
[12:51 22/7/2017 hbx005.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 215 215–249

CONTROLLING FLEXURAL WAVES IN SEMI-INFINITE
PLATONIC CRYSTALS WITH RESONATOR-TYPE

SCATTERERS
by S. G. HASLINGER†, N. V. MOVCHAN and A. B. MOVCHAN

(Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL)

I. S. JONES

(Mechanical Engineering and Materials Research Centre, Liverpool John Moores
University, Liverpool L3 3AF)

and

R. V. CRASTER

(Department of Mathematics, Imperial College London, London SW7 2AZ)

[Received 5 September 2016. Revise 13 April 2017. Accepted 18 April 2017]

Summary

We address the scattering and transmission of a plane flexural wave through a semi-infinite
array of point scatterers/resonators, which take a variety of physically interesting forms. The
mathematical model accounts for several classes of point defects, including mass-spring resonators
attached to the top surface of the flexural plate and their limiting case of concentrated point
masses. We also analyse the special case of resonators attached to opposite faces of the plate.
The problem is reduced to a functional equation of the Wiener–Hopf type, whose kernel varies
with the type of scatterer considered. A novel approach, which stems from the direct connection
between the kernel function of the semi-infinite system and the quasi-periodic Green’s functions
for corresponding infinite systems, is used to identify special frequency regimes. We thereby
demonstrate dynamically anisotropic wave effects in semi-infinite platonic crystals, with particular
attention paid to designing systems that exhibit dynamic neutrality (perfect transmission) and
localisation close to the structured interface.

1. Introduction

Since the 1980s, there has been substantial attention devoted to wave interaction with periodic
structures leading to the recent surge of interest in designing metamaterials and micro-structured
systems that are able to generate effects unattainable with natural media. These are artificially
engineered super-lattice materials, designed with periodic arrays of sub-wavelength unit cells. Many
of the ideas and techniques originate in electromagnetism and optics but are now filtering into other
systems such as the Kirchhoff-Love plate equations for flexural waves. This analogue of photonic
crystals, labelled as platonics by McPhedran et al. (1), features many of the typical anisotropic effects
from photonics such as ultra-refraction, negative refraction and Dirac-like cones, see (2)–(6), among
others. Recently, structured plates have also been both modelled, and designed, to demonstrate the
capability for cloaking applications (7)–(11).
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Fig. 1 Four cases for semi-infinite arrays of mass-spring resonators with periodicities dx, dy . (a) Case 1:
semi-infinite array of point masses. (b) Case 2: multiple mass-spring resonators on the top surface of the plate
characterised by masses mi , and stiffnesses ci . (c) Case 3: multiple mass-spring resonators attached to both
faces of the plate. (d) Case 4: Winkler-type foundation, the masses are embedded within the top surface of the
plate

In this article, we consider a semi-infinite platonic crystal where, by patterning one half of an
infinite Kirchhoff-Love plate with a semi-infinite rectangular array of point scatterers, the leading
grating acts as an interface between the homogeneous and structured parts of the plate. Haslinger
et al. (12) analysed the case of pinned points, and highlighted effects including dynamic neutrality-
type behaviour in the vicinity of Dirac-like points on the dispersion surfaces for the corresponding
infinite doubly periodic system, and interfacial localisation, by which waves propagate along the
interface. An interesting feature of the discrete Wiener–Hopf method of solution was the direct
connection between the kernel function and the doubly quasi-periodic Green’s function, zeros of
which correspond to the aforementioned dispersion surfaces.
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Here, we analyse four alternative physical settings for the point scatterers making up the semi-
infinite periodic array, which we classify as one of two possible periodic systems; the two-dimensional
‘half-plane’ with periodicity defined in both the x- and y- directions, as illustrated in Fig. 1(a), and
the one-dimensional ‘grating’, with the periodic element confined to the x-axis, as illustrated in
Fig. 1(b)–(d). All of the analysis presented in this article is for the two-dimensional periodicity, and
is easily reduced to the special case of a single semi-infinite line of scatterers for x ≥ 0.

• Case 1: point masses, characterised by mass m.
• Case 2: multiple point mass-spring resonators attached to the top surface of the plate,

characterised by masses mi, stiffnesses ci; i ∈ Z
+.

• Case 3: multiple mass-spring resonators attached to both faces of the plate.
• Case 4: point masses with Winkler foundation (see Biot (13)), characterised by mass m,

stiffness c.

It will be shown that, for certain frequency regimes, some of the cases are equivalent to one another.
The replacement of the rigid pins with more physically interesting scatterers brings several new

attributes to the model, most notably an assortment of propagation effects at low frequencies; in
contrast, the case of pinned points possesses a complete band gap for low-frequency vibrations up to
a finite calculable value. The important limiting case of c1 → ∞ for case 2, N = 1 (see Fig. 1(b)),
or equivalently, c → 0 for case 4 in Fig. 1(d), retrieves the periodic array of unsprung point masses
(case 1) in Fig. 1(a). The infinite doubly periodic system of point masses has been discussed by
Poulton et al (14), who provided dispersion band diagrams and explicit formulae and illustrations
for defect and waveguide modes.

Evans and Porter (15) considered 1D periodic arrays of sprung point masses (case 4 in Fig. 1(d)
for −∞ < x < ∞), including the limiting case of unsprung point masses. The contributions by
Xiao et al. (16) and Torrent et al. (4) discussed infinite doubly periodic arrays of point mass-
spring resonators, as depicted in Fig. 1(b); the former for a rectangular array, and the latter for a
honeycomb, graphene-like system. The authors provided dispersion relations and diagrams for the
platonic crystals, and analysed the tuning of band-gaps and the association of Dirac points with the
control of the propagation of flexural waves in thin plates. Examples using finite structures were also
illustrated by both (16), (4).

In this article, we present the first analysis of semi-infinite arrays for the variety of point
scatterers illustrated in Fig. 1. We demonstrate interfacial localisation, dynamic neutrality and
negative refraction for the 2D platonic crystals. The problem is formulated for the 2D semi-infinite
periodic array of scatterers, from which the special case of a semi-infinite line is easily recovered by
replacing a quasi-periodic grating Green’s function with the single source Green’s function for the
biharmonic operator. A discrete Wiener–Hopf method, incorporating the z-transform, is employed
to derive functional equations for the various geometries. This discrete method is less common than
its continuous counterpart, but it has been used by, among others, (17)–(23) for related problems,
mainly in the context of the Helmholtz equation.

The characteristic feature of each of the resulting functional equations is the kernel which, for all
of the cases featured here in Fig. 1, includes the doubly quasi-periodic Green’s function, meaning
that a thorough understanding of the Bloch-Floquet analysis is required. We express the kernel in a
general form, and by identifying and studying special frequency regimes, we present the conditions
required to predict and observe specific wave effects. This novel approach is used to design structured
systems to control the propagation of the flexural waves, without evaluating the explicit Wiener–
Hopf solutions, bypassing unnecessary computational challenges. We derive expressions to connect
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the geometries being analysed, including a condition for dynamic neutrality (perfect transmission)
that occurs at the same frequency for the 2D versions of both cases 3 and 4 shown in Fig. 1(c) and
(d), and carries significantly lower losses than the pinned examples previously demonstrated by (12).

In conjunction with the Wiener–Hopf equations for each of the cases considered, we also derive
dispersion relations, and illustrate dispersion surfaces and band diagrams. Of particular importance
are stop and pass band boundaries, standing wave frequencies (flat bands/low group velocity) and
the neighbourhoods of Dirac-like points, which support dynamic neutrality effects. The concept of
Dirac cone dispersion originates in topological insulators and has more recently been transferred
into photonics (see for example (24)–(27)). It is associated with adjacent bands, for which electrons
obey the Schrödinger equation, that meet at a single point called the Dirac point.

Typically connected with hexagonal and triangular geometries in systems governed by Maxwell’s
equations, and most notably associated with the electronic transport properties of graphene (see,
for example, Castro Neto et al. (28)), analogous Dirac and Dirac-like points have recently been
displayed in phononic and platonic crystals (see for example (29)–(31), (6)). The presence of Dirac
cones is generally associated with the symmetries of the system through its geometry. When two
perfect cones meet at a point, with linear dispersion, the cones are said to touch at a Dirac point.
In the vicinity of a Dirac point, electrons propagate like waves in free space, unimpeded by the
microstructure of the crystal.

In platonic crystals, the analogous points generally possess a triple degeneracy, where the two
Dirac-like cones are joined by another flat surface passing through what is known as a Dirac-like
point. This is analogous to the terminology adopted by Mei et al. (29) in photonics and phononics,
where the existence of linear dispersions near the point k = 0 of the reciprocal lattice for the
square array is the result of ‘accidental’ degeneracy of a doubly degenerate mode (the Dirac point,
without the additional mode) and a single mode. Sometimes known as a ‘perturbed’ Dirac point, the
accidental degeneracy does not arise purely from the lattice symmetry, as for a Dirac point, but from
a perturbation of the physical parameters; in this platonic setting, from the fourth order biharmonic
operator. We identify Dirac-like points to illustrate neutrality, and ‘Dirac bridges’ (Colquitt et al.
(32)) to predict unidirectional wave propagation, an example of which was recently reported by Carta
et al. (33) in a discrete system. We also use dispersion surfaces and the accompanying isofrequency
contour diagrams to identify frequencies supporting negative refraction.

The article is arranged as follows: in section 2, we formulate the problem for the 2D rectangular
array, using the discrete Wiener–Hopf technique; the special case of a semi-infinite grating is also
identified. We provide governing equations, and Wiener–Hopf equations for all cases illustrated in
Fig. 1. In section 3, we analyse these equations, highlighting the conditions required for frequency
regimes to support reflection, transmission and dynamic neutrality, which we illustrate with examples.
In section 4, we present special examples of waveguide transmission, whereby the structured system
is designed to specifically exhibit negative refraction and interfacial localisation effects. Concluding
remarks are drawn together in section 5. We also include a brief discussion about Rayleigh-Bloch-
like waves for the semi-infinite line of scatterers in Appendix A, and the connection between the 1D
and 2D cases for point mass-spring resonator systems.

2. Formulation

Athin Kirchhoff-Love plate comprises a 2D semi-infinite array of point scatterers defined by position
vectors r′

np = (ndx, pdy), where dx, dy are the spacings in the x- and y-directions respectively, and
n, p are integers, as illustrated in Fig. 2(a). It is natural to consider the system as a semi-infinite array
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(a)

(b)

Fig. 2 (a)Asemi-infinite array of gratings of point scatterers, whose positions are denoted by r′
np = (ndx, pdy),

with horizontal and vertical spacings dx and dy respectively. (b) A semi-infinite line of point scatterers for a
plane wave incident at angle ψ

of gratings aligned parallel to the y-axis. By replacing each of these gratings with a single point
scatterer lying on the x-axis, we recover the 1D case of a single semi-infinite grating, as illustrated
in Fig. 2(b). The plate is subjected to a forcing in the form of a plane wave, incident at an angle ψ
to the x-axis.

We assume time-harmonic vibrations of the Kirchhoff-Love plate, and define equations for the
amplitude of the total out-of-plane displacement field u(r), with r = (rx, ry), which can be expressed
as the sum of the incident and scattered fields:

u(r) = uinc(r) + uscatt(r). (2.1)

We express the general governing equation for u(r) in the form:

�2u(r) − ρhω2

D
u(r) = �(ω,m, c)

∞∑
n=0

∞∑
p=−∞

u(r′
np)δ(r − r′

np), r′
np = (ndx, pdy), n ∈ Z

+, p ∈ Z.

(2.2)
Here, �(ω,m, c) is a function of angular frequency ω, and the physical parameters of mass m and
stiffness c that define the various mass-spring resonator models shown in Fig. 1. The various forms
of �(ω,m, c) are provided later in section 2.2. The characteristic physical parameters for the plate
are density ρ (mass per unit volume), thickness h and flexural rigidity D (involving Young’s modulus
E and the Poisson ratio ν), and we also adopt the use of the spectral parameter β, which has the
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dimension of a wavenumber:

D = Eh3

12(1 − ν2)
; β2 = ω

√
ρh

D
; ω2 = β4D

ρh
. (2.3)

Note that the Kirchhoff-Love model incorporates the fourth order biharmonic operator, and gives
an excellent approximation of the full linear elasticity equations for a sufficiently small value of the
ratio h/λ, where λ denotes the wavelength of the flexural vibrations of the plate (34):

λ = 2π

β
= 2π

(
ρhω2

D

)−1/4

,
h

λ
< 1/6. (2.4)

2.1 Governing equations and reduction to a functional equation

Assuming isotropic scattering, we express the scattered field in the form of a sum of biharmonic
Green’s functions:

uscatt(r) = �(ω,m, c)
∞∑

n=0

∞∑
p=−∞

u(r′
np)G(β|r − r′

np|), (2.5)

where G is the point source Green’s function satisfying the equation:

�2G(β, |r − r′|) − β4G(β, |r − r′|) = δ(r − r′). (2.6)

Note that for the 1D case of a semi-infinite line of scatterers r′
n0 placed on the x-axis, the sum over p

in (2.5) is absent. All derivations for the 2D array given below are applicable to the special case of
the semi-infinite grating, with appropriate adjustments to the sums and Green’s functions. Referring
to (2.1)–(2.2), we may express the total field u(r) as

u(r) = uinc(r) +�(ω,m, c)
∞∑

n=0

∞∑
p=−∞

u(r′
np)G(β|r − r′

np|). (2.7)

In particular, at r = r′
st , s ∈ Z

+, t ∈ Z, we have the linear algebraic system

u(r′
st) = uinc(r′

st) +�(ω,m, c)
∞∑

n=0

∞∑
p=−∞

u(r′
np)G(β|r′

st − r′
np|), s ∈ Z

+, t ∈ Z. (2.8)

Recalling that we consider an incident plane wave, we define uinc in the form:

uinc = exp{i(kxrx + kyry)}, (2.9)

where k = (kx, ky) = (β cosψ, β sinψ) is the wave vector. Since the gratings are infinitely periodic
in the y-direction, we impose Bloch-Floquet conditions for uscatt in the y-direction. Hence

u(rx, ry + qdy) = eikyqdy u(r) and u(r′
np) = u(r′

n0)eikypdy . (2.10)
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Thus, recalling the RHS of (2.8), we have

∞∑
p=−∞

u(r′
np)G(β|r′

st − r′
np|) = u(r′

n0)
∞∑

p=−∞
eikypdy G(β|r′

st − r′
np|)

= u(r′
n0)eikytdy

∞∑
p=−∞

eiky(p−t)dy G

(
β

√
(s − n)2dx

2 + (t − p)2dy
2
)
. (2.11)

Denoting p − t = α, this simplifies to

∞∑
p=−∞

u(r′
np)G(β|r′

st − r′
np|) = u(r′

n0)eikytdy

∞∑
α=−∞

eikyαdy G

(
β

√
(s − n)2dx

2 + α2dy
2
)
, (2.12)

where the sum on the right is precisely the quasi-periodic grating Green’s function; we shall use the
notation

Gq(β, |s − n|; ky, dx, dy) =
∞∑

α=−∞
eikyαdy G

(
β

√
(s − n)2dx

2 + α2dy
2
)
, (2.13)

when substituting (2.12) back into (2.8):

u(r′
st) = eik·r′

st +�(ω,m, c)
∞∑

n=0

u(r′
n0)eikytdy Gq(β, |s − n|; ky, dx, dy). (2.14)

Here, we use
u(r′

st) = eikytdy u(r′
s0).

Thus, the algebraic system becomes

u(r′
s0) = eikxsdx +�(ω,m, c)

∞∑
n=0

u(r′
n0)Gq(β, |s − n|; ky, dx, dy), (2.15)

where the integer s denotes the x-position of a grating of scatterers parallel to the y-axis and centred
on the x-axis, and the incident field is in the form exp{ikxsdx}. Equivalently, we may write

us = fs +�(ω,m, c)
∞∑

n=0

unGq(β, |s − n|; ky, dx, dy), (2.16)

where we replace u(r′
s0), u(r′

n0) with us, un for ease of notation, and fs represents the forcing term.
The semi-infinite sum indicates that the discrete Wiener–Hopf method is suitable, see Noble (35),

where the application to continuum discrete problems (36), such as gratings, is presented as an
exercise (4.10, pp. 173–174) in (35). After employing the z-transform, we obtain

∞∑
s=−∞

uszs =
∞∑

s=−∞

(
eikxdx z

)s +�(ω,m, c)
∞∑

s=−∞

∞∑
n=0

zsunGq(β, |s − n|; ky, dx, dy). (2.17)
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Letting the index s = n + ζ , we derive a functional equation of the Wiener–Hopf type (35):

Û−(z) = F̂(z) + Û+(z)
(
�(ω,m, c)Ĝ(β; z) − 1

)
, (2.18)

where

F̂(z) =
∞∑

s=−∞

(
eikxdx z

)s ; Û−(z) =
−1∑

s=−∞
u(r′

s0)zs; Û+(z) =
∞∑

s=0

u(r′
s0)zs, (2.19)

with z = eiθ and we introduce the notations As,Bs such that

As = u(r′
s0), s ≥ 0; Bs = u(r′

s0), s < 0. (2.20)

The coefficients As are the displacement coefficients associated with the scatterers located in the
region x ≥ 0, and Bs represent the total field displacement coefficients in the region x < 0. The
notation Ĝ(β; z) is introduced to represent the function

Ĝ(β; z) =
∞∑

ζ=−∞
Gq(β, |ζ |; ky, dx, dy)zζ , (2.21)

where Gq is the quasi-periodic grating Green’s function given by (2.13). We note that for z =
exp (ikxdx), that is θ = kxdx, we recover the doubly quasi-periodic Green’s function:

Ĝ(β; exp (ikxdx)) =
∞∑

ζ=−∞

∞∑
α=−∞

eiαkydy eiζkxdx G

(
β

√
ζ 2dx

2 + α2dy
2
)
. (2.22)

We also note that for the case of a semi-infinite line of point scatterers along x ≥ 0, we would have
the same Wiener–Hopf functional equation as (2.18), but replace Ĝ with Gq from (2.13).

2.2 Governing equations for various point scatterers

Equations (2.15)–(2.21) are the fundamental general equations for all four of the cases depicted in
Fig. 1. The general kernel function

K(z) = �(ω,m, c)Ĝ(β; z) − 1 (2.23)

differs from that of the simpler pinned semi-infinite platonic crystal analysed by (12) because of the
change in boundary condition for the point scatterers. The rigid pin boundary condition is defined
as the limiting case of the radius of a clamped hole tending to zero, and there is a large body of
literature covering various associated problems. A selection of relevant papers include Movchan
et al. (37), Evans and Porter (15), (38), Antonakakis and Craster (39), (5), Haslinger et al. (40).
Whereas the rigid pins impose zero flexural displacement at r′

np, the non-zero condition for the
scatterers considered in this article introduce additional terms in (2.23). The function �i(ω,m, c),
for i = 1 − 4, determines the characteristic features specific to each model; the expressions for the
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various �i(ω,m, c) are presented here:

• Case 1: point masses: �1(ω,m, c) = mω2/D.
• Case 2: multiple mass-spring resonators on the top surface of the plate:

• N = 1: �N=1
2 (ω,m, c) = cmω2

D(c−mω2)

• N = 2: �N=2
2 (ω,mi, ci) = c1

D
c2

2−(c2−m1ω
2)(c2−m2ω

2)
(c1+c2−m1ω2)(c2−m2ω2)−c2

2
.

• Case 3: multiple mass-spring resonators on both faces of plate:

�N=1
3 (ω,mi, ci) = ω2

D

(
m1c1

c1−m1ω2 + m2c2
c2−m2ω2

)
.

• Case 4: Winkler foundation point masses: �4(ω,m, c) = (mω2 − c)/D.

Rather than outlining all of the details of the derivations, we provide an overview of the case of
mass-spring resonators with N = 2, as illustrated in Fig. 1(b). We then recover the other expressions
for �i(ω,m, c) by considering various limiting values for the parameters.

2.2.1 Multiple mass-spring resonators, N=2. We attach mass-spring resonators at each point
r′

np = (ndx, pdy), n ≥ 0. Each resonator consists of N point masses attached to N springs, denoted
by masses m1,m2, ...,mN and spring stiffnesses c1, c2, ..., cN , as shown in Fig. 1(b). Here, we derive
the governing equations for the case N = 2, but the procedure for arbitrary N is a simple extension.

We derive the equation for�N=2
2 (ω,m, c) for an arbitrary scatterer placed at r′

n0 = (ndx, 0), using
Newton’s second law and Hooke’s law, and assuming negligible effect of gravity. We use the fact that
the quasi-periodic Green’s function (2.13) in equations (2.15)-(2.21) accounts for all scatterers in a
grating parallel to the y-axis, centred at r′

n0. We denote the flexural displacement of the plate at r′
n0

by u(r′
n0) = un, and in general, the transverse displacement of each mass mi is v(i)

n (r′
n0), i ∈ [1,N ].

The displacements vn and un are evaluated with respect to r′
n0, but for the sake of simplicity, we

adopt the abbreviated notation with the subscript n.
For N = 2, the equations of motion are given by

(c1 + c2 − m1ω
2)v(1)

n = c1un + c2v(2)
n

(c2 − m2ω
2)v(2)

n = c2v(1)
n . (2.24)

The normalised force Fn acting on the plate at r′
n0, in terms of the out-of-plane displacement, is

given by:

Fn = c1

D
(v(1)

n − un), (2.25)

where the reciprocal of the plate’s flexural rigidity is the normalisation factor. Thus, referring to
(2.2), (2.16) we may write the total flexural displacement amplitude at u(r′

j0) = uj as

uj = fj + c1

D

∞∑
n=0

(v(1)
n − un)Gq(β, |j − n|; ky, dx, dy). (2.26)
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We eliminate v(2)
n from (2.24) and derive the expression for v(1)

n in terms of un only:

v(1)
n

(
c1 + c2 − m1ω

2 − c2
2

c2 − m2ω
2

)
= c1un.

Hence, we rewrite (2.26) in the form,

uj = fj +�N=2
2 (ω,mi, ci)

∞∑
n=0

unGq(β, |j − n|; ky, dx, dy), (2.27)

such that

�N=2
2 (ω,mi, ci) = c1

D

c2
2 − (c2 − m1ω

2)(c2 − m2ω
2)

(c1 + c2 − m1ω
2)(c2 − m2ω

2) − c2
2

. (2.28)

The discrete Wiener–Hopf functional equation is obtained by substituting the expression for
�N=2

2 (ω,m, c) into the general equation (2.18):

Û−(z) = F̂(z) + Û+(z)
(
�N=2

2 (ω,mi, ci)Ĝ(β; z) − 1
)
. (2.29)

2.2.2 Limiting cases. All of the expressions for �i(ω,m, c) have been derived using Newton’s
second law and Hooke’s law but, for brevity’s sake, here we consider limiting values of the physical
parameters in (2.28) to recover them.

Single mass-spring resonator, N = 1 Taking the limit as c2 → 0 in (2.28), that is zero stiffness for
the second spring, we obtain

�N=1
2 (ω,m, c) = cmω2

D(c − mω2)
, (2.30)

the equation for a single mass-spring resonator, N = 1.

Point masses We note that in the limit as c → ∞, (2.30) tends towards the equation for unsprung
mass-loaded points:

�1 (ω,m, c) = mω2

D
, (2.31)

and vn = un from (2.25); the flexural vibrations of the plate and masses are identical for infinite
stiffness, which is physically consistent with infinitely stiff springs. As m → ∞, (2.30) tends to
−c/D, and this may be interpreted physically as the plate being attached to a rigid foundation with
springs of stiffness c.

Point masses with Winkler-type foundation An alternative model for adding the mass-spring
resonators is shown in Fig. 1(d), where point masses are embedded within the plate, and additional
springs, attached to a fixed Winkler-type foundation (13), are added below. Referring to (2.25), we
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obtain a similar equation, except that here the displacement at the point of attachment to the fixed
foundation vn, is zero. Hence,

mω2un = cun, (2.32)

and the solution for the total flexural amplitude at r′
j0 = (jdx, 0) is

uj = fj + mω2 − c

D

∞∑
n=0

unGq(β, |j − n|; ky, dx, dy), (2.33)

with

�4 (ω,m, c) = mω2 − c

D
. (2.34)

We note that with this model, taking the limit as c → 0 recovers the case of concentrated point
masses (case 1).

2.2.3 Multiple mass-spring resonators attached to both faces of plate. We now consider an
extension of section 2.2.1 by attaching mass-spring resonators on opposite faces of the plate at
the same point of the array depicted in Fig. 2(a). This system is illustrated for the case of 2N
mass-spring resonators in Fig. 1(c). For introducing the model, we analyse the simplest case here;
two masses m1,m2 with associated spring stiffnesses c1, c2, with the index being odd for resonators
attached to the top surface, and even for the bottom surface, as illustrated in Fig. 1(c). The derivations
are similar to section 2.2.1 with the flexural displacement at r′

n0 = (ndx, 0), n ≥ 0 given by un and

the transverse displacements of the masses mi, i = 1, 2 given by v(i)
n . The equation of motion of the

resonator mass at a single array point is given by

miω
2v(i)

n = ci(v
(i)
n − un), i = 1, 2, (2.35)

where we have used Hooke’s law for the right-hand side. Recalling the general expression for the
total flexural displacement field of the plate at the point r′

j0 = (jdx, 0), we write

uj = fj + 1

D

∞∑
n=0

(F(1)
n + F

(2)
n )Gq(β, |j − n|; ky, dx, dy), (2.36)

where the forces F
(i)
n are given by

F
(i)
n = ci(v

(i)
n − un), i = 1, 2. (2.37)

Similar to case 2, N = 2, we derive the governing equation in the form

uj = fj +�3(ω,mi, ci)
∞∑

n=0

unGq(β, |j − n|; ky, dx, dy), (2.38)

where

�3(ω,mi, ci) = ω2

D

(
m1c1

c1 − m1ω
2

+ m2c2

c2 − m2ω
2

)
. (2.39)
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3. Analysis of kernel functions: reflection, transmission and dynamic neutrality

We identify three important frequency regimes using the kernel equation (2.23): reflection,
transmission and dynamic neutrality. Special cases of waveguide transmission including negative
refraction and interfacial localisation are illustrated in the subsequent section 4. The Wiener–Hopf
equations of the form (2.29) are characterised by their respective kernels, which all take the general
form

K(z) = �(ω,m, c)Ĝ(β; z) − 1. (3.1)

There are three natural limiting regimes to consider for a kernel function with this structure: when
it is either very large or very small, and when � Ĝ tends to 0, that is K → −1. Referring to the
general Wiener–Hopf equation (2.18), the first two cases infer that Û+ is respectively very small or
very large. Recall from equations (2.18)–(2.20) that the z-transform of the total field is represented
by

∞∑
s=−∞

uszs = Û−(z) + Û+(z) =
−1∑

s=−∞
Bszs +

∞∑
s=0

Aszs. (3.2)

The function Û+ and its coefficients As give us information about the scattering within the
platonic crystal. Thus, small |Û+| indicates reflection (blocking), and large |Û+| indicates enhanced
transmission, which is of particular interest for a single line of scatterers since it manifests in the
form of Rayleigh-Bloch-like modes propagating along the grating itself (see, for example, Evans
and Porter (15) and Colquitt et al. (41) for related problems). We place a discussion about the 1D
line array, and its connection with the 2D systems featured in the main text, in Appendix A. For
K → −1, the general expression (2.18) tells us that in the limit,

Û− + Û+ = F̂ .

Recalling that F̂ represents the incident field, and Û− + Û+, the total field, we may interpret
this regime as perfect transmission or dynamic neutrality (no scattering); the wave propagation
is unimpeded by the microstructure of the platonic crystal, a phenomenon often associated with the
vicinity of Dirac or Dirac-like points (1).

Summarising the three regimes, we have

• Reflection (blocking) |K| � 1
• Waveguide transmission |K| � 1
• Dynamic neutrality (perfect transmission) K → −1.

By studying the Wiener–Hopf equation and its kernel function, we are able to derive conditions
for observing wave effects for the different types of point scatterers. For example, it is instructive to
compare the representations for point masses attached to a Winkler-type foundation (2.34) with the
equivalent expressions for the mass-spring resonators attached to the top of the plate given by (2.30).
Both expressions incorporate the term mω2 − c, which defines the resonance frequency ωr of the
individual mass-spring resonators:

mω2
r − c = 0 ⇐⇒ ω2

r = c

m
. (3.3)

Crucially, however, the kernel functions differ in that this term is in the numerator for the Winkler
case, but in the denominator for the mass-spring resonator case in (2.30). This indicates that, for
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example, the transmission condition for the Winkler foundation would correspond to the regime of
reflection (|K| � 1) for the mass-spring resonator case and vice versa.

In this section, we present illustrative examples of zeros of the kernel function K and displacement
field plots for semi-infinite arrays of infinite gratings, aligned with the y-axis, in the domain x ≥ 0. The
coincidence of zeros of the kernel for semi-infinite crystals and roots of the dispersion relations for the
corresponding infinite systems lends us versatility in methods of solution. The solutions of dispersion
equations, represented by zeros of (3.1), are obtained analytically and evaluated numerically in
MATHEMATICA, with accelerated convergence formulae being applied to the associated lattice
sums, as discussed in, for example, (1), (6), (31), (37). The 3D plots representing the dispersion
surfaces were generated by solving an elementary cell problem in the finite element software package
COMSOL, with MATLAB being used for the final plots.

We use multiple scattering methods adopted by, among others, Foldy (42) to illustrate the
displacement fields in semi-infinite crystals. We rewrite the general governing equation (2.16) in
the truncated form:

�(ω,m, c)
N−1∑
n=0

unGq(β, |s − n|; ky, dx, dy) = us − f (i)
s s = 1, 2, ....,N , (3.4)

where we have replaced the incident field notation fs with f (i)
s , and N is the truncation parameter

(that is there are N gratings positioned in the right-half of the plate). Hence, in terms of matrices we
obtain the equation (

�Gq − IN
)

u = −f (i). (3.5)

Here u is a vector representing the total displacement field, f (i) is the vector representing the
corresponding incident waves and Gq is a matrix of quasi-periodic Green’s functions. We solve
the algebraic system of equations (3.5) to retrieve the displacements us. The displacement fields are
then illustrated by plotting the real part of

u(r) = f (i)(r) +�(ω,m, c)
N∑

n=0

unGq(β, |r − (ndx, 0)|; ky, dx, dy), (3.6)

where each vertical grating labelled by n is centred at (ndx, 0) and associated with a corresponding
quasi-periodic Green’s function Gq.

3.1 Reflection

Referring to the general equation (3.1), reflection (blocking) is predicted for frequency regimes
where either�(ω,m, c) or Ĝ, or both functions together, blow up. We recall that the kernel function
is precisely Ĝ(β; z) (2.21) for the case of a semi-infinite array of rigid pins, and that for z = exp{iθ},
with θ = kxdx and k = (kx, ky) the Bloch vector for a doubly periodic system, Ĝ(β; z) is a doubly
quasi-periodic Green’s function. Much has been written about this Green’s function in the literature;
see for example, McPhedran et al. (1), McPhedran et al. (6), Poulton et al. (14). A very important
property is that its zeros correspond to the dispersion relation for the infinite doubly periodic system
of rigid pins, which possesses a complete band gap for low-frequency vibrations up to a finite
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calculable value. Here we express Ĝ(β; exp (ikxdx)) (2.22) in the form:

Ĝ(β; k) = i

8β2

(
SH

0 (β; k) + 1 + 2i

π
SK

0 (β; k)

)
, (3.7)

where SH
0 , SK

0 are lattice sums defined over the periodic array of point scatterers r′
np in the following

way:

SH
0 (β; k) =

∑
r′

np �={0,0}
H (1)

0 (β|r′
np|) eik·r′

np ,

SK
0 (β; k) =

∑
r′

np �={0,0}
K (1)

0 (β|r′
np|) eik·r′

np . (3.8)

We also note that the lattice sum over the Hankel functions may be written in the form

SH
0 (β; k) = −1 + iSY

0 (β; k). (3.9)

The lattice sums SH
0 (β; k), SY

0 (β; k) are only conditionally convergent, and require an appropriate
method of accelerated convergence for numerical computations. We adopt the same triply integrated
expressions originally used by Movchan et al. (37), and more recently by (6). The dispersion relation
for the doubly periodic pinned array is then given by

Ĝ(β; k) = i

8β2

(
SH

0 (β; k) + 1 + 2i

π
SK

0 (β; k)

)
= 0, (3.10)

and has real solutions.
The direct connection between the kernel function for the semi-infinite array of pins and the

dispersion relation for the infinite doubly periodic array enables one to identify frequency regimes
for reflection and transmission of the incoming plane waves. Similarly for the point scatterers featured
in this article, which importantly do not impose zero displacement clamping conditions, the zeros
and singularities of the kernel function give us information about, respectively, transmission and
reflection, but the kernel (3.1) is no longer dependent on Ĝ only.

The singularities of Ĝ still indicate regimes of stop-band behaviour, but there is additional reflection
behaviour determined by�(ω,m, c) becoming very large. This is evident for the simple mass-spring
resonators with N = 1. The kernel is given by (3.1) with (2.30) where� blows up for the frequency
corresponding to the resonance of the individual mass-spring resonators, ω2

r = c/m. We would
therefore expect to see reflection of incident waves forω close to this resonant frequencyωr , and stop
bands in the corresponding dispersion diagrams (arising for zeros of the kernel) for the mass-spring
resonators.

In Figs. 3 and 4 we illustrate reflection (blocking) for various systems. We present results for two
rectangular arrays, the special case of the square array with dx = dy = 1.0, and the rectangle with
aspect ratio ξ = dy/dx = √

2. We demonstrate blocking for the square arrays of both pins and point
masses in Fig. 3(a) and (b) together with their respective dispersion surfaces, and corresponding stop
bands, in Fig. 3(d) and (e). In Fig. 3(g) and (h) we illustrate, respectively, the irreducible Brillouin
zone (IBZ) for the square array of Fig. 3(d) and (e) and the band diagram for the point masses of
Fig. 3(e).

Downloaded from https://academic.oup.com/qjmam/article-abstract/70/3/216/3862064
by University of Liverpool user
on 19 January 2018



[12:51 22/7/2017 hbx005.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 229 215–249

CONTROLLING FLEXURAL WAVES IN SEMI-INFINITE PLATONIC CRYSTALS 229

(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

Fig. 3 Band gap behaviour: real part of the total displacement field for a plane wave incident atψ = π/4 on a
semi-infinite square (dx = dy = 1.0) array of (a) rigid pins for β̃ = 2.35 and (b) point masses with m̃ = 1.0 for
β̃ = 3.02. (c)ψ = 0 for a semi-infinite rectangular (ξ = √

2) array for Winkler-type sprung masses with m̃ = 1.0,
c̃ = 1.9 for β̃ = 0.8. Arrows indicate direction of incident plane wave. Figure (a–c) produced in MATLAB,
using equations (3.4)–(3.6) for N = 2000. All similar field plot figures were produced in the same way, so
henceforth we shall clarify only the choice of N in each case. (d–f) Zeros of the kernel function/dispersion
surfaces for corresponding doubly periodic infinite arrays of, respectively, parts (a–c). (g) Irreducible Brillouin
zone �XM for a square array with dx = dy = 1.0. The corresponding IBZ for the rectangular array is shown
in Fig. 4(d). (h) and (i) Band diagrams for surfaces of, respectively, parts (e) and (f). Complete stop bands are
indicated by the shaded areas

In Fig. 3(c), we show the reflective behaviour of a semi-infinite rectangular array with ξ = √
2 for

Winkler-type sprung masses, and the corresponding dispersion surfaces and curves are illustrated
in Fig. 3(f) and Fig. 3(i). In Fig. 4, we consider the same ξ = √

2 for mass-spring resonators with
N = 1 in part Fig. 4(a) and for the plate with resonators attached to both faces (double-sided plate
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(a) (b)

(c) (d)

Fig. 4 Reflection: real part of the total displacement field for a plane wave incident at ψ = π/4 on a semi-
infinite rectangular (ξ = √

2) array of (a) mass-spring resonators for m̃ = 1.0, c̃ = 1.910, β̃ = 1.1755, N = 2000
and (b) DSP (double-sided plate) for β̃ = 1.10 with m1 = 12, m2 = 108/11, c1 = 400, c2 = 400/3 such that
m̃red = 1.0, c̃red = 1.910, N = 2000. Arrows indicate direction of incident plane wave. (c) First two dispersion
curves for resonators (dashed) and DSP (solid), produced using equation (3.14) for the resonators and similarly
for the DSP case with appropriate substitution of�3. (d) The irreducible Brillouin zone is the rectangle �XMY ,
with � = (0, 0),X = (π, 0),M = (π, π/

√
2), Y = (0, π/

√
2)

or DSP) in part Fig. 4(b). The corresponding band diagrams are shown in Fig. 4(c) along with the
IBZ in Fig. 4(d), the rectangle �XMY , with � = (kx, ky) = (0, 0),X = (π, 0),M = (π, π/

√
2),

Y = (0, π/
√

2). Note that the dispersion surfaces correspond to zeros of the kernel function, so
represent the regime |K| � 1, where the flexural waves propagate through the periodic array, which
we discuss in more detail in the next section.

The dispersion relation for the two-dimensional array of point masses follows from (3.1),
with (2.31): (

mω2

D
Ĝ(β; z) − 1

)
= 0. (3.11)

In terms of dimensionless parameters, this is equivalent to

m̃β̃2 ˜̂G(β̃; z̃) − 1 = 0, (3.12)
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m̃ = m

ρhη2
, c̃ = cη2

D
, β̃ = βη,

˜̂G(β̃; z̃) = β2Ĝ, z̃ = z/η, (3.13)

where we introduce a length scale determined by the periodicity of the system η = min (dx, dy),
which for the sake of simplicity is taken to be dx throughout this article. Note that we also introduce
non-dimensional versions of Green’s functions, which possess the dimension of L2 owing to the
factor 1/β2.

Similarly, the equation for the sprung point masses (case 2, N = 1) is given by

m̃β̃2

⎛
⎝ 1

1 − m̃β̃4

c̃

⎞
⎠ ˜̂G(β̃; z̃) − 1 = 0, (3.14)

where the frequency dependence on the resonators is expressed in terms of dimensionless β̃ rather
than ω. We show the first two dispersion curves for N = 1 (dashed curves) in Fig. 4(c), where we
choose dimensionless mass m̃ = 1.0, and dimensionless stiffness c̃ = 1.910. The complete band gap
is centred around the resonant frequency ωr , see (3.3), or equivalently β̃r = 1.1755 in Fig. 4(c). The
width of the stop band depends on the other parameter settings, which we discuss in more detail in
Appendix A.

We note that this type of stop band, associated with the resonators themselves rather than the
lattice’s geometry, and therefore also known as a locally resonant (LR) band gap in the literature
(16),(43), bears a striking resemblance to the so-called hybridization or Kondo insulator gaps
(44),(45). Here, the locally resonant band gap signifies blockage rather than transmission for low
frequencies, which is dependent upon the addition of the resonators.

Similar dispersion relations for the double-sided plate and the Winkler-type sprung masses
are readily obtained from their respective Wiener–Hopf/kernel equations. We show the first two
dispersion curves for the DSP (solid curves) in Fig. 4(c), comparing the results with mass-spring
resonators positioned on the top surface (dashed). For the double-sided plate, we select values of
m1,m2 and c1, c2 such that the reduced mass is consistent with m̃ = 1.0, c̃ = 1.910. Reduced mass
is the effective inertial mass that appears in the two-body problem of Newtonian mechanics as if it
were a one-body problem. It is defined by

1

mred
= 1

m1
+ 1

m2
, mred ≤ m1,m2, (3.15)

and similarly, reduced (effective) stiffness is defined as

1

cred
= 1

c1
+ 1

c2
, cred ≤ c1, c2. (3.16)

The choices for these parameter values will be explained in section 3.2.1 where it is shown that the
double-sided plate supports dynamic neutrality (perfect transmission). The resulting total band gap
between the first and second surfaces is clearly visible in Fig. 4(c) and the example of reflection for
β̃ = 1.10 and ψ = π/4 shown in Fig. 4(b) is consistent with the location of the stop band. The same
can be said for the examples for the point masses in Fig. 3(b) and Winkler-sprung masses in Fig. 3(c).
The choices of β̃ and ψ illustrated coincide with the total band gaps (denoted by the shaded areas)
observed for 2.94 < β̃ < π , and 0 < β̃ < 0.94, in Fig. 3(e) and (h) and (f) and (i) respectively.
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Fig. 5 Transmission and reflection regimes: plots of (a) real parts and (b) moduli of, respectively, the kernel
function (solid), �(ω,m, c) (dashed) and doubly quasi-periodic Green’s function (dotted) for a semi-infinite
rectangular (ξ = √

2) array of mass-spring resonators for N = 1 with m̃ = 1.0, c̃ = 1.910, ψ = π/4, kx = 0
(branch Y� for corresponding doubly periodic array)

The equations for the kernel and corresponding dispersion relations immediately give us
information about the position of the stop bands. We also plot the kernel for ranges of interest to
determine more information about refection and transmission regimes. For instance, for ψ = π/4,
as in the examples of Fig. 4(a) and (b), we fix kx = 0 (corresponding to the edge Y� of the IBZ
for the corresponding doubly periodic system in Fig. 4(c) and (d)) and plot the real parts (a) and
moduli (b) of the kernel (solid curves) versus β̃ in Fig. 5(a) and (b) for the semi-infinite rectangular
(ξ = √

2) array of mass-spring resonators with m̃ = 1.0, c̃ = 1.910.
The resonant frequency (3.3) corresponding to maximum reflection, β̃r = 1.1755 is clearly

identified by the singularity in Fig. 5(a) and (b). There is an approximate range of β̃ ∈ (1.12, 1.40)
for which reflection/blocking is predicted according to |K| � 1, which is consistent with the width
of the stop band in Fig. 4(c). For sufficiently small |K|, transmission is predicted, which coincides
with solutions to the dispersion relations. A special case of transmission is dynamic neutrality, which
occurs for K = −1. There is evidence in Fig. 5(a) and (b) of an extended neutral regime for the
mass-spring resonators for β̃ ≈ 2.36, when the solid curves in parts Fig. 5(a) and (b) tend to ∓1
respectively. We discuss dynamic neutrality (which one can also think of as perfect transmission) in
more detail in section 3.2.1.

3.2 Waveguide transmission

For sufficiently small values of the kernel |K| � 1, the semi-infinite crystals admit propagation of
incident waves into the periodic array. Owing to the connection with corresponding infinite doubly
periodic systems, this transmission property is predicted for the semi-infinite systems by the Bloch-
Floquet analysis. Therefore, dispersion surfaces and curves (as illustrated in Figs. 3 and 4) give
us information for predicting the propagation of waves into the inhomogeneous half of the plate.
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Besides standard refracted waves, there are various special cases of transmission, including dynamic
neutrality (perfect transmission), interfacial localisation and negative refraction.

We demonstrate the conditions for dynamic neutrality using the expression for the kernel function,
whereas previous examples of the effect given by (12) for the simpler pinned case, relied upon
determining neighbourhoods of Dirac-like points on the accompanying dispersion surfaces. The
resulting field plots yielded approximate neutrality regimes, where the direction of the propagating
waves remained unchanged, but the plane wave was replaced with a total field consisting of regular
regions of constructive and destructive interference of the incident and scattered fields, reminiscent
of the reflected fields in Fig. 3(a) and (b) and 4(a) and (b). The analytic prediction for perfect
transmission demonstrated here is a powerful method to locate a regime of neutrality, the quality of
which is quantified using the condition on the displacement coefficients of equation (2.20), |Ak | = 1.

3.2.1 Dynamic neutrality (perfect transmission). The presence of Dirac-like points for the infinite
system give us some insight for the corresponding semi-infinite arrays, but using the dynamic
neutrality condition associated with the kernel functions enables us to predict these effects more
accurately. Recalling the mass-spring resonators attached to both faces of the plate (DSP), we seek
a condition on the kernel such that K → −1, where

K3 = �3(ω,mq, cq) Ĝ(β; z) − 1, �3 = ω2

D

(
m1c1

c1 − m1ω
2

+ m2c2

c2 − m2ω
2

)
, (3.17)

which leads to the condition

ω2 = c1c2(m1 + m2)

m1m2(c1 + c2)
. (3.18)

We adopt the concept of reduced mass and stiffness, as defined by (3.15), (3.16), obtaining

ω2 =
1

m1
+ 1

m2

1
c1

+ 1
c2

= cred

mred
⇐⇒ mredω

2 − cred = 0. (3.19)

Substituting the condition for neutrality (3.19) into (2.38), we obtain

up = fp + ω2

D

(cred − mredω
2)

�

∞∑
n=0

unGq(β, |p − n|; ky, dx, dy),

where

� = (c1 − m1ω
2)(c2 − m2ω

2)

(c1 + c2)(m1 + m2)
, (3.20)

an equation that is reminiscent of the simple Winkler-type foundation described by Fig. 1(d) and
equation (2.33), owing to the factor (cred − mredω

2) in the numerator. Indeed, for specific choices of
m, c and mred, cred, we expect to observe neutrality in both models for the same normalised frequency
ω that determines zeros of this factor.

We illustrate this surprising correspondence in Fig. 6. Setting m̃ = 1.0, c̃ = 1.910 for the Winkler-
foundation point masses, we assign values to the parameters m1 = 12, m2 = 108/11, c1 = 400,
c2 = 400/3 such that mred = 5.4, cred = 100, which ensures that m̃red = 1.0, c̃red = 1.910, matching
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(a)

(c)

(b)

Fig. 6 Perfect transmission: Real part of the total displacement field for a semi-infinite rectangular array
of point scatterers with, dx = 1.0, dy = √

2, ψ = π/4, β̃ = 1.1755 for (a) double-sided plate with m̃red =
1.0, c̃red = 1.910, N = 2000. (b) Winkler-type sprung point masses with m̃ = 1.0, c̃ = 1.910, N = 2000.
Arrows indicate direction of incident plane wave. (c) Band diagram for Winkler-sprung masses (dashed) and DSP
(solid), produced using (3.1) and (3.7), with the appropriate substitutions of (2.34) and (2.39) for, respectively,
the Winkler-sprung masses and the DSP

the dimensionless parameter settings for the Winkler foundation case. The neutrality value of β̃ =
1.1755 follows from equations (3.19) and (2.3):

mredω
2 − cred = 0, ω = √

cred/mred; β4 = ρhω2/D. (3.21)

We observe virtually perfect transmission (neutrality) for both physical models for ψ = π/4 with
β̃ = 1.1755, which coincides with the intersection of the respective dispersion curves shown in
Fig. 6(c). The first two bands for the Winkler case are shown by the dashed dispersion curves, while
the first two dispersion curves for the double-sided plate are indicated using solid lines. Recall that
this specific choice of β̃ is also important for the case of mass-spring resonators attached to the top
surface of the plate, demonstrating stop-band behaviour in Fig. 4(a). The mω2 − c factor is common
to both models, but the relationship between the two models is reciprocal; where Winkler gives
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(a) (b)

Fig. 7 Perfect transmission: (a) real part of the total displacement field for a semi-infinite rectangular array
(ξ = √

2) of mass-spring resonators for N = 1, ψ = π/4 with m̃ = 1.0, c̃ = 1.910, β̃ = 2.35, N = 2000. (b)
Moduli of coefficients |Ak | for β̃ = 2.35 (solid), 1.50 (dashed), 3.0 (dot-dashed)

perfect transmission at β̃∗ = 1.1755, the mass-spring resonators attached to the top surface, lead to
reflection.

Referring to Fig. 5(a), the plot of the real part of kernel function (solid curve) shows a potential
dynamic neutrality regime for mass-spring resonators with β̃ ≈ 2.36, for which the kernel function
K ≈ −1. For β̃ = 2.35, ψ = π/4, ξ = √

2, we plot the total displacement field in Fig. 7(a).
We observe an excellent example of dynamic neutrality where the incident plane wave appears
undisturbed by the interaction with the point scatterers, retaining both its direction and amplitudes.
The moduli of the coefficients |Ak | are plotted for three values of β̃ in Fig. 7(b). For the perfect
transmission frequency β̃ = 2.35, |Ak | ≈ 1 (solid) satisfying the necessary condition. For both
β̃ = 1.50 (dashed), and β̃ = 3.0 (solid lower curve), the coefficients indicate transmission but not
neutrality.

4. Special cases of transmission — negative refraction and interfacial localisation

In this section, we provide a collection of illustrative examples for designing systems to
harness notable transmissive effects, including negative refraction and interfacial localisation,
for the rectangular lattice with ξ = √

2. For the sake of computational efficiency, we present
the total displacement fields for truncated semi-infinite systems, using the algebraic system of
equations (3.4)–(3.6).

4.1 Negative refraction

Referring to Fig. 4(c), the flat segments for XM , MY for the first two dispersion curves (solid) for the
double-sided plate, and the first dispersion curve for the mass-spring resonators with N = 1 (dashed),
are of interest. These flat sections correspond to isofrequency contours with sharp corners that bring
saddle points on the dispersion surfaces. It is well known from the photonic crystal literature, see,
for example, Joannopoulos et al. (46), that this anisotropy gives rise to a number of interesting
wave effects. Following the method of Zengerle (47), one uses wave-vector diagrams, consisting
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(a) (b)

Fig. 8 Semi-infinite rectangular array (ξ = √
2) of mass-spring resonators on both faces of the plate with

m̃red = 1.0, c̃red = 1.910. (a) Isofrequency contours for the corresponding infinite platonic crystal. (b) Real part
of the total displacement field for ψ = π/4, β̃ = 1.319, N = 50

of isofrequency contours for both the platonic crystal and the ambient medium (the unstructured
part of the plate here), to investigate wave phenomena in planar waveguides. This technique is also
outlined by (46) for photonic crystals in their chapter 10, and was employed recently by (12) for
platonic crystals. The key point is that the predicted direction of propagation for the group velocity
of refracted waves into the platonic crystal is perpendicular to the isofrequency contours, and in
direction of increasing frequency.

The sharp corners joining straight branches of constant β-contours, which are illustrated in
Fig. 8(a), are significant. Small changes in either the angle of incidence, or the frequency, of the
incoming waves, thereby switching from one side of the sharp corner to the other on the isofrequency
diagram, predict a strong modification of the direction of the refractive group velocity.

We illustrate an example of negative refraction for the double-sided plate (DSP) in Fig. 8, where
we select the value of β̃ = 1.319, labelled on the isofrequency contour diagram 8(a). The contours
illustrated in Fig. 8(a) were selected with reference to the β̃ values for the relatively flat, although
slightly increasing, branches of the second band in Fig. 6(c) (solid) that is XM and MY . We
choose the oblique angle of incidence ψ = π/4, which was used to demonstrate the neutrality
condition in Fig. 6, for a semi-infinite array of mass-spring resonators attached to both faces of
a plate. The mass and stiffness parameters are the same as those considered for that previous
example, m̃red = 1.0, c̃red = 1.910, but the change in β̃ produces significantly different propagation
results.

We consider an array of N = 50 gratings positioned parallel to the y-axis, with period dy = √
2

and spacing dx = 1.0 that is ξ = √
2. In the examples of Figs. 3 to 7, we have used N = 2000 for

demonstrating the blocking and dynamic neutrality effects of the semi-infinite crystals. The cases
of reflection (band gaps) and perfect transmission (K = −1) regimes allow for efficient numerical
computations for substantially larger values of N than for effects (such as the negative refraction-
like effect shown in Fig. 8(b)) associated with sharp corners of the isofrequency contours. This
case corresponds to the neighbourhood of a stationary point and for N > 50, advanced numerical
methods, capable of handling singular perturbations, are required. The effect is consistent with the
dynamic response of the periodic resonator structure at frequencies in the neighbourhood of saddle
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points on the corresponding dispersion surfaces, where preferential directions are identified for the
‘hyperbolic’ regime. This can also be interpreted as an example of ‘mirror’ effects, which are often
observed in semi-reflective optical media.

4.2 Interfacial localisation and Dirac bridges

The platonic crystals featured in this article display several Dirac-like points, some of which are
illustrated in Fig. 3(d) to (i) for, respectively, square arrays of pins and point masses, and the
rectangular array of Winkler-type masses. Here in Fig. 9 we consider the rectangular arrays (ξ = √

2)
of pins (Fig. 9(a)) and point masses (Fig. 9(b)). Two Dirac-like points for the latter case are labelled
at X and M (of the IBZ) in Fig. 9(b), and are also indicated by the arrows in the corresponding band
diagram in Fig. 9(c). The triple degeneracy, where the two Dirac-like cones are joined by another
locally flat surface passing through, is clearly evident in Fig. 9(c).

As discussed by (32) for an elastic lattice, Dirac cones are often connected by relatively narrow
flat regions on the dispersion surfaces, which the authors term ‘Dirac bridges’. Dirac bridges possess
resonances where the dispersion surfaces are locally parabolic, and give rise to highly localised
unidirectional wave propagation. In this section, we consider one such regime for the point masses
in the vicinity of a Dirac point at (π/2, 0), β̃ ≈ 4.724, a feature present for both the masses and pins
(labelled by DP in Fig. 9), and the two Dirac-like points highlighted in Fig. 9(b) and (c). However,
we observe additional steeply increasing sections of the third surface in Fig. 9(b) for the case of
point masses, which replace the flat parabolic profile parallel to kx = 0 for the pins for the second
surface in Fig. 9(a).

We investigate a semi-infinite rectangular array of N = 500 gratings of point masses with m̃ = 1.0,
ξ = √

2 for β̃ = 4.60. The third dispersion surface for the corresponding infinite system is shown in
Fig. 10(a) and (b) by, respectively, isofrequency contours and the surface itself. With reference to the
β̃ = 4.60 contour highlighted in bold in Fig. 10(a), the parameter setting ofψ = 0.11 (with associated
Bloch parameter ky = β sinψ = 0.5050 in the infinite y-direction) is selected to support a refracted
wave directed parallel to the ky-axis. The choice of truncation parameter N = 500 is selected for
the sake of computational efficiency, owing to the proximity to the sharp corner of the relevant
isofrequency contour. Since we are considering a finite array of 500 gratings, the information we
obtain from the infinite doubly periodic system is only an approximate guide for the design choices
of ψ and ky for the corresponding finite system.

The designed system displays the interfacial localisation for the point masses in Fig. 10(c); the
preferred direction for the group velocity of the resultant refracted wave is perpendicular to the
isofrequency contour, and in the direction of increasing frequency, that is parallel to the ky-axis
(indicated by an arrow in Fig. 10(a)). In contrast, for a slight increase of ψ , and ky accordingly, the
point of interest would move to the other side of the corner, parallel to the ky-axis. The predicted
direction would then be approximately parallel to the kx-axis, and into the periodic part of the plate.
We note that examples for interfacial localisation are easier to find for point masses rather than
mass-spring resonators, which possess internal resonances at nearby frequencies β̃∗ = (c̃/m̃)1/4.

4.2.1 Eigenmodes and resonances for interfacial waves. The observation of interfacial localisa-
tion, illustrated in Fig. 10, is linked to the analysis of the dispersion surfaces and stationary points of
a certain type. Special attention was given to ‘parabolic’ regimes, that is locally parabolic dispersion
surfaces, which correspond to a unidrectional localisation of waveforms. Here, we offer an alternative
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(a)

(c)

(b)

Fig. 9 Dispersion surfaces for rectangular array of point scatterers with ξ = √
2 for (a) rigid pins (first five

surfaces), (b) point masses, with m̃ = 1.0 (first six surfaces). Dirac-like points labelled at X and M , (c) Band
diagram for point masses, with the Dirac-like points in part (b) indicated by arrows. The Dirac point at (π/2, 0),
β̃ ≈ 4.724 is labelled by DP

viewpoint, based on the analysis of the homogeneous equation

Û− = Û+K, (4.1)

where the external forcing term is absent (compare with (2.18) for the general case). In the ring
of analyticity, the kernel can be written as K = K+K−, and the factorised equation (4.1) takes the
form:

Û−/K− = Û+K+ = const �= 0. (4.2)
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Fig. 10 Semi-infinite rectangular array of point masses with m̃ = 1.0, ξ = √
2. (a) Isofrequency contours

for the third surface. The contour β̃ = 4.60 is highlighted in bold. (b) Third dispersion surface. (c) Real part
of the scattered field for β̃ = 4.60 for ψ = 0.11, k̃y = kydx = 0.5050, N = 500. (d) K− and K+ versus
kxdx ∈ [0, 1.5]

Here, Û+ and Û− represent z−transforms of the displacements on the right and the left half-planes,
respectively, as defined in (2.19–2.20), and the kernel factors for a general � are given by:

K̃+(β̃; z̃) = �̃(β̃, m̃, c̃) ˜̂G+(β̃; z̃); K̃−(β̃; z̃) = ˜̂G−(β̃; z̃) −
[
�̃(β̃, m̃, c̃) ˜̂G+(β̃; z̃)

]−1
. (4.3)

For the case of point masses illustrated in Fig. 10(a) to (c), �̃ = m̃β̃2 in (4.3), and from (4.2) we
seek a solution corresponding to localised interfacial waveforms such that K− vanishes, whilst K+
remains finite. In turn, for this set of parameters the quantity Û− also vanishes, whereas a non-trivial
solution Û+ represents the interfacial waveform within the grating stack, as illustrated in Fig. 10(c).
In Fig. 10(d), we verify that the parameters β̃ = 4.6 and kx ≈ 0.99, ky ≈ 0.5050 obtained from
Fig. 10(a) satisfy these conditions. The real (solid) and absolute (dashed) parts of K̃− and K̃+ are
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plotted, on the same Fig. 10(d), versus kxdx ∈ [0, 1.5] for the vicinity of the estimate for kxdx denoted
by the position of the arrow in Fig. 10(a). For kxdx = 0.99, the former function does indeed have a
local minimum ≈ 0, while the latter function is finite and non-zero for the same kxdx.

5. Concluding remarks

The ability to control flexural wave propagation is important for numerous practical engineering
structures such as bridges, aircraft wings and buildings, many of whose components may be modelled
as structured elastic plates. In this article, we have modelled a collection of platonic crystals,
where a Kirchhoff-Love plate is structured with a semi-infinite array of point scatterers, including
concentrated point masses, mass-spring resonators positioned on either, or both, faces of the plate and
Winkler-sprung masses. We have considered semi-infinite rectangular arrays, defined by periodicities
dx, dy, but the methods are equally applicable for alternative geometries of the platonic crystal such
as triangular or hexagonal lattices.

The introduction of resonators, and their mass and spring stiffness parameters, significantly
broadens the presence, the type and the capacity to tune interesting wave effects, compared with
the simplified pinned plate model (12). Here, we have shown examples of perfect transmission and
negative refraction for various mass-spring resonator configurations at frequencies that would fall
into the zero-frequency stop band imposed by the rigid pins.

A discrete Wiener–Hopf method was employed to determine the scattered and total displacement
fields for a plane wave incident at a specified angle. The characteristic feature of each of the resulting
functional equations is the kernel which, for all of the cases featured here, incorporates a doubly
quasi-periodic Green’s function:

K(z) = �(ω,m, c)Ĝ(β; z) − 1, (5.1)

and a function�(ω,m, c) of frequency, mass and stiffness determined by which of the four featured
systems is being analysed. By identifying and deriving conditions for specific frequency regimes of
the kernel function, we predict and demonstrate various scattering effects. In this article, we have
illustrated examples of reflection, dynamic neutrality or perfect transmission, interfacial localisation
and waveguide transmission. For certain regimes, we have also established a direct connection
between alternative scatterers, including a condition for dynamic neutrality that occurs at the same
frequency, shown in Fig. 6, for a plate with mass-spring resonators attached to both faces of the plate
and Winkler-sprung masses.

The important observation that the semi-infinite system’s kernel function is directly connected
with the dispersion relation for the infinite doubly periodic platonic crystals, means that a thorough
understanding of the Bloch-Floquet analysis provides great insight. Moreover, an understanding of
the kernel function is sufficient to design the system for predicting and illustrating wave effects of
interest, avoiding the necessity for lengthy computations for the evaluation of the explicit Wiener–
Hopf solution. In section 4.2.1, we introduce an alternative approach to predicting interfacial
localisation frequency regimes, based on solving the homogeneous functional equation. This is
an inherently interesting problem in itself, and we illustrate its viability with the example of Fig. 10
obtained using wave-vector diagram analysis.

The numerous wave effects demonstrated here suggest that these semi-infinite platonic crystals
have potential applications in the control and guiding of flexural waves in structures comprising
thin plates. We have presented an overview of an assortment of practically interesting designs for

Downloaded from https://academic.oup.com/qjmam/article-abstract/70/3/216/3862064
by University of Liverpool user
on 19 January 2018



[12:51 22/7/2017 hbx005.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 241 215–249

CONTROLLING FLEXURAL WAVES IN SEMI-INFINITE PLATONIC CRYSTALS 241

semi-infinite platonic metamaterials. Any one of these models could be studied in its own right, with
its parameters tuned to improve the resolution of the perfect transmission and interfacial localisation
illustrated here. These effects are inherited by finite cluster subsets of the semi-infinite model, which
could be used as a basis for the design and manufacture of semi-infinite platonic metamaterials.
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A. Waveguide transmission for semi-infinite line of scatterers

We include a brief discussion about waveguide transmission for the semi-infinite line of scatterers illustrated in
Fig. 2(b).According toWilcox (48), localised waves travelling along a grating, in the absence of an incident wave,
are called Rayleigh-Bloch waves. Evans and Porter (15) presented conditions for the existence of Rayleigh-
Bloch waves along a 1D periodic array of point masses or Winkler-sprung masses in a Kirchhoff-Love plate.
Identifying Rayleigh-Bloch regimes is also interesting for the semi-infinite array problems presented here, since
evidence of the characteristic localisation will be apparent for normally incident plane waves for corresponding
choices of β.

Point masses

For the case of rigid pins, no Rayleigh-Bloch modes exist for real β > 0 but for point masses, there is always
a solution for a Rayleigh-Bloch wave for positive mass m. This is evident from the approximate dispersion
curves for an infinite grating shown in Fig. A1(a), obtained for the case |K1| � 1:

mω2

D
Gq(β; z) − 1 = 0,

and in dimensionless parameters

m̃β̃2G̃q(β̃; k̃x) − 1 = 0, (A.1)

where k̃x = kxdx .
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Fig.A1 (a) Dispersion curves for m̃ = 1.0 (solid upper) and m̃ = 100 (solid lower) for 0 ≤ k̃x ≤ π . The dashed
straight line represents both the solutions for the homogeneous plate, and the singularities of the dispersion
relation for the array of masses. The dashed curve represents the dispersion curve for�X for the doubly periodic
square array with m̃ = 1, dx = dy = 1.0, shown in (b)

Two curves for m̃ = 1.0 and m̃ = 100 are shown in Fig. A1(a), along with the first two bands for the infinite
square array of point masses with m̃ = 1.0 and dx = dy = 1.0 in Fig.A1(b), recalling that the dispersion equation
and surfaces for this case were given in equation (3.11) and Fig. 3(e) and (h). The similarity between the curves
in Fig. A1(a) for the line of masses, and the �X branch (that is with ky = 0) for the 2D system is striking; in
both cases, we see linear-like dispersion for β̃ close to the origin, with the group velocity approaching zero as
k̃x → π . For direct comparison, we include precisely the �X branch of the first band from Fig. A1(b) as the
dashed curve in Fig. A1(a).

The presence of the acoustic mode at low frequencies contrasts with that of rigid pins. As Poulton et al.
(14) commented, as the dimensionless mass m̃ → ∞, this acoustic band becomes flatter and flatter (compare
m̃ = 1.0 with m̃ = 100 in Fig. A1(a)), finally collapsing into the axis β̃ = 0 in the limit, thereby recovering the
case of rigid pins. One other interesting feature of Fig. A1(b), and Fig. 3(e) and (h), is that the XM branch of the
second band coincides with the dispersion curve for the homogeneous plate regardless of the value of m̃. This
indicates that the propagation of the flexural waves in the mass-loaded plate is unaffected by the loading in this
direction, which is consistent with the dynamic neutrality regime we observe in the vicinity of the Dirac-like
point at M in Fig. 3(e). This was first pointed out by McPhedran et al. (1) who observed that the second band is
‘sandwiched’ between two planes of the dispersion surfaces for the homogeneous plate, where the lattice sum
SY

0 (3.9) diverges.
The waveguide transmission regime predicted by zeros of the kernel is demonstrated for the semi-infinite

line of scatterers in the form of Rayleigh-Bloch-like standing waves. This is illustrated in Fig. A2(a) and (b),
where we plot the real part of the total displacement field for a plane wave normally incident on a truncated
semi-infinite grating of 1000 point scatterers with β̃ = 2.0, comparing (a) point masses of m̃ = 1.0 with (b)
rigid pins. As we expect from the dispersion information, the masses support a Rayleigh-Bloch-like wave,
while the pins exhibit blockage. To reduce the leakage of this mode away from the masses in a perpendicular
direction, one selects a higher frequency corresponding to the dispersion curve in Fig. A1(a) becoming flatter,
as illustrated for β̃ = 2.5 in Fig. A2(c).
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Fig. A2 A plane wave is normally incident on an array of 1000 point scatterers with spacing dx = 1.0. Real
part of the total displacement field for β̃ = 2.0 for (a) point masses with m̃ = 1.0, (b) rigid pins, and (c) for
β̃ = 2.5 and point masses with m̃ = 1.0

Fig. A3 (a) Dispersion curves for an infinite line of mass-spring resonators with m̃ = 1.0 for two values
of dimensionless stiffness c̃ = 1.910, 9.5 and the limit case c̃ = ∞. Asymptotes β̃ = β̃∗ and β̃ = k̃x are
dashed straight lines. (b) Band diagram for square array of sprung point masses with m̃ = 1.0, c̃ = 1.910 with
irreducible Brillouin zone a triangle �XM , dx = dy = 1.0

Mass-spring resonators with N = 1

The dispersion relation for the semi-infinite line of mass-spring resonators, as for the analogous half-plane, is
|K| � 1:

m̃β̃2

⎛
⎝ 1

1 − m̃β̃4

c̃

⎞
⎠ G̃q(β̃; k̃x) − 1 = 0. (A.2)

As expected, the introduction of springs brings new features to the dispersion picture for the waveguide
transmission regime. The dispersion diagrams for, respectively, a line and doubly periodic square array are
shown in Fig. A3(a) and (b). The crucial difference is the term in the denominator in (A.2), which contributes
singularities for m̃β̃4/c̃ = 1. Physically, these solutions β̃∗ coincide with resonances arising for each mass-
spring resonator, and result in branching of the dispersion curves, for both the 1d-case in Fig. A3(a), and the
doubly periodic arrays with, respectively, ξ = 1.0 in Fig. A3(b), and ξ = √

2 in Fig. 4(c).
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Fig. A4 Real part of total displacement field for a plane wave normally incident on a line array of 1000 point
sprung masses with m̃ = 1.0, c̃ = 1.910, and spacing dx = 1.0 for (a) β̃ = 0.5, (b) β̃ = 1.0, (c) β̃ = 1.20 (d)
β̃ = 1.80

For a fixed dimensionless mass m̃ = 1.0, we consider dimensionless stiffness c̃ = 1.910 and 9.5, labelled
in Fig. A3(a), which correspond to, respectively, stiffnesses c = 100, 500. We also show the limiting case,
as c → ∞, of point masses for the same m̃ = 1.0. To the right of the straight (dashed) line β̃ = k̃x , the
dispersion curves for the mass-spring resonators resemble the analogous curve for the unsprung point masses.
However, these curves veer away from the asymptote β̃ = k̃x for comparatively lower values of β̃, tending
towards the horizontal asymptote β̃ = β̃∗, which separates the two branches of the dispersion curve for a
fixed c̃/m̃.

The contribution from the grating Green’s function G̃q(β̃; k̃x) also brings singularities associated with the
‘light line’ β̃ = k̃x , meaning that two intersecting asymptotes are associated with each dispersion curve. The
notion of ‘light surfaces’and ‘light lines’ is well known in the modelling of Bloch-Floquet waves. Originating in
electromagnetism, light lines identify frequencies for which light propagates in the surrounding homogeneous
medium (usually air), and are now well used in problems of acoustics and elasticity for the unstructured parts
of the systems in those physical settings. The branch to the left of β̃ = k̃x contributes a second set of solutions
for small k̃x , which also appear to tend very slowly towards the asymptote β̃ = β̃∗ from above, before hitting,
and then following the ‘light line’ β̃ = k̃x . This behaviour for the line of scatterers is consistent with the �X
branches of the first two bands of the doubly periodic system, illustrated in Fig. A3(b). This dispersive property
of the mass-spring resonator systems suggests that the semi-infinite array of sprung masses supports a neutrality
effect for normally incident (ky = 0) plane waves for β̃ > β̃∗.
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Fig. A5 Stop-band width control: (a) dispersion curves for a line of point sprung masses for c̃/m̃ = 1.910
with three pairs of dimensionless mass and stiffness: m̃ = 1.0, c̃ = 1.910 (solid curve); m̃ = 0.25, c̃ = 0.477
(inner dashed curve); m̃ = 2.0, c̃ = 3.819 (outer dashed curve). Asymptotes denoted by solid straight lines.
Real part of total displacement fields for β̃ = 1.25, ψ = 0 for (b) m̃ = 0.25, c̃ = 0.477, (c) m̃ = 2.0, c̃ = 3.819

In Fig. A4, we consider the evolution of the total displacement fields for a semi-infinite line as the frequency
parameter β is increased, while keeping ψ = 0, m̃ = 1.0, c̃ = 1.910 constant. For β̃ = 0.5, we observe a long
wavelength and a slight phase delay near the location of the point scatterers; compare the edge and centre of
the wavefronts in Fig. A4(a). This difference becomes more pronounced in Fig. A4(b) for β̃ = 1.0. Referring
to the relevant dispersion curve in Fig. A3(a), the sprung masses’ curve is slightly further away from the ‘light
line’ for β̃ = 1.0 than for β̃ = 0.5.

The increase of β̃ to 1.20 takes us into the stop band clearly identified in the dispersion diagram. This is
illustrated by the displacement field for the resonators in Fig. A4(c), where the point scatterers appear to block
the propagation of the normally incident waves. As β̃ is increased to 1.35, we observe strong localization along
the grating for normal incidence, and the corresponding dispersion curve now appears to travel along β̃ = k̃x in
Fig. A3(a); we observe an increase in the moduli of the scattering coefficients, and the phase difference between
the centre and edge of the wavefronts is the opposite way round to the case of frequencies below the stop
band.

For larger values of β̃, we see transmission consistent with coincidence of the dispersion curve and the
straight line β̃ = k̃x . This is indicated in Fig. A4(d) for β̃ = 1.80, where the phase difference has switched,
such that the centre of the wavefront is slightly ahead of the edge; for β̃ = 2.4 the phase difference disappears
entirely as perfect transmission of the plane wave is attained, similar to the example for β̃ = 2.35, ψ = π/4
for the half-plane of mass-spring resonators shown in Fig. 7(a).

The location of the stop band is determined by the zeros of m̃β̃4/c̃ − 1, with the branches sandwiching
the resulting asymptote β̃ = β̃∗. Thus, the ratio c̃/m̃ tells us where the stop band occurs, but because of the
additional factor m̃ in equation (A.2), the width of the band can be altered by varying m̃ and c̃ such that their ratio
remains constant. This is illustrated in Fig. A5(a), where we plot the dispersion curves (dashed) for c̃ = 3.819
(c = 200), m̃ = 2 and c̃ = 0.477 (c = 25), m̃ = 0.25 along with the case c̃/m̃ = 1.910 (solid) from Fig. A3(a).
For increased m̃ and c̃, the band gap is widened, with the opposite result for simultaneous reduction of m̃, c̃,
while maintaining the constant c̃/m̃ = 1.910.

The facility to control the width of the band gap is useful in filtering applications for arrays of mass-spring
resonators; for a specified c̃/m̃, we can design systems that filter β̃ values simply by redistributing the masses
and stiffnesses of the resonators, as illustrated in Fig. A5 (b) and (c). For c̃/m̃ = 1.910 and β̃ = 1.25, the system
with m̃ = 2.0, c̃ = 3.819 blocks normally incident waves in Fig. A5(c), but allows them to pass for m̃ = 0.25,
c̃ = 0.477 in Fig. A5(b). Similar observations about controlling the width of the stop band were made by (16)
for the doubly periodic square array of mass-spring resonators.
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