1, L + ∀pθ(a⃗, p⃗) is sound and complete w.r.t. the class of frames satisfying
∀x∀P⃗Θ(a⃗, x). For instance, K + ∃p(◻ap ∧ ¬p) is a sound and complete axiomatisa-1085

tion of the class of irreflexive frames (notice that, since ∃p(◻ap ∧ ¬p) is a sentence, its
universal closure is equal to the formula itself.) More generally, there is a one-to-one
correspondence between a sopml axiom ∀p⃗θ and the mso condition ∀x∀P⃗STx(θ) on the
corresponding class of sound and complete frames.

4.2. Incompleteness1090

In Section 4.1 we provided complete axiomatisations for languages without common
knowledge, in the classes of all, boolean, and modal frames. In this section we prove our
main unaxiomatisability results for sopml. Specifically, in Section 4.2.1 we show that
the set of validities in sopel (without common knowledge) interpreted on full frames
is unaxiomatisable whenever we assume at least two agents in our frames. Further, in1095

Section 4.2.2 we prove that, with common knowledge, sopml is unaxiomatisable on modal
frames already when considering a single agent. We then demonstrate (Corollaries 59,
62 and 64 as well as Theorem 63) how this proof can be extended to the other classes of
frames. These results complete Tables 3 and 4.
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4.2.1. 2-agent sopel on Full Frames is Unaxiomatisable1100

Recall that, as discussed at the beginning of Section 4, an axiomatisation for single-
agent sopel on full frames was introduced in [22]. Here we show that, this result cannot
be generalised to the multi-agent case, i.e., we demonstrate that multi-agent sopel is
not recursively axiomatisable on full frames.

We prove this unaxiomatisability result by reducing the validity problem of diadic1105

second order logic (dso) to the validity problem of sopel. Since the former is known
not to be recursively enumerable, this implies that the latter is also not recursively
enumerable, and therefore in particular not axiomatisable. The reduction that we use is
somewhat similar to the one used in [40] to prove the unaxiomatisability of single-agent
sopml on full frames with S4.2 or weaker modalities. Specifically, both the proof from1110

[40] and the proof presented here represent a second order domain D in a Kripke model
by taking D ⊆ W and (D ×D) ⊆ W . Quantification over diadic relations on Dom then
corresponds to propositional (i.e., monadic) quantification over (D ×D). The difference
between the two proofs lies in how they characterize the models where D ⊆ W and
D×D ⊆W , and in how second order formulas are translated once such a characterisation1115

has been established.
Since the reduction is from the validity problem of diadic second order logic, let us

first briefly define this logic.
Let a set X of first-order variables and a set R of second order variables be given.

Then the language of diadic second order logic is given by the following normal form:

θ ∶∶= R(x, y) ∣ x = y ∣ ¬θ ∣ θ → θ ∣ ∀xθ ∣ ∀Rθ

where x,x ∈ X and R ∈R.
The formulas of dso can be evaluated on models (Dom, ρ) that consist of a domain1120

Dom and an assignment function ρ that assigns to each first-order variable x an element
ρ(x) ∈ Dom and to each second-order variable R a relation ρ(R) ⊆ Dom × Dom. Given
a model (Dom, ρ) an element d ∈ Dom and a relation E ⊆ Dom ×Dom, the assignments
ρ[x↦ d] and ρ[R ↦ E] are the modifications of ρ that map x ∈ X to d ∈ Dom and R ∈R
to E ⊆ Dom ×Dom, respectively.1125

Given these preliminaries, we can define the semantics of dso in the usual way.

Definition 46. We define whether a model (Dom, ρ) satisfies a formula θ of dso recur-
sively as follows:

(Dom, ρ) ⊧ R(x, y) iff (ρ(x), ρ(y)) ∈ ρ(R)
(Dom, ρ) ⊧ x = y iff ρ(x) = ρ(y)
(Dom, ρ) ⊧ ¬θ iff (Dom, ρ) /⊧ θ
(Dom, ρ) ⊧ θ → θ′ iff (Dom, ρ) /⊧ θ or (Dom, ρ) ⊧ θ′

(Dom, ρ) ⊧ ∀xθ iff for every d ∈ Dom, (Dom, ρ[x↦ d]) ⊧ θ
(Dom, ρ) ⊧ ∀Rθ iff for every E ⊆ Dom ×Dom, (D,ρ[R ↦ E]) ⊧ θ

A formula θ of dso is valid, denoted ⊧ θ, if (Dom, ρ) ⊧ θ for every model (Dom, ρ).

In general, a formula of dso can contain free first- and second-order variables. Our1130

goal is to make a reduction from the validity problem of dso, however, so we only care
about whether a formula is valid. If θ is a dso formula with a free first-order variable
x (a free second-order variable R, respectively), then θ is valid if and only if ∀xθ (∀Rθ,
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respectively) is valid. As a result, it suffices for us to consider only the sentences of dso,
i.e., the formulas without free variables. Furthermore, if θ is a sentence then whether1135

(Dom, ρ) ⊧ θ depends only on Dom. As such, we can consider our models to be given by
the domain Dom only, where we say that Dom ⊧ θ if and only if (Dom, ρ) ⊧ θ for every
assignment ρ.

Now, let us introduce the reduction from the validity problem of dso to sopel’s.
This reduction has two parts: firstly, we define a formula ψmodel of sopel and use it to1140

characterize a specific class of pointed models. Then, we define a translation f from the
formulas of dso to the formulas of sopel, with the property that

for every formula θ in dso, there is a model Dom such that Dom ⊧ θ iff there
is a pointed model (M,w) of sopml such that (M,w) ⊧ ψmodel ∧ f(θ).

Before defining ψmodel and f(φ), however, let us present an auxiliary formula ψunique(a,χ)1145

that will be useful in several places.

Definition 47. Let a ∈ I be an index and χ ∈ Lsopml a formula. Then

ψunique(a,χ) ∶= ◊aχ ∧ ∀q(◊a(q ∧ χ)→ ◻a(χ→ q)).

Lemma 48. Let a be an index in I, χ ∈ Lsopml any formula,M any full epistemic model,
and w any world in M. Then (M,w) ⊧ ψunique(a,χ) if and only if there is exactly one
a-successor w′ of w such that (M,w′) ⊧ χ.

Proof. Suppose (M,w) ⊧ ψunique(a,χ). Then, in particular, (M,w) ⊧ ◊aχ, so there1150

is at least one a-successor w′ of w such that (M,w′) ⊧ χ. Suppose now, towards a
contradiction, that there are two different a-successors w′ and w′′ of w such that χ holds
on both w′ and w′′. Then, since M is a full model, there is some assignment for q such
that q holds in w′ but not in w′′. As a result, for this choice of q, we have (M,w) ⊧
◊a(q∧χ)∧¬◻a(χ→ q), contradicting the fact that (M,w) ⊧ ∀q(◊a(q∧χ)→ ◻a(χ→ q)).1155

It follows that the assumption of such w′ and w′′ existing must be false, so there is at
most one a-successor w′ of w such that (M,w′) ⊧ χ.

Suppose then that there is exactly one a-successor w′ of w such that (M,w′) ⊧ χ.
Then there is at least one such successor, so (M,w) ⊧ ◊aχ. Furthermore, for every
assignment of q, we have ◊a(q ∧ χ) if and only if (M,w′) ⊧ q ∧ χ, in which case we also1160

have ◻a(χ → q). It follows that (M,w) ⊧ ∀q(◊a(q ∧ χ) → ◻a(χ → q)). Together with
the previously established (M,w) ⊧ ◊aχ, this implies that (M,w) ⊧ ψunique(a,χ).

Now we can use ψunique to define ψmodel and f .

Definition 49. The formula ψmodel is given by

ψmodel ∶= ◻a (ψD ∧ ψexcl ∧ ψconnect ∧ ψ≥1 ∧ ψ≤1)

where

ψD ∶= pD ∧ ψunique(b, pD)

ψexlc ∶= ◻b ¬(pD ∧ (start ∨ end)) ∧ ◻b¬(start ∧ end) ∧ ◻b(pD ∨ start ∨ end)

ψconnect ∶= ◻b (¬pD → (◻a(start ∨ end) ∧ ψunique(a, start) ∧ ψunique(a, end)))

ψ≥1 ∶=∀p(◊ap→ ◊b(pstart ∧ ◊a(pend ∧ ◊bp))

ψ≤1 ∶=∀p(ψunique(a, p)→ ψunique(b, start ∧ ◊a(end ∧ ◊b(p ∧ pD)))
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The meaning of the named subformulas (ψD, ψexcl , ψconnect , ψ≥1 and ψ≤1) is discussed in
the proof of Theorem 51.1165

Definition 50. Let translation function f is recursively defined as follows.

f(x = y) = ◊a(px ∧ py)

f(R(x, y)) = ◊a(px ∧ ◊b(pR ∧ start ∧ ◊a(end ∧ ◊bpy)))

f(¬θ) = ¬f(θ)

f(θ1 → θ2) = f(θ1)→ f(θ2)

f(∀xθ) = ∀px(ψunique(a, px)→ f(θ))

f(∀Rθ) = ∀pRf(θ)

We can now prove the main result of this section.

Theorem 51. For every dso sentence θ,

⊧ θ iff Kefull ⊧ ψmodel → f(θ)

Proof. First, let us consider the models that satisfy ψmodel . Let (M,w0) be any
full epistemic pointed model such that (M,w0) ⊧ ψmodel , and let Dom ∶= Ra(w0). The1170

primary connective of ψmodel is ◻a, so let us consider any w ∈ Dom.
The conjunct ψD holds at w if and only if (i) w satisfies pD and (ii) w has only one

b-successor that satisfies pD (and by (i) this unique successor has to be w itself). We
refer to the b-successors of w as the cone on w, as drawn in the following figure. Note
that cones of any two different w,w′ ∈ Dom cannot overlap, since by the fact that M1175

is an epistemic model, this would imply that Rb(w,w
′), contradicting the uniqueness of

the pD-world.

b b b

a

pD
w0

pD
w

pD
w′

The conjunct ψexcl holds if and only if every state in a cone satisfies exactly one of
pD, start and end . The formula ψconnect then holds if and only if all start states are1180

paired with exactly one end state by the relation a, and likewise all end states are paired
with exactly one start state. Note that if a start or end state is in the cone of w, then
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the state that it is paired up with could be in the cone of w, in the cone of some different
state w′ or it might not be in any cone at all.

Now, consider formula ψ≥1. It states that for every choice of p, if w has an a-successor1185

w′ that satisfies p, then there is a path w
b
z→ e1

a
z→ e2

b
z→w′′ such that e1 satisfies start ,

e2 satisfies end and w′′ satisfies p. This is the case if and only if for every w,w′ ∈D, there

is at least one such path w
b
z→ e1

a
z→ e2

b
z→ w′. Note that this also applies for w = w′.

Our schematic illustration can therefore be extended to the following:
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Finally, formula ψ≤1 states that for any choice of p, if w has a unique a-successor w′

that satisfies p, then w also has a unique b-successor e1 such that (i) e1 satisfies start ,
(ii) e1 has an a-successor e2 that satisfies end , and (iii) e2 has a b-successor w′′ that
satisfies p ∧ pD. This is the case if and only if for every w,w′ ∈ D there is at most one

path w
b
z→ e1

a
z→ e2

b
z→w′ where e1 satisfies start and e2 satisfies end .1195

All in all, the conjuction of ψ≥1 and ψ≤1 means that there is exactly one path w
b
z→

e1
a
z→ e2

b
z→w′ with (M, e1) ⊧ start and (M, e2) ⊧ end between each w,w′ ∈D.

The pointed model (M,w0) is then used in the following way. The suggestively
named set Dom can be treated as the domain of a dso model. First-order quantifi-
cation is then interpreted on selecting exactly one world w ∈ Dom. Note that this is1200

precisely what translation function f does: first-order quantification ∀xθ is translated
as ∀px(ψunique(a, px) → f(θ)). On the other hand, second-order quantification is inter-

preted on selecting exactly those start worlds that are on a path w
b
z→ e1

a
z→ e2

b
z→w′,

where pair (w,w′) is in the chosen relation. Again, this is exactly what translation f
does: ∀Rθ is translated as ∀pRf(θ), and the relational atom R(x, y) is then translated1205

as ◊a(px ∧ ◊b(pR ∧ start ∧ ◊a(end ∧ ◊bpy))), which means exactly that R(x, y) holds iff
pR is true in the start-world in between the unique px- and py-worlds.

It follows that Dom ⊧ θ if and only if (M,w0) ⊧ f(θ). Since all we assumed about
M is that it is a full epistemic model and that (M,w0) ⊧ ψmodel , it follows that ⊧ θ if
and only if Kefull ⊧ ψmodel → f(θ).1210

As a consequence of the fact that validity in dso is not recursively enumerable, we
immediately obtain the following corollary.
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Corollary 52. Multi-agent sopml on full epistemic frames is unaxiomatisable.

Remark 53. We used only two indexes for modalities in our reduction, so the unax-
iomatisability result holds whenever the set of indexes contains at least two elements.1215

4.2.2. Single-agent sopml∗ is Unaxiomatisable on Modal Frames

In Section 4.1.3 we introduced sound and complete axiomatisations for sopml on
the classes of modal, boolean, and all frames. The version of sopml that we considered
there does not contain common knowledge, however. This is a fundamental restriction;
the variant sopml∗, which is obtained by adding common knowledge to sopml, is not1220

axiomatisable on any class of frames. Here, we show that sopml∗ is not axiomatisable
with respect to general or epistemic models that have modal, boolean or arbitrary domain
of quantification. It can also be shown that sopml∗ is unaxiomatisable on intermediate
classes of models, such as those for logics KD45 (i.e., serial, transitive and symmetric
models) or S4.2 (i.e., reflexive, transitive and convergent models). We do not include1225

proofs for these classes, however, since they are very similar to the proofs for the cases
we treat.

We prove the unaxiomatisability of sopml∗ on modal models by a reduction from the
non-halting problem to the validity problem of sopml∗. Since the non-halting Turing
machines are not recursively enumerable, neither are the validities of sopml∗ with respect1230

to modal models. The proof that we use here is inspired by a similar proof from [42],
in which the non-halting problem is reduced to the validity problem of a logic called
Arbitrary Arrow Update Logic with Common Knowledge.

Before defining our reduction, let us first define the non-halting problem for Turing
machines. A Turing machine, first defined in [54], is an abstract model of computation1235

that consists of (i) an infinite tape, with Z cells that can each contain a symbol, but that
initially contain a “null” symbol α0; (ii) a read/write head that can read the symbol in
a cell or write a symbol to it; (iii) a method to keep track of what state the machine
is currently in; and (iv) a set of instructions that, based on the current state and the
current symbol under the read/write head, determines what symbol is to be written,1240

what the next state of the machine should be, and whether the read/write head should
move to the left, to the right or remain in place. The Turing machines that we consider
here are deterministic so for each combination of state and symbol there is exactly one
instruction. Formally, a Turing machine T can be defined as follows.

Definition 54. A Turing machine T is a triple T = (Λ, S,∆), where Λ is a finite alphabet1245

containing the symbol α0, S is a finite set of states containing the distinct states s0 and
send , and ∆ ∶ Λ × S → Λ × S × {left , right , remain} is a transition function.

The functions ∆1,∆2 and ∆3 are the projections of ∆ to its first, second and third
coordinate, respectively.

We can assume without loss of generality that ∆2(α, s) /= s0 for all α ∈ Λ and s ∈ S,1250

so that the machine never returns to its initial state.5 The execution of such a machine
T can be represented as a function ET ∶ Z × N → Λ × S × {yes,no}. The horizontal

5Where necessary, an extra copy scopy0 of s0 can be added; whenever the system would go to state s0
we can then let it go to scopy0 instead.
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direction Z represents positions on the tape. The vertical direction N represents time.
So ET (n,m) = (α, s, yes) indicates that at time m, the n-th position on the tape contains
symbol α, the machine is in state s and the read/write head is in position n. Likewise,1255

ET (n,m) = (α, s,no) indicates that at time m the read/write head is not at position
n. Note that ET contains some redundant information: the state is a property of the
machine, not of any particular position on the tape. Furthermore, the read/write head
is in exactly one position at a time. So, for example, if ET (n,m) = (α, s, yes), then we
must have ET (n + 1,m) = (β, s,no) for some symbol β.1260

A Turing machine T has a designated end state send . We say that T halts if the
machine ever reaches this end state, so if for any (n,m) and any α ∈ Λ, we have
ET (n,m) = (α, send , yes).

Definition 55 (Halting Problem). The halting problem is to determine, for a given
Turing machine T , whether T halts. The non-halting problem is the complement of the1265

halting problem, i.e., to determine whether a given Turing machine doesn’t halt.

Although neither of them used this terminology, Church [14] and Turing [54] indepen-
dently showed that the halting problem is undecidable. More precisely, the halting Turing
machines are recursively enumerable, but the non-halting Turing machines are not.

Remark 56. The intuition behind the end state is that the machine stops when it reaches1270

send , so no more computation happens after that point. Here, however, in order to avoid
special cases it is more convenient to assume that every Turing machine keeps going
forever, whether or not it reaches send . So, whether or not a machine formally halts
(reaches the end state), it never informally halts (stops).

When reducing the non-halting problem to validity in sopml∗, it is useful to represent1275

time not by the naturals N but by the integers Z, since this allows us to avoid special
cases at time t = 0. For every time t < 0 we then say that the machine is in a dummy
state svoid /∈ S, which can be read as “the computation has not started yet.”

Now that the necessary concepts are defined, we can give our reduction of the non-
halting problem to the validity problem of sopml∗ on modal frames. This reduction has1280

three parts. Firstly, we define a sopml∗ formula ψgrid that holds in a pointed model
(M,w) if and only if M represents a Z × Z grid. Then, we define a formula ψsane

that enforces a few sanity constraints that are necessary in order for us to interpret the
grid as representing the execution of some Turing machine. Finally, we define a formula
ψT that holds if and only if the Turing machine encoded by the grid is the specific1285

machine T . Before defining these formulas, however, let us explain a “trick” that we will
use. Typically, if we wanted to have a Z × Z grid in a modal logic, we would use four
accessibility relations Rright ,Rleft ,Rup and Rdown . However, we also want to show that
even single-agent sopml∗ is unaxiomatisable. So we will use only a single relation R.

We still need to represent the four possible directions, however. We do this by “col-
oring” the worlds of our model with propositional atoms {1,⋯,9}, in a repeating pattern

7 8 9
4 5 6
1 2 3
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So if a world satisfies 5, then the world above it satisfies 8, and if a world satisfies 6
then the world to its right satisfies 4. For ever direction x ∈ dir ∶= {left , right ,up,down},
let fx ∶ {1,⋯,9} → {1,⋯,9} be the function that gives the next number in direction
x, e.g. fup(8) = 2. Further, since we use only one agent a, we write ◻ for ◻a. This
operator, together with functions fx, can then be used to define ◻x and ◊x for x ∈ dir as
abbreviations:

◻xφ ∶= ⋁
1≤i≤9

(i ∧ ◻(fx(i)→ φ))

◊xφ ∶= ⋁
1≤i≤9

(i ∧ ◊(fx(i) ∧ φ))

These abbreviations are then used in formulas ψgrid , ψsane and ψT defined as follows.1290

Definition 57. Let S,Λ,{pos, rpos, rpos} ⊆ AP , and let T = (Λ, S,∆) be a Turing ma-
chine. The formula χT is given as χT ∶= ψgrid ∧ ψsane ∧ ψT ∧ s0 ∧ pos, where formulas
ψgrid , ψsane and ψT are as shown in Tables 5–7.

The formulas ψgrid , ψsane and ψT may look complex, but that it slightly misleading.
While these formulas are certainly long, every named subformula encodes a property of1295

either a grid or a Turing machine in a rather straightforward way.
We start by considering the formula ψgrid which, as the name implies, encodes a

grid. Specifically, let (M,w0) be any pointed model (based on a modal frame) such
that (M,w0) ⊧ ψgrid . We use the worlds of M to represent the points of Z × Z, in the
following way: (i) the world w0 represents (0,0); (ii) if a world w represents (n,m), then1300

every right-successor of w represents (n + 1,m); and (iii) similarly for the other three
directions.

We show that every point (n,m) is represented by at least one world, that every
world in the generated submodel represents at least one point, and that all the worlds
that represent a single point (n,m) are modally indistinguishable. Let w be any world1305

in the generated submodel of (M,w0). The main connective of ψgrid is ◻∗, so labels,
direction, uniquex for every x ∈ dir , inversexy for every (x, y) ∈ inv dir and commutexy
for all (x, y) ∈ perp dir hold at w.

� By labels, the world w satisfies exactly one label i ∈ {1,⋯,9}.

� By the first conjunct of direction, the world w has at least one x-successor for every1310

x ∈ dir . It follows that every point in Z × Z is represented by at least one world.
Furthermore, by the second conjunct of direction, every successor of w satisfies one
of the labels that allow us to identify it as an x-successor for some x ∈ dir . It
follows that every world in the generated submodel represents at least one point.

� The formula uniquex implies that, for every U in the domain of quantification D,1315

either every x-successor of w is in U , or no x-successor is in U . SinceM is based on
a modal frame, this implies that all x-successors of w are modally indistinguishable
from one another.

� The formula inversexy implies that, for every U ∈ D, if w ∈ U then every xy-
successor of w is also in U . Again, sinceM is based on a modal frame, this implies1320

that w is modally indistinguishable from its xy-successors. Note that this formula
holds for all (x, y) ∈ inv dir .
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ψgrid ∶= ◻∗ (labels ∧ direction ∧ ⋀
x∈dir

uniquex∧

⋀
(x,y)∈inv dir

inversexy ∧ ⋀
(x,y)∈perp dir

commutexy)

labels ∶= ⋁
1≤j≤9

i ∧⋀
i/=j

¬(i ∧ j)

direction ∶= ⋀
x∈dir

◊x⊺ ∧ ⋁
1≤i≤9

(i ∧ ◻ ⋁
x∈dir

fx(i))

uniquex ∶= ∀p(◊xp→ ◻xp))

inversexy ∶=∀p(p→ ◻x ◻y p)

commutexy ∶=∀p(◊x◊yp→ ◻y ◻x p)

dir ∶= {left , right ,up,down}

inv dir ∶= {(left , right), (right , left), (up,down), (down,up)}

perp dir ∶= {(left ,up), (left ,down), (right ,up), (right ,down),

(up, left), (up, right), (down, left), (down, right)}

Table 5: The formula ψgrid .

� The formula commutexy implies that, for every U ∈ D, if there is an xy-successor
w′ of w such that w′ ∈ U , then every yx-successor of w is in U . This implies that
the xy-successors of w are modally indistinguishable from its yx-successors.1325

� Taken together, uniquex (for every x ∈ dir), inversexy (for every (x, y) ∈ inv dir)
and commutexy (for every (x, y) ∈ perp dir) imply that all worlds representing a
single point (n,m) are modally indistinguishable from one another.

We say that tape position n at time m contains the symbol α if the worlds representing
(n,m) satisfy the propositional atom α. Likewise, if the worlds representing (n,m) satisfy1330

the propositional atom s, then the machine is in state s at time m. Finally, if the worlds
representing (n,m) satisfy the atom pos, then the read/write head is in position n at
time m, if they satisfy rpos then position n is to the right of the read/write head at time
m and if they satisfy lpos then position n is to the left of the head.

Note that, because all worlds representing (n,m) are modally indistinguishable, it1335

does not matter at which world we check whether these atoms are true; if s holds in any
world representing (n,m) then s holds on all worlds representing (n,m). In particular,
since we use propositional atoms to represent the state of the Turing machine, the symbols
on the tape, as well as the position of the read/write head, the modal indistinguishability
of all worlds representing (n,m) means that all those worlds agree on the symbol, state,1340

and on whether the read/write head is in that position. If a modal formula φ holds on
the worlds that represent (n,m), we abuse notation by writing (M, (n,m)) ⊧ φ.6

6Note that we have not shown that w represents a unique point (n,m). It is, in fact, true that if
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ψsane ∶= ◻∗ (position1 ∧ position2 ∧ one state ∧ same state ∧ one symbol∧

void state ∧ initial symbol ∧ unchanged i)

position1 ∶= ¬(pos ∧ lpos) ∧ ¬(pos ∧ rpos) ∧ ¬(rpos ∧ lpos)

position2 ∶= ((pos ∨ rpos)→ ◻rightrpos) ∧ ((pos ∨ lpos)→ ◻left lpos))

one state ∶= ⋁
s∈states

(s ∧ ⋀
s′∈states∖{s}

¬s′)

same state ∶= ⋀
s∈states

(s→ (◻rights ∧ ◻lefts))

one symbol ∶= ⋁
α∈Λ

(α ∧ ⋀
β∈Λ∖{α}

¬β)

void state ∶= (s0 ∨ svoid)→ ◻downsvoid

initial symbol ∶= s0 → α0

unchanged ∶= ⋀
α∈Λ

((¬pos ∧ α)→ ◻upα))

Table 6: The formula ψsane .

The formula ψsane imposes a number of sanity constraints: if (M,w) satisfies both
ψgrid and ψsane , then M can almost be seen as the execution of a Turing machine. We
will first discuss the subformulas of ψsane in detail, and explain which sanity constraints1345

they represent. After that, we will briefly discuss why ψsane only guarantees thatM can
almost be seen as the execution of a Turing machine.

As with ψgrid , the main connective of ψsane is ◻∗. So suppose (M,w0) ⊧ ψgrid∧ψsane ,
and let w be any world in the generated submodel of (M,w0).

� The formula position1 implies that the grid points represented by w being (i) the1350

location of the read/write head, (ii) to the right of the head, and (iii) to the left of
the head, are mutually exclusive.

� The formula position2 implies that if the point represented by w is either at the
read/write head or to its right, then w’s right-successor is to the right of the
read/write head, and similarly for the left side. Together with position1, this1355

implies that for every m ∈ Z, there is at most one n such that (M, (n,m)) ⊧ pos.

� The formula one state implies that there is exactly one state s such that (M,w) ⊧ s.

� The formula same state implies that w satisfies the same state as its left- and
right- successors. So for every time m, there is exactly one state s such that
(M, (n,m)) ⊧ s for all n.1360

� The formula one symbol implies that there is exactly one symbo l α such that
(M,w) ⊧ α.

(M,w0) ⊧ χT then every world in the generated submodel represents exactly one point, but we do not
need this fact so we will not prove it here.
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ψT ∶= ◻∗ ⋀
1≤i≤9

(position change ∧ state change ∧ symbol change)

position change ∶= ⋀
{(s,α)∣∆3(s,α)=left}

((pos ∧ s ∧ α)→ ◻up ◻left pos)∧

⋀
{(s,α)∣∆3(s,α)=right}

((pos ∧ s ∧ α)→ ◻up ◻right pos)∧

⋀
{(s,α)∣∆3(s,α)=remain}

((pos ∧ s ∧ α)→ ◻uppos)

state change ∶= ⋀
s′∈states

⋀
{(s,α)∣∆2(s,α)=s′}

((pos ∧ s ∧ α)→ ◻ups
′)

symbol change ∶= ⋀
β∈Λ

⋀
{(s,α)∣∆1(s,α)=β}

((pos ∧ s ∧ α)→ ◻upβ)

Table 7: The formula ψT .

� Recall that we use svoid as a dummy state which indicates that the execution of T
has not started yet. The formula void state implies that svoid holds on all worlds
below worlds that satisfy either s0 or svoid , so svoid does indeed hold in all worlds1365

that represent points before the execution of T started in s0.

� The formula initial symbol guarantees that, in the initial state, the entire tape
contains the symbol α0.

� The formula symbol unchanged guarantees that whenever the read/write head is
not at a particular position of the tape, then the symbol at that position remains1370

unchanged.

The above is almost sufficient to show thatM represents the execution of some Turing
machine, except for the following: (i) there is no guarantee that s0 is satisfied anywhere,
so the execution might never start; (ii) while the read/write head is guaranteed to be in
at most one position, it is not guaranteed to be in at least position at all times; and (iii)1375

the symbols that are written, the state changes, and the movement of the read/write
head could be random, as opposed to fully determined by a set of rules. Whereas ψsane

almost guarantees that M can be seen as the execution of some Turing machine, the
formula ψT narrows this down to the specific machine T . In the process, it also solves
one of the problems that remained after considering ψsane .1380

Suppose that (M,w0) ⊧ χT , so in addition to (M,w0) ⊧ ψgrid ∧ ψsane we also have
(M,w0) ⊧ ψT ∧ s0 ∧ pos. Then, the subformula position change in ψT guarantees that
the read/write head moves in accordance with ∆3, the subformula state change guaran-
tees that the state changes in accordance with ∆2, and the subformula symbol change
guarantees that the symbol that is written on the tape by the read/write head is in1385

accordance with ∆1. Note that this solves problem (iii) of ψsane : the movement, state
changes, and written symbols are in accordance with the deterministic set of rules that
is represented by ∆.

Finally, consider the conjuncts s0 and pos in χT . These solve the other two problems
of ψsane : the execution starts at state s0 in the point represented by w0, which represent1390
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point (0,0). Furthermore, the read/write head starts there as well, so the read/write head
is initially in at least one position. From the fact that the head moves deterministically,
and that this is encoded in ψT , it then follows that the read/write head is also in at least
one position at every time after m = 0.

To conclude, the above shows that if (M,w0) ⊧ χT , then the generated submodel of1395

(M,w0) represents a grid, and this grid contains the encoding of an execution of T .

Theorem 58. A Turing machine T is halting if and only if Kmodal ⊧ χT → ◊∗send , and
non-halting if and only Kmodal ⊧ χT → ◻∗¬send .

Proof. Let (M,w0) be any pointed model such that (M,w0) ⊧ χT . Then, as shown
above, every world in the generated submodel represents some point (n,m) in a Z × Z1400

grid and, furthermore, the worlds representing a point (n,m) satisfy s ∈ S if and only
if the system is in state s at time m. It follows that the generated submodel contains a
send world if and only if T is halting, from which the theorem follows immediately.

As an immediate consequence of Theorem 58, we obtain the following result.

Corollary 59. sopml∗ is not axiomatisable on modal frames for any number of agents.1405

This unaxiomatisability result can be extended to the classes of boolean and all frames,
since the modal frames can be characterized inside boolean or any frame. Let φ¬ ∶=
∀p∃q ◻∗ (¬p ↔ q), φ∨ ∶= ∀p∀q∃r ◻

∗ ((p ∨ q) ↔ r) and φ◻ ∶= ⋀a∈Ag ∀p∃q ◻
∗ (◻ap ↔ q).

The following lemma is entirely straightforward, so we state it without proof.

Lemma 60. Let (M,w) be a pointed model based on any frame. Then, the generated1410

submodel of (M,w) is based on a modal frame if and only if (M,w) ⊧ φ¬ ∧ φ∨ ∧ φ◻.

Hence, the following corollary follows immediately from Lemma 60.

Corollary 61. A formula φ ∈ Lsopml is valid on modal frames if and only if (φ¬ ∧ φ∨ ∧
φ◻)→ φ is valid on all or boolean frames.

As a result of the unaxiomatisability of sopml∗ on modal frames, we finally obtain1415

unaxiomatisability for all classes of frames.

Corollary 62. sopml∗ is not axiomatisable neither on the class of all frames nor on
the class of boolean frames, for any number of agents.

So far, we have shown that sopml∗ is unaxiomatisable for modal, boolean, and all
frames. This result can be extended to the corresponding classes of epistemic frames as1420

well. The proofs for epistemic frames is very similar to the proofs above however, so we
include them in the appendix only.

Theorem 63. If ∣I ∣ ≥ 2, then the validities in sopml∗ over modal epistemic frames are
not recursively enumerable.

In particular, sopml∗ is not axiomatisable on the class of modal epistemic frames.1425

The same characterisation of boolean and all frames also applies to epistemic frames.
So we also have the following corollary.

Corollary 64. sopml∗ is not axiomatisable on the class of all or boolean epistemic
frames, for any number of agents.
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5. Simulations and Games1430

In this section we investigate the expressive power of second-order propositional modal
logic by introducing truth-preserving (bi)simulation relations for sopml. Bisimulations
are an essential tool for the model theory of propositional modal logic, as they pro-
vide sufficient conditions under which two models satisfy the same formulas in pml
[9, 32]. Moreover, propositional modal logic is characterized by the well-known van Ben-1435

them theorem as the bisimulation-invariant fragment of first-order logic [8]. Hereafter
we introduce simulations and bisimulations for sopml and prove that they are indeed
truth-preserving. Further, in Section 5.2 we present a notion of abstraction for frames
and show that an abstraction of a frame simulates that frame. In Section 5.3 we de-
fine games for (bi)simulations and prove the equivalence of the two approaches: model-1440

and game-theoretic. Finally, in Section 5.4 we provide examples on the application of
(bi)simulations to the analysis of the expressive power of sopml in spatial and temporal
reasoning.

5.1. Simulations and Bisimulations

We define the notion of (bi)simulations on frames, although it is immediate to extend1445

this definition to models. In the rest of the section we consider frames F = ⟨W,D,R⟩, F ′ =
⟨W ′,D′,R′⟩, and models M = ⟨F , V ⟩, M′ = ⟨F ′, V ′⟩ defined on F and F ′ respectively.
In the following, Σ denotes a relation Σ ⊆D ×D?

Definition 65 (Frame Simulation). Given frames F and F ′, a simulation is a pair
(σ,Σ) of relations σ ⊆ W ×W ′, Σ ⊆ D ×D′ such that (i) for every U ∈ D, Σ(U,U ′) for1450

some U ′ ∈D′; and (ii) σ(w,w′) implies

1. for every v ∈W , a ∈ I, if Ra(w, v) then σ(v, v′) for some v′ ∈ R′
a(w

′);

2. for every U ∈D, U ′ ∈D′, Σ(U,U ′) implies w ∈ U iff w′ ∈ U ′.

Notice that condition 1 in Definition 65 expresses the standard notion of simulation
in pml. Hence, simulations for sopml extend the corresponding definition for pml (we1455

devote more discussion to this point later on). The definition of simulation above differs
from a similar notion put forward in [4]. Specifically, in [4] only a relation on states is
considered, thus obtaining a strictly weaker notion. This will become apparent when
analysing simulation games in Section 5.3.

We say that state w′ simulates w, or w ⪯ w′, iff σ(w,w′) holds for some simulation1460

pair (σ,Σ). Similarly, a set U ′ simulates U , or U ⪯ U ′, iff Σ(U,U ′) holds for some
simulation pair (σ,Σ). Note that it may be that w ≺ w′ holds because of (σ1,Σ1)
and U ≺ U ′ holds because of (σ2,Σ2), while (σ1,Σ2) is not a simulation pair. To see
this, consider the frames G1 = ⟨{w1,w2},{{w1},{w2}},{(w1,w2), (w2,w1)}⟩ and G2 =
⟨{x1, x2},{{x1},{x2}},{(x1, x2), (x2, x1)}⟩. Clearly, w1 ⪯ x1 and {w1} ⪯ {x2}. However,1465

it is not the case that w1 ∈ {w1} iff x1 ∈ {x2}. Nonetheless, each ⪯ is a preorder, i.e., a
reflexive and transitive relation. Finally, a frame F ′ simulates F , or F ⪯ F ′, iff for every
w ∈W , w ⪯ w′ for some w′ ∈W ′.

Observe that for pml (that is, whenever we ignore the quantification domain D),
the notion of simulation given on frames is vacuous, as we discard the evaluation of1470

propositional atoms in the various states. Then, for instance, all serial frames simulate
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each other. However, this remark does not apply to sopml, as we also have to take into
account propositional quantification.

We illustrate the newly introduced notion by an example.

Example 66. Consider frames G = ⟨W,R,D⟩ and G′ = ⟨W ′,R′,D′⟩ over set I = {a, b, c}1475

of indexes, depicted in Figure 4, with

� W = {w1,w2,w3};

� Ra = {(w1,w3), (w3,w1)}, Rb = {(w1,w2), (w2,w1)}, Rc = {(w2,w3), (w3,w2)};

� D = {{w1},{w2},{w3}};

� W ′ = {us ∣ s is a finite sequence on {1,2,3} starting with 1, with no adjacent1480

repetition};

� for every i ∈ I, R′
i = {(us, us′) ∣ s′ = s ⋅m and Ri(wlast(s),wm)};

� let U ′
n = {us ∣ last(s) = n}, then D′ = {U ′

1, U
′
2, U

′
3}.

Intuitively, frame G can be thought of as a scenario where robots a, b, and c move
around locations w1, w2, w3 (robot a moves between w1 and w3, etc.) Frame G′ then1485

captures the same scenario but with the additional possibility to reason about some notion
of history, or time (one might for instance add an atom pi which is true exactly at nodes
at level i. To do this, one needs to make appropriate assumptions about D′ in G′, like
requiring that the frame is full. We do not consider these matters further.)

Now consider the pair (σ,Σ) of relations σ ⊆ W ×W ′ and Σ ⊆ D × D′ such that1490

σ(wn, us) holds iff last(s) = n and Σ({wn}, U
′
m) holds iff n = m. We check that (σ,Σ)

is indeed a simulation. Firstly, for every {wn} ∈ D, we have Σ({wn}, U
′
n) for Un ∈

D′. Secondly, if σ(wn, us) and Ri(wn,wm), then s′ = s ⋅ m is such that R′
i(us, us′)

and σ(wm, us′). Thirdly, if σ(wn, us) and Σ({wk}, U
′
m), then last(s) = n and k = m.

Therefore, wn ∈ {wk} iff n = k, iff last(s) =m, iff us ∈ U
′
m.1495

Finally, we observe that for every wn ∈W , σ(wn, us) for last(s) = n. Thus, frame G′

simulates G.

Remark 67. We observe the following regarding the relation between simulations and
properties of frames.

1. It can be checked in NPTIME whether there exists a simulation relation between1500

two frames.

2. If a frame F ′ simulates a boolean (respectively modal, full) frame F , then F ′ need
not to be boolean (respectively modal, full). Nor does F ′ being boolean (modal, full)
imply that F is also boolean (modal, full).

As regards the first point, observe that we can guess a pair (σ,Σ) of relations on1505

states and sets respectively, and then check in polynomial time whether it is actually a
frame simulation.

As to the second point, consider that a simulating frame F ′ may contain sets of states
that do not simulate any state in F , which are not closed under set-theoretic operations.
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Figure 4: frames G and G′ in Example 66. D components are omitted for clarity.

The other implication can be proved by a similar line of reasoning. As an example, con-1510

sider frames F = {{w1,w2},{(w1,w2)},2
{w1,w2}} and F ′ = {{u1, u2, u3, u4},{(u1, u2),

(u1, u3), (u1, u4)},{{u1},{u2, u3},{u1, u2, u3},{u4},∅}}. In particular, F ′ is a simu-
lation of F with relations σ and Σ such that σ(w1, u1), σ(w2, u2), σ(w2, u3), and
Σ({w1},{u1}), Σ({w2},{u2, u3}), Σ({w1,w2},{u1, u2, u3}), Σ(∅,∅). But F is a full
frame, while F ′ is not even boolean. Thus, similar frames do not necessarily belong to1515

the same class. Below we compare these results with those available for bisimulations.
We now state the following preservation result for the universal fragment of sopml.

Theorem 68. If w ⪯ w′, then for every ϕ ∈ L∗a−sopml ,

(F ′,w′) ⊧ ϕ implies (F ,w) ⊧ ϕ

Proof. Since w ⪯ w′, there is a simulation pair (σ,Σ) such that σ(w,w′). Fix
this σ. Once can prove by induction on ϕ that if (F , V,w) /⊧ ϕ for some assignment1520

V , then (F ′,Σ(V ),w′) /⊧ ϕ, where Σ(V ) is any assignment such that for every p ∈ AP ,
(Σ(V ))(p) = U ′ with Σ(V (p), U ′). We only show the step for the quantifier. We write
Σ(V )(p) for (Σ(V ))(p). By clause (i) of Definition 65, Σ(V )(p) ∈D′.

For ϕ = ∀pψ, (F , V,w) /⊧ ϕ iff for some U ∈D, (F , V pU ,w) /⊧ ψ. By induction hypoth-
esis, (F ′,Σ(V pU ),w′) /⊧ ψ. By condition (i) in Definition 65, for U ∈D, Σ(U,U ′) for some1525

U ′ ∈D′. In particular, we have that Σ(V pU ) = Σ(V )pU ′ and therefore (F ′,Σ(V )pU ′ ,w
′) /⊧ ψ

for U ′ ∈D′, that is, (F ′,Σ(V ),w′) /⊧ ϕ.

As an immediate consequence of Theorem 68 we obtain the following corollary.

Corollary 69. If F ⪯ F ′, then for every ϕ ∈ L∗a−sopml ,

F ′ ⊧ ϕ implies F ⊧ ϕ

Thus, the notion of simulation introduced in Definition 65 preserves the universal1530

fragment of sopml, similarly to the case for standard simulations and pml.

50



Example 70. Consider again frames G and G′ in Example 66. We showed that G′

simulates G. Moreover, we can easily check that G′ validates the following formula in
sopml

∀p(p→⋁
i∈I
◻i¬p) (16)

which intuitively says that at each position some agent moves to a different position. By
Corollary 69 we deduce that (16) is valid in G as well.

Simulations can naturally be extended to bisimulations. Also in this case, our focus
is at the level of frames. In the following the converse of a relation R is the relation1535

R−1 = {(u, v) ∣ R(v, u)}.

Definition 71 (Frame Bisimulation). Given frames F and F ′, a bisimulation is a
pair (ω,Ω) of relations ω ⊆ W ×W ′, Ω ⊆ D ×D′ such that both (ω,Ω) and (ω−1,Ω−1)
are simulations. That is, (i) for every U ∈ D, Ω(U,U ′) for some U ′ ∈ D′, and for every
U ′ ∈D′, Ω(U,U ′) for some U ∈D′; and (ii) ω(w,w′) implies1540

1. for every v ∈W , a ∈ I, if Ra(w, v) then ω(v, v′) for some v′ ∈ R′
a(w

′);

2. for every v′ ∈W ′, a ∈ I, if R′
a(w

′, v′) then ω(v, v′) for some v ∈ Ra(w);

3. for every U ∈D, U ′ ∈D′, Ω(U,U ′) implies w ∈ U iff w′ ∈ U ′.

States w and w′ are bisimilar, or w ≈ w′, iff ω(w,w′) holds for some bisimulation
pair (ω,Ω). Similarly, sets U ′ and U are bisimilar, or U ≈ U ′, iff Ω(U,U ′) holds for1545

some bisimulation pair (ω,Ω). Again, the pair (≈,≈) is not necessarily a bisimulation,
similarly to what was shown above for simulations, but each ≈ is an equivalence relation.
Finally, frames F and F ′ are bisimilar, or F ≈ F ′, iff (i) for every w ∈ W , w ≈ w′ for
some w′ ∈W ′; and (ii) for every w′ ∈W ′, w ≈ w′ for some w ∈W .

Example 72. Notice that frames G and G′ in Example 66 are actually bisimilar. To1550

prove this fact, we show that the converse relations σ−1 ⊆ W ′ ×W and Σ−1 ⊆ D′ × D
form a simulation pair. Firstly, for every U ′

n ∈ D′, the set U = {wn} ∈ D is such that
Σ(U,U ′). Secondly, if σ−1(us,wn) and R′

i(us, us′) then last(s) = n and s′ = s ⋅m for
wm ∈W such that Ri(wn,wm). Hence, σ−1(us′ ,wm). As to (3), the proof is identical as
for simulations.1555

Remark 73. We now state the following adaptation of Remark 67.

1. It can be checked in NPTIME whether there exists a bisimulation relation between
two frames.

2. Suppose that F and F ′ are bisimilar. Then, F is boolean (respectively modal) iff F ′

is. However, if F is full, then F ′ need not to be full. Nor does F ′ being full imply1560

that F is also full. Moreover, if F and F ′ are both bisimilar and full, then they are
isomorphic, that is, any bisimulation between full F and F ′ is an isomorphism.

Compare the situation for bisimulations with the weaker results available in Re-
mark 67 for simulations. Specifically, bisimulations preserve the class of boolean and
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modal frames. Moreover, in the case of full frames, bisimulations collapse into isomor-1565

phisms.
We now state the main preservation result of this section. Its proof is similar to that

of Theorem 68, and it is in the appendix.

Theorem 74. If w ≈ w′, then for every formula ϕ ∈ L∗sopml ,

(F ,w) ⊧ ϕ iff (F ′,w′) ⊧ ϕ.

As an immediate consequence of Theorem 74 we obtain the following.1570

Corollary 75. If F ≈ F ′, then for every ϕ ∈ L∗sopml ,

F ⊧ ϕ iff F ′ ⊧ ϕ

We can now infer that bisimulations in sopml are ‘stronger’ than the corresponding
notion for pml: whereas we noticed that the frames of Figure 3 are bisimilar in pml, as
a consequence of Theorem 74, and Example 11, which says that the frames do not agree
on formula (8), we conclude that they are not bisimilar in the sopml sense.1575

Example 76. We now consider two graph-theoretic properties. First, the notion of 3-
colorability, as formalised by the following sopml formula, where operator ◻ is interpreted
on the edges E ⊆W 2 of a graph G = ⟨W,E⟩, while ◻∗ is interpreted on the reflexive and
transitive closure of E:

∃p1, p2, p3 (◻∗(p1 ∨ p2 ∨ p3) ∧ ◻
∗
⋀
i≠j

¬(pi ∧ pj) ∧ ⋀
1,2,3

◻∗(pi → ¬◇ pi)) (17)

The truth of (17) in a vertex v ∈ G implies that (i) all vertices in the subgraph
generated by v are coloured by either p1, p2, or p3; (ii) each vertex has at most one colour;
and (iii) no two adjacent vertices have the same colour. Thus, the subgraph generated
by v is 3-colorable. Observe that frame G in Figure 4(a) is indeed 3-colorable, and since
states w1 and u1 are bisimilar, as an immediate consequence of Theorem 74, also frame1580

G′ is 3-colorable. Notice that the truth of (17) implies that the graph is 3-colorable; while
the converse holds only for full frames.

To illustrate further the (in)expressivity of sopml through simulations, we consider
one more graph-theoretic property: the existence of a Hamiltonian path, i.e., a path
that visits all vertices in a graph exactly once. Again, frame G in Figure 4(a) has a1585

Hamiltonian path w1,w2,w3. Now consider the finite graph G′′ which is obtained from G
and G′ in Figure 4 as follows. In G′ replace the worlds u12 and u13 by a copy of w2 and
w3 from G respectively, and remove all the worlds different from u1. It is not difficult to
see that G′′ is bisimilar with G, but does not allow a Hamiltonian path.

Proposition 77. The property of having a Hamiltonian path is not expressible in sopml.1590

Proof. The proof follows directly from the second part of Example 76, which implies
that such paths are not expressible under the general semantics.

Proposition 77 also follows from [46, Corollary 7.24], which says that it is impossible
to test in mso whether a graph is Hamiltonian. Indeed, it is known that such property is
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expressible in the language mso2, an extension of mso, which is strictly more expressive1595

than sopml [16, Prop. 5.13].
Discussion. We now compare our definition of (bi)simulation for sopml, with the

standard notion of (bi)simulation for pml [9]. Observe that if a frame F ′ simulates F
in sopml, with simulation pair (σ,Σ), then for every model M = ⟨F , V ⟩ based on F ,
modelM′ = ⟨F ′,Σ(V )⟩ on F ′ pml-simulatesM. In particular, if σ(w,w′) then for every1600

v ∈ W , a ∈ I, Ra(w, v) implies that σ(v, v′) for some v′ ∈ R′
a(w

′) by condition (ii).1 in
Definition 65. Moreover, w ∈ V (p) ∈ D iff w′ ∈ Σ(V )(p) ∈ D′ by conditions (i) and
(ii).2. Therefore, if M′ satisfies any universal formula φ in pml, then φ also holds in
M. Hence, Definition 65 of simulation for frames in sopml is indeed a generalisation
of the model-theoretic notion in pml. Furthermore, if frames F ′ and F are bisimilar in1605

sopml, with bisimulation pair (ω,Ω), then models M = ⟨F , V ⟩ and M′ = ⟨F ′,Ω(V )⟩
are also bisimilar in pml. Likewise, models M′ = ⟨F ′, V ′⟩ and M = ⟨F ,Ω−1(V )⟩ are
pml-bisimilar as well. Also in this case, sopml bisimulations on frames generalise pml
bisimulations on models.

5.2. Abstraction1610

This section is devoted to the definition of a notion of abstraction for Kripke frames.
Abstractions are deemed useful for system verification, as they allow to ignore some
selected features of the system, thus focusing only on the properties relevant for the
verification task [15]. Indeed, a key fact about abstractions is that they simulate the
original system. Hereafter we prove such a result for sopml, starting with a family of1615

equivalence relations on states.

Definition 78 (Equivalence). Given a frame F , consider an equivalence relation ∼ on
W such that for every state w,w′ ∈ W , w ∼ w′ implies that for every U ∈ D, w ∈ U iff
w′ ∈ U . Further, we denote by [w] = {w′ ∈W ∣ w′ ∼ w} the equivalence class of w in F ,
and for a set U ⊆W , we let [U] be {[w] ∣ w ∈ U}.1620

Clearly, if we replace ‘implies’ in Definition 78 by ‘iff’, we obtain the coarsest equiv-
alence relation satisfying the conditions in Definition 78.

Definition 79 (Abstraction). Given a frame F , the abstraction FA = ⟨WA,DA,RA⟩
of F (according to equivalence relation ∼) is the frame such that

� WA = {[w] ∣ w ∈W};1625

� DA = {[U] ∣ U ∈D};

� for every a ∈ I, RAa ([w], [w′]) iff Ra(v, v
′) for some v ∈ [w], v′ ∈ [w′].

Notice that the coarsest abstraction FA is finite whenever the interpretation domain
D in F is, and of size ∣WA∣ = O(2D) at most.

Example 80. To illustrate abstractions, we show that the frame G in Example 66 is1630

(isomorphic to) the coarsest abstraction G′A of G′. First of all, two worlds us and
us′ are equivalent according to the coarsest equivalence ∼ iff for all U ′

n ∈ D′, us ∈ U ′
n

iff us′ ∈ U
′
n, iff last(s) = last(s′). So, in abstraction G′A we have three equivalence

classes [ut⋅1], [ut⋅2], and [ut⋅3], for (possibly empty) sequences t ∈ {1,2,3}∗ beginning
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with 1. As to the accessibility relations, R′A
i ([ut⋅n][ut′⋅m]) iff for ut⋅n, ut′⋅m in W ′,1635

R′
i(ut⋅n, ut′⋅m), that is, t′ = t ⋅ n and Ri(wn,wm). Hence, for instance, for agent a, we

have R′A
a ([ut⋅1][ut′⋅3]) and R′A

a ([ut⋅3][ut′⋅1]), as required. Finally, D′A = {[U ′
n] ∣ U ′

n ∈
D′} = {{[ut⋅1]},{[ut⋅2]},{[ut⋅3]}}. Clearly, the abstraction G′A of G′ is isomorphic to G,
with mapping wi ↦ [ut⋅i] for i = 1,2,3.

We now extend a standard result in modal logic, namely that abstractions are indeed1640

simulations, to sopml.

Lemma 81. Given a frame F with abstraction FA, the pair of mappings w ↦ [w] and
U ↦ [U] is a simulation.

Proof. We show that the pair (↦,↦) of mappings satisfies Definition 65. As
to condition (i), if U ∈ D then U ↦ [U] for [U] ∈ DA. Next, for (i).1 suppose that1645

Ra(w, v). Then, for [v] ∈ WA we have that RAa ([w], [v]) and v ↦ [v]. Finally, as to
(ii).2, if w ↦ [w] and w ∈ U , then clearly [w] ∈ [U]. On the other hand, if [w] ∈ [U] then
for some v ∈ [w], v ∈ U . However, v ∈ [w] implies that v ∼ w. In particular, w ∈ U by the
constraint on ∼.

We remark that the abstraction FA of a full frame F is isomorphic to F . In fact, for1650

every w ∈W , the set {w} belongs to D, and since w ∼ w′ iff for all U ∈D, w ∈ U iff w′ ∈ U ,
w ∼ w′ implies in particular that w ∈ {w′}, that is, w = w′. As a consequence, w ↦ {w} is
the only simulation on states between F and FA, and it is also an isomorphism. Further,
in Example 80 we observed that frame G is (isomorphic to) the coarsest abstraction of
G′. Hence, Lemma 81 provides an alternative proof of the fact that G simulates G′, that1655

we discussed in Example 72.
The following corollary follows immediately from Lemmas 68 and 81.

Corollary 82. Let F be a frame with abstraction FA. For every universal formula
ϕ ∈ L∗a−sopml ,

(FA, [w]) ⊧ ϕ implies (F ,w) ⊧ ϕ

The results presented above have an impact that goes beyond their theoretical inter-1660

est. As an example, we observed that relevant properties P of frames (such as reflexivity,
transitivity, symmetry, etc.) are definable in propositional modal logic in the sense that
for some formula φ in pml, a frame F validates φ iff F satisfies property P . In sopml
more properties become frame-definable within the class of full frames. For instance, in
Section 3 we showed that a full frame F is irreflexive iff F ⊧ ∃p(◻p ∧ ¬p). On the other1665

hand, whenever we consider the class of all frames, several properties are non-definable
(even where they might be definable in pml). For instance, the frame G in Example 66
is symmetric, while G′ is not. Since, G and G′ are bisimilar, and therefore satisfy the
same formulas in sopml, we conclude that symmetry is not definable in the class of
all frames. Likewise, irreflexivity nor reflexivity are definable on the class of all frames:1670

take F consisting of only one reflexive world w with D = {{w},∅}, and F ′ consisting of
two worlds w′

1,w
′
2 with R′ = {(w′

1,w
′
2), (w

′
2,w

′
1)} and D′ = {{w′

1,w
′
2},∅}. The pointed

frames (F ,w) and (F ′,w′
1) are bisimilar, but F is reflexive (hence reflexivity cannot be

expressed on all frames) while F ′ is irreflexive (hence irreflexivity cannot be expressed).
Such results provide us with further knowledge on the expressive power of sopml.1675
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5.3. Simulation Games for SOPML

The relation between logic and games is a domain of investigation that has produced
fundamental results and fruitful applications to the analysis of the expressiveness of
formal languages. As an example, Ehrenfeucht-Fräıssé games are a valuable tool for
the model theory of first-order logic [46]. Similarly, Fagin-Ajtan games (and variations1680

thereof) characterise (fragments of) Second-order Logic [28]. More strictly related to the
present contribution, bisimulation games are routinely applied to derive (in-)expressivity
results in propositional modal logic [6, 9].

In this section we introduce (bi)simulation games for sopml. Similarly to the case
for pml, the existence of a winning strategy for Duplicator guarantees the preservation1685

of (universal) formulas in sopml. We start by considering simulation games played by
Spoiler and Duplicator.

Definition 83 (Simulation Game). A simulation game G starting from pointed frames
(F ,w) and (F ′,w′) is defined as follows. Let (F , v, U⃗), (F ′, v′, U⃗ ′) be the current state
of the game, where v ∈ W (respectively, v′ ∈ W ′) and U⃗ (respectively, U⃗ ′) is a possibly1690

empty tuple of sets in D (respectively, D′).
Then, the game proceeds according to the following rules:

1. Either Spoiler picks a set U ∈D and Duplicator has to reply with a set U ′ ∈D′ such
that v ∈ U iff v′ ∈ U ′. The new state of the game is (F , v, U⃗ ⋅U), (F ′, v′, U⃗ ′ ⋅U ′).

2. Or, for some a ∈ I, Spoiler picks a state u ∈ Ra(v) and Duplicator has to reply with1695

state u′ ∈ R′
a(v

′) such that for every i, u ∈ Ui iff u′ ∈ U ′
i . The new state of the game

is (F , u, U⃗), (F ′, u′, U⃗ ′).

If Duplicator cannot match a move by Spoiler, then Spoiler wins the game. Otherwise,
Duplicator wins the game. A winning strategy is a strategy whereby Duplicator can reply
to all of Spoiler’s moves, thus winning the game.1700

By the following result the existence of a winning strategy is tantamount to the
existence of a simulation.

Theorem 84. Duplicator has a winning strategy for the simulation game starting in
(F ,w), (F ′,w′) iff (F ,w) ⪯ (F ′,w′).

Proof. As to the ⇐-direction, we show that if (σ,Σ) is a simulation pair such1705

that σ(v, v′), then Duplicator can always reply to any Spoiler’s move in state (F , v, U⃗),
(F ′, v′, U⃗ ′) with Σ(Ui, U

′
i). Moreover, the new state (F , u, T⃗ ), (F ′, u′, T⃗ ′) is such that

σ(u,u′) and Σ(Ti, T
′
i ). As a consequence, Duplicator has a winning strategy and the

result follows. As regards move (1) in Definition 83, suppose that Spoiler picks a set
U ∈D. Then Duplicator can reply with U ′ ∈D′ such that Σ(U,U ′): by (i) in Definition 651710

such U ′ always exists. Moreover, by (ii).2, v ∈ U iff v′ ∈ U ′. On the other hand, if Spoiler
chooses u ∈ Ra(v), then by (ii).1 Duplicator can reply with some u′ ∈ R′

a(v
′) such that

σ(u,u′). In particular, for every i, u ∈ Ui iff u′ ∈ U ′
i , as Σ(Ui, U

′
i) holds. In both cases

the new state (F , u, T⃗ ), (F ′, u′, T⃗ ′) is such that σ(u,u′) and Σ(Ti, T
′
i ) as required.

As to the ⇒-direction, we show that relations σ ⊆ W ×W ′ and Σ ⊆ D ×D′ defined1715

as: σ(v, v′) and Σ(Ui, U
′
i) hold iff Duplicator has a winning strategy at state (F , v, U⃗),

(F ′, v′, U⃗ ′) form a simulation pair. As regards condition (i) in Definition 65, consider
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any winning state (F , v, U⃗), (F ′, v′, U⃗ ′) in the game starting in (F ,w), (F ′,w′). Spoiler
can play any U ∈ D, but then Duplicator has to reply with some U ′ ∈ D′ so that he
has a winning strategy in the resulting state (F , v, T⃗ ), (F ′, v′, T⃗ ′). In particular, by the1720

definition of Σ, we have Σ(U,U ′). Further, for condition (ii).1, if σ(v, v′) then (F , v, U⃗),
(F ′, v′, U⃗ ′) is a winning state for some U⃗ , U⃗ ′ with Σ(Ui, U

′
i). Then, for every u ∈ Ra(v),

Duplicator can reply with u′ ∈ R′
a(v

′) (otherwise, Duplicator has no winning strategy.)
Moreover, Duplicator has a winning strategy in the resulting state (F , u, U⃗), (F ′, u′, U⃗ ′).
Hence, we have σ(u,u′) by definition of σ. Finally, for condition (ii).2, if σ(v, v′) then1725

again (F , v, U⃗), (F ′, v′, U⃗ ′) is a winning state for some U⃗ and U⃗ ′. Further, if Σ(T,T ′)
then (F , u, T⃗ ), (F ′, u′, T⃗ ′) is a winning state for some u ∈ W and u′ ∈ W ′ such that
σ(u,u′). Now we analyse the following two cases: if couple (v, v′) has appeared before
(u,u′) in the game then, when introducing sets U and U ′, condition v ∈ U iff v′ ∈ U ′ has
to be satisfied by (1) in Definition 83. On the other hand, if couple (u,u′) has appeared1730

first, when introducing (v, v′) condition v ∈ U iff v′ ∈ U ′ has to be satisfied by (2). Finally,
since Duplicator has a winning strategy for game (F ,w), (F ′,w′), it is the case that w′

simulates w.

Notice that this result is in marked contrast with [4], where the notion of simulation
provided entails the existence of a winning strategy for Duplicator, but the existence of1735

a winning strategy does not imply the existence of a simulation. On the contrary, here
we have a perfect match between the two notions. This is due to the novel notion of
simulation put forward in Definition 65.

As a direct consequence of Theorems 68 and 84, we obtain that the existence of a
winning strategy for Duplicator implies the preservation of formulas in L∗a−sopml.1740

Corollary 85. If Duplicator has a winning strategy for the game starting in state (F ,w),
(F ′,w′), then for every universal formula ϕ ∈ L∗a−sopml,

(F ′,w′) ⊧ ϕ implies (F ,w) ⊧ ϕ

It appears that a similar notion of games was already hinted at, but not developed,
in the conclusion sections of two papers by Kuusisto [44]. Specifically, talking about
mso, the author conjectures that its expressivity can be characterized by a game that1745

combines bisimulation games with moves that correspond to choosing subsets. Here
it looks like we have a related notion of global bisimulation game, but in the context
of sopml, where global bisimulations contain jumps to arbitrary points in addition to
standard bisimulation moves [27].

Next, simulation games can be easily generalized to bisimulation games.1750

Definition 86 (Bisimulation Games). A bisimulation game G starting from pointed
frames (F ,w) and (F ′,w′) is defined as follows. Let (F , v, U⃗), (F ′, v′, U⃗ ′) be the state
of the game, where v ∈ W (respectively, v′ ∈ W ′) and U⃗ (respectively, U⃗ ′) is a possibly
empty tuple of sets in D (respectively, D′).

Then, the game proceeds according to the following rules:1755

1. Either Spoiler picks a set U ∈D (respectively, U ′ ∈D′) and Duplicator has to reply
with a set U ′ ∈ D′ (respectively, U ∈ D) such that v ∈ U iff v′ ∈ U ′. The new state
of the game is (F , v, U⃗ ⋅U), (F ′, v′, U⃗ ′ ⋅U ′).
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2. Or, for some a ∈ I, Spoiler picks a state u ∈ Ra(v) (respectively, u′ ∈ R′
a(v

′)) and
Duplicator has to reply with state u′ ∈ R′

a(v
′) (respectively, u ∈ Ra(v)) such that1760

for every i, u ∈ Ui iff u′ ∈ U ′
i . The new state of the game is (F , u, U⃗), (F ′, u′, U⃗ ′).

As above, if Duplicator cannot match a move of Spoiler, then Spoiler wins the game.
Otherwise, Duplicator wins the game. A winning strategy is defined as usual, as a
strategy whereby Duplicator can reply to all of Spoiler’s moves.

Theorem 87. Duplicator has a winning strategy for the bisimulation game starting in1765

(F ,w), (F ′,w′) iff (F ,w) ≈ (F ′,w′).

Proof. The proof follows the one for from Theorem 84, once we notice that the
behaviour of Spoiler and Duplicator on frames F and F ′ is completely symmetric. As
regards the⇐-direction, if (ω,Ω) is a bisimulation pair such that ω(v, v′), then Duplicator
can always reply to any Spoiler’s move in state (F , v, U⃗), (F ′, v′, U⃗ ′) with Ω(Ui, U

′
i). As1770

to the ⇒-direction, the relations ω ⊆ W ×W ′ and Ω ⊆ D ×D′ defined as: ω(v, v′) and
Ω(Ui, U

′
i) hold iff Duplicator has a winning strategy at state (F , v, U⃗), (F ′, v′, U⃗ ′) form

a bisimulation pair.

Again, the existence of a winning strategy for Duplicator matches the existence of
a bisimulation pair. By Theorems 74 and 87 we are then able to prove the following1775

preservation result.

Corollary 88. If Duplicator has a winning strategy for the bisimulation game starting
in state (F ,w), (F ′,w′), then for every formula ϕ ∈ Lsopml,

(F ′,w′) ⊧ ϕ iff (F ,w) ⊧ ϕ

We conclude by discussing the two groups of preservation results. Both Theorems 68
and 74 and Corollaries 85 and 88 provide results on the preservation of (the universal1780

fragment of) sopml. However, (bi)simulations define global concepts, as these are defined
on the whole state space W ×W ′ and D × D′; while games are played locally, as at
each point in the game the players have only a local view on the frames, centred on a
pair of states and a finite sequence of sets. Hence, the nature of these two notions is
profoundly different. However, they are provably equivalent by Theorems 84 and 87.1785

Moreover, both bisimulation relations and bisimulation games appear to be related to
global bisimulations, a generalisation of the notion that allows for jumps to arbitrary
states in the model [27]. Yet, in our case the choice does not regard arbitrary states, but
rather arbitrary sets. Thus, the two notions are indeed distinct.

Finally, we envisage different applications for the two notions. For instance, (bi)simulations1790

are typically used to prove inexpressibility results; while games can be used to show that
two frames are not bisimilar, by providing moves for Spoiler to which Duplicator cannot
reply. These applications are tackled in the following section.

5.4. Bisimulations and Expressivity

In this section we explore the expressivity of sopml, also by using the (bi)simulations1795

and (bi)simulation games introduced in Section 5.1 and 5.3. We focus on some temporal
and spatial properties typically used in artificial intelligence. In what follows we say that
a property P is expressible in a language L and class K of frames iff for some formula
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0 1 2 . . . w′

Figure 5: Frames G1 and G2. The D-components are omitted for clarity.

φ ∈ L, we have that for all F ∈ K, F ⊧ φ iff F has property P . Sometimes we omit either
L or K, whenever these are clear from the context.1800

First of all, consider Dedekind-completeness of a total order ≤, i.e., a total, transitive,
and antisymmetric binary relation: a totally ordered set is Dedekind-complete if every
non-empty subset that has an upper bound, has a least upper bound. We recall that
the Dedekind-completeness of the real numbers is not expressible in pml: the proof
makes use of a propositional bisimulation between the structure (R,≤) of reals and the1805

rationals (Q,≤) [1]. Thus, by using simulations we immediately obtain the following
inexpressibility result.

Lemma 89. Dedekind-completeness is not expressible in the universal fragment La−sopml
in the class of full frames.

Proof. Clearly, the identity relation is a simulation between structures (Q,≤) and (R,≤1810

) seen as full frames, i.e., (Q,≤) ⪯ (R,≤), and if Dedekind-completeness were expressible
as a formula φ in a-sopml, (R,≤) ⊧ φ would imply (Q,≤) ⊧ φ, a contradiction.

Intuitively, formula δ fails in (Q,≤) since, for instance, the set {q ∈ Q ∣ q <
√

2} is
non-empty and upper bounded, and therefore satisfies the antecedent. However, it has
no least upper bound to satisfy the consequent.1815

As a further example, we prove that neither finiteness nor infinity of the state space
W are expressible in boolean frames. This is in line with the situation in pml.

Lemma 90. In language L∗sopml neither finiteness nor infinity are expressible in the class
of boolean frames.

Proof. Consider frame G1 = ⟨N, succ,{N,∅}⟩ of the naturals with the successor relation1820

and the reflexive-point frame G2 = ⟨{w′},{(w′,w′)},{{w′},∅}⟩ in Figure 5, which are
boolean by definition of D1 and D2. In particular, the relations ω mapping every natural
n ∈ N to w′, and Ω mapping N to {w′} and the empty set ∅ to itself, form a bisimulation
pair. Equivalently, it is easy to see that Duplicator has a winning strategy in the game
starting from state (G1, n), (G2,w

′), for every n ∈ N: Duplicator has only to reply with w′
1825

to any m ∈ N chosen by Spoiler, and with {w′} (respectively, ∅) whenever Spoiler chooses
N (respectively, ∅). Thus, G1 and G2 validate the same formulas in sopml. However, G1

is infinite while G2 is finite.

To conclude our brief review of expressivity results in sopml, we show that for the
sublanguage of Lsopml without the reflexive and transitive closure operator ◻∗, finiteness1830

is not even expressible in full frames. For n ∈ N, let [n] be the set {0, . . . , n}, Gn
the frame ⟨[n], succ,2[n]⟩, and GN = ⟨N, succ,2N⟩ the frame isomorphic to the natural
numbers. Both GN and each Gn are full. Let G be the class of all frames Gn, for n ∈ N,
and consider the following result.

Lemma 91. In language Lsopml the theory Th(G) is a subset of Th(GN).1835
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Proof. Consider φ ∉ Th(GN) with finite modal depth k ∈ N, where the modal depth
is defined as in the propositional case, as the maximum nesting of modal operators [9].
We can assume without loss of generality that (GN, V,0) /⊧ φ for some assignment V . We
prove that (Gk, V

′,0) /⊧ φ, where assignment V ′ is such that V ′(p) = V (p)∩ [k] for every
p ∈ AP (since our frames are full, V (p) ∩ [k] is admissiable in Gk). More precisely we1840

prove, using induction on n, that if ψ is a subformula of φ of modal depth n ≤ k, then
for all ` with 0 ≤ ` ≤ k − n, it holds that (GN, V, `) ⊧ ψ iff (Gk, V

′, `) ⊧ ψ.
We start with the case for n = 0. If ψ is an atom p, then (GN, V, `) ⊧ ψ iff ` ∈ V (p),

iff ` ∈ V ′(p), iff (Gk, V
′, `) ⊧ ψ, for all 0 ≤ ` ≤ k. The cases for propositional connectives

are immediate. Finally, suppose ψ = ∃pχ, and that (∗) (GN, V, `) ⊧ χ iff (Gk, V
′, `) ⊧ χ1845

for all 0 ≤ ` ≤ k. Then (GN, V, `) ⊧ ψ implies that for some U ∈ D, (GN, V
p
U , `) ⊧ ψ.

Consider U ′ = U ∩ [k] ∈ D′. In particular, (V pU )′ = V ′p
U ′ . By (∗), (Gk, V

′p
U ′ , `) ⊧ χ, that is,

(Gk, V
′, `) ⊧ ψ.

Now suppose that ψ is a subformula of φ of modal depth n + 1 ≤ k, and let 0 ≤ ` ≤
k − (n + 1). Assume that ψ = ◇χ. Then, (GN, V, `) ⊧ ψ implies that (GN, V, ` + 1) ⊧ χ for1850

1 ≤ ` + 1 ≤ k − n. By induction hypothesis (Gk, V
′, ` + 1) ⊧ χ, that is, (Gk, V

′, `) ⊧ ψ. The
direction from from (Gk, V

′, `) to (GN, V, `) is similar, and the cases for the propositional
connectives and the quantifier go as before.

Corollary 92. In language Lsopml finiteness is not expressible on full frames.

Proof. As a consequence of Lemma 91, (GN, V,0) /⊧ φ implies (Gk, V
′,0) /⊧ φ, i.e.,1855

φ ∉ Th(G). Hence, if φ expressed ‘being finite’, then it would be valid in G, and hence
also in GN, a contradiction. Thus, finiteness is not expressible even in the class of full
frames.

In this section we made use of (bi)simulations and (bi)simulations games to show that
sopml can express notions, such as Dedekind-completeness, that are not expressible in1860

pml; whereas other properties, such as finiteness, cannot even be expressed in sopml.
Together with the remarks in Section 5.1 on 3-colorability and the existence of Hamilto-
nian paths, these results provide us with some interesting insight on the application of
model-theoretic techniques to the analysis of the expressivity of sopml.

In our opinion bisimulations for sopml raise a number of interesting questions. We1865

believe that one in particular deserves more attention. The Van Benthem theorem is a
well-known result in model theory, stating that modal logic is the bisimulation-invariant
fragment of first-order logic [8]. In the light of the notion of bisimulation provided above,
it makes sense to ask the same question in the present context: is sopml the bisimulation-
invariant fragment of monadic second-order logic, possibly when interpreted on a partic-1870

ular class of frames? In [39] it is proved that the modal µ-calculus is the bisimulation-
invariant fragment of mso, but according to the standard notion of bisimulation for pml.
Presently it is not clear how this result relates to the current setting. We leave this
problem open for future work.

6. Conclusion1875

In this paper we motivated and studied (the use of) second-order propositional modal
logic as a specification language for reasoning about knowledge as well as spatial and
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temporal properties in artificial intelligence. Specifically, we aimed at developing proof-
and model-theoretic techniques, notably complete axiomatisations and truth-preserving
(bi)simulations, to support the use of sopml in applications. In Section 2 we introduced1880

20 different classes of Kripke frames, according to the structure of the domain D of
quantification and the features of the accessibility relations. In Section 4 we provided
complete axiomatisations for some of these classes, while proving that other classes are
unaxiomatisable.

Further, we introduced suitable notions of (bi)simulation and proved that they pre-1885

serve the satisfaction of (universal) sopml. Then, we defined game-theoretical coun-
terparts to (bi)simulations and showed that the two approaches are equivalent. This is
in marked contrast with [4], which put forward a different, strictly stronger notion of
(bi)simulation. We remarked that, while set-theoretical (bi)simulations might be more
appropriate to prove inexpressibility results, their game-theoretic counterparts might1890

be better computationally to actually show whether two frames are bisimilar. Finally,
we made use of (bi)simulations to obtain some inexpressibility results. Specifically, we
showed that being finite and having a Hamiltonian path are not expressible in sopml;
while other properties, viz. topological completeness and 3-colorability, are indeed ex-
pressible. We conclude that sopml can indeed be used as a modelling language for1895

artificial intelligence, particularly for temporal and spatial reasoning, as well as to de-
scribe higher-level knowledge of agents, that is, the knowledge agents have about other
agents’ knowledge and beliefs, as shown in Section 3. In this respect, we reckon that the
development of model-theoretic techniques is key for applications.

6.1. Future Research1900

We have presented several results about sopml, but there are of course also a number
of remaining questions for future research.

One such question is the relative expressivity of sopml and qctl. As mentioned in
Section 1.1, the variant of sopml with full domain of quantification is similar to one of
the variants of qctl presented in [45], with the main difference being that qctl is based1905

on ctl, while sopml is based on basic modal logic. The temporal logic ctl has more
operators than modal logic, and it is strictly more expressive. It is not currently clear
whether qctl is also strictly more expressive than sopml, however.

Another direction for future research is to find fragments of sopml that are “well-
behaved”. As discussed in Section 4, most of sopml variants are unaxiomatisable on1910

full frames, and variants that include the reachability operator ◻∗ are unaxiomatisable
even on frames with coarser domains of quantification. It would be interesting to find
fragments of sopml that are large enough to be interesting, but that are axiomatisable
or even decidable. In this respect the monodic fragment of first-order modal logic, that
restrict the number of free varibles in the scope of any modal operator, looks promising1915

[2, 34, 57]. We leave this direction for future work.
At the end of Section 5 we mentioned the interest of checking whether sopml is

the bisimulation-invariant fragment of mso, according to the newly introduced notion
of bisimulation. Such a result would provide us with a precise characterisation of the
expressive power of sopml (with respect to mso), in the spirit of van Benthem’s result1920

for modal logic [8].
Finally, here we considered a unique domain D of quantification in any of our frames.

But more elaborate forms of quantification can be taken into account, for instance, we
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might consider a different quantification domain for each state in the frame. Then,
we might also consider state-dependent assignments. These variants have been studied1925

extensively in the realm of first-order modal logic [11, 25], but never addressed in sopml.
They might be of interest for specific applications.
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Appendix A. Selected Proofs

Lemma 12.

1. Let φ be a formula in L∗sopml and F a frame in Kall . If assignments V and V ′

coincide on fr(φ), then

(F , V,w) ⊧ φ iff (F , V ′,w) ⊧ φ

2. Recall that X = {ap,pl ,ml , sopml} and ̂= {(ap,all), (pl , bool), (ml ,modal), (sopml ,2085

full)}. Let x ∈X. Then,

(a) For every ψ ∈ L∗x and model M over F ∈ Kx̂, we have ⟦ψ⟧M ∈D.

(b) If F ∈ Kx̂ and ψ ∈ L∗x is free for p in φ, then

(F , V p⟦ψ⟧⟨F,V ⟩
,w) ⊧ φ iff (F , V,w) ⊧ φ[p/ψ]

Proof. The proofs are by induction on the structure of φ ∈ L∗sopml .

1. If φ = p, then fr(φ) = {p} and (M,w) ⊧ φ iff w ∈ V (p) = V ′(p), iff (M′,w) ⊧ φ.2090

The inductive cases for the propositional connectives are immediate.
If φ = ◻aψ, then (M,w) ⊧ φ iff for all w′ ∈ Ra(w), (M,w′) ⊧ ψ. Since fr(φ) = fr(ψ),
V and V ′ coincide on fr(ψ) as well, and by induction hypothesis for all w′ ∈ Ra(w),
(M′,w′) ⊧ ψ, i.e., (M′,w) ⊧ φ. The case for φ = ◻∗ψ is similar.
If φ = ∀pψ, then (M,w) ⊧ φ iff for any U ∈ D, (Mp

U ,w) ⊧ ψ. Since fr(φ) = fr(ψ) ∖2095

{p}, V pU and V ′p
U coincide on fr(ψ), and by induction hypothesis (M′p

U ,w) ⊧ ψ.
Since U has been chosen arbitrarily, this is the case iff (M′,w) ⊧ φ.

2a The case for x = ap is immediate, as assignments are functions in D. Hence,
V (p) ∈D for every p ∈ AP .
The case for x = pl , follows from equalities ⟦¬ψ⟧ =W ∖ ⟦ψ⟧, ⟦ψ ∧ ψ′⟧ = ⟦ψ⟧ ∩ ⟦ψ′⟧,2100

⟦ψ ∨ ψ′⟧ = ⟦ψ⟧ ∪ ⟦ψ′⟧ and the fact that D is a boolean algebra.
As for x = ml , notice that ⟦◻aψ⟧ = [a](⟦ψ⟧), ⟦◻∗ψ⟧ = [ ]∗(⟦ψ⟧), and D is a boolean
algebra closed under operators [a] and [ ]∗.
The case for x = sopml , is immediate, as ⟦ψ⟧ ⊆W for every ψ ∈ L∗sopml .

2b Let us first consider x = ap. If φ is an atom r, (Mp
V (q),w) ⊧ φ iff w ∈ V p

V (q)(r), iff2105

w ∈ V (r) whenever r ≠ p or w ∈ V (q) for r = p. In both cases (M,w) ⊧ φ[p/q].
The inductive cases for propositional connectives and modal operators are imme-
diate, as these simply commute with substitution.
If φ = ∀rϕ for r ≠ p, then (Mp

V (q),w) ⊧ φ iff for every U ∈ D, ((Mp
V (q))

r
U ,w) ⊧ ϕ.

Since r ≠ p and q is free for p in φ, we have q ≠ r and assignment (V p
V (q))

r
U is equal2110

to (V rU)p
V r
U
(q). As a consequence, we obtain ((Mr

U)p
V r
U
(q),w) ⊧ ϕ, i.e., (Mr

U ,w) ⊧

ϕ[p/q] by induction hypothesis. But this means that (M,w) ⊧ ∀r(ϕ[p/q]) =
(∀rϕ)[p/q].
As regards cases x = pl ,ml , sopml , we make use of item 1. We only prove the
inductive step for φ = ∀rϕ, with r ≠ p, the other cases being similar to the case for2115

x = ap above. Observe that (Mp
⟦ψ⟧,w) ⊧ φ iff for every U ∈ D, ((Mp

⟦ψ⟧)
r
U ,w) ⊧ ϕ.
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Since r ≠ p and ψ is free for p in φ, we have r ∉ fr(ψ), and by item 1 above,
⟦ψ⟧M = ⟦ψ⟧Mr

U
. Therefore assignment (V p⟦ψ⟧)

r
U is equal to (V rU)p⟦ψ⟧Mr

U

. Hence, we

obtain ((Mr
U)p⟦ψ⟧Mr

U

,w) ⊧ ϕ, i.e., (Mr
U ,w) ⊧ ϕ[p/ψ] by induction hypothesis. But

this means that (M,w) ⊧ ∀r(ϕ[p/ψ]) = (∀rϕ)[p/ψ].2120

Theorem 23. For every intended lpml model M, w ∈M, and formula ϕ in lpml, we
have

(M,w) ⊧ ϕ iff (M,w) ⊧ τ(ϕ)

Proof. We will only prove the crucial clause

(M,w) ⊧ ∀p⃗θ(a⃗, p⃗) iff (M,w) ⊧ ⊡(a⃗)

Before doing that, let us first show what it means for the following specific case: θ(a, b, p) =2125

◻ap → ◻bp, ⊡(a, b) = Sup(a, b), and Θ(a, b, x) = ∀y(Rb(x, y) → Ra(x, y)), also written as
Rb(x) ⊆ Ra(x).
⇐ Since (M,w) ⊧ Sup(a, b), we have that Rb(x) ⊆ Ra(x) holds in (M,w), and hence

in (F ,w). Since ◻ap→ ◻bp locally defines Rb(x) ⊆ Ra(x), we have (F ,w) ⊧ (◻ap→ ◻bp),
and in particular (F ,w) ⊧ ∀p(◻ap → ◻bp). Since ∀p(◻ap → ◻bp) is a sentence, we2130

obtain (M,w) ⊧ ∀p(◻ap → ◻bp). ⇒ Now suppose that (M,w) /⊧ Sup(a, b). Then
(F ,w) /⊧ Sup(a, b). Since ◻ap → ◻bp locally defines Rb(x) ⊆ Ra(x), we know that
(F ,w) /⊧ ◻ap → ◻bp, and since F is full, for some assignment V ′, we have (F , V ′,w) /⊧
◻ap→ ◻bp, that is, (M,w) /⊧ ∀p(◻ap→ ◻bp).

As for the general case: ⇐ Since (M,w) ⊧ ⊡(a⃗), we have that Θ(a⃗, x) holds in2135

(M,w), and hence in (F ,w) (note that Θ ∈ L1
fo only talks about what is accessible from

what). Since θ(a⃗, p⃗) locally defines Θ(a⃗, x), we have (F ,w) ⊧ θ(a⃗, p⃗), and in particular
(F ,w) ⊧ ∀p⃗θ(a⃗, p⃗). Since ∀p⃗θ(a⃗, p⃗) is a sentence, (M,w) ⊧ ∀pθ(a⃗, p⃗). ⇒ Suppose that
(M,w) /⊧ ⊡(a⃗). Then, (F ,w) /⊧ ⊡(a⃗), and therefore (F ,w) /⊧ Θ(a⃗, x). Since θ(a⃗, p⃗)
locally defines Θ(a⃗, x), we know that (F ,w) /⊧ θ(a⃗, p⃗), and since F is full, for some2140

assignment V ′, we have (F , V ′,w) /⊧ θ(a⃗, p⃗), that is, (M,w) /⊧ ∀p⃗θ(a⃗, p⃗).

Lemma 25. Consider formulas ϕi ∈ Lsopml and Θi ∈ L
1
fo in Example 24, for i = 1, . . . ,5.

Let x be the only free variable in Θi and assume ρ(x) = w. Assume F is a full frame,
then,

(F ,w) ⊧ ϕi iff (F , ρ) ⊧ Θi

Proof. All items are relatively immediate. We only proved the first and the last ones.2145

Rather than (F , ρ) ⊧ Θ, we will also write F ⊧ Θ(w), and say that Θ holds for w in F .

1. Suppose F is full and irreflexive at w, that is, ¬Ra(w,w), then clearly (F ,w) ⊧
∃p(◻ap∧¬p), by considering the assignment V (p) = Ra(w) for which w ∉ V (p). As
to the converse, suppose that F ,w ⊧ ∃p(◻ap ∧ ¬p). Hence, for every model M on
F , (M,w) ⊧ ∃p(◻ap ∧ ¬p), i.e., (M,w) /⊧ ∀p(◻ap → p). However, by Lemma 292150

below, this is the case iff Ra(w,w) does not hold. Hence, Θ1(w) holds in F .
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2. Suppose that Θ5(w) holds in F and let V be such that (F , V,w) ⊧ ◻cp. It is easy
to check that (F , V q

Ra(w),w) ⊧ ◻aq ∧ ◻b(q → p). In words, if we modify V in such

a way that q becomes true in exactly w’s a-successors, then for every b-successor
of w that satisfies q (note that this successor must then also be an a-successor),2155

p must be true. Conversely, suppose that Θ5(w) does not hold, i.e., for some
v ∈ W , we have Ra(w, v) and Rb(w, v), but not Rc(w, v). We now show that
(F ,w) ⊧ ¬ϕ5 = ∃p(◻cp ∧ ∀q(◻aq → ◇b(q ∧ ¬p))). The assignment V such that
V (p) = Rc(w) is a witness for this: if p is exactly true in the c-successors of w,
then it is false in v, so whenever ◻aq is true in w, we have that q ∧ ¬p holds in v,2160

and hence ◇b(q ∧ ¬p) holds in w.

Lemma 29. For every model M = ⟨F , V ⟩, world w ∈W , and formula ψ ∈ L∗sopml ,

(M,w) ⊧ ψ iff (F , ρ) ⊧ STx(ψ)

whenever ρ(x) = w and ρ(Pi) = V (pi).

Proof. The proof is by induction on the structure of ψ. Since the steps for2165

modal logic formulas is standard, we only show the case for the quantifier. For ψ = ∀pφ,
(M,w) ⊧ ψ iff for all U ∈ D, (Mp

U ,w) ⊧ φ, that is, (F , ρ′) ⊧ STx(φ) by induction
hypothesis, for ρ′ that coincides with ρ but ρ′(P ) = U . However, this means that
(F , ρPU) ⊧ STx(φ), i.e., (F , ρ) ⊧ ∀P (STx(φ)) = STx(ψ).

Recall that in Section 4.2, we stated the following theorem without proof:2170

Theorem 63. If ∣I ∣ ≥ 2, then the validities in sopml∗ over modal epistemic frames are
not recursively enumerable.

In particular, sopml∗ is not axiomatisable on the class of modal epistemic frames.

Here, we provide the proof. The proof strategy that we use is very similar to the one
used in the proof of Theorem 58: we define formulas ξgrid , ξsane and ξT that serve the2175

same purpose as ψgrid , ψsane and ψT , respectively.
The main difference lies in how we define a grid, now that we use two-agent S5 as

opposed to single agent K. This time, we use the following pattern: each point (n,m) ∈
Z ×Z is represented not by a single world, but instead by (at least) five different worlds
that are related to each other by the relation R(a). One of these five worlds satisfies2180

the propositional atom center , the other four worlds satisfy the atoms left , right ,up and
down, respectively. The left world of (n,m) is then related by R(b) to the right world
of (n − 1,m), and similarly for the other directions; see also the following diagram.
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a a

a

a

a

a a

aa

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

centerleft right

up

down

b b

b b

b b

b

b

b

b

b

b

As before, this allows us to define ◻x and ◊x (for x ∈ dir) as abbreviations:

◻xφ ∶= ◻a(x→ ◻b(¬x→ ◻a(center → φ)))

◊xφ ∶= ◊a(x ∧ ◊b(¬x ∧ ◊a(center ∧ φ)))
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Then we define a grid in almost exactly the same way as the K-case:

ξgrid ∶= ◻∗ (labels ∧ direction ∧ same ∧ remain ∧ ⋀
x∈dir

uniquex∧

⋀
(x,y)∈inv dir

inversexy ∧ ⋀
(x,y)∈perp dir

commutexy)

labels ∶= ⋁
i∈L

(i ∧ ⋀
j∈L∖{i}

¬j) ∧⋀
l∈L

◊al

directions ∶= ((left ∨ right)→ (◊bleft ∧ ◊bright ∧ ◻b(left ∨ right)))∧

((up ∨ down)→ (◊bup ∧ ◊bdown ∧ ◻b(up ∨ down)))

same ∶= ⋀
l∈L

∀p((l ∧ p)→ (◻a(l → p) ∧ ◻b(l → p))

remain ∶= ⋀
c∈Ag∖{a,b}

∀p(p↔ ◻cp)

uniquex ∶= ∀p(◊xp→ ◻xp))

inversexy ∶=∀p(p→ ◻x ◻y p)

commutexy ∶=∀p(◊x◊yp→ ◻y ◻x p)

where dir , inv dir and perp dir are as before, and L ∶= {left , right ,up,down, center}.2185

Note that uniquex, inversexy and commutexy are identical to their counterparts in
the proof of Theorem 58, but the other subformulas are different.

If M,w0 ⊧ ξgrid , then we associate the worlds of M with the points of Z × Z in the
following way: (i) w0 and all its a-successors represent (0,0), (ii) if w represents (n,m),
M,w ⊧ left , w′ is a b-successor of w and M,w′ ⊧ right , then w′ represents (n − 1,m),2190

(iii) similarly for the other directions and (iv) if w represents (n,m) then so does every
c-successor of (n,m) for every c /∈ {a, b}.

As before, we show that every point (n,m) is represented by at least one world
and that each world represents at least one point. Since every point is represented
by at least one center world, one right world, one left world, one up world and one2195

down world, we obviously cannot guarantee that all the worlds representing a point are
indistinguishable. We will show, however, that all center worlds representing (n,m) are
modally indistinguishable from one another.

� labels guarantees that every world (i) satisfies exactly one of the labels from L and
(ii) has a successor that satisfies l for every l ∈ L.2200

� directions guarantees that every left world is paired with a right world through the
relation R(b), and similarly for the other directions. Due to how we defined ◊x and
◻x as abbreviations, this means that every center world has and x-successor that
is also a center world, for every x ∈ dir . That, in turn, implies that every point
(n,m) is represented by at least one world.2205

� same says that for every U ∈D, if w is in U then so are all of its a- and b-successors
that share the same label. Since we are working with a modal domain of quantifi-
cation, this implies that every label is unique (up to modal indistinguishability) in
its a- and b-equivalence classes. Note that, together with the fact that left , right ,up
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and down worlds occur only in pairs, this implies that whenever a world w rep-2210

resents some point (n,m), then every a- or b-successor of w also represents some
point (n′,m′). So every world in the generated submodel represents some point
(n,m).

� remain says that for any agent c other than a and b, w is modally indistinguishable
from its c-successors. This implies that if w and w′ represent the same point (n,m)2215

due to rule (iv), then w and w′ are modally indistinguishable.

� The formulas uniquex, inversexy and commutexy, for the relevant x and y, guar-
antee that if w and w′ represent the same point (n,m) due to rules (ii) and (iii),
then w and w′ are modally indistinguishable.

We have now shown that every point (n,m) is represented, that every world represents2220

a point and that all worlds representing a single point are modally indistinguishable.
Variants ξsane and ξT of ψsane and ψT can then be defined. The only required

modification is that in ξsane and ξT we only put requirements on center world, e.g.,
the subformula ⋁s∈states(s∧⋀s′∈states∖{s} ¬s

′) of ψsane should be replaced with center →

⋁s∈states(s ∧ ⋀s′∈states∖{s} ¬s
′) in ξsane . Since these modifications are rather trivial, we2225

do not list them here in detail.
Overall, if we define ζT ∶= ξgrid ∧ ξsane ∧ ξT ∧ s0 ∧ pos, thenM,w ⊧ ζT implies thatM

encodes the execution of T . It follows that T is non-halting if and only if M,w ⊧ ζT →
◻∗(center → ¬send). In particular, this implies that the valid formulas of sopml∗ over
modal S5 frames are not recursively enumerable.2230

Theorem 74. If w ≈ w′, then for every formula ϕ ∈ L∗sopml ,

(F ,w) ⊧ ϕ iff (F ′,w′) ⊧ ϕ.

Proof. We prove the implication from right to left, the opposite direction
being symmetric. If w ≈ w′ then ω(w,w′) holds for some bisimulation pair (ω,Ω).
As above, we show by induction on ϕ that if (F , V,w) /⊧ ϕ for some assignment V ,
then (F ′,Ω(V ),w′) /⊧ ϕ, where Ω(V ) is any assignment such that for every p ∈ AP ,2235

(Ω(V ))(p) = U ′ with Ω(V (p), U ′). Since ω is a simulation relation in particular, the
base cases for ϕ = p and ϕ = ¬p are as in Theorem 68, as well as the inductive cases for
propositional connectives and ϕ = ◻aψ, ϕ = ◻∗ψ, and ϕ = ∀pψ.

For ϕ = ◇aψ, (F ′,Ω(V ),w′) ⊧ ϕ iff for some v′ ∈ R′
a(w

′), (F ′,Ω(V ), v′) ⊧ ψ. By
bisimulation, for some v ∈ Ra(w), ω(v, v′). In particular, (F , V, v) ⊧ ψ by induction2240

hypothesis. That is, (F , V,w) ⊧ ϕ. The case for ϕ =◇∗ψ is similar.
For ϕ = ∃pψ, (F ′,Ω(V ),w′) ⊧ ϕ iff for some U ′ ∈ D′, (F ′, (Ω(V ))pU ′ ,w

′) ⊧ ψ. Now
consider U ∈D such that Ω(U,U ′) ∈D. In particular, assignments (Ω(V ))pU ′ and Ω(V pU )
coincides. Hence, (F ′,Ω(V pU ),w′) ⊧ ψ, and by induction hypothesis, (F , V pU ,w) ⊧ ψ for
U ∈D, that is, (F , V,w) ⊧ ϕ.2245
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