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Abstract.
The survey presents recent results in the theory of two-person zero-sum repeated games and

their connections with differential and continuous-time games. The emphasis is made on the
following points:

1) A general model allows to deal simultaneously with stochastic and informational aspects.
2) All evaluations of the stage payoffs can be covered in the same framework (and not only

the usual Cesàro and Abel means).
3) The model in discrete time can be seen and analyzed as a discretization of a continuous

time game. Moreover, tools and ideas from repeated games are very fruitful for continuous time
games and vice versa.

4) Numerous important conjectures have been answered (some in the negative).
5) New tools and original models have been proposed.
As a consequence, the field (discrete versus continuous time, stochastic versus incomplete

information models) has a much more unified structure, and research is extremely active.
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1. Introduction

The theory of repeated games focuses on situations involving multistage interactions, where,
at each period, the Players are facing a stage game in which their actions have two effects: they
induce a stage payoff, and they affect the future of the game (note the difference with other
multi-move games like pursuit or stopping games where there is no stage payoff). If the stage
game is a fixed zero-sum game G, repetition adds nothing: the value and optimal strategies are
the same as in G. The situation however is drastically different for non-zero-sum games leading
to a family of so-called “Folk theorems”: the use of plans and threats generates new equilibria
(Sorin’s [154] chapter 4 in Handbook of Game Theory (HGT1)).
In this survey, we will concentrate on the zero-sum case and consider the framework where the
stage game belongs to a family Gm, m ∈ M , of two-person zero-sum games played on action
sets I × J . Two basic classes of repeated games that have been studied and analyzed extensively
in previous volumes of HGT are stochastic games (the subject of Mertens’s chapter 47 [97] and
Vieille’s chapter 48 [168] in HGT3) and incomplete information games (the subject of Zamir’s
chapter 5 in HGT1 [175]). The reader is referred to these chapters for a general introduction to
the topic and a presentation of the fundamental results.
In stochastic games, the parameter m, which determines which game is being played, is a publicly
known variable, controlled by the Players. It evolves over time and its value mn+1 at stage n+ 1
(called the state) is a random stationary function of the triple (in, jn,mn) which are the moves,
respectively the state, at stage n. At each period, both Players share the same information and,
in particular, know the current state. On the other hand, the state is changing and the issue for
the Players at stage n is to control both the current payoff gn (induced by (in, jn,mn)) and the
next state mn+1.
In incomplete information games, the parameter m is chosen once and for all by nature and kept
fixed during play, but at least one Player does not have full information about it. In this situation,
the issue is the trade-off between using the information (which increases the set of strategies in
the stage game) and revealing it (this decreases the potential advantage for the future).
We will see that these two apparently very different models — evolving known state versus
unknown fixed state — are particular incarnations of a more general model and share many
common properties.

1.1. General model of repeated games (RG).

The general presentation of this section follows Mertens-Sorin-Zamir [100]. To make it more
accessible, we will assume that all sets (of actions, states and signals) are finite; in the general
case, measurable and/or topological hypotheses are in order, but we will not treat such issues here.
Some theorems will be stated with compact action spaces. In that case, payoff and transition
functions are assumed to be continuous.
Let M be a parameter space and g a function from I×J×M to IR. For every m ∈M , this defines
a two Player zero-sum game with action sets I and J for Player 1 (the maximizer) and Player 2,
respectively, and with a payoff function g(·,m). The initial parameter m1 is chosen at random
and the Players receive some initial information about it, say a1 (resp. b1) for Player 1 (resp.
Player 2). This choice of nature is performed according to some initial probability distribution
π on A×B ×M , where A and B are the signal sets of each Player. The game is then played in
discrete time.
At each stage n = 1, 2, ... Player 1 (resp. Player 2) chooses an action in ∈ I (resp. jn ∈ J). This
determines a stage payoff gn = g(in, jn,mn), where mn is the current value of the state parameter.
Then, a new value mn+1 of the parameter is selected and the Players get some information about
it. This is generated by a map Q from I × J × M to the set of probability distributions on
A×B×M . More precisely, at stage n+ 1, a triple (an+1, bn+1,mn+1) is chosen according to the
distribution Q(in, jn,mn) and an+1 (resp. bn+1) is transmitted to Player 1 (resp. Player 2).
Note that each signal may reveal some information about the previous choice of actions (in, jn)
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and/or past and current values (mn and mn+1) of the parameter:
Stochastic games (with standard signaling: perfect monitoring) [97] correspond to public signals
including the parameter: an+1 = bn+1 = {in, jn,mn+1}.
Incomplete information repeated games (with standard signaling) [175] correspond to an absorbing
transition on the parameter (mn = m1 for every n) and no further information (after the initial
one) on the parameter, but previous actions are observed: an+1 = bn+1 = {in, jn}.

A play of the game induces a sequence m1, a1, b1, i1, j1,m2, a2, b2, i2, j2, . . . while the information
of Player 1 before his move at stage n is a private history of him of the form (a1, i1, a2, i2, . . ., an)
and similarly for Player 2. The corresponding sequence of payoffs is g1, g2, . . . and it is not known
to the Players (unless it can be deduced from the signals).
A (behavioral) strategy σ for Player 1 is a map from Player 1 private histories to ∆(I), the
space of probability distributions on the set of actions I: in this way σ defines the probability
distribution of the current stage action as a function of the past events known to Player 1: a
behavioral strategy τ for Player 2 is defined similarly. Together with the components of the game,
π and Q, a pair (σ, τ) of behavioral strategies induces a probability distribution on plays, and
hence on the sequence of payoffs. E(σ,τ) stands for the corresponding expectation.

1.2. Compact evaluations.
Once the description of the repeated game is specified, strategy sets are well defined as well as
the play (or the distribution on plays) that they induce. In turn, a play determines a flow of stage
payoffs g = {gn;n ≥ 1}, indexed by the positive integers in IN∗ = IN \ {0}. Several procedures
have been introduced to evaluate this sequence.

Compact evaluations associate to every probability distribution µ = {µn;n ≥ 1} on IN∗ a game
Gµ with evaluation function 〈µ, g〉 =

∑
n gnµn. µn is interpreted as the (normalized) weight

of stage n. Under standard assumptions on the data of the game, the strategy sets are convex-
compact and the payoff function is bilinear and continuous in the product topology. Consequently,
Sion’s minmax theorem implies that the game has a value, denoted by vµ.

1.3. Asymptotic analysis.
The asymptotic analysis focuses on the problems of existence and the characterization of the
asymptotic value (or limit value) v = lim vµr along a sequence of distributions µr with maximum
weight (interpreted as the mesh in the continuous time discretization) ‖µr‖ = supn µ

r
n → 0,

and the dependence of this limit on a particular chosen sequence (see also Section 9.1.1). The
connection with continuous time games is as follows. The RG is considered as the discretization
in time of some continuous-time game (to be defined) played between time 0 and 1 and such that
the duration of stage n is µn.
Two standard and well studied RG evaluations are:
The finitely repeated n-stage game Gn, n ≥ 1, with Cesàro average of the stream of payoffs
gn = 1

n

∑n
r=1gr and value vn,

The λ-discounted repeated game Gλ, λ ∈]0, 1], with the Abel average of the stream of payoffs
gλ =

∑∞
r=1λ(1− λ)r−1gr and value vλ.

More generally, instead of deterministic weights, we can also consider stochastic evaluations. This
has been introduced by Neyman and Sorin [117] under the name “random duration process”. In
this framework, µn is a random variable, the law of which depends upon the previous path of the
process (see Section 2.3).

1.4. Uniform analysis.
A drawback of the previous approach is that even if the asymptotic value exists, the optimal
behavior of a Player in the RG may depend heavily upon the exact evaluation (n for finitely
repeated games, λ for discounted games). In other words, the value of the game with many
stages is well defined, but one may need to know the exact duration to play well. The uniform
approach considers this issue by looking for strategies that are almost optimal in any sufficiently
long RG (n large enough, λ small enough). More precisely:



ADVANCES IN ZERO-SUM DYNAMIC GAMES 5

Definition 1.1.
We will say that v is the uniform maxmin if the following two conditions are satisfied:
i) Player 1 can guarantee v: for any ε > 0, there exists a strategy σ of Player 1 and an integer
N such that for all n ≥ N and every strategy τ of Player 2:

E(σ,τ)(gn) ≥ v − ε,

ii) Player 2 can defend v: for all ε > 0 and any strategy σ of Player 1, there exist an integer N
and a strategy τ of Player 2 such that for all n ≥ N :

E(σ,τ)(gn) ≤ v + ε.

Note the strong requirement of uniformity with respect to both n and τ in i) and with respect to
n in ii). In particular existence has to be proved. A dual definition holds for the uniform minmax
v.
Whenever v = v, the game is said to have a uniform value, denoted by v∞.
The existence of the uniform value does not always hold in general RG (for example for games with
incomplete information on both sides or stochastic games with signals on the moves (imperfect
monitoring)). However, its existence implies the existence of the asymptotic value for decreasing
evaluation processes (µrn decreasing in n). In particular: v∞ = limn→∞ vn = limλ→0 vλ.

The next sections will focus on the following points:
- in the compact case, corresponding to the asymptotic approach, a unified analysis is provided
through the extended Shapley operator that allows us to treat general repeated games and arbi-
trary evaluation functions;
- the links between the asymptotic approach and the uniform approach, initiated by the tools in
the Theorem of Mertens and Neyman [98];
- the connection with differential games: asymptotic approach versus games of fixed duration,
uniform approach versus qualitative differential games.

2. Recursive structure

2.1. Discounted stochastic games.

The first and simplest recursive formula for repeated games was established by Shapley [142],
who characterizes the λ-discounted value of a finite stochastic game with state space Ω as the
only solution of the equation (recall that g is the payoff and Q the transition):

(1) vλ(ω) = valX×Y
{
λg(x, y, ω) + (1− λ)

∑
ω′

Q(x, y, ω)[ω′]vλ(ω′)
}
.

where X = ∆(I) and Y = ∆(J) are the spaces of mixed moves, valX×Y = supx∈X infy∈Y =
infy∈Y supx∈X is the value operator (whenever it exists, which will be the case in almost all the
chapter where moreover, max and min are achieved). Also, for a function h : I × J → IR, h(x, y)
denotes Ex,yh =

∑
i,j x(i)y(j)h(i, j) which is the bilinear extension to X × Y .

This formula expresses the value of the game as a function of the current payoff and the value
from the next stage and onwards. Since the Players know the initial state ω and learn at each
stage the new state ω′, they can perform the analysis for each state separately and can use the
recursive formula to compute an optimal strategy for each ω. In particular, they have an optimal
stationary strategy and the “state” ω of the stochastic game is the natural “state variable” to
compute the value and optimal strategies.

The Shapley operator T associates to a function f from Ω to IR the function T(f) defined as:

T(f)(ω) = valX×Y {g(x, y, ω) +
∑
ω′

Q(x, y, ω)[ω′]f(ω′)}(2)

Thus vλ is the only fixed point of the mapping f 7→ λT( (1−λ)f
λ ).
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2.2. General discounted repeated games.

2.2.1. Recursive structure.
The result of the previous section can be extended to any general repeated game, following
Mertens [95] and Mertens, Sorin and Zamir [100]. Let us give a brief description.
The recursive structure relies on the construction of the universal belief space, Mertens and Zamir
[104], which represents the infinite hierarchy of beliefs of the Players: Θ = M×Θ1×Θ2, where
Θi, homeomorphic to ∆(M×Θ−i), is the universal space of types of Player i (where i = 1, 2,−i =
3− i).
A consistent probability ρ on Θ is such that the conditional probability induced by ρ at θi coincides
with θi itself, both as elements of ∆(M×Θ−i). The set of consistent probabilities is denoted by
IP ⊂ ∆(Θ). The signaling structure in the game, just before the actions at stage n, describes an

information scheme (basically a probability on M × Â × B̂ where Â is a general signal space to

Player 1 and B̂ for Player 2) that induces a consistent probability Pn ∈ IP (see Mertens, Sorin
and Zamir [100], Sections III.1, III.2, IV.3). This is referred to as the “entrance law”. Taking into
account the existence of a value for any finite repeated game with compact evaluation, one can
assume that the strategies used by the Players are announced to both. The entrance law Pn and
the (behavioral) strategies at stage n (say αn and βn), which can be represented as measurable
maps from type sets to mixed actions sets, determine the current payoff and the new entrance law
Pn+1 = H(Pn, αn, βn). Thus the initial game is value-equivalent to a game where at each stage n,
before the moves of the Players, a new triple of parameter and signals to the Players is generated
according to Pn, and Pn+1 is determined given the stage behavioral strategies. This updating
rule is the basis of the recursive structure for which IP is the “state space”. The stationary aspect
of the repeated game is expressed by the fact that H does not depend on the stage n.
The (generalized) Shapley operator T is defined on the set of real bounded functions on IP as:

(3) T(f)(P) = sup
α

inf
β
{g(P, α, β) + f(H(P, α, β))}.

Then the usual recursive equations hold (see Mertens, Sorin and Zamir [100], Section IV.3). For
the discounted game one has:

(4) vλ(P) = valα×β{λg(P, α, β) + (1− λ)vλ(H(P, α, β))}
where valα×β = supα infβ = infβ supα is the value operator for the “one stage game at P”. This
representation corresponds to a “deterministic” stochastic game on the state space IP ⊂ ∆(Θ).

Hence to each compact repeated game G one can associate an auxiliary game Γ having the
same compact values on IP. The discounted values satisfies the recursive equation (4). However
the play and strategies in the two games differ, since, in the auxiliary game, an additional signal
corresponding to the stage behavioral strategies is given to the payers.

2.2.2. Specific classes of repeated games.
In the framework of a standard stochastic game with state space Ω, the universal belief space

representation of the proviso section would correspond to the level of probabilities on the state
space, thus IP = ∆(Ω). One recovers the initial Shapley formula (1) by letting P be the Dirac
mass at ω, in which case (α, β) reduce to (x, y) (i.e. only the ω-component of (∆(I)×∆(J))Ω is
relevant), H(P, α, β) corresponds to Q(ω, x, y) and finally vλ(H(P, α, β)) = EQ(ω,x,y)vλ(·).
Let us describe explicitly the recursive structure in the framework of repeated games with incom-
plete information (independent case with standard signaling). M is a product space K×L, π is a
product probability π(k, l) = pk× ql with p ∈ ∆(K), q ∈ ∆(L) and the first signals to the Players
are given by: a1 = k and b1 = `. Given the parameter m = (k, `), each Player knows his own
component and holds a prior on the other Player’s component. From stage 1 on, the parameter
m is fixed and the information of the Players after stage n is an+1 = bn+1 = {in, jn}.
The auxiliary stochastic game Γ corresponding to the recursive structure is as follows: the “state
space” Ω is ∆(K) ×∆(L) and is interpreted as the space of beliefs on the realized value of the
parameter. X = ∆(I)K and Y = ∆(J)L are the type-dependent mixed action sets of the Players;
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g is extended on Ω×X×Y as g(p, q, x, y) =
∑

k,` p
kq`g(k, `, xk, y`), where g(k, `, xk, y`) denotes

the expected payoff at m = (k, `) where Player 1 (resp. 2) plays according to xk ∈ ∆(I) (resp.
y` ∈ ∆(J)). Given (p, q, x, y), let x(i) =

∑
kx

k(i)pk be the total probability of action i by Player

1 and p(i) be the conditional probability on K given the action i, explicitly pk(i) = pkxk(i)
x(i) (and

similarly for y and q). Since actions are announced in the original game, and stage strategies are
known in the auxiliary game, these posterior probabilities are known by the Players, so one can
work with Θ = Ω and take as IP= ∆(Ω). Finally, the transition Q (from Ω to ∆(Ω)) is defined
by the following formula:

Q(p, q, x, y)(p′, q′) =
∑

i,j;(p(i),q(j))=(p′,q′)

x(i)y(j).

The probability to move from (p, q) to (p′, q′) under (x, y) is the probability of playing the actions
that will generate these posteriors. The resulting form of the Shapley operator is:

T(f)(p, q) = sup
x∈X

inf
y∈Y
{
∑
k,`

pkq`g(k, `, xk, y`) +
∑
i,j

x(i)y(j)f(p(i), q(j))}(5)

where with the previous notations:∑
i,j

x(i)y(j)f(p(i), q(j)) = EQ(p,q,x,y)

[
f(p′, q′)

]
= f(H(p, q, x, y))

and again:

vλ = λT[
(1− λ)

λ
vλ].

The corresponding equations for vn and vλ are due to Aumann and Maschler (1966-67) and are
reproduced in [3], and Mertens and Zamir [101].
Recall that the auxiliary game Γ is “equivalent” to the original one in terms of values but uses
different strategy spaces. In the true game, the strategy of the opponent is unknown, hence the
computation of the posterior distribution is not feasible.

Most of the results extend to the dependent case, introduced by Mertens and Zamir [101]. In
addition to the space M endowed with the probability π, there are two signaling maps from M
to A for Player 1 (resp. B for Player 2) that correspond to the initial (correlated) information
of the Players on the unknown parameter. π(.|a) then denotes the belief of Player 1 on M given
his signal a (and similarly for Player 2).

2.3. Compact evaluations and continuous time extension.

The recursive formula expressing the discounted value through the Shapley operator can be
extended for values of games with the same plays but alternative evaluations of the stream of
payoffs. Introduce, for ε ∈ (0, 1] the operator Φ given by:

Φ(ε, f) = εT(
(1− ε)f

ε
).

Then vλ is a fixed point of Φ(λ, .):

(6) vλ = Φ(λ, vλ)

and vn (the value of the n-stage game) satisfies the recursive formula:

(7) vn = Φ(
1

n
, vn−1),

with v0 = 0. Note that (7) is equivalent to:

(8) nvn = T((n− 1)vn−1) = Tn(0),

More generally, any probability µ on the integers induces a partition Π = {tn;n ≥ 0} of [0, 1]
with t0 = 0, tn =

∑n
m=1 µm. Consequently, the repeated game is naturally represented as a

discretization of a continuous time game played between times 0 and 1, where the actions are
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constant on each subinterval (tn−1, tn) with length µn, which is the weight of stage n in the
original game. Let vΠ (or equivalently vµ) denote its value. The recursive equation can then be
written as:

(9) vΠ = Φ(t1, vΠt1
)

where Πt1 is the renormalization on [0, 1] of the restriction of Π to the interval [t1, 1].
The difficulty with the two recursive formulas (7) and (9), expressing vn and vΠ, is the lack of
stationarity compared to (6). One way to deal with this issue is to add the time variable to the
state space and to define VΠ(tn) as the value of the RG starting at time tn, i.e. with evaluation
µn+m for the payoff gm at stage m. The total weight (length) of this game is no longer 1 but
1− tn. With this new time variable, one obtains the equivalent recursive formula:

(10) VΠ(tn) = (tn+1 − tn)T(
VΠ(tn+1)

tn+1 − tn
)

which is a functional equation for VΠ. Observe that the stationarity properties of the game induce
time homogeneity:

(11) VΠ(tn) = (1− tn)VΠtn (0).

By taking the linear extension of VΠ(tn), one can now define, for every partition Π, a function
VΠ(t) on [0, 1]. A key lemma is the following (see Cardaliaguet, Laraki and Sorin [22]):

Lemma 2.1. Assume that the sequence µn is decreasing. Then VΠ is 2C-Lipschitz in t, where
C = supi,j,m |g(i, j,m)|.

Similarly, one can show that RG with random duration satisfies a recursive formula such as
the one described above (Neyman and Sorin [117]). Explicitly, an uncertain duration process
Θ = 〈(A,B, µ), (sn)n≥0, θ〉 is a triple where θ is an integer-valued random variable defined on a
probability space (A,B, µ) with finite expectation E(θ), and each signal sn (sent to the Players
after their moves at stage n) is a measurable function defined on the probability space (A,B, µ)
with finite range S. An equivalent representation is through a random tree with finite expected
length where the nodes at distance n correspond to the information sets at stage n. Given such
a node ζn, known to the Players, its successor at stage n + 1 is chosen at random according to
the subtree defined by Θ at ζn. One can define the random iterate TΘ of the non expansive map
T (see Neyman [110]). Then, a recursive formula analogous to (8) holds for the value vΘ of the
game with uncertain duration Θ (see Theorem 3 in [117]):

(12) E(θ)vΘ = TΘ(0).

Note that the extension to continuous time has not yet been done for RG with random duration.

3. Asymptotic analysis

The asymptotic analysis aims at finding conditions for: (1) the existence of the asymptotic
values limλ→0 vλ, limn→∞ vn and more generally limr→∞ vµr , (2) equality of those limits, (3) a
characterization of the asymptotic value by a formula or variational inequalities expressed from
the basic data of the game. Most of the results presented in this section belong to the class of
finite stochastic games with incomplete information which will be our benchmark model. While
the existence of the asymptotic value is still an open problem in this framework, it has been
solved in some particular important subclasses.

3.1. Benchmark model.
A zero-sum stochastic game with incomplete information is played in discrete time as follows.
Let I, J , K, L and Ω be finite sets. At stage n = 0, nature chooses independently k ∈ K and
l ∈ L according to some probability distributions p ∈ ∆(K) and q ∈ ∆(L). Player 1 privately
learns his type k, and Player 2 learns l. An initial state ω1 = ω ∈ Ω is given and known to
the Players. Inductively, at stage n = 1, 2, ... knowing the past history of moves and states
hn = (ω1, i1, j1, ...., in−1, jn−1, ωn), Player 1 chooses in ∈ I and Player 2 chooses jn ∈ J . The
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payoff at stage n is gn = g(k, l, in, jn, ωn). The new state ωn+1 ∈ Ω is drawn according to the
probability distribution Q(in, jn, ωn)(·) and (in, jn, ωn+1) is publicly announced. Note that this
model encompasses both stochastic games and repeated games with incomplete information (with
standard signaling).
Let F denote the set of real-valued functions f on ∆(K)×∆(L)× Ω bounded by C, concave in
p, convex in q, and 2C-Lipschitz in (p, q) for the L1 norm, so that for every (p1, q1, p2, q2, ω) one
has:

|f(p1, q1, ω)− f(p2, q2, ω)| ≤ 2C(‖p1 − p2‖1 + ‖q1 − q2‖1),

where ‖p1 − p2‖1 =
∑

k∈K |pk2 − pk2| and similarly fo q.
In this framework, Shapley operator T associates to a function f in F the function:

T(f)(p, q, ω) = valx∈∆(I)K× y∈∆(J)L

[
g(p, q, x, y, ω)

+
∑

i,j,ω̃ x(i)y(j)Q(i, j, ω)(ω̃)f(p(i), q(j), ω̃)

]
(13)

where g(p, q, x, y, ω) =
∑

i,j,k,l p
kqlxk(i)yl(j)g(k, l, i, j, ω) is the expected stage payoff.

T maps F to itself, see Laraki [71, 74].
The associated projective operator (corresponding to the game where only the future matters) is:

R(f)(p, q, ω) = valx∈∆(I)K× y∈∆(J)L [
∑
i,j,ω̃

x(i)y(j)Q(i, j, ω)(ω̃)f(p(i), q(j), ω̃)].(14)

Any accumulation point (for the uniform norm on F) of the equi-Lipschitz family {vλ}, as λ
goes to zero or of {vn}, as n goes to infinity, is a fixed point of the projective operator. Observe
however that any function in F which is independent of ω, is a fixed point of R.

3.2. Basic results.

3.2.1. Incomplete information.
When Ω is a singleton, the game is a repeated game with incomplete information à la Aumann and
Maschler [3]. Moreover, when information is incomplete on one side (L is a singleton), Aumann
and Maschler proved the existence of the asymptotic value:

v = limn→∞ vn = limλ→0 vλ

and provided the following famous explicit formula:

v(p) = Cav∆(K)(u)(p)

where:
u(p) = val∆(I)×∆(J)

∑
k

pkg(k, x, y)

is the value of the non-revealing game and CavC is the concavification operator: given φ, a real
bounded function defined on a convex set C, CavC(φ) is the smallest concave function on C
greater than φ.
The Aumann-Maschler proof works as follow. A splitting lemma ([175], Proposition 3.2.) shows
that if Player 1 can guarantee a function f(p), he can guarantee Cav∆(K)(f)(p). Since Player 1 can
always guarantee the value of the non-revealing game u(p) (by ignoring his information), he can
also guarantee Cav∆(K)(u)(p). As for Player 2, by playing a best response in the non-revealing
game stage by stage given his updated belief, he can prevent Player 1 to obtain more than
Cav∆(K)(u)(p) up to some error term which is at most, using martingale arguments, vanishing on
average.
For RG of incomplete information on both sides, Mertens and Zamir [101] proved the existence of
v = limn→∞ vn = limλ→0 vλ. They identified v as the unique solution of the system of functional
equations with unknown real function φ on ∆(I)×∆(J):

(15) φ(p, q) = Cavp∈∆(K) min{φ, u}(p, q), φ(p, q) = Vexq∈∆(L) max{φ, u}(p, q).

u is again the value of the non revealing game with u(p, q) = val∆(I)×∆(J)

∑
k,` p

kq`g(k, `, x, y).

The operator u 7→ φ given by (15) will be called the Mertens-Zamir system and denoted by MZ.
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It associates to any continuous function w on ∆(K)×∆(L), a unique concave-convex continuous
function MZ(w) (see Laraki [72]).
One of Mertens and Zamir’s proofs is as follows. Using sophisticated reply strategies one shows
that h = lim inf vn satisfies:

(16) h(p, q) ≥ Cavp∈∆(K)Vexq∈∆(L) max{h, u}(p, q).

Define inductively dual sequences of functions {cn} and {dn} on ∆(K)×∆(L) by c0 ≡ −∞ and

cn+1(p, q) = Cavp∈∆(K)Vexq∈∆(L) max{cn, u}(p, q)

and similarly for {dn}. Then they converge respectively to c and d satisfying:

(17) c(p, q) = Cavp∈∆(K)Vexq∈∆(L) max{c, u}(p, q), d = Vexq∈∆(L)Cavp∈∆(K) min{d, u}(p, q)

A comparison principle is then used to deduce that c ≥ d. In fact, consider an extreme point
(p0, q0) of the convex hull of the set where d − c is maximal. Then one shows that the Vex and
Cav operators in the above formula (15) at (p0, q0) are trivial (there is no use of information)
which implies c(p0, q0) ≥ u(p0, q0) ≥ d(p0, q0). Finally h ≥ c implies by symmetry that limn→∞ vn
exists.

3.2.2. Stochastic games.
For stochastic games (K and L are reduced to a singleton), the existence of limλ→0 vλ in the
finite case (Ω, I, J finite) was first proved by Bewley and Kohlberg [6] using algebraic arguments:
the optimality equations for strategies and values in the Shapley operator can be written as a
finite set of polynomial equalities and inequalities and thus define a semi-algebraic set in some
euclidean space IRN . By projection, vλ has an expansion in Puiseux series hence has a limit as λ
goes to 0.
An alternative, more elementary approach has been recently obtained by Oliu-Barton [118].
The existence of limn→∞ vn may be deduced from limλ→0 vλ by comparison arguments, see Bewley
and Kohlberg [7] or, more generally, Theorem 3.1.

3.3. Operator approach.
The operator approach corresponds to the study of the asymptotic value trough the Shapley
operator. It was first introduced by Kohlberg [64] in the analysis of finite absorbing games
(stochastic games with a single non absorbing state). The author uses the additional information
obtained from the derivative of the Shapley operator (which is defined from R to itself in this case)
at λ = 0 to deduce the existence of v = limλ→0 vλ = limn→∞ vn and a characterization of v through
variational inequalities. Rosenberg and Sorin [139] extended this approach to general RG. This
tool provides sufficient conditions under which v exists and exhibits a variational characterization.

3.3.1. Non expansive monotone maps.
We introduce here general properties of operators that will be applied to repeated games through
the Shapley operator T. We study iterates of an operator T mapping G to itself, where G is a
subspace of the space of real bounded functions on some set E.
Assume:
1) G is a convex cone, containing the constants and closed for the uniform norm, denoted by ‖ · ‖.
2) T is monotonic: f ≥ g implies Tf ≥ Tg, and translates the constants T (f + c) = T (f) + c.
The second assumption implies in particular that T is non expansive.
In our benchmark model, E = ∆(K)×∆(L)×Ω and G=F . In general RG, one may think of E
as the set of consistent probabilities on the universal belief space.
Define the iterates and fixed points of T as:

Vn = Tn[0], Vλ = T [(1− λ)Vλ]

and by normalizing vn = Vn, vλ = λVλ. Introducing the family of operators:

(18) Φ(ε, f) = εT [
1− ε
ε

f ],
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one obtains:

(19) vn = Φ(
1

n
, vn−1), vλ = Φ(λ, vλ)

and we consider the asymptotic behavior of these families of functions (analogous to the n stage
and discounted values) which thus relies on the properties of Φ(ε, ·), as ε goes to 0.

A basic result giving a sufficient condition for the existence and equality of the limits is due to
Neyman [110]:

Theorem 3.1.
If vλ is of bounded variation in the sense that:

(20)
∑
i

‖vλi+1
− vλi‖ <∞,

for any sequence λi decreasing to 0. Then limn→∞ vn = limλ→0 vλ.

The result extends to random duration processes ( limE(θ)→+∞ vΘ = limλ→0 vλ) when the expected
duration of the current stage decreases along the play (Neyman and Sorin [117]).

Following Rosenberg and Sorin [139], Sorin [157], defines spaces of functions that will corre-
spond to upper and lower bounds on the families of values.

i) Uniform domination. Let L+ be the space of functions f ∈ G that satisfy: there exists
M0 ≥ 0 such that M ≥M0 implies T (Mf) ≤ (M + 1)f . (L− is defined similarly.)

ii) Pointwise domination. When the set E is not finite, one can introduce the larger class S+

of functions satisfying lim supM→∞{T (Mf)(e)− (M + 1)f(e)} ≤ 0, ∀e ∈ E. (S− is defined in a
dual way).

The comparison criteria for uniform domination is expressed by the following result:

Theorem 3.2. [139]
If f ∈ L+, lim supn→∞ vn and lim supλ→0 vλ are less than f .
Consequently, if the intersection of the closure of L+ and L− is not empty, then both limn→∞ vn
and limλ→0 vλ exist and coincide.

And for pointwise domination by the next property:

Theorem 3.3. [139]
Assume E compact. Let S+

0 (resp. S−0 ) be the space of continuous functions in S+ (resp. S−).
Then, for any f+ ∈ S+

0 and f− ∈ S−0 , f+ ≥ f−.
Consequently, the intersection of the closures of S+

0 and S−0 contains at most one point.

These two results provide sufficient conditions for the uniqueness of a solution satisfying the
properties. The next one gives a sufficient condition for the existence of a solution.
T has the derivative property if for every f ∈ G and e ∈ E:

ϕ∗(f)(e) = lim
ε→0+

Φ(ε, f)(e)− f(e)

ε

exists in IR. If such a derivative exists, S+ is the set of functions f ∈ G that satisfy ϕ∗(f)(e) ≤ 0,
for all e ∈ E and similarly for S−, ϕ∗(f)(e) ≥ 0.

Theorem 3.4. [139]
Assume that T has the derivative property and E is compact. Let f be such that ϕ∗ “changes sign”
at f , meaning that there exist two sequences {f−n } and {f+

n } of continuous functions converging
to f such that ϕ∗(f−n ) ≤ 0 ≤ ϕ∗(f+

n ). Then, f belongs to the closures of S+
0 and S−0 .

Definition 3.1.
T has the recession property if limε→0 Φ(ε, f)(θ) = limε→0 εT (fε )(θ), written R(f)(θ), exists.
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Theorem 3.5. Vigeral [170]
Assume that T has the recession property and is convex. Then vn (resp. vλ) has at most one
accumulation point.

The proof uses the inequality: R(f + g) ≤ T (f) + R(g) and relies on properties of the family of
operators Tm defined by:

(21) Tm(f) =
1

m
Tm(mf).

3.3.2. Applications to RG.
The Shapley operator T satisfies the derivative and recession properties, so the results of the
previous section can be applied.

Absorbing games are stochastic games where the state can change at most once on a play
(Kohlberg [64]).

Theorem 3.6. [139]
limn→∞ vn and limλ→0 vλ exist and are equal in absorbing games with compact action spaces.

Recursive games are stochastic games where the payoff is 0 until the state becomes absorbing
(Everett [47]).

Theorem 3.7. Sorin [156], Vigeral [171]
limn→∞ vn and limλ→0 vλ exist and are equal in recursive games with finite state space and compact
action spaces.

Notice that the algebraic approach (for stochastic games) cannot be used when action or state
spaces are not finite. However, one cannot expect to get a proof for general stochastic games with
finite state space, see Vigeral’s counterexample in Section 9.

Pointwise domination is used to prove existence and equality of limn→∞ vn and limλ→0 vλ
through the derived game ϕ∗ and the recession operator R in the following cases.

Theorem 3.8. [139]
limn→∞ vn and limλ→0 vλ exist and are equal in repeated games with incomplete information.

This provides an alternative proof of the result of Mertens and Zamir [101]. One shows that any
accumulation point w of the family {vλ} (resp. {vn}) as λ→0 (resp. n → ∞) belongs to the
closure of S+

0 , hence, by symmetry, the existence of a limit follows using Theorem 3.3. More
precisely Theorem 3.4 gives the following characterization of the asymptotic value: given a real
function f on a linear set X, denote by Ef the projection on X of the extreme points of its
epigraph. Then: v = limn→∞ vn = limλ→0 vλ exists and is the unique saddle continuous function
satisfying both inequalities:

(22) Q1 : p ∈ Ev(·, q) ⇒ v(p, q) ≤ u(p, q), Q2 : q ∈ Ev(p, ·) ⇒ v(p, q) ≥ u(p, q),

where u is the value of the non revealing game. One then shows that this is equivalent to the
characterization of Mertens and Zamir (15) (see also Laraki [71] and the next Section 3.4).

All the results above also hold for (decreasing) random duration processes (Neyman and Sorin
[117]).

Theorem 3.9. Rosenberg [133]
limn→∞ vn and limλ→0 vλ exist and are equal in finite absorbing games with incomplete informa-
tion on one side.

This is the first general subclass where both stochastic and information aspects are present and
in which the asymptotic value, limλ→0 vλ = limn→∞ vn exists.

Theorem 3.10. Vigeral [170]
limn→∞ vn (resp. limλ→0 vλ) exists in repeated games where one Player controls the transition
and the family {vn} (resp. {vλ}) is relatively compact.
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This follows from the convexity of T in that case. It applies in particular to dynamic programming
or games with incomplete information on one side (see also Sections 5.3 and 5.4).

Vigeral [170] provides a simple stochastic game in which the sets L+ and L− associated to T
do not intersect but, but the sets L+

m and L−m associated to the operator Tm do intersect for some
m large enough. This suggests that, for games in the benchmark model, the operator approach
should be extended to iterations of the Shapley operator.

3.4. Variational approach.
Inspired by the tools used to prove existence of the value in differential games (see Section 6),
Laraki [71, 72, 75] introduced the variational approach to obtain existence of lim vλ in a RG and
to provide a characterization of the limit via variational inequalities. Rather than going to the
limit between time t and t + h in the dynamic programming equation, one uses the fact that
vλ is a fixed point of the Shapley operator (6) (as in the operator approach). Given an optimal
stationary strategy of the maximizer (resp. minimizer) in the λ-discounted game, one deduces an
inequality (involving both value and strategy) that must be satisfied as λ goes to zero. Finally, a
comparison principle is used to deduce that only one function satisfies the two inequalities (which
have to be sharp enough to specify a single element).
The extension of the variational approach to lim vn or lim vµ was solved recently by Cardaliaguet,
Laraki and Sorin [22] by increasing the state space to Ω× [0, 1], that is, by introducing time as a
new variable, and viewing each evaluation as a particular discretization of the time interval [0, 1]
(Section 2.3). From (10), one shows that accumulation points are viscosity solutions of a related
differential equation and finally, comparison tools give uniqueness.

To understand the approach (and the exact role of the time variable), we first describe it
for discounted games and then for general evaluations in three classes: RG with incomplete
information, absorbing games, and splitting games.

3.4.1. Discounted values and variational inequalities.
A) RG with incomplete information. We follow Laraki [71] (see also Cardaliaguet, Laraki and
Sorin [22]). To prove (uniform) convergence, it is enough to show that V0, the set of accumulation
points of the family {vλ} is a singleton. Let V be the set of fixed points of the projective operator
R (14) and observe that V0 ⊂ V.
Given w ∈ V0, denote by X(p, q, w) ⊆ X = ∆(I)K the set of optimal strategies for Player 1 (resp.
Y(p, q, w) ⊆ Y = ∆(J)L for Player 2) in the projective operator R for w at (p, q). A strategy
x ∈ X of Player 1 is called non-revealing at p, x ∈ NRX(p) if p(i) = p for all i ∈ I with x(i) > 0
and similarly for y ∈ Y. The value of the non-revealing game is given by:

u(p, q) = valNRX(p)×NRY(q)g(p, q, x, y) .(23)

Lemma 3.1.
Any w ∈ V0 satisfies:

(24) P1 : If X(p, q, w) ⊂ NRX(p) then w(p, q) ≤ u(p, q)

(25) P2 : If Y(p, q, w) ⊂ NRY(q) then w(p, q) ≥ u(p, q).

The interpretation is straightforward. If by playing optimally a Player should not use asymptot-
ically his information, he can not get more that the value of the non-revealing game, because the
other Player has always the option of playing non-revealing. What is remarkable is that the two
above properties, plus geometry (concavity in p, convexity in q) and smoothness (continuity) are
enough to characterize the asymptotic value.
The proof is simple. Let vλn → w and xn optimal for the maximizer in the Shapley equation
vλn(p, q) = Φ(λn, vλn)(p, q). Then, for every non revealing pure strategy j of Player 2 one has:

vλn(p, q) ≤ λng(xn, j, p, q) + (1− λn)
∑
i

x̄n(i)vλn(pn(i), q).
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Jensen’s inequality implies
∑

i x̄n(i)vλn(pn(i), q) ≤ vλn(p, q) hence vλn(p, q) ≤ g(xn, j, p, q). Thus,
if x̄ ∈ X(p, q, w) is an accumulation point of {xn}, one obtains w(p, q) ≤ g(x̄, j, p, q), ∀j ∈ J .
Since by assumption, X(p, q, w) ⊂ NRX(p), one gets w(p, q) ≤ u(p, q).
For uniqueness, the following comparison principle is established:

Lemma 3.2.
Let w1 and w2 be in V satisfying P1 and P2 respectively, then w1 ≤ w2.

The proof follows an idea by Mertens and Zamir (see Section 3.2.1.). Let (p0, q0) be an extreme
point of the compact set where the difference (w1 − w2)(p, q) is maximal. Then, one has that
X(p0, q0, w1) ⊂ NRX(p0), and Y(p0, q0, w2) ⊂ NRY(q0). In fact, both functions being concave,
w1 has to be strictly concave at p0 (if it is an interior point) and the result follows (see the relation
with (22) Q1, Q2). Thus, w1(p0, q0) ≤ u(p0, q0) ≤ w2(p0, q0).
Consequently one obtains:

Theorem 3.11.
limλ→0 vλ exists and is the unique function in V that satisfies P1 and P2.

This characterization is equivalent to the Mertens-Zamir system ([71], [139]) and to the two prop-
erties Q1 and Q2 established above (22).

B) Absorbing games. We follow Laraki, [75]. Recall that only one state is non-absorbing,
hence in the other states one can assume without loss of generality that the payoff is constant
(and equal to the value). The game is thus defined by the following elements: two finite sets I
and J , two (payoff) functions f , g from I×J to IR and a function π from I×J to [0, 1]: f(i, j) is
the current payoff, π(i, j) is the probability of non-absorption and g(i, j) is the absorbing payoff.
Define π∗(i, j) = 1− π(i, j), f∗(i, j) = π∗(i, j)× g(i, j) and extend bilinearly any ϕ : I × J → R
to RI ×RJ as usual: ϕ(α, β) =

∑
i∈I,j∈J α

iβjϕ(i, j).
The variational approach proves the following new characterization of limλ→0 vλ as the value of
a strategic one-shot game, that can be interpreted as a “limit” game (see Section 8).

Theorem 3.12.
As λ→ 0, vλ converges to v given by:

(26) v = val((x,α),(y,β))∈(∆(I)×RI
+)×(∆(J)×RJ

+)

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
.

Actually, if xλ is an optimal stationary strategy for Player 1 in the λ-discounted game, then:
vλ ≤ λf(xλ, j) + (1− λ)(π(xλ, j)vλ + f∗(xλ, j),∀j ∈ J . Accordingly:

(27) vλ ≤
f(xλ, j) + f∗( (1−λ)xλ

λ , j)

1 + π∗( (1−λ)xλ
λ , j)

, ∀j ∈ J.

Consequently, given an accumulation point w of {vλ}, there exists x ∈ ∆(I) an accumulation

point of {xλ} such that for all ε > 0, there exists α ∈ RI
+ (of the form

(1−λ)xλ
λ

) satisfying:

(28) w ≤ f(x, j) + f∗(α, j)

1 + π∗(α, j)
+ ε, ∀j ∈ J.

By linearity the last inequality extends to any y ∈ ∆(J). On the other hand, w is a fixed point
of the projective operator and x is optimal there, hence:

(29) w ≤ π(x, y) w + f∗(x, y), ∀y ∈ ∆(J).

Inequality (29) is linear thus extends to β ∈ RJ
+ and combining with (28) one obtains that w

satisfies the inequality:

(30) w ≤ sup
(x,α)∈∆(I)×RI

+

inf
(y,β)∈∆(J)×RJ

+

f(x, y) + f∗(α, y) + f∗(x, β)

1 + π∗(α, y) + π∗(x, β)
.
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Following the optimal strategy of Player 2 yields the reverse inequality. Uniqueness and charac-
terization of lim vλ is deduced from the fact that sup inf ≤ inf sup.

3.4.2. General RG and viscosity tools.
We follow Cardaliaguet, Laraki and Sorin [22].

A) RG with incomplete information. Consider an arbitrarily evaluation probability µ on IN∗

inducing a partition Π. Let VΠ(tk, p, q) be the value of the game starting at time tk. One has
VΠ(1, p, q) := 0 and:

(31) VΠ(tn, p, q) = val[µn+1g(x, y, p, q) +
∑
i,j

x(i)y(j)VΠ(tn+1, p(i), q(j))].

Moreover VΠ belongs to F . Given a sequence {µm} of decreasing evaluations (µmn ≥ µmn+1),
Lemma 2.1 implies that the family of VΠ(m) associated to partitions Π(m) is equi-Lipschitz.

Let T0 be the non-empty set of accumulation points (for the uniform convergence) as µm1 → 0.
Let T be the set of real continuous functions W on [0, 1] × ∆(K) × ∆(L) such that for all
t ∈ [0, 1],W (t, ., .) ∈ V. Recall that T0 ⊂ T . X(t, p, q,W ) is the set of optimal strategies for
Player 1 in R(W (t, ., .)) and Y(t, p, q,W ) is defined accordingly. Define two properties for a
function W ∈ T and a C1 test function φ : [0, 1]→ IR as follows:

P1’: If t ∈ [0, 1) is such that X(t, p, q,W ) is non-revealing and W (·, p, q) − φ(·) has a global
maximum at t, then u(p, q) + φ′(t) ≥ 0.
P2’: If t ∈ [0, 1) is such that Y(t, p, q,W ) is non-revealing and W (·, p, q) − φ(·) has a global
minimum at t then u(p, q) + φ′(t) ≤ 0.

The variational counterpart of Lemma 3.1 is obtained by using (31).

Lemma 3.3.
Any W ∈ T0 satisfies P1’ and P2’.

The proof is as follows. Let (t, p, q) as is P1’. Adding the function s 7→ (s− t)2 to φ if necessary,
we can assume that this global maximum is strict. Let Wµk → W . Let Πk be the partition

associated to µk and tkn(k) be a global maximum of Wµk(·, p, q) − φ(·) on Πk. Since t is a strict

maximum, one has tkn(k) → t, as k →∞.

Proceeding as in 3.4.1. one obtains with xk ∈ X being optimal for Wµk :

0 ≤ g(xk, j, p, q)(t
k
n(k)+1 − t

k
n(k)) +

[
Wµk

(
tkn(k)+1, p, q

)
−Wµk

(
tkn(k), p, q

)]
.

Since tkn(k) is a global maximum of Wm(·, p, q)− φ(·) on Πk one deduces:

0 ≤ g(xk, j, p, q)(t
k
n(k)+1 − t

k
n(k)) +

[
φ
(
tkn(k)+1, p, q

)
− φ

(
tkn(k), p, q

)]
.

so 0 ≤ g(x̄, j, p, q) + φ′(t) for any accumulation point x̄ of {xk}. The result follows because x̄ is
non-revealing by P1’. Uniqueness is proved by the following comparison principle:

Lemma 3.4.
Let W1 and W2 in T satisfy P1’, P2’ and also the terminal condition:

W1(1, p, q) ≤W2(1, p, q), ∀(p, q) ∈ ∆(K)×∆(L).

Then W1 ≤W2 on [0, 1]×∆(K)×∆(L).

Consequently, we obtain:

Theorem 3.13.
Vπ converges uniformly to the unique point W ∈ T that satisfies the variational inequalities P1’
and P2’ and the terminal condition W (1, p, q) = 0. In particular, vµ(p, q) converges uniformly to
v(p, q) = W (0, p, q) and W (t, p, q) = (1− t)v(p, q), where v = MZ(u).
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To summarize the idea of the proof, (A) one uses viscosity solutions (smooth majorant or mino-
rant) to obtain first-order conditions on the accumulation points of the sequence of values and on
the corresponding optimal strategies. (B) One then considers two accumulation points (functions)
and establishes property of an extreme point of the set of states where their difference is maximal.
At this point the optimal strategies have specific aspects (C) that imply that (A) gives uniqueness.

On the other hand, the variational approach proof is much stronger than needed. Continuous
time is used as a tool to show eventually, that the asymptotic value W (t) = (1− t)v is linear in
t. However, one must first keep in mind that linearity is a valid conclusion only if the existence
of the limit is known (which is the statement that needs to be shown). Second, if g in equation
(31) is time-dependent in the game on [0, 1], the same proof and characterization still work (see
Section 8.3.3. for continuous-time games with incomplete information).

B) Absorbing games. Consider a decreasing evaluation µ = {µn}. Denote by vµ the value of
the associated absorbing game. Let Wµ(tm) be the value of the game starting at time tm defined
recursively by Wµ(1) = 0 and:

(32) Wµ(tm) = val(x,y)∈∆(I)×∆(J) [µm+1f(x, y) + π(x, y)Wµ(tm+1) + (1− tm+1)f∗(x, y)] .

Under monotonicity of µ, the linear interpolation of Wµ is a 2C-Lipschitz continuous in [0, 1]. Set

for any (t, a, b, x, α, y, β) ∈ [0, 1]× IR× IR×∆(I)× IRI
+ ×∆(J)× IRJ

+,

h(t, a, b, x, α, y, β) =
f(x, y) + (1− t)[f∗(α, y) + f∗(x, β)]− [π∗(α, y) + π∗(x, β)] a+ b

1 + π∗(α, y) + π∗(x, β)
.

Define the Hamiltonian of the game as:

H(t, a, b) = val((x,α),(y,β))∈(∆(I)×RI
+)×(∆(J)×RJ

+)h(t, a, b, x, α, y, β).

Theorem 3.12 implies that H is well defined (the value exists).

Define two variational inequalities for a continuous function U on [0,1] as follows: for all
t ∈ [0, 1) and any C1 function φ : [0, 1]→ IR :
R1: If U(·)− φ(·) admits a global maximum at t ∈ [0, 1) then H−(t, U(t), φ′(t)) ≥ 0.
R2: If U(·)− φ(·) admits a global minimum at t ∈ [0, 1) then H+(t, U(t), φ′(t)) ≤ 0.

Lemma 3.5.
Any accumulation point U(·) of Wµ(·) satisfies R1 and R2.

That is, U is a viscosity solution of the HJB equation H(t, U(t),∇U(t)) = 0. The comparison
principle is as one expects:

Lemma 3.6.
Let U1 and U2 be two continuous functions satisfying R1-R2 and U1(1) ≤ U2(1). Then U1 ≤ U2

on [0, 1].

Consequently, we get:

Theorem 3.14.
Wµ converges to the unique C Lipschitz solution to R1-R2 with U(1) = 0. Consequently, U(t) =
(1− t)v and vµ converges to v given by (26).

C) Splitting games. In RG with incomplete information on one side, the use of information
has an impact on the current payoff and on the state variable. However the difference between
the payoff of the mean strategy and the expected payoff is proportional to the L1 variation of the
martingale of posteriors at that stage hence on the average vanishes ([175] Propositions 3.8, 3.13
and 3.14). One can assume thus that the informed Player is playing optimally in the non reveal-
ing game and the remaining aspect is the strategic control of the state variable: the martingale
of posteriors. This representation, introduced in Sorin [155] p. 50, leads to a continuous time

martingale maximization problem maxpt
∫ 1

0 u(pt)dt (where the max is over all càdlàg martingales
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{pt} on ∆(K) with p0 = p). The value is clearly Cav∆(K)(u)(p). Moreover, the optimal strategy
in the RG that does the splitting at the beginning is maximal in the continuous time problem and
inversely, any maximal martingale is ε-optimal in the RG for a sufficiently fine time partition.
Since then, this representation has been extended to non-autonomous continuous time games
with incomplete information on one side (See Section 9.4).

The search for an analog representation for the asymptotic value of RG with incomplete infor-
mation on both sides naturally leads to the splitting game, [155] p. 78. It is a stochastic game
where each Player controls a martingale. A 1-Lipschitz continuous stage payoff function U from
∆(K) × ∆(L) to IR is given and the RG is played as follows. At stage m, knowing the state
variable (pm, qm) in ∆(K)×∆(L), Player 1 chooses pm+1 according to some θ ∈MK

pm and Player

2 chooses qm+1 according to some ν ∈ML
qm where MK

p stands for the set of probabilities on ∆(K)

with expectation p (and similarly for ML
q ). The current payoff is U(pm+1, qm+1) and the new

state (pm+1, qm+1) is announced to both Players.
Existence of lim vλ and its identification as MZ(U) was proved in that case by Laraki in [71].
One shows that the associated Shapley operator (called the splitting operator):

(33) T(f)(p, q) = valθ∈MK
p ×ν∈ML

q

∫
∆(K)×∆(L)

[U(p′, q′) + f(p′, q′)]θ(dp′)ν(dq′)

preserves 1-Lipschitz continuity (for the L1 norm on ∆(K)×∆(L)): note the difficulty is due to
the fact that the strategy sets depend on the state. This result is a consequence of a splitting
lemma proved in Laraki [74], and guarantees that the discounted values form a family of equi-
Lipschitz functions, so one can mimic the variational approach proof as in RG with incomplete
information on both sides.
The extension to lim vµ for general evaluation µ appears in Cardaliaguet, Laraki and Sorin [22]
using the same time extension trick as in the previous paragraph A) starting from the Shapley
equation:

(34) VΠ(tn, p, q) = valθ∈MK
p ×ν∈ML

q

∫
∆(K)×∆(L)

[µn+1U(p′, q′) + VΠ(tn+1, p
′, q′)]θ(dp′)ν(dq′).

Laraki [72] extends the definition of the splitting game from ∆(K) and ∆(L) to any convex
compact subsets C and D of Rn and uses it to show existence and uniqueness of a concave-convex
continuous function φ on C ×D that satisfies the Mertens-Zamir system: φ = CavC min(φ,U) =
VexD max(φ,U) under regularity assumptions on C and D. Namely, they need to be face-closed
(FC): the limiting set of any converging sequence of faces of C is also a face of C.
The FC condition on a set C is necessary and sufficient to guarantee that CavCψ is continuous for
every continuous function ψ (Laraki [74]), hence for the splitting operator to preserve continuity
(Laraki [72]). The proof of convergence of lim vλ is more technical than on ∆(K) × ∆(L) and
uses epi-convergence technics because the family {vλ} is not equi-Lipschitz.
The problem of existence and uniqueness of a solution of the Mertens-Zamir system without the
FC condition or continuity of U remains open.

The above analysis extends to the non autonomous case where U depends on t, [22]. Any
partition Π of [0, 1] induces a value function VΠ(t, p, q) that converges uniformly to the unique
function satisfying:
P1”: If t ∈ [0, 1) is such that X(t, p, q,W ) is non-revealing and W (·, p, q) − φ(·) has a global
maximum at t, then U(t, p, q) + φ′(t) ≥ 0.
P2”: If t ∈ [0, 1) is such that Y(t, p, q,W ) is non-revealing and W (·, p, q) − φ(·) has a global
minimum at t, then U(t, p, q) + φ′(t) ≤ 0.

3.4.3. Compact discounted games and comparison criteria.
An approach related to the existence of the asymptotic value for discounted games has been
proposed in Sorin and Vigeral [161]. The main tools used in the proofs are:
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- the fact that the discounted value vλ satisfies the Shapley equation (6),
- properties of accumulation points of the discounted values, and of the corresponding optimal
strategies,
- comparison of two accumulation points leading to uniqueness and characterization.
In particular, this allows to cover the case of absorbing and recursive games with compact action
spaces and provides an alternative formula for the asymptotic value of absorbing games, namely:

v = valX×YW (x, y)

with:
W (x, y) = med{f(x, y), sup

x′,π∗(x′,y)>0
f̄∗(x′, y), inf

y′,π∗(x,y′)>0
f̄∗(x, y′)}

where f̄∗(x, y) is the expected absorbing payoff: π∗(x, y)f̄∗(x, y) = f∗(x, y).

4. The dual game

In this section we focus on repeated games with incomplete information. The dual game has
been introduced by De Meyer [37, 38] and leads to many applications.

4.1. Definition and basic results.
Consider a two-person zero-sum game with incomplete information on one side defined by two
sets of actions S and T , a finite parameter space K, a probability distribution p ∈ ∆(K), and for
each k ∈ K a real-valued payoff function Gk on S×T . Assume S and T convex and for each k,
Gk bounded and bilinear on S×T .
The game is played as follows: k ∈ K is selected according to p and revealed to Player 1 (the
maximizer) while Player 2 only knows p. In the normal form, Player 1 chooses s = {sk} in SK ,
Player 2 chooses t in T and the payoff is Gp(s, t) =

∑
k p

kGk(sk, t). Let v(p) = supSK infT G
p(s, t)

and v(p) = infT supSK G
p(s, t). Then both value functions are concave in p, the first thanks to

the splitting procedure (see e.g. [175] p. 118), the second as an infimum of linear functions.
Following De Meyer [37, 38], one defines for each z ∈ Rk, the “dual game” G∗(z), where Player
1 chooses k ∈ K and s ∈ S while Player 2 chooses t ∈ T and the payoff is:

h[z](k, s; t) = Gk(s, t)− zk.
Define by w(z) and w(z) the corresponding maxmin and minmax.

Theorem 4.1. De Meyer [37, 38], Sorin [155]
The following duality relations hold:

(35) w(z) = max
p∈∆(K)

{v(p)− 〈p, z〉}, v(p) = inf
z∈RK

{ w(z) + 〈p, z〉}.

(36) w(z) = max
p∈∆(K)

{v(p)− 〈p, z〉}, v(p) = inf
z∈RK

{ w(z) + 〈p, z〉}.

In terms of strategies, one obtains the following correspondences:

Corollary 4.1.
1) Given z (and ε ≥ 0), let p attain the maximum in (35) and let s be ε-optimal in Gp, then
(p, s) is ε-optimal in G∗(z).
2) Given p (and ε ≥ 0), let z attain the infimum up to ε in (36) and let t be ε-optimal in G∗(z),
then t is also 2ε-optimal in Gp.

To see the link with approachability (Section 7 and Sorin [155], Chapter 2) define

B = {z ∈ IRk : v(p) ≤ 〈p, z〉, ∀p ∈ ∆(K)}.
Then, B is the set of “reachable” vectors for Player 2 in the sense that for any z ∈ B, and any
ε > 0, there exists a t ∈ T such that supsG

k(s, t) ≤ zk + ε, ∀k ∈ K. In particular w(z) ≤ 0 if
and only if z ∈ B, which means that, from his point of view, the uninformed Player 2 is playing
in a game with “vector payoffs”.
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4.2. Recursive structure and optimal strategies of the non-informed Player.
Consider now a RG with incomplete information on one side and recall the basic recursive formula
for Gn:

(37) (n+ 1) vn+1(p) = max
x∈XK

min
y∈Y
{
∑
k

pkg(k, xk, y) + n
∑
i

x̄(i) vn(p(i))}

Let us consider the dual game G∗n and its value wn which satisfies:

wn(z) = max
p∈∆(K)

{vn(p)− 〈p, z〉}.

This leads to the dual recursive equation, De Meyer [38]:

(38) (n+ 1)wn+1(z) = min
y∈Y

max
i∈I

nwn(
n+ 1

n
z − 1

n
g(i, y)).

In particular Player 2 has an optimal strategy in G∗n+1(z) that depends only on z (and on the
length of the game). At stage 1, he plays y optimal in the dual recursive equation and from stage
2 on, given the move i1 of Player 1 at stage 1, plays optimally in G∗n(n+1

n z− 1
ng(i1, y)). A similar

result holds for any evaluation µ of the stream of payoffs. Thus z is the natural state variable for
Player 2.
Recall that the recursive formula for the primal game (37) allows the informed Player to construct
inductively an optimal strategy since he knows p(i). This is not the case for Player 2, who cannot
compute p(i), hence the first interest of the dual game is to obtain an explicit algorithm for
optimal strategies of the uninformed Player via Corollary 4.1.

These properties extend to RG with incomplete information on both sides. In such a game
Player 2 must consider all possible realizations of k ∈ K and so plays in a game with vector
payoffs in IRK . On the other hand, he reveals information and so generates a martingale q̃ on
∆(L).
There are thus two dual games: the Fenchel conjugate with respect to p (resp. q) allows
to compute an optimal strategy for Player 2 (resp. 1). In the first dual, from wn(z, q) =
maxp∈∆(K){vn(p, q)− 〈p, z〉}, De Meyer and Marino [41] deduce that

(39) (n+ 1)wn+1(z, q) = min
y,{zi,j}

max
i∈I

∑
j

y(j)nwn(zi,j , q(j))

where the minimum is taken over all y ∈ ∆(J)L and zi,j ∈ IRK is such that
∑

j y(j)zi,j =
n+1
n z − 1

ng(q, i, y). Hence, Player 2 has an optimal strategy, which is Markovian with respect to
(z, q).

A similar conclusion holds for stochastic games with incomplete information on both sides
where Player 2 has a optimal strategy Markovian with respect to (z, q, ω) (Rosenberg [132]).
To summarize, to a game with incomplete information on both sides are associated three games
having a recursive structure:
- The usual auxiliary game related to the Shapley operator (5) with state parameter (p, q).
- For Player 2, a “dual game” where the value satisfies (39) and the state variable, known by
Player 2, is (z, q).
- Similarly for Player 1.

4.3. The dual differential game.
Consider a RG with incomplete information on one side. The advantage of dealing with the dual
recursive formula (38) rather than with (37) is that the state variable evolves smoothly from z
to z + 1

n(z − g(i, y)) while the martingale p(i) may have jumps. De Meyer and Rosenberg [43]
use the dual formula to provide a new proof of Aumann and Maschler’s result via the study of
approximate fixed points and derive a heuristic partial differential equation for the limit. This
leads them to anticipate a link with differential game theory. This is made precise in Laraki [73]
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where it is proved that wn satisfying (38) is the value of the time discretization with mesh 1
n of

a differential game on [0, 1] with dynamics ζ(t) ∈ RK given by:

dζ

dt
= g(xt, yt), ζ(0) = −z

xt ∈ X, yt ∈ Y and terminal payoff maxk ζ
k(1). Basic results of differential games of fixed

duration (see Section 6) show that the game starting at time t from state ζ has a value ϕ(t, ζ),
which is the only viscosity solution of the following Hamilton-Jacobi equation on [0, 1] with
terminal condition:

(40)
∂ϕ

∂t
+ u(Dϕ) = 0, ϕ(1, ζ) = max

k
ζk.

Hence ϕ(0,−z) = limn→∞wn(z) = w(z). Using Hopf’s representation formula, one obtains:

ϕ(1− t, ζ) = sup
a∈IRK

inf
b∈IRK

{max
k

bk + 〈a, ζ − b〉+ tu(a)}

and finally w(z) = supp∈∆(K){u(p) − 〈p, z〉}. Hence limλ→0 vλ = limn→∞ vn = Cav∆(K)u, by
taking the Fenchel conjugate. Moreover, this is true for any compact evaluation of payoffs.
An alternative identification of the limit can be obtained through variational inequalities by
translating in the primal game, the viscosity properties in the dual expressed in terms of local
sub/super-differentials. This leads exactly to the properties P1 and P2 in the variational ap-
proach (Section 3.4).
Interestingly, the dynamics of this differential game is exactly the one introduced by Vieille [167],
to show, in the context of Blackwell approachability, that any set is either weakly approachable
or weakly excludable (see Section 7).

4.4. Error term, control of martingales and applications to price dynamics.
The initial objective of De Meyer [37, 38] when he introduced the dual game was to study the error
term in the Aumann and Maschler’s RG model. The proof of Cav(u) theorem shows that en(p) :=

vn(p) − limn→∞ vn(p) = O(n−
1
2 ). The precise asymptotic analysis of en(p) was first studied by

Mertens and Zamir ([103], [105]) when I = J = K have cardinality 2 (see also Heuer [62]). They

show that the speed of convergence can be improved to O(n−
2
3 ) except in a particular class of

“fair games” where u(p) = 0 for every p (without information, no Player has an advantage). In
this class, the limit Ψ(p) of

√
nen(p) is shown to be related to the normal density function using

a differential equation obtained by passing to the limit in the recursive primal formula. Moreover
Ψ(p) appears as the limit of the maximal normalized L1 variation of a martingale. In fact an
optimal strategy of the informed Player in Gn induces a martingale {pnm; 1 ≤ m ≤ n} on ∆(K)
starting at p. This martingale has a n-stage L1 variation D1

n(pn) := E[
∑n

m=1 ‖pnm − pnm−1‖1] and

asymptotically D1
n(pn)/

√
n is maximal:

lim
n

1√
n
|max
qn

D1
n(qn)−D1

n(pn)| → 0,

where the maximum is taken over all martingales on ∆(K) with length n starting at p.
For games where I = J are finite, the error term is analyzed in depth by De Meyer in a series of
papers [37, 38, 39] where the dual game and the central limit theorem play a crucial role. For this
purpose, De Meyer introduces a heuristic limit game with incomplete information and its dual,
which is a stochastic differential game played on the time interval [0, 1]. He proves that it has a
value V which satisfies a dynamic programming principle that leads to a second-order PDE. De
Meyer proves then that if V is smooth, then

√
nen converges uniformly to the Fenchel conjugate

of V .
The main application of this work is achieved in De Meyer and Moussa-Saley [42]. They show

that when two asymmetrically informed risk neutral agents repeatedly exchange a risky asset for
a numéraire, they are playing a “fair RG” with incomplete information. The model may be seen
as a particular RG à la Aumann-Maschler where action sets are infinite. Their main result is a
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characterization of the limit of the martingales of beliefs induced by an optimal strategy of the
informed Player. Those discrete-time martingales are mapped to the time interval [0, 1] and are
considered as piecewise constant stochastic processes. The limit process for the weak topology is
shown to be a Brownian motion.
De Meyer [40] extends the result to general spaces I, J and K = R and shows that the limit
diffusion process does not depend on the specific “natural” trading mechanism, but only on the
initial belief p ∈ ∆(K): it belongs to the CMMV class (continuous time martingales of maximal
variation). It contains the dynamics of Black and Scholes and Bachelier as special cases.
The main step of De Meyer’s results is the introduction of a discrete-time stochastic control
problem whose value is equal to vn (the value of the n-stage game) and whose maximizers coincide
with a posteriori martingales at equilibrium. This generalizes the above maximization of the L1-
variation of a martingale. The first idea is to measure the variation at stage m by the value of
the one stage game where the transmission of information by Player 1 corresponds to the step
from pm to pm+1. The next extension is, starting from W a real valued function defined on the
set of probabilities over Rd, to define the W -variation of a martingale p = {p0, p1, ..., pn} by:

V W
n (pn) := E[

n∑
m=1

W (pm − pm−1|p0, ..., pm−1)].

De Meyer [40] solved the problem for d = 1, corresponding to a financial exchange model with
one risky asset, and Gensbittel [52] extended the result to higher dimensions (corresponding to a
portfolio of d ≥ 1 risky assets). Under quite general conditions on W , he obtains:

Theorem 4.2. [40] for d = 1, [52] for d ≥ 1.

lim
n

√
nVn(t, p) = max

{ps}
E[

∫ 1

t
φ(
d < ps >

ds
)ds],

where the maximum is over càdlàg martingales pt on ∆(K) that start at p and

φ(A) = supµ∈∆(Rd):cov(µ)=AW (µ)

.

Here, < ps > denotes the quadratic variation and cov(µ) the covariance. The maximizing process
above is interpreted by De Meyer as the dynamics of the equilibrium price of the risky assets.
When d = 1 or under some conditions on the correlation between the risky assets, this process
belongs to the CMMV class.

5. Uniform analysis

We turn now to the uniform approach and first recall basic results described in the previous
chapters of HGT by Zamir [175], Mertens [97] and Vieille [168].

5.1. Basic results.

5.1.1. Incomplete information.
Concerning games with lack of information on one side, Aumann and Maschler (1966) show the
existence of a uniform value, see [3], and the famous formula:

(41) v∞(p) = Cavp∈∆(K)u(p),

first for games with standard signalling (or perfect monitoring, i.e. where the moves are an-
nounced), then for general signals on the moves. u is as usual the value of the non-revealing game
and the construction of an optimal strategy for the uninformed Player is due to Kohlberg [65].

For games with lack of information on both sides and standard signaling, Aumann and Maschler
(1967) show that the maxmin and minmax exist, see [3],. Moreover, they give explicit formulas:

(42) v(p, q) = Cavp∈∆(K)Vexq∈∆(L)u(p, q), v(p, q) = Vexq∈∆(L)Cavp∈∆(K)u(p, q).
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They also construct games without a value. For several extensions to the dependent case and
state independent signaling structure, mainly due to Mertens and Zamir (see Mertens, Sorin and
Zamir [100]).

5.1.2. Stochastic games.
In the framework of stochastic games with standard signaling, the first proof of existence of
a uniform value was obtained for the “Big Match” by Blackwell and Ferguson [11], then for
absorbing games by Kohlberg [64]. The main result is due to Mertens and Neyman [98]:

(43) v∞ exists for finite stochastic games.

The proof uses two ingredients:
i) properties of the family {vλ} obtained by Bewley and Kohlberg [6] through their algebraic
characterization,
ii) the knowledge of the realized payoff at each stage n, to build an ε-optimal strategy as follows.
One constructs a map λ̄ and a sufficient statistics Ln of the past history at stage n such that σ
is, at that stage, an optimal strategy in the game with discount parameter λ̄(Ln).

5.1.3. Symmetric case.
A first connection between incomplete information games and stochastic games is obtained in the
so called “symmetric case”. This corresponds to games where the state in M is constant and may
not be known by the Players but their information during the play is symmetric (hence includes
their actions). The natural state space is the set of probabilities on M and the analysis reduces
to a stochastic game on ∆(M), which is no longer finite but on which the state process is regular
(martingale), see Kohlberg and Zamir [66], Forges [48], and for alternative tools that extend to
the non zero-sum case, Neyman and Sorin [115].

5.2. From asymptotic value to uniform value.
Recall that the existence of v∞ implies that it is also the limit of any sequence vµ (with µ
decreasing) or more generally vθ (random duration with E(θ) −→∞).

On the other hand, the proof in Mertens and Neyman [98] shows that in a stochastic game
with standard signaling the following holds:

Theorem 5.1.
Assume that w :]0, 1]→ IRΩ satisfies:

1) ‖w(λ)− w(λ′)‖ ≤
∫ λ′
λ f(x)dx, for 0 < λ < λ′ < 1, with f ∈ L1(]0, 1]),

2) Φ(λ,w(λ)) ≥ w(λ), for every λ > 0 small enough.
Then Player 1 can guarantee w(λ).

In the initial framework of finite stochastic games, one can take w(λ) = vλ, hence 2) follows
and one deduces property 1) from the fact that vλ is semi-algebraic in λ.
More generally, this approach allows to prove the existence of v∞ for continuous games with
compact action spaces that are either absorbing (Mertens, Neyman and Rosenberg [99]), recursive
(Vigeral [171]) using the operator approach of Rosenberg and Sorin [139], or definable [12] (see
Section 9.3.4).

5.3. Dynamic programming and MDP.
Stronger results are available in the framework of general dynamic programming: this corresponds
to a one person stochastic game with a state space Ω, a correspondence C from Ω to itself (with
non empty values) and a real-valued, bounded payoff g on Ω. A play is a sequence {ωn} satisfying
ωn+1 ∈ C(ωn).
Lehrer and Sorin [81] give an exemple where limn→∞ vn and limλ→0 vλ both exist and differ. They
also prove that uniform convergence (on Ω) of vn is equivalent to uniform convergence of vλ and
then the limits are the same.
However, this condition does not imply existence of the uniform value v∞, see Lehrer and Mon-
derer [79], Monderer and Sorin [87].
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Recent advances have been obtained by Renault [128] introducing new notions like the values
vm,n (resp. νm,n) of the game where the payoff is the average between stage m + 1 and m + n
(resp. the mininum of all averages between stage m+ 1 and m+ ` for ` ≤ n).

Theorem 5.2.
Assume that the state space Ω is a compact metric space.
1) If the family of functions vn is uniformly equicontinuous, then limn→∞ vn = v exists, the
convergence is uniform and:

v(ω) = inf
n≥1

sup
m≥0

vm,n(ω) = sup
m≥0

inf
n≥1

vm,n(ω).

2) If the family of functions νm,n is uniformly equicontinuous, then the uniform value v∞ exits
and

v∞(ω) = inf
n≥1

sup
m≥0

νm,n(ω) = sup
m≥0

inf
n≥1

νm,n(ω) = v(ω)

For part 1) no assumption on Ω is needed and {vn} totally bounded suffices.
For 2), the construction of an ε-optimal strategy is by concatenation of strategies defined on large
blocks, giving good payoffs while keeping the “level” of the state. Condition 2) plays the role of i)
in Mertens and Neyman’s proof. It holds for example if g is continuous and C is non expansive.

In particular for Markov Decision Process (finite state space K, move space I and transition
probability from K × I to K) the natural state space is X = ∆(K). In the case of partial
observation (signal space A and transition probability from K × I to K × A) the natural state
space is ∆f (X) on which C is non expansive and the previous result implies:

Theorem 5.3. [128]
MDP processes with finite state space and partial observation have a uniform value.

This extends previous tools and results by Rosenberg, Solan and Vieille [135].
Further developments to the continuous time setup lead to the study of asymptotic and uniform

value in control problems defined as follows: the differential equation ẋs = f(xs, us) describes the
control by u ∈ U (measurable functions from [0,+∞) to U) of the state x ∈ IRn and one defines
the value function Vm,t,m, t ∈ IR+ by:

Vm,t(x) = sup
u∈U

1

t

∫ m+t

m
g(xs, us)ds, x0 = x.

Quincampoix and Renault [125] prove that if g is continuous, the (feasible) state space X is
bounded and the non-expansiveness condition

∀x, y ∈ X, sup
u∈U

inf
v∈U
〈x− y, f(x, u)− f(y, v)〉 ≤ 0

holds, then the uniform value exists, the convergence Vt(= V0,t)→ V∞ is uniform and:

V∞(x) = inf
t≥1

sup
m≥0

Vm,t(x) = sup
m≥0

inf
t≥1

Vm,t(x).

5.4. Games with transition controlled by one Player.
Consider now a game where Player 1 controls the transition on the parameter: basic examples
are stochastic games where the transition is independent of Player’s 2 moves, or games with
incomplete information on one side (with no signals); but this class also covers the case where
the parameter is random, its evolution independent of Player 2’s moves and Player 1 knows more
than Player 2.
Basically the state space will be the beliefs of Player 2 on the parameter, which are variables
controlled and known by Player 1. The analysis in Renault [129] first constructs an auxiliary
stochastic game on this space, then reduces the analysis of the game to a dynamic programming
problem by looking at stage by stage best reply of Player 2 (whose moves do not affect the future
of the process). The finiteness assumption on the basic datas implies that one can apply Theorem
5.2 part 2), to obtain:
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Theorem 5.4.
In the finite case, games with transition controlled by one Player have a uniform value.

The result extends previous work of Rosenberg, Solan and Vieille [138] and also the model of
Markov games with lack of information on one side introduced by Renault [127], see also Krausz
and Rieder [69]: here the parameter follows a Markov chain and is known at each stage by Player
1 while Player 2 knows only the initial law. The moves are observed. Neyman [111] extends the
analysis to the case with signals and constructs an optimal strategy for the informed Player.
This class is very interesting but an explicit formula for the value is not yet available.
Here is an example: there are two states k = 1, 2. At each stage, the state changes with probability
ρ and the initial distribution is (1/2, 1/2). The payoff is given by:

k = 1 L R
T 1 0
B 0 0

k = 2 L R
T 0 0
B 0 1

If ρ = 0 or 1, the game reduces to a standard game with incomplete information on one side with
value 1/4. By symmetry it is enough to consider the interval [1/2, 1]; for ρ ∈ [1/2, 2/3] the value
is ρ/(4ρ − 1), and still unknown otherwise (Marino [91], Hörner, Rosenberg, Solan and Vieille
[63]).

5.5. Stochastic games with signals on actions.
Consider a stochastic game and assume that the signal to each Player reveals the current state
but not necessarily the previous action of the opponent. By the recursive formula for vλ and vn,
or more generally vΘ, these quantities are the same as in the standard signaling case since the
state variable is not affected by the change in the information structure. However, for example in
the Big Match, when Player 1 has no information on Player 2’s action the max min is 0 (Kohlberg
[64]) and the uniform value does not exist anymore.
It follows that the existence of a uniform value for stochastic games depends on the signaling
structure on actions. However one has the following property:

Theorem 5.5. Maxmin and minmax exist in finite stochastic games with signals on actions.

This result, due to Coulomb [34], and Rosenberg, Solan and Vieille [136] is extremely involved
and relies on the construction of two auxiliary games, one for each Player.
Consider the maxmin and some discount factor λ. Introduce an equivalence relation among the
mixed actions y and y′ of Player 2 facing the mixed action x of Player 1 by y ∼ y′ if they induce
the same transition on the signals of Player 1 for each action i having significant weight (≥ Lλ)
under x. Define now the maxmin value of a discounted game where the payoff is the minimum
with respect to an equivalence class of Player 2. This quantity will satisfy a fixed point equation
defined by a semialgebraic set and will play the role of w(λ) in Theorem 5.1. It remains to show,
first for Player 1, that this auxiliary payoff indeed can be achieved in the real game. Then for
Player 2, he will first follow a strategy realizing a best reply to σ of Player 1 up to a stage where
the equivalence relation will allow for an indistinguishable switch in action. He will then change
his strategy to obtain a good payoff from then on, without being detected. Obviously a dual
game is defined for the minmax (involving the structure of signals for Player 2).
An illuminating example, due to Coulomb [34], is as follows:

α β γ
a 1∗ 0∗ L
b 0 1 L

Payoffs (L ≥ 1 )

α β γ
a ? ? ?
b A B A

Signals to Player 1

Given a strategy σ of Player 1, Player 2 will start by playing (0, ε, 1−ε) and switch to (1−ε, ε, 0)
when the probability under σ of playing a in the future, given the distribution (1 − ε, ε) on the
signals (A,B), is small enough. Hence the maxmin is 0.
For a nice overview, see Rosenberg, Solan and Vieille [137].
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5.6. Further results.
Different examples include Sorin [150], [151] and Chapter 6 in [155] where several stochastic games
with incomplete information are analyzed. Among the new tools are approachability strategies
for games with vector payoffs and absorbing states and the use of a time change induced by an
optimal strategy in the asymptotic game, to play well in the uniform game.

Rosenberg and Vieille [140] consider a recursive game with lack of information on one side.
The initial state is chosen in a finite set K according to some p ∈ ∆(K). After each stage the
moves are announced and Player 1 knows the state. If one leaves K, the payoff is absorbing and
denoted by a. Denote by π(p, x, y) the probability to stay in K and by p̃ the random conditional
probability on K. The Shapley operator is:

(44) T(f)(p) = valXK×Y
{
π(p, x, y)Ef(p̃) + (1− π(p, x, y))E(a)

}
.

Consider w(p) an accumulation point of vλ(p). To prove that Player 1 can guarantee w, one
alternates optimal strategies in the projective game if the current state satisfies w(pn) ≤ ε and
in Gλ (with ‖vλ − w‖ ≤ ε2) otherwise.
In all these games with standard signaling, whenever one Player is fully informed, one has:
limn→∞ vn = limλ→0 vλ = max min. A counter example in the general case is given in Section
9.3.2.

6. Differential games

6.1. A short presentation of differential games (DG).
DG are played in continuous time. A state space Z and control sets U for Player 1 and V for
Player 2 are given. At each time t, the game is in some state zt and each Player chooses a control
(ut ∈ U, vt ∈ V ). This induces a current payoff γt = γ(zt, t, ut, vt) and defines the dynamics
żt = f(zt, t, ut, vt) followed by the state, see Friedman, Chapter 22 in HGT2 [49]. Notice that
in the autonomous case, if the Players use piece-wise constant controls on intervals of size δ, the
induced process is like a RG.

There are many ways of defining strategies in differential games. For simplicity of the presen-
tation, only non-anticipative strategies with delay are presented here. The main reasons are (1)
they allow to put the game in normal form and (2) they are the most natural since they suppose
that a Player always needs a delay (that may be chosen strategically) before reacting to a change
in the behavior of the other Player.

Let U (resp. V) denote the set of measurable control maps from R+ to U (resp. V ). α ∈ A
(resp. β ∈ B) is a non anticipative strategy with delay (NAD) if α maps v ∈ V to α(v) = u ∈ U
and there is δ > 0 such that if vs = v′s on [0, t] then α(v) = α(v′) on [0, t+ δ], for all t ∈ R+. A
pair (α, β) defines a unique pair (u,v) ∈ U ×V with α(v) = u and β(u) = v, thus the solution z
is well defined. The map t ∈ [0,+∞[7→ (zt,ut,vt) specifies the trajectory (z,u,v)(α, β), see e.g.
Cardaliaguet [17], Cardaliaguet and Quincampoix [23].

As in RG, there are many ways to evaluate payoffs.
Compact evaluations, or quantitative DG. This concerns the class of DG with total evaluation of
the form:

(45) Γ(α, β)(z0) =

∫ T

0
γt dt+ γ(zT )

where γ is some terminal payoff function, or:

Γ(α, β)(z0) =

∫ ∞
0

γtµ(dt)

where µ is a probability on [0,+∞) like 1
T 1[0,T ]dt or λ exp(−λt)dt.

The game is now well defined in normal form and the issues are the existence of a value, its
characterization and properties of optimal strategies.
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Uniform criteria, or qualitative DG. The aim is to control the asymptotic properties of the
trajectories like: the state zt should stay in some set C for all t ∈ R+ or from some time
T ≥ 0 on. Basic references include Krasovskii and Subbotin [68], Cardaliaguet [16], Cardaliaguet,
Quincampoix and Saint-Pierre [24].

6.2. Quantitative differential games.
We describe very briefly the main tools in the proof of existence of a value, due to Evans and
Souganidis [46], but using NAD strategies, compare with Friedman [49].
Consider the case defined by (45) under the following assumptions:
1) U and V are compact sets in IRK ,
2) Z = IRN ,
3) All functions f (dynamics), γ (running payoff), γ̄ (terminal payoff) are bounded, jointly
continuous and uniformly Lipschitz in z,
4) Define the HamiltoniansH+(p, z, t) = infv supu{〈f(z, t, u, v), p〉+γ(z, t, u, v)} andH−(p, z, t) =
supu infv{〈f(z, t, u, v), p〉 + γ(z, t, u, v)} and assume that Isaacs’s condition holds: H+(p, z, t) =
H−(p, z, t) = H(p, z, t), for all (p, z, t) ∈ IRN × IRN × [0, T ].
For T ≥ t ≥ 0 and z ∈ Z, consider the game on [t, T ] starting at time t from state z and let v[z, t]
and v[z, t] denote the corresponding minmax and maxmin. Explicitly:

v[z, t] = inf
β

sup
α

[

∫ T

t
γsds+ γ̄(ZT )]

where γs = γ(zs, s,us,vs) is the payoff at time s and (z,u,v) is the trajectory induced by (α, β)
and f on [t, T ] with zt = z. Hence us = us(α, β),vs = vs(α, β), zs = zs(α, β, z, t).
The first property is the following dynamic programming inequality:

Theorem 6.1.
For 0 ≤ t ≤ t+ δ ≤ T , v satisfies:

(46) v[z, t] ≤ inf
β

sup
α

{∫ t+δ

t
γ(zs(α, β, z, t), s,us(α, β),vs(α, β))ds+ v[zt+δ(α, β, z, t), t+ δ]

}
.

In addition v is uniformly Lipschitz in z and t.
Property (46) implies in particular that for any C1 function Φ on [0, T ]× Z with Φ[t, z] = v[t, z]
and Φ ≥ v in a neighborhood of (t, z) one has, for all δ > 0 small enough:
(47)

inf
β

sup
α

{
1

δ

∫ t+δ

t
γ(zs(α, β, z, t), s,us(α, β),vs(α, β))ds+

Φ[zt+δ(α, β, z, t), t+ δ]− Φ[z, t]

δ

}
≥ 0.

Letting δ going to 0 implies that Φ satisfies the following property:

inf
v

sup
u
{γ(z, t, u, v) + ∂tΦ[z, t] + 〈DΦ[z, t], f((z, t, u, v)〉} ≥ 0

which gives the differential inequality:

(48) ∂tΦ[z, t] +H+(DΦ[z, t], z, t) ≥ 0.

The fact that any smooth local majorant of v satisfies (48) can be expressed as:

Proposition 6.1.
v is a viscosity subsolution of the equation ∂tW [z, t] +H+(DW [z, t], z, t) = 0.

Obviously a dual property holds. One use then Assumption 3) and the next comparison
principle:

Theorem 6.2.
Let W1 be a viscosity subsolution and W2 be a viscosity supersolution of

∂tW [z, t] +H(DW [z, t], z, t) = 0

then W1[T, .] ≤W2[T, .] implies W1[t, z] ≤W2[z, t],∀z ∈ Z,∀t ∈ [0, T ].
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One obtains finally:

Theorem 6.3.
The differential game has a value:

v[z, t] = v[z, t].

In fact the previous Theorem 6.2 implies v[z, t] ≤ v[z, t].

Note that the comparison Theorem 6.2 is much more general and applies to W1 u.s.c., W2 l.s.c.,
H uniformly Lipschitz in p and satisfying: |H(p, z1, t1) − H(p, z2, t2)| ≤ C(1 + ‖p‖)‖(z1, t1) −
(z2, t2)‖. Also v is in fact, even without Isaacs’s condition, a viscosity solution of ∂tW [z, t] +
H+(DW [z, t], z, t) = 0.
For complements see e.g. Souganidis [164], Bardi and Capuzzo Dolcetta [5] and for viscosity
solutions Crandall, Ishii and Lions [36].

The analysis has been extended by Cardaliaguet and Quincampoix [23] to the symmetric case
where the initial value of the state z ∈ IRN is random and only its law µ is known. Along the
play, the Players observe the controls but not the state. Assuming µ ∈ M , the set of measures
with finite second moment, the analysis is done on M endowed with the L2−Wasserstein distance
by extending the previous tools and results to this infinite-dimensional setting.

Another extension involving mixed strategies when Isaacs’ condition is not assumed is devel-
oped in Buckdahn, Li and Quincampoix [14].

6.3. Quantitative differential games with incomplete information.
An approach similar to the one for RG has been introduced by Cardaliaguet [17] and developed
by Cardaliaguet and Rainer [25] to study differential games of fixed duration with incomplete
information. Stochastic differential games with incomplete information have been analyzed by
Cardaliaguet and Rainer [25], see also Buckdahn, Cardaliaguet and Quincampoix [15].
The model works as follows. Let K and L be two finite sets. For each (k, `) a differential
game Γk` on [0, T ] with control sets U and V is given. The initial position of the system is
z0 = {zk`0 } ∈ ZK×L, the dynamics is fk`(zk`, t, u, v), the running payoff is γk`(zk`, t, u, v) and the
terminal payoff is γ̄k`(zk`). k ∈ K is chosen according to a probability distribution p ∈ ∆(K),
similarly ` ∈ L is chosen according to q ∈ ∆(L). Both Players know p and q and in addition
Player 1 learns k and Player 2 learns l. Then, the game Γk` is played starting from zk`0 . The
corresponding game is Γ(p, q)[z0, 0]. The game Γ(p, q)[z, t] starting from z = {zk`} at time t is
defined similarly. One main difference with the previous section is that even if Isaacs’ condition
holds, the Players have to use randomization to choose their controls in order to hide their private
information. α ∈ Ā is the choice at random of an element in A. Hence a strategy for Player 1 is
described by a profile α̂ = {αk} ∈ ĀK (αk is used if the signal is k). The payoff induced by a pair

of profiles (α̂, β̂) in Γ(p, q)[z, t] isGp,q[z, t](α̂, β̂) =
∑

k,` p
kq`Gk`[z, t](αk, β`) whereGk`[z, t](αk, β`)

is the payoff in the game Γk` induced by the (random) strategies (αk, β`).
Notice that Γ(p, q)[z, t] can be considered as a game with incomplete information on one side
where Player 1 knows which of the games Γ(k, q)[z, t] will be played, where k has distribution p
and Player 2 is uninformed. Consider the minmax in Γ(p, q)[z, t]:

V (p, q)[z, t] = inf
β̂

sup
α̂
Gp,q[z, t](α̂, β̂) = inf

{β`}
sup
{αk}

∑
k

pk{
∑
`

q`Gk`[z, t](αk, β`)}

The dual game with respect to p and with parameter θ ∈ IRK has a minmax given by:

W (θ, q)[z, t] = inf
β̂

sup
α∈Ā

max
k
{
∑
`

q`Gk`[z, t](α, β`)− θk}

and using (36):

W (θ, q)[z, t] = max
p∈∆(K)

{V (p, q)[z, t]− 〈p, θ〉}.
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Note that V (p, q)[z, t] does not obey a dynamic programming equation: the Players observe the
controls not the strategy profiles, and the current state is unknown but W (θ, q)[z, t] will satisfy a
sub-dynamical programming equation. First the max can be taken on A, then if Player 2 ignores
his information, one obtains:

Proposition 6.2.

(49) W (θ, q)[z, t] ≤ inf
β∈B

sup
α∈A

W (θ(t+ δ), q)[zt+δ, t+ δ]

where zt+δ = zt+δ(α, β, z, t) and θk(t+ δ) = θk −
∑

` q
`
∫ t+δ
t γk`(zk`s , s,us,vs)ds.

Assume that the following Hamiltonian H satisfies Isaacs’s condition:

H(z, t, ξ, p, q) = infv supu

{
〈f(z, t, u, v), ξ〉+

∑
k,` p

kq`γk`(zk`, t, u, v)
}

= supu infv

{
〈f(z, t, u, v), ξ〉+

∑
k,` p

kq`γk`(zk`, t, u, v)
}

.

Here f(z, ., ., .) stands for {fk`(zk`, ., ., .)} and ξ = {ξk`}.
Given Φ ∈ C2(Z × [0, T ] × IRK), let L̄Φ(z, t, p̄) = max{〈D2

ppΦ(z, t, p̄)ρ, ρ〉; ρ ∈ Tp̄∆(K)} where
Tp̄∆(K) is the tangent cone to ∆(K) at p̄.

The crucial idea is to use (36) to deduce from (49) the following property on V :

Proposition 6.3.
V is a viscosity subsolution for H in the sense that:
for any given q̄ ∈ ∆(L) and any test function Φ ∈ C2(Z × [0, T ] × IRK) such that the map
(z, t, p) 7→ V (z, t, p, q̄)− Φ(z, t, p) has a local maximum on Z × [0, T ]×∆(K)) at (z̄, t̄, p̄) then

(50) max
{
L̄Φ(z̄, t̄, p̄); ∂tΦ(z̄, t̄, p̄) +H(z̄, t̄, DzΦ(z̄, t̄, p̄), p̄, q̄)

}
≥ 0.

A similar dual definition, with L, holds for a viscosity supersolution.
Finally a comparison principle extending Theorem 6.2 proves the existence of a value v = V = V .

Theorem 6.4.
let F1 and F2: Z × [0, T ]×∆(K)×∆(L) 7→ IR be Lipschitz and saddle (concave in p and convex
in q). Assume that F1 is a subsolution and F2 a supersolution with F1(., T, ., .) ≤ F2(., T, ., .),
then F1 ≤ F2 on Z × [0, T ]×∆(K)×∆(L).

Basically the idea of the proof is to mimick the complete information case. However, the value
operator is on the pair of profiles (α̂, β̂) . Hence, the infinitesimal version involves vectors in
UK × V L while only the realized controls in U or V are observed, consequently, the dynamic
programming property does not apply in the same space. The use of the dual games allows, for
example, for Player 2, to work with a variable that depends only on the realized trajectory of
his opponent. The geometrical properties (convexity) of the minmax imply that it is enough to
characterize the extreme points and then Player 2 can play non revealing. As a consequence, the
dynamic programming inequality on the dual of the minmax involving a pair (α, β) induces an
inequality with the infinitesimal value operator on U × V for the test function. The situation
being symmetrical for Player 1, a comparison theorem can be obtained.

Using the characterization above, Souquière [165] shows that in the case where f and γ are
independent of z and the terminal payoff is linear, v = MZ(u), where u is the value of the
corresponding non revealing game, and thus recovers Mertens-Zamir’s result through differential
games. This formula does not hold in general, see examples in Cardaliaguet [18]. However, one
has the following approximation procedure. Given a finite partition Π of [0, 1] define inductively
VΠ by:

VΠ(z, tm, p, q) = MZ

[
sup
u

inf
v
{VΠ(z + δm+1f(z, tm, u, v), tm+1, p, q) + δm+1

∑
k`

pkq`γk`(zk`, tm, u, v)

]
where δm+1 = tm+1 − tm. Then using results of Laraki [72], [74], Souquière [165] proves that VΠ

converges uniformly to v, as the mesh of Π goes to 0. This extends a similar construction for
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games with lack of information on one side in Cardaliaguet [19], where moreover an algorithm
for constructing ε-optimal strategies is provided. Hence the MZ operator (which is constant in
the framework of repeated games: this is the time homogeneity property) appears as the true
infinitesimal operator in a non-autonomous framework.

Cardaliaguet and Souquière [29] study the case where the initial state is random (with law µ)
and known by Player 1 who also observes the control of Player 2. Player 2 knows µ but is blind:
he has no further information during the play.

7. Approachability

This section describes the exciting and productive interaction between RG and DG in a specific
area: approachability theory, introduced and studied by Blackwell [9].

7.1. Definition.
Given an I × J matrix A with coefficients in IRk, a two-person infinitely repeated game form
G is defined as follows. At each stage n = 1, 2, ..., each Player chooses an element in his set of
actions: in ∈ I for Player 1 (resp. jn ∈ J for Player 2), the corresponding vector outcome is
gn = Ainjn ∈ IRk and the couple of actions (in, jn) is announced to both Players. gn = 1

n

∑n
m=1 gm

is the average vector outcome up to stage n. The aim of Player 1 is that gn approaches a target
set C ⊂ IRk. Approachability theory is thus a generalization of max-min level in a (one shot)
game with real payoff where C is of the form [v,+∞).

The asymptotic approach corresponds to the following notion :

Definition 7.1. A nonempty closed set C in IRk is weakly approachable by Player 1 in G if,
for every ε > 0, there exists N ∈ IN such that for any n ≥ N there is a strategy σ = σ(n, ε) of
Player 1 such that, for any strategy τ of Player 2:

Eσ,τ (dC(gn)) ≤ ε.

where dC stands for the distance to C. If vn is the value of the n-stage game with payoff
−E(dC(ḡn)), weak-approachability means vn → 0. The uniform approach is expressed by the
next definition:

Definition 7.2. A nonempty closed set C in IRk is approachable by Player 1 in G if, for every
ε > 0, there exists a strategy σ = σ(ε) of Player 1 and N ∈ IN such that, for any strategy τ of
Player 2 and any n ≥ N :

Eσ,τ (dC(gn)) ≤ ε.

In this case, asymptotically the average outcome remains close in expectation to the target C,
uniformly with respect to the opponent’s behavior. The dual concept is excludability.

The “expected deterministic” repeated game form G? is an alternative two-person infinitely
repeated game associated, as the previous one, to the matrix A but where at each stage n = 1, 2, ...,
Player 1 (resp. Player 2) chooses un ∈ U = ∆(I) (resp. vn ∈ V = ∆(J)), the outcome is
g?n = unAvn and (un, vn) is announced. Hence G? is the game played in “mixed actions” or in
expectation. Weak ?approachability, v?n and ?approachability are defined similarly.

7.2. Weak approachability and quantitative differential games.
The next result is due to Vieille [167]. Recall that the aim is to obtain an average outcome at
stage n close to C.

First consider the game G?. Use as state variable the accumulated payoff zt =
∫ t

0 γsds, γs = usAvs
being the payoff at time s and consider the differential game Λ of fixed duration played on [0, 1]
starting from z0 = 0 ∈ IRk with dynamics:

(51) żt = utAvt = f(ut, vt)

and terminal payoff −dC(z(1)). Note that Isaacs’s condition holds: maxu minv〈f(z, u, v), ξ〉 =
minv maxu〈f(z, u, v), ξ〉 = valU×V 〈f(z, u, v), ξ〉 for all ξ ∈ IRk. The n stage game G?n appears
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then as a discrete time approximation of Λ and v?n = Vn(0, 0) where Vn satisfies, for k = 0, ..., n−1
and z ∈ IRk:

(52) Vn(
k

n
, z) = valU×V Vn(

k + 1

n
, z +

1

n
uAv)

with terminal condition V (1, z) = −dC(z). Let Φ(t, z) be the value of the game played on [t, 1]

starting from z (i.e. with total outcome z +
∫ 1
t γsds). Then basic results from DG imply (see

Section 6):

Theorem 7.1.
1) Φ(z, t) is the unique viscosity solution on [0, 1]× IRk of:

∂tΦ(z, t) + valU×V 〈DΦ(z, t), uAv〉 = 0

with Φ(z, 1) = −dC(z).
2)

lim
n→∞

v?n = Φ(0, 0).

The last step is to relate the values in G?n and in Gn.

Theorem 7.2.

lim v?n = lim vn

The idea of the proof is to play by blocks in GLn and to mimic an optimal behavior in G?n.
Inductively at the mth block of L stages in GLn Player 1 will play i.i.d. a mixed action optimal at
stage m in G?n (given the past history) and y?m is defined as the empirical distribution of actions
of Player 2 during this block. Then the (average) outcome in GLn will be close to the one in G?n
for large L, hence the result.

Corollary 7.1.
Every set is weakly approachable or weakly excludable.

7.3. Approachability and B-sets.
The main notion was introduced by Blackwell [9]. πC(a) denotes the set of closest points to a in
C.

Definition 7.3. A closed set C in IRk is a B-set for Player 1 (for a given matrix A), if for any
a /∈ C, there exists b ∈ πC(a) and a mixed action u = û(a) in U = ∆(I) such that the hyperplane
through b orthogonal to the segment [ab] separates a from uAV :

〈uAv − b, a− b〉 ≤ 0, ∀v ∈ V

The basic result of Blackwell, [9] is :

Theorem 7.3.
Let C be a B-set for Player 1. Then it is approachable in G and ?approachable in G? by that
Player. An approachability strategy is given by σ(hn) = û(ḡn) (resp. σ?(h?n) = û(ḡ?n)), where hn
(resp. h?n) denotes the history at stage n.

An important consequence of Theorem 7.3 is the next result due to Blackwell, [9]:

Theorem 7.4.
A convex set C is either approachable or excludable.

A further result due to Spinat [166], characterizes minimal approachable sets:

Theorem 7.5.
A set C is approachable iff it contains a B-set.
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7.4. Approachability and qualitative differential games.
To study ?approachability, we consider an alternative qualitative differential game Γ where both
the dynamics and the objective differ from the previous quantitative differential game Λ. We
follow here As Soulamani, Quincampoix and Sorin [2]. The aim is to control asymptotically the
average payoff that will be the state variable and the discrete dynamics is of the form:

ḡn+1 − ḡn =
1

n+ 1
(gn+1 − ḡn).

The continuous counterpart is γ̄t = 1
t

∫ t
0 usAvsds. A change of variable zt = γ̄et leads to:

(53) żt = utAvt − zt.
which is the dynamics of an autonomous differential game Γ with f(z, u, v) = uAv − z, that still
satisfies Isaacs’ condition. In addition the aim of Player 1 in Γ is to stay in a certain set C.

Definition 7.4. A non-empty closed set C in IRk is a discriminating domain for Player 1,
given f if:

(54) ∀a ∈ C, ∀p ∈ NPC(a), sup
v∈V

inf
u∈U
〈f(a, u, v), p〉 ≤ 0,

where NPC(a) = {p ∈ IRK ; dC(a+ p) = ‖p‖} is the set of proximal normals to C at a.

The interpretation is that, at any boundary point x ∈ C, Player 1 can react to any control of
Player 2 in order to keep the trajectory in the half space facing a proximal normal p.
The following theorem, due to Cardaliaguet [16], states that Player 1 can ensure remaining in a
discriminating domain.

Theorem 7.6.
Assume that f satisfies Isaacs’ condition, that f(x, U, v) is convex for all x, v, and that C is a
closed subset of IRk. Then C is a discriminating domain if and only if for every z belonging
to C, there exists a nonanticipative strategy α ∈ A′, such that for any v ∈ V, the trajectory
z[α(v),v, z](t) remains in C for every t ≥ 0.

The link with approachability is through the following result:

Theorem 7.7.
Let f(z, u, v) = uAv − z. A closed set C ⊂ IRk is a discriminating domain for Player 1, if and
only if C is a B-set for Player 1.

The main result is then:

Theorem 7.8.
A closed set C is ?approachable in G? if and only if it contains a B-set.

The direct part follows from Blackwell’s proof. For the converse, first one defines a map Ψ from
strategies of Player 1 in G? to nonanticipative strategies in Γ. Next, given ε > 0 and a strategy
σε that ε-approaches C in G?, one shows that the trajectories in the differential game Γ that are
compatible with αε = Ψ(σε) approach C up to ε. Finally, one proves that the ω-limit set of any
trajectory compatible with some α is a discriminating domain.
In particular, approachability and ?approachability coincide.
In a similar way one can explicitly construct an approachability strategy in the repeated game G
starting from a preserving strategy in Γ. The proof is inspired by the “extremal aiming” method
of Krasowkii and Subbotin [68] which is in the spirit of proximal normals and approachability.

7.5. Remarks and extensions.
1. In both cases, the main ideas to represent a RG as a DG is first to take as state variable
either the total payoff or the average payoff but in both cases the corresponding dynamics is
(asymptotically) smooth; the second aspect is to work with expectation so that the trajectory is
deterministic.
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2. For recent extensions of approachability condition for games on more general spaces, see Lehrer
[78], Milman [107]. For games with signals on the outcomes, see Lehrer and Solan [80], Perchet
[121] which provides a characterization for convex sets. Perchet and Quincampoix [123] present
a general perspective by working on the space of distribution on signals that can be generated
during the play. Approachability is then analyzed in the space of probability distributions on IRn

with the L2-Wasserstein distance using tools from [1] and [23].

8. Alternative tools and topics

8.1. Alternative approaches.

8.1.1. A different use of the recursive structure.
The use of the operator approach does not allow to deal easily with games with signals: the
natural state space on which the value is defined is large. In their original approach Mertens and
Zamir [101] and Mertens [94] introduce thus majorant and minorant games having both simple
recursive structure, i.e. small level in the hierarchy of beliefs in the auxiliary game.
Similarly, a sophisticated use of the recursive strucure allows to obtain exact speed of convergence
for games with incomplete information on one side, Mertens [96].

8.1.2. No signals.
For a class of games with no signals, Mertens and Zamir [102] introduced a kind of normal form
representation of the infinite game for the maxmin (and for the minmax): this is a collection
of strategies (and corresponding payoffs) that they prove to be an exhaustive representation of
optimal plays. In any large game Player 1 can guarantee the value of this auxiliary game and
Player 2 defend it.
A similar approach is used in Sorin [153] for the asymptotic value. One uses a two-level scale:
blocks of stages are used to identify the regular moves and sequence of blocks are needed for the
exceptional moves.

8.1.3. State dependent signals.
For RG with incomplete information, the analysis in Sorin [152] shows that the introduction of
state dependent signals generates absorbing states in the space of beliefs, hence the natural study
of absorbing games with incomplete information. In Sorin [150] [151], two classes are studied and
the minmax, maxmin and asymptotic values are identified.

8.1.4. Incomplete information on the duration.
These are games where the duration is a random variable on which the Players have private
information. For RG with incomplete information, these games have maxmin and minmax that
may differ, Neyman [112].

8.1.5. Games with information lag.
There is a large literature on games with information lag starting with Scarf and Shapley [141].
A recent study in the framework of stochastic games is due to Levy [84].

8.2. The “limit game”.

8.2.1. Presentation.
In addition to the convergence of the values {vµ}, one looks for a game G on [0, 1] with strategy
sets U and V and value w such that:
1) the play at time t in G would be similar to the play at stage m = [tn] in Gn (or at the fraction
t of the total weight of the game for general evaluation µ),
2) ε-optimal strategies in G would induce 2ε-optimal strategies in Gn, for large n. More precisely,
the history for Player 1 up to stage m in Gn defines a state variable that is used to define with a
strategy U in G at time t = m/n a move in Gn.
Obviously then, the asymptotic value exists and is w.
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8.2.2. Examples.
One example was explicitly described (strategies and payoff) for the Big Match with incomplete
information on one side in Sorin [150]. V is the set of measurable maps f from [0, 1] to ∆(J).
Hence Player 2 plays f(t) at time t and the associated strategy in Gn is a piecewiese constant
approximation. U is the set of vectors of stopping times {ρk}, k ∈ K, i.e. increasing maps from
[0, 1] to [0, 1] and ρk(t) is the probability to stop the game before time t if the private information
is k.
The auxiliary differential game introduced by Vieille [167] to study weak approachability, Section
7.2 is also an example of a limit game.
A recent example deals with absorbing games, Laraki [75]. Recall the auxiliary game Γ corre-
sponding to (26). Then one shows that given a strategy (x, α) ε-optimal in Γ, its image x + λα
(normalized) is 2ε-optimal in Gλ.
For games with incomplete information on one side, the asymptotic value v(p) is the value of the

splitting game (Setion 3.4.2. C) with payoff
∫ 1

0 u(pt)dt, where u is the value of the non revealing
game and pt is a martingale in ∆(K) starting from p at t = 0.
For the uninformed Player an asymptotically optimal strategy has been defined by Heuer [61]
and extends to the case of lack of information on both sides. His approach has the additional
advantage to show that, assuming that the Mertens-Zamir system has a solution v, then the
asymptotic value exists and is v.

8.2.3. Specific properties.
This representation allows also to look for further properties, like stationarity of the expected
payoff at time t along the plays induced optimal strategies, see Sorin, Venel and Vigeral [160]
or robustness of optimal strategies: to play at stage n optimally in the discounted game with
λn = µn∑

m≥n µm
should be asymptotically optimal for the evaluation µ.

8.3. Repeated games and differential equations.

8.3.1. RG and PDE.
As already remarked by De Meyer [37, 39], the fact that the asymptotic value of game satisfies a
limit dynamic principle hence a PDE can be used in the other direction. To prove that a certain
PDE has a solution one constructs a family of simple finite RG (corresponding to time and space
discretizations) and one then shows that the limit of the values exists.
For similar results in this direction see e.g. Kohn and Serfaty [67], Peres, Schramm, Sheffield and
Wilson [124].

8.3.2. RG and evolution equations.
We follow Vigeral [169]. Consider again a non expansive mapping T from a Banach space X to
itself. The non-normalized n stage values satisfy Vn = Tn(0) hence:

Vn − Vn−1 = −(Id−T)(Vn−1)

which can be considered as a discretization of the differential equation:

(55) ẋ = −Ax

where the maximal monotone operator A is Id−T.
The comparison between the iterates of T and the solution U of (55) is given by Chernoff’s
formula, see [13], p. 16:

‖U(t)−Tn(U(0))‖ ≤ ‖U ′(0)‖
√
t+ (n− t)2.

In particular with U(0) = 0 and t = n, one obtains:

‖U(n)

n
− vn‖ ≤

‖T(0)‖√
n

.
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It is thus natural to consider u(t) = U(t)
t which satisfies an equation of the form:

(56) ẋ(t) = Φ(ε(t), x(t))− x(t)

where as usual Φ(ε, x) = εT(1−ε
ε x) and notice that (56) is no longer autonomous.

Define the condition (L) by:

‖Φ(λ, x)−Φ(µ, x)‖ ≤ |λ− µ|(C + ‖x‖).

Theorem 8.1.
Let u(t) be the solution of (56), associated to ε(t).
a) If ε(t) = λ, then ‖u(t)− vλ‖ → 0
b) If ε(t) ∼ 1

t , then ‖u(n)− vn‖ → 0
Assume condition (L).

c) If ε′(t)
ε2(t)

→ 0 then ‖u(t)− vε(t)‖ → 0

Hence lim vn and lim vλ mimick solutions of similar perturbed evolution equations and in
addition one has the following robustness result:

Theorem 8.2.
Let u (resp. ū) be a solution of (56) associated to ε (resp. ε̄).
Then ‖u(t)− ū(t)‖ → 0 as soon as
i) ε(t) ∼ ε̄(t) as t→∞ or
ii) |ε− ε̄| ∈ L1.

8.4. Multimove games.
We describe here very briefly some other areas that are connected to RG.

8.4.1. Alternative evaluations.
There are games similar to those of Section 1 where the sequence of payoffs {gn} is evaluated
trough a single functional like limsup, or liminf.
Some of the results and of the tools are quite similar to those of RG, like “recursive structure”,
“operator approach” or construction by iteration of optimal strategies. A basic reference is Maitra
and Sudderth [87].

8.4.2. Evaluation on plays.
More generally the evaluation is defined here directly on the set of plays (equipped with the
product topology) extending the games of Gale and Stewart [50] and Blackwell [10]. The basic
results, first in the perfect information case then in the general framework are due to Martin [92],
[93] and can be expressed as:

Theorem 8.3. Borel games are determined.

For the extension to stochastic games and related topics, see Maitra and Sudderth [88, 89]. For
a recent result in the framework of games with delayed information, see Shmaya [143].

8.4.3. Stopping games.
Stopping games (with symmetric information) have been introduced by Dynkin [45]. They are
played on a probability space (Ω,A, P ) endowed with a filtration F = (Ft) describing the common
information of the Players as time go on. Each Player i chooses a measurable time θi when he
stops and the game ends at θ = min{θ1, θ2}. The payoff is gi(θ, ω) if Player i = 1, 2 stops first the
game and is f(θ, ω) if they stop it simultaneously. Payoff functions are supposed to be uniformly
integrable.
Neveu [109] in discrete time and Lepeltier and Maingueneau [83] in continuous time proved the
existence of the value in pure strategies under the “standard” condition g1 ≤ f ≤ g2 (at each
moment, each Player prefers the other to stop rather than himself).
Without this condition, mixed strategies are necessary to have a value. Rosenberg, Solan and
Vieille [134] proved the existence of the value in discrete time. As in Mertens and Neyman [98],
they let the Players play an optimal discounted strategy, where the discount factor may change
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from time to time, depending on their information. Shmaya and Solan [144] provided a very
elegant proof of the result based on a stochastic variation of Ramsey’s theorem. Finally, Laraki
and Solan [76] proved the existence of the value in continuous time.
For stopping games with incomplete information on one side, the value may not exist even under
the standard assumption (Laraki [70]). This is due to the fact that Player 2 prefers to wait until
Player 1 uses his information while Player 1 prefers to use his information only if he knows that
Player 2 will never stop.
For finite horizon stopping games with incomplete information on one side, the value exists in
discrete time using Sion’s minmax theorem. In continuous time, the value exists under the
standard assumption and may be explicitly characterized by using viscosity solutions combined
with BSDE technics (Grün [58]). Without the standard condition, the value may not exist (Bich
and Laraki [8]). One example is as follows. One type of Player 1 has a dominant strategy: to stop
at time zero. The other type prefers to stop just after 0, but before Player 2. However, Player 2
also prefers to stop just after zero but before type 2 of Player 1.
For a survey on the topic see Solan and Vieille [148] and for the related class of duels see Radzik
and Raghavan, [126].

9. Recent advances

We cover here very recent and important advances and in particular counter examples to
conjectures concerning the asymptotic value and new approaches to multistage interactions.

9.1. Dynamic programming and games with an informed controller.

9.1.1. General evaluation and total variation.
Recall that an evaluation µ is a probability on IN∗ which corresponds to a discrete time pro-
cess and the associated length is related to its expectation. However some regularity has to be
satisfied to express that the duration goes to ∞: ‖µ‖ → 0 is not sufficient (take for payoff an
alternating sequence of 0 and 1 and for evaluation the sequences µn = (0, 1/n, 0, 1/n, ...) and
νn = (1/n, 0, 1/n, 0, ...)).
One measure of regularity is the total variation, TV (µ) =

∑
n |µn − µn+1|, and a related er-

godic theorem holds for a Markov chain P : there exists Q such that
∑

n µnP
n converges to Q as

TV (µ)→ 0, Sorin [155], p. 105. Obviously for decreasing evaluations, one has µ1 = ‖µ‖ = TV (µ).
One can define stronger notions of convergence associated to this criteria, following Renault [130],
Renault and Venel [131]:
v is a TV -asymptotic value if for each ε > 0, there exists δ > 0 such that TV (µ) ≤ δ implies
‖vµ − v‖ ≤ ε. (In particular then v = limn→∞ vn = limλ→0 vλ.)
Similarly v∞ is a TV -uniform value if for each ε > 0, there exists δ > 0 and σ∗ strategy of Player
1 such that TV (µ) ≤ δ implies Eσ∗,τ 〈µ, g〉 ≥ v∞ − ε, for all τ (and a dual statement for Player
2).
Obviously a TV -uniform value is a TV -asymptotic value.

9.1.2. Dynamic programming and TV -asymptotic value.
In the framework of dynamic programming (see Section 5.3) Renault [130] proves that given
a sequence of evaluations {µk} with TV (µk) → 0, the corresponding sequences of values vµk
converges (uniformly) iff the family {vµk} is totally bounded (pre-compact). In this case the limit
is v∗ with:

v∗(ω) = inf
µ∈M

sup
m
vm◦µ(ω) = inf

k
sup
m
vm◦µk(ω)

where M is the set of evaluations and m ◦ µ is the m-translation of the evaluation µ (m ◦ µk =
µm+k). In particular a TV -asymptotic value exists if Ω is a totally bounded metric space and the
family {vµ, µ ∈M} is uniformly equicontinuous.
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9.1.3. Dynamic programming and TV -uniform value.
Renault and Venel [131] provide condition for an MDP to have a TV -uniform value and give a
characterization of it, in the spirit of gambling, namely: excessive property and invariance. They
also introduce a new metric on ∆f (X) where X = ∆(K) with K finite, that allows them to prove
the existence of a TV -uniform value in MPD with finite state space and signals.

9.1.4. Games with a more informed controller.
Renault and Venel [131] prove that game with an informed controller has a TV -uniform value
extending the result in [129].
An extension in another direction is due to Gensbittel, Oliu-Barton and Venel [54]. Define a
game with a more informed controller as a situation where:
i) the belief ζ1

n(1) ∈ M1(1) = ∆(M) of Player 1 on the state mn at stage n (i.e. the conditional
probability given his information h1

n) is more precise than the belief ζ2
n(1) ∈ M2(1) = ∆(M) of

Player 2 (adding the information h2
n to h1

n would not affect ζ1
n(1)).

ii) Player 1 knows the belief ζ2
n(2) ∈M2(2) = ∆(M1(1)) of Player 2 on his own beliefs.

iii) Player 1 control the process {ζ2
n(2)}.

Then the game has a uniform value.
The analysis is done trough an auxiliary game with state space M2(2) and where the result [129]
applies. The difficulty is to prove that properties of optimal strategies in the auxiliary game can
be preserved in the original one.

9.1.5. Comments.
Note that the analysis in [22] shows in fact that a TV -asymptotic value exists in incomplete
information, absorbing and splitting games. Even more, vµ is close to v as soon as ‖µ‖ is small
enough. However these results are very specific to these classes.
Recently Ziliotto [177] has given examples of a finite stochastic game with no TV -asymptotic
value and of an absorbing game with no TV -uniform value (actually the Big Match).
In particular the above results in section 9.1 do not extend from the one-Player to the two-Player
case.

9.2. Markov games with incomplete information on both sides.
Gensbittel and Renault [55] proved recently the existence of limn→∞ vn in repeated games with
incomplete information in which the types of Players 1 and 2 evolve according to two independent
Markov chains K and L on two finite sets, respectively K and L. The parameter {km} follows
K, starting from some distribution p at stage one and km is observed by Player 1 at stage m.
The distribution of the state km is thus given by pKm. A similar situation, with L and q, holds
for Player 2.

Moves are revealed along the play and the stage m payoff is given by gm = g(km, lm, im, jm).

The authors show that v = limn→∞ vn exists and is the unique continuous solution of a
“Mertens-Zamir”-like system of equations with respect to a function u∗(p, q). In addition to be
concave/convex the function v has to be invariant through the Markov chain: v(p, q) = v(pK, qL).
As for u∗, it is the uniform limit u∗n(p, q) of the sequence of values of a n-stage repeated “non-
revealing game” Γ∗n(p, q). This game is similar to the one introduced by Renault [127] to solve
the one side incomplete information case (see Section 5.4). In Γ∗n(p, q), Player 1 plays as in the
original game but is restricted to use strategies that keep the induced beliefs of Player 2 constant
on the partition K̃ of K into recurrence classes defined by the Markov chain K (and similarly for
Player 2).

The proof of uniform convergences of u∗n is difficult and uses, in particular, a splitting lemma
in Laraki [74] to show equi-continuity of the family of functions {u∗n}.

9.3. Counter examples for the asymptotic approach.
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9.3.1. Counter example for finite state stochastic games with compact action spaces.
Vigeral [172] gives an example of a continuous stochastic game on [0, 1]2 with four states (two of
them being absorbing) where the asymptotic value does not exists: the family {vλ} oscillates as
λ→ 0. The payoff is independent of the moves and the transition are continuous. However under
optimal strategies the probability to stay in each state goes to zero and the induced occupation
measure on the two states oscillate as λ→ 0. An analog property holds for vn.
This example answers negatively a long standing conjecture for stochastic games with finite state
space. In fact, the operator and variational approaches were initially developed to prove the
existence of limλ→0 vλ and limn→∞ vn. They work in the class of irreversible games (in which,
once one leaves a state, it cannot be reached again, such as absorbing, recursive and incomplete
information games). Outside this class, the asymptotic value may not exist.

9.3.2. Counter examples for games with finite parameter sets.
A phenomena similar to the previous one is obtained by Ziliotto [177] for a game, say G4 played
with countable action set and finite state space.
More interesting, this game is obtained by a series of transformations preserving the value and
starting from a game G1 which is a finite stochastic game where the Players have symmetric
information, hence know the moves, but do not observe the sate. In that case, the game is
equivalent to a stochastic game with standard signaling and a countable state space Ω′ ⊂ ∆(Ω).
Explicitly, Player 1 has three moves: Stay1, Stay2 and Quit, and Player 2 has two moves: Left
and Right. The payoff is -1 and the transition are as follows:

A Left Right

Stay1 A (1
2A+ 1

2B)

Stay2 (1
2A+ 1

2B) A
Quit A∗ A∗

B Left Right
Stay1 A B
Stay2 B A
Quit B+ B+

The initial state is A and A∗ is an absorbing state with payoff -1. During the play the Players
will generate common beliefs on the states {A,B}. Once B+ is reached a dual game with a
similar structure and payoff 1 is played. Now, Player 2 has three moves: Player 1 two moves: the
transition is similar but different from the one above.
In an equivalent game G2, only one Player plays at each stage and he receives a random signal
on the transition (like Player 1 facing (1/2, 1/2) in the above game).
Finally G3 is a stochastic game with known state and a countable state space corresponding to
the beliefs of the Player on {A,B}, which are of the form {1/2n, 1− 1/2n}.
In all cases the families {vλ} and {vn} oscillate.
The main point is that the discrete time in the repeated interaction generates a discrete countable
state space while the evolution of the parameter λ is continuous.
This spectacular result answers negatively two famous conjectures of Mertens [95]: existence of the
asymptotic value in games with finite parameter spaces and its equality with the maxmin whenever
Player 1 is more informed than Player 2. In fact, the example shows more, the asymptotic value
may not exist even in the case of symmetric information!

9.3.3. Oscillations.
To understand the nature and links between the previous examples, Sorin and Vigeral [162]
construct a family of configurations which are zero-sum repeated games in discrete time where
the purpose is to control the law of a stopping time of exit. For a given discount factor λ ∈]0, 1],
optimal stationary strategies define an inertia rate Qλ (1 − Qλ is the normalized probability of
exit during the game).
When two such configurations (1 and 2) are coupled this induces a stochastic game where the
state will move from one to the other in a way depending on the previous rates Qiλ, i = 1, 2 and
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the discounted value will satisfy:

viλ = aiQiλ + (1−Qiλ)v−iλ , i = 1, 2

where ai is the payoff in configuration i. The important observation is that the discounted value

is a function of the ratio
Q1
λ

Q2
λ

. It can oscillate as λ→ 0, when both inertia rates converge to 0.

The above analysis shows that oscillations in the inertia rate and reversibility allow for non
convergence of the discounted values.

9.3.4. Regularity and o-minimal structures.
An alternative way to keep regularity in the asymptotic approach is to avoid oscillations. This
is the case when the state space is finite (due to the algebraic property of vλ). Recently, Botle,
Gaubert and Vigeral [12] extend the algebraic approach to a larger class of stochastic games with
compact action sets.
The concept of o-minimal structure was introduced recently as an extension of semi-algebraic
geometry through an axiomatization of its most important properties (see [44]). It consists
in a collection of subsets of Rn, for each n ∈ IN, called definable sets. Among other natural
requirements, the collection need to be stable by linear projection, its “one-dimensional” sets
must consist on the set of finite unions of intervals, and must at least contain all semi-algebraic
sets. It shares most of the nice properties of semi-algebraic sets, in particular, finiteness of the
number of connected components.

Theorem 9.1.
If (the graph of) the Shapley operator is definable, vλ is of bounded variations hence the uniform
value exists.

This raises the question: under which condition is the Shapley operator definable?
A function f on Ω× I × J is separable if there are finite sets S and T , and functions as, bt and
cs,t such that f(i, j, ω) =

∑
s∈S

∑
t∈T cs,t(ω)as(i, ω)bt(j, ω). This is the case for polynomial games

or games where one of the payers has finitely many actions. Then one proves that if transition
and payoff functions are separable and definable in some o-minimal structure, then the Shapley
operator is definable in the same structure.
The Stone-Weierstrass theorem is then used to drop the separability assumption on payoffs,
leading to the following extension of fundamental result of Mertens and Nemann.

Theorem 9.2.
Any stochastic games with finitely many states, compact action sets, continuous payoff functions
and definable separable transition functions has a uniform value.

An example shows that with semi-algebraic data, the Shapley operator may not be semi-
algebraic, but belongs to a higher o-minimal structure. Hence the open question: do a definable
stochastic game has a definable Shapley operator in a larger o-minimal structure?

9.4. Control problem, martingales and PDE.
Cardaliaguet and Rainer [26] consider a continuous time game Γ(p) on [0, T ] with incomplete
information on one side and payoff function γk(t, u, v), k ∈ K. Player 1 knows k and both
Players know its distribution p ∈ ∆(K). The value of the non-revealing local game is U(t, p) =
valU×V

∑
k p

kγk(t, u, v). This is a particular differential game with incomplete information where
the state variable is not controlled. Hence, all previous primal and dual PDE characterizations
of the value V (t, p) style hold (Section 6.3.). Moreover there is a martingale maximization for-
mulation (compare with the splitting game, Section 3.4.2 C). Explicitly:

Theorem 9.3.
V (· , ·) is:

(a) the smallest function, concave in p and continuous viscosity solution of ∂f
∂t (t, p) +U(t, p) ≤ 0,

with boundary condition f(1, p) = 0.
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(b) the value of the control problem maxpt E[
∫ 1

0 U(s, pt)dt] where the maximum is over all contin-
uous time càdlàg martingales {pt} on ∆(K) that starts at p.

Any maximizer in the above problem induces an optimal strategy of the informed Player in
the game. Cardaliaguet and Rainer [26] provide more explicit computations and show in partic-
ular that, unlike in Aumann-Maschler’s model where only one splitting is made at the beginning
and no further information is revealed, in the non-autonomous case information may be revealed
gradually or in the middle of the game, depending on how U varies with t. Such phenomena
cannot be observed in RG: they are time-independent.
Grün [56] extends these characterizations (PDE in the primal and dual games, martingale maxi-
mization) to stochastic continuous time games with incomplete information on one side.
Cardaliaguet and Rainer [27], generalized the result to the case where K = Rd so that the PDE
formulation is on ∆(Rd), like in [23].
The martingale maximization problem appears also when the state evolves along the play accord-
ing to a Markov chain, [28] (see Section 9.5.5.).
Very recently, Gensbittel [53] generalizes the characterizations to continuous time games where
Players are gradually informed, but Player 1 is more informed. Formally, information is modeled
by a stochastic process Zt = (Xt, Yt), where Xt is a private information for Player 1 and Yt is a
public information. This is a first step toward understanding de Meyer’s financial model when
Players get information gradually and not only at once.

9.5. New links between discrete and continuous time games.

9.5.1. Multistage approach.
The game is played in discrete time, stage after stage. However stage n represents more the
nth interaction between the Players rather than a specific time event. In addition stage n has
no intrinsic length: given an evaluation µ, its duration in the normalized game on [0, 1] is µn.
Finally the variation of the state variable at each stage is independent of the evaluation.

9.5.2. Discretization of a continuous time game.
An alternative framework for the asymptotic approach is to consider an increasing frequency of
the interactions between the Players. The underlying model is a game in continuous time played
on [0,+∞) with a state variable Zt which law depends upon the actions on the Players.
The usual repeated game G1 corresponds to the version where the Players play at integer times
1, 2, ... (or that their moves are constant on the interval of time [n, n+ 1)). Then the law of Zn+1

is a function of Zn, in, jn.
In the game Gδ, the timing of moves is still discrete and the play is like above, however stage
n corresponds to the time interval [nδ, (n + 1)δ) and the transition from Zn to Zn+1 will be a
function of Zn, in, jn and of the length δ, see Neyman [113].
In particular, as δ → 0 the play should be like in continuous time but with “smooth” transitions.
In addition some evaluation criteria has to be given to integrate the process of payoffs on [0,+∞).

9.5.3. Stochastic games with short stage duration.
A typical such model is a stochastic game with finite state space Ω where the state variable follows
a continuous Markov chain controlled by the Players trough a generator A(i, j), i ∈ I, j ∈ J on
Ω× Ω, see the initial version of Zachrisson [173].
Consider the discounted case where the evaluation on [0,+∞) is given by re−rt. We follow
Neyman [114] . Given a duration h ≥ 0 let Ph = exp(hA) be the transition kernel associated to
A and stage duration h.

Then the value of the corresponding Gδ,r game satisfies:

(57) vδ,r(ω) = valX×Y
{

(1− e−rδ)g(x, y, ω) + e−rδ
∑
ω′

Pδ(x, y, ω)[ω′]vδ,r(ω′)
}
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and converges, as δ → 0, to vr solution of:

(58) vr(ω) = valX×Y
{
g(x, y, ω) +

∑
ω′

A(x, y, ω)[ω′]vr(ω′)/r
}

which is also the value of the rδ-discounted repeated game with transition Id+ δA/(1− rδ), for
any δ small enough.
Optimal strategies associated to (58) induce stationary strategies that are approximatively opti-
mal in the game Gδ,r for δ small enough. The convergence of the values to vr holds for all games
with short duration stages, not necessarily uniform (compare with the limit game 8.3).
Replacing the discounted evaluation by a decreasing evaluation θ on [0,+∞) gives similar results
with Markov optimal strategies for the limit game Gθ of the family Gδ,θ.
In the finite case (I and J finite) the above system defining vr is semi algebraic and limr→0 v

r = v0

exists. Using an argument of Solan [145] one shows that the convergence of vδ,r to vr is uniform
in r.
In addition Neyman [114] considers a family of repeated games with vanishing stage duration and
adapted generators and gives condition for the family of values to converge.
Finally the existence of a uniform value (with respect to the duration t for all δ small enough) is
studied, using Theorem 5.1.

9.5.4. Stochastic games in continuous time.
Neyman [113] also introduced directly a game Γ played in continuous time. Basically one requires
the strategy of each Player to be independent of his previous short past behavior. In addition
Players use and observe mixed strategies. This implies that facing “simple strategies” a strategy
is inducing a single history (on short time interval) and the play is well defined.
Optimal strategies associated to the game (58) induce optimal stationary strategies in the dis-
counted game Γr, which value is vr, see also Guo and Hernandez-Lerma [60].
Consider the operator N on IRΩ defined by :

(59) N[v](ω) = valX×Y
{
g(x, y, ω) +

∑
ω′

A(x, y, ω)[ω′]v(ω′)
}
.

N defines a semigroup of operators with S0 = Id and limh→0
Sh−Id
h = N. Then the value of the

continuous game of length t, Γt is St(0)/t (compare with (8) and (10)). Optimal strategies are
obtained by playing optimally at time s in the game associated to N(St−s(0))(ωs).
Finally the game has a uniform value.

9.5.5. Incomplete information games with short stage duration.
Cardaliaguet, Rainer, Rosenberg and Vieille [28] consider a model similar to 9.4.2 with a given
discount factor r. Only Player 1 is informed upon the state which follows a continuous time
Markov chain with generator A. The initial distribution is p and known by both Players. This is
the “continuous time” analog of the model of Renault [127] however there are two main differences:
the asymptotics is not the same (large number of stages versus short stage duration) and in
particular the total variation of the sate variable is unbounded in the first model (take a sequence
of i.i.d random variables on K) while bounded in the second. Note that in the initial Aumann-
Maschler framework where the state is fixed during the play the two asymptotics are the same.
[28] considers the more general case where the Markov chain is controlled by both Players (thus A
is a family A(i, j)) and proves that the limit (as δ → 0) of the values vδ,r of Gδ,r, the r-discounted
game with stage duration δ, exists and is the unique viscosity solution of an Hamilton-Jacobi
equation with a barrier (compare with (50)):

(60) min
{
rv(p)− valX×Y [rg(x, y, p) + 〈∇v(p), pA(x, y)〉],−L̄v(p)

}
= 0.

A similar result holds for the case with lack of information on both sides where each Player
controls his privately known state variable that evolves through a continuous time Markov chain.
Note that the underlying non revealing game corresponds to a game where the state follows a



ADVANCES IN ZERO-SUM DYNAMIC GAMES 41

continuous time Markov chain, but the Players are not informed, which is in the spirit of [23].
Its value satisfies:

(61) uδ,r(p) = valX×Y
{

(1− erδ)g(x, y, p) + erδEx,y[v
δ,r(pPδ(i, j))]

}
.

hence at the limit

(62) ur(p) = valX×Y
{
g(x, y, p) + 〈∇ur(p)/r, pA(x, y)〉

}
.

9.6. Final comments.

Recent developments in the field of two-Player zero-sum repeated games are promising and
challenging. On the one hand, one sees the emergence of many new models, deep techniques, and
a unifying theory of dynamic games, including both discrete- and continuous-time considerations
and dealing with incomplete information, stochastic and signaling aspects at the same time. On
the other hand, we know now that vλ and vn may not converge even in finite RG and the char-
acterization of the class of regular games (where both limn→∞ vn and limλ→0 vλ exist and are
equal) is an important challenge.

In any case, a reflexion is necessary on the modeling aspect, and especially on the relation
between discrete and continuous time formulations. The natural way to take the limit in a long
repeated interaction is by considering the relative length of a stage compared to the total length,
obtaining thus a continuous-time representation on the compact interval [0, 1]. However, in the
presence of an exogenous duration process on IR+ (like the law of a state variable) this normal-
ization on [0, 1] is no longer possible, and one would like the actual length of a stage to go to
zero, leading to a continuous time game on IR+. Also, some continuous-time games do not have
faithful discretization (such as stopping games), but this is not only due to the variable “time”,
it also occurs with discrete versus continuum strategy spaces.

Finally, we should stress here that all these recent advances are expected to have a fundamental
impact on the study of nonzero-sum games as well, such as non-existence of limiting equilibrium
payoffs in discounted games, folk theorems in continuous-time stochastic games, the modeling
imperfect monitoring in continuous-time games, non-autonomous transition and payoff functions,
etc.
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