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originated it.
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Abstract

This article argues that the traditional model of the theory of social
choice is not a good model and does not lead to acceptable methods of
ranking and electing. It presents a more meaningful and realistic model
that leads naturally to a method of ranking and electing—majority judg-

ment—that better meets the traditional criteria of what constitutes a
good method. It gives descriptions of its successful use in several dif-
ferent practical situations and compares it with other methods including
Condorcet’s, Borda’s, first-past-the-post, and approval voting.
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1 Why?

George Dantzig’s limpid, opening phrase of the Preface of his classic work on
linear programming and extensions [20] is worth repeating over and over again,
for it is far too often forgotten. By his final test, the theory of voting has failed.
Despite insightful concepts, fascinating analyses, and surprising theorems, its
most famous results are for the most part negative: paradoxes leading to im-
possibility and incompatibility theorems. We argue that the theory has yielded
no really decent methods for practical use and that this is due, in essence, to
how voting has been viewed.

Since 1299 (and perhaps before) voting has been modeled in terms of com-
paring the relative merits of candidates. In this conception voters are assumed
to rank-order the candidates (the inputs) and the problem is to amalgamate
these so-called preferences into the rank-order of society (the output).

If, instead, voters evaluate the merit of each candidate in a well-defined
ordinal scale (the inputs) and majorities determine society’s evaluation of each
candidate and thereby its rank-ordering of all (the outputs), then, we claim, the
most important paradoxes of the traditional theory of voting are overcome.
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Viewed through one lens this change of paradigm is small: a vote on the
candidates themselves is replaced by votes on the final grade to be given each
candidate. Viewed through another lens the change looms large: the basic
meaning of “majority” is interpreted and practiced differently bringing with it
very important theoretical and practical consequences. Significantly, by asking
more of voters—permitting much more accurate expressions of their opinions—
it places greater confidence in them.

1.1 Why Don’t Vote! in Theory

Rank-order inputs lead to two unsurmountable paradoxes that plague practice,
and so theory. (1) Condorcet’s paradox : In the presence of at least three can-
didates, A, B, and C, it is entirely possible that in head-to-head encounters, A
defeats B, B defeats C, and C defeats A, so transitivity fails and a Condorcet-
cycle is produced, A ≻S B ≻S C ≻S A where X ≻S Y means society prefers
X to Y . (2) Arrow’s paradox : In the presence of at least three candidates, it is
possible for A to win, yet with the same voting opinions B defeats A when C

withdraws.
These paradoxes are real. They occur in practice. Condorcet’s paradox was

observed in a Danish election [36]. It has occurred in skating (see anon). It
also occurred in the famous 1976 “Judgment of Paris” where eleven voters—
well known wine experts—evaluated six Cabernet-Sauvignons of California and
four of Bordeaux, and the “unthinkable” is supposed to have occurred: in the
phrase of Time magazine “California defeated all Gaul.” In fact, by Condorcet’s
majority principle, five wines—including three of the four French wines—all
preferred to the other five wines by a majority, were in a Condorcet-cycle, A ≈S

B ≻S C ≈S D ≻S E ≻S A, where X ≈S Y means society or the jury considers
X and Y to be tied (see [8] section 7.8, [6]). Moreover, after having seen it
happen in practice Charles Dodgson observed in 1876 that voting strategically
rather than honestly to optimize the outcome is likely to provoke Condorcet-
cycles [24] (confirmed by experiments, see [8] section 19.2).

Arrow’s paradox is seen frequently. Had Ralph Nader not been a candidate
for the presidency in the 2000 election in Florida, it seems clear that most of his
97,488 votes would have gone to Albert Gore who had 537 votes less than George
W. Bush, thus making Gore the winner in Florida and so the national winner
with 291 Electoral College votes to Bush’s 246. Bill Clinton was the winner
with 43% of the popular vote in 1992, George Bush and Ross Perot together
polling 56%: the evidence suggests Bush would have won pitted against Clinton
alone. And the same may be argued for the election of 1912: Woodrow Wilson
would most likely have lost against either Thodore Roosevelt or Williams Taft
alone (who together had over 50% of the votes).

Arrow’s paradox is also seen in judging. According to the rules that were
used for years in amalgamating judges’ opinions of figure skating performances—
where their inputs were rank-orders of skaters—it often happened that the rela-
tive position of two skaters could invert, or “flip-flop,” solely because of another
skater’s performance (see anon for concrete evidence). And the same has oc-
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curred in ranking wines: the “winner” among the set of all ten wines of a
competition is not the winner among subsets of them [6].

Behind these paradoxes lurk a host of impossibilities inherent to the tradi-
tional model. A brief account is given of several of them. The model is this.
Each voter’s input is a rank-order of the candidates. Their collective input is so-
ciety’s preference-profile Φ. The output, society’s rank-order of the candidates,
is determined by a rule of voting F that depends on Φ. It must satisfy certain
basic demands. (1) Unlimited domain: Voters may input whatever rank-orders
they wish. (2) Unanimity: When every voter inputs the same rank-order then
society’s rank-order must be that rank-order. (3) Independence of irrelevant
alternatives (IIA)1: Suppose that society’s rank-order over all candidates C is
F (ΦC) and that over a subset of the candidates, C′ ⊂ C, it is F (ΦC′

). Then
the rank-order obtained from F (ΦC) by dropping all candidates not in C′ must
be F (ΦC′

). (4) Non-dictatorial: No one voter’s input can always determine
society’s rank-order whatever the rank-orders of the others.

Arrow’s Impossibility Theorem [1] There is no rule of voting that satisfies
the properties (1) to (4) (when there are at least three candidates).

Arrow’s theorem explicitly ignores the possibility that voters have strategies.
It assumes voters’ “true” opinions may be expressed as rank-orders and that
they are their inputs, not some other inputs chosen strategically to maximize
the outcome they wish. A rule of voting is strategy-proof or incentive compat-
ible when every voter’s best strategy is to announce his true preference-order;
otherwise, the rule is manipulable. Strategy-proof or incentive compatible rules
are desirable for then the true preferences of the voters are amalgamated into a
decision of society rather than some other set of strategically chosen preferences.
Regrettably they do not exist.

However, the very formulation of the theorem that proves they do not ex-
ist underlines a defect in the traditional model. In general, the output of a
rule of voting is society’s rank-order. Voters usually “prefer” one rank-order
to another, viz., the rank-order of the candidates is important to a voter, the
rank-order of figure skaters in Olympic competitions is important to skaters,
judges and the public at large. But voters and judges have no way of express-
ing their preferences over rank-orders. In the spirit of the traditional approach
they should be asked for their rank-orders of the rank-orders (for a more de-
tailed discussion of this point see [8], sections 4.6 and 9.4). Be that as it may,
when strategic choices are introduced in the context of the traditional approach
something must be assumed about the preferences of the voters to be able to
analyze their behavior. It is standard to assume that voters only care about
who wins, i.e., voters’ utility functions depend only on who is elected. This is
certainly not true for judges of competitions. This is also false for many voters2:
why, otherwise, did so many US voters opt for Ralph Nader in the presidential
election of 2000 in the knowledge that he could never be the winner, or why do

1IIA has several different formulations that lead to the same conclusion (see [8], section
3.2). This is not Arrow’s original definition.

2See [8], section 20.7.
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so many voters opt for minor candidates in all of France’s presidential elections
knowing they can never win? Voters vote because they wish to send messages
that express their opinions.

Each voter’s input is now a rank-order that is chosen strategically, so it may
or may not correspond to her true “preferences.” A rule of voting is assumed
to produce a winner only, and unanimous means that when all the voters place
a candidate first on their lists then so does the rule.

Gibbard and Satterthwaite’s Impossibility Theorem [30, 45] There is
no rule of voting that is unanimous, non-dictatorial and strategy-proof for all
possible preference-profiles (when there are at least three candidates).

In analyzing carefully a proposal of Condorcet, Young noticed that there
was a conflict between on one hand, a winner, and on the other hand, the first
in an order-of-finish [52]. A third result shows that this conflict is inescapable
in the context of the traditional approach. To explain it an additional concept
must be invoked. When there are n candidates Ai (i = 1, . . . , n), a set of kn
voters of a preference-profile having the preferences

k : A1 ≻ A2 ≻ · · · ≻ An−1 ≻ An

k : A2 ≻ A3 ≻ · · · ≻ An ≻ A1

...
...

...
...

...
...

...
...

...
...

k : An ≻ A1 ≻ · · · ≻ An−2 ≻ An−1

(the first line meaning, for example, that k voters have the preference A1 ≻
A2 ≻ · · · ≻ An−1 ≻ An) is called a Condorcet-component. Each candidate
appears in each place of the order k times. Given a preference-profile that is a
Condorcet-component every candidate has the same claim to the first, the last
or any other place in the order-of-finish: there is a vast tie among all candidates
for every place.

The model is now this. Voters input rank-orders, a rule amalgamates them
into society’s rank-order. The first-place candidate is the winner, the last-place
candidate is the loser. The rule must enjoy three properties. (1) Winner-loser
unanimous: Whenever all voters rank a candidate first (respectively, last) he
must be the winner (the loser). (2) Choice-compatible: Whenever all voters rank
a candidate first (respectively, last) and a Condorcet-component is added to the
profile, that candidate must be the winner (the loser). (3) Rank-compatible:
Whenever a loser is removed from the set of candidates, the new ranking of the
remaining candidates must be the same as their original ranking (a weak IIA).

Winner/Ranking Incompatibility Theorem [4, 8] There is no rule of voting
that is winner-loser unanimous, choice- and rank-compatible (when there are at
least three candidates).

This theorem shows that there is an inherent incompatibility between winners or
losers and orders-of-finish. Imagine the following situation: All but one figure
skater, Miss LS, have performed, and Miss FS is in first-place among them.
Then Miss LS performs. Result: she finishes last but Miss FS is no longer
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in first-place. Rank-compatibility is violated, but a method that guarantees it
is satisfied implies one of the other two properties may not be met, which is
unthinkable.

There is still another fundamental difficulty with the traditional model.
Clearly, if a voter has a change of opinion and decides to move some candidate
up in her ranking that candidate should not as a consequence end up lower in
the final ranking: that is, the method of voting should be “choice-monotone.”
Monotonicity is essential to any practically acceptable method: how can one
accept the idea that when a candidate rises in the inputs he falls in the out-
put? But there are various ways of formulating the underlying idea. Another is
“rank-monotone”: if one or several voters move the winner up in their inputs,
not only should he remain winner but the final ranking among the others should
not change.

Monotonic Incompatibility Theorem [3]: There is no unanimous, impartial
rule of voting that is both choice- and rank-monotone.3

Moreover, when some non-winner falls in the inputs of one or more voters no
method of the traditional model can guarantee that the winner remains the
winner (none is “strongly monotone” [41]). Why all of this happens is simple:
moving some candidate up necessarily moves some candidate(s) down, though
there may be no change of opinion regarding them.

In short, these four theorems show, we believe, that there can be no good
method of voting.

But OR is not only theorems and algorithms. It is also formulating adequate
models. To begin, a problem must be understood as best as can be. Next,
a model must be formulated that attempts to capture the essentials of the
real situation. It must then be challenged by the gritty details of the real
problem. Only then is it worthwhile to develop and explore the mathematical
properties of the model. But this, in turn, can—invariably, will—lead to new
understandings of the problem, to refinements and reformulations of the model,
and so eventually to new probing conclusions. Indeed, OR that seeks to solve
real problems consists of a sequence of repetitions of this process.

What is amazing about the theory of social choice is that the basic model
has not changed over seven centuries. Comparing candidates has steadfastly
remained the paradigm of voting. And yet, both common sense and practice
show that voters and judges do not formulate their opinions as rank-orders.
Rank-orders are grossly insufficient expressions of opinion, because a candidate
who is second (or in any other place) of an input may be held in high esteem
by one voter but in very low esteem by another.

Moreover, rank-ordering competitors is difficult to do. There is ample evi-
dence for this. With the old rules for judging figure skaters, the inputs of judges
were rank-orders of the performers, but the judges were not asked to submit
rank-orders, for that is much too difficult. Instead, they were asked to give
number grades, and their number grades were used to deduce their rank-orders.

3“Impartial” means candidates and voters are treated equally.
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Indeed, this is the routine in schools and universities where students’ grades are
used to determine their standings. In the last three presidential elections held
in France, there were respectively sixteen, twelve and ten candidates. Voters
certainly did not rank-order the candidates. Instead, they rejected most, and
chose one among several whom they held in some degree of esteem (possibly
high, often rather low, though it was impossible for them to express such senti-
ments). A voting experiment carried out in parallel with the 2007 presidential
election showed that fully one-third of the voters did not have a single preferred
candidate and that the merits of candidates ranked highest in a voter’s input,
or ranked second highest in his input, etc., were seen to be quite different [8, 5].
Is it at all reasonable, then, to count the highest ranked (or the second highest
ranked, etc.) candidate of two voters in the same way?

Thus the traditional approach to voting fails for two separate reasons.

• The model’s inputs are inadequate.

• The model’s implications exclude a satisfactory procedure.

The goal of this paper is to give a brief account of a new paradigm and model
for a theory of social choice that (1) enables judges and voters to express their
opinions naturally and much more accurately than rank-orders; and (2) escapes
the traditional impossibilities just discussed. For a complete presentation of the
theory, a detailed justification of its basic paradigm, and descriptions of its uses
to date and of experiments that have been conducted to test it, see [8].

1.2 Why Don’t Vote! in Practice

Everything is ranked all of the time: architectural projects, beauty queens,
cities, dogs, economists, figure skaters, graduates, hotels, investments, jour-
nals, kung fu fighters, light heavyweight boxers, musicians, novelists, operations
research analysts, . . . , and zoologists, not only candidates for offices. How?
Usually by evaluating them in a common language of grades. That it is natu-
ral to do so is evident since it is so often done—and shows the reason why a
theory is needed to determine how the grades should be amalgamated. In most
real competitions (other than elections) the order-of-finish of competitors is a
function of number-grades attributed by judges. Usually the functions used to
amalgamate judges’ grades are their sums, or equivalently, their averages. But
this is not nor was always so—and it need not be so. The recent changes in the
rules used in figure skating offer a particularly interesting case study.

Condorcet’s and Arrow’s Paradoxes

Although there already had been occurrences of Arrow’s paradox in the past,
including the 1995 woman’s World Championship, what happened in the 1997
men’s figure skating European Championships was the extra drop that caused
a flood. Before A. Vlascenko’s performance, the rule’s top finishers were A.
Urmanov first, V. Zagorodniuk second, and P. Candeloro third. Then Vlascenko
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performed. The final order-of-finish placed him sixth, confirmed Urmanov’s
first, but put Candeloro in second place and Zagorodniuk in third. The outcry
over this flip-flop was so strident that the President of the International Skating
Union (ISU) finally admitted something must be wrong with the rule in use
and promised it would be fixed. Accordingly, the rules were changed. The ISU
adopted the OBO rule (“one-by-one”) in 1998. It is explained via a real problem
that dramatically shows the many difficulties that may be encountered with the
traditional approach (for us this example is as important as a theorem).

Name J1 J2 J3 J4 J5 J6 J7 J8 J9 Avg.
T. Eldredge 11.3 11.6 11.3 11.4 11.4 11.7 11.4 11.2 11.5 11.42
C. Li 10.8 11.2+ 11.0 10.9 10.6 11.0 10.8 10.9 11.2 10.93
M. Savoie 11.1 10.8+ 11.1 10.8+ 10.5 10.8 10.6 10.5 11.1 10.81
T. Honda 10.3 11.2 10.9 11.0 10.8 10.9+ 10.4 10.3 10.7 10.72
M. Weiss 10.6 11.1 10.6 10.8 10.4 10.9 10.9 10.4 10.9 10.73
Y. Tamura 09.8 10.8 10.1 10.4 11.0 11.6 10.7 10.6 10.8 10.64

Table 1. Scores of competitors given by nine judges (performance plus
technical marks).

The Four Continents Figure Skating Championships are annual competitions
with skaters from all the continents save Europe (whence the “Four”). In 2001
they were held in Salt Lake City, Utah. The example discussed comes from the
Men’s “Short Program.” There were twenty-two competitors and nine judges.
The analysis is confined to the six leading finishers. It happens that doing
so gives exactly the same order-of-finish among the six as is obtained with all
twenty-two competitors (it ain’t necessarily so!). Every judge assigns to every
competitor two grades, each ranging between 0 and 6, one “presentation mark”
and one “technical mark.” Their sums determine each judge’s input. The data
concerning the six skaters is given in table 1.

Contrary to public belief the sum or the average of the scores given a skater
did not determine a skater’s standing. They were only used as a device to
determine each judge’s rank-order of the competitors.

Name J1 J2 J3 J4 J5 J6 J7 J8 J9

T. Eldredge 1 1 1 1 1 1 1 1 1
C. Li 3 2 3 3 4 3 3 2 2
M. Savoie 2 5 2 4 5 6 5 4 3
T. Honda 5 3 4 2 3 4 6 6 6
M. Weiss 4 4 5 5 6 5 2 5 4
Y. Tamura 6 6 6 6 2 2 4 3 5

Table 2. Judges’ inputs (indicating rank-orders of the six competitors).

When two sums are the same but the presentation mark of one competitor
is higher than the other’s then that competitor is taken to lead the other in
the judge’s input. This ISU rule breaks all ties in the example; when a tie
occurs a“+” is adjoined next to the number (in table 1) that indicates a higher
presentation mark, so indicates higher in the ranking. The judges’ rank-orders
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of the competitors—their inputs to the OBO rule—are given in table 2. Thus,
for example, judge J1 ranked Eldredge first, Savoie second, . . . , and Tamura
last.

To here, the new rule is identical to the old one (for details see [8]). The inno-
vation was in how the judges’ inputs are amalgamated into a decision. The OBO
system combines two of the oldest and best known voting rules, Llull’s—a gen-
eralization of Condorcet’s known by some as Copeland’s [19]—and Cusanus’s—
best known as Borda’s method. To use what we will call Llull’s and Borda’s
rules, table 3 gives the numbers of judges that prefer one competitor to another
for all pairs of competitors. Thus, for example, Savoie is ranked higher than
Weiss by six judges, so ranked lower by three.

Condorcet was for declaring one competitor ahead of another if a majority
of judges preferred him to the other. But, of course, his paradox may arise. It
does in this example,

Honda ≻S Weiss ≻S Tamura ≻S Honda.

A more general rule than Condorcet’s was proposed in 1299 by Ramon Llull
[31]. Llull’s method : rank the competitors according to their numbers of wins
plus ties.4 It is a more general rule because a Condorcet-winner is necessarily
a Llull-winner. Eldredge is the Condorcet- and Llull-winner, and Llull’s rule
yields the ranking

Eldredge ≻S Li ≻S Savoie ≻S Honda ≈S Weiss ≈S Tamura.

The first three places are clear, but there is a tie for the next three places.
Eldredge is the Condorcet-winner because he is ranked higher by a majority of
judges in all pair-by-pair comparisons. There is no Condorcet-loser because no
skater is ranked lower by a majority in all pair-by-pair comparisons.

Number Borda
Eldredge Li Savoie Honda Weiss Tamura of wins score

Eldredge – 9 9 9 9 9 5 45
Li 0 – 7 7 8 7 4 29
Savoie 0 2 – 5 6 5 3 18
Honda 0 2 4 – 5 4 1 15
Weiss 0 1 3 4 – 6 1 14
Tamura 0 2 4 5 3 – 1 14

Table 3. Judges’ majority votes in all head-to-head comparisons.

Cusanus (in 1433 [32]) and later Borda (in 1770, published in 1784 [13]) had
an entirely different idea. Borda’s method (it is so well-known under this name
that we use it too): a competitor C receives k Borda-points if k competitors
are below C in a judge’s rank-order; C’s Borda-score is the sum of his Borda-
points over all judges; and the Borda-ranking is determined by the competitors’

4Llull clearly states this rule. Copeland’s rule is usually interpreted as giving 1

2
for a tie,

see e.g. [44].
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Borda-scores. Alternatively, a competitor’s Borda-score is the sum of the votes
he receives in all pair by pair votes. Thus the Borda-scores in table 3 are simply
the sums of votes in the rows, and the Borda-ranking of the six candidates is

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

Borda’s method, however, often denies first place to a Condorcet-winner or last
place to a Condorcet-loser, and that has caused many to be bewitched, bothered
and bewildered (though Borda’s method suffers from much worse defects as will
soon become apparent).

There is an essential difference in the two approaches. Whereas Llull and
Condorcet rely on each candidate’s total number of wins against all other can-
didates in head-to-head confrontations, Cusanus and Borda rely on each candi-
date’s total number of votes against all other candidates in head-to-head con-
frontations.

The OBO rule used in skating is this:

• Rank the competitors by their number of wins (thereby giving precedence
to the Llull and Condorcet idea);

• break any ties by using Borda’s rule.

In this case Borda’s rule yields a refinement of Llull’s, so the OBO rule ranks
the six skaters as does Borda,

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

This was the official order-of-finish. The OBO rule is also known as Dasgupta-
Maskin’s method [22, 21]. They proposed it with elaborate theoretical argu-
ments, calling it “the fairest vote of all,” though it had been tried and discarded
in skating.

The OBO rule produces a linear order, so is not subject to Condorcet’s
paradox, but it is (unavoidably) subject to Arrow’s paradox, in this example
viciously. For suppose that the order of the performances had been first Honda,
then Weiss, Tamura, Savoie, Li and Eldredge. After each performance, the
results are announced. Among the first three the judges’ inputs are

Name J1 J2 J3 J4 J5 J6 J7 J8 J9
Honda 2 1 1 1 2 2 3 3 3
Weiss 1 2 2 2 3 3 1 2 1
Tamura 3 3 3 3 1 1 2 1 2

This yields the majority votes, numbers of wins and Borda-scores:

Number Borda-
Honda Weiss Tamura of wins score

Honda – 5 4 1 9
Weiss 4 – 6 1 10
Tamura 5 3 – 1 8
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so the result
Weiss ≻S Honda ≻S Tamura

(note that majority voting yields a Condorcet-cycle, Honda≻S Weiss≻S Tamura
≻S Honda.)

For the first four skaters the judges’ inputs are

Name J1 J2 J3 J4 J5 J6 J7 J8 J9
M. Savoie 1 3 1 2 3 4 3 2 1
T. Honda 3 1 2 1 2 2 4 4 4
M. Weiss 2 2 3 3 4 3 1 3 2
Y. Tamura 4 4 4 4 1 1 2 1 3

yielding

Number Borda-
Savoie Honda Weiss Tamura of wins score

Savoie – 5 6 5 3 16
Honda 4 – 5 4 1 13
Weiss 3 4 – 6 1 13
Tamura 4 5 3 – 1 12

so the result
Savoie ≻S Weiss ≈S Honda ≻S Tamura.

Before Savoie’s performance Weiss led Honda; afterward they were tied.
Compare this with the final standings among all six skaters after the perfor-

mances of Eldredge and Li (already computed):

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

The last three did not perform, and yet Honda—who had once been tied with
Weiss and once behind him—is now ahead of him, and Weiss—who had been
ahead of Tamura—is now tied with him.

The ISU had discarded its old Ordinal rule—used for many years—in 1998.
It prescribed a competitor’s median place in the standings as his final place in
the standings (an idea first advanced by Galton [29]), giving the result (where
the median place is in parentheses following the names of each skater)

Eldredge(1) ≻S Li(3) ≻S Savoie(4) ≈S Honda(4) ≻S Weiss(5) ≈S Tamura(5).

Recent social choice literature first proposed the median as a rule for the tradi-
tional model only after it had been discarded by the ISU [9] (without, it seems,
realizing that Galton had done so earlier). They advanced the median because
of its statistical robustness. However, they made no provisions for ties, and no
rule when the number of judges is even. The ISU resolved ties by the size of
the majority in favor of at least the competitor’s final place, which in this case
puts Weiss (with 7) ahead of Tamura (with 5) but leaves Savoie and Honda
tied (at 5). The ISU resolved further ties by summing up the numbers that
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corresponded to the candidates’ final place or better5, which in this case puts
Savoie (with 15) ahead of Weiss (with 16), and gives the result

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≻S Tamura.

Note however that—as with the OBO rule—flip-flops can occur, and do: the
Ordinal rule gives the order Weiss ≻S Honda ≻S Tamura among the three
alone. Indeed, in the women’s World Championships of 1995 the fourth place
finisher performed after the three who finished ahead of her, but her performance
changed the silver and bronze medals.

This chaotic behavior of repeated flip-flops is completely unacceptable to
spectators, competitors, and of course common sense. It is no isolated phe-
nomenon. Similar chaotic behavior occurs in the famous 1976 Paris wine tasting
[6]. It is inherent to the old Ordinal rule, the OBO, Borda and other methods
as well.

Strategic Manipulation

The OBO rule was abandoned by the ISU following the big scandal of the 2002
winter Olympics (also held in Salt Lake City). In the pairs figure skating com-
petition the gold medal went to a Russian pair, the silver to a Canadian pair.
The vast majority of the public, and many experts as well, were convinced that
the gold should have gone to the Canadians, the silver to the Russians. A
French judge confessed having favored the Russian over the Canadian pair, say-
ing she had yielded to pressure from her hierarchy, only to deny it later. That
judges manipulate their inputs—reporting grades not in keeping with their pro-
fessional opinions—is known. A recent statistical analysis concluded: “[Judges]
. . . appear to engage in bloc judging or vote trading. A skater whose country is
not represented on the judging panel is at a serious disadvantage. The data sug-
gests that countries are divided into two blocs, with the United States, Canada,
Germany and Italy on one side and Russia, the Ukraine, France and Poland on
the other” [54]. Once again the skating world entered into fierce fights over how
to express and how to amalgamate the opinions of judges. Finally—thankfully—
the idea that judges’ inputs should be rank-orders was abandoned. In so doing,
the ISU joined the growing number of organizations whose rules direct judges to
assign number grades to candidates, and the candidates’ average grades deter-
mine the orders-of-finish (including diving, wine tasting, gymnastics, pianists,
restaurants, and many others).

Such rules are usually known as point-summing methods ; in the context of
elections some call it range voting. The judges’ scores in the 2001 Four Con-
tinents Figure Skating Championships provides an immediate example. Take
the judges’ inputs to be the scores themselves. They range from a low of 0 to
a high of 12. The candidates’ average scores are given in table 1 and yield an
order-of-finish that differs from that of the Borda and OBO rules:

Eldredge ≻S Li ≻S Savoie ≻S Weiss ≻S Honda ≻S Tamura.

5Any further ties were resolved by Borda’s method.
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It is at once evident that judges can easily manipulate the outcome by as-
signing their grades strategically. Every judge can both increase and decrease
the final score of every competitor by increasing or decreasing the score given
that competitor.

Eldredge Li Savoie Honda Weiss Tamura
1st 2nd 5th 3rd 4th 6th
11.6 11.2+ 10.8+ 11.2 11.1 10.8

J2: ↓ ↓ ↓ ↓ ↓ ↓
12.0 11.9 10.2+ 11.8 11.4 10.2

11.42 10.93 10.81 10.72 10.73 10.64
Averages: ↓ ↓ ↓ ↓ ↓ ↓

11.47 11.01 10.74 10.79 10.77 10.58

Table 4. Judge J2’s manipulations that change the order-of-finish to what
she wishes (given in the first row). Note that her new grades define the
same order.

In this case it is particularly tempting for judges to assign scores strategically.
Suppose they reported the grades they believed were merited. Take, for example,
judge J2. She can change her scores (as indicated in the top part of table 4,
e.g., increasing that of Eldredge from 11.6 to 12.0 so that his average goes
from 11.42 to 11.47) so that the final order-of-finish is exactly the one she
believes is merited. Moreover, the new scores she gives agree with the order of
merit she believes is correct. But judge J2 is not unique in being able to do
this: Every single judge can alone manipulate to achieve precisely the order-of-
finish he prefers by changing his scores. And each can do it while maintaining
the order in which they placed them initially (given in table 2). Results are
announced following every performance, so judges accumulate information as
the competition progresses and may obtain insights as how to best manipulate.

This analysis shows how extremely sensitive point-summing methods are to
strategic manipulation; in fact, they are more open to manipulation than any
other method of voting. This is important because the reason for voting is to
arrive at the true collective decision of a society or jury.

Faithful representation and meaningfulness

How to construct a scale is a science—measurement theory—that raises two key
problems [35]. First, the faithful representation problem: What scale? “When
measuring some attribute of a class of objects or events, we associate numbers
. . . with the objects in such a way that the properties of the attribute are faith-
fully represented as numerical properties” ([35], p. 1). E.g., if the scale is a
finite set of numbers from 0 to 20, should they be spaced evenly or otherwise?
Second, the meaningfulness problem: Given a faithful representation, what anal-
yses of sets of measurements are valid? E.g, if the scale consists of the integers
0, 1, . . . , 20 when is it justified to sum and take averages of measurements?
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Pain, for example, is measured on an eleven point ordinal scale going from 0
to 10, each number endowed with a careful verbal description: it is not meaning-
ful to sum or average such measures since an increase from (say) 2 to 3 cannot
be equated with an increase from 8 to 9. Temperature, Celsius or Fahrenheit,
is an interval scale because equal intervals have the same significance: sums
and averages are meaningful but multiplication is not for there is no absolute
0. Ounces, inches and the Kelvin temperature scale are ratio scales: they are
interval scales where 0 has an absolute sense and multiplication is meaningful
as well.

To appreciate the significance of what it means to add scores in competitions—
that is, to construct an interval measure—consider two practical examples. The
decathlon is an athletic competition consisting of ten track and field events. For
each event a competitor receives a number of points depending on his perfor-
mance. The sum of the points across all events is the competitor’s final score.
How should the points be related to the performance? This is a non-trivial
problem. In practice the formula for the 100 meter dash gives 651 points for 12
seconds, 861 for 11 seconds, 1096 for 10 seconds, and 1357 for 9 seconds. Going
from 12 seconds to 11 adds 210 additional points; from 10 seconds to 9 garners
an additional 285, although no human being has ever run that distance in 9
seconds. The merit of reducing the time by one second should not be measured
linearly: it should be related to the difficulty of the improvement if the points
are to constitute a valid interval measure. That difficulty may be assessed by
the frequency with which it is realized: the distribution of the performances
across “all” competitors determines how the points are assigned. So, given a
distribution for the 100 meter dash, ideally each time should be mapped into
points so that the same percentage of performances belong to any two inter-
vals of points [x, x + ǫ] and [y, y + ǫ]. This gives to each interval of the same
length the same meaning, and so transforms the performances into points that
belong to an interval measure. Similarly, any distribution of performances may
be mapped into a uniform distribution in an interval scale of points.

A second practical example confirms this interpretation, Denmark’s new
seven-grade number language adopted for the academic year 2006–2007. It has
seven numerical grades: 12, 10, 7, 4, 2, 0, or −3. For sums and averages to
make any sense at all this scale must be an interval measure. The language of
grades is described as follows:

12 (A) – outstanding, no or few unconsiderable flaws, 10% of passing students,

10 (B) – excellent, few considerable flaws, 25% of passing students

7 (C ) – good, numerous flaws, 30% of passing students,

4 (D) – fair, numerous considerable flaws, 25% of passing students,

2 (E) – adequate, the minimum acceptable, 10% of passing students,

0 (Fx) – inadequate,

-3 (F ) – entirely inadequate.

Is there any relation between these seemingly peculiar scores and the pre-
scribed distributions? Imagine that all the real numbers from 2 up to 12 are
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possible passing grades in an examination. Underlying the idea of an interval
measure is that over the grades of many students in the closed interval [2, 12],
the percentages of students who obtain grades in intervals of the same length
are the same. Which of the five passing grades should be assigned to a 5.7? The
grade whose number is closest to 5.7, namely, 7 or good ; or, more generally, any
number from the interval [5.5, 8.5] should be mapped into a good. By the same
token any grade from the interval [2, 3] is mapped into an adequate, from [3, 5.5]
into a fair, from [8.5, 11] into an excellent, and from [11, 12] into an outstanding.
The five numbers (2, 4, 7, 10, 12) seem to have been chosen so that the intervals
occupy, respectively, the percentages of the whole equal to the percentages of
passing grades specified in the definition: [2, 3] occupies 10% of the interval,
[3, 5.5] occupies 25%, [5.5, 8.5] occupies 30%, [8.5, 11] occupies 25% and [11, 12]
occupies 10%. Thus equal intervals do have the same significance: on average,
the same percentage of passing students belong to each interval and on average,
10% are outstanding, 25% are excellent, and so on down to 10% are adequate.
Thus the Danish system attempts to construct an interval measure so that it is
meaningful to add and compute averages of the numbers it assigns students.

More formally, suppose k number grades, x1 < x2 < · · · < xk, are to be
given, and their percentages are to be (p1, p2, . . . , pk), so

∑

pj = 100. The
grades constitute an interval measure when for all i, xi is in the interval [p1 +

· · ·+ pi−1, p1 + · · ·+ pi] and
∑i

j=1 pj is the mid-point of the interval [xi, xi+1].

Let qi =
∑i

1(−1)j+1pj for i = 1, . . . , k.

Theorem 1 ([8], 172.) There exist number grades x = (x1, . . . , xk) that con-
stitute an interval measure for the percentage distribution (p1, . . . , pk) if and
only if there exists a δ ≥ 0 that satisfies

max
i

q2i ≤ δ ≤ min
j

q2j+1.

When such δ exist, x satisfying

x2i = −δ + 2
i

∑

j

p2j−1 and x2i+1 = δ + 2
i

∑

j

p2j

defines a set of interval measure grades for each possible value of δ.

The theorem is proven by taking x1 = δ, and doing a bit of algebraic manipu-
lation.

In the Danish case—namely, p = (10, 25, 30, 25, 10)—there is a unique δ = 0
because q = (10,−15, 15,−10, 0) and max{−15,−10} ≤ min{10, 15, 0}. Thus,
δ = 0 and x = (0, 20, 50, 80, 100). Rescaling them by dividing by 10, then
translating up by 2 yields the equivalent Danish grades. If instead the Danes
had observed or stipulated the percentages p = (10, 19, 42, 19, 10), then q =
(10,−9, 33, 14, 24) so max{−9, 14} > min{10, 33, 24}: there would be no set of
interval measure grades.
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Sometimes the percentages stipulated or observed admit an interval measure,
sometimes not. When several are possible they are not equivalent: one set
cannot be obtained from the other by scaling and translating since a change
in the value of δ moves the grades with odd indices in the opposite direction
of the grades with even indices. When the value of δ is unique, the solution
is unstable, for some small perturbation in the percentages always renders an
interval measure impossible. E.g., for an ǫ > 0 perturbation of the Dane’s
original percentages, p = (10, 25 + ǫ, 30 − ǫ, 25, 10) there is no set of interval
measure grades. In conclusion, for any given set of percentages either there
is no set of interval measure grades, or it is unique but unstable, or there are
several sets that are not equivalent: these are troublesome facts which together
suggest mechanisms that depend on adding or averaging should be shunned.

Nevertheless, point-summing methods are pervasive (and very old). Since
they sum candidates’ scores they must—to be meaningful—be drawn from a
common interval scale yet typically they are not. Although in many applications
such as figure skating the numbers of the scale have commonly understood
meanings, an increase of one base unit invariably becomes more difficult to
obtain the higher the score, implying scores do not constitute an interval scale,
and suggesting that their sums and averages are not meaningful in the sense of
measurement theory. Another application to which the same remarks apply is
the 1976 Paris wine tasting: a point-summing method was used, it did not rely
on an interval scale and the resulting ranking was highly questionable [6].

Recently point-summing methods have been proposed for political elections
by bloggers in France and the USA. Range-voting6 uses the scale [0, 100]. The
scores are not defined, they are given no common meaning, so one voter’s 71
may mean something entirely different from another’s 71: the scale is not a
faithful representation. Vote de valeur7 has five scores, 0,±1,±2, but here,
in response to our criticisms, they have been assigned meanings: +2 is Very
favorable, +1 Favorable, 0 Neutral, −1 Hostile, −2 Very hostile: the scale is
a faithful representation. But in either case nothing justifies the choice of the
numbers, nor does anything justify summing them: they are not interval scales
so sums and averages are not meaningful in the sense of measurement theory.

Approval voting [17]—a voter assigns a 1 (“approves”) or a 0 to each can-
didate and the candidates are ranked according to their total numbers of 1’s—
suffers for similar reasons. It has been practiced as a point-summing method—
e.g., in the words of the Social Choice and Welfare Society’s ballot for electing its
president, “You can vote for any number of candidates by ticking the appropriate
boxes,” the number of ticks determining the candidates’ order of finish—though
it has been analyzed via the traditional model. Both points of view invite com-
parisons, so strategic voting, and thus Arrow’s paradox may occur (e.g., if some
voter’s favorite candidate withdraws she may change her vote and decide to give
a tick to one or more other candidate(s), causing a change in the order-of-finish
among the candidates that remain). But its most fundamental problem is that

6Proposed by Warren Smith, see rangevoting.org.
7Proposed by Sylvain Spinelli, see votedevaleur.info.
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one person’s tick may mean something altogether different than another’s. So,
ticks do not constitute a faithful representation of the quality of candidates and
their sum—not meaningful in terms of measurement theory—are at best very
rough approximations.

A French national poll proves the point. It posed seemingly close but differ-
ent questions in several polls preceding the French presidential election of 2007
(see table 5). Different questions elicit different responses: so, confronted by no
question voters supply their own, respond accordingly, and the results are not
interpretable. Indeed, asked to answer “yes” or “no” the same polls illustrate
these can have very different gradations. Thus for voters or judges to express
themselves adequately the scale must contain more than two levels.

Would each of the following be a good President of France?
Yes, Yes, Not Not

certainly probably Yes really at all No

Ségolène Royal 21% 28% 49% 22% 26% 48%

François Bayrou 18% 42% 60% 22% 14% 36%

Nicolas Sarkozy 28% 31% 59% 18% 20% 38%

Jean-Marie Le Pen 4% 8% 12% 13% 71% 84%

Do you personally wish each of the Could you personally vote for each of
following to win the presidential election? the following in the presidential election?

Yes, Yes, Yes, Yes,
certainly somewhat Yes No certainly probably Yes No

Royal 14% 22% 36% 48% 27% 26% 53% 42%

Bayrou 6% 22% 28% 53% 25% 44% 59% 26%

Sarkozy 13% 17% 30% 53% 28% 26% 54% 41%

Le Pen - - - - 8% 11% 19% 76%

Table 5. Results, Institut BVA polls, March 22, 2007 (a month before the
first round of the French presidential election of 2007). The answers were
given for each candidate independently (the difference between 100% and
total yes’s plus no’s in each row is the percentage of no responses, e.g.,
in the top table 3% gave no response on Royal). Figures for Le Pen were
not given in the “personal wish” question.

First-past-the-post or plurality voting—a voter is allowed to give one tick at
most and a candidate’s total ticks decides his place in the order of finish—is
worse. A poll conducted by the Institut BVA on April 10, 2007 (twelve days
before the election) asked: “When voting in the first round of the [coming] pres-
idential election, which of the following two attitudes correspond most closely
to the way in which you will vote?

• I vote for the candidate on my side of the political spectrum who has the
greatest chance of making the run-off.

• I vote for the candidate closest to my ideas even if he has little chance of
making the run-off.”

32% indicated the first attitude, 55% the second (13% indicated neither). Tick-
ing exactly one candidate does not even provide a scale, so their sums have
even less meaning. Note, moreover, that this shows some 55% of French voters’
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do not care only about who wins, their utility functions depend also on factors
other than who is elected.

To summarize: Voting or judging is measuring. The scale used by approval
voting and first-past-the-post is not a faithful representation of voters’ opinions;
moreover, the semantics are confusing, one tick lumping all kinds of different
meanings into one. Taking their sum is tantamount to declaring 1 mile + 1
meter + 1 inch = 3 and is at best a very imprecise measure. The semantics
of rank-order inputs are perfectly clear but they are far too limited to permit
a faithful expression of opinion, deny the existence of any common scale, and
lead to unacceptable methods. Point-summing methods exaggerate in the other
direction, assuming the existence of a perfect scale of measurement—an interval
scale—which is almost impossible to achieve and, in any case, leads to highly
manipulable methods. There is, however, a middle ground that asks for more
than rank-orders but less than an interval scale: an ordinal scale of merit.

1.3 A More Realistic Model

Postulate a finite number of competitors or candidates C = {C1, . . . , Cm}; a
finite number of judges or voters J = {1, . . . , n}; and a common language of
grades Λ = {α, β, γ, . . .} that is a totally ordered set.

In practice (e.g., piano competitions, figure skating, gymnastics, diving, wine
competitions), common languages of grades are invented to suit the purpose,
and are carefully defined and explained. Their words are clearly understood,
much as the words of an ordinary language, or the measurements of physics.
But they almost surely do not constitute interval scales. The grades or words
are “absolute” in the sense that every judge uses them to measure the merit of
each competitor independently. They are “common” in the sense that judges
assign them with respect to a set of benchmarks that constitute a shared scale
of evaluation. They are ordinal scales and constitute faithful representations.

What scales are adequate? That depends on the particular application.
In wines, a common language of seven words—Excellent, Very Good, Good,
Passable, Inadequate, Mediocre, Bad—is used by judges to evaluate each of
14 attributes (concerning aspect, aroma, taste, flavor, . . . ).8 In judging div-
ing, twenty-one numbers—multiples of one-half in the interval [0, 10], carefully
defined—are used by judges to evaluate a dive (which has a degree of difficulty).9

In reaching their decision on the 2009 Louis Lyons Award for Conscience and
Integrity in Journalism, the judges at the Nieman Foundation at Harvard Uni-
versity used majority judgment. They chose to use a common language of seven
grades—Absolutely Outstanding, Outstanding, Excellent, Very Strong, Strong,
Commendable, Neutral—to rank five very highly considered nominees. Had
each of the judges in these cases ranked the competitors, their inputs would have
been merely relative, barring any scale of evaluation and ignoring any sense of
shared benchmarks. In general, the more grades the better given that judges

8OIV, Organisation Internationale de la Vigne et du Vin.
9FINA, Fédération Internationale de Natation.
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can naturally distinguish their meanings. Professional judges are typically able
to distinguish more levels than a “general” public. In political elections some
six or seven levels seems best (as seen anon). There is more meaning in common
when voters assign about seven grades than fewer or more [38].

A problem is specified by its inputs, a profile

Φ =
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... · · ·
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...

αi1 αi2 · · · αin−1 αin

...
... · · ·

...
...

αk1 αk2 · · · αkn−1 αkn
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... · · ·
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,

where αij = Φ(Ci, j) ∈ Λ is the grade assigned by judge j ∈ J to competitor
Ci ∈ C. With this formulation of inputs voters specify rank-orders determined
by the grades (that may be strict if the scale of grades is fine enough), so in this
sense the inputs include those of the traditional model. Experience proves they
are simple and cognitively natural.

Suppose competitor C is assigned the grades (α1, . . . , αn) and competitor C′

the grades (β1, . . . , βn). A method of ranking is a non-symmetric binary relation
�S that compares any two competitors whose grades belong to some profile. By
definition C �S C′ and C′ �S C means C ≈S C′; and C ≻S C′ if C �S C′ and
not C ≈S C′. So �S is a complete binary relation.

What properties should any reasonable method of ranking �S possess?
(1) Neutrality: C �S C′ for the profile Φ implies C �S C′ for the profile σΦ

for any permutation σ of the competitors (or rows). That is, the competitors’
ranks do not depend on where their grades are given in the inputs.

(2) Anonymity: C �S C′ for the profile Φ implies C �S C′ for the profile
Φσ for any permutation σ of the voters (or columns). That is, no judge has
more weight than another judge in determining the ranks of competitors. When
a rule satisfies these first two properties it is called impartial.

(3) Transitivity: C �S C′ and C′ �S C′′ implies C �S C′′. That is,
Condorcet’s paradox cannot occur.

(4) Independence of irrelevant alternatives in ranking (IIAR): When C �S

C′ for the profile Φ, C �S C′ for any profile Φ′ obtained by eliminating or
adjoining other competitors (or rows). That is, Arrow’s paradox cannot occur.

These four are the rock-bottom necessities in the theory developed here.
They are basic to Arrow’s theory [1], the recent method of Dasgupta-Maskin
[22, 21], and are central to all debates on voting. Together they severely restrict
the choice of a method of ranking.

A method of ranking respects grades if the rank-order between them
depends only on their sets of grades; in particular, when two com-
petitors C and C′ have the same set of grades, they are tied.

With such methods the rank-orders induced by the voters’ grades must be for-
gotten, only the sets of grades count, not which voter assigned which grade.
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Said differently, if two voters switch the grades they give a competitor this has
no effect on the electorate’s ranking of the competitors.

Theorem 2 ([8] 182.) A method of ranking is impartial, transitive and inde-
pendent of irrelevant alternatives in ranking if and only if it is transitive and
respects grades.

This simple theorem is essential: it says that if Arrow’s and Condorcet’s
paradoxes are to be avoided, then the traditional model and paradigm must
be abandoned. Who gave what grade cannot be taken into account. Not only
do rank-order inputs not permit voters to express themselves as they wish, but
they are the culprits that lead to all of the impossibilities and incompatibilities.

A social-ranking function is a method of ranking that is impartial,
transitive and IIAR.

By theorem 2 such functions must respect grades and so depend only on the
grades of each of the competitors. To see more clearly the implications of
the theorem—or of using a social-ranking function—suppose there were three
grades—Good, Pass, and Bad—and that an electorate evaluated two candidates
C and C′ as follows:

Good Pass Bad
C: 40% 35% 25%
C′: 35% 30% 35%

C’s percentages of Good and Pass are both above C′’s, her percentage of Bad
below C′’s, so there is no doubt that in the electorate’s evaluation C leads
C′. But what does a majority vote say? That all depends. If the electorate’s
preference profile is

30% 10% 10% 25% 25%
C: Good Good Pass Pass Bad
C′: Pass Bad Good Bad Good

(consistent with the distributions of grades) then C wins with 65% of the votes
(assuming a voter gives her vote to the candidate with the higher grade). On
the other hand, if the electorate’s profile is

5% 35% 35% 25%
C: Good Good Pass Bad
C′: Pass Bad Good Pass

(also consistent with the distributions of grades) then C′ wins with 60% of the
votes. Thus more precise information about voters’ evaluations of candidates
shows that majority voting and the traditional model may fail even when com-
paring only two candidates.

The theorem suggests that what is needed is a function that transforms
the grades given any competitor into a final grade, the order among the final
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grades determining the order-of-finish of the competitors. The usual practice, as
was mentioned, is to use the average grade (a point-summing method), though
sometimes the top and bottom grades, or top two and bottom two grades, are
omitted.

Functions that assign a final grade to a competitor based only on the com-
petitor’s set of grades should enjoy at least two other properties. First, if the
voters all assign the same grade to a competitor it should be his final grade.
Second, in comparing two ordered sets of grades, when each in the first set is
at least as high as the corresponding grade in the second set, the final grade
given the first should be no lower than that given the second; moreover, when
each in the first set is strictly higher than the corresponding grade in the second
set, the final grade given the first should be strictly higher than that given the
second.

A function f : Λn → Λ that transforms grades given a competitor
into a final grade is a social-grading function if it satisfies three
properties:

• Anonymity: f(. . . , α, . . . , β, . . .) = f(. . . , β, . . . , α, . . .);

• Unanimity: f(α, α, . . . , α) = α; and

• Monotonicity:

αj � βj for all j ⇒ f(α1, . . . , αn) � f(β1, . . . , βn)

and

αj ≺ βj for all j ⇒ f(α1, . . . , αn) ≺ f(β1, . . . , βn).

Social-grading functions serve two separate though related purposes: (1)
They assign a final grade to each competitor and (2) used as social-ranking
functions, they determine the order-of-finish of all competitors. Obvious exam-
ples of social-grading functions are the arithmetic mean or average, any other
mean such as the geometric or harmonic mean, and the kth order function fk

that is the kth highest grade (for k = 1, 2, . . . , n).
In practice grades are almost always numbers and, since final grades can

be determined by functions such as means, a discrete scale of inputs (including
word grades that have been assigned numbers) may well yield a richer set of
outputs, and this in turn may naturally lead to defining a richer set of input
grades. So it is reasonable—and permits a cleaner and more elegant theory—to
assume from the outset that grades belong to an interval of the real line. It
turns out not to matter whether this interval be open, half-open, bounded or
not: so the choice has been to take the closed interval [0, R] (in keeping with
the often used [0, 100] in the U.S. and [0, 20] in France).

Small changes in the input grades should naturally imply small changes in the
outputs, so it is natural to assume that a social-grading function is continuous.
Some theorems require continuity (e.g., theorem 8); some do not but require
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a sufficiently large finite set of grades (e.g., theorem 5); some require neither
(e.g., theorem 3). When a voter or judge has no interest in deviating from a
particular grade in a rich set of grades he has no interest in deviating from that
same grade in a subset of them. Although continuity or a sufficiently rich set of
grades are necessary for some characterizations the properties of the functions
that are characterized hold for finite sets of grades. In any case we believe that
the same criteria should be used whatever the size of the language of grades.

The question that presents itself is: Which social-grading function(s) of the
grades of competitors should be used to grade and which to rank?

2 Majority Judgment

In addition to treating voters and candidates impartially, nine desirable prop-
erties of a method of voting or judging emerge:

1. Determine (generically) a winner, i.e., a transitive order-of-
finish (or avoid Condorcet’s paradox),

2. Guarantee that the final order between two candidates does
not depend on other candidacies, i.e., satisfy IIAR (or avoid
Arrow’s paradox),

3. Faithfully represent voters’ opinions in practice,

4. Elicit honest voting (make an honest vote be good strategy),

5. Use measures meaningfully (add numbers whose sums make
sense),

6. Resist manipulation (minimize the possibility of successful cheat-
ing),

7. Heed the majority’s will (seek true consensus),

8. Elect the Condorcet-winner when he exists (be Condorcet-consistent),
and

9. Ensure that a voter always helps his favorite candidate (no “no-
show paradox”).

While majority judgment satisfies some desirable properties it fails to satisfy
others: “Nothing is perfect. There are lumps in it.” It is the one method that
satisfies the first seven properties. It may be characterized mathematically in
several ways, among them by 1, 2 and 6 and also by 1, 2, 5 and 7.

There exists no method that meets 1, 2 and 8 [8]. The question becomes,
which lumps are important? We believe that the Condorcet and Arrow lumps
(1 and 2) are very important. The Arrow paradox occurs frequently (with
potentially dramatic effects, as was seen). The Condorcet paradox has not
often been recorded in elections because it is rarely possible to do so—voters’
inputs in real elections are rarely rank-orders—but it is essential to determine
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a winner, and when judges’ rank-orders are known it occurs (e.g., skating and
wines [6]).

One of the two critiques of majority judgment is its potential violation of
Condorcet-consistency (point 8): we argue below that it is of little importance.
The second critique is that it violates 9, the no-show paradox [26]. First, there
exists no method that is Condorcet-consistent and avoids the no-show paradox
[39]. Second, the only methods that satisfy 1, 2 and 9 violate 4, 5, 6, 7, and
8 [8]. Third, in practice majority judgment violates 9 less often than a tie in
ordinary majority voting. These points are discussed more fully below.

2.1 Majority Judgment: Description

Suppose there are n judges or voters who assign competitors grades.

The kth order function fk is the social-grading function whose value
is the kth highest grade.

When the set of grades r of a competitor is ordered from highest to lowest,

r = (r1 � r2 � · · · � rn) ⇒ fk(r) = rk.

A competitor’s majority-grade fmaj is the grade that obtains an ab-
solute majority of the voters against any lower grade and an absolute
majority or a tie against any higher grade: it is his middlemost or
median grade when n is odd, his lower-middlemost when n is even:

fmaj =

{

f
n+1

2 if n is odd,

f
n+2

2 if n is even.

A majority-grade is not a median because there is no median when n is
even. A separate term is needed. The lower- rather than the upper-middlemost
is taken for two reasons. First, it insists on an absolute majority for a high
grade rather than for a low one. Second, it is the logical consequence of “re-
specting consensus” (developed anon) which in essence comes down to this. If
two competitors have two grades, A with 10.9 and 9.8, B with 10.5 and 10.2,
that candidate whose grades are more consensual should lead, so B should lead
A.

In the following the judges’ scores (of table 1) are interpreted as the grades
of a finite common language (going from 0 to 12 in tenths). Ordering each
competitor’s grades from highest to lowest gives table 6. The order-of-finish of
the competitors is determined by their majority-grades. In this case there is a
three-way tie for third place. So a finer distinction is needed. If two competitors
such as Savoie and Honda have the same majority-grade, then the order between
them must depend on their sets of grades excluding that one common grade.
So it is dropped, and the majority-grades of the remaining eight grades are
determined. In this case Savoie’s is 10.8, Honda’s is 10.7: Savoie’s is higher, so
he leads Honda by majority judgment.
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f1 f2 f3 f4 fmaj f6 f7 f8 f9

T. Eldredge 11.7 11.6 11.5 11.4 11.4 11.4 11.3 11.3 11.2
C. Li 11.2 11.2 11.0 11.0 10.9 10.9 10.8 10.8 10.6
M. Savoie 11.1 11.1 11.1 10.8 10.8 10.8 10.6 10.5 10.5
T. Honda 11.2 11.0 10.9 10.9 10.8 10.7 10.4 10.3 10.3
M. Weiss 11.1 10.9 10.9 10.9 10.8 10.6 10.6 10.4 10.4
Y. Tamura 11.6 11.0 10.8 10.8 10.7 10.6 10.4 10.1 09.8

Table 6. Competitors’ scores ordered from highest to lowest (identities of
judges forgotten). Majority-grades are italicized.

In general, suppose a competitor’s grades are

r1 � r2 � · · · � rn.

Her majority-value is an ordered sequence of these grades. The first in the
sequence is her majority-grade; the second is the majority-grade of her grades
when her (first) majority-grade has been dropped (it is her “second majority-
grade”); the third is the majority-grade of her grades when her first two majority-
grades have been dropped; and so on. Thus, when there is an odd number of
voters n = 2t− 1, a competitor’s majority-value is the sequence that begins at
the middle, rt, and fans out alternately from the center starting from below:

−→r = (rt, rt+1, rt−1, rt+2, rt−2, . . . , r2t−1, r1).

When there is an even number of voters n = 2t−2, the majority-value begins at
the lower middle and fans out alternatively from the center starting from above,

−→r = (rt, rt−1, rt+1, rt−2, rt+2, . . . , r2t−2, r1).

If the majority-values of two competitors A and B are respectively −→r A and
−→r B, the majority-ranking ≻maj is defined by

A ≻maj B when −→r A ≻lexi
−→r B ,

where ≻lexi means lexicographically greater, i.e., the first grade where −→r A and
−→r B differ A’s is higher. The majority-ranking in the skating competition is

Eldredge ≻maj Li ≻maj Savoie ≻maj Honda ≻maj Weiss ≻maj Tamura.

There can be a tie only if two competitors have precisely the same set of grades.
A key point should be noted. Consider any judge or set of judges who

assigned a competitor a grade higher than his majority-grade; e.g., Honda’s
majority-grade is 10.8 and four judges—J2, J3, J4, J6—believed he merited a
higher grade: neither one of them nor all of them acting together can raise
his majority-grade by changing the grades they assigned. Symmetrically, four
judges—J1, J7, J8, J9—believed he merited a lower grade: neither one of them
nor all of them acting together can do anything to lowering his majority-grade.
The best strategy of a judge who wishes that a competitor be awarded a par-
ticular majority-grade is to assign him that grade: honesty is the best policy.
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Majority Judgment with Large Electorates in Use

With many voters and few grades it is almost certain that a candidate’s middle-
most grade will be repeated many times. Thus, an absolute majority of voters
assign a candidate at least her majority-grade, and also an absolute majority of
voters assign the candidate at most her majority-grade. Moreover, a simplified
procedure is almost sure to determine the majority-ranking.

Majority judgment has been tested in several political settings [8, 5, 50, 43,
47, 48]. Terra Nova (a Paris-based think tank) sponsored a poll conducted by
the national polling agency OpinionWay on April 6 and 7, 2011. Entitled “And
if the presidential election of 2012 used Majority Judgment,” a sample of 1,025
persons 18 years old or above and representative of the French population was
questioned. The results concern 991 of them who were registered voters and
responded to at least one question. French presidential elections use two-past-
the-post : a voter names (or ticks) at most one candidate, the candidate most
often named (or with the most ticks) wins if she obtains an absolute majority;
otherwise, there is a run-off between the two candidates most often named. The
central interest of this poll is that the identical set of people voted with the
usual method and with majority judgment, permitting comparisons.

Martine Marine Nicolas François Jean-Louis Eva
Aubry Le Pen Sarkozy Bayrou Borloo Joly
21.7% 20.6% 19.1% 8.5% 7.8% 7.4%

Jean-Luc Dominique Olivier Jean-Pierre Nicolas Nathalie
Mélenchon de Villepin Besancenot Chevènement Dupoint-Aignan Arthaud

4.2% 3.7% 2.9% 1.9% 1.4% 0.8%

Table 7. First-past-the-post, French 2012 presidential election, Opinion-
Way poll, conducted April 6-7, 2011.

The poll’s first question10: “If the first round of the 2012 presidential elec-
tions were to be held next Sunday, for which of the following candidates would
you most likely vote?” The answers are given in table 7.

The poll’s second question: “If the second round of the 2012 presidential
elections were to be held next Sunday, for which of the following candidates
would you most likely vote for?” The answers in each of three possible run-offs:

Run-off 1 Run-off 2 Run-off 3
Aubry Le Pen Aubry Sarkozy Sarkozy Le Pen
63.2% 36.8% 56.0% 44% 63.3% 36.7%

Voting measures to determine winners and orders-of-finish. The results show
majority voting—in one round or two—measures badly. The incumbent pres-
ident Sarkozy is eliminated, yet he would easily defeat Le Pen. Since the
poll admits a 2 to 3% error, any one of the three leading finishers could be
eliminated—including the candidate truly wished by the electorate (with first-
or two-past-the-post). It seems that the electorate’s choice is among the major

10The poll was conducted before the regrettable Dominique Strauss Kahn New York affair.
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candidate of the left Aubry, the extreme rightist Le Pen and the major candidate
of the right Sarkozy, the remaining candidates being relegated to minor roles.
It also seems clear that the strategy of the major candidates of left (Aubry)
and right (Sarkozy) is to encourage multiple candidacies in the opposite camp
to dilute their total vote in the hopes of a run-off against Le Pen.

Election of the President of France 2012

As President of France,
having taken into account all relevant considerations,

I judge, in conscience, that each of these candidates would be:

Outstan- Excel- Very Good Accept- Poor To
ding lent Good able Reject

Candidate

You must check one single grade in the line of each candidate.

Table 8. Majority judgment ballot, French 2012 presidential election,
OpinionWay poll, conducted April 6-7, 2011 (one line for each candidate).

The poll’s third question asked participants to vote with majority judgment
using the ballot given in table 8. In this poll: (1) three of every four voters
accord no Outstanding; (2) half of the voters accord no Outstanding and no
Excellent, (3) one of every five voters only assign Acceptable or below, (4) one of
every five voters give their highest grade to two candidates, and (6) one of every
five voters give their highest grade to at least three candidates. This behavior
is by and large consistent with that observed every time majority judgment is
used in political elections. It shows the inadequacy of the traditional inputs, be
they rankings or ticks.

Outstan- Excel- Very Good Accept- Poor to

ding lent Good able Reject

Arthaud 0.1% 00.9% 03.3% 07.7% 13.7% 26.1% 48.0%
Besancenot 0.8% 01.7% 06.9% 09.9% 16.1% 20.4% 44.2%
Mélenchon 1.3% 02.7% 05.0% 11.2% 16.5% 21.4% 41.8%
Joly 3.2% 04.7% 07.4% 14.5% 20.3% 19.0% 30.9%
Aubry 8.2% 12.9% 17.0% 12.6% 19.6% 11.4% 18.4%
Chevènement 0.5% 01.1% 05.8% 12.9% 22.8% 24.7% 32.2%
Bayrou 1.2% 04.7% 12.8% 19.2% 26.1% 16.6% 19.3%
Borloo 2.2% 06.2% 15.3% 22.3% 19.6% 15.9% 18.5%
Villepin 2.0% 05.8% 11.9% 20.4% 20.7% 17.4% 21.9%
Sarkozy 4.1% 08.7% 11.1% 09.5% 13.5% 11.8% 41.3%
Dupont-Aignan 0.5% 01.4% 02.7% 07.0% 13.9% 27.7% 46.7%
Le Pen 6.8% 06.5% 07.0% 07.2% 07.8% 09.3% 55.6%

Table 9. Results, French 2012 presidential election, OpinionWay poll,
conducted April 6-7, 2011.

A simpler procedure than finding the candidates’ majority-values determines
the majority-ranking. Suppose a candidate’s majority-grade is α, and that p%
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of his grades are higher than α and q% are lower. Then his majority-gauge is
(p, α±, q), where p > q implies α is endowed with a “+,” and otherwise it is
endowed with a “−.” Thus Aubry’s majority-gauge is (38.0%,Good−,49.3%).

The majority-gauges (p, α±, q) determine the majority-ranking of the candi-
dates (see table 10). If two candidates have the same majority-grade α (ignoring
for the moment the signs), four sets of voters disagree. Their respective sizes
are measured by the two candidates’ p’s and q’s. The largest set decides: if
it is a p then that candidate leads the other, if it is a q then that candidate
trails the other. For example, Sarkozy and Chèvenement both are Poor, the
largest set is the 46.9% for a higher grade for Sarkozy, so he leads; Mélenchon
and Besancenot both are Poor as well, the largest set is the 44.2% for a lower
grade for Besancenot, so he trails. Notice that the rule implies a candidate with
α+ leads a candidate with α−. When the majority-gauge distinguishes between
two candidates, it necessarily agrees with the majority-ranking. With some 20
voters or more and a common language of some 6 grades, the majority-gauge
(not the more precise majority-value) has sufficed to distinguish candidates in
all uses to date.

Majority judgment Majority-gauge Majority vote
ranking p α± q ranking
1 Martine Aubry 38.0% Good− 49.3% 1
2 Jean-Louis Borloo 46.0% Acceptable+ 34.4% 5
3 Dominique de Villepin 40.1% Acceptable+ 39.3% 8
4 François Bayrou 37.9% Acceptable+ 35.9% 4
5 Eva Joly 29.9% Acceptable− 49.8% 6
6 Nicolas Sarkozy 46.9% Poor+ 41.3% 3
7 Chèvenement 43.1% Poor+ 32.2% 10
8 Mélenchon 36.8% Poor− 41.8% 7
9 Besancenot 35.4% Poor− 44.2% 9
10 Dupont-Aignan 25.5% Poor− 46.7% 11
11 Nathalie Arthaud 25.8% Poor− 48.0% 12
12 Marine Le Pen 44.4% to Reject – 2

Table 10. Majority-gauges and majority-ranking, French 2012 presidential
election, OpinionWay poll, conducted April 6-7, 2011.

With simple majority voting Martine Aubry appears to be in the lead by a
margin so small that it is statistically insignificant. Majority judgment shows
that she leads comfortably in the esteem of the electorate: she has more Out-
standing’s and Excellent ’s, fewer to Reject ’s. The extreme rightist Marine Le
Pen is a very close second according to simple majority voting, but that only
takes into account her supporters. Majority judgment shows that a large ma-
jority reject her out of hand, so that she has no chance of winning whatsoever
(in the climate of opinion of early April 2011). This is, of course, verified by the
face-to-face scores of the poll. Candidates Borloo and Villepin of the moderate
right wing UMP (Sarkozy’s party) and the centrist Bayrou—low in the major-
ity voting ranking with a third of the votes of Sarkozy or less—are shown by
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majority judgment to be in fact favored to Sarkozy. Their majority-grades are
all Acceptable+, placing them much higher than Sarkozy and Le Pen. Majority
judgment takes all of a candidate’s grades into account—the good ones and the
bad ones—to determine her place in the ranking. In contrast, simple majority
voting takes into account only a mixture of supposedly favorable opinions.

One of the very interesting outcomes of this poll is the consistently low
majority-grades of all candidates. Seven candidates are judged to be Poor or
worse, including the incumbent President, Sarkozy; and only one candidate,
Aubry, is judged Good. This is an echo of the disregard for politicians regularly
reported by opinion polls and also of the fact that the campaign had not yet
begun.

Notice that voters who believed Borloo (for example) merited a higher
majority-grade than Acceptable—and 46.0% were of that persuasion—could do
nothing alone or in concert to raise his majority-gauge. Symmetrically, those
who believed he merited a lower majority-grade—34.4%of them—could do noth-
ing alone or in concert to lower his majority-gauge. The best strategy of a voter
who wishes that a candidate be awarded a particular majority-grade is to assign
him that grade.

2.2 Majority Judgment: Theory

When a social-grading function is used to amalgamate the grades voters or
judges assign competitors, and the grades determine the order-of-finish of the
competitors, the Condorcet and Arrow paradoxes cannot occur—transitivity is
assured and there can be no flip-flops—as has been proven. Since the grades
have only ordinal significance and are neither summed nor averaged, the method
is meaningful. Thus three of the seven essential demands are necessarily met.

Elicits Honesty

Assigning grades to competitors is a game played by voters or judges. As early
as 1907 Sir Francis Galton pointed out that when a jury is to decide on an
amount of money—e.g., to allocate to a project, or in assessing damages in an
insurance claim—“that conclusion is clearly not the average of all the estimates,
which would give a voting power to ‘cranks’ in proportion to their crankiness.. . . I
wish to point out that the estimate to which least objection can be raised is
the middlemost estimate, the number of votes that it is too high being exactly
balanced by the number of votes that it is too low”(our emphasis, [29]). He
realized that point-summing methods do not elicit honesty (equivalently, that
one extreme assignment of points or one extreme money estimate can completely
alter the collective outcome). The idea of using the median in voting is Galton’s.

The strategy a voter adopts depends on her personal likes and dislikes.
Some voters and judges may care most about assigning the grades they be-
lieve are truly merited. Some may care most about the final grades assigned
each competitor—and are ready to adjust their assignments so as to attain that
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end. Others may not care at all about the final grades but only about the order-
of-finish of the competitors. Still others may think that only the identity of the
winner is of importance. Some few may be bought or bribed. Some other few
may simply be completely incompetent judges who assign unwarranted grades.
The final grade a voter wishes a competitor to be awarded, the final grade he be-
lieves the competitor merits, and the grade he gives may all be different. Some
juries and electorates almost certainly include judges and voters who honestly
wish grades to be assigned according to merit, and in certain cases it is perfectly
reasonable to assume that all the players share this intent. Nevertheless, a very
complex set of unknown wishes, opinions, expectations and anticipations—the
voters’ or judges’ utility functions—determines the grades they give.

How is a social-grading function to elicit honesty? By making it impossible or
difficult for individual voters to change the outcome by using devious strategies.

Suppose that a competitor’s final grade is r∗. A social-grading func-
tion is strategy-proof-in-grading if, when a voter’s input grade is
higher than the final grade, r+ > r∗, any change in his input can
only lead to a lower final grade; and if, when a voter’s input grade
is lower than the final grade, r− < r∗, any change in his input can
only lead to a higher final grade.

It is easy to see that the majority judgement is not only strategy-proof-in-
grading but also group strategy-proof-in-grading in that a group whose inputs are
higher (or lower) than the final grade can only lower (raise) the final grade. Thus,
one or all of those who gave Aubry a grade above her majority-grade (Good)
cannot change her majority-grade or-gauge except to lower it (presumably not
their intention). Similarly, one or all of those who gave her a grade below her
majority-grade cannot change her majority-grade or -gauge except to raise it
(presumably not their intention).

Assume the more a final grade deviates from the grade a voter wishes it to
be the less she likes it (“single-peaked preferences over grades”), so that the
voter’s utility function uj(r

∗, r, f, C,Λ) could be a monotonic transformation
of |r∗j − f(r1, . . . , rn)|. Then—as is well known in the work on single-peaked
preferences (e.g., [29, 11, 40])—it is a dominant strategy for her to assign the
grade she believes is merited: i.e., it is at least as good as any other strategy
and strictly better in some cases.

Theorem 3 ([40],[8] 191-192.) The unique strategy-proof-in-grading social-
grading functions are the order functions (for a finite or an infinite number of
grades, continuous or discontinuous functions).11

A competitor who receives a higher majority-grade than another is naturally
ranked higher in the order of the candidates or alternatives than the other:
grades imply orders. But when an important component of the voters’ utilities

11The main result in [40] is formulated in terms of the traditional model, with all the voters’
preferences for candidates assumed to be single-peaked with respect to a single fixed order of
the candidates along the real line.
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are the orders of finish and not merely the final grades of competitors, their
strategic behavior may well alter.

Given a profile of grades (rCj ), C ∈ C, and j ∈ J with rCj ∈ [0, R], let the

vector of final grades be (rC). Suppose the final grades of some two competitors
A,B ∈ C are rA < rB , but that some voter j is of the opposite conviction,
rAj > rBj . She would like either to increase A’s final grade, or decrease B’s final
grade, or better yet do both.

When the final grade of A is lower than that of B, rA < rB , and
any voter j is of the opposite conviction, rAj > rBj , a social-ranking
function is strategy-proof-in-ranking if j can neither decrease B’s
final grade nor increase A’s final grade.

Consider a voter j whose utility function uj depends only on the ultimate
ranking of the competitors, that is, only on the order of the final grades. Then if
the social-ranking function is strategy-proof-in-ranking, it is a dominant strategy
for voter j to assign grades according to his convictions since it serves no earthly
purpose to do otherwise.

Theorem 4 ([8] 220.) There exists no social-ranking function that is strategy-
proof-in-ranking.

This is the analog of the Gibbard-Satterthwaite theorem. But the impossi-
bility of perfection does not deny a search for a best possible.

A social-ranking function is partially strategy-proof-in-ranking when
rA < rB and any voter j is of the opposite persuasion, rAj > rBj ,
then if j can decrease B’s final grade he cannot increase A’s final
grade and if he can increase A’s final grade he cannot decrease B’s
final grade.

Theorem 5 ([8] 222.) The unique social-ranking functions that are partially
strategy-proof-in-ranking are the order functions.

In elections with many voters (say in the hundreds and above) the majority-
gauges (p, α±, q) of the candidates almost always determine the majority-ranking
since ties among them almost never occur. Observe that it too is partially
strategy-proof-in-ranking. To see this consider the French presidential poll (ta-
ble 9). Aubry with a majority-gauge of (38.0%,Good−, 49.3%) leads Borloo
whose majority-gauge is (46.0%,Acceptable+,34.4%). How could a voter who
prefers Borloo to Aubry manipulate the outcome? Suppose she could increase
Borloo’s majority-gauge. Then she gave to Borloo at most an Acceptable, so to
Aubry a lower grade, implying she can do nothing to decrease Aubry’s majority-
gauge. If, on the other hand, she could decrease Aubry’s majority-gauge, then
she gave Aubry at least a Good, so to Borloo a higher grade, implying she can do
nothing to increase Borloo’s majority-gauge. The same argument carries over
to groups acting together.
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Meaningfulness

In the spirit of measurement theory social-grading and social-ranking functions
must be meaningful : the particular representation that is used should make
no difference in the ultimate outcomes. By way of an analogy, distance in the
absolute and in comparisons should not change the ultimate outcomes when the
scale is meters rather than yards. The only meaningful scales of grades in the
new model, as has been argued, are ordinal.

A social-grading function f is language-consistent if

f
(

φ(r1), . . . , φ(rn)
)

= φ(f(r1, . . . , rn)
)

for any increasing, continuous transformation φ of the grades of each
voter.

For example, when a Franco-American jury assigns grades to students, and
each member is asked to give a grade in both of the languages—the French in
the range [0, 20] and the American in the range [0, 100]—language-consistency
asks that the aggregate French grades rank the students in the same order as
the aggregate American grades. A transformation that does this is not linear,
because 50 is failing in the USA whereas 10 is passing in France.

Order functions are clearly language-consistent: the kth highest grade re-
mains the kth highest grade under increasing, continuous transformations. It is
well known that the reverse is true as well:

Theorem 6 ([42], [8] 201.) The unique social-grading functions that are lan-
guage-consistent are the order functions.

To be meaningful as a social-ranking function the analogous property must
hold for rankings as well.

A social-ranking function �S is order-consistent if the order between
any two candidates for some profile Φ implies the same order for any
profile Φ′ obtained from Φ by any increasing, continuous transfor-
mation φ of the grades of all voters.

The order functions are clearly order-consistent. To characterize them requires
an additional, eminently acceptable, property; namely, that an increase in a
candidate’s grade necessarily helps.

A social-ranking function �S is choice-monotone if A �S B and a
judge increases the grade of A implies A ≻S B.

Note in passing that the traditional model’s difficulties with monotonicity
are completely eliminated. Majority judgment is at once choice-, rank- and
strongly-monotone. The reason is simple: a change in heart concerning one
candidate is expressed by the grade he is given, but that changes nothing in the
inputs concerning the other candidates.
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Theorem 7 ([33, 23], [8] 204, 303.) The unique choice-monotone and order-
consistent social-ranking functions are the lexi-order functions.

A lexi-order social-ranking function is a permutation σ of the order functions
fσ = (fσ(1), . . . , fσ(n)), that ranks the candidates by

A ≻S B if
(

fσ(1)(A), . . . , fσ(n)(A)
)

≻lex

(

fσ(1)(B), . . . , fσ(n)(B)
)

.

Here ≻lex means the lexicographic order: the first term where the corresponding
grades differ A’s is higher. There are n! lexi-order social-ranking functions. The
idea is simple: some order function decides; if it doesn’t because there is a tie,
a second order function is invoked; if there is a tie in the second order function,
a third is called upon; and so on.

The importance of Arrow’s impossibility becomes crystal clear in this con-
text.

A social-ranking function is preference-consistent if the order be-
tween any two candidates for some profile Φ implies the same order
for any profile Φ′ obtained from Φ by increasing, continuous trans-
formations φj of the grades of each voter j.

For voters’ rank-orders to be meaningfully amalgamated there must exist a
preference-consistent social-ranking function. But Arrow’s theorem tells us that
there exists no monotonic preference-consistent social-ranking function. It says
that there is no meaningful way of amalgamating the voters’ inputs when they
have no common language. This—in our opinion—is the deep enduring signifi-
cance of Arrow’s theorem (rather than the supposed impossibility of surmount-
ing Arrow’s paradox). That should come as no surprise: how can agreement be
found among persons who cannot communicate!

Once again, only the order functions will do: they alone are meaningful. But
why the majority-grade and why the majority-value?

Resists Manipulation

To manipulate successfully a voter (or judge) must be able to raise or to lower
a candidate’s (or competitor’) final grade by changing the grade he assigns. In
some situations voters can only change a final grade by increasing his grade,
in others only by decreasing it. Voters who can both lower and raise the final
grade have a much greater possibility of manipulating: an outsider seeking to
bribe or otherwise influence the outcome would surely wish to deal with such
voters.

Theorem 8 ([8] 195) Order functions are the unique social-grading functions
for which at most one voter may both increase and decrease a final grade.

Given a social-grading function f and a profile of a candidate’s grades r =
(r1, . . . , rn), let µ−

(

f(r)
)

be the number of voters who can decrease the final

grade, µ+
(

f(r)
)

be the number of voters who can increase the final grade,
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and µ
(

f(r)
)

= µ−
(

f(r)
)

+µ+
(

f(r)
)

. Take the measure of manipulability µ of a

social-grading function f to be the worst that can happen, µ(f) = maxr µ
(

f(r)
)

,
so µ(f) ≤ 2n. It is easily verified that µ(fk) = n+ 1 for any order function fk.
By way of contrast, for f a point-summing method µ(f) = 2n.

In fact, the only social-grading functions f for which µ(f) ≤ n + 1 are the
order functions. For assume µ(f) ≤ n+1 and take any r. By monotonicity and
anonymity, if some voter can decrease (respectively, increase) the final grade
then any voter giving at least (at most) that grade can also decrease (increase)
the final grade. So, if more than one voter can both increase and decrease the
final grade, µ(f) ≥ n+2, a contradiction. Therefore, at most one voter can both
increase and decrease the final grade, implying f must be an order function.

Take λ to be the probability a briber wishes to increase the grade and 1 −
λ that he wishes to decrease the grade. Assume that judges have an equal
probability to cheat. A social-grading function is sought that minimizes the
probability that a voter may be found who can effectively raise or lower the
grade in the worst case.

The probability of cheating Ch(f) with f is defined to be

Ch(f) = max
r=(r1,...,rn)

max
0≤λ≤1

λµ+
(

f(r)
)

+ (1− λ)µ−
(

f(r)
)

n
.

What social-grading functions minimize the probability of cheating?

A social-grading function f is middlemost if for r1 ≥ . . . ≥ rn,

f(r1, . . . , rn) = r(n+1)/2 when n is odd, and

rn/2 ≥ f(r1, . . . , rn) ≥ r(n+2)/2 when n is even.

When n is odd, there is exactly one such function, f (n+1)/2. When
n is even, there are infinitely many; in particular, fn/2 is the upper-
middlemost and f (n+2)/2 is the lower-middlemost.

To say a social-grading function f depends only on the middlemost interval
means that f(r1, . . . , rn) = f(s1, . . . , sn) whenever the middlemost interval of
the grades r = (r1, . . . , rn) and the grades s = (s1, . . . , sn) is the same.

Theorem 9 ([8] 229.) The unique social-grading functions f that minimize
the probability of cheating Ch(f) are the middlemost that depend only on the
middlemost interval.

When f is the max or the min order function, or the average function, the
probability of cheating is maximized: Ch(f) = 1. When f is a middlemost
order function, Ch(f) ≈ 1

2 . In this sense, the middlemost cut cheating by half.
The unique meaningful social-ranking functions are the lexi-order functions,

each a sequence of all n order functions that determines the final ranking of the
candidates. Which among the n! of them minimize cheating?
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To determine the ranking between any two candidates, the first order func-
tion decides, unless there is a tie; in which case the second order function decides,
unless there is a tie; in which case the third decides, unless there is another tie;
and so on. The need to use each succeeding order function becomes increasingly
rarer. Accordingly, it is of the first importance to minimize the probability of
cheating in the first order function: by theorem 7 this is accomplished by choos-
ing an order function that is in the (first) middlemost interval: it is unique if n
is odd and one of two if n is even, namely, f (n+1)/2 when n is odd and either
the upper-middlemost fn/2 or the lower-middlemost f (n+2)/2 when n is even.
Given that choice, there are now n− 1 order functions to choose from and the
first importance to minimize the probability of cheating is once again to take a
middlemost of those that remain: it is either unique or one of two. Given the
first two choices, there are n − 2 to choose from, a middlemost must again be
taken, and so on iteratively. To see this more clearly, consider a finite language
of number grades going from a high of 10 to a low of 0 and a candidate who
receives the seven grades {10, 9, 7, 6, 4, 3, 2}. The first order function of a lexi-
order function that minimizes the chance of cheating is the middlemost, in this
case its value is 6. The second that minimizes the chance of cheating is either
the upper- or the lower-middlemost, in this case its value is 7 or 4. If it is the
upper-middlemost (its value 7) the next middlemost is unique (with value 4),
if it is the lower-middlemost (its value 4) the next middlemost is unique (with
value 7).

One may consider, by way of a practical illustration, how the judges might
try to manipulate the outcome to obtain what they believe is a better order-of-
finish by falsifying their grades in the skating competition (see tables 1, 2 and 6).
It is assumed that the grades they gave are honest, and their utility functions
on the order-of-finish is lexicographic: what matters most to each judge is the
winner, next the second place skater, and so on.

What effective manipulations can judges pursue? J1, for example, would like
Savoie in 2nd place, Li in 3rd. He gave Savoie (with majority-grade 10.8) an
11.1: raising Savoie’s grade accomplishes nothing. He gave Li (with majority-
grade 10.9) a 10.8: lowering Li’s grade accomplishes nothing. J1 would like
Weiss in 4th place, Honda in 5th. He cannot lower Honda below anyone. He
can place Weiss in 4th place by increasing his grade to 10.7; but if he increased
it to 10.8, Weiss would leap ahead of Savoie, not at all his intention.

Similar detailed analyses of the possible actions of each judge may be summa-
rized as follows. All judges are contented with the 1st place of Eldredge. None
can change Li’s 2nd place; the only effective manipulations concern skaters in
3rd place or below. Two judges can do nothing (J3, J7); one can realize his
preferred order-of-finish by moving his candidate for 5th place from 3rd place
to 5th place (J2); four can invert the order of two consecutive skaters in the
order-of-finish (J1, J4, J5, J9); one can move his candidate for 2nd place from
6th place to 4th place (J6); and one can move his candidate for 3rd place from
6th place to 3rd place (J8). This comparison with point-summing assumes that
judges only care about the order-of-finish, which is almost certainly false, for
they are likely to give importance to the absolute final scores of the skates if not

33



other considerations as well. Proven in theory, practice confirms that majority
judgment is much better at resisting manipulation than point-summing and so
also in eliciting honesty.

There are some 2n/2 lexi-order functions that minimize the chance of cheat-
ing. Which among them should be chosen?

Heeds the Majority’s Will

The basic idea—a candidate’s majority-grade—is firmly based on the majority’s
will: it is the highest grade α that commands an absolute majority in answer
to the question: “Does this candidate merit at least an α?” Moreover, the
unique social-grading functions that assign a candidate the final grade α if a
majority of voters assign her α are the middlemost functions. But when there
are many voters and a language of relatively few grades the two middlemost
order functions will (almost always) have one value, the majority-grade.

Another basic collective decision idea—a kind of “unanimity”—also singles
out the majority-grade fmaj among the social-grading functions.

A social-grading function respects consensus when all of A’s grades
strictly belong to the middlemost interval of B’s grades implies that
A’s final grade is above B’s final grade.12

The rationale for this definition is that when a jury is more united on the grade
of one alternative than on that of another, the stronger consensus should be
respected by the award of a higher final grade. Or, taking Galton’s perspective,
respecting consensus means denying crankiness by heeding the middle grades
rather than the extreme grades. Recall that the majority-grade fmaj is the
lower-middlemost order function.

Theorem 10 ([8] 216.) The majority-grade fmaj is the unique middlemost
social-grading function that respects consensus.13

A similar concept singles out the majority-ranking ≻maj among the social-
ranking functions. Consider the input grades r1 ≥ · · · ≥ rn. The 1

st-middlemost
interval is the middlemost interval previously defined. The 2nd-middlemost in-
terval is the middlemost interval when the defining grades of the 1st-middlemost
interval are ignored. The kth-middlemost interval is the middlemost interval
when the defining grades of the previous middlemost intervals are ignored. For
example, with the set of grades {10, 9, 7, 6, 4, 3, 2} the 1st-middlemost interval
is [6, 6], the 2nd is [7, 4], the 3rd is [9, 3], and the fourth is [10, 2].

Suppose the grades of A and B are rA = (rA1 , . . . , r
A
n ), r

B = (rB1 , . . . , rBn ).

12A social-grading function respects dissent when all of A’s grades strictly belong to the
middlemost interval of B’s grades implies that A’s final grade is below B’s final grade.

13Letting fo/maj be the upper-middlemost order function there is a similar theorem: fo/maj

is the unique middlemost social-grading function that respects dissent.
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A social-ranking function is a middlemost if A ≻S B depends only
on the set of grades that belong to the first of the kth-middlemost
intervals where they differ.

For example, if A’s grades are those of the example just given and B’s are
{10, 10, 7, 6, 4, 2, 1}, then the first interval where they differ is the 3rd: A’s is
[9, 3] and B’s is [10, 2]. This is a natural extension of the idea of a middlemost
social-grading function that depends only on the middlemost interval.

Suppose the first of the jth-middlemost intervals where A’s and B’s
grades differ is the kth. A social-ranking function rewards consensus
when all of A’s grades strictly belong to the kth-middlemost interval
of B’s grades implies that A is ranked above B, A ≻S B.

Thus, A is ranked above B for the example just given by a SRF that rewards
consensus. This is a natural extension of the idea of respecting consensus for a
social-grading function.

Theorem 11 ([8] 228.) The majority-ranking ≻maj is the unique middlemost,
choice-monotone social-ranking function that rewards consensus.

The choice of the lower-middlemost order function for ranking and electing is
the consequence of seeking consensus, and completes the characterization of
majority judgment.14

But majority judgment fails to satisfy some other properties.

Condorcet-Consistency and the Pure Game of Voting

Majority judgment is not Condorcet-consistent. Consider 2k+1 judges who are
asked to evaluate two competitors, A and B, in a scale of grades [0,20]:

k judges 1 judge k judges
A : 12,. . . ,12, 12, 4,. . . ,4
B : 16,. . . ,16, 8, 8,. . . ,8

A first glance suggests B should be the winner. But A’s majority-grade is
12, B’s is 8 : A—“preferred” by only one voter according to the traditional
paradigm—is the majority judgment winner, whereas B is the overwhelming
majority-winner with 2k votes to A’s 1.

But why should the majority’s will be counted in comparisons rather than in
grades? The majority saysA deserves at least 12 and B at most 8 (in admittedly
close votes). How and why is this less compelling than that a majority prefers
B to A? This is an extremely artificial example: under the impartial culture
assumption (uniform distribution) the probability that half the voters give to

14The less convincing choice of the upper-middlemost order function reverses the alternation.
In the limit the two procedures converge to the same solution—the majority-gauge— so in a
large electorate the results are almost always the same for all middlemost functions (see [8]
pp. 236-239).
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both candidates more than their majority-grade is of the order 1
2k
; moreover,

one judge is supremely decisive: she alone can determine A’s majority-grade to
be any grade from 4 to 12 and B’s any grade from 8 to 16.

The same type of extreme example can be invented to cast doubts about all
of the methods of the traditional model including a majority-winner:

k judges 1 judge k judges
A : 20,. . . ,20, 10, 0,. . . ,0
B : 19,. . . ,19, 9, 19,. . . ,19

A first glance suggests B should be the winner. Yet A is the majority- and
Condorcet-winner (in an admittedly close k + 1 to k vote), whereas B is the
clear majority judgment winner with a majority-grade of 19 to A’s 10.

But the most used or advocated methods all fail to elect a majority- or
Condorcet-winner when she exists:

• Approval voting. Suppose all voters give ticks to candidates whose grade is
10 or better: A wins though B is the majority-winner in the first example,
B wins though A is the majority-winner in the second example.

• Point-summing. In the second example B wins though A is the majority-
winner.

• Borda’s method, first- and two-past-the-post, the alternative vote (or
IRV). It is well known that they all can fail to elect a Condorcet-winner.

In any case, every Condorcet-consistent method necessarily admits the Ar-
row or the Condorcet paradox. When both paradoxes are sure to be avoided
Theorem 2 shows permuting the grades of candidates cannot change the winner.
But consider the first example: when the first k judges’ 12 ’s for A are exchanged
with the last k judges’ 4 ’s for A, the candidates’ sets of grades are the same,
yet A becomes the majority-winner instead of B.

Thus no method currently advocated is Condorcet-consistent when the in-
puts of voters are honest. However, when voters are viewed as purely rational
agents who seek to maximize their expected utilities and the utilities depend
only on the identity of the winner, the situation is close to the exact opposite.
To describe it several concepts must be introduced.

A candidate C is a strong-equilibrium winner if no coalition of voters can
deviate from their strategies and thereby elect a candidate they prefer to C [2].
This definition of equilibrium is particularly apt for elections since groups of
voters act in concert. A method of election is majoritarian if for any candidate
C, any absolute majority of voters have a strategy that elects C whatever the
strategies of the other voters.

Theorem 12 ([8] 353-355.) A candidate C is a strong-equilibrium winner
with a majoritarian method if and only if C is a Condorcet-winner; moreover,
only a majoritarian method can implement the Condorcet-winner as a strong-
equilibrium winner.
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The methods of Condorcet, first- and two-past-the-post, approval voting,
the single transferable vote, majority judgment, and point-summing methods
are all majoritarian methods, but Borda’s is not. Somewhat more may be
claimed for majority judgment: there is a strong-equilibrium that elects the
Condorcet-winner C with her true (honest) majority-grade and every candidate
is assigned a majority of honest grades ([8], p. 357). But the upshot is that
any “reasonable” method elects the Condorcet-winner when she exists, showing
Condorcet-consistency is not a property that convincingly separates the wheat
from the chaff, good methods from bad (except for Borda’s method).

The No-Show Paradox

Majority judgment admits the no-show paradox : candidate A wins, a late voter
arrives who prefers A to B, his vote makes B the winner (alternatively, he
leaves). The following example shows it can occur with majority judgment:

A’s grades: 20 17 15 15 12 11 7
B’s grades: 18 17 16 14 13 10 5

A’s majority-grade is 15, B’s 14. If a late voter arrives and assigns 6 to A

and 4 to B then A’s majority-grade becomes 12, B’s 13, so B wins though the
late voter rated A above B. The one substantive argument against majority
judgment that reviews of the book [8] have raised is that it admits this paradox
[25, 12, 16]. Is this important? We believe not for many reasons.

First, the no-show paradox is unimportant in a large electorate because it
is less likely to occur than a tie in first-past-the-post. And in a small jury the
problem does not arise because all judges must participate.

Second, there is an implicit assumption in accepting the very idea of the
paradox, namely, that only the winner counts. Note that the voter who assigned
6 to A and 4 to B in the above example exerted an influence: she decreased the
final-grades of both A and B bringing them closer to her evaluations. Perhaps—
since in any case she did not believe either merited high grades—that was more
important to her than which of the two wins.

Third, the paradox can occur only when the late voter sees relatively little
difference between the two and assigns both low or both high grades:

Theorem 13 ([8] 287) Suppose A’s majority-grade is α, B’s is β and that A
is the winner. If a new voter gives α or a higher grade to A and a lower grade
than α to B—or if she gives β or a lower grade to B and a higher grade than
β to A—then A remains the winner and the no-show paradox does not occur.

Fourth, the no-show paradox is but a particular instance of the violation
of a more general property. A method is participant-consistent if it avoids the
no-show paradox. More generally, it is join-consistent when A is ranked above
B in each of two separate parts of an electorate implies A is ranked above
B in the combined electorate. Majority judgment is not join-consistent (as
already shown). But in the context of the traditional model all Condorcet-
consistent methods violate join-consistency (see [8] 76-79 and [39] 237-239). In
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the new model the only join-consistent methods are point-summing methods
([8] 294-301) but they must also be rejected since meaningless as well as highly
manipulable.

Fifth, join-consistency is not an overwhelmingly convincing property because
when it is violated by majority judgment the two parts of the electorate—
that agree on the ranking of two candidates—give the candidates very different
distributions of the grades.

A social-grading function f is grade-join-consistent if f(α1, . . . , αn) ≥
γ and f(β1, . . . , βk) ≥ γ implies f(α1, . . . , αn, β1, . . . , βk) ≥ γ.

Theorem 14 ([8] 289) The candidates’ majority-grades (α) and signed major-
ity-grades (α±) are grade-join-consistent.

So in particular, when A wins with a majority-grade of at least α and the other
candidates have lower majority-grades, A wins in the combined electorate; and
when A defeats B in two electorates—each of them having the same signed
majority-grade in both electorates—A defeats B in the combined electorate.
There is consistency in combined evaluations and most often also a consistency
in orders.

Sixth, approval voting advocates have repeatedly based their objection to
majority judgment on the no-show paradox (e.g., see [16]), claiming AV is free
of such drawbacks. But it is not. Why does the paradox shock? Because more
support hurts. Generalize the idea and call it the no-show syndrome: more
support hurts or more support that could help doesn’t help. Approval voting is
obviously subject to the no-show syndrome. For suppose A and B are tied in
ticks and that a late voter arrives who believes A has higher merit than B but
both are worth a tick or both are not worth a tick. Then he could be decisive
but isn’t. In essence this is the same example as that showing MJ admits the
no-show paradox; and, as with MJ, if the late voter sees a real difference between
A and B, in the AV case giving one of them a tick and not the other, then the
no-show syndrome does not occur. The counter argument is that a late AV
voter is hardly ever in the position of being decisive. That is obviously true,
but a MJ voter is even more rarely in the position of being able to provoke the
no-show syndrome (as confirmed in several practical examples below).

Faithful Representation

The idea that words, phrases or numbers can be found that faithfully represent
judges’ or voters’ evaluations of competitors is essential to the successful use of
majority judgment. Regrettably there is no direct, practical experiment to test
the proposition that voters have common understandings of the scale of grades.
Along with others, an AV advocate has expressed the opinion that it is a “tall
order” to believe voters will have common understandings of grades in elections
(though he accepts judges can and do in other competitions); and moreover that
“[In] many political elections, I’m afraid, voters would . . . [give] their favorites
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the maximum grade and their most serious competitors the minimum grade
. . . ”15 [16]. We disagree for many reasons.

A scale of six or seven ordinal grades expressed in words whose meanings to
voters in an election are about the same elicits, we believe, much more accurate
expressions of their opinions than either single votes, several votes, or rank-
orders. Of course, no yard-stick is perfect: in measuring the length of a table, a
doubt may well remain, is it 31.6 or 31.7 inches? Every measure is approximate,
as are the words of any language: “Blue” is understood by all; yet to one its
evocation may elicit the deep blue of the sea on a winter’s day, to another the
hazy baby-blue of the sky on a hot, humid summer day. Whereas a voter might
at times hesitate between Very Good and Good, a confusion between Excellent
and Good or Very Good and Acceptable is doubtful. Hesitations between neigh-
boring grades are more likely due to the approximations of the scale than to a
lack of understanding of their meanings.

There is ample empirical evidence showing such common scales of evalua-
tion exist in virtually all competitions other than elections: piano, wine, figure
skating, gymnastic, film, student,. . . . Usually they use number scales carefully
defined in words (and invariably they err by treating ordinal measures as though
they were interval measures). Why accept that judges have the ability to assign
grades but not voters?

Experiments carried out in parallel with the 2007 and 2012 French presiden-
tial elections [5, 8, 27], in parallel with the French Socialist Party’s presiden-
tial primaries [7, 27], in French national polls [7, 50] and on French web sites
[43, 47, 48] (some of which are described in this paper), have shown voters are
perfectly at ease in evaluating candidates in a scale of six or seven grades. Their
voting “behavior” is much the same in all of the experiments. Voters very rarely
give only high and low grades; they rarely use all the grades so as to distinguish
(and rank-order) all the candidates; between a quarter and a third of them give
their highest grade to at least two candidates; in multi-party elections they are
very parsimonious with high grades, indeed the lower the grade the more it
is used; in party elections the grades used are well above those of multi-party
elections; “gaps” in the grades of a candidate have never appeared. All of this
supports the claim that for voters grades have absolute meanings. Critics may
ascribe this behavior to the fact that these were experiments, not real elections,
so voters expressed their true opinions and not strategically chosen grades. But
in the real uses of MJ for which we have relevant data (e.g., the Louis Lyons
Award described in detail below) the behavior was essentially the same.

There are good reasons for this behavior. Voters do not care only about the
winner: they also care about a lot more such as the candidates’ final grades
and the order of finish among all. With at least three candidates many voters
will surely use more than only the highest and lowest grades not only because
of their honest opinions but also for strategic reasons (e.g., if they value A well
above B and B well above C, giving the highest grade to A and B may harm A

15One cannot help but remark that if that were the case then the method would amount to
approval voting.
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and giving the lowest grade to B and C may harm B should A not be elected).
This is true even with only two candidates: a voter may not care for either
candidate (or care for both) but prefer one over the other, yet there is no reason
to believe she would systematically give the highest grade to one, the lowest to
the other for she may wish that both candidates realize they are not (or are)
held in high esteem.

Wittegenstein’s precept, “the meaning of a word is its use in the language,”
clearly verified in the use of scales of evaluation in all other competitions, can
be expected to hold in elections as well. Moreover, there is circumstantial evi-
dence supporting the hypothesis that the meanings of grades are shared. First,
the results in all of the experiments have made sense and were consistent with
themselves and the known facts. Second, the actual usage of the grades has
been consistent with the hypothesis of common meanings in that each of the
various grades—from Excellent down to to Reject—are used with very close to
the same frequencies (see chapter 15 [8], [5]). Third, in primaries—where par-
tisan voters evaluated their leaders—the grades assigned were markedly above
those used in elections with candidates spanning the electoral spectrum (as may
be seen below). Quoting Heisenberg (faced with a similar difficulty in arguing
for the uncertainty principle), “We believe we have gained anschaulich [intu-
itively intelligible, visualizable] understanding of a [theory] if . . . we can grasp
the experimental consequences qualitatively and see that the theory does not
lead to contradictions.”

The importance of a scale of several grades to faithfully represent voters’
opinions is supported by another experiment [27]. Conducted in parallel with the
first round of the French presidential election April 22, 2012, voters were asked
to vote with AV in Fresnes’s bureau #12—“tick the candidates you Approve”—
and with DisAV in its bureau #14—“tick those candidates you Disapprove”
(see table 11).

First-past-the-post AV DisAV
Bur. #12 Bur. #14 Bur. #12 Bur. #14

1 Hollande 39.8% 37.9% (1) 58.3% (1) 24.3%
2 Sarkozy 21.3% 19.0% (4) 25.9% (4) 50.4%
3 Mélenchon 13.7% 15.6% (2) 42.6% (3) 36.5%
4 Le Pen 10.6% 12.2% (6) 12.9% (10) 75.9%
5 Bayrou 7.8% 10.0% (3) 33.7% (2) 28.7%

Table 11.16 Results, first-past-the-post, AV and DisAV (order of finish in
parentheses), French 2012 presidential election, Fresnes, April 22, 2012.

The first-past-the-post results in the two bureaus give substantially similar re-
sults and the same orders of finish (among all ten candidates, except that in one
bureau two minor candidates are tied). However, AV and DisAV give different
orders. Approval and Disapproval do not carry opposite meanings: their sum

16460 voters participated in bureau #12 (60% of those who voted officially); 422 participated
in bureau #14 (64% of those who voted officially).
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for a candidate should be 100% (about) but is consistently well below. Why?
Voters, it seems, have intermediate evaluations that are neither Approve nor
Disapprove but are unable to express them. Two grades are not faithful, they
do not resolve the representation problem: at least three grades are necessary.

Majority judgment as hereto described forces a voter to express an opinion
since no expression is counted as to Reject. It is possible to permit No opin-
ion but for most applications—including political elections—we believe voters
should be forced to express opinions. This at once encourages voters to make
the effort to evaluate all candidates and incites candidates to address all vot-
ers. There are, however, situations where No opinion is a perfectly acceptable
opinion (or when there are juries of different sizes judging one competition,
e.g., wines). In such cases the option should be made explicitly, a “grade” of
No opinion appearing on the ballot. The issue then becomes how such grades
are to be counted. One procedure that could be used for a small jury or a
large electorate is to replace each of a candidate’s No opinion by the majority-
grade of the opinions that are expressed (see [8] pp. 230-233). This means that
the candidate’s majority-gauge in numbers (not percentages) is exactly that of
the expressed opinions. Another procedure for a large electorate is to use the
majority-gauges of the expressed opinions in percentages ([8] pp. 248-249). This
amounts to interpreting the expressed opinions as a sample of the electorate’s
opinion. What is best to do in practice depends on the application. Note than
when No opinion is counted as to Reject, a completely blank ballot can effect an
election—which may be a good thing since it encourages participation—whereas
it cannot for the other two procedures.

Article 11 of the Déclaration des droits (1789) states: “The free commu-
nication of thoughts and opinions is one of the most precious rights of man.”
A faithful representation of opinions requires giving voters the opportunity to
express their opinions as accurately as possible. This is limited only by the
necessity of a language of grades that is common to all voters. Research in
cognition suggests seven grades plus or minus two [38] is the optimal number
for most situations where ordinary mortals are involved. In contrast, practi-
cal experience where a small number of expert judges evaluate skating, diving,
gymnastics, piano performances, or wines, for instance, suggests that as many
as twenty-five or even forty grades can be distinguished by them. The evidence
to date suggests six is the optimal number in political elections [8, 5, 50].

3 Majority Judgment vs. Other Methods in Use

Approval voting (AV) was predicted in 1980 to become “the election reform
of the twentieth century” (a prediction recently changed to the twenty-first
century [15]). The three main claims for AV were: (1) “while AV often will
do no more than confirm plurality winners, in doing so it will confer legitimacy
on their victories to the extent that it shows their support to be widespread in
the electorate;” (2) “it would help elect the strongest candidate, . . . ,” having
“a strong propensity to elect . . . Condorcet[-winners];” and (3) “AV . . . provides
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the voter with more flexible options and thereby encourages a truer expression
of preferences than does plurality voting” ([17], pp. 8,10,4). None of these
promises, in our opinion, has stood the test of time.

Percent of ballots Percent of Official vote
with ticks all ticks first-round

Lionel Jospin 40.5% 12.9% 19.5%
Jacques Chirac 36.5% 11.6% 18.9%
François Bayrou 33.5% 10.7% 9.9%
Jean-Pierre Chevènement 30.3% 9.6% 8.1%
Jean-Marie Le Pen 14.6% 4.6% 10.0%

Table 12. Approval voting experiment, French 2002 presidential election.

AV winners are often not shown widespread legitimacy; in particular, they
often do not obtain ticks from a majority of the electorate. One example is an
experiment conducted in parallel with the French presidential election of 2002
(that we organized with other colleagues at a time when the arguments in favor
of AV seemed persuasive, see [8], section 18.4). There were sixteen candidates
and over 2,500 persons participated (78% of those who voted officially in six
voting precincts of two towns, having no pretense of being representative of
all of France). In the official first-round plurality vote, five candidates each
obtained at least 8% of the votes (see table 12), eleven had smaller percentages.
The three candidates having at least 10% all decreased in their shares of total
ticks whereas the thirteen others all increased in their shares of total ticks. No
candidate came near to obtaining ticks from a majority of the electorate and it
is doubtful that Jospin’s margin of 40.5% to Chirac’s 36.5% conferred him any
more legitimacy than the margin of 19.5% to 18.9%; indeed, it may be argued
that his much narrower margins over Bayrou and Chevènement conferred less.

A second example is an election of the president of the Social Choice and
Welfare Society (the professional society of the specialists of voting theory).
Members were instructed “You can vote for any number of candidates by ticking
the appropriate boxes” in an election with three candidates. 71 members voted:
the candidates’ scores were 32 ticks for A, 30 for C, and 14 forB, no AVmajority.
Members were also asked to indicate their preference-orders to permit the results
to be analyzed. 52 complied, showing the profile of preferences to be:

13 : A ≻ B ≻ C 11 : A ≻ C ≻ B 9 : B ≻ C ≻ A

11 : C ≻ A ≻ B 8 : C ≻ B ≻ A

There were 22 ticks for A, 20 for C and 9 for B—no AV majority, no resounding
legitimacy—also electing A, and denying the Condorcet-winner C.17

A third example concerns French Socialist Party presidential primaries (de-
scribed in more detail below). Voters favorable to the left used AV in an election
with five candidates. Their AV ticks were: 87%, 85%, 64%, 53%, 53%, and 26%

171 voter approved two candidates, 49 approved one, 2 approved none.
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(the last the only non-Socialist among them). While the previous examples sug-
gested a lack of legitimacy, here all Socialist candidates were supported by clear
majorities, the top two with overwhelming majorities that hardly distinguished
between them. Does 87% vs. 85% confer an unassailable legimacy? We believe
not. Together these examples show claims (1) and (2) for AV are doubtful.

AV has always been presented as an extension of plurality voting and in
terms of the traditional paradigm: voters are asked to “tick” candidates, the
one with the most ticks wins—as practiced by the Social Choice and Welfare
Society or INFORMS whose bylaws state, “each voter may vote for any number
of candidates for an office and the individual elected shall be the one receiving
the largest number of votes”—and the analysis is given in terms of comparing
candidates. There is no hint that ticks have an absolute meaning; indeed, there
is a deliberate intent to give no meaning to a tick at all other than it will
be counted, emphasizing thereby its strategic, comparative nature. Had the
proponents of AV thought Approve has absolute meaning they would certainly
have claimed that Arrow’s paradox is avoided.

When a tick is given absolute meaning we have renamed the method approval
judgment [8] because AV becomes MJ with only two grades, and so inherits all
of the desirable properties of MJ. There is a very fundamental difference in
conception—in the model, the analysis and the conclusions— when inputs have
absolute meanings as all of the preceding discussion shows. In the Preface
of a 2010 book AV advocates seem to have accepted this view: “the idea of
judging each and every candidate as acceptable or not is fundamentally different
from either” plurality voting or “allowing voters to rank candidates” [15]. But
why limit the judgment to accept/not accept or pass/fail? This could not be
considered reasonable for judging wines or skaters, so why does it make sense for
judging candidates to political offices? Because there are many more voters in
an electorate than judges in a jury, and by some magical “law of large numbers”
a scale of two levels is sufficient? Experiments described below belie this hope.

MJ provides the voter with more flexible options and thereby encourages,
we believe, a much truer expression of evaluations than does AV: in any case,
claim (3) for AV pales in comparison.

2009 Louis Lyons Award for Conscience and Integrity in Journalism. A real
use of MJ further clarifies the contrast between the two methods. The nominees
for the Lyons prize were ranked, as was mentioned before, using MJ. The Nie-
man Fellows at Harvard University traditionally decide to whom this award is
given. The five nominees were all very highly regarded, so the Fellows decided
to use the scale of seven grades given in table 13.

As Louis Lyons Award designate, having taken into account
all relevant considerations, I believe in conscience that this nominee is:

Absolutely Outs- Excel- Very Strong Commen- Neut-

Outstanding tanding lent Strong dable ral

Nominee

Check one grade in the line of each nominee. No check is interpreted to mean Neutral .

Table 13. Ballot for the Louis Lyons Award, 2009 (one line for each nominee).
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Judges’ grades are in table 14. Ci’s represent nominees, Absolutely Outstand-
ing is encoded by 6, Outstanding by 5, down to Neutral by 0. The numbers of
each grade given each nominee are given in table 15 together with the nominees’
majority-grades and -gauges, and the majority-ranking.

Judge C1 C2 C3 C4 C5 Judge C1 C2 C3 C4 C5

J1 4 5 5 3 3 J2 5 5 6 3 4

J3 6 5 5 5 5 J4 6 6 6 6 5

J5 6 5 4 4 5 J6 2 5 6 1 3

J7 6 5 6 5 2 J8 6 5 5 6 5

J9 5 0 0 0 0 J10 5 1 5 6 1

J11 5 3 4 3 6 J12 6 6 6 5 5

J13 3 0 0 4 0 J14 6 4 3 0 0

J15 6 5 0 0 0 J16 3 5 6 2 2

J17 6 2 2 2 2 J18 6 5 5 5 5

J19 6 5 4 4 2

Table 14. The ballots, Louis Lyons Award, 2009.

Grades: C1 C2 C3 C4 C5

6 ’s: 11 2 6 3 1
5 ’s: 4 11 5 4 6
4 ’s: 1 1 3 3 1
3’ s: 2 1 1 3 2
2 ’s: 1 1 1 2 4
1 ’s: – 1 – 1 1
0 ’s: – 2 3 3 4

Majority-grade 6 =Abs.Outs. 5 =Outs. 5 =Outs. 4 =Exc. 3 =V.Str.

Majority-gauge (−−,6, 8) (2, 5−, 6) (6, 5−, 8) (7, 4−, 9) (8, 3−, 9)
Majority-ranking First Second Third Fourth Fifth

Table 15. Majority judgment results, Louis Lyons Award, 2009.18

C1 is the clear winner: her grades stochastically dominate every other nom-
inee.19 C1 is also the clear MJ-winner, the one candidate with a majority-grade
of Absolutely Outstanding, and though C2 and C3 are close for second-place
they are clearly distinguished. The behavior of the nineteen judges in this real
use of MJ is very similar to that of voters in electoral experiments: only one
judge gave different grades to all nominees (so eighteen gave the same grade to
at least two); three judges did not use the highest grade; four gave their highest
grade to at least two nominees; and contrary to the predictions of some critics,
judges are far from limiting themselves to the highest or lowest grades.

If AV were used by this jury in this situation it seems reasonable to assume
Approve would mean Excellent or above. This would give the AV-scores in
table 16. C1 wins with a margin of 2—though she is in fact far away in the
lead—and there is a tie for runner-up. It is only in such situations—a tie or
a small difference—that the no-show syndrome can arise and it is much more
likely to occur with AV than with MJ. This is immediately evident since MJ

18In fact the winner of the award was a group of Afghan journalists.
19Candidate A stochastically dominates candidate B if for every grade α, A’s percentage of

α’s and above is at least as high as B’s and is higher for at least one grade.
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elicits more information so avoids ties more than AV. Suppose here that any
one of the six judges J2, J5, J6, J7, J16, or J19 is the late judge. With AV the
remaining judges place C1 first, C2 and C3 tied for second in every case. So
each of the six judges can be decisive between C2 and C3 but isn’t (since their
evaluations are indistinguishable with AV): each represents an occurrence of the
no-show syndrome. None of the six provokes the syndrome with MJ. Experi-
mental evidence supports this: with 101 voters the chance of AV producing a
tie varied from 3.3% to 6.9%, the chance of the majority-gauges to produce a
tie (not the majority-values) was about 0.1% ([8], p. 343).

C1 C2 C3 C4 C5

16 14 14 10 8

Table 16. Approval voting results, Louis Lyons Award, 2009, with Approve

meaning at least Excellent (the 3 highest of 7 grades).

Recent experiments associated with the French presidential election of 2012
confirm these points. On October 9, 2011 the Socialist Party held the first-round
of a primary election to designate its candidate for the French presidency. The
run-off between the two leading candidates was held one week later, October 16,
François Hollande winning with 56.6% of the votes to Martine Aubry’s 43.4%.
Under our direction École Polytechnique students conducted experiments in
parallel with the official vote designed to compare methods [27]. The experi-
ments were held in voting bureaus of Alfortville and Fresnes, two small towns
close to Paris.

Primaries, Alfortville: MJ vs. AV. 284 persons (61.3% of those who voted
officially) participated. They were asked to vote by two different methods—
MJ and AV—on a ballot printed on one page: at the top the MJ ballot (table
17a), at the bottom the AV ballot (table 17b). Instead of the usual neutral
instructions voters were asked to either approve or disapprove candidates.

Ballot (Majority Judgment)

To be the candidate of the Socialist Party in the presidential election of 2012,
having taken into account all relevant considerations,
I judge, in conscience, that this candidate would be:

Excellent Very Good Good Acceptable Poor to Reject

Candidate

Check one single grade in the line of each candidate.

No check in the line of a candidate means to Reject the candidate.

Table 17a. Majority judgment ballot, French Socialist primaries, October
9, 2011 (one line for each candidate).

Finally, at the bottom of the ballot participants were asked to answer two
further questions: # 1 : Which candidate did you vote for in the official vote?
# 2 : With which system do you believe you were better able to express your
opinions?
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Ballot (Approval Voting)

For each of the following, candidates to represent the
Socialist Party in the presidential election of 2012, I declare that I:

Approve of Disapprove of
his/her election his/her election

Candidate

No check in the line of a candidate means to disapprove him/her.

Table 17b. Approval voting ballot, French Socialist primaries, October 9,
2011 (one line for each candidate).

The MJ grades are given in table 18. The order of the candidates leaves no
doubts: from the top down every candidate stochastically dominates the succes-
sor with two exceptions: Royal has more Excellents than Valls and Montebourg.
The MJ and AV results are given in table 19. “Approval voting” gives the per-
centages of ballots that Approve each of the candidates; “Approval judgment”
gives the percentages of MJ-ballots that are Good or above; “Reported votes”
answers question #1 or how the 284 participants said they voted in the official
election with first-past-the-post; and “Actual votes” means how all 463 voters
actually voted in the official election.

Excellent Very Good Good Acceptable Poor to Reject

Hollande 40.1% 34.5% 12.3% 7.0% 2.5% 3.5%
Aubry 33.1% 36.3% 12.7% 7.4% 3.5% 7.0%
Montebourg 12.0% 27.8% 23.9% 13.7% 11.6% 10.9%
Valls 10.9% 17.6% 26.8% 16.2% 12.0% 16.5%
Royal 12.3% 14.8% 25.7% 18.0% 12.0% 17.3%
Baylet 1.4% 4.6% 14.4% 21.1% 29.6% 28.9%

Table 18. MJ grades, French Socialist primaries, Alfortville, 2011.

Majority Majority- Approval Approval Reported Actual
judgment gauge voting judgment votes votes
1 Hollande (40.1%,Good+, 25.4%) 87.3% 87.0% 37.7% 39.7%
2 Aubry (33.1%,Good+, 30.6%) 85.2% 82.0% 29.2% 28.9%
3 Montebourg (39.8%,Accept.+, 36.3%) 64.1% 63.7% 12.5% 12.3%
4 Valls (28.5%,Accept.−, 44.7%) 53.2% 55.3% 10.0% 8.6%
5 Royal (27.1%,Accept.−, 47.2%) 53.5% 52.8% 10.3% 9.7%
6 Baylet (41.7%,Poor+, 28.9%) 25.7% 20.4% 0.4% 0.7%

Table 19. Results, French Socialist primaries, Alfortville, 2011.

MJ gives more clear-cut results than AV simply because it is based on more
detailed information.20 With AV the top two candidates are both overwhelm-
ingly approved by close scores: the top candidate does not emerge as a clear
winner and a majority approves of every Socialist candidate (Baylet is a member
of another party). But in more competitive elections, majorities often approve
of no candidate.

20It has been suggested that MJ admits many ties because candidates have the same
majority-grade. With this perspective AV has even more ties because either a majority of
the electorate accords Approve or not, so in table 18 five candidates are tied. In fact, MJ
measures with the majority-gauge and AV measures with the number of Approve.
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No. Approve 0 1 2 3 4 5 6
No. ballots 6 23 69 85 55 46 0
Percentage ballots 2.1% 8.1% 24.3% 29.9% 19.4% 16.2% 0%

Table 20. Distribution, number of Approve, French Socialist primaries,
Alfortville, 2011.

The AV ballots of the participants were always consistent with the MJ ballots
in that when a candidate with a certain grade α was given Approve then any
candidate with a grade of α or above was given Approve as well, although the
voters’ threshold-grades—where they begin to Approve—differed widely. On
average, voters gave 3.7 candidates an Approve. The distribution of the numbers
of Approve on ballots are given in table 20.

Excellent Very Good Good Acceptable Poor to Reject
24 72 94 54 28 12

8.5% 25.4% 33.1% 19.0% 9.9% 4.2%

Table 21. Distribution, thresholds for Approve, French Socialist primaries,
Alfortville, 2011.

Statistically, the voters’ behavior is roughly consistent with an Approve mean-
ing Good or better as shown by the similarity between “Approval voting” and
“Approval judgment” in table 19. However, the ballots show the thresholds for
Approve varied as in table 21.

So why choose the most restrictive possible set of grades when the aim is
to select the best possible candidate? In answer to question #2, 179 (or 63%)
believed they were better able to express their opinions with MJ, 89 (or 31%)
with AV, and 16 (or 6%) did not answer.

The data base of 284 ballots permits empirical evaluations of the extent to
which the various methods combat manipulability. 10,000 random samples of
101 (or 151) ballots are taken. Among them 30% of those who prefer the runner-
up to the winner change their votes, giving the highest possible grade or place in
the ranking (depending on the method) to the runner-up and the lowest possible
grade or place in the ranking to the winner. The rate of successful manipulation
is the percentage of times this gives the runner-up the victory (see table 22).

101 ballots 151 ballots
Majority judgment 0% 0%
First-past-the-post 0% 0%
Approval voting 33.2% 75.8%

Table 22. Rates of successful manipulation, French Socialist primaries,
Alfortville, 2011.

The 0% rate of manipulation with MJ and first-past-the-post is in part due to
the comfortable lead of Hollande with both those methods, whereas with AV
the top two finishers are very close.
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Primaries, Fresnes: MJ vs. Condorcet and Borda. 457 persons (or 76.9% of
those who voted officially) participated. They were asked to vote by MJ using
seven grades, Outstanding added, above the others; to rank-order the candidates
by assigning a 1 to the first, a 2 to the second, . . . , and a 6 to the last; and to
designate the candidate to whom they gave their vote.

First-past-the-post gives the impression of a very close race between Hollande
and Aubry with Montebourg well behind the two front-runners, whereas MJ
reveals that Hollande is the clear victor and Montebourg is not far behind
Aubry (table 23). The Condorcet and Borda methods (table 24) agree but
narrowly elect Aubry—in a direct vote against Hollande she obtains 50.2%—
whereas Hollande is the MJ winner. Practice shows what was illustrated earlier
in theory: majority voting can elect a candidate who is not judged to be the
best according to the evaluations of the electorate.

Majority judgment Majority-gauge First-past-the-post
1 Hollande (18.2%,Excellent−, 49.7%) 35.7%
2 Aubry (48.5%,Very Good+, 20.2%) 34.5%
3 Montebourg (33.7%,Very Good−, 39.1%) 18.5%
4 Royal (37.5%,Good−, 38.9%) 6.0%
5 Valls (36.4%,Good−, 40.4%) 5.3%
6 Baylet (27.2%,Acceptable−, 48.2%) 0.0%

Table 23. Results, MJ and first-past-the-post, French Socialist primaries,
Fresnes, 2011.

Condorcet- Borda-
ranking Aubry Hollande Montebourg Royal Valls Baylet ranking
1 Aubry – 50.2% 68.5% 85.0% 85.9% 95.5% 77.0%
2 Hollande 49.8% – 65.3% 85.4% 87.1% 94.8% 76.5%
3 Montebourg 31.5% 34.7% – 68.3% 69.0% 91.8% 59.1%
4 Royal 15.0% 14.6% 31.7% – 54.7% 78.2% 38.1%
5 Valls 14.1% 12.9% 31.0% 45.3% – 78.9% 36.4%
6 Baylet 4.5% 5.2% 8.2% 21.8% 21.1% – 12.2%

Table 24. Results, Condorcet and Borda Methods, French Socialist pri-
maries, Fresnes, 2011. “Borda-ranking” gives the average of a candidate’s
percentages of the vote against all other candidates.

The rates of successful manipulation, drawing random samples from 457
ballots, are given in table 25. As confirmed by other experiments, Borda’s
method is highly manipulable. With every method this rate will augment as
the margin of victory diminishes, but MJ consistently better resists than other
methods, as confirmed here (see also [8, 34]).

101 ballots 151 ballots
Majority judgment 10.7% 44.1%
First-past-the-post 17.8% 50.1%
Borda’s method 99.9% 100.0%

Table 25. Rates of successful manipulation, French Socialist primaries,
Fresnes, 2011.
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French presidential poll, April 12-16, 2012. Terra Nova sponsored another
national poll conducted by OpinionWay shortly before the official first-round of
the election (held April 22). 993 participants voted with three methods: first-
past-the-post, direct face-to-face votes among the five principal candidates—
permitting calculation of their Condorcet- and Borda-rankings—and majority
judgment. To analyze data close to “reality” a subset of 773 ballots was ex-
tracted whose first-past-the-post vote is within 0.1% of the true April 22 vote.

The results are in tables 26 and 27. Table 26 also gives the figures from an
approval voting experiment conducted in several voting bureaus (of Strasbourg,
Saint-Etienne and Louvigny, with 2,340 participants) in parallel with the ac-
tual vote on April 22 that were adjusted to the first-round national vote (by a
procedure explained by its authors [10]), which permits comparisons of the re-
sults. (1) The MJ-, Condorcet- and Borda-rankings (among the five important
candidates) are identical but differ from first-past-the-post and AV, suggest-
ing once again that the latter two measure badly. (2) Whereas MJ, Condorcet
and Borda put Bayrou comfortably ahead of Sarkozy, AV places him behind.
(3) With AV two candidates have almost identical scores and three very close
scores—increasing the possibility of successful manipulation—while MJ (and to
a lesser degree Condorcet and Borda) determine unequivocal orders. (4) AV
puts the extreme right candidate Le Pen fifth whereas MJ places places her
close to the bottom because of her overwhelming number of to Reject (47.63%).

Majority Majority- First-past-the- AV-
judgment gauge post score score
1 Hollande (45.05%,Good+, 43.28%) (1) 28.63% (1) 49.44%
2 Bayrou (34.06%,Good−, 40.71%) (5) 9.09% (3) 39.20%
3 Sarkozy (49.25%,Acceptable+, 39.62%) (2) 27.27% (2) 40.47%
4 Mélenchon (42.47%,Acceptable+, 40.43%) (4) 11.00% (4) 39.07%
5 Dupont-Aignan (40.57%,Poor+, 33.92%) (7) 1.49% (8) 10.69%
6 Joly (36.77%,Poor−, 38.53%) (6) 2.31% (6) 26.69%
7 Poutou (26.19%,Poor−, 45.73%) (8) 1.22% (7) 13.28%
8 Le Pen (46.13%,Poor−, 47.63%) (3) 17.91% (5) 27.43%
9 Arthaud (24.83%,Poor−, 49.93%) (9) 0.68% (9) 8.35%
10 Cheminade (48.03%, to Reject ,−) (10) 0.41% (10) 3.23%

Table 26. Results, MJ and first-past-the-post, French 2012 presidential
election, OpinionWay poll, April 12-16, 2012 (773 ballots)21 ; and AV
scores, Strasbourg et al experiment.

Condorcet- Borda-
ranking Hollande Bayrou Sarkozy Mélenchon Le Pen ranking

1 Hollande – 51.6% 53.9% 68.5% 64.1% 59.5%
2 Bayrou 48.4% – 56.5% 59.4% 70.5% 58.7%
3 Sarkozy 46.1% 43.5% – 50.5% 65.7% 51.4%
4 Mélenchon 31.5% 40.6% 49.5% – 59.7% 45.3%
5 Le Pen 35.9% 29.5% 34.3% 40.3% – 35.0%

Table 27. Results, Condorcet and Borda Methods, French 2012 presiden-
tial election, OpinionWay poll, April 12-16, 2012 (773 ballots).

21The MJ ranking with all 993 ballots differs as follows: Bayrou is ahead of Hollande and
Le Pen—to Reject—drops to 9th.
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In Conclusion

Terra Nova—“an independent progressive think tank whose goal is to produce
and diffuse innovative political solutions in France and Europe”—proposed ma-
jority judgment in its recommendations for reform of the presidential election
system in France [50]. Majority judgment has also been used in a variety of
other contexts: (1) Electing members of the British Academy (the UK’s national
academy for the humanities and social sciences). (2) Determining the priority
order of applicants for professorial positions in departments of economics and
statistics of the University of Montpellier 2 and Paul Valery University.22 (3)
Classifying wines—and attributing them gold, silver and bronze medals—at the
annual Les Citadelles du Vin competition. (4) Voting on the web in the first-
round of France’s Socialist presidential primary (designed by others for two
different sites, [43, 47]) and the first-round of the French presidential election
[48].

Practice and theory show, we believe, that majority judgment should be
adopted as the mechanism to use by juries that judge (figure skaters, wines,
pianists, films, . . . ) and electorates that elect (officers of INFORMS, France, the
United States, . . . ). Others hold opposite opinions. This suggests the need for
further investigation, theoretical and practical, and in particular repeated real
uses of majority judgment in a variety of applications that admit comparisons
with other methods.
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[38] Miller, G. A. 1956. The magical number seven, plus or minus two: some limits
on our capacity for processing information. Psychological Review 63 81-97.

52



[39] Moulin, H. 1988. Axioms of Cooperative Decision-Making. Monograph of the
Econometric Society. Cambridge University Press, Cambridge, U.K..

[40] Moulin, H. 1980. On strategy-proofness and single peakedness. Public Choice 35

437-455.

[41] Muller, E., M. Satterthwaite. 1977. The equivalence of strong positive association
and strategy-proofness. Journal of Economic Theory 14 412-418.

[42] Orlov, A. 1981. The connection between mean quantities and admissible trans-
formations. Mathematical Notes 30 774-778.

[43] Rue89. 2011. Testez une autre façon de voter à la primaire.
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