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a b s t r a c t

The Alpine Fault in New Zealand is a major plate-bounding structure that typically slips in ~M8 earth-
quakes every c. 330 years. To investigate the near-surface, high-velocity frictional behavior of surface-
and borehole-derived Alpine Fault gouges and cataclasites, twenty-one rotary shear experiments were
conducted at 1 MPa normal stress and 1 m/s equivalent slip velocity under both room-dry and water-
saturated (wet) conditions. In the room-dry experiments, the peak friction coefficient (mp ¼ tp/sn) of
Alpine Fault cataclasites and fault gouges was consistently high (mean mp ¼ 0.67 ± 0.07). In the wet
experiments, the fault gouge peak friction coefficients were lower (mean mp ¼ 0.20 ± 0.12) than the
cataclasite peak friction coefficients (mean mp ¼ 0.64 ± 0.04). All fault rocks exhibited very low steady-
state friction coefficients (mss) (room-dry experiments mean mss ¼ 0.16 ± 0.05; wet experiments mean
mss ¼ 0.09 ± 0.04). Of all the experiments performed, six experiments conducted on wet smectite-bearing
principal slip zone (PSZ) fault gouges yielded the lowest peak friction coefficients (mp ¼ 0.10e0.20), the
lowest steady-state friction coefficients (mss ¼ 0.03e0.09), and, commonly, the lowest specific fracture
energy values (EG ¼ 0.01e0.69 MJ/m2). Microstructures produced during room-dry and wet experiments
on a smectite-bearing PSZ fault gouge were compared with microstructures in the same material
recovered from the Deep Fault Drilling Project (DFDP-1) drill cores. The near-absence of localized shear
bands with a strong crystallographic preferred orientation in the natural samples most resembles mi-
crostructures formed during wet experiments. Mechanical data and microstructural observations suggest
that Alpine Fault ruptures propagate preferentially through water-saturated smectite-bearing fault
gouges that exhibit low peak and steady-state friction coefficients.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Alpine Fault, South Island, New Zealand is a long-lived
crustal-scale continental transform fault that has accommodated
at least 460 km of cumulative displacement in the past c. 45 Myr
(Wellman, 1953; Sutherland et al., 2000). Paleoseismological
Sciences, University of Liver-
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records indicate that the Alpine Fault produces quasi-periodic
large-magnitude (M~8) earthquakes that propagate along-strike
for 300e600 km (Wells and Goff, 2007; Sutherland et al., 2007;
Berryman et al., 2012). Single-event strike-slip and dip-slip sur-
face displacements on the Alpine Fault are 7.5e9 m and c. 1 m,
respectively (Barth et al., 2013). Boulton et al. (2012) and Barth et al.
(2013) measured the frictional strength and stability of smectitic
principal slip zone (PSZ) gouges from well-studied localities span-
ning c. 220 km along strike of the central and southern Alpine Fault.
They concluded that the velocity-strengthening frictional proper-
ties of surface-outcrop PSZ gouges tested while fluid-saturated at
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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room temperature and low sliding velocities (v < 100e300 mm/s)
were incompatible with paleoseismological and geomorphological
evidence for surface-rupturing earthquakes. Subsequent hydro-
thermal experiments at close to in situ conditions comparable to
2e8 km depth showed that central Alpine Fault gouges do have the
velocity-weakening properties required for earthquake nucleation
(Boulton et al., 2014; Niemeijer et al., 2016).

Dynamically, a large (�3-fold) reduction in the coefficient of
friction of both intact and granular rocks during high-velocity
sliding (v > 0.1 m/s) has been observed repeatedly since the first
rotary shear experiments by Tsutsumi and Shimamoto (1997) (for
reviews, see Wibberley et al., 2008; Di Toro et al., 2011; Niemeijer
et al., 2012). A wide range of dynamic weakening mechanisms
has been proposed to explain this effect, including: melt lubrication
(e.g., Hirose and Shimamoto, 2005; Nielsen et al., 2008), silica gel
lubrication (Goldsby and Tullis, 2002; Di Toro et al., 2004), flash
heating (Rice, 2006; Beeler et al., 2008; Goldsby and Tullis, 2011),
powder lubrication (e.g., Han et al., 2010; Reches and Lockner, 2010;
Chang et al., 2012), fluid film lubrication (Brodsky and Kanamori,
2001; Ferri et al., 2011), and thermal pressurization (e.g., Sibson,
1973; Lachenbruch, 1980; Wibberley and Shimamoto, 2005; Rice,
2006; Sulem et al., 2007; Tanikawa and Shimamoto, 2009;
Faulkner et al., 2011) or thermochemical pressurization (Brantut
et al., 2008, 2011; Chen et al., 2013; Platt et al., 2015). To what
extent hanging wall, principal slip zone (PSZ), and footwall Alpine
Fault rocks undergo high-velocity weakening remains untested.

The present study documents the results of room-dry and
water-saturated high-velocity, low-normal stress (v ¼ 1 m/s,
sn ¼ 1 MPa) friction experiments conducted on Alpine Fault gouge
and cataclasite samples collected from the surface at Gaunt Creek
and Hokuri Creek, and from shallow depths during the Deep Fault
Drilling Project (DFDP-1) at Gaunt Creek (Fig. 1). A focus of these
experiments is to quantify the peak coefficient of friction (mp), as
this value represents the yield strength and thus a barrier to
rupture propagation. An additional aim is to quantify the steady-
state coefficient of friction (mss) at high velocity as well as the
slip-weakening distance (dw) over which mss is reached. Finally,
microstructures produced during six experiments with varying
velocity histories and pore-fluid conditions are compared with
microstructures formed in naturally occurring smectitic PSZ fault
gouges. By doing so, we test: (1) the effect pore fluids have on
microstructural evolution during high-velocity sliding; (2) the ef-
fect decelerating slip and simulated afterslip have on recovered
experimental microstructures, and (3) the degree to which natural
microstructures resemble those produced during experimental
deformation. Our results allow us to conclude that small variations
in sliding velocity following a high-velocity slip event have little
effect on microstructures recovered and that natural microstruc-
tures resemble those formed during wet high-velocity friction
experiments.

2. Fault rock descriptions

2.1. Analytical methods

Samples were collected from unoriented drill core retrieved
during the first phase of the Deep Fault Drilling Project (DFDP-1) at
Gaunt Creek (hereafter GC) (Fig. 1). An additional sample of PSZ
gougewas collected from a nearby outcrop (the GC scarp outcrop of
Boulton et al., 2012). All sample depths reported from DFDP-1B are
adjusted by þ0.20 m from borehole lithological logs following
Townend et al. (2013). Saponite-rich gouge collected from a 12 m-
wide PSZ at Hokuri Creek (HkC PSZ) on the southern Alpine Fault
was also tested. The gouge mineralogy, microstructure, and low-
velocity frictional and hydrological properties of the HkC PSZ
gouge were described in detail by Barth et al. (2013). With the
exception of the DFDP-1B 144.04 m gouge, all samples were gently
disaggregated using mortar and pestle, and the powdered material
was passed through a 100# sieve to obtain a <150 mm separate.
Quantitative X-ray diffraction (XRD) analyses were undertaken to
determine the mineralogy of each sieved DFDP separate and the
bulk rock mineralogy of the DFDP-1B 144.04 m gouge, which was
tested without sieving due to the limited quantity of material
available.

2.2. Fault rock occurrence, nomenclature, and mineralogy

Brief descriptions of the eight fault rock samples used in high-
velocity friction experiments are presented here following the
lithologic units described by Toy et al. (2015a). Core-scale images of
the DFDP-1 samples are illustrated in Fig. 1. High-velocity friction
experiments were performed on two Unit 4 foliated cataclasites
(DFDP-1A 86.41 m and DFDP-1A 90.32 m), one Unit 6 cataclasite
(DFDP-1B 128.80 m), and four Unit 5 gouges (DFDP-1A 90.62 m,
DFDP-1B 128.44 m, DFDP-1B 144.04 m, and GC Scarp PSZ) (cf.
Fig. 5b,d and f in Toy et al., 2015). Hokuri Creek fault gouge (HkC
PSZ) was also deformed (cf. Fig. 6c,f,i and l in Barth et al., 2013).
Henceforth, DFDP-1 samples are referred to by hole (1A or 1B),
depth below top of the hole (m), and fault rock lithology (foliated
cataclasite, gouge, or cataclasite).

In the DFDP-1 boreholes, hangingwall lithologic units 2, 3, and 4
occur within the fault core; these units have formed due to alter-
ation (Unit 2, 3, and 4) and brittle fragmentation, translation, and
rotation (Units 3 and 4) of Unit 1 quartzofeldspathic and metabasic
ultramylonites (Sutherland et al., 2012; Toy et al., 2015a; Boulton
et al., 2017). The Unit 4 foliated cataclasite samples tested contain
irregularly spaced planar to locally anastomosing seams of aligned
phyllosilicates (Fig. 1d and e). The Unit 6 cataclasite comprises
comminuted quartz-plagioclase-potassium feldspar granitoid ag-
gregates and rare gneiss clasts (Fig. 1f). The Unit 5 gouges are
incohesive fault rocks with >90% matrix grains <0.1 mm in size.
Unit 5 gouges can be differentiated by phyllosilicate mineralogy
(described below) and the nature and abundance of protolith clasts.
1A 90.62 m gouge contains ultramylonite and cataclasite clasts,
calcite vein fragments, and rare clasts, lenses, or veins of underlying
smectitic gouge (Fig. 1e) (see also Boulton et al., 2014).

Compared to the 1A 90.62 m gouge, 1B 128.44 m (PSZ-1) gouge
has a higher proportion of gouge clasts relative to cataclasite and
ultramylonites clasts and fewer calcite vein fragments (Fig. 1f). In
drill core, the 1B 128.44 m gouge is c. 20 cm-thick, and its contact
with the hanging wall was not recovered. In two thin sections, one
unoriented and one cut subparallel to a slickenside lineation, the
PSZ-1 gouge exhibits reverse grading with distance from its contact
with the underlying footwall cataclasite. Near the footwall contact,
microstructures include a random-fabric matrix (Fig. 2a) with a
single fault-parallel (Y-shear) shear band <50 mm-thick (Fig. 2c and
d). The 1B 144.04 m (PSZ-2) gouge contains clasts of gneiss, ultra-
mylonite, gouge and quartz-feldspar-plagioclase aggregate (Figs. 1g
and 2b). In drill core, the 1B 144.04 m gouge is c. 10-cm thick and
both its hanging wall and footwall contacts were recovered. In an
unoriented thin section, the PSZ-2 gouge comprises a random
fabric with anastomosing but discontinuous shear bands developed
locally adjacent to competent hanging wall and footwall cata-
clasites (Fig. 2e and f). There is no evidence of continuous shear
band(s) with a crystallographic preferred orientation. GC Scarp PSZ
gouge clasts include reworked fault gouge, cataclasite, calcite vein
fragments, metamorphic quartz, and vein quartz; the outcrop was
described by Boulton et al. (2012).

Table 1 lists the mineralogy of each fault rock <150 mm separate;
note the 1B 144.04 m gouge was not sieved. All fault rocks analyzed



Fig. 1. (a) Schematic cross-section of Alpine Fault geology in boreholes DFDP-1A and DFDP-1B, drilled at Gaunt Creek (GC). Yellow stars indicate the location of fault rock samples
investigated; a red circle indicates the location of pseudotachylyte imaged in Fig. 12. The upper dashed line demarcates the boundary of the alteration zone-fault core, as defined by
the first occurrence of altered ultramylonite. PSZ denotes principal slip zone. (b) Schematic cross-section of Alpine Fault geology in a scarp outcrop on the southern side of Gaunt
Creek. Experimental sample GC Scarp PSZ gouge was collected from this locality (star). (c) Location map of Alpine Fault sample localities discussed in the text (Fig. 1a,b, and c
modified after Sutherland et al., 2012). (d) 180� core scan of DFDP-1A Run 63_2, from which 1A 86.41 m foliated cataclasite was collected. (e) 180� core scan of DFDP-1A Run 66_2,
fromwhich 1A 90.32 m foliated cataclasite and 1A 90.62 m fault gouge were collected. (f) 180� core scan of DFDP-1B Run 59_1, fromwhich the 1B 128.44 m gouge and 1B 128.80 m
cataclasite were collected. (g) 180� core scan of DFDP-1B Run 69_2, fromwhich 1B 144.04 m gouge was collected. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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are polymineralic, and it is known that the presence of phyllosili-
cate minerals influences frictional strength (e.g., Byerlee, 1978;
Shimamoto and Logan, 1981; Ikari et al., 2009; Tembe et al.,
2010). The fault rocks studied are classified as phyllosilicate-poor
(<20%) or phyllosilicate-rich (�20% phyllosilicates) following
Shimamoto and Logan (1981), who observed that the addition of
�15e20% smectite to smectite-anhydrite mixtures resulted in
frictional weakness. The presence of the weak phyllosilicate min-
eral smectite also influences high-velocity frictional behaviors (e.g.,
Bullock et al., 2015), and this is noted in the text and figures that
follow. 1A 86.41 m foliated cataclasite and 1B128.80 m cataclasite
are phyllosilicate-poor. 1A 90.32 m foliated cataclasite, 1A 90.62 m
gouge, 1B 128.44 m gouge, 1B 144.04 m gouge, GC Scarp PSZ gouge
and HkC PSZ gouge are phyllosilicate-rich (Table 1). The 1B
128.44 m, 1B144.04 m, GC Scarp PSZ, and HkC PSZ gouges are also
smectitic. Quantitative XRD analysis of the HkC PSZ gouge <150 mm
separate was not done because whole rock and 2 mm separate XRD
analyses of the gouge revealed that mineralogy did not vary
considerably (Table 1). The smectite mineral saponite comprise 74%
of the whole rock and 78% of the 2 mm separate; thus, the <150 mm
separate likely contains 74e78% saponite.
3. High-velocity friction experiments

3.1. Experimental procedure

High-velocity friction experiments (HVFE) were conducted us-
ing the low to high velocity (LHV) friction apparatus at the State Key
Laboratory of Earthquake Dynamics, Institute of Geology, China
Earthquake Administration, Beijing, China (cf. Fig. 2 of Ma et al.,
2014). Experimental procedures followed the method outlined by
Mizoguchi et al. (2007). In each experiment, an air actuator applied
an axial force of 1.25 kN to a solid cylindrical sample of 40 mm
diameter, yielding an applied normal stress (sn) of 0.995MPawhich
remained constant to within ±0.004 MPa (inset Fig. 3). In Table 2,
normal stress in each experiment is reported as 1.0 MPa. The effect
of pre-compacting HkC PSZ gouge at sn ¼ 2.0 MPa was tested in
room dry experiment LHV262. Prior to imposing shear, samples
were left under load until the displacement transducer recorded a
steady-state thickness, typically within less than 1 h.



Fig. 2. Representative microstructures within drill-core thin sections at DFDP-1B 128.44e128.49 m (PSZ-1) and DFDP-1B 144.04e144.14 m (PSZ-2). (a) Backscattered electron (BSE)
image of random gouge fabric in DFDP-1B PSZ-1. Grains display no shape-preferred orientation. (b) BSE image of a fault gouge clast within a low-strain region in DFDP-1B PSZ-2.
Note the compacted calcite vein oriented sub-perpendicular to the fault plane (arrow). The bright grain in the top-right corner is a clast coated in skeletal Ti-oxide. (c) BSE image of
DFDP-1B PSZ-1 phyllosilicates aligned locally in the wake of rigid grains of plagioclase (Pl) and quartz (Qtz), forming a localized shear band mapped in (d), an EDS element map, and
imaged again in Fig. 12eef. In all EDS element maps, red is calcium (usually in the mineral calcite), green is silica (which occurs most abundantly in quartz), and blue is aluminum
(which occurs most abundantly in phyllosilicates or in variable amounts within plagioclase and K-feldspar). (eef) BSE image and EDS element map of phyllosilicates in DFDP-1B
PSZ-2 forming a thin, discontinuous shear band adjacent to a rigid quartz-calcite clast (arrow). Other grains within the gouge matrix display no shape-preferred orientation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To induce shear, a 22 kW servo-motor rotated one side of the
sample assembly while the other side was kept stationary. Velocity
varies with radial position on solid cylindrical samples, and the
equivalent slip velocity (veq in ms�1) is calculated as follows:

veq ¼ 4pRr0
3

(1)

where r0 is the outer radius and R is the revolution speed in revo-
lutions per second. Equivalent slip velocity is here defined such that
the rate of frictional work is tveqS if the shear stress is assumed to
be constant over the sliding surface of area S (Shimamoto and
Tsutsumi, 1994; Mizoguchi et al., 2007). For a full analysis of the
assumption that normal stress and shear stress acting on the
sample is uniform, i.e., that the coefficient of friction is independent
of position in the sample, see Kitajima et al. (2010). Most HVFEs
listed in Table 2 were conducted at a veq of 1.0 m/s. After the initial
acceleration to 1.0 m/s, which occurred within 0.16 ± 0.03 s, veq
varied by less than 0.0004 m/s during the experiment. Velocity
history was varied in four experiments on 1B 128.44 m gouge. In 2
experiments, termed high-velocity friction experiments with
decelerating slip (HVFE with decelerating slip), deceleration was
programmed to occur over the last 1 m of slip. In another two ex-
periments, termed high-velocity friction experiments with afterslip



Fig. 3. Plot of the uncorrected coefficient of friction (m) vs. displacement (d) for the room-dry high velocity friction test conducted on 1A 86.41 m foliated cataclasite (LHV281). The
coefficient of friction was calculated from the ratio of recorded shear stress (t) to recorded normal stress (sn). It should be assumed that the effective normal stress (sn’¼snePp) in
the sample is lower because of some amount of pore pressure, which could not be measured experimentally. The slip-weakening distance (dw) was determined by fitting Equation
(2) to the raw data. Specific fracture energy (EG) (shaded region) was calculated by the integral of the raw friction data multiplied by the applied normal stress. Also plotted is the
frictional strength of dry Teflon® (grey line) and wet Teflon® (blue line). Inset figure depicts the sample assembly and location of the radially cut thin section. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(HVFEwith afterslip), samples were sheared for 20m at veq¼ 1m/s,
decelerated over 0.45 m of slip, and sheared for a further 1 m at
veq ¼ 0.001 m/s. Torque, axial force, axial displacement, and rotary
motion data were recorded at a sampling rate of either 200 Hz or
500 Hz.

Each sample assembly comprised two cylinders of Shanxi gab-
bro, a Teflon® sleeve, and 2.5 g of room-dry (dry) < 150 mm fault
rock separate (the 1B 144.04 m gouge was not sieved). Fault rock
powders were placed between two 39.980e39.990 mm-diameter
Shanxi gabbro cylinders (permeability < 10�22 m2) with sliding
surfaces ground on a 150# (100 mm) diamond-grinding wheel to
make them planar. Sliding surfaces were also roughened with 80#
SiC (180 mm) to inhibit slippage along the interface. Each fault rock
powder was contained by a Teflon® sleeve with an inner diameter
135e180 mm smaller than the gabbro cylinders (inset Fig. 3).
Relative humidity in the laboratory ranged between 40% and 60%.
Initial sample thickness ranged between 1.0 mm and 1.3 mm. For
the water-saturated (wet) experiments, 0.625 mL (25 wt%) of de-
ionized water was added to the fault rock powder. To allow the
water to permeate the sample, it was sheared one full rotation in
3 min under 0.477 MPa normal stress. The normal stress was then
increased to 1.0 MPa prior to the experiment. It was not feasible to
measure directly the pore-fluid pressure during the high-velocity
water-saturated experiments. Chen et al. (2013) used numerical
modeling to estimate the initial pore-fluid pressure and obtained a
value of approximately 0.10e0.20 MPa.
Using Teflon® sleeves to confine the gouge is necessary but
undesirable because they contribute to the total torque measure-
ment, fluctuate in torque because of sample assembly misalign-
ment, decompose to release a highly reactive fluorine gas, and wear
to produce small particles that mix with the sample (e.g., Kitajima
et al., 2010; Sawai et al., 2012). To minimize torque fluctuations,
upper and lower portions of the sample assembly were aligned to
within 1 mm prior to each experiment. Pungent gas and black
grooves in the Teflon® sleeves indicate that decomposition
occurred at temperatures �260 �C during the dry experiments
(http://www2.dupont.com/Teflon_Industrial/en_US/tech_info/
prodinfo_ptfe.html). In wet experiments, the Teflon® sleeves
showed no signs of wear or decomposition. Kitajima et al. (2010)
found that Teflon® particles are unlikely to affect the coefficient
of friction because they are typically present in insignificant
amounts.

To account for the contribution of the room-dry and water-
saturated Teflon® to the total torque, two experiments were con-
ducted in which the sample assembly, without gouge, was sheared
at veq ¼ 1.0 m/s and veq ¼ 0.001 m/s without the gabbro cylinders
touching. At veq ¼ 1.0 m/s, dry Teflon® had an apparent peak shear
stress of 0.097 MPa, which decayed exponentially to a steady-state
shear stress of 0.077 MPa; at veq ¼ 0.001 m/s, dry Teflon® had a
constant apparent shear stress of 0.031 MPa. Wet Teflon® displayed
a constant apparent shear stress of 0.007 MPa at both velocities
tested (Fig. 3). The values of the peak coefficient of friction (mp) and

http://www2.dupont.com/Teflon_Industrial/en_US/tech_info/prodinfo_ptfe.html
http://www2.dupont.com/Teflon_Industrial/en_US/tech_info/prodinfo_ptfe.html


Fig. 4. Coefficient of friction data recorded during dry and wet LHV200-series high-velocity experiments. (a,b) coefficient of friction vs. displacement results for dry and wet
experiments conducted on 1A86.41 m foliated cataclasite, 1A 90.32 m foliated cataclasite, 1A 90.62 m gouge, and 1B 128.80 m cataclasite. (c,d) coefficient of friction vs. displacement
results for dry and wet experiments conducted on smectitic PSZ gouges GC Scarp PSZ, 1B 144.04 m, and HkC PSZ. Experiment LHV262 was pre-compacted under 2 MPa normal
stress.
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steady state coefficient of friction (mss) reported in Table 2 have
been corrected for Teflon® friction. Subtracting the contribution of
Teflon® to total torque recorded nowhere results in a negative co-
efficient of friction. In Figs. 4 and 5, dry slip-weakening curves were
corrected for Teflon® friction following the method of Togo et al.
(2011). A constant Teflon® friction correction was applied to all
wet slip-weakening curves and to the dry HVFE with afterslip data
collected at veq ¼ 0.001 m/s. For a more detailed discussion about
Teflon® friction, see the appendix of Sawai et al. (2012).
3.2. Data analysis

Published results confirm that the relationship between shear
stress and normal stress follows Amonton's Law for dry high-
velocity friction experiments in the absence of melt (Ujiie and
Tsutsumi, 2010; Di Toro et al., 2011; Sawai et al., 2012; Yao et al.,
2013a). Therefore, the coefficient of friction (m) is taken to equal
the ratio of shear stress (t) to normal stress (sn). In the experiments
performed on the LHV apparatus, it was not possible to measure
pore-fluid pressure, gas emissions, or temperature within the slip
zone. All coefficient of friction values should be considered



Fig. 5. Coefficient of friction and gouge thickness data recorded during the dry and wet high-velocity friction experiments on 1B 128.44 m gouge (PSZ-1). (a,b) coefficient of friction
vs. displacement and gouge layer thickness vs. displacement results for dry experiments. Decreases in gouge thickness indicate compaction; increases in gouge thickness indicate
dilation. Changes in gouge thickness were calculated from axial displacement data, which may include a small component (up to 0.02 mm) of dilation due to thermal expansion of
gabbro wall rocks (Kitajima et al., 2010). (c,d) coefficient of friction vs. displacement and gouge layer thickness vs. displacement results for wet experiments.

C. Boulton et al. / Journal of Structural Geology 97 (2017) 71e92 77
apparent values because the possible effects of pore-fluid pres-
surization due to compaction, mineral dehydration, decarbonation,
and shear heating are not quantifiable. Nevertheless, experimental
results are presented in terms of the coefficient of friction to
facilitate comparison with other experiments conducted at
different normal stresses.

To describe the relationship between displacement and the
coefficient of friction, slip weakening curves for raw dry and wet
data were fit with the following negative exponential equation:
mðdÞ ¼ mss þ
�
mp � mss

�
exp

�
lnð0:05Þ$d

dw

�
(2)

where m is the coefficient of friction, mss is the steady state coeffi-
cient of friction, mp is the peak coefficient of friction, d is displace-
ment after the peak friction coefficient, and dw is the displacement
at which (mp e mss) reduces to 5% of (mp � mss) (Mizoguchi et al.,
2007) (inset, Fig. 3). To avoid confusion with dc in the rate and
state friction equations (Marone, 1998), dw rather than Dc is used to



Fig. 6. (a) A plot of state-state friction coefficient (mss) vs. peak friction coefficient (mp) for all experiments. All data have been corrected for Teflon® friction. (b) A plot of specific
fracture energy (EG) vs. slip-weakening distance (dw) for all experiments. Legend for (b) is the same as for (a). Samples 1A 86.41 m and 1B 128.80 m are phyllosilicate-poor. Samples
1A 90.32 m and 1A 90.62 m are phyllosilicate-rich, but not smectitic. Samples GC Scarp PSZ, 1B 128.44 m, 144.04 m, and HkC PSZ are phyllosilicate-rich and smectitic.

Table 1
Quantitative X-ray diffraction data for high-velocity friction experiment materials. Lithologies are the lithological units defined in Toy et al. (2015a).

Hole Depth/Sample Lithology Quartz K Feldspar Plagioclase Calcite Kaolinite Smectite White mica Chlorite Serpentinec Talc % Phyllosilicates

1A 86.41 m 4 31 22 28 5 1 12 5 18
1A 90.32 m 4 44 6 9 4 30 4 34
1A 90.62 m 5 28 40 6 12 8 12 20
1B 128.44 m 5 22 15 21 10 26a 5 1 32
1B 128.80 m 6 31 20 30 1 15 1 16
1B 144.04 m* 5 36 4 23 5 15a 15 2 32
GC Scarp PSZ 5 29 21 20 5 14a 10 5 29
HkC PSZ WR 5 2 5 74b 3 12 2 91
HkC PSZ < 2 mm 5 78b 21 99

Superscripts denote: (*) due to small sample size, 1B 144.04 m gouge was not sieved to <150 mm; (a) the smectite mineral present is dioctahedral smectite (montmorillonite);
(b) the smectite mineral present is trioctahedral smectite (saponite); (c) the serpentine mineral present is lizardite. Trace amounts of anatase and pyrite were found in samples
1A 90.62 m and 1B 144.04 m, respectively. WR refers to whole rock; <2 mm refers to the clay-sized fraction.
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denote the slip-weakening distance in high-velocity experiments
(Niemeijer et al., 2012). In fitting Equation (2), values of mp and mss
were fixed manually, displacement was zeroed at mp, and dw was
determined using a least-squares method.

Quantifying energy partitioning during high-velocity friction
experiments, conducted at coseismic rates of >0.1 m/s, may allow
extrapolation of laboratory results to natural seismogenic faults
(e.g., Beeler, 2006; Niemeijer et al., 2012). To that end, many re-
searchers have correlated the integral of shear stress-displacement
curves in high-velocity experiments with seismological break-
down work, the work done at a point on a fault to propagate an
earthquake rupture (e.g., Cocco and Tinti, 2008; Niemeijer et al.,
2012). In this study, the term specific fracture energy (EG) is
adopted following Togo et al. (2011) and Yao et al. (2013a). Specific
fracture energy (EG), in units of MJ/m2, was calculated by multi-
plying the integral of the raw friction data by normal stress
(1 MPa) (e.g., Fig. 3). Since specific fracture energy was calculated
from raw data, the value reported in Table 2 includes a small
amount attributable to Teflon® (c. 0.01 MJ/m2). Specific fracture
energy does not include frictional work done below mss (Cocco and
Tinti, 2008).
4. High-velocity friction results

4.1. Room-dry high-velocity friction experiments

In all eleven room-dry (dry) experiments, central and southern
Alpine Fault foliated cataclasite, cataclasite, and gouge powders
exhibited a pronounced (>2.6-fold) reduction in the coefficients of
friction from peak values (mp ¼ 0.53e0.78; mean mp ¼ 0.67 ± 0.07)
to steady-state values (mss ¼ 0.06e0.25; mean mss ¼ 0.16 ± 0.05).
Slip-weakening distances (dw) necessary to achieve steady-state
friction ranged from 3.54 m to 8.34 m, with a mean of
5.14 ± 1.60 m (Fig. 4a,c and 5a) (Table 2). In the high-velocity fric-
tion experiment with decelerating slip, LHV583, restrengthening
occurred during the final 1 m of displacement, resulting in a final
friction coefficient (mf ¼ 0.32) higher than the steady-state friction
coefficient (mss ¼ 0.17) (Fig. 5a). In the high-velocity friction
experiment with afterslip, LHV581, the peak friction coefficient
(mp ¼ 0.80) at veq ¼ 0.001 m/s was higher than peak friction coef-
ficient (mp ¼ 0.61) recorded at veq ¼ 1 m/s (Fig. 5a). In the dry ex-
periments, peak frictionwas coincident with a dramatic decrease in
gouge thickness, followed by dilation, and finally near-constant



Table 2
Summary of high-velocity friction experiments and results.

Experiment Material Lithology Dry/Wet sn (MPa) veq (m/s) deq (m) mp corrected mss corrected dw (m) EG (MJ/m2)

LHV281 1A 86.41 m 4 Dry 1.0 1.0 20.54 0.74 0.21 5.16 0.88
LHV284 1A 86.41 m 4 Wet 1.0 1.0 20.96 0.59 0.11 6.78 0.98
LHV282 1A 90.32 m 4 Dry 1.0 1.0 20.77 0.65 0.25 6.37 0.79
LHV285 1A 90.32 m 4 Wet 1.0 1.0 20.85 0.65 0.13 4.81 0.75
LHV279 1A 90.62 m 5 Dry 1.0 1.0 20.00 0.68 0.19 8.34 1.37
LHV286 1A 90.62 m 5 Wet 1.0 1.0 20.80 0.47 0.12 0.23 0.02
LHV277 GC Scarp PSZ 5 Dry 1.0 1.0 21.37 0.78 0.18 5.34 0.97
LHV278 GC Scarp PSZ 5 Wet 1.0 1.0 20.17 0.14 0.06 15.56 0.39
LHV574 1B 128.44 m 5 Dry 1.0 1.0 20.00 0.53 0.14 3.58 0.43
LHV579 1B 128.44 m 5 Wet 1.0 1.0 20.30 0.17 0.09 20.90 0.45
LHV583a 1B 128.44 m 5 Dry 1.0 1.0 20.03 0.58 0.17 3.76 0.45
LHV584a 1B 128.44 m 5 Wet 1.0 1.0 20.12 0.20 0.07 17.96 0.69
LHV581 1B 128.44 m 5 Dry 1.0 1.0, 0.001 22.13 0.61 0.06 5.44 0.97
LHV582 1B 128.44 m 5 Wet 1.0 1.0, 0.001 21.93 0.10 0.07 9.00 0.08
LHV280 1B 128.80 m 6 Dry 1.0 1.0 17.70 0.67 0.18 7.09 1.12
LHV287 1B 128.80 m 6 Wet 1.0 1.0 20.62 0.67 0.14 0.75 0.12
LHV283 1B 144.04 m 5 Dry 1.0 1.0 20.58 0.68 0.15 4.37 0.73
LHV288 1B 144.04 m 5 Wet 1.0 1.0 20.24 0.18 0.09 27.77 0.68
LHV262b HkC PSZ 5 Dry 1.0 1.0 15.20 0.73 0.14 3.54 0.63
LHV272 HkC PSZ 5 Dry 1.0 1.0 16.25 0.71 0.13 3.57 0.62
LHV289 HkC PSZ 5 Wet 1.0 1.0 20.17 0.16 0.03 0.25 0.01

Symbols are: (sn), normal stress in MPa; (veq) equivalent slip velocity in m/s; (deq) total equivalent slip distance in m; (mp) peak coefficient of friction; (mss) steady state co-
efficient of friction; (dw) total slip-weakening distance in m; (EG) specific fracture energy in MJ/m2 calculated as the integral of the raw friction data multiplied by the applied
normal stress. deq was calculated as the product of total time and veq. (a) Experiments LHV583 and LHV584 are high-velocity friction experiments with decelerating slip (b)
LHV262 was pre-compacted at 2 MPa normal stress.
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thickness during shearing at steady-state friction coefficients
(Fig. 5b).
4.2. Wet high-velocity friction experiments

Relative to the dry experiments conducted on the same mate-
rials, ten wet experiments on central and southern Alpine Fault
foliated cataclasite, cataclasite, and gouge powders exhibited a
wider range of peak friction coefficients (mp ¼ 0.10e0.67; mean
mp ¼ 0.33 ± 0.23) and steady-state friction coefficients
(mss ¼ 0.03e0.14; mean mss ¼ 0.09 ± 0.04) values. Fitting Equation
(2) to the wet high-velocity data resulted in a considerable range of
slip-weakening distances due to the deviation from clear expo-
nential decay-type behaviors exhibited by the smectitic PSZ gouges.
Slip weakening distances (dw) varied from 0.25 m to 27.77 mwith a
mean of 10.401 ± 9.67 m (Figs. 4b, d and 5c) (Table 2). As shown in
Fig. 6a, experiments on wet smectitic materials exhibited the
lowest values of steady-state friction and peak friction measured in
the suite of HVFEs performed (Table 2).

In the HVFE with decelerating slip, LHV584, restrengthening
occurred during the final 1 m of displacement, resulting in a final
friction coefficient (mf ¼ 0.10) slightly higher than the steady-state
friction coefficient (mss ¼ 0.07) (Fig. 5c). In the HVFE with after-
slip, LHV 582, the peak friction coefficient (mp¼ 0.28) during sliding
at veq ¼ 0.001 mm/s was higher than peak friction (mp ¼ 0.10)
recorded at veq ¼ 1 m/s (Fig. 5c). Wet samples exhibited smaller
amounts of compaction compared to dry samples (Fig. 5d).
Displacement at near steady-state friction coefficients was coinci-
dent with increases in gouge thickness indicative of dilation.
Compaction occurred towards the end of each experiment and
during low-velocity sliding in LHV582 (Fig. 5d). Since Teflon®

sleeves are not perfect seals, some compaction may be related to
the escape of fluid or fluid-gouge mixtures.
4.3. Specific fracture energy in dry and wet high-velocity friction
experiments

Relative to dry experiments conducted on the same materials
(mean EG ¼ 0.81 ± 0.28 MJ/m2), lower values of specific fracture
energy are commonly associated with wet high-velocity friction
experiments (mean EG ¼ 0.42 ± 0.35 MJ/m2) (Fig. 6b). The foliated
cataclasites from 1A 86.41 m and 1A 90.32 m, and the 1B
144.04 m PSZ-2 gouge, exhibited similar specific fracture energy
values for dry and wet experiments (Table 2). The small differ-
ences in EG between dry and wet experiments reflect both ma-
terial properties and errors in the slip-weakening distance values.
For wet experiments on the smectitic gouges, the very low gra-
dients in friction coefficient introduce large uncertainties in the
determination of slip-weakening distance using equation (2), and
thus large (positive) errors in specific fracture energy (Figs. 3, 4d
and 5c).
5. Temperature changes during the high-velocity friction
experiments

5.1. Finite element model methods

Shear heating strongly influences frictional strength, but tem-
peratures within the slip zoneswere notmeasured during the high-
velocity friction experiments (e.g., Di Toro et al., 2011; Yao et al.,
2016). Instead, temperature changes were modeled using COM-
SOL Multiphysics finite element software. Thermomechanical
modeling was performed following procedures similar to those
outlined by Kitajima et al. (2010), Han et al. (2011), and Yao et al.
(2013b). The 2-D axisymmetric geometric model used in the
calculation was constructed using a replica of the sample assembly
replete with host blocks, Teflon® sleeve, and 1.2 mm-thick gouge
layer (Fig. 7a).

In the model, the primary heat source was the measured
friction acting along a planar boundary between the fault rock
sample and rotating wall rock, assuming all frictional work was
converted to heat. The friction along the Teflon sleeve/rotating
host rock interface was set as a secondary heat source (Fig. 7a).
Energy consumed by dehydration/dehydroxylation reactions in
smectite and/or illite was ignored in the model, but the enthalpy
of these reactions is only a few percent of the frictional work in



Fig. 7. Results from thermomechanical temperature modeling of experiments performed on Alpine Fault rocks. (a) Geometry of the COMSOL software model based on the
experimental configuration. Horizontal scale is given as distance from the axis of symmetry. The model gouge layer is 1.2 mm-thick and serves as the vertical scale. (b, c) Maximum
temperature reached in the outer half of GC PSZ Scarp gouge samples deformed dry and wet, respectively. (d) Maximum temperature in each sample plotted against total time
elapsed since the start of each LHV experiment. Where gouge temperatures exceeded 100 �C in the wet experiments, model results yield only estimates of the maximum tem-
perature reached (shaded region). Models were constructed for experiments: LHV281 and LHV 284 (1A 86.41 m foliated cataclasite); LHV282 and LHV 285 (1A 90.32 m foliated
cataclasite); LHV279 and LHV286 (1A 90.62 m gouge); LHV 277 and LHV278 (GC Scarp PSZ gouge); LHV574 and LHV579 (1B 128.44 m gouge); LHV280 and LHV287 (1B 128.80 m
lower cataclasite); LHV283 and LHV288 (1B 144.04 m gouge); and LHV272 and LHV289 (HkC PSZ gouge).
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high-velocity friction experiments (Kitajima et al., 2010; Hirono
et al., 2013; see also French et al., 2014). Temperature changes
were calculated by solving a simple transient heat problem with
the temperature at the upper and lower surfaces of the model
assumed to be 25 �C and the temperature of the surfaces exposed
to air allowed to evolve following Newton's cooling law. A table of
the thermal properties used in the temperature calculations,
including thermal conductivity, specific heat, density, and
porosity of the fault gouges, can be found in Supplementary
material (Table S1).
5.2. Modeled temperature changes

For solid cylindrical shear zones, 87.5% of experimentally
measured torque is exerted by friction in the outer half of the
experimental gouge zones if a spatially uniform friction coefficient
is assumed (Fig. 7b and c) (Yao et al., 2013b). Since the high-velocity
friction data primarily reflect processes occurring on the outer half
of the cylindrical shear zones, the maximum temperature change
and average temperature change in these regions were calculated.
For dry and wet experiments, the average temperature changes are
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approximately 77e80% and 89e91% of the modeled maximum
temperature change, respectively.

Maximum temperature changes are plotted in Fig. 7. All dry fault
rocks exhibited a sharp, linear increase in temperature during the
slip-weakening phase, reaching maximum temperatures exceeding
200 �C prior to attaining steady-state friction coefficients.
Maximum temperatures continued to rise gradually during steady-
state sliding, reaching values of 404e480 �C by the end of the ex-
periments. In the dry HVFEs, therewas no correlation between total
temperature rise and mineralogy or phyllosilicate content.
Maximum temperatures in the wet HVFEs increased more gradu-
ally. Although the phyllosilicate-rich (non-smectitic) 1A 90.32 m
gouge attained a maximum temperature of 252 �C, the maximum
temperature rise in wet smectitic fault gouges was limited to
�176 �C (Fig. 7d). The models likely overestimate maximum tem-
peratures in the wet HVFEs because they do not account for the
latent heat associated with the pore fluid liquid-vapor transition
(e.g., Brantut et al., 2011; Chen et al., 2017) (shaded region of
Fig. 7d).

6. Microstructures produced during high-velocity
experiments

6.1. Methods and observational framework

This microstructural analysis focuses on the LHV500-series ex-
periments (Table 2). Following each experiment, deformed fault
rock and host rock samples were impregnated with LRWhite resin,
a low-viscosity epoxy resin, and vacuum dried overnight at 60 �C.
Thin sections of microstructures produced were cut radially
through the axis of the sample cylinder, prepared dry, and polished
using 1 mm diamond paste (inset Fig. 3). Microstructures were
imaged using a standard optical microscrope (OM) and Philips XL30
tungsten filament scanning electron microscope (SEM) with a
backscatter electron (BSE) and energy dispersive spectroscopy
(EDS) detectors, 20 kV accelerating voltage and 13 mm working
distance.

Microstructures observed in radially cut thin sections through
cylindrical shear zones formed at velocities that range from
v¼ 0m/s at the axis of rotation to v¼ 1.50m/s at a radial distance of
20 mm (e.g., Kitajima et al., 2010; French et al., 2014). Variations in
rotational velocity cause commensurate changes in temperature
and shear strain (Figs. 7 and 8). Therefore, detailed analysis focuses
on 1B 128.44 m PSZ-1 gouge microstructures formed at a radial
distance of 12e15mm and an equivalent slip velocity (veq) of c. 1 m/
s; how simulated afterslip affects these microstructures is also
discussed (Figs. 9e12). Composite images for all microstructures
produced in dry and wet high-velocity experiments on the 1A
90.32 m foliated cataclasite, 1A 90.62 m gouge, GC Scarp PSZ, and
1B 128.44 m gouge are located in the Supplementary material
(Fig. S1).

6.2. Microstructure descriptions

Microstructures formed during the dry high-velocity experi-
ments on the 1B 128.44 m gouge are characterized by grain size
reduction, porosity reduction, and particle rounding, i.e., cataclastic
flow processes (Sibson, 1977; Borradaile, 1981). A coarse-grained
low-strain gouge containing subrounded to rounded clasts of the
initial granularmaterial forms themajority of the sample at the axis
of rotation (Fig. 8a,c and e). Grain size decreases with distance from
the axis of rotation and with proximity to the rotating wall rock
(Figs. 8g, 9a,c and e).

Two sets of microshears inclined symmetrical to the axis of
rotation separate the low-strain gouge from a very fine-grained
gouge containing subangular to well-rounded mineral and lithic
grains and clay-clast aggregates (CCAs). CCAs were defined by
Boutareaud et al. (2008, 2010) as central mineral or aggregate
grains surrounded by a cortex of concentric clay layers commonly
including very fine (<5 mm) mineral fragments (Figs. 9a,c,e and 10).
Whereas most central grains are pristine, some potassium feldspar
and calcite grains are highly pitted, suggesting chemical disequi-
librium (Fig.10e and f). The original Alpine Fault PSZ gouges contain
similar grains; thus, it is not possible to discern whether natural
and/or experimental processes are responsible for producing the
disequilibrium conditions.

The highest-strain, finest-grained gouge forms microfoliated
layers composed of individual elongated grains; these layers appear
light brown in plane-polarized light (e.g., Fig. 8g). The microfoliated
gouge ranges in thickness from <1 mm to c. 200 mm and occurs
along the boundary of the rotating wall rock, interbedded with the
CCA-bearing gouge, and/or between the CCA-bearing gouge and
the low-strain gouge (Figs. 8a,c,e, 9a,c,e and 10). Element maps,
complemented by semi-quantitative EDS analyses, illustrate that
the microfoliated gouge has more iron, magnesium, and
aluminium, and less calcium and silica, than the other two gouge
units described (Fig. 10b,d and f). The microfoliated gouge shares
chemical and particle-size affinities with material surrounding the
CCAs (Fig. 10).

A distinguishing characteristic of the microfoliated gouge is the
presence of a strongly developed phyllosilicate foliation, which is
observable in an optical microscope when viewed with both
polarizers and the full lambda retardation plate inserted. The
microfoliated gouge appears strongly orange/yellow or blue/purple
at different rotations with respect to polarizers and the lambda
plate, indicating it has a moderately strong crystallographic
preferred orientation (CPO). With a full-lambda retarding plate
inserted, the matrix of the CCA-bearing gouge appears opaque, and
clays within the low-strain gouge display no distinct colour varia-
tion; thus these have no CPO (Fig.12a and b). There is no observable
difference between microstructures formed during the three dry
experiments (Figs. 8e10).

The 1B 128.44 m gouges deformed in wet high-velocity fric-
tion experiments were scarcely affected by particle rounding and
grain-size reduction processes, and they appear uniformly brown
in plane-polarized light images. Microstructurally, the smectitic
gouge forms thick packages of matrix-supported grains that
display little variation with increasing distance from the axis of
rotation (Fig. 8). Two distinct microstructures occur together at
radial distances between ~5 and ~17 mm: a layer of reverse-
graded (fine-to-coarse-grained) gouge adjacent to the lower,
stationary wall rock, and a thin (�0.20 mm-thick) gouge con-
taining phyllosilicate lamellae with a crystallographic preferred
orientation adjacent to the upper (rotating) wall rock (Figs. 1,9,11
and 12d).

In the wet HVFE with afterslip, the thin layer of aligned phyl-
losilicate lamellae was preserved. However, clasts within the
reverse-graded layer appear to have been redistributed, and a
foliation defined by crystallographically aligned phyllosilicates
formed oblique to the wall rock contact at radial distances be-
tween ~5 and ~10 mm (Fig. 11e and f). In the wet experimental
microstructures, element maps and semi-quantitative EDS ana-
lyses show no compositional differences between the layers
(Fig. 11b,d and f). Small- and large-scale cracks with a quasi-
hexagonal appearance indicative of shrinkage cracks overprint
all syn-deformational microstructures formed in the wet experi-
ments (Fig. 8).



Fig. 8. (aef) Composite plane-polarized light (PPL) optical microscope images of microstructures exposed in radially cut thin sections prepared following the high-velocity friction
experiments with different velocity histories. The scale beneath the images is given as radial distance, in mm, from the axis of symmetry. Equivalent slip velocity, in ms�1, is also
given. (g,h) PPL image of gouge units formed in the dry and wet high-velocity friction experiments with decelerating slip, respectively. In all images, the rotary wall rock is above the
gouge. See text for details.
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7. Discussion

7.1. Yield strength during high-velocity friction experiments

Earthquake nucleation occurs at very low sliding velocities
(Marone, 1998; Scholz, 1998, 2002). Once an earthquake nucleates,
acceleration to coseismic slip rates at a rupture front may result in a
peak friction (equal to tp/sn’) that differs from the steady state
coefficient of friction measured in low-velocity sliding experiments
(e.g., Beeler, 2006; see also Ben-Zion, 2008). Quantifying the effect
that acceleration to coseismic slip rates (e.g., v~1 m/s) might have
on the peak coefficient of friction is important because this gives
insight into the yield strength and barrier to rupture propagation,
although these parameters are likely to depend on the specific
velocity evolution during an earthquake (see also Section 7.4). On
average, all wet experiments conducted had lower values of peak
friction (mean mp ¼ 0.33 ± 0.23) compared to the dry experiments
on the same material (mean mp ¼ 0.67 ± 0.07) (Table 2) (Fig. 6a).

The wet smectite-bearing fault gouges, GC Scarp PSZ, 1B
128.44 m, 1B 144.04 m, and HcK PSZ, were the only gouges to
exhibit extremely low values of peak friction (mp ¼ 0.10e0.20),
consistent with previous HVFE studies that show as little as 10 wt%
montmorillonite can suppress peak friction in simulated gouge
mixtures (Bullock et al., 2015). The peak friction coefficients ob-
tained from smectitic Alpine Fault gouges are also consistent with
results from wet high-velocity (veq ¼ 1.3 m/s) friction experiments
on smectitic Vaiont landslide gouge conducted at the same normal
stress (mp ¼ 0.10e0.19) (Ferri et al., 2011). The extremely low yield
strength of the wet Alpine Fault smectitic gouges would make
earthquake rupture propagation through these materials energet-
ically favorable (Faulkner et al., 2011; Oohashi et al., 2015; Remitti
et al., 2015). Indeed, the high-velocity frictional behavior of
Alpine Fault PSZ gouges lends credence to the interpretation of
multiple episodes of slip in Alpine Fault PSZ gouges from micro-
structural observations of reworked smectite-bearing gouge clasts
(e.g., Fig. 2b) (Boulton et al., 2012, 2017; Toy et al., 2015a).

7.2. Evolution of friction during high-velocity sliding

In the dry high-velocity experiments, evolution of fault strength
to steady-state values followed an exponential decay function
similar to velocity steps in low-velocity friction experiments.
However, there are three important differences: (1) all materials
are slip-weakening at coseismic slip rates v ¼ 1 m/s, even smectite-
bearing fault gouges that were velocity-strengthening in low-
velocity (v ¼ 0.01e300 mm/s) room-temperature experiments
(Boulton et al., 2012, 2014; Barth et al., 2013; Ikari et al., 2014) (2)
weakening following smaller-magnitude velocity perturbations in
low-velocity friction experiments occurs over at least 5 orders of
magnitude smaller distances than that observed in the high-
velocity experiments (mean dw ¼ 5.14 ± 1.60 m; n ¼ 11), and (3)
the weakening is about an order of magnitude greater in high-
velocity experiments (mean Dm ¼ 0.51 ± 0.08; n ¼ 11) (Table 2;
Figs. 4 and 6).

During small-displacement (d < 20 mm), low sliding velocity (v
� 200 mm/s) experiments, measured changes in temperature for
gouges materials are small (DT � 2.5 �C), the degree of mechanical
wear is typically low, the critical slip distance (dc) needed to renew
a population of contacts is short (dc < 100 mm), and the corre-
sponding change in the coefficient of friction is relatively small
(Dm < 0.03) (Fulton and Rathbun, 2011; Marone, 1998; Noda and
Shimamoto, 2009; Boulton et al., 2014). At high sliding velocity (v
� 1 m/s) and large displacement (d > 0.1 m), rapid comminution
and frictional heating (DT z 100e900 �C) in granular materials
result in complex rate-dependent thermomechanical and possibly
thermochemical processes (Sone and Shimamoto, 2009;
Boutareaud et al., 2008, 2010; Kitajima et al., 2010; Di Toro et al.,
2011; Niemeijer et al., 2012; Platt et al., 2015; French et al., 2014;
Yao et al., 2016) (cf., Fig. 7). These processes result in strong slip
weakening in high-velocity experiments.

7.3. Potential weakening mechanisms

All Alpine Fault rocks deformed in the dry high-velocity friction
experiments underwent grain size reduction and particle rounding
along the upper gouge/wall rock contact (cf., Fig. 9). Although po-
tential dynamic weakening mechanisms in comminuting granular
materials include silica gel or powder lubrication (Goldsby and
Tullis, 2002; Di Toro et al., 2004; Reches and Lockner, 2010; Han
et al., 2010), recent microstructural and experimental studies
indicate that nanoparticles (with grain size less than 100 nm) alone
are insufficient for dynamic weakening (Yao et al., 2016). Alterna-
tively, flash heating at highly stressed frictional micro-contacts may
have occurred (Rice, 2006; Beeler et al., 2008; Noda et al., 2009;
Goldsby and Tullis, 2011; Yao et al., 2016). Flash heating induces
weakening by catalyzing phase changes at the micro-contacts
(sometimes called “thermal softening”).

For slip along a bare-rock slip surface, slip weakening due to
flash heating is predicted to occur over distances comparable to the
maximummicro-contact size (e.g., a few tens of micrometers). This
theoretically predicted slip-weakening distance is orders of
magnitude smaller than that recorded in the dry experiments
(Table 2). Extrapolating results from numerical models of flash
heating to gouge-filled shear zones remains difficult because of a
number of poorly quantified variables that evolve with displace-
ment (e.g., contact dimension, thermal diffusivity, volumetric heat
capacity) (Beeler et al., 2008). However, results from recent high-
velocity gouge experiments indicate that flash heating can initiate
slip weakening in granular materials due to (1) a rise in the bulk
temperature of the material and/or (2) deformation localization
onto a narrow slip surface(s) (Nielsen et al., 2013; Platt et al., 2014).
Both processes increase local temperature, which in turn decreases
the critical velocity required to activate flash-weakening in gouges,
albeit over larger length scales than those predicted for bare-rock
surfaces (e.g., Proctor et al., 2014; Yao et al., 2016; see also
Passel�egue et al., 2014).

In addition to experiencing flash heating at grain contacts,
average temperatures required to dehydrate smectite
(T ¼ 140e280 �C at sn ¼ 0e1 MPa) and/or vaporize water
(T ¼ ~180 �C at sn ¼ 0.6e1 MPa) were reached in the HVFEs on dry
smectitic PSZ gouges (Koster van Groos and Guggenheim, 1984;
Lide, 2008; Hirono et al., 2013) (Fig. 7). Thus, in the later stages of
the dry experiments, PSZ gouges may have experienced smectite
dehydration accompanied by pressurization and vaporization of
the released fluids (Fig. 7) (e.g., Ujiie and Tsutsumi, 2010; Faulkner
et al., 2011; Oohashi et al., 2015; Remitti et al., 2015; French et al.,
2014). This water vapor could only have created an internal pres-
sure if it did not escape past the Teflon® sleeve (De Paola et al., 2011;
Chen et al., 2013).

In the wet high-velocity friction experiments, peak friction
values were lower than those recorded in the dry experiments; in
addition, mp occurred contemporaneously with either dilation or a
smaller amount of compaction, and mss was accompanied by an
increase in gouge thickness (i.e., dilation) (Fig. 5). Thermo-
mechanical models indicate that temperature increases within
fault rocks deformed wet were insufficient to cause dehydration
and vaporization of structurally bound water (cf. Kitajima et al.,
2010) (Fig. 7). Therefore, a separate dynamic weakening mecha-
nism(s) must have operated in the saturated gouges. In shallow
crustal fault zones comprising fluid-saturated granular material,



Fig. 9. Backscattered electron (BSE) images of microstructures formed at veq~1 ms�1 in the high-velocity friction experiments with different velocity histories. White boxes denote
the location of images in subsequent figures. The upper wall rock is at the top of all images. (a,b) BSE images of microstructures formed in dry (LHV574) and wet (LHV579) constant
velocity experiments, respectively. (c,d) BSE images of microstructures formed in dry (LHV583) and wet (LHV584) HVFE with decelerating slip, respectively. (e,f) BSE images of
microstructures formed in dry (LHV581) and wet (LHV582) HVFE with afterslip, respectively. Arrows in all dry experiments indicate the location of prominent CCAs. Arrows in wet
experiments LHV579 and LHV584 show the location of large clasts at the top of the reverse-graded gouge. See text for details.
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thermal pressurization of pore fluid is widely considered to be the
dominant weakening mechanism at slip rates greater than c. 0.1 m/
s (e.g., Sibson, 1973; Lachenbruch, 1980; Andrews, 2002; Wibberley
and Shimamoto, 2005; Bizarri and Cocco, 2000a,b; Rice, 2006;
Noda et al., 2009; Schmitt et al., 2011; Garagash, 2012). Thermal
pressurization occurs because the thermal expansion of pore fluid
is greater than the thermal expansion of pore space. Thus, pore-
fluid pressure increases with cumulative slip unless fluid diffusion
and/or dilatancy dissipate the pressure increase (e.g., Garagash and
Rudnicki, 2003; Rice, 2006; Segall et al., 2010). During rapid
coseismic slip, the rate of frictional heating is thought to greatly
exceed the rate of fluid diffusion, and localized slip surfaces less
than ~1 mm-thick can undergo undrained adiabatic shearing (e.g.,
Lachenbruch, 1980; Wibberley and Shimamoto, 2005; Rice, 2006;
Garagash and Germanovitch, 2012).
Lachenbruch (1980) identified the material properties requisite

for thermal pressurization to occur, namely: the heat production
rate, which is governed by frictional heat generation, bulk density,
specific heat, thermal conductivity, and deformation zone width;
and the rate of pore-pressure change, which is governed by water
expansibility, specific storage, permeability, porosity, fluid density,
fluid viscosity, and deformation zone width (see also Wibberley
and Shimamoto, 2005; Tanikawa and Shimamoto, 2009). In lieu
of quantifying the thermal and hydraulic transport properties of all
Alpine Fault materials tested, and how these properties change
with effective pressure and displacement at coseismic slip rates, the
theoretical considerations proposed by Andrews (2002) and
Mizoguchi (2005) suggest that materials with a permeability of



Fig. 10. Backscattered electron (BSE) images and energy dispersive spectroscopy (EDS) maps of microstructures formed at veq~1 ms-1 in the dry HVFEs with different velocity
histories. In all EDS maps, red denotes calcium, green denotes silica, and blue denotes aluminum. (a,b) BSE image and EDS map of the ultrafine-grained microfoliated gouge and
CCA-bearing gouge formed in the dry constant velocity experiments, LHV574. Whereas most central CCA clasts are well-rounded, the large CCA with a pitted K-feldspar core in the
lower right corner is angular. (c,d) BSE image and EDS map of the CCA-bearing gouge (top), ultrafine-grained microfoliated gouge (center) and low-strain gouge formed (bottom) in
the dry HVFE with decelerating slip, LHV583. (e,f) BSE image and EDS map of interbedded ultrafine-grained microfoliated and CCA-bearing gouges formed in the dry HVFE with
afterslip, LHV581. See text for further details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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k ¼ 10�17 m2 or less are likely to undergo thermal pressurization
during high velocity shearing on a localized slip surface. Thermal
pressurization also requires low permeability wall rocks
(k ¼ 10�16 m2) (Tanikawa and Shimamoto, 2009; Ujiie et al., 2013).
Although the gabbro wall rocks used were effectively impermeable
on the timescale of the experiments (k < 10�22 m2), water on the
outside of the sample assembly after each wet test indicates that
the Teflon® sleeves had a poor sealing capacity.

The permeability of surface outcrop PSZ gouges at Gaunt Creek
is on the order of k ¼ 10�20 m2, with hanging-wall cataclasites
having higher permeabilities, k ¼ 10�18 m2 to 10�16 m2 (confining
pressure (Pc)¼30e31 MPa) (Boulton et al., 2012). Over a wide range
of pressures (Pc ¼ 2.5e63.5 MPa), Carpenter et al. (2014) measured
the permeabilities of DFDP-1A hanging wall cataclasites
(k ¼ 10�15e10�18 m2) and DFDP-1B gouge (k ¼ 10�19e10�20 m2). A
DFDP-1B footwall cataclasite was slightly more permeable
(k ¼ 10�16e10�17 m2). The HkC PSZ gouge permeability was
k ¼ 10�21 m2 (Pc ¼ 30 MPa) (Barth et al., 2013). All permeability
measurements were made on static materials; high-velocity sliding
has been shown to decrease further the permeability of deformed
specimens (Tanikawa et al., 2012). These permeability measure-
ments indicate that thermal pressurization may have occurred in
any of the fault rocks tested, although probably not at low confining
pressures in the HVFEs on hanging-wall and footwall cataclasites



Fig. 11. Backscattered electron (BSE) images and energy dispersive spectroscopy (EDS) maps of microstructures formed at veq~1 ms-1 in the wet HVFEs with different velocity
histories. In all EDS maps, red denotes calcium, green denotes silica, and blue denotes aluminum. (a,b) BSE image and EDS map of the reverse-graded and laminar layers formed in
the wet constant velocity experiments, LHV579. Note the weak shape-preferred orientation in the laminar layer. (c,d) BSE image and EDS map of the reverse-graded and laminar
layers formed in the wet HVFE with decelerating slip, LHV584. Note the strongly pitted fracture-filling calcite in the right-hand clast; this texture occurs in calcite within natural
Alpine Fault gouges. (e,f) BSE image and EDS map of the gouges formed in the wet HVFE with afterslip, LHV582. Clasts within the reverse-graded layer have mixed with matrix
grains, and the boundary between the two layers is gradational. See text for further details. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(compare wet slip-weakening curves in Figs. 4 and 5).
Quantifying pore-fluid pressure during high-velocity friction

experiments remains an ongoing challenge in experimental rock
mechanics (e.g., Violay et al., 2015). In the absence of pore-fluid
pressure measurements, data from experiments conducted at the
same velocity under a wide range of normal stresses, combined
with microstructural analyses are required to help identify the
processes responsible for the evolution of frictional strength
recorded in each Alpine Fault rock; this is beyond the scope of this
research. Instead, the focus is placed on relating mechanical data
with microstructures obtained from the high-velocity friction ex-
periments conducted on 1B 128.44 m gouge (PSZ-1) (Fig. 1).
7.4. Microstructures formed during experiments on DFDP-1B
128.44 m gouge

In the high-velocity friction experiments conducted on dry 1B
128.44 m gouge, microstructures formed in highly comminuted
gouges include clay-clast aggregates (CCAs) and microfoliated
gouge layer(s). These microstructures formed at the contact be-
tween the sample and wall rock in 2 distinct units that overlie less
comminuted gouge (Figs. 8e10). In dry HVFEs on gouge from the
Punchbowl Fault, California, USA and Usukidani Fault, Japan,
Kitajima et al. (2010) and Boutareaud et al. (2008, 2010) found that
CCAs formedwhen frictional heating in the gougeswas sufficient to



Fig. 12. (aeh) Optical microscope images taken with both polarizers and a full-lambda retarding plate inserted. In these images, microstructures comprising materials with a
crystallographic preferred orientation (CPO) appear bright yellow-orange. The (a,b) bright yellow microfoliated gouges formed in the dry high-velocity experiments most closely
resemble boundary layers formed between ultramylonite and pseudotachylytes in hanging wall rocks, such as the (g,h) boundary layer (arrow) in the ultramylonite recovered from
the DFDP-1B borehole at 99.3 m depth. The (c,d) randomly oriented matrix grains in the reverse-graded layer formed during the wet high-velocity friction experiments resemble
matrix grains within natural Alpine Fault PSZ gouges, such as (e,f) PSZ-1 gouge recovered from DFDP-1B at 128.48 m depth. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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cause water vaporization (c. 180 �C at 0.6e1.0 MPa) (Lide, 2008).
Boutareaud et al. (2008, 2010) argued that water vaporization
creates sufficient pressure to balance or exceed the normal load,
allowing the gouge to dilate and fluidize (see also Ferri et al., 2011).
These processes facilitate the formation of CCAs through particle
rolling.

More recently, quartz clasts with rims of ultrafine grains similar
to CCAs were formed during lower displacement (d < 3.72 m),
lower velocity (veq ¼ 0.0005 m/s and 0.08 m/s) dry rotary shear
experiments (Han and Hirose, 2012). The observation that CCAs can
form at subseismic velocities and low temperatures (<~50 �C) in-
dicates that they are only diagnostic of particle rolling, not frictional
sliding at coseismic slip rates (Han and Hirose, 2012; see also
Rempe et al., 2014). Warr and Cox (2001) described well-rounded
quartz clasts formed within relict friction melts as becoming
“snowballed” by smectite during low temperature cataclastic
deformation of Alpine Fault gouge at Gaunt Creek. Subsequent
authors have cited the “snowballed” clasts as natural examples of
CCAs (Boullier et al., 2009; Han and Hirose, 2012), but there is an
ongoing debate about whether CCAs form during high-velocity
sliding in water-saturated, clay-bearing gouges (Han and Hirose,
2012). Indeed, no CCAs were observed within the 1B 128.44 m
gouge deformed wet, or in natural PSZ gouges recovered from
DFDP-1B (Figs. 2, 9 and 11).

Nevertheless, gouges containing CCAs and extremely fine-
grained microfoliations have been interpreted by many re-
searchers to be the primary slipping zone in dry HVFEs onmaterials
containing phyllosilicates (e.g., Brantut et al., 2008; Boutareaud
et al., 2008, 2010; Boullier et al., 2009; Mizoguchi et al., 2009;
Kitajima et al., 2010; Ferri et al., 2011; Shimamoto and Togo,
2012; Yao et al., 2013a) (Figs. 8e10). Element maps made on
deformed 1B 128.44 m gouge show that the microfoliated gouge
layers are enriched in aluminium, iron, and magnesium, and
depleted in calcium and silica, relative to coarser-grained gouges
(Fig. 10). In addition, these layers display a crystallographic
preferred orientation (Fig. 12). These observations suggest that the
microfoliated gouge is composed of extremely fine-grained phyl-
losilicates; compositionally similar material forms the rims of CCAs.

Thermomechanical models indicate that temperatures within
the 1B 128.44m gouge reached ~400 �C during the dry experiments
(Fig. 7). If thermal dehydration and/or dehydroxylation did occur at
temperatures >150 �C, the multiple microfoliated phyllosilicate
layers may have formed when released structural fluids diffused
and/or volatilized, causing local strain-hardening and the transfer
of slip to weaker materials (cf. Fig. 9a,c and 12b) (see also
Hadizedah et al., 2015). Overall, there was no observable difference
in the microstructures formed during the dry HVFEs with different
velocity histories (Figs. 8e10). Thus, CCA-bearing andmicrofoliated
gouges are likely to be preserved despite small amounts of afterslip,
which in this study amounted to ~5e10% of coseismic slip, on the
lower end of what is typically expected (Avouac, 2015).

Microstructures formed during the dry HVFEs reflect the pre-
ponderance of cataclastic flow processes in the absence of an
ambient pore fluid. In cataclastic flow, shearing between grains is
accommodated by rolling and sliding of grains along original grain
boundaries and along numerous new surfaces created by fracturing
and abrasion (controlled particulate flow of Borradaile, 1981). In
fluidized gouge, however, grains move past each other without
breaking (independent particulate flow of Borradaile, 1981). Gouge
fluidization can occur if dilation limits grain-grain interactions and/
or if phyllosilicate minerals provide an interconnected matrix
capable of accommodating shear along preexisting weak lamellae
(Borradaile, 1981; Monzawa and Otsuki, 2003; Ujiie and Tsutsumi,
2010; Bullock et al., 2015). The lack of comminution in the 1B
128.44 m gouge microstructures formed during wet experiments,
along with the presence of aligned phyllosilicate lamellae along the
upper rotating wall rock, suggests that these gouges underwent
fluidization (Figs. 9b,d,11 and 12c,d).

The reverse-graded gouge formed against the lower wall rock
provides additional evidence for fluidization (e.g., Figs. 9b,d and
11). Granular materials subjected to particulate flow commonly
undergo grain rearrangements wherein small grains migrate into
voids beneath larger ones and are forced to remain there by the
granular pressure exerted by the overlying larger grains. This type
of rearrangement, sometimes termed the “Brazil nut effect,” results
in the movement of larger grains to the top of shearing and/or
vibrating granular aggregates (Williams, 1976; Harwood, 1977; see
also Ujiie and Tsutsumi, 2010; Ujiie et al., 2011). Pore fluids enhance
size segregation because fluids drag small grains into the void
spaces beneath larger ones (Clement et al., 2010).

A comparison between microstructures formed during wet
HVFEs on the 1B 128.44 m gouge reveals that 1 m of afterslip
caused minor microstructural changes only in the reverse-graded
layer (Figs. 8f and 9f). Axial displacement data recorded during
low-velocity sliding indicates that the wet gouge compacted
continuously during displacement (Fig. 5d). As the pore space
requisite for fluidization and size segregation decreased, the large
clasts that segregated during fluidized flow were redistributed
within the phyllosilicate-rich matrix (Fig. 11e and f). The mixing
may have occurred due to shear along phyllosilicate lamellae
within the lower layer, which developed a crystallographic
preferred orientation oblique to the wall rock (see also Fig. 10 in
French et al., 2015).

7.5. Comparison between natural and experimentally produced
microstructures

In order to extrapolate experimental results to the Alpine Fault,
it is necessary to compare the microstructures formed in the lab-
oratory with those that occur in natural gouge samples (e.g., Rowe
and Griffith, 2015). Direct comparison is complicated by the
different stress, strain, and temperature-pressure paths followed
the natural and experimentally deformed gouges (e.g., Figs. 1 and
2). If the dextral oblique Alpine Fault undergoes serial partition-
ing into thrust and strike-slip segments at 0.5e2 km depth, the
Gaunt Creek thrust segment formed at a maximum depth of 2 km
(Barth et al., 2012). The low-temperature alteration mineral
smectite present in the PSZ gouges studied could occur along the
Alpine Fault at depths up to ~2 km given a geothermal gradient of
~45e65 �C/km (Pytte and Reynolds, 1989; Toy et al., 2010;
Sutherland et al., 2012; Boulton et al., 2012).

In drill core, the DFDP-1B PSZ-1 gouge is at least 0.02 m-thick,
and the DFDP-1B PSZ-2 gouge is 0.01 m-thick (Fig. 1). Together, the
DFDP-1B PSZ gouges have accommodated a total displacement of
approximately 5400 m during exhumation from 2 km depth on an
oblique thrust fault oriented 059/42 �SE with slickenline striations,
which indicate transport direction, plunging 24/086 (Boulton et al.,
2017). Assuming strain is distributed between gouge layers, the
maximum shear strain experienced by each gouge is ~2 � 105

(shear strain, g, ¼ total displacement/total gouge thickness); this
value is an order of magnitude larger than the shear strains
accommodated by the experimental gouges (g~2 � 104). In addi-
tion, the central Alpine Fault has an average uplift rate of 6e9 mm/
yr, and slip is accommodated coseismically by earthquakes with a
recurrence interval of 329 ± 68 years (Little et al., 2005; Norris and
Cooper, 2007; Berryman et al., 2012). Thus, during 2 km of uplift on
the Gaunt Creek thrust segment, the PSZ gouges would have
experienced approximately 600e1000 earthquakes. Each earth-
quake would have triggered fluctuations in fluid pressure, tem-
perature, and pore-fluid chemistry, as indicated by fault gouge
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injection veins, authigenic clay mineralization, and strongly pitted
clasts of potassium feldspar and calcite (Boulton et al., 2012;
Townend et al., 2013; Toy and Mitchell, 2014; Toy et al., 2015a;
Schleicher et al., 2015) (Figs. 2b, 10e,f and 11c,d). These complex
time-dependent processes are not fully simulated in the laboratory.

Despite these differences, microstructures formed in the wet
high-velocity experiments broadly resemble those that occur in the
natural gouges, particularly in that matrix grains commonly lack a
crystallographic or shape-preferred orientation (Fig. 12). This lack
of fabric is interpreted to have resulted from independent partic-
ulate flow during shear. Locally, driven by competency contrasts
between either rigid clasts or a gouge-wall rock boundary, a tran-
sition to laminar flow along weak phyllosilicate lamellae is
observed in the experimentally deformed and natural gouges
(Figs. 2c,d and 12e-h) (e.g., Goodwin and Tikoff, 2002). Within the
natural gouges, these layers are everywhere discontinuous. Our
observations are consistent with X-ray goniometer measurements
of weak phyllosilicate fabric intensity in both DFDP-1B PSZ gouges
(Schleicher et al., 2015). Smectitic fault gouges may have weak
fabrics because the irregularly formed smectite microcrystals grow
after fault slip ceases (Haines et al., 2009; Schleicher et al., 2015). An
alternative explanation for weak fabrics is that the phyllosilicate
minerals deformed in a fluidized medium within which the grains
were able to move with a mean free path.

Natural PSZ gouges collected from DFDP-1 drill core and nearby
outcrops do not contain microstructures similar to the CCA-bearing
or microfoliated gouges formed in the dry high-velocity experi-
ments (Boulton et al., 2012, 2014; Toy et al., 2015a; see also Barth
et al., 2013). However, microstructures in the Alpine Fault
hanging wall associated with pseudotachylytes are comparable to
the microfoliated gouges formed during the dry experiments.
Alpine Fault pseudotachylytes formed in quartzofeldspathic ultra-
mylonites recovered in DFDP-1B are commonly associated with
bounding layers of foliated phyllosilicate minerals and/or ultrafine-
grained quartz that formed because of extreme comminution and/
or crystallization from melt (Warr and van der Pluijm, 2005; Toy
et al., 2011, 2015a) (Fig. 12g and h). While the chemistry and in-
ternal structure of these foliated fault rocks varies, the layers do
have a CPO similar to that observed in the dry experiments (see also
Toy et al., 2015b). The close association of these microstructures
with pseudotachylyte and their presence in hanging wall ultra-
mylonites indicates that they formed on subsidiary slip surfaces at
seismogenic depths where frictional sliding in anhydrous condi-
tions stimulated comminution and frictional melting (Warr and
Cox, 2001; Sibson and Toy, 2006; Toy et al., 2011). Since similar
microstructures are not foundwithin the exhumed Alpine Fault PSZ
gouges, it is inferred that the PSZ gouges are not likely to exhibit the
high peak friction values recorded in the dry experiments.

7.6. Implications for earthquake rupture nucleation and
propagation

The high-velocity friction experiments conducted provide evi-
dence that velocity-strengthening PSZ gouges can dynamically
weaken at coseismic slip rates of 1 m/s. This dramatic weakening
reveals that, as long as rupture energy is sufficient to overcome the
low-slip-rate-barrier, Alpine Fault PSZ gouges do not hinder
rupture propagation. Furthermore, experimentally determined
values of specific fracture energy indicate that it is often energeti-
cally favorable for earthquake ruptures to propagate through the
wet smectite-bearing PSZ gouges. Whether the propagating
rupture tip can provide the acceleration needed to activate dynamic
weakening mechanisms in the PSZ gouges depends on its velocity
and inertia before entering the velocity-strengthening material.
This is governed by the size of the seismic moment up to that point
on the fault, which is given by the stress drop and area of velocity-
weakening material that nucleated the rupture (and/or failed
dynamically) (e.g., Noda et al., 2009; Kozdon and Dunham, 2013).
Other key variables include the magnitude and velocity-
dependence of (a-b) in the velocity-strengthening gouges (e.g.,
Marone,1998; Perfettini and Ampuero, 2008), the areal distribution
of velocity-strengthening and velocity-weakening materials (e.g.,
Hillers et al., 2006; Noda and Lapusta, 2013), and the dampening
effects of dilatancy strengthening (e.g., Segall and Rice, 1995;
Samuelson et al., 2009; Segall et al., 2010). Indeed, frictional fail-
ure of the Alpine Fault requires the presence of velocity-weakening
material in a nucleation patch as well as sufficient resolved shear
stress to overcome its frictional strength. Once nucleated, the
complex interplay between resolved shear stress, peak strength,
dynamic strength loss, slip-weakening distance, and dynamic
strength recovery in lithologically heterogeneousmaterials governs
rupture propagation rate, the mode of rupture propagation, and the
frequency and amplitude of radiated energy that dictates ground
motion (Beeler, 2006; Rice and Cocco, 2007; Ben-Zion, 2008; Noda
et al., 2009; Noda and Lapusta, 2013).

8. Conclusions

1. In room-dry high-velocity friction experiments, the peak co-
efficients of friction (mp) of phyllosilicate-poor cataclasites and
phyllosilicate-rich gouges and cataclasites were consistently
high (mean mp ¼ 0.67 ± 0.07; n ¼ 11).

2. In wet high-velocity friction experiments, the peak coefficients
of friction of the phyllosilicate-poor cataclasites (mean
mp ¼ 0.63 ± 0.06; n ¼ 2) were higher than those of the
phyllosilicate-rich gouges and cataclasites (mean
mp ¼ 0.27 ± 0.21; n ¼ 8).

3. All Alpine Fault rocks tested in room-dry and wet conditions
exhibited very low steady-state coefficients of friction (mean
mss ¼ 0.14 ± 0.06; n ¼ 21).

4. The six experiments conducted on wet smectite-bearing PSZ
fault gouges yielded the lowest peak friction coefficients
(mp ¼ 0.10e0.20) and lowest steady-state friction coefficients
(mss ¼ 0.04e0.10).

5. Measured values of peak friction coefficients and specific frac-
ture energy indicate that, given sufficient acceleration, rupture
propagation through smectite-bearing PSZ fault gouges is often
energetically favorable compared with other fault gouges and
cataclasites tested.

6. Microstructural observations and interpretations indicate that
natural PSZ gouges recovered from DFDP-1 drill core most
closely resemble gouges produced during the wet high-velocity
friction experiments.

7. The shallowest portion of the Alpine Fault (<~2 km depth,
depending on geothermal gradient), wherein smectite is ther-
modynamically stable, is expected to exhibit low values of peak
friction and steady-state friction during a seismic event.
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