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Abstract 

Thesis title: Data sharing and transparency: the impact on evidence synthesis 

Introduction and aims 

The use of individual participant data (IPD) for evidence synthesis is widely regarded as the 
‘gold standard’ approach to analysis, in particular for clinical outcomes of a ‘time to event’ 
(TTE) nature. However, the undertaking of IPD syntheses can be methodologically complex, 
time consuming and open to sources of bias if not conducted rigorously.  

The aim of this thesis is to investigate and document the practical aspects and challenges of 
conducting IPD syntheses. Such challenges are of particular relevance in the current research 
environment with changing functionalities of and attitudes towards data sharing.  

Methods 

This thesis reports two novel systematic reviews regarding the reporting of aggregate TTE 
outcomes and analyses in epilepsy monotherapy trials published to 2012 and regarding data 
retrieval rates and characteristics associated with a high proportion of data retrieved for all 
published IPD meta-analyses (IPD-MAs) from 1987 to 2015. This thesis also presents the 
results of an IPD-network meta-analysis (NMA) of antiepileptic drug therapy including 
detailed documentation of the statistical methodology of the IPD-NMA, IPD requesting and 
preparation processes, and methods for incorporating summary statistics with IPD for NMA. 

Results 

The first systematic review of reporting in epilepsy monotherapy trials showed concerning 
reporting inadequacies relating to definitions, analysis and reporting of TTE outcomes in 
these trials, suggesting that an IPD approach synthesis is the only feasible option for this 
topic. The systematic review of 760 published IPD-MAs using systematic methods to identify 
eligible studies showed that only 25% of these IPD-MAs have had access to all IPD and that 
IPD-MAs that included only randomised trials, had an authorship policy, included fewer 
eligible participants and were conducted outside of the Cochrane Database of Systematic 
Reviews were associated with a high or complete IPD retrieval rate.  

IPD was provided for a total of 12,391 out of a total of 17,961 eligible participants (69% of 
total data) from 36 out of the 77 eligible trials (47%) for the IPD-NMA of antiepileptic drug 
therapy. This reflects a decline in the IPD retrieval rate from requests made by the Cochrane 
Epilepsy Group from 1995-2005 to requests made in 2012-2015. 

A range of methodological approaches to modelling the relationship between treatment-
effect and epilepsy type within the NMA and for including AD with IPD in NMA show that 
incorporation of the small amount of additional AD available with the IPD in NMA had a 
negligible impact on results. However, the methodological approach to the relationship 
between treatment and epilepsy type did impact on numerical results and conclusions.  

Conclusions 

The work of this thesis has provided a detailed insight into the conduct of an IPD-NMA in 
epilepsy and highlighted many inadequacies of the conduct and reporting of AD and IPD 
syntheses across a wide range of clinical disciplines.  The work of this thesis was undertaken 
during a time of great change within the research community regarding how clinical trial data 
is shared for secondary research and has identified some of the early benefits and 
importantly challenges and restrictions of new methods of sharing clinical trial data. Unless 
emerging limitations are addressed with urgency, new methods of data sharing, intended to 
improve access to clinical trial data, may become a hindrance to IPD synthesis.  
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Chapter 1: Introduction 

1.1  Evidence synthesis 

Evidence synthesis is a general term used to describe techniques to combine sources of 

quantitative evidence. The formulation of the research question of interest in a clinical 

setting for any evidence synthesis requires careful attention; a research question must be 

specific enough for results to be clinically useful but not too specific so that inadequate 

amounts of evidence are available [1]. A commonly applied analogy to this decision is the 

choice of whether to ‘lump’ or to ‘split’ [2]; in other words, whether to take a broad approach 

to a wide variety of settings and participant groups or whether to narrow a research question 

into a homogenous evidence base [3].  

In a clinical setting, where interventions and treatment effects are of interest, clinical 

assumptions underlying a synthesis must be considered as closely as statistical assumptions 

[4]. It is unlikely that a treatment effect would be replicated exactly in two clinical studies 

due to variations in participant populations and settings. However if an intervention does 

provide true benefit over another then one would expect the direction of effect to be the 

same in a range of heterogeneous situations [5]. This true direction of treatment effect is 

more likely to stand out in a synthesis when a number of studies are considered together. 

The techniques of evidence synthesis of relevance to this thesis are systematic review, meta-

analysis and network meta-analysis which are introduced in the following sections. 

1.1.1 Systematic reviews and meta - analysis   

Systematic reviews are commonly used as a means of summarising the results of all 

independent sources of evidence which address the same or similar questions in a systematic 

way [6, 7]. Systematic reviews of randomised controlled trials are widely accepted to provide 

the highest quality inferences in evidence based medicine [8]. However the quality of a 

systematic review or any synthesis is dependent on the completeness of the evidence [1].  

Meta-analysis is a statistical technique used to synthesise the results of each study included 

in the systematic review to obtain a single pooled result which gives an overall relative 

treatment effect of one treatment to another [9]. The application of this technique increases 

sample size and may increase precision and power, minimising the likelihood of a chance 
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result and providing more information regarding treatment effects which single studies do 

not have the power to detect [7, 10]. 

In general terms, meta-analyses can be performed with fixed-effects assuming a baseline risk 

of 𝜇𝑖  and a common fixed underlying treatment effect 𝛿 across all 𝑖 studies and within-study 

error 휀𝑖   or with random-effects assuming the same baseline risk 𝜇𝑖  and within-study error 휀𝑖  

of the fixed-effects model but random systematic differences 𝛿𝑖  in between trial results due 

to study heterogeneity 𝜏2. In other words, pooled treatment effect 𝑌 can be estimated as:  

Fixed-effects:   𝑌 = 𝜇𝑖 + 𝛿 + 휀𝑖     (Equation 1) 

Random-effects   𝑌 = 𝜇𝑖 + 𝛿𝑖 + 휀𝑖  𝛿𝑖~(𝛿, 𝜏
2)  (Equation 2) 

where 𝛿𝑖  is sampled from a distribution with mean 𝛿  and variance 𝜏2 . A comprehensive 

guide to meta-analytic methods for different data types and in both Frequentist and Bayesian 

settings is provided by Sutton et al [11]. 

Origins of heterogeneity in meta-analysis include variation in  study design and methodology, 

clinical settings and participant characteristics including baseline risk between trials within 

the meta-analysis leading to variation in sampling error [11, 12]. More specifically, within a 

time-to-event context (see Chapter 1.1.4 for further details of time-to-event data), sources 

of heterogeneity include time-dependent (non-constant) treatment effects and variation in 

length of follow-up time across trials [13]. 

1.1.2  Indirect comparisons and network meta - analysis   

The framework of a traditional ‘pairwise’ meta-analysis can consider only two interventions 

(or classes of interventions) head-to-head. However, within clinical settings for which a large 

range of intervention options are available, some of which may never have been compared 

directly in a clinical trial, pairwise meta-analysis cannot provide an adequate estimate of the 

relative effectiveness of all interventions of interest to aid medical decision making [14]. 

Network meta-analysis (also referred to a multiple treatment meta-analysis or mixed 

treatment comparison; referred to as ‘network meta-analysis’ (NMA) herein for consistency 

of terminology) provides a framework for the synthesis of direct evidence for interventions 

A and B from their head-to-head comparison within clinical trials and indirect evidence for 

the same interventions A and B deduced via a direct comparison to a common intervention 

C (see Figure 1).  
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Figure 1: Direct and indirect evidence from the network of interventions A, B and C 

In other words, if 𝑌𝐴𝐶
𝐷   and 𝑌𝐵𝐶

𝐷   denote the pooled estimates from the synthesis (via fixed or 

random-effects analyses) of all direct evidence of A versus C and B versus C respectively, the 

indirect estimate for A versus B (𝑌𝐴𝐵
𝐼 )  is calculated as [15]: 

𝑌𝐴𝐵
𝐼 = 𝑌𝐴𝐶

𝐷 − 𝑌𝐵𝐶
𝐷    (Equation 3) 

An additional benefit of indirect comparison under the framework of a connected ‘network’ 

of interventions, such that each intervention in the network has been compared to at least 

one other intervention in the network directly, is that an estimate for every pairwise 

comparison within the network can be calculated via a combination of direct and indirect 

evidence without the necessity for a common ‘control’ intervention (e.g. direct evidence for 

each intervention versus placebo) across all trials [16, 17]. 

Indirect comparisons are also valuable where a limited amount of data is available to inform 

a direct comparison or where evidence informing a direct comparison is of poor 

methodological quality. The power and precision of a treatment effect estimate can be 

increased by “borrowing strength” from the indirect evidence within the network [15]. 

An underlying assumption of indirect comparisons and NMA is that any intervention effect is 

‘exchangeable’ across all included trials [14]; in other words, the indirect comparison 

between two interventions is a feasible one to make (known as the transitivity assumption) 

and that the indirect evidence is consistent with the direct evidence where a comparison 

exists (known as the consistency assumption). Transitivity requires that all treatments are 

“jointly randomisable;” in other words, all interventions within a network could feasibly be 

randomised in the same trial and those which are not treatment arms in any given trial are 

“missing at random”[17]. Such an assumption cannot be formally tested statistically; 

transitivity must be judged by careful consideration of trial settings and characteristics, 

treatment mechanisms and participant demographics to investigate if any differences would 

be expected to modify relative treatment effects.  
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The consistency assumption can be evaluated statistically over a closed ‘loop of evidence’ 

where both direct and indirect evidence exists for a comparison. Inconsistency may be 

present in NMA for a number of reasons [18]; a common source of inconsistency is thought 

to be an imbalance in treatment effect modifiers across comparisons as randomisation does 

not hold across a network of studies [19, 20]. Inclusion of treatment-covariate interaction 

terms within NMA models may reduce this confounding bias and in turn reduce inconsistency 

within the network [19-21]. 

Further statistical concepts and models for NMA, including models to account for 

inconsistency are discussed in Salanti et al [3] and Efthimiou et al [18].  

1.1.3  Aggregate data and individual participant data synthesis 

The most common approach to quantitative synthesis is undertaken using aggregate data 

(AD); an approach where summary statistics such as mean differences, event counts, risk 

ratios, odds ratios, hazard ratios etc. are extracted from published literature and can be 

supplemented with unpublished information provided by the original trialists. 

The alternative approach, an individual participant data (IPD) analysis, where participant-

level data containing detailed demographic, baseline and outcome data is retrieved and re-

analysed, is widely regarded as the gold standard approach to the synthesis of study results 

[22, 23]. Analysis of participant-level data has many advantages over traditional AD meta-

analysis (AD-MA); allowing a more standardised, comprehensive and potentially more 

methodologically complex approach to target clinical questions within participant subgroups 

via treatment-covariate interactions [24, 25]. Theoretically, an IPD approach should also 

reduce publication, reporting and ecological biases often associated with AD-MA [26-28]. IPD 

meta-analyses (IPD-MAs) have been shown to directly influence the design and conduct of 

clinical trials [29] and in some contexts to impact upon clinical practice guidelines [30].  

Furthermore in some settings, particularly where the necessary published information to 

perform AD-MA is not reported or is reported inconsistently [6, 31], a re-analysis of IPD may 

be the only feasible approach to synthesis (see Chapter 3 for further discussion).  

IPD syntheses have been performed since the 1980s [23], with most early IPD-MAs limited in 

their statistical methodology to estimation of overall treatment effect [32]. Recent years 

have shown a sharp increase in the number of IPD-MAs [33-35], with an average of 49 

published per year between 2005 and 2009 [34] and  recent estimates suggest an increase 
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of around four published IPD-MAs per year [35]. Development of methodology for the 

synthesis of IPD has also increased [36].  For example, in addition to models for the 

estimation of overall treatment effect with and without treatment covariate interactions 

[24], methodology is now available to explore heterogeneity within and between studies 

[37], examine within-study and across-study associations[25], to combine IPD with AD [38-

41] and to perform prognostic or diagnostic modelling [42]. 

AD-MA make up the vast majority of the meta-analysis literature. Previous work has 

indicated that up to 2004, less than 10% of published meta-analyses per year used IPD (in 

fact, for most years the figure was less than 5%) [43]. An IPD approach is also still relatively 

rare within NMA compared to an AD approach [18, 19, 44-48]. A basic MEDLINE search 

conducted in August 2016 by SJN found that out of 71539 records indexed as ‘meta-analysis,’ 

only 1073 (1.5%) included ‘individual patient data’ or ‘individual participant data’ from a title, 

abstract and keyword search. This figure should be treated as approximate; but it does imply 

that up to 2016, despite the increase in the number of published IPD-MAs, such an approach 

is still only used in a very small proportion of the meta-analysis literature. 

The aim of any systematic synthesis is to obtain all relevant information from all eligible 

participants. However in practice for an IPD approach to synthesis, retrieving all participant 

data can require a considerable amount of time, cost and personnel and can be 

computationally intensive in the case of large individual participant datasets [22, 49]. 

Furthermore, statistical expertise will often be required to perform more methodologically 

complex analyses proposed in IPD-MAs. Lack of time, resources and statistical expertise may 

explain the apparent preference for an AD approach to meta-analysis over an IPD approach; 

interface based meta-analysis software, such as Review Manager from the Cochrane 

Collaboration [50], facilitates AD-MA techniques for non-statisticians while undertaking an 

IPD-MA is likely to require some level of statistical programming.  

Additionally, retrieval of all relevant data is not always possible. IPD may have been 

destroyed or lost, trialists may be unwilling to collaborate due to confidentiality of data etc. 

and only a proportion of IPD is available for re-analysis. Synthesis with published AD may be 

required for a complete analysis or studies may have to be excluded from synthesis entirely 

[38-40, 44-46, 51]. Conversely, combining IPD with AD estimates in a synthesis may not be 

deemed acceptable to trialists who put in effort to provide IPD [22], but excluding studies 

which do not provide IPD violates a major assumption of systematic syntheses that all 
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relevant evidence has been included. Further discussion of retrieval of IPD for evidence 

synthesis and the impact of missing IPD on analysis is described in Chapters 4 to 7. 

Previous work has demonstrated that meta-analyses based on aggregated results from 

published literature can give different results to meta-analysis using IPD from the same 

studies [23, 43, 52-54]. IPD and AD approaches to meta-analysis, when based on identical 

data from homogeneous studies, should produce theoretically identical results [55, 56], 

however it is unlikely the data used for each approach would be identical and factors 

contributing to any observed differences in results are publication bias, patient exclusions, 

length of follow-up and method of analysis. Conclusions of previous work recommend that if 

IPD-MA and AD-MA can be shown to be mathematically equivalent, and adequate AD is 

available, the resource savings associated with an AD-MA would make this the approach of 

choice [52, 53], but in all other settings, wherever possible an IPD approach is favourable and 

will provide the least biased and most reliable means of addressing the clinical question [23]. 

1.1.4  Time-to-event data 

Time-to-event (TTE) data, also referred to as survival data (often within an oncology setting) 

or failure-time data (often within an engineering setting), arise when interest lies not only in 

whether an event of interest occurs but also the time taken for that event to occur from a 

well-defined time origin. Examples of outcomes measured using TTE data include time-to- 

death following diagnosis of cancer, time-to-remission of epileptic seizures after 

randomisation into a clinical trial and time-to-conception following fertility treatment.  

Specific statistical methodology is required for the analysis of TTE data for two reasons. 

Firstly, TTE data is non-symmetrical, usually positively skewed, therefore methodology for 

continuous data which assumes a normal approximation is violated. Secondly, TTE data is 

frequently censored in that an event is not observed for an individual therefore they cannot 

contribute an event time towards an analysis; however a censoring time (i.e. the length of 

time that individual was known to be event free for) can contribute to analysis.  

Theoretically, the survival and hazard functions are used in the statistical analysis of TTE data. 

The hazard function ℎ(𝑡) is defined as the instantaneous risk of an event at time 𝑡, given that 

an individual has been event free up to time 𝑡 , 𝐻(𝑡)  is the cumulative hazard function, 

defined as the sum of instantaneous hazards up to time 𝑡,  and the survival function 𝑆(𝑡) 



7 
 

describes the probability of being event-free up to time 𝑡, essentially a cumulative history of 

events. The functions are directly linked as follows (where 𝑇 represents the event time) [57]: 

𝑆(𝑡) = Pr(𝑇 > 𝑡) = exp[−𝐻(𝑡)] = exp [−∫ ℎ(𝑢)𝑑𝑢
𝑡

0
]  (Equation 4) 

The hazard functions ℎ𝑇(𝑡) and ℎ𝐶(𝑡)  and the corresponding survivor functions 𝑆𝑇(𝑡) and 

𝑆𝐶(𝑡)  of the treatment (T) and control (C) groups respectively are linked by the hazard ratio 

parameter 𝜃: 

ℎ𝑇(𝑡) = 𝜃ℎ𝐶(𝑡)       (Equation 5)

 𝑆𝑇(𝑡) = 𝑆𝐶(𝑡)
𝜃     (Equation 6) 

The nature of the hazard function makes it more flexible for modelling than the survival 

function [57]. The hazard function can be related multiplicatively to participant 

characteristics via a semi-parametric proportional hazards model as follows for 𝑖 individuals, 

with common baseline hazard ℎ0(𝑡), 𝑥1… 𝑥𝑛 characteristics and 𝛽1… 𝛽𝑛  as follows [58]: 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛)  (Equation 7) 

A comprehensive guide to modelling of TTE data in parametric, semi- and non-parametric 

settings, under the assumptions of proportional or time dependent hazards is provided by 

Collett [57] and further details of synthesis methods for TTE data are presented in Chapter 2. 

1.2  Individual participant data meta-analyses and network meta-

analyses in Epilepsy 

To date, the Cochrane Epilepsy Group have performed nine IPD-MAs of antiepileptic drug 

(AED) monotherapy trials [59-67] and an IPD-NMA of 10 different AEDs [68, 69].   

1.2.1  Clinical Setting  

Epilepsy is a common neurological condition in which recurrent, unprovoked seizures are 

caused by abnormal electrical discharges from the brain. Epilepsy is a disorder of many 

heterogeneous seizure types and accounts for approximately 0.75% of the global burden of 

disease [70].  It is believed that with effective drug treatment, up to 70% of individuals with 

active epilepsy have the potential to become seizure-free and go into long-term remission 

shortly after starting drug therapy and that around 70% of these individuals can achieve 

seizure-freedom using a single AED in monotherapy [71]. 



8 
 

Cochrane IPD reviews have considered two epilepsy types for which monotherapy is 

indicated: generalised-onset (generalised tonic-clonic) seizures in which electrical discharges 

begin in one part of the brain and move throughout the brain, and partial-onset seizures in 

which the seizure is generated in and affects one part of the brain (the whole hemisphere of 

the brain or part of a lobe of the brain). The reviews examine ten AEDs which are currently 

licensed and used in clinical practice for use as monotherapy for partial and generalised 

seizures in at least one country [72, 73]:  

Carbamazepine (CBZ), Phenytoin (PHT), Phenobarbitone (PHB), Sodium Valproate (VPS), 

Lamotrigine (LTG),  Oxcarbazepine (OXC),  Topiramate (TPM), Gabapentin (GBP), 

Levetiracetam (LEV),   Zonisamide (ZNS). 

Current guidelines from the National Institute for Health and Care Excellence (NICE) for adults 

and children recommend carbamazepine or lamotrigine as first-line treatment for partial-

onset seizures and valproate for generalised-onset seizures, on the condition that females of 

childbearing age are made aware of the potential teratogenic effects of the drug [74, 75]. 

Clinical profiles and mechanisms of action of these ten drugs are detailed in the Cochrane 

Epilepsy IPD-NMA [68, 69]. 

1.2.2  Rationale for individual participant data approach  

With evidence that up to 70% of individuals with active epilepsy have the potential to go into 

long-term remission of seizures shortly after starting drug therapy [71], the correct choice of 

first-line AED therapy for individuals with newly diagnosed seizures is of great importance. 

There are currently over 30 drugs (over 50 generic and branded formulations) available 

worldwide for the treatment of various seizure types [76], therefore it is important that the 

choice of AEDs for an individual is made using the highest quality evidence regarding 

potential benefits and harms of treatments appropriate to given seizure types. 

The design and choice of outcome for epilepsy monotherapy trials is discussed at length in 

Chapter 3.1.2. In summary, the important efficacy outcomes defined in epilepsy 

monotherapy trials and used in Cochrane reviews of epilepsy monotherapy often require 

analysis of TTE data (for example, time-to-first seizure after randomisation or time-to-

withdrawal of allocated treatment).  

Methods have been developed to synthesise TTE data using summary information [6, 13] 

(also see Chapter 2.3.2 for further discussion of these methods); however, the appropriate 
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statistics to perform a direct synthesis or indirect estimation are not commonly published in 

epilepsy monotherapy trials (see Chapter 3 for further discussion).  

Furthermore, although seizure data have been collected in most epilepsy monotherapy trials, 

there is little uniformity in the definition and reporting of outcomes (see Chapter 3 for further 

details). For these reasons, an IPD approach has been taken for pairwise meta-analysis and 

proposed for network meta-analyses in Cochrane reviews of epilepsy monotherapy. This 

approach helps to overcome issues around inconsistent reporting in trials and is considered 

to be the ’gold standard’ approach to synthesis of TTE data [6].  

Each Cochrane pairwise meta-analysis provides high quality evidence for each pair of drugs 

but does not inform a choice between the whole evidence base of appropriate drugs for 

decision makers, clinicians or individuals with epilepsy. Furthermore, direct evidence from 

randomised controlled trials (RCTs) is not available between some of the commonly used 

AEDs (such as between OXC and PHB) and due to current first-line treatment 

recommendations, it is unlikely that an RCT will be designed in the future that will make a 

direct comparison between such drugs [74], so it is not possible to make pairwise 

comparisons of treatment effects between all drugs.  

Use of NMA allows for indirect pairwise comparison of all drugs in the network, in other 

words indirect treatment effect estimates can be calculated for all 45 pairwise comparisons 

of the ten AEDs of interest in the Cochrane reviews of epilepsy monotherapy.  Indirect 

evidence from the network can also increase the power and precision of direct treatment 

effect estimates as discussed in Chapter 1.1.2. 

1.3  Individual participant data sharing: recent initiatives 

Recent years have seen change in attitudes to sharing of clinical trial data with many calls for 

improved data transparency and data sharing initiatives introduced across the research 

community as a whole [77-83], in addition to the publication of data transparency policies by 

the Institute of Medicine [84], the European Medicines Agency [85], and the International 

Committee of Medical Journal Editors [86, 87]. Support of clinical trial data sharing seems to 

be improving in recent years, with a reported increased willingness of authors of published 

trials to share data in surveys conducted in 2011 [77, 88] compared to an empirical study 

conducted in 2009 [89]. A recent survey of patients within a U.S. emergency department has 

also shown that the majority of patients were in favour of de-identified clinical trial data 
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sharing in general, however 25% of patients indicated that they would be less likely to 

participate in a clinical trial if data were shared, demonstrating the increased importance of 

the informed consent process during trials [90].  

The launch of the first data sharing platform, led by GlaxoSmithKline (GSK) in May 2013 [80], 

marked the beginning of a new era of data transparency within the Pharmaceutical Industry. 

At the time of writing (July 2017), thirteen pharmaceutical sponsors have committed to the 

sharing of IPD from nearly 3500 of their trials with independent researchers via multi-sponsor 

platform Clinical Study Data Request (CSDR)[91]. CSDR provides a structured format for 

requesting data, including a step-by-step diagram, user guide, supporting guidance videos 

and the opportunity to communicate with the sponsor throughout the process. The data 

sharing process for requests submitted to CSDR is as follows: 

 Selection of studies of interest from a list by the sponsor(s) or submit an enquiry for 

any studies of a relevant sponsor not currently listed. Multiple studies from a single 

sponsor or from different sponsors can be included in a single request (single sponsor 

request or multi-sponsor request). 

 Submission of a research proposal for the studies required for the research, including 

statistical analysis plan, publication plan and conflicts of interest for review by an 

independent review panel. 

 Signing of data sharing agreements by the researcher and sponsor for approved 

proposals. 

 Sponsor undertakes the de-identification of participant-level data and related 

documentation (e.g. protocols, case report forms) in preparation for sharing of data 

(see Hrynaszkiewicz et al [92] for a summary of the principles of data de-

identification). 

 Remote access to requested de-identified datasets and all related documentation is 

provided via a secured SAS analytic environment. 

Other sponsors have opted for a single sponsor environment in contrast to the multi-sponsor 

format of CSDR. For example, Johnson & Johnson (J&J) announced an agreement with Yale 

University School of Medicine’s Open Data Access (YODA) project in January 2014 in which 

YODA acts as an independent review panel for research proposals requesting access to 191 

J&J datasets (correct to July 2017) in a similar format to CSDR [93, 94]. More recently in 2016, 

Bristol Myers Squib announced a collaboration with the Clinical Research Institute of Duke 

University for the Supporting Open Access to Researchers (SOAR) initiative, a similar data 
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sharing model to the YODA process [95]. Both CSDR and YODA provide metrics related to 

submitted research proposals on their respective websites [91, 93]; see Chapter 5.5.2 for 

further discussion of these metrics. 

These changes and initiatives may go some way to reducing some barriers to conducting IPD-

MAs (as described in Chapter 1.1.3 and further discussed in Chapters 4 to 7).  However, 

concerns have been raised regarding practical challenges of data sharing and the potential 

impact of data sharing on clinical trial participation [96] and recent editorials have suggested 

that current initiatives do not go far enough in the commitment to data sharing [97, 98].   

However, the benefits and impact of such initiatives and reported changes in attitude 

towards data sharing on IPD analyses may not become clear for some time; a recent study 

has shown that out of over 3000 trials available for data request via CSDR, YODA or SOAR, 

only 15.5% of these studies have been requested by a limited number of researchers [99]. 

Furthermore, at the time of writing, out of over 350 research proposals submitted to and 

reviewed by CSDR and YODA up to July 2017, results from only ten data requests have been 

published to date [69, 100-108]. This slow publication rate may reflect the originality and 

complexity of the research hypotheses proposed. While the provision of access to original 

datasets may have previously been associated with re-analysis to confirm validity of trial 

results [109], the focus of the majority of approved research proposals seems to be original 

research. Published titles of approved CSDR and YODA research proposals range from IPD-

MAs, development of prognostic, pharmacokinetic and genetic models, the development of 

novel statistical methodology, investigation of adverse drug events and the design of new 

randomized controlled trials. Such projects are likely to take several years to reach final 

publication stage.  

Furthermore, the researcher’s perspective of using CSDR has received mixed reviews 

highlighting that access to IPD could be taking longer due to the additional safeguards that 

have been put in place [96, 110-113]. Restrictions relating to the remote analysis of IPD has 

prevented the completion of some projects, as highlighted via the reported metrics of the 

status of data requests of the YODA project [93]. The full extent of such restrictions and the 

impact of the provision of highly de-identified data on the range of clinical questions that can 

be addressed and statistical methodology which can be employed within data sharing 

platforms is currently unknown [114]. 
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1.4  Thesis objective and structure 

Evidence syntheses are commonly used and highly regarded techniques for the quantitative 

summary of evidence from a number of sources [8, 34]. The undertaking of an IPD synthesis 

can be methodologically complex, time consuming and open to sources of bias if not 

conducted rigorously [51]. While IPD syntheses published as journal articles will present 

clinical results and implications and some level of detail regarding methodology, it is difficult 

to translate the complete rationale and the practical challenges of such an approach to 

synthesis within the structure and word limit of a journal manuscript.  

The aim of this thesis is to document the practical aspects and challenges of conducting IPD-

MAs and an IPD-NMA of AED monotherapy and to provide a wider context to these syntheses 

in the literature of AD and IPD evidence synthesis. Such experiences and challenges are of 

particular relevance in current research environment with changing functionalities of and 

attitudes towards data sharing. 

Chapter 2 summarises methodology for meta-analysis of TTE data from both an AD and IPD 

perspective. Chapter 3 summarises previous reviews of the reporting of TTE data in the 

published literature and presents a novel systematic review of the reporting of aggregate TTE 

outcomes and analyses specifically in epilepsy AED monotherapy trials published to 2012.  

Chapter 4 then presents a novel systematic review of previously conducted IPD-MAs to 

explore data retrieval rates and characteristics associated data retrieved for all published 

IPD-MAs from 1987 to 2015. Chapter 5 then reflects upon the experiences of the Cochrane 

Epilepsy Group in previous data requests made between 1995 and 2005 compared to data 

requests made for current projects between 2011 and 2015; a time frame which has seen 

substantial changes to the way clinical trial data, particularly pharmaceutical sponsored trial 

data, is shared with independent researchers. 

Chapter 6 presents statistical methodology and results of several approaches to modelling 

the association between treatment effect and epilepsy type in the IPD-NMA and Chapter 7 

then presents further results and clinical implications of the Cochrane IPD-NMA of AED 

monotherapy described in Chapter 1.1.2. Chapter 8 then presents statistical methodology, 

for combining published AD with IPD in NMA as well as results and clinical implications of 

incorporating additional published AD with IPD in this example of AED monotherapy. 

The final chapter summarises the findings of the previous chapters, reflects upon the 

implications of these findings in the clinical context and in the context of IPD and AD evidence 

synthesis and provides discussion of further research needed.    
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Chapter 2: Meta-analysis of time-to-event data: a 

methodology review  

2.1  Introduction 

As introduced in Chapter 1.1.4, in many clinical settings, the outcome of interest is the time 

to an event. The use of time-to-event (TTE) outcomes is particularly common in the field of 

oncology, where the aim of a clinical trial is often to detect a modest treatment effect [1, 4, 

115]; so unless a single study is very large in sample size, it is unlikely to detect the small 

treatment effect due to insufficient statistical power. As cancer is a relatively common 

condition, a moderate treatment effect could have substantial benefit for public health. 

Meta-analyses are commonly used in the field of oncology. For example, the Early Breast 

Cancer Trialists Collaborative Group have collected IPD from over 450,000 women from 400 

randomised trials from the last 30-40 years and found modest but highly significant survival 

benefit for a range of chemotherapy, hormonal and radiotherapy regimens [4, 116, 117]. 

Meta-analysis of TTE data is also important in other settings; as outlined in Chapter 1.2, the 

Cochrane Epilepsy Group have performed or are in the process of performing nine IPD-MAs 

and an NMA of AED monotherapy trials [59-67, 69], within which important efficacy 

outcomes such as ‘time-to-withdrawal of allocated treatment’ and ‘time-to-12-month 

remission from seizures’ required the analysis of TTE data. 

A range of methods for the meta-analytic synthesis of TTE data have been proposed over 

several decades, with the applicability of specific methods depending on the clinical question 

of interest, the assumed hazard distribution and the type of data available for each study for 

meta-analysis [11].  

The objective of this Chapter is to provide a summary of existing methodology developed for 

meta-analysis of TTE data with a particular focus on the level of data (individual level or 

aggregate-level) required for that method. Where possible, applications of developed 

methods (via illustrative examples or simulation studies) will also be discussed to highlight 

the relative advantages and disadvantages of developed methods within given clinical and 

methodological contexts. 
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2.2  Analysis of TTE data in a single trial  

2.2.1  Direct calculation of the Hazard Ratio 

Chapter 1.1.4 introduces the theoretical concepts in the analysis of TTE data of the survival 

and hazard functions which are linked by a parameter known as the Hazard Ratio (HR). The 

HR can be directly calculated in two general approaches and several methods have been 

suggested for the indirect estimation of HRs; see Chapter 2.3.2 for further discussion. The 

first direct approach, via comparison of observed and expected numbers of events across 

treatment groups, defines the log hazard ratio (ln (𝐻𝑅)) as [6, 118]: 

ln (𝐻𝑅) = ln (
𝑂𝑇 𝐸𝑇⁄

𝑂𝐶 𝐸𝐶⁄
)     (Equation 8) 

And the associated variance of this log hazard ratio (𝑣𝑎𝑟(ln (𝐻𝑅))) is defined as: 

𝑣𝑎𝑟(ln (𝐻𝑅) ) =
1

𝐸𝑇
+

1

𝐸𝐶
    (Equation 9) 

Where 𝑂𝑇 = Observed number of events in the treatment group.  

𝑂𝐶 = Observed number of events in the control group.  

𝐸𝑇 = Log-Rank Expected number of events in the treatment group (under null hypothesis).  

𝐸𝐶 = Log-Rank Expected number of events in the control group (under null hypothesis).  

An alternative direct calculation of ln (𝐻𝑅), where 𝑂𝑇 and 𝐸𝑇 are defined as above and 1/𝑉𝑇 

is the Mantel Haenszel (log-rank) variance of ln(𝐻𝑅), is [6, 118, 119]:  

    ln (𝐻𝑅) =
𝑂𝑇−𝐸𝑇

𝑉𝑇
     (Equation 10) 

And the associated variance of this log hazard ratio (𝑣𝑎𝑟(ln (𝐻𝑅))) is defined as: 

𝑣𝑎𝑟(ln (𝐻𝑅) ) =
1

𝑉𝑇
     (Equation 11) 

HRs derived from either of the above calculations are often referred to as ‘log-rank’ HRs due 

to the use of log-rank methodology in the calculation of expected number of events [10, 118]. 

The two ln (𝐻𝑅)  estimates from Equation 8 and Equation 10 (and their respective variances) 

are approximately equivalent, and will only differ markedly if the total number of observed 

events in a trial is small [6, 120]. 
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Secondly, the coefficient of a treatment indicator variable from a proportional hazards (PH) 

regression model provides a direct estimate of ln (𝐻𝑅). For example, given the PH model 

(Equation 7) defined in Chapter 1.1.4, hazards ℎ𝑇 𝑎𝑛𝑑 ℎ𝐶  in the treatment and control 

groups respectively and coefficient 𝜃 associated with treatment indicator variable 𝑥 [7]: 

ln(𝐻𝑅) = 𝜃 =  ln (
ℎ𝑇(𝑡)

ℎ𝐶(𝑡)
)    (Equation 12) 

The variance (𝑣𝑎𝑟(ln (𝐻𝑅) ))  is provided by the associated variance of the regression 

coefficient. If the treatment indicator is the only variable included in the regression model, 

the ‘unadjusted’ ln (𝐻𝑅)  derived from the regression coefficient can be considered 

conceptually equivalent to the ln(𝐻𝑅) derived from log-rank methods as described above. 

However, often regression modelling is performed due to the desire to adjust for potential 

confounders of interest, the coefficient associated with the treatment indicator variable will 

be ‘adjusted’ for the additional variables. Therefore the difference between the ‘adjusted’ 

and ‘unadjusted’ HRs will depend on the influence of any confounding variables. While in a 

meta-analytic context, combination of adjusted and unadjusted estimates is likely to 

introduce bias into pooled effect estimates [121], methodology has been developed which 

allows the combination via meta-regression of Cox proportional hazards models with 

different covariate adjustment or no covariate adjustment [122]. 

HRs derived from regression models are often referred to as ‘Cox’ HRs, in reference to the 

semi-parametric Cox PH model commonly used for the analysis of TTE data[58]. It should be 

noted that HRs from parametric PH models (such as Weibull or Exponential PH models) also 

provide a direct estimate of ln (𝐻𝑅) and associated variance as described above. 

It has been shown that the ‘log-rank’ and ‘Cox’ HRs are approximately equivalent for modest 

treatment effects and fairly balanced treatment arms; for larger treatment effects, the ‘log-

rank’ approach becomes biased and confidence intervals show a lack of coverage [123-125]. 

2.2.2  Use and interpretation of the Hazard Ratio 

The HR, or ln(𝐻𝑅),  and associated variance are considered, generally under the PH 

assumption, to be the most appropriate summary statistics to present when reporting on 

randomised TTE data as the HR is the only summary statistic which takes account of both the 

proportion of individuals experiencing an event in question and the time at which the event 

occurs (or the censoring time for individuals not experiencing the event in question) [6, 118]. 
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The HR is mathematically linked to the two well-known summary statistics used to express 

the relative difference of a dichotomous outcome at a fixed point in time (e.g. the end of a 

clinical trial); the Odds Ratio (OR) or Relative Risk (RR). In fact, in the absence of censoring, 

the HR and RR can be considered to be mathematically equivalent [118]. In the presence of 

censoring, it has been demonstrated that approaches such as comparing the number of 

events across patient subgroups or calculating the odds of an event at fixed time points 

across follow-up are inefficient and could lead to inappropriate conclusions [6, 23, 126, 127], 

especially among trials with varying lengths of follow-up and therefore variable stages of 

maturity [128, 129]. In a meta-analytic context, such methods could introduce bias into meta-

analysis if fixed time points are selectively chosen by trialists to demonstrate a maximal or 

minimal difference between treatment groups [128]. Appropriate adjustment for censoring 

in meta-analysis of TTE data is essential; censored patients provide less information than 

those who experience an event to the overall distribution of event times, therefore the 

extent of censoring will affect the variance of survival proportions, hence the relative weights 

of individual results in meta-analysis and the precision of combined estimates [130]. 

The HR is often interpreted in a similar way to the RR due to the similarities between the 

notions of hazard and risk. It must be noted for the interpretation of this measure that 

‘hazard’ is a conditional and dynamic measure which may change continuously (e.g. an 

individual’s hazard of death increases as they cross the road), while ‘risk’ is assumed to 

remain fairly constant across the follow-up period of a study [121]. It has been argued that 

the HR doesn’t have an intuitive interpretation for non-statisticians and is easily 

misinterpreted [131, 132] and that ORs or RRs are more commonly presented in clinical trial 

publications due to perceived statistical complexity related to HRs [128, 133].  

2.3  Meta-analysis of TTE data 

2.3.1  Literature review methods 

A literature review was conducted to identify methodological publications (whether full-text 

articles, abstracts or conference proceedings published in English) describing meta-analytic 

methods developed for or applied to TTE data. MEDLINE electronic database (from the 

earliest date up to January 2017) and Cochrane Methods Methodology Register (from the 

earliest date up to the last update of the register in July 2012) were searched using keywords 

such as ‘meta-analysis,’ ’time-to-event,’ ’survival,’ ’failure time’ and ‘statistical methods.’ See 

Appendix 1 for search strategies of the two electronic databases.   
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Electronic searches were constructed and carried out by SJN, with advice from an information 

specialist (GC). References of relevant publications were also consulted and methodological 

journals (Statistics in Medicine, Statistical Methods in Medical Research, BMC Research 

Methodology and Research Synthesis Methods) were hand-searched using the keywords as 

described above via the ‘Search’ or ‘Advanced Search’ function of the journal website. 

The inclusion criteria of this methodological review were broad; publications describing a 

novel methodology for meta-analysis of TTE data or publications describing the application 

of existing methods (with methodological discussion) were considered. Publications 

describing methodology for meta-analysis in general, for TTE in general or publications 

describing an application only without methodological discussion were not considered.  

Over 100 methodological publications were identified by the search methods described 

above. A list of references of all publications identified from the searches is available in 

Appendix 1. This methodological review was not intended to be systematic and the results 

section of this Chapter focus on the methodology related to the topic of this thesis; 

particularly on methods developed for AD and for IPD of TTE outcomes. This review was also 

not intended to ‘compare’ methods; as outlined in Chapter 2.1, the applicability of most of 

the methods is dependent on many factors. Rather, the relative advantages and 

disadvantages of specific methods within given contexts are discussed where appropriate. 

2.3.2  Methods for aggregate data 

Whitehead and Whitehead [7] were among the earliest authors to develop a general 

comprehensive methodological framework for the meta-analysis of RCTs including those 

with censored TTE data.  The methodology involves combining efficient score statistics for 

the HR estimates based on the efficient score statistics and Fisher Information of an assumed 

PH model.  

Assuming that for K trials, an estimate of ln (𝐻𝑅𝑖) and 𝑣𝑎𝑟(ln(𝐻𝑅𝑖)) for each trial 𝑖 = 1…𝐾  

is available; a pooled ln (𝐻𝑅)  and its variance (𝑣𝑎𝑟((ln(𝐻𝑅))) can be calculated by the 

inverse-variance approach to meta-analysis [6, 7]; 

ln(𝐻𝑅) =
∑

ln (𝐻𝑅𝑖)

𝑣𝑎𝑟(ln(𝐻𝑅𝑖))
𝐾
𝑖=1

∑
1

𝑣𝑎𝑟(ln(𝐻𝑅𝑖))
𝐾
𝑖=1

     (Equation 13) 

𝑣𝑎𝑟(ln(𝐻𝑅)) = [∑
1

𝑣𝑎𝑟(ln(𝐻𝑅𝑖))
𝐾
𝑖=1 ]

−1
   (Equation 14) 
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Meta-analysis of relative effects (i.e. ratios) via an inverse-variance approach is performed 

on the natural logarithm of the effect size and variance due to the beneficial mathematical 

properties for meta-analysis of converting ratios to differences when a log scale is applied. A 

further benefit for TTE data and the HR is that the additive difference in log hazards of two 

treatments does not depend on the observation times and is therefore more appropriate 

when combining studies with different lengths of follow-up in meta-analysis [134-136]. 

Even at this early stage of methodological development, Whitehead and Whitehead [7] 

express doubt over the chances of finding sufficient details, of adequate quality, in study 

publications to allow meta-analysis. The authors also warn of potential variability in 

conventions and terminology used across the published literature, which may make 

identification of the appropriate statistics difficult.  

As introduced in Chapter 1.1.3, the use of IPD is widely regarded as the ‘gold-standard’ 

approach to synthesis; however, in the event that IPD is not available for a proportion of 

eligible studies and the required effect size is not reported in the published literature, these 

studies may have to be excluded from analysis.  

A potential solution as an alternative to excluding studies from meta-analysis entirely is to 

make use of the summary statistics available in the published literature. This can be done in 

two ways. Firstly by pooling an alternative statistic to the HR, where HRs are not available (a 

summary of some methods taking this approach is outlined in Chapter 2.3.4.2). Secondly, and 

arguably more appropriately [6, 13, 128], a range of methods have been developed which 

allow the indirect estimation of HRs and their associated variances from commonly published 

summary statistics such as p-values, numbers of events and from published survival curves 

[6, 13, 128, 137-139]. 

2.3.2.1  Indirect estimation methods: numerical 

Parmar et al [6], Williamson et al [13] and Tierney et al [128] provide full derivation and 

illustrative examples of commonly used indirect estimation methods; the latter online 

publication also providing a macro-enabled Excel Spreadsheet to facilitate the indirect 

calculation of HRs and associated variances. In summary, the indirect methods outlined 

within these papers are as follows:  
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1) Indirect estimation of variance 𝒗𝒂𝒓(𝒍𝒏(𝑯𝑹)) 

The following methods assume that 𝐻𝑅 or ln (𝐻𝑅) is reported and 𝑣𝑎𝑟(𝑙𝑛(𝐻𝑅)) must be 

estimated. Note that for indirect methods b to d, 𝑣𝑎𝑟(𝑙𝑛(𝐻𝑅))  is the inverse of  𝑉𝑇  as 

outlined in Equation 11. 

a. Confidence intervals are reported 

𝑣𝑎𝑟(ln(𝐻𝑅)) = (
𝑈𝐶𝐼−𝐿𝐶𝐼

2Φ−1(1−
𝛼

2
)
)
2

    (Equation 15) 

where LCI and UCI are the lower and upper bounds of the confidence interval (CI) 

respectively, 𝛼 is the significance level (usually 5% corresponding to a 95% CI)  and  Φ is the 

cumulative distribution function of the Normal distribution (Φ−1 (1 −
𝛼

2
) = 1.96 if 𝛼 = 5%). 

b. Total number of events in both groups reported (randomisation ratio 1:1) 

𝑉𝑇 ≈ (𝑂𝑁)/4      (Equation 16) 

where 𝑂𝑁 is the total number of events in both treatment groups.  

c. Number of events in each group reported (randomisation ratio 1:1) 

𝑉𝑇 ≈ (𝑂𝑇 𝑂𝐶)/𝑂𝑁     (Equation 17) 

where 𝑂𝑇, 𝑂𝐶  and 𝑂𝑁 are the observed number of events in the treatment group, control 

group and total number of events respectively.  

d. Total number of events in both treatment groups and number randomised to 

each group reported (randomisation ratio not 1:1) 

𝑉𝑇 ≈
𝑂𝑁 𝑅𝑇 𝑅𝐶
(𝑅𝑇+𝑅𝐶)

2     (Equation 18) 

Where 𝑂𝑁  is the total number of events in both treatment groups, 𝑅𝑇  and 𝑅𝐶  are the 

number of participants randomised to treatment and control groups respectively.  

2) Indirect estimation of 𝒍𝒏 (𝑯𝑹) and 𝒗𝒂𝒓(𝒍𝒏 (𝑯𝑹)), see also Equation 10 

e. Log-rank p-value and total number of events in both treatment groups 

reported (randomisation ratio 1:1) 

𝑂𝑇 − 𝐸𝑇 ≈ 
1
2⁄ √(𝑂𝑁)  ×  Φ

−1 (1 −
𝑝

2
)   (Equation 19) 

f. Log-rank p-value and number of events on each treatment group reported 

(randomisation ratio 1:1) 

𝑂𝑇 − 𝐸𝑇 ≈ √(𝑂𝑇 𝑂𝐶)/𝑂𝑁  ×  Φ
−1 (1 −

𝑝

2
)   (Equation 20) 
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g. Log-rank p-value, total number of events in both treatment groups and number 

randomised to each group reported (randomisation ratio not 1:1) 

𝑂𝑇 − 𝐸𝑇 ≈ √
𝑂𝑁  𝑅𝑇 𝑅𝐶 

𝑅𝑇+𝑅𝐶
 × Φ−1 (1 −

𝑝

2
)    (Equation 21) 

Where for indirect methods e to g: 

  𝑂𝑇 = Observed number of events in the treatment group.  

𝑂𝐶 = Observed number of events in the control group.  

𝑂𝑁 = Observed number of events in both treatment groups.  

𝐸𝑇 =  Log-Rank Expected number of events in the treatment group (under null 

hypothesis).  

𝑅𝑇 = Number randomised in the treatment group.  

𝑅𝐶 = Number randomised in the control group.  

Φ = Cumulative distribution function of the Normal distribution. 

𝑝 = Two-sided log-rank p-value (or Cox regression p-value as an alternative if log-

rank p-value is not reported [128]). 

Note that 𝑉𝑇 can be estimated using any of indirect methods b to d, then ln(𝐻𝑅) can be 

estimated using Equation 10.   

Indirect variance estimation methods b to g are derived from the 𝜒2 statistic of the log-rank 

test and have been shown to provide reasonable estimates of variance when treatment 

effect ‘is not too large’ [134, 140]. Illustrative examples have shown reasonably good 

agreement between these indirect estimates and also between these indirect estimates with 

direct estimates in a range of clinical settings [6, 141-144]. However, a simulation study has 

shown that indirect method 2 (Equation 16), may systematically overestimate the true log-

rank variance and all three approximations improve as the proportion of censoring increases 

[142]. Therefore, in the context of oncology trials where treatment effects are likely to be 

modest and event rates low these indirect methods are likely to perform well, however for 

other contexts where diseases have a poor prognosis and therefore a high event and low 

censoring rate, the variance estimates from the methods are likely to be biased. 
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2.3.2.2  Indirect estimation methods: Survival curves 

Survival curves (usually Kaplan-Meier (KM) curves) are commonly presented graphical 

representations of TTE data; previous reviews examining studies with TTE outcomes have 

shown that around 90% presented at least one survival curve (see Chapter 3.1.1  for further 

details and references). Given the popularity of such graphical figures, many methods have 

been proposed for extracting and combining data from published KM curves in the context 

of meta-analysis. Such methods generally aim to reconstruct or estimate trial-specific or 

pooled survival functions, rather than to estimate ln(𝐻𝑅)  and associated variance 

specifically [6, 13, 126, 130, 145-155]. 

Earle et al [126] present an overview and comparison of five of these techniques [145-149]. 

Firstly, two similar methods which make use of the published survival curve to iteratively 

estimate the survival function via iterative Generalised Least Squares and iteratively 

reweighted least squares algorithms respectively [145, 147].  Also, two methods which derive 

‘Log RR’ and ‘Weighted Log RR’ indices respectively as parameters to represent long-term 

survival from the survival curves of a selection of trials [126, 146]. These pooled indices can 

then be back transformed to pooled survival functions [149]. Finally, a method for combining 

data from survival curves while adjusting variability participant covariates across studies to 

produce an effect estimate which represents the variability in participant subgroups [148]. 

This method does rely on published results being stratified by the covariates of interest so 

may not be feasible in practice [126]. Earle et al [126] assess the accuracy of the five 

techniques by comparison of a reconstructed pooled curve to a curve constructed using IPD 

and show no more discrepancy from the IPD curve is present than would be expected by 

chance alone. The authors conclude that while not every technique would be appropriate for 

every context, in general, all five techniques could accurately reproduce summary survival 

curves from published literature and the choice of technique would depend on data 

characteristics the context and the aim of analysis. 

Parmar et al [6] present a method for estimating ln(𝐻𝑅)  and associated variance from 

published survival curves. A summary of this method is as follows:  

 Split the time axis into 𝑇 arbitrary non-overlapping intervals,  

 Estimate ln(𝐻𝑅) for each interval based on estimated numbers at risk in the time 

interval (assuming uniform censoring across the entire follow-up period) and 

numbers of events in the time interval. Such information may be read directly from 
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the curve or using additional published information where provided (e.g. numbers of 

participants remaining in the trial at various time points). 

 Combine estimates over the intervals in a stratified way to obtain an overall ln(𝐻𝑅) 

for the trial.  

The full derivation of this method is provided in Parmar et al [6]. An illustrative example 

performed by the authors using their derived method shows that the assumption of uniform 

censoring is somewhat ‘idealized’ and underestimates the true variance of the estimate, 

resulting in the trial being given too much weight in meta-analysis. It has been shown that 

the assumptions made regarding censoring in a meta-analysis of TTE data can change pooled 

effect sizes by between 1-9% and often has an impact on statistical heterogeneity [156]. 

Williamson et al [13] propose an extension to the Parmar et al [6] methods following an 

actuarial approach that assumes the rate of censoring is constant within each interval but 

can vary across intervals, with the aim of improving variance estimates. These methods also 

extend to examining differences in treatment effect over time (i.e. non-proportional hazards) 

as a source of heterogeneity in meta-analyses of trials with variable lengths of follow-up. The 

methods assume that if the PH assumption holds, then ln (𝐻𝑅)  estimates should be 

approximately constant across time intervals.  

More recently developed methods have made use of digital software to extract data from 

KM curves at selected time intervals or, where possible, entire curves in an attempt to 

reconstruct IPD via iterative algorithms [157-159].  In theory, such methods allow a better 

determination of censoring distributions, avoiding the assumptions regarding censoring 

made in the methods of Parmar et al [6] and Williamson et al [13] and therefore producing 

more accurate results than any previous method [157]. Use of reconstructed IPD also allows 

the use of more advanced methods for further analysis; illustrative examples include 

modelling of fractional polynomials and flexible parametric modelling to account for non-

proportional hazards in pairwise and network meta-analysis [158, 159]. Guyot et al [157] 

have demonstrated a high degree of reproducibility and accuracy for survival probabilities 

and median survival time, even in the absence of additional information regarding numbers 

at risk and numbers of events; however HR estimates became less accurate as less 

information was available to inform censoring patterns to becoming ‘unusable’ when no 

additional information was available regarding number at risk or number of events.  
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2.3.2.3  Reliability of indirect methods 

Many studies have investigated the reliability and practicality of applying indirect estimation 

methods [6, 126, 141-144, 160-163], particularly the methods of Parmar et al [6].  

It must be emphasised that the reliability of these estimations, particularly graphical 

estimations, are dependent on the quality of the published survival curves and the precision 

of other published information [6, 13]. It has also been shown that estimating the number of 

events from a published KM curve is often an overestimation of the true number of events 

and the extent of overestimation increases as an increasing number of patients are censored 

[164, 165]. Further, an illustrative example shows that the graphical methods of Parmar et al 

[6] , which were developed within the context of randomised clinical trials, may produce 

biased estimates when applied to survival curves of non-randomised data, particularly where 

non-randomised data has been adjusted in analysis to account for confounding or selection 

bias [162]. Further discussion of analytic methods for non-randomised and observational TTE 

data and the implications for meta-analysis are discussed by Bennett [166]. 

Parmar et al [6] also discuss the difficulty in selecting the best time intervals such that the 

event rate within each time interval is appropriate. Their suggested rule of thumb is that the 

event rate within each time interval should be no more than 20% of those at the beginning 

of the time interval. However, this is dependent on the event rate and follow-up time of an 

individual trial and a simulation study has shown that treatment effect may be under-

estimated in trials with small sample sizes and/or low event rates [144]. 

A general recommendation from all work within this area is that as much summary 

information should be extracted from published literature as possible so that several indirect 

estimates can be calculated and compared [6, 128, 141]. Due to the assumptions involved 

(e.g. choice of time intervals, censoring rate), estimation from survival curves should only be 

used in the absence of sufficient information for the direct or indirect methods [6]. However, 

if multiple estimates can be calculated, it may be reasonable to take an average of these 

estimates to include within meta-analysis [6].  
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2.3.3  Methods for individual participant data (IPD) 

Two approaches can be taken when conducting an IPD-MA, either a one-stage or two-stage 

approach [32, 34, 36, 167-169]. Two-stage methods reduce IPD to study-specific treatment 

effect estimates, allowing use of standard meta-analytic methodology to obtain a pooled 

treatment effect estimate. Such methods are commonly used in practice and are considered 

conceptually less complicated than one-stage methods [32, 36, 123].  

One-stage methods simultaneously analyse IPD from all studies, while accounting for the 

separate trials within the one-stage model, to obtain estimates of pooled treatment effect 

and between-study heterogeneity by fitting a single hierarchical (fixed, random or mixed 

effects) statistical model. Such models, while more computationally complex, offer additional 

flexibility to incorporate covariates, interaction terms or heterogeneity parameters [32, 37, 

169]. Generally within meta-analysis, heterogeneity between trials may arise from the 

treatment effects themselves; i.e. the intervention may have worked better in some trials 

than others, and treatment-by-trial interactions may arise due to differences in 

implementation of treatment protocols (i.e. treatment doses, dose scheduling etc.), study 

participant characteristics and their individual baseline risks [136], which may be interpreted 

as unmeasured characteristics [170]. One-stage approaches allow for simultaneous or 

separate modelling of heterogeneity of treatments effects and of baseline risk.  Baseline risk 

may be measured on a trial level and modelled as a fixed-effect or the addition of a random-

effect to a hierarchical model (also referred to as a frailty parameter within a TTE setting 

[171]) can account for the level of risk associated with an individual which could account for 

heterogeneity among individuals not explained by the covariates [37, 172].  

Specifically within a TTE setting, advantages of the availability of individual TTE data for meta-

analysis include a more thorough and flexible investigation of treatment effect over time 

[135], treatment-covariate interactions [13, 173] and patient characteristics and clinical 

factors as potential causes of statistical heterogeneity between trials in a meta-analysis [37, 

174]. Specific sources of heterogeneity in TTE data include time-dependent (non-constant) 

treatment effects and variation in length of follow-up time across trials [13, 37]. Methodology 

has also been developed for IPD-MA of TTE data in the presence of competing risks [175]. 
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2.3.3.1  One-stage IPD-MA 

A simple assumption in IPD-MA of TTE data from RCTs would be that the hazard function 

differs only by the allocated treatment, with all other risk factors potentially influencing the 

hazard balanced by randomisation [135]. To achieve a better insight into potential treatment 

effect modifiers, this assumption can be relaxed via stratification of baseline hazard by trial 

[37], or by the addition of a treatment-study or treatment-time interaction [135, 176, 177].  

Tudur-Smith et al [37] present a series of one-stage hierarchical Cox PH regression models 

designed to explore heterogeneity in meta-analysis and examine the relationship between 

participant-level covariates and TTE data via the addition of a treatment-study interaction 

indicator variable to each model for use in IPD meta-analysis.  

Without stratification by study, it is assumed that the hazards within each study are 

proportional to a single fixed baseline hazard function, common to all studies within the 

meta-analysis. Stratification of the model allows for different baseline hazard functions for 

each study (assuming that hazards are proportional within each study), a less restrictive 

assumption when synthesising studies of variable settings and participant populations. The 

models can extend to either fixed or random treatment effects [172, 178-180] and to either 

a Frequentist or Bayesian hierarchical framework [181, 182]. Furthermore, Bennett et al 

[183] provide a comparison of three Cox PH based approaches to meta-analysis of TTE data, 

two from a frequentist framework and one from a Bayesian framework, with an additional 

consideration of the performance of such methods in the context of low event rates. 

The general form of one-stage hierarchical Cox PH models are as follows; for the 𝑖𝑡ℎ 

participant, 𝑖 = 1…𝑛𝑗 , in the 𝑗𝑡ℎ  study, 𝑗 = 1… 𝐽 , the following models for the hazard 

function at time 𝑡 (without participant-level covariates) are proposed [37] :   

a. Fixed treatment effects with fixed (proportional) study effects 

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡)exp (𝛽0𝑗 + 𝛽1𝑥𝑖𝑗)  (Equation 22) 

ℎ0(𝑡)  is the baseline hazard function in the reference study (e.g. study 𝑗 = 1  so 𝛽01  is 

constrained to be zero), 𝛽0𝑗 is the proportional effect on the baseline hazard due to the 𝑗𝑡ℎ 

study, 𝑗 = 2… 𝐽, 𝑥𝑖𝑗  is the treatment group indicator and 𝛽1 is the ln(𝐻𝑅) for the treatment 

group compared to control group, assumed constant (fixed-effects) across all studies. 

b. Fixed treatment effects with baseline hazard stratified by study 

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)exp (𝛽1𝑥𝑖𝑗)   (Equation 23) 

ℎ0𝑗 is the baseline hazard function in the 𝑗𝑡ℎ study. Other parameters are defined as in 

Equation 22. 
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c. Random treatment effects with fixed (proportional) study effects 

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡)exp (𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗)  (Equation 24) 

𝛽1𝑗 = 𝛽1 + 𝑏1𝑗  𝑏1𝑗 ~ 𝑁(0, 𝜏
2) 

𝛽1  is now interpreted as the mean ln(𝐻𝑅) for a distribution of treatment effects with a 

deviation from the population mean of 𝑏1𝑗 in the 𝑗𝑡ℎ study, assuming deviations 𝑏1𝑗 follow a 

Normal distribution with mean zero and variance 𝜏2 (where 𝜏2 represents between-study 

heterogeneity). Other parameters are defined as in Equation 22 and Equation 23. 

d. Random treatment effects with baseline hazard stratified by study 

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)exp (𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗)   (Equation 25) 

𝛽1𝑗 = 𝛽1 + 𝑏1𝑗  𝑏1𝑗 ~ 𝑁(0, 𝜏
2) 

All parameters are defined as in Equation 22, Equation 23 and Equation 24. 

e. Random treatment effects and random study effects 

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡)exp (𝑏0𝑗 + 𝛽1𝑗𝑥𝑖𝑗)  (Equation 26) 

𝛽1𝑗 = 𝛽1 + 𝑏1𝑗  𝑏1𝑗 ~ 𝑁(0, 𝜏
2)   

𝑏0𝑗 ~ 𝑁(0, 𝜎
2)  𝑐𝑜𝑣(𝑏0𝑗, 𝑏1𝑗) = 0  

𝑏0𝑗 is the deviation of the 𝑗𝑡ℎ study from the overall baseline risk, assuming deviations 𝑏0𝑗 

follow a Normal distribution with mean zero and variance 𝜎2. Other parameters are defined 

as previously.  

Tudur Smith et al [174] compare these hierarchical Cox regression models with participant-

level covariates to meta-regression models with aggregate-level covariates on an empirical 

dataset. Results show that the stratified models with random-effects estimate a larger 

standard error of treatment effect and adding participant-level covariates and interactions 

into the models helps to explain variation and decreases the levels of between-study 

heterogeneity than those with fixed-effects only. Previous work has also demonstrated the 

benefit of random trial effects in a TTE setting from the sharing of information (‘borrowing 

strength’) across all trials [171, 178, 184], particularly when combining a large number of 

trials with treatment groups of small sample size [171].   

Tudur Smith et al [174] also show that evidence of treatment-covariate interaction is weaker 

in the aggregate meta-regression models than the IPD models. Also within these aggregate-

level models, effect sizes seem to be dependent on the estimation approach, precision of 

estimation is poor and there is scope for the identification of false treatment-covariate 

associations due to multiple testing potential correlations between aggregate variables. The 
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authors conclude that meta-regression with AD can be accurate if there is evidence for a 

within-study treatment-by-covariate interaction and sufficient between-study variation for 

the aggregate value of the covariate, however such information is unlikely to be reported in 

practice and the stratified IPD approach is preferred. More recent work emphasises the 

importance of the appropriate specification of one-stage IPD models with treatment-

covariate interactions by separating within-study and across-study interactions to avoid 

inadvertent ecological bias [25, 38, 41, 185], particularly within a TTE setting [25]. 

Michiels et al [186] also propose Cox PH regression models, which can be fitted in both 

Frequentist and Bayesian frameworks, to investigate heterogeneity from both variation in 

treatment effect and from difference in baseline hazard rates with via random (frailty) 

effects. The method applies random treatment-trial interaction terms and with adjustment 

for study variations such as region or population variability across studies. An assumption of 

a common baseline hazard function shape is made across the trials, allowing for varying 

magnitude of the hazard function due to systematic variation across trials. The authors apply 

their models to a large meta-analysis of 65 trials, originally analysed using a two-stage 

approach (with methods developed by Peto et al [187] for TTE data), with results showing a 

beneficial treatment effect with significant heterogeneity present.  Application of the new 

models to the meta-analysis resulted in similar pooled HRs and the addition of between-trial 

variance increased the relative weight of small trials for the overall pooled result.  

Katsahian et al [188] compare the performance of four one-stage Cox PH models; fixed-

effects, random-effects (frailty), stratified and marginal. The fixed-effects, frailty and 

stratified models are all modelled on trial-specific hazard functions which can incorporate 

heterogeneity (conditional models). The marginal model assumes a multivariate structure 

with the advantage of allowing estimation of a population averaged treatment effect [189], 

a benefit for studies of varying sample size, but  this model cannot incorporate heterogeneity. 

The authors perform a simulation study based on three separate assumptions; no 

heterogeneity present, heterogeneity in baseline risk present, heterogeneity in baseline risk 

and treatment effect present. The results of the simulation study show that standard errors 

are consistently underestimated by the marginal model, particularly for a small number of 

trials in a meta-analysis. Results also show that if heterogeneity in treatment effect is 

present, models without a random treatment-trial interaction perform poorly and the 

models with interactions tend to perform better with large numbers of trials and large 

sample sizes. The authors note that population averaged treatment effect may be of value 

where substantial heterogeneity is present in meta-analysis. 
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Rondeau et al [136] present a one-stage additive Cox model, similar to the model of Vaida 

and Xu [190] for clustered data, to jointly account for heterogeneity in meta-analysis of both 

treatment effects and baseline risk via a random treatment effect and a random interaction 

between trial and treatment effect. The authors also investigate the relationship between 

the two random-effects under the assumption that magnitude of effect is related to 

underlying risk. Rondeau et al [136] perform a simulation study, using a semi-parametric 

penalised likelihood approach to model fitting, and show that most accurate results are 

obtained for meta-analyses with large numbers of trials or large sample sizes and when a 

non-zero covariance of the two random-effects is specified (i.e. a value for the correlation 

between the two random-effects is assumed).  

The complexity of one-stage random-effects models, particularly the semi-parametric form 

of the stratified Cox models proposed by Tudur-Smith et al [37] can lead to computational 

difficulties and problems with convergence [49, 172, 185, 191], making their use within 

practice difficult [123]. To allow the implementation of these random-effects models in 

standard statistical software, Simmonds et al [191] propose an approach  which treats the 

random-effects as missing data. The authors apply the expectation-maximisation algorithm, 

approximating the expected values of the random-effects in the expectation step using 

shrinkage estimators. A simulation study and application to an example of post-operative 

radiotherapy for non-small-cell lung cancer show that this approach can provide estimates 

of random-effects without bias or loss of precision.  

Crowther et al [49] propose an alternative flexible modelling approach for hierarchical 

models a to d above using Poisson generalised linear models via a piecewise exponential 

model. Such models extend to a Frequentist or Bayesian framework, can incorporate 

treatment-covariate interactions and non-proportional hazards. Massonnet et al [192] also 

remark that frailty models are often likelihood based and such a model structure can be 

reformulated into a linear mixed model assuming clustered data structure with a random 

cluster effect and random treatment effect. This transformation is applicable to meta-

analysis under the assumption that clusters are analogous to studies. Such alternative 

methods are practical as linear mixed-effects models is more accessible in standard statistical 

packages than procedures for fitting conditional random-effects to TTE models [49, 192]. 

A simulation study shows that this Poisson approach proposed by Crowther et al [49]  

produces near identical estimates to the hierarchical Cox approach, including for all 

parameters when covariates are added to the model and the method is extremely 
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computationally efficient with coverage of Poisson models taking between 5-65 seconds 

compared to up to 29 hours for the stratified Cox models [37]. A further simulation study (on 

a cluster level) shows that model parameters (treatment effect and heterogeneity) are well 

estimated following transformation to linear mixed-effects for large numbers of clusters and 

large sizes of clusters. However this simulation was conducted assuming equal cluster sizes; 

an assumption which may not translate to meta-analysis (i.e. equal study sizes).  

Crowther et al [193] present a series of multilevel mixed effects parametric models as an 

alternative, flexible approach to previous hierarchical semi-parametric Cox model 

approaches. The authors extend parametric frailty PH models and accelerated failure time 

models, in addition to the flexible parametric model of Royston and Parmar [194], to 

incorporate any number of normally distributed random-effects estimated via adaptive or 

nonadaptive Gauss–Hermite quadrature. The authors demonstrate the application of these 

models to IPD-MA via a simulation study and a re-analysis of a previous IPD-MA in breast 

cancer, showing similar results to their previous work [49]. 

See a recent review by Debray et al [36] for an additional summary of IPD-MA methodology 

for all data types; including TTE data. 

2.3.3.2  Two-stage IPD-MA and comparison to one stage IPD-MA 

Burke et al [169] provide a tutorial of key statistical methods for two-stage IPD-MA and one-

stage IPD-MA and note that most differences between the approaches arise due to different 

modelling assumptions, rather than the choice of one-stage or two-stage itself. While two-

stage methods for IPD-MA generally allow use of ‘standard’ methodology; i.e. ‘standard’ 

methods of analysing TTE data and ‘standard’ methodology for meta-analysing study-specific 

treatment effects, a wide variety of approaches within these two stages may still be used 

[195]. A review of IPD-MAs by Simmonds et al [32, 195] found use of methods developed by 

Peto et al [187], log-rank methods [196] and Cox PH regression methods [58]. The review 

authors also discuss further methodology which could be used in two-stage IPD-MA such as 

modelling via interval censored logistic models [32]. An additional application of a two-stage 

approach is the derivation and synthesis of risk prediction models as described by Pennells 

et al on behalf of the Emerging Risk Factors Collaboration [197]. 

Haines and Hill [53] question whether it is ever appropriate to combine summary results 

produced by a variety of methods given that differences in methodology are generally 

reflective of different aims of analysis.  The authors provide an illustrative example of meta-
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analysis of repeated measures survival data of accidental falls where a range of analysis 

approaches were taken; Cox PH regression models, Andersen – Gill recurrent events models 

[198], negative binomial regression, linear regression or by reducing IPD to dichotomous 

data. The authors also make an empirical comparison to AD-MAs of published summary 

statistics only. Results show that estimated SEs seemed to be dependent on the methodology 

used, therefore by combining estimates from these different methods, the relative 

weightings in meta-analysis would be influenced by the methodology used in the studies 

rather than the actual precision of the effect estimate, resulting in biased pooled effects. 

Tudur Smith and Williamson [125] compare three methods of fixed-effects meta-analysis for 

TTE outcomes; stratified log-rank analysis (two-stage), inverse-variance weighted average of 

Cox model estimates (two-stage) and stratified Cox regression (one-stage). Theoretically, the 

three methods should produce similar estimates of the pooled ln (𝐻𝑅) and its variance when 

the underlying treatment effect is close to the null and the degree of heterogeneity is 

minimal. Also, the stratified log-rank analysis should in theory have the maximal statistical 

sensitivity for the detection of modest treatment effects. Both the simulation study and an 

illustrative example show that the methods are approximately equivalent for modest 

treatment effects and low levels of heterogeneity and for large treatment effects, the 

stratified log-rank analysis overestimates and the inverse-variance weighted average 

underestimates treatment effect. The stratified Cox regression model is the most consistent 

for varying levels of effect size and heterogeneity. The authors conclude that in practice the 

choice of the most appropriate method depends on study size, meta-analysis size, censoring 

distributions and deviation from PH assumptions.  

Bowden et al [123] compare the performance of two-stage approaches combining ‘log-rank’ 

and ‘Cox’ HRs respectively (see Chapter 2.2.1 for further details) via DerSimonian and Laird 

random-effects method [12] to a one-stage random-effects Cox model [172] fitted using 

Restricted Maximum Likelihood [199]. Via a simulation study and illustrative example, 

Bowden et al [123] demonstrate a small amount of bias in the pooled ‘log-rank’ HR as 

magnitude of treatment effect increases compared to negligible bias in two-stage and one-

stage Cox model estimates. However in absolute terms, the estimates of the two-stage and 

one-stage methods are very similar. The authors also demonstrate decreased model 

coverage and more conservative effect estimates with increasing sample size in all three 

methods due to increased HR variance under the random-effects model; an effect which 

would not be observed in fixed-effects analyses [125]. 
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2.3.4  Other meta-analytic methods 

2.3.4.1  Multivariate and network meta-analysis  

Data reported at a series of time points or over multiple correlated outcomes has a 

multivariate structure [200, 201]. In general, the methods described above in Chapters 2.3.2 

and 2.3.3 make the assumption of non-informative censoring; in other words, that an 

individual’s time-to-event is independent of any mechanism leading to censoring. However, 

where two-or-more outcomes of interest are correlated, it is likely that the censoring 

distributions of the outcomes will also be correlated; violating the assumption of non-

informative censoring [202]. For example, in the context that disease progression within a 

randomised trial is defined as a treatment failure; measured outcomes of ‘time-to-treatment 

failure’ and ‘time to progression’ would be correlated and the censoring of an individual for 

one of these outcomes would inform the other outcome.  

Multivariate meta-analysis allows the joint synthesis of correlated endpoints from multiple 

trials, taking account of both between-study correlation (i.e. association between the within-

study estimates of underlying effect sizes between studies due to differences in individual-

level and study-level characteristics) and within-study correlation (i.e. association between 

the outcomes in question) [170, 203-206]. The benefits of such a joint approach to synthesis 

have been widely discussed [145, 170, 202-206]. A particular advantage in the context of TTE 

data is the use of multivariate meta-analysis to identify and validate surrogate markers such 

as progression-free survival as a surrogate marker of overall survival [202, 207-212]. 

Arends et al [170] present a general linear mixed model for the joint analysis of two-or-more 

TTE outcomes in random-effects meta-analysis with an illustrative comparison of their 

multivariate analysis to the results of separate univariate meta-analyses. The authors 

demonstrate that multivariate meta-analysis has advantages over univariate analysis such as 

investigating associations between event-free survival and length of follow-up (short or long-

term) and investigating how both treatment difference and heterogeneity are influenced by 

population baseline risk. 

The use of multivariate models in meta-analysis will generally require a substantial amount 

of information regarding the correlation structure of the outcomes which may not be 

provided in sufficient detail within published studies [145, 201, 213] so an IPD approach may 

need to be taken [208, 214]. However, methods have been developed [145, 155, 170, 215-

217] which make use of published or indirectly estimated aggregate TTE data in multivariate 

meta-analysis (see Chapter 2.3.2 for further discussion of indirect estimation). 
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Dear [145] presents an iterative generalised modified least-squares algorithm for the joint 

fixed-effects meta-analysis of a single TTE outcome reported repeatedly over time in several 

trials, while allowing a different set of between-trial and within-trial covariates to be 

modelled for each outcome. However, in the absence of IPD, the algorithm requires standard 

errors of survival probabilities are published (or reconstructed indirectly) and that sufficient 

information regarding the correlation structure of the data is published.  

Arends et al [155]  present a model for multivariate aggregate TTE data which generalises the  

fixed-effects models of Dear [145] and a random-effects model proposed by Berkey et al 

[218] which reduces to random-effects meta-analysis model of DerSimonian and Laird [12] 

for a fixed time point. The generalised model also allows extensions to include proportional 

or non-proportional hazards and time, trial and treatment interactions.  

Fiocco et al [215-217] take a different, hazard based approach to the multivariate meta-

analysis of published survival curves under the assumption of heterogeneity between 

studies.  Using extracted or indirectly estimated information on number of events, 

proportion censored and effective numbers at risk within given time intervals, the authors 

construct piecewise hazard functions by treatment arm, constant within time intervals, via a 

Poisson correlated gamma frailty model assuming negative binomial marginal distributions 

and that the correlation structure is described by a multivariate gamma process derived by 

the authors [217]. The methodology can be used to estimate mean survival, correlation over 

time, within-studies, within and between treatment arms and the degree of heterogeneity 

between trials. The methods can be extended to incorporate study-level covariates to explain 

heterogeneity via meta-regression and can accommodate PH or non PH.   

Jackson et al [219] propose an alternative multivariate approach to AD-MA of TTE outcomes 

which models the probability of the event at multiple time points using exact binomial within-

study distributions, thus avoiding assumptions regarding hazard functions. The approach also 

extends to modelling covariates and accounting for censoring and the authors provide an 

application to an AD meta-analysis of critical leg ischemia data. 

Multivariate meta-analysis methods extend also to NMA [220]; see Chapter 1.1.2 for an 

introduction to NMA and Efthimiou et al [18] for a review of methodology for NMA. Within 

a TTE setting, tutorials have been provided on performing NMA on a ln (𝐻𝑅) scale or using 

other summary statistics such as mean or median time-to-event [221, 222]. Additionally, 

methodology has been developed to investigate the impact of non PH, parametric modelling 
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of the survival function, and extension to study-level covariates on the consistency of NMA 

results [20, 158, 159, 223]. Methodology has also been developed for the simultaneous 

synthesis of IPD and AD in a Bayesian framework [45]; this methodology also extends to the 

synthesis of IPD (censored TTE data) with summary-level count data (event count within a 

given follow-up time) where published summary TTE statistics are not available [44].  

2.3.4.2  Alternatives to the hazard ratio 

As introduced in Chapter 2.2.2, the HR is recommended as the most appropriate relative 

summary statistic of TTE data under the PH assumption and the use of RRs or ORs as an 

alternative or approximation to the HR can result in inappropriate conclusions. However, 

when the PH assumption is violated, the HR is dependent on the length of participant follow-

up and may not necessarily have an intuitive interpretation [132, 224, 225]. Furthermore, it 

has been demonstrated that even if PH violations are not a concern within individual trials, 

the PH assumption may still be violated in meta-analysis across multiple trials, which has 

implications for the interpretation of a pooled HR [224]. Various alternatives to the HR have 

been proposed which may be more appropriate under non PH such as the ratio or difference 

of medians [132, 226, 227], percentiles of survival [228, 229], survival rates [229], and most 

recently difference in restricted mean survival time (RMST) [224, 225, 229-231].  

In a meta-analytic context, Simes et al [226] proposed the pooled log ‘median ratio’ 

(𝑙𝑜𝑔 (𝑀𝑅)) by taking an average of median survival times weighted by the sample size in 

each treatment arm. However, via an empirical comparison using IPD, Michiels et al [160] 

demonstrate that this 𝑙𝑜𝑔 (𝑀𝑅)  can over or under-estimate treatment effect, with 

discrepancies mainly occurring at trial level with even more pronounced biases for low event 

rates. The authors argue that use of published median values only to calculate 𝑙𝑜𝑔 (𝑀𝑅) is 

likely to reduce in further biases and lack of statistical power where participant-level 

information regarding attrition is not available and the authors do not recommend the use 

of 𝑙𝑜𝑔 (𝑀𝑅) as a surrogate for 𝑙𝑛(𝐻𝑅).    

Moodie et al [232] present a non-parametric procedure for the evaluation of treatment 

effect in the meta-analysis of TTE which uses the log (-log) survival function difference, as an 

alternative measure when published HRs are not available. The resulting pooled effect 

estimate is interpreted as the ‘weighted average on the natural log scale of hazard ratios 

within interval [0, 𝑡] in a trial.’ The authors also discuss various weighting schemes for meta-

analysis of log (-log) survival function difference to account for precision of study-specific 

estimates and for study quality. 
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Siannis et al [228] argue that the imposition of the PH assumption across multiple trials in 

the context of meta-analysis is particularly restrictive and a more flexible parametric 

representation of treatment effects allowing for shape parameters to vary between trials 

may be preferable. The authors propose use of the pooled ‘percentile ratio’ (a continuous 

function of survival percentile) which reduces to the ‘median ratio’ for the 50th survival 

percentile, estimated via a parametric accelerated failure time model as an alternative to the 

semi-parametric PH model. Such a model would be fitted in a one stage-approach (see 

Chapter 2.3.3.1) to IPD-MA and can be fitted with fixed or random-effects in a Frequentist or 

Bayesian framework. Barrett et al [233] extend this method to the two-stage estimation of 

pooled percentile ratios using only KM estimates of the survival function, removing the need 

to make any distributional assumptions. 

Most recently, the difference in RMSTs, defined as the difference in areas under two survival 

curves to time 𝑡, has been proposed as an alternative to HR [224, 225]. Such a measure has 

direct applications to cost-effectiveness analysis [230] and the attractive properties of not 

requiring an assumption of PH and is interpreted on the scale of the time-to-event which is 

arguably a more intuitive interpretation than that of relative hazards [224, 225]. Wei et al 

[224] present three parametric and non-parametric estimation methods of RMST and 

describe the calculation of the effect size difference in RMST and associated variance as an 

alternative to HR for two-stage IPD meta-analysis of TTE outcomes. The authors compare 

different estimation methods via a simulation study and conclude that the three methods of 

estimating RMST perform similarly well.  

Lueza et al [225] extend the methods of Wei et al [224] to consider the use of difference in 

RMST in meta-analysis from addition estimation methods and across a wider range of 

simulated meta-analysis parameters such as variations in heterogeneity in baseline risk and 

treatment effect, fixed or random-effects, number of trials and number of participants. The 

authors conclude that pooling of trial-specific KM curves under DerSimonian-Laird random-

effects [12] provides the best compromise across all scenarios of estimating difference in 

RMST for an IPD-MA. Both Wei et al [224]  and Lueza et al [225] also demonstrate the use of 

RMST in meta-analysis via reanalysis of IPD-MA in cancer and both author groups conclude 

that that difference in RMST is a useful and interpretable effect measure for IPD-MA.    

Combescure et al [234] note that interest may not always lie in a relative comparison of two 

interventions and the authors propose an approach for the meta-analysis of the published 

survival curves of single treatment arms to obtain a distribution free summary survival curve 
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assuming random-effects via product-limit estimation. The method allows for the estimation 

of pooled mean and median survival times, as well as estimates of heterogeneity between 

the published survival curves. The authors demonstrate the method via a simulation study 

and an application to an AD-MA of graft survival following kidney transplant. 

2.4  Discussion 

Meta-analyses of TTE data are commonly performed, particularly in the field of oncology. A 

range of methods have been developed to allow synthesis of TTE data depending on the type 

of data available (IPD or summary (AD) level only), use of fixed or random-effects, the desire 

to explore heterogeneity of treatment effect or baseline risk via the addition of participant-

level or study-level covariates or treatment covariate interactions and whether the 

proportional hazards can be assumed. Many such meta-analytic methods also extend other 

synthesis approaches such as multivariate and network meta-analysis. 

This chapter presents a methodological review of many important methods used in the 

synthesis of TTE data as well as a summary of the reliability and applicability of many of these 

methods in practice. 

It is widely accepted that an IPD approach to meta-analysis is the ‘gold-standard’[24]; 

particularly for TTE data [6]. This is reflected in many methods which have been developed 

in the last decade require an IPD approach, particularly the development of one-stage 

approaches allowing clinical questions of growing complexity to be addressed via the 

addition of random trial and participant effects or by participant-level covariates and 

treatment by covariate interactions [36]. The practical use of some of these methods has, 

however, been questioned due to the complexity of some modelling assumptions leading to 

problems with convergence and various alternative, more accessible, approaches have been 

suggested [49, 123]. 

It must not be forgotten that within many settings, a complete IPD approach to synthesis 

may not be feasible and a partial or complete AD approach to meta-analysis may be required 

[6]. It is also well documented that within a TTE setting, summary statistics required for meta-

analysis are rarely published (see Chapter 3 for further discussion), therefore a range of 

methods have been developed which make use of more commonly reported summary 

statistics and published survival curves to indirectly estimate hazard ratios and associated 

variances. The methods proposed by Parmar et al [6], later translated into ‘plain language’ 
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and implemented to a macro enabled spreadsheet for use by non-expert users by Tierney et 

al [128], are perhaps the best known of these methods. While such methods are theoretically 

useful and accessible to statisticians and non-statisticians alike, it has been questioned 

whether such methods are useful in practice as often the summary statistics required to 

make use of such methods aren’t reported either, or published graphical figures are of too 

poor quality to adequately make use of graphical estimation methods [6, 141, 144].  

Furthermore, some applications including simulation studies have shown that some of the 

indirect estimation methods proposed become biased in certain scenarios and if used, would 

introduce bias into meta-analysis [6, 141, 142]. 

The information presented within this chapter is a review of methodological literature with 

relevance to this thesis, rather than a systematic review of all methods developed for meta-

analysis of TTE. While this is a limitation, the search techniques employed to inform this 

methodological review were broad (see Chapter 2.3.1), therefore it is unlikely that any 

important methodology in relation to this thesis was missed. 

In summary, meta-analytic techniques of TTE data have been proposed for and applied to a 

wide range of clinical and methodological scenarios. While the availability of IPD allows for 

more complex meta-analytic modelling of TTE data and a wide variety of indirect methods 

have been suggested where IPD and published AD are not available, it is important that as 

this research field continues to develop, the applicability and accessibility of new 

methodology is kept in mind. 

Chapter 3 and Chapter 8 of this thesis make an assessment of published summary statistics 

for TTE outcomes epilepsy monotherapy trials and demonstrates the applicability of these 

indirect methods within this setting. Chapter 6 and Chapter 7 present the methodology and 

results of an IPD-NMA of antiepileptic drugs with four TTE outcomes.  
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Chapter 3: Aggregate time-to-event (TTE) data: a 

systematic review of reporting of outcomes and 

statistical analyses in epilepsy monotherapy trials 

3.1  Introduction 

An individual participant data meta-analysis (IPD-MA) is considered to be the ‘gold-standard’ 

approach to data synthesis for many reasons (see Chapter 1.1.4 for a more detailed 

discussion) [23, 24]. These reasons include the ability to comprehensively undertake time-to-

event (TTE) analyses and the standardisation of outcomes and analyses across studies. 

Inconsistency of definitions, reporting and presentation of outcomes, effect sizes and 

statistical analyses for TTE outcomes have been documented since the early 1990s [31, 144, 

160, 235-237].  Due to this inadequate reporting, an IPD analysis is often the only approach 

that can be taken for TTE data. The consistency and quality of reporting of TTE data is 

particularly important in an evidence synthesis context where aggregate data meta-analyses 

(AD-MA) can only use published information.  As earlier outlined in Chapter 2.3.2, methods 

have been developed for the indirect estimation of TTE measures required for AD-MA from 

other published statistics [6, 13]. However, in practice, it is uncommon for the statistics 

required for indirect estimation to be reported either [141, 144, 160, 161]. 

This chapter summarises previous work on the reporting of aggregate TTE data and extends 

this methodology to a systematic review of the reporting of TTE outcomes and associated 

statistics in epilepsy monotherapy studies.  

3.1.1  Summary of previous reviews of aggregate TTE data 

Table 1 and Table 2 summarise the findings of previous reviews of aggregate TTE data. 

The first review to investigate the reporting of TTE analyses was conducted in the 1990s [31]. 

The authors considered 132 studies with TTE endpoints published in five oncology journals.  

In summary, 11 out of the 132 (8%) papers failed to state how many participants were 

analysed, almost half of the papers (48%) did not give any summary of length of follow-up 

and in 62% of papers at least one end point was not clearly defined.  Results were often 

reported with p-values only; 63 out of 84 papers performed log-rank analyses (75%) and 22 

out of 47 (47%) performed ‘multivariate’ analyses reported p-values. Less than a sixth of 
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papers using log-rank analyses (10 out of 84, 12%) and only half of those using ‘multivariate’ 

analyses (25 out of 47, 53%) reported a survival estimate or effect size such as hazard ratio 

(HR) or odds ratio (OR) and even fewer reported an associated measure of precision such as 

a standard error or confidence interval.  

Survival plots were presented in 95% of the papers; however, the quality of survival plots was 

deemed poor in 42 out of 117 (37%) papers with the most common issues being censored 

observations not marked, poor or unhelpful numerical axis, survival curves of two groups for 

comparison not clearly distinguished, inadequate or no legend reported and inconsistency 

between curves and other reported results.   

Overall, the presentation of analyses and graphs was deemed adequate in only 21% of papers 

(28 out of 132) of [31]. The authors report an appendix of guidelines for the reporting of 

survival analyses and a later series of tutorial papers for the conduct of such analyses [31, 

238-240]. 

Table 1: Characteristics of previous reviews on the reporting of aggregate TTE data and 

current systematic review of epilepsy monotherapy trials 

Review 
number 

Reference 
Number of 

studies 
(outcomes) 

Journals 
Study 

publication 
dates 

Type of study 

1 
Altman et 

al 1995 
132 studies 5 oncology journals 

October to 
December 

1991 

Any study design 
reporting a 

survival analysis 

2 
Michiels et 

al 2005 
131 

comparisons 
Not stated Not stated 

Comparisons of 
chemotherapy 

drugs in 
metastatic lung 

cancer 

3 
Hirooka et 

al 2009 
129 studies 2 oncology journals 

January 2004 
to December 

2005 
Phase III RCTs 

4 
Mathoulin-
Pelissier et 
al (2008) 

125 studies 
(267 

outcomes) 

4 general medical 
journals, 4 oncology 

journals 
2004 RCTs 

5 
Abraira et 

al 2013 

104 studies 
published in 

1991;  
240 studies 
published in 

2007 

13 high impact 
journals (cardiology, 

internal medicine, 
nephrology and 

oncology) 

1991 and 2007 
Any study design 

reporting a 
survival analysis 

6 
Baston et 
al  2016 

32 studies 5 oncology journals 
April to July 

2015 
Phase III RCTs 

7 
Current 
review 

54 studies 
(98 outcomes) 

No restriction 1978 - 2012 
Epilepsy 

monotherapy 
RCTs 
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Table 2: Summary of the reporting of TTE outcomes and statistical analysis; previous work and current systematic review of epilepsy  

monotherapy studies 

Information or summary statistic 

Review Number1  

1 2 3 4 4 5 5 6 7 7 

Study 
level 

Study 
level 

Study 
level 

Outcome  
level 

Study 
level 

Study 
level 

(1991) 

Study 
level 

(2007) 

Study 
level 

Outcome 
level 

Study 
level 

Median follow-up time reported 
39% NR 60% NA 57% 26% 41% 78% NA 13% 

Minimum and maximum follow-up time reported 
NR NR 25% NA NR 6% 2% NR NA 19% 

Any summary of follow-up time reported 
55% NR NR NA 57% 69% 76% 91% NA 76% 

Method for calculating the median follow-up reported 
12% NR NR NA 2% NR NR NR NA 0% 

Sample size calculation reported 
93% NR NR NA 78% 14% 28% NR NA 50% 

Outcome(s) clearly defined 
38% NR NR 42% 52% NR NR 66% 49% 55% 

Time origin clearly defined 
52% NR NR 76% 78% NR NR NR 60% 65% 

Event of interest clearly defined 
NR NR NR 70% 79% NR NR NR 87% 78% 

Censoring clearly defined 
NR NR NR 47% 58% 30% 39% NR 49% 55% 

Analysis methods for losses to follow-up reported 
26% NR NR NR NR NR NR NR 48% 56% 

Number of participants analysed 
92% NR NR NR NR 100% 99% NR 95% 93% 

Number of events reported 
45% NR 74% 65% 72% 71% 75% 72% 73% 63% 

Observed and expected number of events 
NR NR 1% NR NR NR NR NR 0% 0% 

Multivariable analysis used 
36% NR NR NR NR NR NR 59% 45% 65% 

Cox regression used 
41% NR NR NR 51% 45% 75% 87% 43% 63% 
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Hazard Ratio presented 
NR 3% 52% NR 52% NR NR 87% 32% 31% 

Hazard Ratio and CI presented 
NR NR 51% NR NR NR NR 87% 32% 31% 

Any effect size presented 
NR NR NR 93% 95% NR NR NR 45% 44% 

Any effect size and CI presented 
NR NR NR 61% 67% 53% 94% NR 45% 44% 

Adjusted effect size presented (from a multivariable analysis) 
12% NR NR NR NR NR NR NR 21% 31% 

Adjusted effect size and CI presented (from a multivariable 

analysis) 
19% NR NR NR NR NR NR NR 21% 31% 

Log-rank p-value presented 
57% 37% 97% NR NR NR NR NR 40% 48% 

Cox model p-value presented 
27% NR NR NR NR NR NR NR 14% 15% 

Median survival presented 
2% 73% 59% NR 46% NR NR NR 19% 26% 

Subgroup analyses presented 
52% NR NR NR NR NR NR 56% 30% 39% 

Survival probability presented 
2% 43% 71% NR NR NR NR NR 61% 72% 

Survival curve presented 
95% NR 94% NR 92% 95% 86% 100% 76% 93% 

Number at risk presented 
8% NR 38% 45% 53% NR NR 66% 22% 17% 

Abbreviations: CI – Confidence Interval; NA – not applicable (items are applicable only to study-level reporting); NR – Not reported 

1. See Table 1 for listings of review numbers and characteristics of reviews  
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Pocock et al [241] have also made recommendations regarding the presentations of survival 

plots in published literature. The authors emphasise the difference in graphical 

interpretation depending on the direction of the survival curve and event rate in terms of 

absolute and relative treatment difference. Pocock et al [241] also argue that an effect size 

and related measure of precision should be presented alongside a survival curve to aid with 

visual interpretation. 

A literature review of 131 comparisons of chemotherapy drugs in metastatic lung cancer 

conducted by Michels et al [160] shows the median survival time to be the most commonly 

reported summary statistic (73% of studies). In their review, only 3% of studies reported a 

HR, 37% reported a p-value and 43% reported one year survival in the text of the published 

report or clearly on a survival plot. 

Mathoulin-Pelissier et al [236] and Arkenau et al [237] conducted systematic reviews of 125 

and 144 oncology RCTs respectively and noted inadequacies in relation to the definitions and 

reporting of important recommended TTE outcomes such as overall survival and progression 

free survival. Arkenau et al [237] note that binary response rates are reported more 

frequently than TTE outcomes (i.e. proportion surviving rather than survival time) and note 

on a lack of standardisation of definition of TTE intervals. For example, from the colorectal 

cancer studies included in their review, time origin for survival time was defined as date of 

disease diagnosis, date of enrolment into trial or date of first visit to oncologist.  Arkenau et 

al [237]  note that a lack of a uniform definition could potentially impact on the ability to 

combine trials with differently defined endpoints in meta-analysis.   

Mathoulin-Pelissier et al [236]  also assessed several areas related to reporting of TTE 

outcomes and statistics. Out of 125 oncology studies; time origin was defined in 98 (78%), 

the event of interest was defined in 99 (79%) and the number of events were reported in 90 

(72%), censoring events were defined in 73 (58%) and the number of patients at risk were 

reported in 66 (53%). Further, median follow-up was reported in 71 (57%) and an estimation 

of survival or effect size was reported in 119 (95%); HR in 65 (52%) of studies and difference 

in median survival in 57 (46%) and survival curves were presented in 115 (92%). Mathoulin-

Pelissier et al [236] conclude that standardised definitions of survival endpoints, events, 

censored events and follow-up should be developed to improve the reporting and 

interpretation of results in cancer clinical trials. 

Hirooka et al [144] performed a similar review to that of Altman et al [31], of phase III RCTs 

published between January 2004 and December 2005 from two oncology journals with the 
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objective of determining whether the indirect estimation methods of Parmar et al [6] could 

be used in practice (see Chapter 2.3.2 for further details).  From 129 included articles, only 

66 (51%) reported a HR and confidence interval that could be directly used in an AD-MA. Only 

2 studies (1%) reported observed and expected numbers of events required for use of the 

direct Peto method [10]. While 125 studies (97%) reported log-rank p-values and 96 studies 

(74%) report the number of events, only 35 (27%) reported both statistics required for 

indirect estimation [6]. Also while 121 (94%) of the studies presented KM plots only 49 (38%) 

provided the numbers at risk required for the estimation method of Williamson et al [13] and 

only 32 (25%) provided minimum and maximum follow-up times required for the Parmar et 

al [6] indirect estimation method.  Hirooka et al [144] note that median survival time is the 

most common effect size reported in 76 studies (59%). 

More recent work conducted by Abraira et al [242] comparing survival analyses published in 

1991 to those published in 2007 in 13 high impact internal medicine, cardiology, nephrology 

and oncology journals has shown a large increase in the number of published analyses but 

little improvement in the quality of reporting in these analyses between 1991 and 2007. 

Abraira et al [242] emphasise the lack of reporting of numbers of events and follow-up time 

in around 30% of studies and highlight the lack of articles reporting any checks or validations 

of important statistical assumptions, such as the PH assumption [58]. Batson et al [243] also 

highlight the lack of details reported in oncology trials published in 2015 regarding validation 

of the statistical models in terms of the PH assumption and the potential impact on the 

interpretation of such unvalidated data for meta-analysis, NMA and health technology 

assessment. Both author groups call for recommendations to improve the reporting of 

survival analyses in journal articles and Abraira et al [242] propose an appendix of minimum 

requirements for the reporting of survival analyses. 

While some reviews of this topic [31, 160] were conducted and published before the 

introduction of the CONSORT statement for improving the quality of reporting of randomised 

controlled trials first published in 1996 [244],  revised in 2001 [245] and updated in 2010 

[246]; more recent work published after 2008 [144, 236, 237, 242, 243] demonstrates levels 

of reporting similar to that reported over 10 years earlier.  

Variability of outcomes and reporting is not restricted to single studies. Floriani et al [235] 

reviewed 15 AD-MAs of comparative cancer studies published after 1985 and found a large 

variation in the summary statistics reported and methods used for outcome evaluation. Four 

of the meta-analyses evaluated the total number of deaths, five compared survival at a single 

fixed time point, three compared survival at multiple time points, two compared median 
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survival time and three compared the hazard rate. In terms of pooled summary statistics 

reported, nine used an OR, three used HR, two used RR, one used risk difference, and two 

used difference in log median survival. Only four of the 15 reviews accounted for censoring 

in analysis. Floriani et al [235] raise their concerns over this heterogeneity of reporting which 

may compromise the reliability and interpretation of results. 

Guyot et al [157, 247] argue that the poor reporting of studies and reviews with TTE 

outcomes may be due to lack of clarity in guidelines of what should be reported. The 

Cochrane Handbook of Systematic reviews [248] advises that effect size should be expressed 

as a HR and the CONSORT statement recommends that “the measure could be the HR or 

difference in median survival time.” [245] 

Neither recommends the reporting of a measure of precision (standard error, variance, 

confidence interval) which is required for meta-analysis even though the CONSORT 

statement recommends the reporting of a measure of precision for continuous and 

dichotomous outcomes.  Furthermore, the HR or difference in median survival gives no 

indication of average prognosis in each trial arm which is generally required for cost-

effectiveness analysis. Guyot et al [157, 247] also recommend the reporting of numbers of 

events and effective numbers at risk (potentially in the form of a life table) to facilitate 

evidence synthesis and economic evaluations of TTE event data. 

3.1.2  TTE outcomes in published epilepsy monotherapy trials  

Previous reviews of the reporting of TTE analyses have mainly considered trials in the field of 

oncology where the focus of the trials is usually ‘survival’ (i.e. time-to-death) [31, 144, 160, 

235-237]. As outlined in Chapter 1.1.4, there are other clinical areas where important 

outcomes require the analyses of TTE data; one of these conditions is epilepsy. 

The majority of people with epilepsy can achieve remission of seizures following treatment 

with a single antiepileptic drug (AED monotherapy) [71, 249] and recruitment populations 

for such a design include newly diagnosed patients, patients previously intolerant to or 

inadequately treated with a single drug, and patients previously successfully treated who 

relapse on discontinuation of their previous regimen [249]. 

A monotherapy trial has one of two designs; a ‘complete’ monotherapy in which all 

participants are AED naïve and receive only the allocated drug throughout the whole trial 

period or a withdrawal / conversion to monotherapy design in which any pre-study AEDs are 

discontinued before randomisation and then all participants receive only the allocated drug 
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throughout the whole trial period. The conversion to monotherapy design is thought to be 

useful as a proof-of-principle investigation (i.e. proof of efficacy) but of limited use in routine 

clinical practice with a complete monotherapy design being more pragmatic [250, 251]. 

Epilepsy monotherapy trials are usually designed to measure efficacy, tolerability and overall 

effectiveness of AEDs [249]. The Commission on AEDs of the International League Against 

Epilepsy (ILAE) [249, 252, 253]  defines ‘efficacy’ as the ability of a medication to produce 

seizure-freedom and ‘tolerability’ is related to the ‘incidence, severity and impact’ of AED-

related adverse events, most importantly those which lead to the discontinuation of a drug. 

It is recommended that ‘retention time,’ defined as time-to-withdrawal of allocated 

treatment after randomisation due to inadequate efficacy and/or poor tolerability [249] over 

a “long-term” treatment period of at least 48 weeks [252, 253], should be used as the primary 

outcome for monotherapy trials as this is a combined ‘effectiveness’ outcome reflecting both 

efficacy and tolerability. This is the outcome of greatest clinical utility and relevance [254] 

and retention is an outcome to which the individual makes a contribution. This is the 

outcome adopted as the primary outcome for systematic reviews of monotherapy studies 

performed by the Cochrane Epilepsy Group [59-67, 69]. It is also recommended that the 

primary ‘effectiveness’ outcome should also be supported by secondary outcomes of efficacy 

and/or tolerability [249, 251, 254]. The secondary efficacy outcomes adopted in Cochrane 

Epilepsy reviews of monotherapy studies are time-to-12-month remission, time-to-6-month 

remission and time-to-first seizure, in addition to a summary of the tolerability of the 

treatments in terms of reported adverse events [59-67, 69]. 

Guidelines proposed by the European Medicines Agency Committee for Proprietary 

Medicinal Products (CPMP) in 2000 [255] and updated in 2010 [251] make generally similar 

recommendations to those of the ILAE guidelines [249, 252, 253], but some differences 

relating to recommended outcomes in monotherapy studies. These guidelines recommend 

that for epilepsy monotherapy studies [251, 255]: 

“…in newly diagnosed patients the primary efficacy variable should be based on the 

proportion of patients remaining seizure-free for at least six months (excluding the 

dose escalation period). However the trial should have a minimum duration of one 

year in order to assess safety and maintenance of efficacy…” 

and that possible secondary efficacy variables may concern; 

“…a treatment retention time, measuring the combination of failed efficacy and 

tolerability, enables to assess the global clinical effectiveness of the drug.” 
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Despite guidelines from the ILAE [249, 252], International Council for Harmonisation of 

Technical Requirements for Pharmaceuticals for Human Use [254] and European Medicines 

Agency [251, 255] that a primary outcome of effectiveness or efficacy should be clearly 

defined in monotherapy trials, little uniformity in the definition of outcomes has been shown. 

For example, while the majority of trials will measure and report an efficacy outcome relating 

to seizures, some trials will record time-to-first seizure following randomisation [256] while 

others will record seizure-freedom at a specific time point (e.g. 12 months after 

randomisation) [257] or change in seizure frequency over a period of time [258].  

There is also a lack of uniformity of statistical analyses performed and reported in 

monotherapy trials. While the majority of monotherapy trials aim to compare one AED 

compared to another in terms of efficacy and tolerability, statistical analyses performed in 

trials range from reporting counts of seizure and adverse event frequency only [259], to 

multivariable Cox regression modelling to adjust for relevant prognostic factors [260], to 

complex and innovative trial designs to demonstrate non-inferiority of a newer AED 

compared with a “standard” treatment [261, 262]. 

An ILAE investigation [252]  of epilepsy monotherapy RCTs and systematic reviews conducted 

up to 2006 and updated in 2013 [253] concluded a paucity in high quality evidence due to 

“alarming lack of well-designed, properly conducted epilepsy RCTs,” and therefore 

insufficient information to “answer important clinical questions” and better inform 

treatment policy. However, this investigation places a high level of importance on the 

blinding of studies which some investigators believe may not be possible or ethical in epilepsy 

monotherapy and not representative of pragmatic clinical practice [256, 263-265] despite 

previous ILAE guidelines recommending that comparative monotherapy studies “should aim 

to replicate usual clinical practice as closely as possible [249].” The investigation is also critical 

of studies conducted for “regulatory and marketing-driven” purpose with protocol driven 

endpoints and populations that may “bias the results in favour of the sponsors’ product” and 

would not  “reflect routine clinical care, meaning that results may not be fully generalizable 

to routine practice [252].” 

Less emphasis is given in the investigation to the accuracy and quality of statistical analysis 

and reporting in studies; these aspects are essential for the synthesis of trial results to inform 

clinical practice and future research. The investigation concludes that demonstrating 

differences statistically between drugs in terms of efficacy and tolerability “has been very 

hard to show, except in a few studies [252],” and furthermore it has not been possible to 

demonstrate many convincing differences between AEDs in systematic reviews and meta-
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analysis conducted by the Cochrane Epilepsy Group [59-67]. However, it is difficult to know 

whether this apparent lack of convincing differences between AEDs is due to a true absence 

of differences between treatments or whether individual results may been biased due to 

inappropriate study designs and analysis of “methodologically flawed” studies. 

The choice of study design in epilepsy has also been widely debated in the literature. An 

argument against the superiority design [252] if a study fails to show significant differences 

in seizure control between treatments is that seizure remission rates could be related to the 

natural history of the disease rather than efficacy of administered drugs, particularly in newly 

diagnosed individuals [71, 266]. Therefore in order to obtain a licence for monotherapy, it is 

now necessary to demonstrate non-inferiority of an experimental drug to an established 

comparator at its optimum dose [251, 267]. However, a finding of equivalence or non-

inferiority does not exclude that in the particular population and under the specific 

conditions in which the trial was undertaken, both treatments could have been similarly 

ineffective [250], particularly if trials of a statistically complex non-inferiority or equivalence 

design have not been adequately powered or results and conclusions interpreted 

appropriately under the assumptions of equivalence or non-inferiority [252, 253]. 

The variation in the designs, definitions and type of outcome reported as well as variable 

approach to statistical analysis makes undertaking a meta-analysis of epilepsy monotherapy 

trials difficult without performing an IPD review. While such an approach is considered ‘gold-

standard’ for TTE outcomes [23, 24], obtaining and re-analysing IPD is time consuming and 

resource intensive. Often, potentially relevant information has to be excluded from meta-

analysis if IPD is not available and summary information for an outcome has not been 

reported adequately or not reported at all [59-67, 69].  Some updates of Cochrane reviews 

have taken many years to complete or updates are still ongoing [67], due to the time required 

to obtain, prepare and analyse IPD (see Chapter 5 for further discussion).  

The choice of initial AED for an individual should be based on the highest quality evidence 

from randomised controlled trials and systematic reviews regarding the potential benefits 

and harms of all available treatments. If potentially important evidence is excluded from the 

evidence base of a systematic review due to lack of standardisation of outcome reporting 

across trials or insufficient, inadequate quality of outcome and statistical reporting, 

implications for clinical practice and medical decision making are inevitable.  

At the time of writing, we are not aware of a review which systematically considers the 

reporting of TTE data in all trials within a context outside of oncology or within a context of 

TTE data without a ‘survival’ focus.  
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Therefore, the aim of this chapter was to extend previous work described in Chapter 3.1.1 by 

systematically reviewing all epilepsy monotherapy trials, with a particular focus on the 

definitions and reporting of primary outcomes and the use of TTE analyses when making 

treatment comparisons, in order to better inform and improve reporting standards for future 

RCTs, systematic reviews and evidence synthesises and therefore clinical practice. 

3.2  Methods 

3.2.1  Systematic Search  

In order to identify all epilepsy monotherapy trials, a systematic search of the Cochrane 

Epilepsy Group’s specialised register was carried out by the group’s information specialist 

(GC, see Appendix 2 for the search strategy). 

3.2.2  Eligibility Criteria 

3.2.2.1  Inclusion criteria 

 Randomised, controlled trials of adults and/or children of all parallel designs (e.g. 

superiority, non-inferiority, equivalence etc.) reported in a full-text journal article. 

 Study participants with epileptic seizures of any kind except those requiring emergency 

treatment in hospital settings (see Exclusion criteria). 

 Monotherapy design studies with drug naive participants and withdrawal/conversion to 

monotherapy studies (e.g. all participants current AED treatment tapered off during 

titration phase of study) are included if all participants are converted to monotherapy 

without an add-on treatment period of any length.  

 Two-or-more active treatments are compared, dose-controlled or placebo-controlled 

designs. ILAE guidelines debate ethical issues in the use of placebo controls [249, 252]. 

However, such designs provide the majority of the evidence base for some epileptic 

syndromes of childhood (such as benign epilepsy of childhood with centro-temporal 

spikes (BECTS))[252], therefore studies of a placebo-controlled design were included.  

3.2.1.2  Exclusion criteria 

 Non-randomised or observational studies or report which is not a study such as letters, 

comments on journal articles, clinical summaries, book chapters etc. 

 Cross-over studies; such a design cannot adequately measure long-term TTE outcomes 

of interest and do not replicate routine clinical practice in monotherapy treatment [249]. 
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 Full-text not originally published in English to allow for an assessment of outcome and 

statistical reporting by English speaking reviewers. 

 Studies with an add-on or poly-therapy phase of any length. 

 Withdrawal of monotherapy comparisons (withdrawal of treatment to no treatment) as 

such a design does not aim to evaluate AED efficacy. 

 Pharmacokinetic studies (e.g. comparison of two preparations of the same drug) as such 

studies consider the chemical effect of the drug rather than medical effect. 

 Studies in which the randomised comparison made is not between AED treatments (e.g. 

randomisation of methods of treatment delivery (fast vs. slow titration)). 

 Studies of emergency IV treatment with AEDs (e.g. status epilepticus, infantile spasms) 

as such studies are too short-term to measure TTE outcomes of interest.  

 Other types of non-epileptic seizures (e.g. post traumatic, alcohol withdrawal, febrile). 

 Studies with healthy controls (no epilepsy) or participants with a single seizure (epilepsy 

is defined as the occurrence of two-or-more unprovoked seizures)[268]. 

3.2.3  Screening of Studies  

All studies identified in the systematic search of the Cochrane Epilepsy Group Specialised 

Register were screened for eligibility by SJN. Title and abstract screening was first performed, 

followed by full-text screening and reference lists of included studies were also screened for 

further eligible studies. If a full-text manuscript of an abstract could not be found, the 

abstract was excluded.  Any uncertainty over eligibility of studies was discussed with AGM 

and CTS and a decision was made whether to include or exclude the study. Secondary 

analyses or multiple publications of the same subset of participants were included if different 

outcomes were measured and treated as separate ‘studies’ (i.e. data extraction for each 

study was performed using only information from a single publication; any online 

supplementary material linked to the single publication was considered but no external 

information from related publications was used). 

3.2.4  Data Extraction 

Data extraction was performed in four stages using a piloted data extraction form (see 

Appendix 3) converted into a Microsoft Access database which was used to create a database 

of all extracted data. A screenshot of the database is provided in Appendix 4. 

The content of the data extraction form was based on the recommendations for the 

reporting of outcomes in epilepsy monotherapy studies from the ILAE [249, 252], guidelines 
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for the reporting of survival outcomes and analyses in Altman et al [31], recommendations 

for the presentation of survival plots in published literature from Pocock et al [241] and the 

summary statistics required to use the indirect estimation methods for TTE analyses as 

described by Parmar et al [6] and Williamson et al [13]. Data extraction was performed on all 

studies by SJN and LS independently extracted from a subset of 10% of studies.  Agreement 

between extractions was good and any discrepancies were resolved by discussion.  

The first stage of data extraction was performed on all eligible studies identified in the search. 

This stage of data extraction included a question which acted as an indicator variable; “Is at 

least one time-to-event outcome reported?” with possible responses Yes, No or Unclear. If it 

was clear that no TTE outcomes were reported for the study, data extraction was considered 

complete. If a study did report at least one TTE outcome or if it was unclear whether a TTE 

outcome had been reported from the definition of all reported outcomes, further data 

extraction was performed including study design and characteristics, definition of outcomes, 

statistical analyses and presentation of results for each reported TTE outcome of the study.  

It was anticipated that the following TTE outcomes would be reported in the studies: time-

to-withdrawal of allocated treatment, time-to-first seizure, time-to-6, 12 or 24 month 

remission of seizures and time-to-exiting the study. Extraction was performed according to 

the definition of the outcome as described in the study publication and TTE outcomes were 

classified as meeting the definition of one of the pre-defined outcomes above or other. 

3.2.5  Data analysis and presentation of results 

Numerical results are presented as medians and ranges or numbers and percentages as 

appropriate. No formal statistical analyses were conducted. 

3.3  Results  

3.3.1  Results of the search 

From an electronic search outlined in Chapter 3.2.1 and conducted on 14th September 2012, 

1007 references were identified and downloaded into Endnote Software. Applying inclusion 

and exclusion criteria outlined in Chapter 3.2.2, 822 references were excluded from title and 

abstract screening and 185 full-text articles were screened for inclusion in the review. Full-

text screening included fifteen conference abstracts which were linked to full-text articles 

that were not found in the search. Seventy-seven full-text articles were excluded resulting in 
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108 full-text epilepsy monotherapy studies for eligible for inclusion in the review. See Figure 

2 for a study flow diagram of the screening process, including reasons for exclusion at each 

screening stage and see Appendix 5 for a reference list of the 108 included studies. 

The 108 eligible studies were published between 1978 and 2012. The majority of studies (91 

out of 108 studies, 84%) were published in speciality Epilepsy or Neurology journals such as 

Epilepsia (21 out of 108 studies, 19% of total studies), Neurology (13 studies, 12%), Epilepsy 

Research (12 studies, 11%) and Epilepsy & Behaviour (11 studies, 10%). The remaining 17 

studies were published in general (and some high impact) medical journals such as the 

Lancet, the British Medical Journal and the New England Journal of Medicine. See Table 31 

and Table 32 in Appendix 6 for further details of publication dates and journals.  

3.3.2  Outcomes reported in Epilepsy Monotherapy studies  

Considering all outcomes of any data type (TTE or otherwise), the 108 studies reported a 

median of 4 outcomes per study (range 1 to 9 outcomes per study). Fifty-four studies out of 

the total 108 eligible studies (50%) were deemed as not reporting a TTE outcome and data 

extraction was therefore complete. Outcomes (as reported in study publications) are listed 

for the 54 studies without a TTE outcome in Table 31 (Appendix 6). No further data extraction 

was performed for these 54 studies. 

Forty-six out of 108 studies (43%) clearly reported at least one TTE outcome and for eight 

studies (7%), it was unclear whether a TTE outcome had been reported.  Uncertainty arose 

for two reasons:  

1. In six studies the definition of the outcome implies a categorical nature (i.e. the outcome 

is defined as a percentage, rate etc.) or the statistical analysis section of the paper states 

or implies that the outcome is to be analysed with statistical methods for categorical data 

(chi-squared test, Fisher’s exact test, logistic regression etc.). No statistical methods 

relating to TTE analyses are described for this outcome, however in the results section a 

KM curve (or unnamed “survival” plot) is presented for the outcome. As the definition of 

the outcome is unclear and no time-to-event statistical analyses have been specified, it 

is unclear whether the censored nature of the data has been properly taken into account 

and whether the outcome has been analysed appropriately as a TTE outcome.  

2. Two studies report the “Mean time-to-withdrawal.” The use of ‘mean’ in relation to TTE 

data is considered inappropriate due to the likely skewed nature of the data (see Chapter 

1.1.4). Therefore it is unclear whether censoring has been taken into account properly in 

the analyses of these outcomes or if they have been analysed as continuous outcomes.  



 

51 
 

Figure 2: Study Flow Diagram of identification of eligible epilepsy monotherapy studies 
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Outcomes (as reported in study publications) for the 46 studies with at least one TTE outcome 

and the 8 studies in which a TTE outcome may have been reported (unclear) are listed in 

Table 32 (Appendix 6). Some of the outcomes reported in the 54 studies were vague in 

definition such as ‘overall assessment of efficacy and tolerability,’ ‘seizure rating score,’ 

seizure control’ and ‘adverse events reports.’ Further data extraction was conducted on 

these 54 studies; for this purpose, the ‘unclear’ outcomes in eight studies (see Table 32 

(Appendix 6) for details) were treated as TTE outcomes. 

3.3.3  Characteristics of Epilepsy Monotherapy studies reporting at least 

one time-to-event outcome 

See Table 1 and Table 2 for a summary of the reporting of outcomes and statistical analyses 

in the 54 epilepsy monotherapy studies.  

3.3.3.1  Study and Participant Characteristics 

See Table 3 for a summary of the study and participant characteristics. Out of the 54 studies, 

42 had two treatment arms (78% of total), five had three arms (9%), six had four arms (11%) 

and one had five arms (2%).  

Forty-one studies (76%) followed a monotherapy design and the other 13 studies (24%) 

followed a withdrawal or conversion-to-monotherapy design (see Chapter 3.1.2 for 

definitions of designs). Twenty-eight studies (52%) recruited AED-naive individuals with 

newly diagnosed seizures only, seventeen studies (31%) recruited both AED-naïve newly 

diagnosed participants and currently untreated participants who had failed a previous AED 

or with relapsed seizures after remission and nine studies (17%) recruited individuals with 

refractory / drug resistant seizures only. 

The majority of studies (41 studies, 76%) had an active comparator design comparing two-

or-more antiepileptic drugs (AEDs), six studies (11%) had a dose-controlled design (i.e. 

comparing doses of the same AED), four studies (7%) had both a dose-controlled and active 

comparator design and three studies (5%) were placebo-controlled. 

The majority of the studies (42 studies, 78%) were of a superiority design.  Seven studies 

(13%) were of a non-inferiority design and three studies (5%) were of an equivalence design; 

however, three of these studies did not describe a sample size calculation or statistics relating 

to an appropriate non-inferiority boundary or equivalence range. One study was of a ‘double 

triangular sequential’ design (2%) and the sample size calculation for this design was 
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described and one study (2%) reported that “the study was not powered to detect statistical 

differences in efficacy.” 

Table 3: Study designs and participant characteristics of 54 epilepsy monotherapy studies 

Design or characteristic 

Number of studies 

 (% of 54 studies) 

Therapeutic Design 

Monotherapy 41 (76%) 

Conversion / withdrawal to monotherapy 13 (24%) 

Participant population 

Antiepileptic drug (AED) naïve participants only 28 (52%) 

AED naïve and currently untreated participants 17 (31%) 

Refractory / drug resistant seizures 9 (17%) 

Type of control 

Active comparator 41 (76%) 

Dose-controlled 6 (11%) 

Active comparator and dose-controlled  4 (7%) 

Placebo-controlled 3 (5%) 

Statistical Design 

Superiority 42 (78%) 

Non-inferiority 7 (13%) 

Equivalence 3 (5%) 

Double triangular sequential 1 (2%) 

Descriptive only 1 (2%) 

Blinding 

Double-blind 36 (67%) 

Single-blind 2 (4%) 

Open label 13 (24%) 

Unclear or not stated 3 (5%) 

Funding 

Pharmaceutical funded 29 (54%) 

Public funding 9 (17%) 

Pharmaceutical and Public funded 5 (9%) 

No funding source stated 11 (20%) 

Role of the funding source 

Funding source involved 6 (11%) 

Funding source not involved 4 (7%) 

Funding source involvement not stated 44 (82%) 

 

Thirty-six studies (67%) described a double-blind design, however only 15 of these studies 

provided any details of who was blinded and how the blinding was achieved. Two studies 

(4%) described a single-blind design of outcome assessors and 13 studies (24%) had an open-

label design. Out of the remaining three studies, one made no mention of blinding and two 
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described ‘partially’ blinded designs due to variation in titration periods of the study drugs; 

it was unclear exactly how this blinding was achieved.   

Twenty-nine studies (54%) were described as funded, sponsored or supported by a 

pharmaceutical industry; specifically, the manufacturing industry of the investigational AED 

in the trial. Nine studies (17%) were completely publically funded; funding sources were 

Department for International Development (UK), the Wellcome Trust (UK), International 

League against Epilepsy (worldwide), National Institute of Health (US) and Veterans 

Administration Medical Research Service Cooperative studies program (US). Five studies (9%) 

were part-publically funded and part-industry funded (9%); as above industry funding was 

provided from the manufacturer of the investigational AED in the trial and public funding 

sources were the Medical Research Council (UK), the Health Promotion Trust (UK), the 

Wellcome Trust (UK), the Health Technology Assessment programme (UK) and the Royal 

Melbourne Hospital Neuroscience Foundation (Australia).    

For the remaining eleven studies (20%), no source of funding was disclosed. For eight of these 

studies, at least one author was affiliated to the manufacturing industry of the investigational 

AED suggesting pharmaceutical involvement in the trial.  Regarding the design, data 

collection and analysis of the trial, six studies (11%), all pharmaceutical funded, reported that 

the funding source was directly involved in at least one area and four studies (7%), all 

publically funded, reported that the funding source had no involvement. The remaining 44 

studies (82%) did not describe any involvement of the funding source. 

3.3.3.2  Disposition of participants in the study  

Twenty-five out of 54 studies (46%) presented a flow diagram of disposition of participants 

throughout the study. All except one study (98%) stated how many participants were 

randomised to each treatment arm; the single study reported the number of participants 

included in analysis but not the number originally randomised to each treatment arm.  

Forty-two studies (78%) stated how many randomised participants completed the study and 

35 studies (65%) specified the number of participants completing by treatment arm. The 

remaining 12 studies (22%) did not state how many participants completed the study, 

however six of these studies had long-term follow-up and no fixed duration, therefore it 

would be difficult to quantify how many participants actually “completed” the study. 
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Frequently, different populations (e.g. intention to treat, per-protocol, safety) were included 

in analyses but it was not always clear how such populations were defined and how many 

participants were included in each population. Thirty-four studies (63%) reported that 

participants were excluded from one-or-more analyses in the study and 25 studies (46%) 

reported exclusions made by treatment arm. The remaining 20 studies (37%) did not report 

any exclusion from analyses.  

There were inconsistencies in participant numbers throughout different sections of the study 

publication for three studies (5%). In nine studies (17%), the numbers or statistics presented 

in at least one of tables didn’t correspond with results specified in the text. 

3.3.3.3  Time frame of the study and extent of follow-up 

Thirteen out of 54 studies (24%) reported a diagram of study periods or phases and their 

respective lengths.  Twenty-eight studies (52%) reported the length of the period in which 

participants were recruited into the study and 20 studies (37%) reported the length of a pre-

randomisation baseline or screening phase. Post – randomisation, 41 studies (76%) reported 

a titration or dose-escalation period and 34 studies (63%) reported a maintenance period 

and their lengths in the design. Sixteen studies (30%) reported an open label or double-blind 

extension phase of the study; however only three of these 16 reported the length of 

extension phase. Forty-five out of 54 studies (83%) reported the frequency and/or times of 

scheduled follow-up visits during the study. 

Forty-seven out of 54 studies (87%) reported the duration of the study; 37 of these studies 

had a fixed duration (ranging from 28 days to 4.5 years), ten studies reported a maximum 

study duration (ranging from one to seven years). Four studies (7%) reported that the 

duration was ‘variable’ or ‘approximate’ and three studies (6%) did not report any details 

regarding study duration. 

Twelve studies (22%) reported the minimum length follow-up of the participants in the study, 

38 studies (70%) reported the maximum follow-up and 10 of these studies (18.5%) reported 

both the minimum and maximum follow-up. Seven studies (13%) reported mean follow-up 

and seven studies (13%) reported median follow-up time. Thirteen studies (25%) reported 

no extent of follow-up at all. Frequently, it was not clear if extent of follow-up was 

summarised for all participants or for those completing the study only and summary values 

of follow-up were rarely reported by treatment arm. 
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There were inconsistencies in the described time frame or extent of follow-up throughout 

different sections of the study publication for 8 studies (15%), mainly where follow-up time 

indicated on a survival plot was different to the extent of follow-up described in the text of 

the publication (see Chapter 3.3.4.4 for further details). 

3.3.3.4   Time-to-event and primary outcomes 

In total, 98 time-to-event outcomes were reported in the 54 studies; 23 studies (43%) 

reported one time-to-event outcome, 22 studies (41%) reported two outcomes, five studies 

(9%) reported three and four studies (7%) reported four.  

According to pre-specified definitions of outcomes of interest for this review (see Chapter 

3.2.4), the TTE outcomes reported in the studies were time-to-withdrawal of allocated 

treatment (reported by 35 studies, 65%; one study reports this outcome twice with slightly 

different definitions), time-to-first seizure (reported by 27 studies, 50%), time-to-exiting the 

study (reported by 10 studies, 19%), time-to-withdrawal of allocated treatment due to 

adverse events (reported by 8 studies, 15%), time-to-6-month remission (reported by five 

studies, 9%), time-to-12-month remission (reported by seven studies, 13%) and 24-month 

remission (reported by 5 studies, 9%). Further definitions of these outcomes are discussed in 

Chapter 3.3.4 and see Table 32 (Appendix 6) for other non TTE outcomes reported.  

Thirty-five studies (65%) defined a single primary outcome; 16 of which were TTE outcomes 

(time-to-exit in seven studies, time-to-withdrawal of allocated treatment in five studies and 

time-to-first seizure in four studies, see Table 32 (Appendix 6) for other primary outcomes). 

Four studies defined two primary outcomes, all of which were TTE outcomes (time-to-

withdrawal of allocated treatment and time-to-12-month remission for all studies) and three 

studies defined three primary outcomes, two of which in each study were TTE outcomes 

(time-to-withdrawal of allocated treatment and time-to-withdrawal of allocated treatment 

due to adverse events).  

Out of 35 studies which define a single primary outcome, 27 studies (77%) described a sample 

size calculation relating to the primary outcome and for the seven studies defining more than 

one primary outcome the sample size related to all primary outcomes. Three studies 

reported a sample size calculation relating to one-or-more outcomes other than the defined 

primary outcome and three studies without a defined primary outcome report a sample size 

calculation relating to ‘all outcomes.’ 
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The primary recommended outcome for epilepsy monotherapy studies from ILAE guidelines 

first published in 1998 [249] originates from the outcome of ‘retention time’ defined in 

Mattson et al 1985 [269] and Mattson et al 1992 [270]. Therefore, the reference lists of all 

studies published after 1985 (53 out of 54 studies, one study was published in 1981 [271]) 

were checked for reference to either of the Mattson et al studies [269, 270] in relation to the 

outcome of time-to-withdrawal of allocated treatment. Reference lists of the 37 studies 

published after 1998 were also checked for reference to the ILAE guidelines [249](or updated 

versions from 2006 [252]) and reference lists of all studies were checked for reference to any 

other citation relating to the definition of choice of outcomes in the study.  

Twenty-three studies (43%) cited one or both of the Mattson et al studies [269, 270] and ten 

studies cited the ILAE guidelines from 1998 [249] or 2006 [252], however only five of these 

33 citations seemed to be in relation to the definition of the outcome ‘time-to-withdrawal of 

allocated treatment.’ Citations were related to the results of the Mattson et al studies [269, 

270] or other aspects of study design or conduct. Three studies cited guidance published by 

the European Medicines Agency Committee for Proprietary Medicinal Products (CPMP) in 

2000 [255]  or an updated version published in 2010 [251]. Recommendation of primary 

outcomes was slightly different in this guidance to ILAE guidance [249, 252, 253]  (see 

Chapter 3.1.2 for further details) and the three studies citing these guidelines have employed 

the recommended primary efficacy outcome of proportion of patients remaining seizure-free 

for at least six months.  

Seventeen studies (31%) reported one or more outcomes in the results section of the study 

publication which are not defined in the methods section. Furthermore, three studies (5%) 

defined outcomes in the methods section which were not reported in the results section. Ten 

studies were not consistent in the definition of outcomes throughout the publication; e.g. 

use of terms ‘time-to-withdrawal of allocated treatment’ and ‘time-to-exit’ interchangeably.  

3.3.4  TTE outcomes reported in Epilepsy Monotherapy studies  

As stated in Chapter 3.3.3.4, 98 TTE outcomes were reported in 54 studies. Results are now 

expressed according at the level of outcomes rather than at the level of studies; all 

proportions are out of 98 outcomes (also see Table 2 for a summary of the reporting of 

outcomes and statistical analysis at the outcome level and at the study-level).  
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3.3.4.1.  Number of participants and time origin 

For 93 out of 98 outcomes (95%), the numbers of participants contributing to the outcome 

was reported. For 72 outcomes (73%) the number of participants experiencing events for the 

outcome was reported and for 36 outcomes (38%) the number of participants censored was 

reported. For 53 outcomes (54%) the number of participants lost to follow-up were reported 

and for 25 outcomes (26%) the number of participants censored and lost to follow-up were 

reported separately. In 22 out of 98 outcomes (22%) the numbers of events, censored 

participants and those lost to follow-up were reported by treatment arm. 

For 59 outcomes (60%) the time origin of the outcome was reported; for 43 of these 59 

outcomes (73%) this was randomisation, for eleven outcomes (19%) this was the end of the 

titration period / start of the maintenance period, for three outcomes (5%) this was the first 

dose of study medication and for two outcomes (3%) this was enrolment in the study.  

3.3.4.2.  Definition of events and censoring 

For 85 out of 98 outcomes (87%), the event of the outcome was clearly defined and for 48 

outcomes (49%), the definition of a censored observation was clearly defined. All outcomes 

which clearly defined censoring also clearly defined an event. For 41 outcomes (42%), loss to 

follow-up was a censored observation, for 7 outcomes (9%) it was classed as an event and in 

23 studies (23%) it was unclear whether those lost to follow-up were treated as events or 

censored observations. For 27 outcomes (28%) censoring was not mentioned at all. Reporting 

of the definitions of events and censoring by outcome type is summarised in Table 4.   

Under the definition of the outcome ‘Time-to-withdrawal of allocated treatment’ as defined 

by the ILAE [249], if a participant withdraws from the study due to lack of efficacy (e.g. 

recurrence of seizures), poor tolerability (e.g. occurrence of adverse events) or a combination 

of the two then the withdrawal is classed as an event. If a participant withdraws for other 

reasons, including reasons not related to the study drug and losses to follow-up, or the 

participant completes the study without withdrawal then these participants are classed as a 

censored observation. Although for 29 out of 36 outcomes (78%), the event was well defined, 

only eight of the outcomes defined treatment withdrawal as in the ILAE definition [249]. The 

eight outcomes (22%) which did not clearly define an event referred to withdrawals from the 

study but did not specify which reasons for withdrawal were classified as events.  An event 

for the outcome ’Time-to-withdrawal due to adverse events’ was generally defined as “the 

occurrence of an adverse event leading to treatment withdrawal or premature 

discontinuation from the study” or similar. 
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An event for the outcome of ‘Time-to-first seizure’ was generally defined as the “occurrence 

of first seizure during the study” or similar. Twelve of these outcomes also specified the 

seizure type in the definition of the event (i.e. ‘occurrence of first generalised tonic-clonic 

seizure during the study’). An event for the outcomes of ‘Time-to-6, 12 or 24 month 

remission’ was generally defined as the “achievement of 6, 12 or 24 months of remission 

from seizures during the study” or similar. An event for ‘Time-to-exit from the study’ was 

generally defined according to listed protocol-defined exit criteria (e.g. occurrence of status 

epilepticus, increase in seizure rate, emergence of a more severe seizure type or intolerable 

adverse experience). Outcomes which enforce exit criteria based on seizure recurrence are 

thought to be of little clinical relevance and do not reflect routine clinical practice [252]. 

Three outcomes didn’t fall under any of our pre-specified definitions (see Chapter 3.2.4) and 

for two of these outcomes it was unclear if they had been analysed as TTE outcomes (see 

Chapter 3.3.2). One outcome seemed to be defined as ‘time-to-first, second, fifth and tenth 

seizure’ but analysed as ‘time-to-seizures;’ the definition of this outcome was not clear.  

Table 4: Definition of events and censoring in 98 TTE outcomes reported in 54 epilepsy 

monotherapy studies 

Outcome 

Event 

defined 

Censoring 

defined 

Unclear how 

loss to follow-

up was defined 

Censoring not 

mentioned 

Time-to-withdrawal of 

allocated treatment (n=36) 29 (81%) 15 (42%) 12 (33%) 9 (25%) 

Time-to-first seizure (n=27) 25 (93%) 13 (49%)  6 (22%) 8 (30%) 

Time-to-6, 12 or 24 month 

remission (n=14)  13 (93%) 11 (79%) 1 (7%) 2 (14%) 

Time-to-exit from the study 

(n=10) 9 (10%) 5 (50%) 2 (20%) 3 (30%) 

Time-to-withdrawal due to 

adverse events (n=8) 7 (88%) 4 (50%) 2 (25%) 2 (25%) 

Other (n=3) 2 (66%) 0 (0%) 0 (0%) 3(100%) 

All outcomes (n=98) 85 (87%) 48 (49%) 23 (23%) 27 (28%) 

 

Overall, in only 28 outcomes (29%) was enough information provided regarding events and 

censoring to allow statistical analysis of the outcome to be replicated (i.e. numbers of events 

and censored observations provided and clear definitions for both). For three outcomes, the 

definition of the outcomes presented on the plots was not the same as the definition of the 

outcome in the text (two outcomes of time-to-first seizure and one outcome of time-to-

exiting the study).   
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3.3.4.3.  Statistical analysis and time-to-event statistics 

All 54 studies reporting at least one TTE outcome included details of statistical analysis within 

the methods section of the study publication, however the methods of TTE analysis used and 

the level of detail reported to describe statistical analysis conducted for each outcome in 

each study was variable. Furthermore, eight of the studies reporting more than one TTE 

outcome analysed the outcomes using different statistical methods. 

For 48 out of 98 outcomes (49%) due to lack of clear detail given in statistical analysis 

sections, it would not be possible to replicate statistical analysis. For 11 out of 98 outcomes 

(11%) no statistical analyses of any kind were reported at all for the outcome and for five 

outcomes (5%) no statistical analyses of a TTE nature were reported. It was reported that 

these five outcomes were to be analysed by methods for categorical data (see Chapter 3.3.2 

for further details). For 17 outcomes (17%) it was stated only that “methods of survival 

analysis” (or a similar description) were used and no further details were given.  Also, for 16 

outcomes, analyses were presented in the results sections which were not specified in the 

methods sections.   

For the 98 TTE outcomes, the following TTE statistics were reported (also see Table 2):  

 Survival probability is reported for 60 outcomes (61%) 

 Median survival time is reported for 19 outcomes (19%) 

 Hazard ratio and 95% confidence interval is reported for 31 outcomes (32%) 

 Odds or Risk Ratios and 95% confidence intervals are reported for 14 outcomes (14%) 

 Log-rank p-value is reported for 39 outcomes (40%) 

 Number of events and a log-rank p-value is reported for 27 outcomes (28%) 

 Other p-values (e.g. from Cox Proportional Hazards Model, Generalised Wilcoxon, chi-

squared, Fisher’s Exact) were reported for 28 outcomes (29%) 

 The Observed and Expected number of events is not reported for any of the outcomes 

 For ten outcomes (10%), none of the above statistics were reported  

 

Multivariable methods were used in 44 out of 98 outcomes (45%). Forty-two out of the 44 

outcomes (95%) used Cox multivariable regression models and one used logistic regression.  

Commonly specified variables used in multivariable models were gender (10 outcomes), 

baseline age (18 outcomes), baseline seizure type (25 outcomes), baseline seizure frequency 

(16 outcomes) country, region or centre (14 outcomes) and duration of epilepsy (5 
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outcomes). For 6 outcomes the only information given for adjusted variables is that they 

were “baseline characteristics” or “important prognostic variables.” Reasons for adjusting for 

specific variables were provided for 31 out of the 44 outcomes (70%) but for 13 outcomes 

(30%) only an adjusted effect size was presented (i.e. an unadjusted effect size for treatment 

effect only was not presented). Out of 42 outcomes analysed via Cox PH models, it was stated 

for only 8 of the outcomes (19%) that the assumption of PH had been checked. In fact, for 

three outcomes, the PH assumption was found to be violated yet HR and 95% confidence 

intervals from the model were still presented.  

Considering the 35 outcomes of ‘time-to-withdrawal of allocated treatment,’ for 26 

outcomes (74%), separate withdrawal rates due to lack of efficacy and poor tolerability are 

presented and for 11 outcomes, the composite nature of this outcome is taken account of in 

an analysis; for eight outcomes, separate analyses or subgroup analysis are presented for 

withdrawal for any reason, due to lack of efficacy and due to poor tolerability and for three 

outcomes a formal competing risks analysis is presented. It should be noted that subgroup 

analyses based on post-randomisation information are not generally recommended, and a 

competing risks analysis is a more appropriate way to analyse this composite outcome.  

For 29 out of 98 outcomes (30%) at least one subgroup analysis is reported; in total, 35 

subgroups analyses are reported for 29 outcomes. Subgroup analyses performed were by 

seizure type or epilepsy syndrome (18 outcomes), reason for treatment withdrawal (six 

outcomes, also see above paragraph), drug plasma concentration (5 outcomes), age (4 

outcomes), previous AED use at baseline (one outcome) and seizure frequency at baseline 

(one outcome). A significant difference in treatment effect between subgroups was 

demonstrated in 26 out of 35 subgroup analyses (74%).  

For 34 out of 98 outcomes (35%) a sensitivity analysis is reported; in total, 38 sensitivity 

analyses are reported for 34 outcomes. Sensitivity analyses performed were per protocol 

population only (compared to intention-to-treat population, 13 outcomes), exclusion or re-

classification of ‘uncertain’ seizure types (nine outcomes), exclusion of events in a specific 

period of the study (e.g. seizures during the titration period, seven outcomes), worst-case 

scenario analysis (i.e. all missing participants in one group are assumed to be non-responders 

and all missing participants in the other group are assumed to be responders, four 

outcomes), alternative definition of treatment failure (four outcomes), alternative variables 

in a multivariable model (one outcome). A significant difference in treatment effect was 

demonstrated in two out of 38 sensitivity analyses (5%). 
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3.3.4.4.  Survival plots 

For 74 out of 98 outcomes (75%) a survival plot was presented. Forty-nine out of 74 plots 

(70%) were described as ‘Kaplan-Meier’ plots, 6 were described as ‘actuarial’ plots’ (8%), 5 

were described as ‘cumulative-incidence’ plots (7%) and 14 (15%) were described as ‘survival’ 

plots or no definition was provided.  For 68 of the plots (92%), a step function was used.  

It has been recommended that plots with an upwards direction (i.e. a cumulative incidence 

plot) are more reliably informative, particularly in the situation of low event rates [241], 

however methods for the indirect estimation of HR from survival plots require a downwards 

direction [6, 13]. For 62 out of 74 plots (84%) the plot had a downwards direction and the 

remaining 12 (16%) had an upwards direction.  

For 32 plots (43%) a HR or a p-value was displayed on the graph and in 11 (15%) a measure 

of precision (e.g. confidence interval of the HR) was displayed on the graph. For twelve plots 

(16%) effective numbers at risk were reported on or underneath the plots and for ten plots 

(10%), effective numbers at risk were reported or could be deduced from the text of the 

publication. For nine plots (12%) censored observations were clearly marked on the plot; for 

five of these plots, the only marked censoring was at the end of follow-up time.  

For 64 plots (86%) different line types were clearly used for multiple curves. For eight plots, 

coloured lines were used to distinguish between curves however it would be difficult to 

distinguish between these line colours on a grayscale copy of the publication. For two plots, 

it was not possible to distinguish between the lines.  For 66 plots (89%) a clear legend was 

provided for the graph and for seven plots no legend was provided but labels were written 

next to the lines or underneath the graph. For one plot, no legend or labels were provided. 

It is not necessarily recommended to display the entire vertical axis of a survival plot and to 

do so may “inhibit the ability to discriminate between treatments.” It is also not necessarily 

recommended to present the whole extent of follow-up for studies with long durations and 

that the horizontal axis should be “halted once the proportion of patients free of an event, 

but still in follow-up, becomes unduly small [241]” However, enlarging any differences 

between the lines on the graph by presenting only part of the axis could lead to erroneous 

conclusions regarding importance and significance of the lines, particularly at later follow-up 

times with fewer participants, if not also presented with an effective number at risk and / or 

a measure of statistical uncertainty on the plot [31].  
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For 17 plots (23%) the vertical axis did not extend from 0 to 1 (survival probability), the 

smallest proportion of the vertical axis displayed was 0 to 0.15. For nine plots from study of 

duration of 12 months or less, the entire study duration is not displayed on the plot and for 

two plots from studies of two to five years duration, only a subset of the follow-up time is 

displayed on the plot. Only three of these plots do present numbers at risk which would aid 

with interpretation of the graphs. 

For eight plots (11%) the vertical axis scale was inappropriate; in other words, a plot with a 

downward direction and an increasing ‘cumulative’ axis (or vice-versa). Another seven plots 

(9%) had unlabelled or unclear labels on either the vertical or horizontal axis. Five plots (7%) 

were presented without any title or label therefore the content of the graph had to be 

deduced from the text of the publication.  

3.4  Discussion 

While an IPD approach to analysis is considered to be the ‘gold-standard,’ particularly for 

synthesis of TTE outcomes [6, 23, 24], such an approach is time consuming and resource 

intensive; therefore an analysis of AD may be considered as an alternative. Reviews of 

epilepsy monotherapy treatments have been conducted using an IPD approach by the 

Cochrane Epilepsy Group [59-67, 69], partly justified by the expectation that the AD required 

for such an approach to analysis would not be adequately and consistently reported in the 

relevant publications. 

This chapter systematically examines all trials of an epilepsy monotherapy design (whether 

included in a Cochrane Epilepsy IPD review or not) in terms of the reporting of important TTE 

outcomes of interest in relation to their inclusion in an AD synthesis.  

3.4.1  Summary of key results and implications 

This systematic review considers the reporting of 98 TTE outcomes in 54 epilepsy 

monotherapy RCTs published between 1978 and 2012 in a range of speciality and general 

medical journals. In total, half of the studies considered reported to have analysed at least 

one TTE outcome. However, definitions and methodology for analysing such outcomes 

greatly varied in detail, to the extent that it was not completely clear if outcomes had been 

defined and analysed appropriately as TTE outcomes in 8 out of the 54 trials (15%). 

The majority of studies described study and participant characteristics well relating to design, 

eligible population and source of funding. However, at least one reporting inadequacy in 
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participant numbers, time frames and definitions of outcomes in different sections of the 

same trial publication was identified in 38 out of the 54 studies (70%); within half of the 14 

studies which were completely or partially publically funded, 20 out of 29 (69%) studies which 

were industry funded and all of the 11 studies without a source of funding declared. 

Less than half of the outcomes considered (49%) were clearly defined, in terms of the 

definition of event, of censoring and of the time origin of the analysis. For most of the 

outcomes which were not clearly defined, it was definition of censoring which was not 

mentioned or not clear; in fact for 28% of TTE outcomes, censoring was not mentioned at all 

throughout the study publication, despite the fundamental methodological importance of 

censoring to TTE analysis. Although two-thirds of the studies reported the ILAE 

recommended outcome of ‘time-to-withdrawal of allocated treatment’ [249], only eight of 

these outcomes followed the ILAE definition and others differed in their definitions of events 

and censored observations in analysis (for example, whether all withdrawals were analysed 

as events or only those related to the allocated treatment).  

Further inadequacies relating to reporting of statistical analysis methods were noted with 

sufficient details to replicate analyses provided for only 49% of outcomes. There was also 

potential indication of selective reporting of subgroup analyses, with 74% of subgroup 

analyses reported showing significant results compared to only 5% of sensitivity analyses. 

From an evidence synthesis perspective, HRs and 95% CIs were presented for only 32% of 

outcomes. Considering the other 68% of outcomes, indirect estimation of HRs [6, 13] would 

be possible for only a small minority with observed and expected number of events 

presented for no outcomes, number of events and a log-rank p-value presented for 18 

outcomes and a survival plot with expected number at risk and/or minimum and maximum 

follow-up reported for only six outcomes (see Table 2 for full details). Furthermore, given the 

variability in definition of events and censoring for the outcomes of interest such as time-to-

withdrawal of allocated treatment as mentioned above; it likely that the synthesis of 

aggregate HRs from these studies would not be appropriate and standardisation of outcome 

definition via IPD analysis would be preferred.  

In summary; findings of this review imply that screening for eligible studies for an AD-MA of 

epilepsy monotherapy studies would be feasible with the majority of studies clearly reporting 

features relating to design and participant population. However, the necessary summary 

statistics needed to perform an AD-MA tend to be reported for only around one in three 

outcomes, and it may not be appropriate to synthesise this data due to variation in outcome 
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definition.  Overall, the results of this review confirm the assumption made by the Cochrane 

Epilepsy group that re-analysing IPD is the only feasible approach for meta-analysis of 

epilepsy monotherapy treatment.  

3.4.2  Strengths and limitations  

At the time of writing, we do not know of any other review which systematically considers 

the reporting of TTE data in a context other than oncology. Previous reviews have considered 

a subset of studies from a specific time period or from specific journals whereas no date or 

journal restriction was made in this review. Therefore results reflect the reporting standards 

across 35 years and 24 speciality and general medicine journals.  

While the focus of this review was to examine the reporting of published TTE data in relation 

to inclusion of AD in epilepsy monotherapy reviews rather than to examine differences over 

time or across journals, no clear differences were apparent by year or journal of publication. 

This was not examined statistically so it cannot be ruled out that such differences in reporting 

by year or publication journal may exist. However given that a systematic review would 

generally not make exclusions based on year or journal of publications, any differences are 

of little relevance to this review. 

Furthermore, some of the trials were reported before the introduction of CONSORT 

minimum reporting standards in 1996 [244]. However as discussed in Chapter 3.1.1, the 

CONSORT statement makes very little reference to reporting of TTE analyses and statistics 

specifically so while reporting of general information in the epilepsy monotherapy trials may 

have improved following the introduction of the CONSORT statement, it is unlikely that such 

guidelines will have had much impact on the reporting of TTE analyses.  

To minimise the number of references to screen for this work, only a single source was 

searched to identify eligible studies for this review. This is potentially a limitation as multiple 

electronic databases and grey literature are usually searched for a systematic review. 

However the Cochrane Epilepsy Group Specialised register is compiled from regular 

electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL) and 

MEDLINE along with hand searches of relevant epilepsy journals and conference abstract 

booklets. All epilepsy monotherapy studies that had been included in Cochrane reviews and 

all monotherapy studies known by clinical expert (AGM) up to 2012 at were identified by the 

search therefore it is unlikely that any studies relevant to the review were missed. 
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An additional limitation is that external information to the publication of each study was not 

taken into account for the review (e.g. if a previous publication was referenced in relation to 

a sample size calculation, it was recorded that a sample size calculation was not recorded in 

the given publication). In reality when conducting a systematic review and meta-analysis, all 

relevant information would be considered and original trial authors may be contacted to 

request unpublished data. Therefore, some of the results presented here may be 

underestimated (reflecting a worst-case scenario), where information may be available from 

related sources. It does however seem unlikely that a TTE outcome would be defined in one 

(non-protocol based) publication and results presented in another; therefore it is unlikely 

that reporting rates of summary statistics and other results have been underestimated by 

not considering related publications. 

3.4.3  Comparison to previous work  

Chapter 3.1.1, Table 1 and Table 2 summarise the findings of previous reviews of aggregate 

TTE data. It should be noted that previous reviews have varied in characteristics, inclusion 

criteria and objective (such as examining change in reporting standards over time [242], 

assessing potential impact on health technology assessment [243] and determining feasibility 

of indirect estimation methods [144]), therefore all comparisons made between the reviews 

and the current review are informal and narrative and results of each should be interpreted 

within the context and objective of the review. 

Table 2 demonstrates a wide variability in the results across all of the reviews regarding the 

reporting of measures of follow-up time, sample size calculations and effect sizes and 

measures of precision; particularly HRs and 95% CIs required for synthesis of TTE data 

reported in between 3% and 87% of reviewed articles. Reporting of other summary statistics 

such as survival probability, log-rank p-values and median survival times was also very 

variable; reporting rates ranged from 2% to 97% of reviewed articles. Consistently, the 

majority of studies reviewed (86% to 100%) presented survival curves, a useful graphical 

representation of TTE outcomes. However the number of studies presenting the effective 

number at risk, essential for properly interpreting such plots, ranged from 8% to 66% and 

other reporting inadequacies such as inappropriate axes or legends and poor graphical 

quality were noted. 

Results of this review agree with previous work that the statistics required for indirect 

estimation of TTE measures required for AD-MA published statistics [6, 13] are not commonly 
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reported either [141, 144, 160, 161]. Michiels et al [160]  argue that meta-analysis can be 

conducted using the difference in median survival rather than HRs as the former measure is 

more commonly presented. However, in this review median survival was actually reported 

less frequently than HRs (26 % of outcomes compared to 32% of outcomes). 

Poor reporting of outcome definitions was also consistently noted across the reviews.  While 

over 70% of reviewed studies clearly define an event of interest; between 45% and 75% 

specified the number of events, 30% to 58% defined which individuals would be censored in 

analysis and 26% to 56% described how losses to follow-up were handled in analyses. 

Previous reviews of oncology trials [236, 237] have commented on the impact of differently 

defined endpoints on the ability to conduct in meta-analysis. Arguably commonly used 

endpoints in oncology such as overall survival have fairly intuitive definitions (i.e. deaths 

during the trial are events and individuals who do not die are censored at their last follow-

up), whereas the commonly used TTE outcome in epilepsy monotherapy trials such as ‘time-

to-withdrawal of allocated treatment,’ have more complex and potentially variable 

definitions, resulting in further difficulties in conducting an AD meta-analysis of such 

outcomes is even more difficult in this context.  

Recent work has also noted that the lack of statistical detail, particularly relating to validation 

of statistical assumptions for TTE analyses and how unvalidated summary statistics can be 

interpreted for secondary analyses including meta-analysis [242, 243]. This review shows 

similar results with confirmation of the PH assumptions for less than 20% of outcomes 

analysed by a Cox PH model. These findings provide further justification of why an AD 

approach is not feasible for reviews of epilepsy monotherapy treatment. 

All previous reviews have concluded that an improvement is needed in the quality of the 

reporting of aggregate TTE data and both the first review [31] and one of the most recent 

reviews [242] have proposed guidelines for the reporting of survival analyses. Abraira et al 

[242]  noted in 2013 that the EQUATOR (Enhancing the QUAlity and Transparency of health 

Research) network [272], an initiative to promote transparent and accurate reporting of 

health research publications, did not report any recommendations specific to survival 

analysis at the time. Up to May 2017, the EQUATOR network online database 

(http://www.equator-network.org) provides 320 different reporting guidelines relating to 

many areas and many different designs of clinical studies, but still no recommendations for 

the reporting of TTE analyses.  

http://www.equator-network.org/
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3.4.4  Concluding remarks 

In conclusion, in line with all previous work conducted in this area, the current systematic 

review has shown concerning reporting inadequacies relating to the definition, analysis and 

reporting of TTE outcomes in epilepsy monotherapy trials and the results of this review are 

sufficient to confirm that an AD-MA based on the published information presented in these 

trials would not be feasible or recommended to inform clinical practice.  

Results of this review are perhaps not surprising given conflicting advice within guidelines, 

both epilepsy specific guidelines [249, 251-253, 255] and also analysis and reporting 

guidelines [244-246]. Recommendations specific to epilepsy trials also place a lot of emphasis 

on study design features, particularly blinding of studies, rather than the accuracy and quality 

of statistical analysis and reporting in studies; essential aspects for the synthesis of trial 

results to inform clinical practice and future research. 

Findings of this systematic review suggest that consistency of recommendations, supported 

by clinical reasoning, is needed within epilepsy specific guidelines in addition to further 

emphasis on the transparent reporting of published results. 

Findings of this review also further highlight calls from previous reviews for the urgent 

development of minimum reporting standards for TTE analyses. In the continuing absence of 

the development of such standards, use of the suggested guidelines from previous work [31, 

242] by journal editors and peer reviewers when considering study publications using TTE 

analyses would greatly improve reporting rates and in turn facilitate the conduct of AD-MAs 

and syntheses with TTE endpoints.  
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Chapter 4: IPD retrieval: A systematic review of 

individual participant data meta-analyses (IPD-MA) 

4.1  Introduction 

IPD-MA is widely regarded as the gold-standard approach to the synthesis of clinical trial data 

with many documented advantages over traditional AD-MA. Recent years have shown a 

sharp increase in the number of published IPD-MAs [33-35]. An average of 49 were published 

each year between 2005 and 2009 [34] and recent estimates suggest an increase of around 

four published IPD-MAs per year [35].  IPD-MAs have been shown recently to directly 

influence the design and conduct of clinical trials [29] and clinical practice guidelines [30].   

While IPD-MAs may offer many advantages, it is well recognised that greater resources are 

required to conduct them [22-24] and the use of IPD in meta-analyses does not guarantee 

freedom from biases. IPD-MAs are subject to a risk of selection bias and ‘availability bias;’ in 

that they may only include studies for which IPD is made available, which may not be 

representative of the whole evidence base [24, 40, 51].  IPD-MAs may be delayed or 

abandoned owing to unclear data requesting procedures or barriers to accessing IPD [89, 

273-275]. Review articles have shown that around a quarter of IPD-MAs published up to 2001 

[32], up to 2005 [40] and even as recently as 2012 [35] obtained IPD for less than 80% of 

eligible participants. These reviews also reveal poor reporting particularly in regard to the 

amount of included IPD, with between 10 and 20% of IPD-MAs not clearly stating how many 

studies and participants were eligible, requested and included in analysis [32, 33, 35, 40]. The 

most recent of these reviews found that reasons for unavailability of IPD were reported in 

only 23% of a sample of 100 IPD-MAs [33]. 

Despite a growing increase in the popularity of IPD-MAs [34, 35]; in the context of all 

published meta-analyses, an IPD approach is still taken in only a small minority [33] with 

meta-analysts reporting lack of resources, lack of time and difficulty of such an approach as 

barriers to conducting an IPD meta-analysis [276]. Another barrier to IPD-MA experienced 

within our own research group [277], has been the direction in which to address IPD requests, 

particularly for studies involving a pharmaceutical sponsor.  

The culture of clinical trial data sharing has changed in recent years. Authors of published 

trials have reported an increased willingness to share data in surveys conducted in 2011 [77, 

88] compared to an empirical study conducted in 2009 [89]. The publication of data 
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transparency strategies and policies by the Institute of Medicine [84] and the European 

Medicines Agency [85], a proposed policy by the International Committee of Medical Journal 

Editors [86, 87] and initiatives across the wider research community as a whole [77-80] may 

go some way to improving the sharing of IPD. Indeed, the launch of data sharing initiatives 

such as Clinical Study Data Request (CSDR)[91], a platform allowing researchers to request 

IPD from nearly 3000 clinical trials of thirteen pharmaceutical sponsors, should make access 

to IPD easier and faster. However, researchers have reported mixed experiences of using 

data sharing portals such as CSDR suggesting that the increased safeguards may have an 

unintended negative impact on the conduct of IPD-MA [110-113].  

The aim of this Chapter is to examine whether the shift in attitudes and awareness, and the 

increased number of options available for accessing IPD, is reflected by a positive impact on 

IPD-MA. This Chapter presents a systematic review of all published IPD-MAs to assess 

whether availability of IPD has improved over time, and explore characteristics associated 

with the retrieval of IPD. The primary aim of this systematic review was to investigate 

whether the success rate of retrieving IPD for the purpose of IPD-MA has increased over time. 

The secondary aim of the systematic review was to explore the characteristics associated 

with IPD retrieval.  

The work contained in this Chapter has been published in the British Medical Journal [278]. 

4.2  Methods 

4.2.1  Systematic search methods 

The following databases were searched: MEDLINE, Central, SCOPUS, Web of Science, CINAHL 

Plus and PsycINFO. The search strategies for each database are described in Appendix 7 and 

were based on a systematic search strategy of an earlier review of Riley et al 2007 [40]. 

Databases were searched from June 2005 (end date of the Riley et al 2007 [40] search) up to 

June 2014 initially and all systematic searches were updated in August 2015. The reference 

lists of two previous large reviews of IPD-MAs were also consulted; reference list of Riley et 

al 2007 [40] was provided by the first author on request and the reference list of Huang et al 

2014 [35] was available as an online appendix to journal publication of the review. 

Articles identified from electronic databases and the reference lists of the previous reviews 

were exported to Endnote version X7, lists merged and duplicates removed. One reviewer 

(SJN) performed title, abstract and full-text screening of articles identified in electronic 
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searches according to Eligibility Criteria described in Chapter 4.2.2. The principle reason for 

exclusion was recorded for relevant articles. Any uncertainties were discussed with CTS and 

resolved. For accuracy, two authors (BD and SR) also screened a random sample of between 

50 and 100 identified articles for eligibility; agreement between the independent screening 

(SJN and BD or SR) was good and any discrepancies were discussed and resolved. 

4.2.2  Eligibility criteria 

IPD-MAs of studies of all types (randomised, observational, diagnostic etc.) and all clinical 

areas published in English were eligible for inclusion. Articles were included if IPD was 

requested from original study investigators, if IPD was already available to review authors or 

if review authors were able to extract IPD from published articles.   

Methodological articles, conference abstracts, review protocols and non-clinical reviews (e.g. 

engineering articles etc.) were excluded. Articles including the analysis of IPD from a single 

study as a supplement to an AD-MA or articles in which the primary objective of the analysis 

was not to estimate a pooled effect size (e.g. prognostic model validation studies, cost-

effectiveness analysis) were excluded as inclusion criteria of studies in such analyses are 

generally selective and related to the objective of the analysis (e.g. an estimate of prognosis 

or cost is provided) rather than the availability of IPD. Where duplicate publications relating 

to the same IPD-MA were identified (e.g. identical publication across multiple journals) the 

most recently published article was retained.  Updates of analyses (e.g. updated Cochrane 

Reviews) were included if at least one new eligible study was identified for the analysis.  

4.2.3  Data extraction 

Information was extracted from eligible IPD-MAs using a piloted data extraction form (see 

Appendix 8). The data extraction form was piloted by three reviewers (SJN, BD and SR) 

extracting information from a sample of IPD-MAs referenced in the Riley et al 2007 [40]; 

following pilot extractions, content of the data extraction form was discussed and the final 

data extraction form (Appendix 8) was used to extract information from all IPD-MAs 

identified in the searches described in Chapter 4.2.1. 

Information extracted from IPD-MAs was year of publication, authorship policy, source of 

funding, clinical area, type of studies, type of analysis, number of eligible studies providing 

IPD or AD, reasons for IPD not being provided and details of any additional or sensitivity 

analyses performed to account for missing IPD.  
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Reasons for IPD not being provided and sensitivity analyses were recorded as free text by all 

reviewers and later classified into broad categories. Clinical area was also recorded as free 

text and later classified in broad categories based on the clinical areas covered by the review 

groups of the Cochrane Collaboration.  All classification of extracted free text was performed 

by one author (SJN). Type of analysis was classified as follows on extraction:  

 Systematic IPD-MA; where a systematic search aiming to identify all eligible studies was 

performed.  

 Pooled or ‘opportunistic’ analysis [33]; where an existing IPD database or IPD of a 

collaborative group was analysed without an attempt to systematically identify all 

eligible studies. Such analyses, by definition, used 100% of eligible IPD in analysis.  

 Other analysis; any other approach to IPD-MA which does not fit into either of the above 

definitions.  

 

Where published articles presented multiple IPD-MAs addressing different research 

questions with different eligible cohorts for IPD-MAs, information was extracted for each 

IPD-MA. If multiple analyses were presented for the same IPD-MA (e.g. analysis of several 

outcomes), information was extracted on the maximum amount of IPD provided, even if all 

IPD provided were not used in IPD-MA. 

One author (SJN) extracted information from all eligible articles and three authors (BD, SR, 

LW) independently extracted from a subset of around 40% of the eligible articles. Agreement 

between authors was good and any discrepancies were resolved by discussion.  

4.2.4  Statistical analysis and presentation of results 

The primary aim of analysis was to examine the IPD retrieval rate (i.e. the number of 

participants IPD was provided for divided by the number of participants identified as eligible 

for analysis) over time and the secondary aim was to explore the characteristics associated 

with IPD retrieval. 

Multivariable logistic regression was performed to examine associations between IPD-MAs 

characteristics and proportion of IPD retrieved. Proportion of IPD retrieved (dependent 

variable of interest) was highly skewed, despite attempts at transformation, as few IPD-MAs 

retrieved a very small proportion of data (i.e. less than 20% of IPD retrieved). It was therefore 

deemed most appropriate to dichotomise this variable to:  
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 Complete IPD retrieval rate (100% compared to less than 100% or unknown 

proportion of IPD provided) 

 High IPD retrieval rate (at least 80% compared to less than 80% or unknown 

proportion of IPD provided) 

Dichotomisation cut-off (i.e. 80% compared to less than 80%) was chosen to allow 

comparison with retrieval rates in previous reviews [32, 33, 35, 40]. The following variables 

were included in the model and results for all variables included in the model are presented 

regardless of statistical significance; no model selection techniques were used: 

 Age of publication of the IPD-MA  (calculated as years before 2016, log transformed due 

to skew, let this variable be 𝑥1) 

 Number of participants eligible for inclusion in IPD-MA (log transformed due to skew, 𝑥2) 

 Study design (inclusion of randomised studies only in IPD-MA versus  other study designs; 

non-randomised studies, diagnostic test accuracy studies or a combination of 

randomised and non-randomised studies, 𝑥3) 

 Cochrane IPD-MA (IPD-MA performed as a Cochrane Review compared to non-Cochrane 

IPD-MA, 𝑥4) 

 Authorship policy (individual authorship for those providing IPD or collaborative group 

versus no authorship policy, 𝑥5) 

 Source of funding (IPD-MA with a commercial source of funding (pharmaceutical or 

manufacturer) versus other funding: non-commercial sources of funding only, no funding 

or no information regarding funding provided, 𝑥6) 
 

In other words, let 𝑍𝑗  be the dependent variable in the 𝑗th IPD-MA such that 𝑍𝑗 = 1 if 100% 

of IPD was retrieved and 𝑍𝑗 = 0 if less than 100% of IPD was retrieved (or equivalently,  𝑍𝑗 =

1 if at least 80% of IPD was retrieved and 𝑍𝑗 = 0 if less than 80% of IPD was retrieved) and 

let the probability that 𝑍𝑗 = 1 be �̂�𝑗. Multivariable logistic regression is performed as follows:  

𝑙𝑜𝑔 (
�̂�𝑗

1−�̂�𝑗
) = 𝛽1(𝑙𝑜𝑔(𝑥1𝑗)) + 𝛽2(log (𝑥2𝑗)) + 𝛽3𝑥3𝑗 + 𝛽4𝑥4𝑗 + 𝛽5𝑥5𝑗 + 𝛽6𝑥6𝑗 (Equation 27) 

Where 𝑥1𝑗…𝑥6𝑗 are the explanatory variables of the 𝑗th IPD-MA (see above) and 𝛽1…𝛽6 are 

the resulting regression coefficients associated with each of the explanatory variables.  
 

Results of multivariable regression are presented as odds ratios and 95% confidence 

intervals. Other numerical results are presented as medians and ranges or numbers and 

percentages as appropriate.  
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4.2.5  Additional and sensitivity analyses 

Additional and sensitivity analyses were conducted to investigate the assumptions made in 

the primary multivariable logistic regression: 

1) Univariable analysis was performed to examine the effect of each variable independently 

on IPD retrieval rate. 

2) Further examination of the association of authorship policy on IPD retrieval; authorship 

policy redefined as no authorship policy (reference), individual authorship or 

collaborative group. 

3) Inclusion of the variable ‘Type of Study’ (defined as drug or device (interventional, 

reference), non-drug (interventional), diagnostic test accuracy or epidemiological study) 

in the multivariable model. 

4) Exclusion of IPD-MAs from analysis with no information regarding funding reported. 

5) Assuming the following scenarios for 257 IPD-MAs for which the proportion of IPD 

retrieved could not be calculated: 

a. Less than 80% of IPD was retrieved 

b. 80% or more IPD was retrieved 

c. 100% of IPD was retrieved 

An additional analysis was also performed to examine characteristics associated with 

non-reporting of the proportion of IPD retrieved for IPD-MA. 

6) Use of fractional logistic regression with proportion of IPD retrieved (dependent variable) 

expressed as a fraction between 0 and 1 as an alternative to logistic regression [279].  

Under this approach, rather than constraining dependent variable 𝑍𝑗  to take a value of 1 

or 0, 𝑍𝑗  is modelled as a fraction within the interval (0, 1). Papke and Wooldridge [279] 

demonstrate the Bernoulli log-likelihood function for a fractional logit model:  

log(𝜷) = 𝑍𝑗𝑙𝑜𝑔 (
exp (𝑿𝒋𝜷)

1+ exp (𝑿𝒋𝜷)
) + (1 − 𝑍𝑗)𝑙𝑜𝑔 (1 − (

exp (𝑿𝒋𝜷)

1+ exp (𝑿𝒋𝜷)
))  (Equation 28) 

Where 𝑿𝒋  is a vector of explanatory variables (𝑥1𝑗…𝑥6𝑗 are the explanatory variables of 

the 𝑗th IPD-MA in this example) and 𝜷 is a vector of the resulting regression coefficients 

associated with each of the explanatory variables (𝛽1…𝛽6 in this example).  

7) Multivariable logistic regression of the proportion of study data retrieved (i.e. the 

number of studies IPD was provided for divided by the number of studies identified as 

eligible for analysis). 
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4.3  Results 

4.3.1  Results of the search 

Systematic searches (outlined in Chapter 4.2.1) identified 1278 eligible articles describing 

1280 IPD-MAs published to August 2015. See Figure 3 for study flow diagram of the searching 

and screening process and a reference list of eligible articles is available as an online 

Appendix to Nevitt et al [278]). 

A non-systematic method of identifying studies for inclusion (IPD-MA defined as pooled 

analyses or other analyses, see Chapter 4.2.4) such as collaboration of a group of researchers 

with available IPD, had been used in 520 IPD-MAs. Within these 520 non-systematic IPD-MAs, 

the number of eligible studies was reported in 516 (99%) IPD-MAs with a median number of 

eligible studies of 7 (range 2 to 287). The number of eligible participants was reported in 501 

(96%) systematic IPD-MAs with a median of 3633 (range 16 to 2,051,158) participants.  

For the remaining 760 IPD-MAs, a systematic approach was taken to identify all eligible 

studies. The number of eligible studies was reported in 746 (98%) IPD-MAs with a median of 

14 (range 2 to 923) studies. The number of eligible participants within an IPD-MA was 

reported in 510 (67%) systematic IPD-MAs with a median of 2369 (range 16 to 33369) 

participants. In 14 (2%) of the 760 systematic IPD-MAs, it was unclear how many studies were 

eligible and in 250 (33%) it was unclear how many participants were eligible; mainly as the 

number of participants without available IPD excluded from analysis was not stated. 

These median values imply that while systematic IPD-MAs identify more eligible studies, non-

systematic IPD-MAs tend to identify and include more eligible participants.  

4.3.2  Characteristics of IPD-MAs 

Table 5 presents the characteristics of the 1280 included IPD-MA according to systematic or 

non-systematic design.  

Within 85 systematic IPD-MAs, IPD was extracted from study publications rather than 

requested from original study authors or sponsors. Characteristics of these 85 systematic 

IPD-MAs are presented in Appendix 8. 
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Figure 3: Study Flow Diagram of identification of eligible IPD-MA 

 

* two full-text articles each reported two IPD-MA 
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Table 5: Characteristics of 1280 individual participant data reviews 

 

IPD-MA Characteristic Type of Analysis 

Systematic  
IPD-MAs 
(n and % of total) 

Non-systematic 
IPD-MAs 
(n and % of total) 

Total 

Total 760 (59%) 520 (41%) 1280 

Year of publication of IPD-MA 

1987 – 1995 20 (61%) 13 (39%) 33 

1996 – 2000    72 (65%) 39 (35%) 111 

2001 – 2005  116 (57%) 88 (43%) 204 

2006 – 2010  195 (56%) 152 (44%) 347 

2011 – 2015  357 (61%) 228 (39%) 585 

Clinical area of IPD-MA 

Breast Cancer  40 (62%) 25 (38%) 65 

Cancer (other)  53 (65%) 28 (35%) 81 

Cardiology  105(49%) 110 (51%) 215 

Central Nervous System, Neurology and 
Brain Injury   

50 (62%) 31 (38%) 81 

Cervical Cancer and Ovarian Cancer  16 (59%) 11 (41%) 27 

Diabetes and Endocrinology  30 (63%) 18 (37%) 48 

Gastroenterology, Colorectal and Gastric 
Cancer  

49 (56%) 39 (44%) 88 

Gynaecology, Pregnancy and 
Neonatology  

35 (88%) 5 (12%) 40 

Haematology, Leukaemia and Blood 
Cancer 

43 (72%) 17 (28%) 60 

Head and Neck Cancer 16 (64%) 9 (36%) 25 

Hepatitis and Liver Disease 19 (56%) 15 (44%) 34 

HIV  17 (55%) 14 (45%) 31 

Infection and Infectious Diseases  31 (70%) 13 (30%) 44 

Injuries and Wounds  21 (58%) 15 (42%) 36 

Lung Cancer  32 (76%) 10 (24%) 42 

Mental and Psychiatric Disorders  32 (48%) 35 (52%) 67 

Musculoskeletal and Pain 34 (52%) 32 (48%) 66 

Other1  26 (48%) 28 (52%) 54 

Otolaryngology , Ophthalmology and 
Periodontology  

22 (76%) 7 (34%) 29 

Renal and Urology  17 (61%) 11 (39%) 28 

Respiratory and Pulmonary  21 (60%) 14 (40%) 35 

Stroke, Thrombosis and Hypertension  51 (61%) 33 (39%) 84 

Design of included studies 

Randomised 405 (58%) 288 (42%) 693 

Non-Randomised 253 (57%) 194 (43%) 447 

Diagnostic Test Accuracy 34 (97%) 1 (3%)  35 

Both Randomised and Non-Randomised 68 (65%) 37 (35%) 105 
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Type of included studies 

Diagnostic Test Accuracy 34 (97%) 1 (3%) 35 

Drug or device 348 (54%) 291 (46%) 639 

Epidemiology / Risk Factor 185 (52%) 173 (48%) 358 

Non-drug (interventional) 193 (78%) 55 (22%) 248 

Type of IPD-MA 

Cochrane Review 64 (100%) 0 (0%) 64 

Non Cochrane Review 696 (57%) 520 (43%) 1216 

Authorship Policy 

Individual authorship 243 (42%) 337 (58%) 580 

Collaborative Group 264 (60%) 177 (40%) 441 

None2 253 (98%) 6 (2%) 259 

Source of Funding 

Non-commercial3 383 (64%) 218 (36%) 601 

Commercial4 72 (42%) 101 (58%) 173 

Mixed5 35 (36%) 62 (64%) 97 

No funding 77 (73%) 28 (27%) 105 

Not stated 193 (63%) 111 (37%) 304 

Number of eligible studies  

2 to 5 102 (32%) 214 (68%) 316 

6 to 10 174 (57%) 130 (57%) 304 

11 to 15 120 (63%) 72 (37%) 192 

16 to 20 87 (81%) 21 (29%) 108 

21 to 30 101 (77%) 31 (23%) 132 

31 to 40 50 (70%) 21 (30%) 71 

41 to 50 29 (85%) 5 (15%) 34 

over 50 83 (80%) 22 (20%) 105 

Not stated 14 (78%) 4 (22%) 18 

Number of eligible participants  

under 100 18 (86%) 3 (14%) 21 

101 to 200 20 (65%) 11 (35%) 31 

201 to 500 45 (56%) 35 (44%) 80 

501 to 1000 67 (56%) 52 (44%) 119 

1001 to 5000 198 (51%) 187 (49%) 385 

5001 to 10000 62 (53%) 54 (47%) 116 

over 10000 100 (39%) 159 (61%) 259 

Not stated 250 (93%) 19 (7%) 269 

1. Other defined as lifestyle, nutrition, emergency medicine, patient care, patient preference, 

Pharmacokinetics and Forensics 

2. Including 83 IPD-MAs where IPD was extracted from published study reports (IPD not 

requested from original study authors). See Appendix 8 for further details. 

3. Non-commercial sources included institutional, government, charity, research council or 

research foundation funding. 

4. Commercial sources were defined as pharmaceutical or manufacturer funding. 
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As ‘opportunistic’ IPD-MAs by design often differ in their objectives and inclusion criteria 

from systematic IPD-MAs [33]; no formal statistical comparison of the characteristics of these 

two types of IPD-MA was made. From visual comparison of Table 5, there did not seem to be 

any changes over time in approach (systematic or non-systematic) to IPD-MA and few clear 

differences by clinical area. A systematic approach was taken proportionally most often in 

the topics of Gynaecology, Pregnancy and Neonatology, Lung Cancer and Haematology, 

Leukaemia and Blood Cancer while a non-systematic approach was taken proportionally 

more often than a systematic approach in the topics of Cardiology, Mental and Psychiatric 

Disorders and other clinical areas (see Table 5). The majority of IPD-MAs of diagnostic test 

accuracy studies and studies of non-drug interventions took a systematic approach, as well 

as all Cochrane Reviews. The majority of non-systematic IPD-MAs had an authorship policy 

and the majority of IPD-MAs receiving commercial funding took a non-systematic approach. 

Table 5 also suggests that systematic IPD-MAs identify more eligible studies, while non-

systematic IPD-MAs tend to identify and include more eligible participants. 

4.3.3  IPD retrieval rate in systematic IPD-MA 

Non-systematic IPD-MAs were mostly conducted with only the IPD which was already 

available to the analysts; therefore IPD retrieval rate is not relevant in these 520 IPD-MAs.  

The following two sections report only on the 760 systematic IPD-MAs. 

Figure 4: Number of distinct systematic IPD-MA published to August 2015 and proportion 

of IPD provided

 
1. See Table 6 for proportion of systematic IPD meta-analyses providing 100%, 80-99%, less than 80% 

of IPD and the proportion of IPD not reported. 

2. Six IPD-MA were published from 1987 to 1993; one was provided with less than 80% of IPD, three 

were provided with 80 – 99% of IPD and for two the proportion of IPD provided was not reported. 
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Figure 5: Characteristics of systematic IPD-MA and proportion of IPD provided. 

 

1. See Table 6 for proportion of systematic IPD meta-analyses providing 100%, 80-99%, less than 80% of IPD and the proportion of IPD not reported.  
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Table 6: Characteristics of all systematic IPD-MAs according to proportion of IPD provided 

IPD-MA Characteristic1,2 

Total 
IPD-MAs 

(N) 

Proportion of IPD retrieved for systematic IPD-MA  
(n and % of N) 

100% ≥80% <80% Unknown3 

Total 760 188 (25%) 324 (43%) 179 (24%) 257 (34%) 

Clinical area of IPD-MA 

Breast Cancer  40 8 (20%) 22 (55%) 7 (17%) 11 (28%)  

Cancer (other)  53 14 (26%) 27 (51%)  14 (26%) 12 (23%)  

Cardiology  105 30 (29%) 53 (51%) 17 (16%) 35 (33%)  

Central Nervous System,  
Neurology and Brain 
Injury 50 13 (26%) 20 (40%) 14 (28%) 16 (32%)  

Cervical Cancer and 
Ovarian Cancer  16 1 (6%) 7 (44%) 1 (6%) 8 (50%) 

Diabetes and 
Endocrinology  30 8 (27%) 13 (43%) 3 (10%) 14 (47%) 

Gastroenterology, 
Colorectal and Gastric 
Cancer  49 11 (22%) 17 (35%)  23 (47%) 9 (18%) 

Gynaecology, Pregnancy 
and Neonatology 35 13 (37%)  18 (51%)  9 (26%) 8 (23%) 

Haematology, Leukaemia 
and Blood Cancer  43 11 (26%) 20 (47%) 4 (9%) 19 (44%) 

Head and Neck Cancer  16 4 (25%) 8 (50%) 5 (31%) 3 (19%) 

Hepatitis and Liver 
Disease  19 7 (37%) 8 (42%) 3 (16%) 8 (42%) 

HIV  17 6 (35%) 8 (47%) 2 (12%) 7 (41%) 

Infection and Infectious 
Diseases  31 6 (19%) 9 (29%) 12 (39%) 10 (32%) 

Injuries and Wounds  21 2 (10%) 4 (19%)  13 (62%) 4 (19%) 

Lung Cancer  32 9 (28%) 15 (47%) 3 (9%) 14 (44%) 

Mental  and Psychiatric 
Disorders 32 7 (22%) 12 (38%) 7 (21%) 13 (41%) 

Musculoskeletal and Pain 34 9 (26%) 11 (32%) 5 (15%) 18 (53%) 

Other 26 5 (19%) 9 (35%) 12 (46%) 5 (19%) 

Otolaryngology, 
Ophthalmology and 
Periodontology  22 3 (14%) 5 (23%) 6 (27%) 11 (50%) 

Renal and Urology  17 3 (18%) 6 (35%) 5 (30%) 6 (35%) 

Respiratory and 
Pulmonary  21 7 (33%) 11 (52%) 3 (15%) 7 (33%) 

Stroke, Thrombosis and 
Hypertension  51 12 (24%) 21 (41%) 11 (22%) 19 (37%) 

Design of included studies 

Randomised 405 117 (29%) 222 (55%) 83 (20%) 100 (25%) 

Non-Randomised 253 58 (23%) 81 (32%) 56 (22%) 116 (46%) 

Diagnostic Test Accuracy 34 5 (15%) 9 (26%) 8 (24%) 17 (50%) 

Both Randomised and 
Non-Randomised 68 8 (12%) 12 (18%) 32 (47%) 24 (35%) 
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Type of included studies 

Diagnostic Test Accuracy 34 5 (15%) 9 (26%) 8 (24%) 17 (50%) 

Drug or device 348 102 (29%) 183 (53%) 73 (21%) 92 (26%) 

Epidemiological  185 38 (21%) 58 (31%) 44 (24%) 83 (45%) 

Non-drug (interventional) 193 43 (22%) 74 (38%) 54 (28%) 65 (34%) 

Type of IPD-MA 

Cochrane Review 64 10 (16%) 25 (39%) 27 (42%) 12 (19%) 

Non Cochrane Review 696 178 (26%) 299 (43%) 152 (22%) 245 (35%) 

Authorship Policy 

Individual authorship 243 84 (35%) 116 (48%) 39 (16%) 88 (36%) 

Collaborative Group 264 40 (15%) 119 (45%) 43 (16%) 102 (39%) 

None 253 64 (25%)  89 (35%) 97 (39%) 67 (26%) 

Source of Funding 

Non-commercial 383 70 (18%) 155 (40%) 94 (25%) 134 (35%) 

Commercial 72 26 (36%) 37 (51%)  14 (20%) 21 (29%) 

Mixed 35 8 (23%) 20 (57%) 7 (20%) 8 (23%) 

No funding 77 25 (32%) 34 (44%) 14 (18%) 29 (38%) 

Not stated 193 59 (31%) 78 (40%) 50 (26%) 65 (34%) 

Number of eligible studies 

2 to 5 102 72 (71%) 83 (81%) 10 (10%) 9 (9%) 

6 to 10 174 67 (39%) 98 (56%) 34 (20%) 42 (34%) 

11 to 15 120 16 (13%) 47 (39%) 27 (23%) 46 (38%) 

16 to 20 87 12 (14%) 29 (33%) 27 (31%) 31 (36%) 

21 to 30 101 6 (6%) 30 (30%) 28 (28%) 43 (42%) 

31 to 40 50 3 (6%) 11 (22%) 19 (38%) 20 (40%) 

41 to 50 29 2 (7%) 5 (17%) 9 (31%) 15 (52%) 

over 50 83 10 (12%) 19 (23%)   24 (29%) 40 (48%) 

Not stated 14 0 (0%)  2 (14%) 1 (7%) 11 (79%) 

Number of eligible participants 

under 100 18 14 (78%) 16 (94%) 1 (6%) 0 (0%) 

101 to 200 20 13 (65%) 16 (80%) 4 (20%) 0 (0%) 

201 to 500 45 21 (47%) 25 (56%) 19 (42%) 1 (2%) 

501 to 1000 67 35 (52%) 45 (67%) 22 (33%) 0 (0%) 

1001 to 5000 198 70 (35%) 134 (68%) 61 (31%) 3 (1%) 

5001 to 10000 62 13 (21%) 37 (60%) 23 (37%) 2 (3%) 

over 10000  100 22 (22%) 53 (53%) 46 (46%) 1 (1%) 

Not stated 250 0 (0%) 0 (0%) 0 (0%) 250 (100%) 

1. See Table 5 for full definitions of characteristics. 

2. See Figure 4 for proportion of IPD provided in IPD-MAs by year. 

3. Unknown as the number of eligible participants and/or the number of participants excluded 

from IPD analysis due to lack of IPD was not reported. 
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IPD was provided from 100% of eligible studies in only 189 (25%) and from 100% of 

participants in only 188 (25%) out of 760 systematic IPD-MAs; one IPD-MA provided with IPD 

from 100% of studies received an incomplete dataset for one study. IPD from at least 80% of 

studies was retrieved in 375 systematic IPD-MAs (49%) and from 80% of participants in 324 

systematic IPD-MAs (43%). IPD was retrieved for less than 50% of studies in 136 systematic 

IPD-MAs (18%) and for less than 50% of participants in 71 systematic IPD-MAs (9%). One of 

the reviews was designed as an IPD-MA but no IPD was available [280].  

For 257 IPD-MAs, the proportion of IPD retrieved could not be calculated because the 

number of eligible participants and/or the number of participants excluded from IPD analysis 

due to lack of IPD was not reported. Figure 4 shows the number of IPD-MAs published by 

year and the proportion of IPD retrieved. 

Figure 5 and Table 6 and show the characteristics of the 760 systematic IPD-MA overall as 

well as separated according to IPD retrieval rate. 

4.3.3.1 Characteristics associated with IPD retrieval 

Table 7 presents the results of multivariable logistic regression (see Chapter 4.2.4 for further 

details). A total of 503 IPD-MAs were included in this analysis for which the proportion of IPD 

retrieved could be calculated (i.e. the number of participants eligible for analysis and the 

number of participants data was provided for was reported).  

Table 7: Multivariable logistic regression model results: Characteristics associated with 

retrieving 100% of IPD or receiving more than 80% of IPD in 503 IPD-MAs 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD 

At least 80% of IPD retrieved 

compared to less than 80% of IPD 

OR 95% CI P-value OR 95% CI P-value 

Age of publication1 1.081 0.885 to 1.320 0.445 1.153 0.938 to 1.418 0.177 

Number of eligible 

participants1 

0.851 0.800 to 0.904 <0.001 0.889 0.837 to 0.943 <0.001 

Includes randomised  

studies only 

1.415 0.919 to 2.182 0.115 2.735 1.755 to 4.262 <0.001 

Cochrane IPD-MA 0.402 0.189 to 0.859 0.019 0.427 0.218 to 0.835 0.013 

Authorship Policy2 1.667 1.074 to 2.585 0.022 3.366 2.183 to 5.190 <0.001 

Commercial source of 

funding3 

1.291 0.762 to 2.187 0.341 1.043 0.568 to 1.914 0.892 

1. Log transformation applied due to skewed distribution of data 

2. Authorship policy (individual authorship for those providing IPD or collaborative group) compared 

to no authorship policy 

3. Commercial source of funding (pharmaceutical or manufacturer) compared to non-commercial 

sources of funding only, no funding or no information regarding funding provided. 
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The odds of retrieving all IPD was significantly higher for IPD-MAs that were non-Cochrane, 

had a lower number of eligible participants and those with  an authorship policy. The odds of 

retrieving a high proportion (at least 80%) of IPD were also significantly higher for these 

factors but in addition for IPD-MAs of randomised trials only. There was no association 

between the IPD retrieval rate and source of funding or the date of publication of IPD-MAs. 

4.3.3.2 Additional and sensitivity analyses  

A range of additional and sensitivity analyses were conducted to investigate assumptions 

made within the primary multivariable logistic regression analysis, see Chapter 4.2.5 for 

further details. Results of each additional analysis is summarised below and tables of 

numerical results are presented in Appendix 9. 

1) Univariate logistic regression analysis (i.e. unadjusted analysis) (see Table 34) 

Results of this analysis were numerically similar to those of multivariable (adjusted) analysis 

presented in Table 7; the only difference in conclusions was that unadjusted analysis shows 

no association between complete IPD retrieval rate and an authorship policy (association 

between authorship policy and high retrieval rate was maintained in adjusted and 

unadjusted analysis).   

2) Association of authorship policy on IPD retrieval (see Table 35) 

Results of this analysis show that odds of retrieving at least 80% of IPD were significantly 

increased when either individual authorship or collaborative authorship policies were used 

but odds of retrieving at 100% of IPD were significantly increased only when an individual 

authorship policy was used. Other numerical results were similar to those in Table 7 and 

results unchanged.  

3) Inclusion of the variable ‘Type of Study’ in the multivariable model (see Table 36) 

The variable ‘Type of study’ (drug or device (interventional), non-drug (interventional), 

diagnostic test accuracy or epidemiological study) was not included in the model due to 

correlation between this variable and type of study (interventional studies were significantly 

more likely to be randomised, chi-squared p<0.001) and source of funding (drug or device 

studies were significantly more likely to be commercially funded, chi- squared p<0.001). 

Sensitivity analysis was conducted adding an additional variable to the multivariable logistic 

regression model. Results showed that this characteristic was not statistically significant; 

other numerical results were similar to those in Table 7 and conclusions were unchanged. 
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4) Exclusion of IPD-MA from analysis with no information regarding funding reported (see 

Table 37) 

Numerical results were similar to those in Table 7 and conclusions were unchanged. 

5) Assuming the following scenarios for 257 IPD-MA for which the proportion of IPD 

retrieved could not be calculated: 

a. Less than 80% of IPD was retrieved (see Table 38) 

b. 80% or more IPD was retrieved (see Table 39) 

c. 100% of IPD was retrieved (see Table 40) 

Results of these sensitivity analyses are varied compared to those reported in Table 7; for 

example scenario a. and scenario b. contradict Table 7 and suggest that the odds of complete 

or high IPD retrieval rate are significantly higher in IPD-MA without an authorship policy.  

These sensitivity analyses highlight the importance of reporting the proportion of IPD 

retrieved in IPD-MA. 

An additional analysis was also performed to examine characteristics of the 257 IPD-MA 

where proportion of IPD retrieved could not be calculated compared to the 503 IPD-MA were 

proportion of IPD-MA could be calculated (see Table 41). 

Results of this additional analysis indicate that the odds of the proportion of IPD retrieved 

being reported are significantly higher in more recently published IPD-MA, IPD-MA including 

RCTs only and IPD-MA without an authorship policy. There was no association between 

publication as a Cochrane IPD-MA and the source of funding on whether the proportion of 

IPD retrieved was reported.   

6) Use of fractional logistic regression as an alternative to logistic regression (see Table 42) 

Results of this analysis indicate that odds of retrieving a higher proportion of IPD are 

significantly associated with older IPD-MAs, IPD-MAs including only randomised studies, non-

Cochrane IPD-MAs and IPD-MAs with an authorship policy. There was no association 

between the number of eligible participants and source of funding on the proportion of IPD 

retrieved.  

7) Multivariable logistic regression of the proportion of study data retrieved (see Table 43) 

A total of 744 IPD-MAs were included in this analysis for which we could calculate the 

proportion of study data retrieved (i.e. the number of studies eligible for analysis and the 

number of studies data was provided for was reported). 
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Results of this sensitivity analysis are mostly similar to those reported in Table 7, however 

these results suggest that the odds of retrieving at least 80% of study data are significantly 

associated with older IPD-MA; suggesting that IPD retrieval rate on a study-level has got 

worse over time. 

In summary, numerical results of additional and sensitivity analyses are mostly similar and 

conclusions mainly unchanged indicating that the results of primary multivariable regression 

analyses are robust to assumptions made. Some results do, however, indicate that the 

proportion of IPD retrieved over time (including on a study-level) has got worse over time. 

The most variability in results was shown in the sensitivity analyses exploring a range of 

scenarios for the 257 IPD-MAs which did not report the proportion of IPD retrieved. Results 

of these sensitivity analyses varied and some were contradictory to the primary analysis, for 

example indicating that the odds of complete or high IPD retrieval rate are significantly higher 

in IPD-MAs without an authorship policy.  These sensitivity analyses highlight the importance 

of a reporting the proportion of IPD retrieved in IPD-MAs. 

Interestingly, when further considering the association of an authorship policy with IPD 

retrieval rate, results of this additional analysis show that odds of retrieving at least 80% of 

IPD were significantly increased when either individual authorship or collaborative 

authorship policies were used but odds of retrieving at 100% of IPD were significantly 

increased only when an individual authorship policy was used. 

4.3.4  Unavailability of IPD and the impact on analysis 

Out of the 571 systematic IPD-MAs that failed to retrieve 100% of the IPD, 201 (34%) had 

supplemented IPD with AD extracted from study publications. The additional AD had been 

included from a median of 5 (range 1 to 541) studies and a median of 683 (range 9 to 

1,180,505) participants. 

At least one study had been excluded from the meta-analysis due to lack of IPD or AD in 419 

(55%) systematic IPD-MAs. Across these, a median of 4 (range 1 to 342) studies and a median 

of 478 (range 8 to 1,792,339) participants were excluded from IPD-MAs but 241 systematic 

IPD-MA (32%) failed to state how many participants were excluded from analysis.  

Up to six reasons were reported for unavailability of IPD (Table 8); non-specific reasons, such 

as ‘data was not available for analysis’ were reported in 341 out of 571 systematic IPD-MAs 
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(58%). The most common specific reasons for not obtaining IPD were that investigators could 

not be contacted, investigators had declined to share data or that data had been lost or 

destroyed. In 24 systematic IPD-MAs it was reported that data was not requested for all 

studies; mainly due to the size or quality of these studies. 

Table 8: Reasons reported for unavailability of IPD in 571 systematic IPD-MA without 

100% of IPD retrieved 

Reasons reported for not retrieving 100% of eligible IPD  Number of IPD-MA1,2 

Data not available3 341 (60%) 

No contact could be made with study authors 104 (18%) 

Investigators declined but no reason given 74 (13%) 

Data lost or destroyed 65 (11%) 

Data could not be extracted4 55 (10%) 

Trial was still ongoing 42 (7%) 

Data quality issues 29 (5%) 

Failed to provide data in time for the IPD-MA 26 (5%) 

Data not requested 24 (4%) 

Ethical / ownership restrictions 15 (3%) 

Reason unclear 11 (2%) 
1. 189 IPD-MA with 100% of IPD provided not included in the table. 

2. Up to 6 reasons reported for unavailability of IPD. Therefore total number of reasons (and 

total percentages) sum to greater than 571 (100%)  

3. IPD was not available for a proportion of studies without any specific reason quoted. 

4. Applicable only in a small number of IPD-MAs where IPD were extracted from publications 

rather than requested. 

Table 9: Approach to accounting for missing IPD in 571 systematic IPD-MA without 100% 

of IPD retrieved 

Approach reported to account for missing IPD Number of IPD-MA1,2 

None stated  143 (25%) 

Separate meta-analyses are conducted including IPD only 
and IPD plus available AD  81 (14%) 

Stated that missing IPD is a limitation of the meta-analysis 
and / or that availability bias may be present 76 (13%) 

AD included in primary analysis  61 (11%) 

Sensitivity analysis with AD performed  57 (10%) 

Stated that the missing IPD is unlikely to change results  56 (10%) 

Results from the studies without IPD summarised narratively 48 (8%) 

Stated that the majority of data is included in analysis 47 (8%) 

Narrative comparison to an AD meta-analysis  18 (3%) 

Intend to include data in an update  14 (2%) 
1. 189 IPD-MA with 100% of IPD provided not included in the table. 

2. Up to three approaches described to account for missing IPD. Therefore total number of 

approaches (and total percentages) sum to greater than 571 (100%) 
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In 143 (25%) out of the 571 systematic IPD-MAs there was no acknowledgement of potential 

bias resulting from missing IPD. In 199 (34%) of the systematic IPD-MAs additional analyses 

using AD had been performed and in a further 66 (11%) systematic IPD-MAs, a narrative 

description of the studies without IPD or a narrative comparison to an aggregate data meta-

analysis had been provided. The remaining 183 (31%) systematic IPD-MAs make reference to 

the missing data, some acknowledging this may result in bias, without any further 

investigation of the implication on the conclusions of the review (Table 9). 

4.4  Discussion 

4.4.1  Summary of main results 

At the time of writing, this systematic review is believed to include the largest cohort of 

published IPD-MAs to date. Recent years have shown an increase in development of 

statistical methodology for the synthesis of IPD [36] (see also Chapter 2.3.3 of this thesis) as 

well as a rapid increase in the uptake of methods, with the number of systematic and non-

systematic IPD-MAs published per year increasing to an average of 105 published per year 

between 2009 and 2015 compared to 49 per year published between 2005 and 2009 [34]. 

However, these rapid increases do not seem to be mirrored by improved IPD retrieval rates, 

which may be due, in part, to the increasing uptake of IPD-MAs across a wide range of clinical 

areas and settings where IPD may be difficult to obtain.  

The findings of this systematic review showed that Cochrane reviews were less likely to 

retrieve all or a high proportion of IPD than systematic non-Cochrane reviews. This may be 

explained by the inclusion of thorough search methods within Cochrane reviews, as well as 

advances in systematic searching of larger electronic databases generally, leading to the 

identification of larger numbers of studies including more grey literature studies where IPD 

may be difficult to retrieve with the resources available to review authors, such as Cochrane 

review authors who usually undertake systematic reviews on a voluntary basis. Furthermore, 

the framework of a Cochrane review requires the registration of a protocol and publication 

of results regardless of the IPD retrieval rate; therefore, Cochrane IPD reviews with a low IPD 

retrieval rate may be less subject to review-level ‘publication bias’ than non-Cochrane IPD 

reviews with a low IPD retrieval rate.  

On the other hand, results also showed that IPD-MAs with an authorship policy (individual 

authorship or collaborative group authorship) were associated with retrieving a high 

proportion of IPD but it was only the IPD-MAs offering individual authorship which were 
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associated with 100% retrieval of IPD (see Table 35). This is an important finding as the 

implementation of an authorship policy as an incentive to participate in an IPD-MAs, as a 

feature of a well-designed project, is a factor which is in control of the IPD-MAs team; even 

where other characteristics such as study design and number of eligible participants for IPD-

MA are constrained by the research question. 

4.4.2  Strengths and weaknesses 

The aim of this systematic review was to systematically identify all published IPD-MAs 

regardless of use of a systematic design to identify studies, resulting in a large cohort of 

nearly 1300 IPD-MAs. Inclusion criteria were wide and reasons for exclusion were 

documented for all references identified in electronic searches. Ninety abstracts which could 

not be matched to full-text articles, despite best efforts, were excluded from the systematic 

review. Due to the size of the cohort of this study, double reference screening and data 

extraction was performed on only a subset of the articles. Agreement between double 

extractions was good and all discrepancies were minor and easily resolved, therefore any 

errors made in screening and extraction would have been minimal and unlikely to influence 

the overall findings of the study. 

It was not possible to systematically investigate the IPD retrieval methods employed within 

the IPD-MAs; such as the number of attempts to contact investigators to request data etc., 

due to the lack of published detail regarding such processes. Data collection methods are 

likely to be an important factor influencing the proportion of IPD retrieved and clearer 

reporting of approaches to IPD collection, would be valuable to those planning new IPD-MAs.   

The primary analysis approach taken in this study involved dichotomising the dependent 

variable (proportion of IPD retrieved) and performing multivariable logistic regression 

analysis. The limitations of dichotomisation should be noted and further approaches to 

modelling IPD retrieval rate which takes account of the bimodal distribution of the 

dependent variable could be considered as future research. However, we believe that any 

loss of information will be reduced by the size of the cohort included in analysis and a range 

of sensitivity analyses have been presented to investigate all assumptions made in the 

primary analysis, demonstrating overall consistency and robustness of results. 

This systematic review examines associations between IPD retrieval rate and characteristics 

of the IPD-MA. Arguably, it would have been more informative to consider the association 

between IPD retrieved (yes or no) and characteristics of the individual studies within the IPD-

MA, particularly when considering whether there has been any changes over time in IPD 
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retrieval rates. However, it was not possible to systematically examine the characteristics of 

the studies providing or not providing IPD within the 760 IPD-MAs due to lack of specific 

information reported at the study-level. For example, 125 out of 760 IPD-MAs (16%) did not 

provide any information at all regarding the years of publication of studies not providing IPD, 

and many of the IPD-MAs provided only year ranges of eligible studies and/or studies 

providing IPD. Therefore, modelling the probability of a study providing IPD was not deemed 

appropriate. This is a limitation of this analysis but it should be noted for future IPD-MAs that 

it is essential to clearly describe the characteristics of the eligible studies which do and also 

eligible studies which do not contribute to the IPD analysis. Reporting of such information on 

a study-level allows a judgement of ‘availability bias’ within the IPD-MA; in other words, 

whether the provision of IPD may be associated with characteristics of the eligible studies.   

4.4.3  Relation to other studies and implications 

Present results have shown that a quarter of systematic IPD-MAs published since 1987 

retrieved all IPD for analysis and only half retrieved at least 80% of relevant IPD. This latter 

finding is higher than previous results which reported that around 25% of IPD-MAs had 

included less than 80% of IPD [32, 33, 35, 40]. However previous work has been based on 

smaller cohorts of IPD-MAs, has mostly focused on IPD-MAs of RCTs only and has been 

conducted over smaller time frames.  

In line with previous work [32, 33, 35, 40], present results show that important inadequacies 

around conduct and reporting of IPD-MAs remain. Non-systematic methods, mostly based 

on the known availability of IPD, had been used to select eligible studies for inclusion in 41% 

of the initial cohort of IPD-MAs identified. It was outside the scope of this study to further 

examine the design of these analyses; however, it is recommended that non-systematic 

pooling of IPD is conducted in the framework of a prospective meta-analysis [281] and that 

the conclusions of such analyses must take the inevitable selection bias into account.   

Furthermore in around 5% of the systematic IPD-MAs, IPD was not requested from a subset 

of the eligible studies (Table 8), often due to the small size or study quality in relation to the 

other eligible studies.  It is arguably acceptable to exclude studies of poor quality which may 

impact on the overall IPD-MA [282], however such exclusions should be specified a priori and 

investigated via sensitivity analysis to avoid introducing selection bias to reviews of a 

systematic nature [51]. 
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Present results highlight the importance of clear reporting of study and participant numbers 

contributing to different stages of the IPD-MA with an adequate investigation of the reasons 

for lack of data and discussion of the potential for ‘availability bias.’ The total number of 

eligible participants and the total number of participants’ data requested was unclear in 34% 

of published IPD-MAs; in 58% of the IPD-MAs that failed to retrieve 100% of eligible IPD, 

there were no specific reasons provided for the unavailability of data, making interpretation 

of IPD-MAs results and conclusions in the presence of potential ‘availability bias’ difficult. In 

a quarter of IPD-MAs unable to retrieve 100% of IPD, there was a complete lack of discussion 

or acknowledgement of ‘availability bias’. A systematic investigation of the impact of 

'availability bias’ on IPD-MAs conclusions was outside the scope of this review and is specific 

to the clinical context in question. Despite this, further efforts are recommended by 

researchers conducting an IPD-MA to thoroughly investigate and report the impact of data 

availability [51].    

Proper uptake of new PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) IPD guidelines for the conduct and reporting of IPD-MA [283], in addition to 

guidance on the use of IPD-MA to synthesise the results of RCTs [282], should lead to 

improved conduct and reporting in IPD-MAs. In particular, transparent reporting of the 

number of eligible studies and participants, how much data was requested and obtained with 

clear reasons for non-availability of IPD, preferably via a flow diagram, and data collection 

methods.  Discussion of limitations and impact on conclusions due to missing IPD is essential. 

4.4.4  Concluding remarks 

IPD-MAs are resource demanding, time consuming and methodologically challenging but 

when conducted well [282], ideally following a registered protocol [284] and adhering to the 

PRISMA-IPD guidance [283], can provide more detailed and potentially more reliable results 

than a meta-analysis of aggregate data. Meta-analysts must carefully consider the 

appropriateness of an IPD analysis and demonstrate awareness of potential biases induced 

by missing IPD. Only one in four published systematic IPD-MAs have had access to all IPD; we 

hope that this proportion will grow in future years with the growing awareness of data 

sharing and transparency in the pharmaceutical industry and beyond [77-80, 84, 85].  
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Chapter 5: Individual participant data requests: 20 

years’ experience of the Cochrane Epilepsy Group  

5.1  Introduction 

The Cochrane Epilepsy Group has been making IPD requests to the authors of AED 

monotherapy trials since the mid-1990s with eight reviews for IPD-MA of pair-wise AED 

comparisons published to date since 2000 [59-67]. The group have also previously published 

an IPD-NMA including participants randomised to one of eight AEDs [285]. See Chapter 1.2 

for further discussion of the clinical setting and the rationale of these IPD reviews.  

Since the publication of the original NMA in 2007, additional AEDs have been used in clinical 

practice and additional clinical trials have been conducted which has prompted the need for 

an updated analysis. Plans to conduct a Cochrane Review and IPD-NMA of 10 AEDs began in 

2010 (see Figure 6), with the submission for project funding via a Cochrane programme grant 

in October 2010 and beginning in June 2011. 

Figure 6: Timeline of IPD requests for Cochrane Epilepsy IPD-NMA  

 

This chapter outlines the data requesting process for the current IPD-NMA, further details of 

which can be found in the Cochrane review [69]. This chapter also reflects upon the 

experiences of the Cochrane Epilepsy Group in requesting IPD prior to the current IPD-NMA 

and changes over time following 20 years of data requesting.  

The work contained in this Chapter relating to IPD requesting and IPD retrieval for Cochrane 

Epilepsy reviews has been published in the British Medical Journal [278] and the IPD-NMA 

has been published on the Cochrane Database of Systematic Reviews [69]. 
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5.2  Selection of studies for IPD-NMA 

5.2.1. Inclusion criteria 

5.2.1.1  Study Design 

Randomised controlled trials (RCTs) of a parallel design in which the unit of analysis is the 

individual (i.e. cluster randomised trials were excluded). RCTs may be blinded (double-blind, 

single-blind etc.) or open label and may use either an adequate method of allocation 

concealment (e.g. sealed opaque envelopes) or a quasi-method of randomisation (e.g. 

allocation by date of birth).    

Trials of a monotherapy design only were included; i.e. participants are randomised to 

treatment with a single drug throughout the trial period. Trials with an add-on, poly-therapy, 

transitional or withdrawal to monotherapy periods of any length were excluded. 

Trials of a cross-over design were excluded as such as design is inappropriate for measuring 

primary outcome 'time-to-withdrawal of allocated treatment' as withdrawal during the first 

treatment period would prevent cross-over into the second period, resulting in incomplete 

outcome data. Furthermore, the use of cross-over designs is no longer recommended in 

epilepsy trials of a monotherapy design [286].  

5.2.1.2  Participants 

Children or adults with partial-onset seizures (simple partial, complex partial, or secondarily 

generalised tonic-clonic seizures) or generalised-onset tonic-clonic seizures (with or without 

other generalised seizure types) with a new diagnosis of epileptic seizures or who had had a 

relapse of seizures following antiepileptic monotherapy withdrawal. 

Trials recruiting only participants with other generalised seizure types alone (e.g. participants 

recruited with absence seizures alone without generalised tonic clonic seizures) as guidelines 

for the first-line treatment of other generalised seizure types are different from the 

guidelines for generalised tonic-clonic seizures [74] and due to documented evidence that 

certain drugs of interest may exacerbate some generalised seizure types [287, 288].  

Trials considering AEDs as treatment for conditions other than epilepsy were excluded. 
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5.2.1.3  Interventions 

Ten AEDs currently licensed and commonly used as monotherapy in at least one country 

were included in the treatment network [72, 73]: 

 carbamazepine (CBZ)  

 phenobarbitone (PHB)  

 phenytoin (PHT)  

 sodium valproate (VPS)  

 lamotrigine (LTG)  

 oxcarbazepine (OXC)  

 topiramate (TPM)  

 gabapentin (GBP)  

 levetiracetam (LEV)  

 zonisamide (ZNS) 

Clinical profiles and mechanisms of action of these ten drugs are detailed in the Cochrane 

Epilepsy IPD-NMA [68, 69]. 

Included trials must make at least one pairwise comparison between at least 2 of the 10 

antiepileptic drugs included in the network. For trials with three treatment arms or more, 

only treatment arms of the ten AEDs listed above are included and any treatment arms not 

included in the network were excluded from analysis. Trials with multiple arms (doses) of the 

same drug were included as long as at least one arm of another drug from our network was 

included (e.g. multiple doses of GBP compared to CBZ) [289]. Multiple dose arms of the same 

drug are pooled in analysis; dose comparisons were outside the scope of this analysis.  

5.2.2  Study selection 

5.2.2.1  Systematic Search methods 

The following databases were searched with no language restrictions: the Cochrane Epilepsy 

Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via 

the Cochrane Register of Studies Online (CRSO), MEDLINE, SCOPUS, ClinicalTrials.gov and 

World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). 

Search strategies are published in the Cochrane Epilepsy IPD-NMA [69]. 

Systematic searches were performed on the following dates: 



 

95 
 

 23rd  November 2011 

 14th September 2012 

 29th July 2013 

 9th September 2014 

 27th July 2016 

Hand-searching was performed of relevant conference proceedings and reference lists of 

retrieved trials. Experts in the field were also contacted for details of any ongoing or 

unpublished trials. 

5.2.2.2  Screening of studies 

One reviewer (SJN) screened all titles and abstracts of all records identified by the electronic 

searches according to the pre-specified inclusion criteria (see Chapter 5.2.1). Subsequently, 

two reviewers (SJN and AGM) independently assessed full-text publications according to the 

same inclusion criteria. Disagreements were resolved by discussion or by consulting a third 

reviewer (CTS). 

5.2.2.3  Results of the systematic search 

Electronic searching identified 6762 records and a further three records were found by hand-

searching and checking reference lists of included trials. Following removal of 3032 duplicate 

records, 3733 records were screened (title and abstract) and 3591 clearly irrelevant records 

were excluded. Full-text articles were accessed and screened for the remaining 142 records 

and 31 trials (described in 32 full-text articles) were excluded. In addition to the excluded 

trials, seven records were identified as ongoing trials and eight records were classified as 

‘awaiting assessment’ as translation into English or further information was required to 

assess eligibility of the trials.  

Figure 7 shows a study flow diagram of the screening process, including reasons for exclusion 

of full-text articles. In total, 77 trials (described in 95 full-text-articles) were included in the 

Cochrane review (see Appendix 10 for references of the primary publication of each trial). 

One full-text article reported on a cohort of participants which were recruited into two 

separate trials [290]; these two trials are treated separately in analysis as ‘Brodie 1995a’ and 

‘Brodie 1995b.’ It was unknown at the time of data request that the cohort of participants 

reported on were recruited in two separate trials, therefore Brodie 1995 is treated as a single 

data request in subsequent sections of this Chapter. 
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Figure 7: Study Flow Diagram: Selection of studies for Cochrane Epilepsy Individual 

Participant Data Network Meta-Analysis 

 

5.2.3.4  Characteristics of included trials 

Table 10 summarises the characteristics of the 77 trials eligible for inclusion in the NMA.  
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Table 10: Characteristics of trials included in Cochrane review and IPD-NMA 

Trial reference1 

Characteristics of included trials6 

Trial AEDs  

Seizure 
type(s)7 Previous AED use permitted? Ages 

Single  or 
Multi Centre 

Type of study 

(sponsorship)8 

IPD 
available 

Aikia 1992 PHT; OXC Both No Adults   Not stated Academic No 

Banu 2007 CBZ; PHB Both No Children   Single   Academic Yes 

Baulac 2012 CBZ; ZNS Partial only No Adults   Multi   Pharmaceutical Yes 

Bidabadi 20092 CBZ; PHB Partial only Not stated Children   Single   Academic No 

Bill 1997 PHT; OXC Both No Adults   Multi   Pharmaceutical Yes 

Biton 2001 LTG; VPS Both Not stated All ages Multi   Pharmaceutical Yes 

Brodie 1995a3 CBZ; LTG Both No All ages Multi   Pharmaceutical Yes 

Brodie 1995b3 CBZ; LTG Both No All ages Multi   Pharmaceutical Yes 

Brodie 1999 CBZ; LTG Both No Elderly   Multi   Pharmaceutical Yes 

Brodie 2002 GBP; LTG Both Not stated Adults   Multi   Pharmaceutical No 

Brodie 2007 CBZ; LEV Both No Adults   Multi   Pharmaceutical Yes 

Callaghan 1985 CBZ; PHT; VPS Both No All ages Single   Academic No 

Capone 20084 CBZ; LEV Not stated New onset post-stroke seizures Adults   Single   Academic No 

Castriota 20084 CBZ; LEV Partial only No Adults   Single   Academic No 

Chadwick 1998 CBZ; GBP Partial only Relapsed seizures permitted All ages Multi   Pharmaceutical Yes 

Chen 1996 CBZ; PHB; VPS Both No Children   Single   Academic No 

Cho 2011 CBZ; LEV Partial only No All ages Single   Academic No 

Christe 1997 OXC; VPS Both No Adults   Multi   Pharmaceutical No 

Consoli 2012 CBZ; LEV Both New onset post-stroke seizures Adults   Multi   Academic No 
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Cossu 19844 CBZ; PHB Partial only No Adults   Single   Academic No 

Craig 1994 PHT; VPS Both No Elderly   Single   Pharmaceutical Yes 

Czapinski 19972 CBZ; PHB; PHT; VPS Partial only No Adults   Not stated Academic No 

Dam 1989 CBZ; OXC Not stated No Adults   Multi   Academic No 

de Silva 1996 CBZ; PHB; PHT; VPS Both No Children   Multi   Academic Yes 

Dizdarer 2000 CBZ; OXC Partial only Not stated Children   Single   Academic Yes 

Donati 2007 CBZ; OXC; VPS Partial only No Children   Multi   Pharmaceutical No 

Eun 2012 CBZ; LTG Partial only No Children   Multi   Academic Yes 

Feksi 1991 CBZ; PHB Both No All ages Single   Pharmaceutical No 

Forsythe 1991 CBZ; PHT; VPS Not stated No Children   Single   Academic No 

Fritz 20062 LTG; OXC Not stated Not stated Adults   Not stated Academic No 

Gilad 2007 CBZ; LTG Partial only New onset post-stroke seizures Adults Single   Academic No 

Guerreiro 1997 PHT; OXC Both No Children   Multi   Pharmaceutical Yes 

Heller 1995 CBZ; PHB; PHT; VPS Both No Adults   Multi   Academic Yes 

Jung 20159 CBZ; LEV Partial only No Children   Multi   Academic No 

Kalviainen 20022 CBZ; LTG Both No Not stated Multi   Pharmaceutical No 

Kopp 20072 CBZ; LEV; VPS Both No Not stated Single   Academic No 

Korean Lamotrigine 
Study Group 20082,9 CBZ; LTG Both No All ages Multi   Pharmaceutical No 

Kwan 2009 LTG; VPS Both Relapsed seizures allowed Adults   Multi   Academic Yes 

Lee 2011 CBZ; LTG Partial only No Adults   Multi   Academic Yes 

Lukic 20052 LTG; VPS Both No Adults   Single   Academic No 

Mattson 1985 CBZ; PHT; PHB Partial only Under-treated seizures allowed  Adults   Multi   Government Yes 

Mattson 1992 CBZ; VPS Partial only Under-treated seizures allowed Adults   Multi   Government Yes 
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Mitchell 1987 CBZ; PHB Partial only No Children   Single   Academic No 

Miura 1990 CBZ; PHT; VPS Both No Not stated Single   Academic No 

Motamedi 20139 LEV; LTG Both No Elderly   Single   Academic No 

NCT014988222,9 OXC; LEV Partial only No Adults   Multi   Pharmaceutical No 

NCT019541212,9 CBZ; LEV Partial only No Adults   Multi   Pharmaceutical No 

Nieto-Barrera 2001 CBZ; LTG Partial only No All ages Multi   Pharmaceutical Yes 

Ogunrin 2005 CBZ; PHT; PHB Both No Adults   Single   Academic Yes 

Pal 1998 PHB; PHT Both No Children   Single   Academic Yes 

Placencia 1993 CBZ; PHB Both No All ages Single   Academic Yes 

Privitera 20035 CBZ; TPM; VPA Both No All ages Multi   Pharmaceutical Yes 

Pulliainen 1994 CBZ; PHT Both No Adults   Single   Academic No 

Ramsey 1983 CBZ; PHT Both No Adults   Multi   Government No 

Ramsey 1992 PHT; VPA GTC only No All ages Multi   Government Yes 

Ramsey 20072 CBZ; LEV Partial only Under-treated seizures allowed Elderly   Multi   Academic No 

Ramsey 2010 PHT; TPM Both Under-treated seizures allowed All ages Multi   Pharmaceutical Yes 

Rasgoti 1991 PHT; VPS Both Not stated All ages Single   Academic No 

Ravi Sudhir 1995 CBZ; PHT Both No Adults   Single   Academic No 

Resendiz 20044 CBZ; TPM Partial only No Children   Multi   Academic No 

Reunanen 1996 CBZ; LTG Both Relapsed seizures allowed All ages Multi   Pharmaceutical Yes 

Richens 1994 CBZ; VPS Both Relapsed seizures allowed Adults   Multi   Pharmaceutical Yes 

Rowan 2005 CBZ; GBP; LTG Both Under-treated seizures allowed Elderly   Multi   Government No 

Saetre 2007 CBZ; LTG Not stated No Elderly   Multi   Pharmaceutical No 

SANAD A 2007 
CBZ; GBP; LTG; OXC; 
TPM Partial only Relapsed seizures allowed All ages Multi   Academic Yes 



 

100 
 

1
0

0
 

SANAD B 2007 LTG; TPM; VPS GTC only Relapsed seizures allowed All ages Multi   Academic Yes 

Shakir 1981 PHT; VPS Both Relapsed seizures allowed All ages Multi   Academic No 

So 1992 CBZ; VPS Partial only Under-treated seizures allowed Adults   Not stated Academic No 

Steiner 1999 LTG; PHT Both No Adults   Multi   Pharmaceutical Yes 

Steinhoff 20055 CBZ; LTG; VPS Both No All ages Multi   Pharmaceutical No 

Stephen 2007 LTG; VPS Both No All ages Single   Academic Yes 

Suresh 20159 CBZ; LEV Partial only No Adults   Single   Academic No 

Thilothammal 1996 PHB; PHT; VPS GTC only No Children   Single   Academic No 

Trinka 20135 CBZ; LEV; VPS Both No Adults   Multi   Pharmaceutical Yes 

Turnbull 1985 PHT; VPS Both No Adults   Single   Academic Yes 

Verity 1995 CBZ; VPS Both Relapsed seizures permitted Children   Multi   Pharmaceutical Yes 

Werhahn 2015 CBZ; LEV; LTG Partial only No Elderly   Multi   Pharmaceutical Yes 

1. See Appendix 10 for reference of the primary publication of each trial and Chapter 5.2.1.3 for abbreviations of drugs. 

2. Available only as abstract, online summary or clinical trial summary report. 

3. Two trials reported in a single publication. 

4. Translated from Italian or Spanish 

5. Trials designed in two strata based on whether recommended treatment would be CBZ or VPS.  

6. Further details of characteristics (e.g. proportions of each seizure type, specific age ranges recruited, geographical locations of centres etc.) are available in the published 

Cochrane IPD-NMA [69]. 

7. GTC: Generalised tonic clonic seizures with or without other generalised types. ‘Both’ – indicates individuals with partial seizures and individuals with GTCs recruited. 

‘Not stated’ indicates that the proportion of each seizure type recruited was not stated.  

8. Academic defined as study conducted within a university or hospital setting without clear government or pharmaceutical sponsorship or involvement. 

9. Trial identified in an updated search in 2016, following closure of database for analysis. IPD request initiated and any IPD provided will be included in an update of the 

Cochrane IPD-NMA. 
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Most of the trials (63 out of 77 trials (82%)) had been published in at least one full-text article 

in English; seven trials were available in abstract form only, two trials were available only as 

an online summary on ClinicalTrials.gov and one trial was available in English only as a clinical 

trial summary report (full-text article published in Korean). Three trials published as a full-

text article in Italian and one trial published as a full-text article in Spanish were translated.   

One published full-text article (Brodie 1995) reported on two separate trials. Furthermore, 

three trials were designed in strata based on whether clinician recommended treatment 

would be CBZ or VPS. Within the two strata, participants were randomised to an 

experimental AED (TPM, LTG or LEV) compared to the clinician recommended treatment. To 

ensure that randomised comparisons are made, the strata in these trials were considered 

separately in this review (i.e. IPD would be analysed in a CBZ branch and a VPS branch). 

Forty-five trials (58%) were multicentre, 28 trials (36%) were single centre and the number 

of centres was not stated for four trials (6%). Trials were conducted globally across North 

America, Europe, South America, Africa and Australasia. Twenty-nine studies (38%) were 

pharmaceutical sponsored (defined as pharmaceutical studies herein), five studies were 

government sponsored (6%, defined as government studies herein) and the remaining 43 

studies (56%) conducted within a university or hospital setting without clear pharmaceutical 

or government sponsorship or involvement (defined as academic studies herein).  

All trials recruited individuals of both genders. Twenty trials recruited individuals of all ages 

(26%), fifteen trials (19%) recruited children only; with the age limits ranging from under 12 

years to under 18 years of age; 32 trials (41%) recruited adults only, with the age limits 

ranging from over 13 years to over 18 years of age; seven trials (9%) recruited elderly 

participants only, with age limits ranging from over 60 years to over 65 years of age; and 

three trials (5%) did not state age ranges of eligible participants.   

Twenty-five trials (32%) were designed to recruit individuals with partial seizures only and 

three trials (4%) were designed to recruit individuals with generalised tonic clonic seizures 

with or without other generalised seizure types or unclassified seizure types only. The 

remaining 49 trials (64%) were designed to recruit individuals with partial or generalised tonic 

clonic seizures with or without other generalised seizure types. However, five of these trials 

did not state the proportion of individuals with each seizure type recruited.  

All trials recruited individuals with new onset seizures; within three trials individuals with 

new onset seizures following stroke were recruited. Fifty-four trials (70%) recruited only 

individuals with no previous AED treatment and fourteen trials also permitted the 
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recruitment of individuals with relapsed or ‘under-treated’ seizures (18%). The remaining six 

trials did not state whether previous AED use was permitted for inclusion.  

5.2.3.5  Methodological quality of included studies 

Methodological quality of the included studies was assessed in all included studies using the 

Cochrane Collaboration’s tool for assessing risk of bias [248]. The following methodological 

criteria are assessed according to this tool: 

 Domain 1: Selection bias (sequence generation) 

 Domain 2: Selection bias (allocation concealment) 

 Domain 3: Performance bias (blinding of participants and personnel) 

 Domain 4: Detection bias (blinding of outcome assessment) 

 Domain 5: Attrition bias (incomplete outcome data) 

 Domain 6: Reporting bias (selective outcome reporting) 

 Domain 7: Other bias (any issues not covered by above domains) 

Risk of bias assessments were made using information in all published reports of trials in 

addition to any unpublished information provided following IPD requests. Table 11 

summarises the methodological quality of the 77 trials eligible for inclusion in the NMA and 

further discussion of the risk of bias assessment can be found in the Cochrane IPD-NMA [69]. 

All trials were described as randomised but 37 trials (48%) did not provide details of how the 

random sequence was generated so were judged to be at unclear risk of selection bias. The 

remaining trials provided details of randomisation methods; in 38 trials (49%) this was judged 

to be adequate and at low risk of selection bias and two trials using alternate randomisation 

(2%) were judged to be at high risk of selection bias. In 28 trials (36%), an adequate method 

of allocation concealment was described (low risk of selection bias), in two trials (3%) it was 

stated that allocation was not concealed for some or all participants (high risk of selection 

bias) and in 47 trials (61%), no details were provided regarding allocation concealment 

(unclear risk of selection bias). 

Twenty-seven trials (35%) were double-blinded (low risk of performance bias), 32 trials (42%) 

were open label (high risk of performance bias) and it was not stated whether participants 

and personnel were blinded in the remaining 18 trials (23%, unclear risk of performance bias). 

Twelve trials (16%) also stated that outcome assessors were blinded (low risk of detection 

bias), 27 trials (35%) stated that outcome assessment was not blinded (high risk of detection 
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bias) and it was not stated whether outcome assessment was blinded in the remaining 38 

trials (49%, unclear risk of detection bias). 

Table 11: Methodological quality of studies included in the Cochrane Epilepsy Review and 

IPD-NMA 

Trial Reference1 

Risk of bias domain2,3 

1 2 3 4 5 6 7 

Aikia 1992 Unclear Unclear Low Unclear High Low Low 

Banu 2007 Unclear Low Low Unclear Low Low High 

Baulac 2012 Low Low Low Low Low Low Low 

Bidabadi 2009 Unclear Unclear Unclear Unclear Unclear Unclear Low 

Bill 1997 Low Low Low Unclear Low Low Low 

Biton 2001 Low Unclear Low Low Low Low Low 

Brodie 1995a Low Low Low Unclear Low Low Low 

Brodie 1995b Low Low Low Unclear Low Low Low 

Brodie 1999 Low Low Low Unclear Low Low Low 

Brodie 2002 Low Unclear Low Unclear Low Low Low 

Brodie 2007 Low Low Low Unclear Low Low Low 

Callaghan 1985 Unclear Low Unclear Unclear Low Low Low 

Capone 2008 Unclear Unclear Unclear Unclear Low Unclear Low 

Castriota 2008 Unclear Unclear High High Unclear Unclear Low 

Chadwick 1998 Low Low High Unclear Low Low Low 

Chen 1996 Low Unclear Unclear Low Unclear Low Low 

Cho 2011 Unclear Unclear Unclear Low Unclear Low Low 

Christe 1997 Unclear Unclear Low Unclear High Low Low 

Consoli 2012 Low Unclear High High High Low High 

Cossu 1984 Unclear Unclear Low Unclear Low Unclear High 

Craig 1994 Low Low High Low Low Low Low 

Czapinski 1997 Unclear Unclear Unclear Unclear Unclear Unclear Low 

Dam 1989 Unclear Unclear Low Unclear High Low Low 

de Silva 1996 Low Low High High Low Low Low 

Dizdarer 2000 High High High High Low Low Low 

Donati 2007 Low Low High High High Low Low 

Eun 2012 Low Unclear High High Low Low Low 

Feksi 1991 Low Low Unclear Unclear High Low High 

Forsythe 1991 High Unclear High Low Low Unclear Low 

Fritz 2006 Unclear Unclear Unclear Unclear Unclear Unclear Low 

Gilad 2007 Unclear Unclear High High Low Low Unclear 

Guerreiro 1997 Low Low Low Unclear High Low Low 

Heller 1995 Low Low High High Low Low Low 

Jung 2015 Low Low High Low High Low Low 

Kalviainen 2002 Unclear Unclear Unclear Unclear Unclear Unclear Low 

Kopp 2007 Unclear Unclear Unclear Unclear Unclear Unclear Low 
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Korean Lamotrigine 
Study Group 2008 Unclear Unclear High High High Low Low 

Kwan 2009 Unclear Unclear High High Low Low Low 

Lee 2011 Low Unclear High High Low Low Low 

Lukic 2005 Unclear Unclear High High Unclear Unclear Low 

Mattson 1985 Unclear Unclear Low Unclear Low Low Low 

Mattson 1992 Low Low Low Unclear Low Low Low 

Mitchell 1987 Unclear Unclear High High Low Low High 

Miura 1990 Unclear Unclear Unclear Unclear Low Unclear Low 

Motamedi 2013 Low Unclear Low Unclear High Low Low 

NCT01498822 Unclear Unclear High High High Low Low 

NCT01954121 Unclear Unclear High High High High Low 

Nieto-Barrera 2001 Low Low High High Low Low Low 

Ogunrin 2005 Low Low Low Low Low Low Low 

Pal 1998 Low Unclear High Low Low Low Low 

Placencia 1993 Low High Unclear Unclear Low Low High 

Privitera 2003 Low Unclear Low Unclear Low Low Low 

Pulliainen 1994 Unclear Unclear Unclear Low High Unclear Low 

Ramsey 1983 Unclear Unclear Low Unclear High Low Low 

Ramsey 1992 Low Unclear High High Low Low Low 

Ramsey 2007 Unclear Unclear Low Unclear Unclear Unclear Low 

Ramsey 2010 Unclear Unclear Low Low Low Low Low 

Rasgoti 1991 Unclear Unclear Unclear Unclear Unclear Low Low 

Ravi Sudhir 1995 Unclear Unclear Unclear Unclear High Unclear Low 

Resendiz 2004 Low Unclear High High High Low Low 

Reunanen 1996 Low Low High High Low Low Low 

Richens 1994 Low Low High High Low Low Low 

Rowan 2005 Low Low Low Unclear Low Low Low 

Saetre 2007 Unclear Unclear Low Unclear Low Low Low 

SANAD A 2007 Low Low High High Low Low Low 

SANAD B 2007 Low Low High High Low Low Low 

Shakir 1981 Low Low Unclear Unclear Low Low Low 

So 1992 Unclear Unclear Low Unclear High Low Low 

Steiner 1999 Unclear Unclear Low Low Low Low Low 

Steinhoff 2005 Unclear Unclear High High High Low Low 

Stephen 2007 Unclear Unclear High High Low Low High 

Suresh 2015 Unclear Unclear High High Unclear High Low 

Thilothammal 1996 Low Unclear Unclear Unclear Low Low Low 

Trinka 2013 Unclear Low High High Low Low Low 

Turnbull 1985 Unclear Unclear Unclear Unclear Low Low Low 

Verity 1995 Low Low High High Low Low Low 

Werhahn 2015 Low Low Low Unclear Low Low Low 

1. See Appendix 10  for reference of the primary publication of each trial 

2. See Chapter 5.2.3.5 for definitions of the domains of risk of bias. 

3. See Cochrane IPD-NMA for full details of risk of bias assessments [69].  
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In theory, a review using IPD should overcome issues of attrition bias and reporting bias as 

unpublished data can be provided, unpublished outcomes calculated and all randomised 

participants can be analysed by an ITT approach. Forty seven trials (61%, including all trials 

providing IPD) were at low risk of attrition bias, as attrition rates were reported and an ITT 

approach was used for analysis. Eighteen trials (23%) were judged to be at high risk of 

attrition bias as participants were excluded from analysis and/or an ITT approach was not 

used. For the remaining 12 trials, mostly those without full-text publications available, were 

judged to be at unclear risk of attrition bias as insufficient information was available to make 

a judgement. Sixty one trials (79%, including all trials providing IPD) were at low risk of 

reporting bias. Two trials (6%) were judged to be at high risk of reporting bias as results were 

not provided for all listed outcomes and for the remaining 14 trials, mostly without full-text 

publications available, were judged to be at unclear risk of reporting bias as insufficient 

information was available to make a judgement. 

Another source of bias was detected in eight trials (10%). Inconsistencies between IPD 

provided and published results were found in four trials which could not be resolved by 

original trial authors. For one trial, too many inconsistencies were present for this data to be 

usable. Three trials were likely to be statistically underpowered and in one trial it was unclear 

if all participants were receiving AED monotherapy treatment.   

5.3  IPD request methodology and preparation of IPD for network 

meta-analysis 

5.3.1  IPD requests prior to 2012 

As described in Chapter 5.2.2.3, 77 trials were identified as eligible for the current IPD-NMA. 

Two of the trials, recruiting 2437 participants, were conducted within the Clinical Trials 

Research Centre at the University of Liverpool, therefore IPD was available on site and did 

not need to be requested [264, 265]. Thirty of these trials reported in 29 publications (see 

Chapter 5.2.2.3 for details of two trials within Brodie 1995 publication) had been identified 

previously by the Cochrane Epilepsy Group for inclusion in IPD-MA or IPD-NMA and IPD 

requests had been initiated between the years of 1995 and 2005 approximately. 

Many of the data requests were initiated at a time when IPD-MA was a relatively novel design 

and when e-mail was not commonly used. Exchanges were conducted by letter, fax, 

telephone and face-to-face meetings with trial investigators. Some datasets supplied had 

never been computerised. Due to the informal nature of many of these requests, no data 

sharing agreements were exchanged and very little documentation was retained regarding 
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the time-to-complete data requests (Professor Anthony Marson (Co-ordinating Editor – 

Cochrane Epilepsy Group), personal communication, January 2012). A summary of the results 

of these 29 IPD requests made is provided in Chapter 5.4.1. 

5.3.2  IPD requests from 2012 to 2015 

IPD requests for newly identified trials were initiated from January 2012 following the first 

systematic search in November 2011. Further requests were initiated in February 2013 and 

December 2013 following updated searches in 2012 and 2013 (see Figure 6). In total, 

requests for IPD from 39 eligible trials were initiated over this time frame. 

For all trials meeting inclusion criteria, a data request letter and a data request form were 

sent to the first or corresponding author of the trial or to the trial sponsor(s) as appropriate. 

The recipients of IPD requests are referred to as data providers herein. Data request letters 

and data request forms were sent by as many methods as possible (e-mail, postal mail, fax).  

A copy of a template request letter and the data request form can be found in Appendix 11. 

The data request form asked data providers if the following information was available:   

 Trial methods: 

o method of generation of random list 

o method of concealment of randomisation 

o stratification factors 

o blinding methods 

 Participant covariates: 

o sex and age 

o seizure types 

o epilepsy status (newly diagnosed / relapsed seizures following drug withdrawal) 

o time between first seizure and randomisation 

o number of seizures prior to randomisation (with dates) 

o presence of neurological signs 

o electroencephalography (EEG) results, computed tomography (CT) and/or 

magnetic resonance imaging (MRI) results 

o aetiology of seizures (if known) 

 Follow-up data: 

o treatment allocation 

o date of randomisation and dates of follow-up 



 

107 
 

o dates of seizures post randomisation or seizure frequency data between follow-

up visits 

o dates of treatment withdrawal and reason(s) for treatment withdrawal 

o starting dose of treatment 

o dates of dose changes 

o adverse events reported. 

The request also included any available, related documents such as case report forms, trial 

protocols, clinical summaries etc. Following the return of the data request form, data 

providers were asked to provide the data indicated to be available; data was accepted in any 

computerised format. 

In the event of no response to the request, a follow-up letter, e-mail and/or fax (as previously 

sent) was sent to the same data provider first contacted. If no response was received 

following the second communication, an alternative trial author or sponsor was contacted if 

their contact details could be sourced. All data requests were considered ongoing until IPD 

was provided or a data provider confirmed that IPD could not be made available. Where IPD 

could not be made available, the quoted reason for non-availability was recorded and an 

additional request for any unpublished AD related to the outcomes of interest of the review 

was made if appropriate.  

Any outstanding data requests were considered unsuccessful at the end of 2015; at this 

point, the database was closed to begin analysis (see Figure 6). Where IPD was not available 

for analysis (confirmation from data provider that IPD could not be provided or no responses 

received to any requests), an assessment was made by one reviewer (SJN) of whether any 

relevant and appropriate AD had been reported in the publication or could be indirectly 

estimated for inclusion in a combined IPD and AD analysis.  

5.3.3  Preparation of IPD for analysis 

All IPD provided (prior to 2012 or in requests made from 2012 to 2015) was stored on a 

secure, dedicated network drive which was accessible only to the statisticians performing 

analysis (SJN, MS, CTS) and the Computer Services Department of the University of Liverpool 

for maintenance purposes. All provided data was checked for consistency and prepared for 

analysis according to a pre-specified procedure which is detailed in Appendix 12.    
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The procedure was designed to ensure a standardised and consistent approach to 

preparation of all data for the IPD-NMA. However given differences in format and content of 

the datasets provided, the procedure serves as a guidance document rather than a direct 

algorithm for the preparation of IPD for analysis. The procedure was piloted firstly by SJN on 

a dataset provided prior to 2012 and secondly on the first dataset received from the 2012-

2015 requests by SJN and MS independently and results were compared. Updates were made 

accordingly following piloting and the procedure outlined in Appendix 12 was applied to all 

newly provided datasets and the remaining datasets provided prior to 2012. Stages of the 

procedure were ignored if not applicable to the dataset in question and additional steps were 

added in on a case-by-case basis if deemed necessary.  

Time to check and prepare a dataset for analysis following the procedure outlined in 

Appendix 12 (including time required for data providers to provide clarification of 

inconsistencies) was monitored approximately, but not recorded precisely. Due to different 

formats and content of IPD provided, resulting in varying numbers and extents of checks 

required, a comparison of total data checking and preparation time across all datasets was 

not deemed appropriate. Furthermore, datasets provided prior to 2012 had been checked 

and prepared for analysis by different statisticians working on the original Cochrane Reviews 

and IPD-MAs [67, 285, 291-296] and it is unlikely that a standardised procedure was used. 

Applicable sections of the procedure were applied to the original datasets provided to 2012 

by SJN where possible (replication of published results, calculation TTE outcomes etc.). 

However, contact with original data providers had not been maintained, therefore 

clarification of any inconsistencies was not possible. 

5.3.3.1  Consistency checking 

Appendix 12 provides full details of relevant consistency checks. In summary, after basic 

checks on the content of the IPD provided has been performed, IPD was cross-checked 

against any published reports of the trial and published results reproduced where possible. 

Also where possible, a review was also conducted of the chronological randomisation 

sequence by checking the balance of prognostic factors, taking account of factors stratified 

for in randomisation procedure. Where any missing data, errors or inconsistencies were 

found, data providers were contacted for clarification. If large or major inconsistencies were 

present which could not be resolved by data providers, the data was not included in any 

analyses. If minor inconsistencies were present, data was included in analysis and sensitivity 

analyses were conducted to test the robustness of results [68]. 
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5.3.3.2  Calculation of time-to-event outcomes 

The following outcome measures were of interest in the IPD-NMA (see Chapter 3.1.2 for 

further discussion of the clinical relevance of these outcomes). Reporting of these outcomes 

in the original trial report was not an eligibility requirement for the Cochrane IPD-NMA.  

 Primary outcome 

o Time-to-withdrawal of allocated treatment (retention time) 

 Secondary Outcomes 

o Time-to-12-month remission after randomisation 

o Time-to-6-month remission after randomisation 

o Time-to-first seizure post randomisation 

Outcomes were calculated from IPD provided following consistency checks and resolution of 

inconsistencies as far as possible (see Chapter 5.3.3 and Appendix 12 for further details). 

Outcomes for all datasets provided from 2012-2015 were calculated by one statistician (SJN 

or MS) and verified by the other. Outcome data which had been previously prepared for the 

original Cochrane IPD-MAs was verified by SJN (see Chapter 5.3.3 for further details). 

For the analysis of ‘time-to-withdrawal of allocated treatment,’ an 'event' was defined as 

either the withdrawal of the allocated treatment due to poor seizure control or adverse 

events or both. Non-compliance with the treatment regimen or the addition of another 

antiepileptic drug were also be classed as 'events'. The outcome was censored if treatment 

was withdrawn because the individual achieved a period of remission, if a participant 

withdrew from allocated treatment for reasons not related to the treatment (such as loss to 

follow-up) or if the individual was still on allocated treatment at the end of follow-up. Two 

authors (SJN and AGM) independently reviewed reasons for treatment withdrawal for 

classification as events or censored observations, and disagreements were resolved by 

discussion or by involving a third author (CTS). 

Calculation of secondary outcomes required seizure dates after randomisation. If seizure 

data were provided in terms of the number of seizures recorded between clinic visits rather 

than specific dates of seizures, to enable the calculation of TTE outcomes, linear interpolation 

was applied to estimate dates of seizures between follow-up visits. For example, if the trial 

recorded 4 seizures between 2 visits that occurred on 1 March 2010 and 1 May 2010 (interval 

of 61 days), then the date of first seizure would be approximately 13 March 2010.  
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Time-to-6-month and 12-month remission were calculated from the date of randomisation 

to the date (or estimated date) the individual had first been free of seizures for six or 12 

months respectively. If the person had one or more seizures during the trial, a six-month or 

12-month seizure-free period could also occur between the date of two seizures during the 

trial (or between the date of the last seizure and date of last follow-up). Time-to-first seizure 

was calculated from the date of randomisation to the date (or estimated date) that their first 

seizure occurred.  

If seizure data were missing for a particular visit, these secondary outcomes were censored 

at the previous visit. These outcomes were also censored if the individual died or if follow-

up ceased prior to the occurrence of the event of interest. Under an ITT approach, individuals 

who withdrew from allocated treatment but did not withdraw from follow-up (e.g. those 

who remained in the trial on an alternative treatment) were not censored at the date of 

withdrawal from treatment and remained ‘at risk’ for the secondary seizure outcomes. 

5.4  Results of IPD Requests 

At the end of 2015 the IPD database was closed to begin analysis and any outstanding 

requests at that point were considered to be unsuccessful. An additional systematic search 

was carried out in July 2016 in line with Methodological Expectations of Cochrane 

Intervention Reviews that published reviews must be as up-to-date as possible [297]. This 

search identified six eligible trials (recruiting 1460 participants). IPD requests have been 

initiated for each of these trials (via methods described in Chapter 5.3.2) and any IPD 

provided from these trials will be included in an update of the Cochrane IPD-NMA. 

5.4.1  IPD requests prior to 2012 

As outlined in Chapter 5.3.1, 30 unique trials reported in 29 publications were identified 

previously by the Cochrane Epilepsy Group for inclusion in IPD-MA or IPD-NMA and IPD 

requests had been initiated between the years of 1995 and 2005 approximately. According 

to the type of study sponsorship, fifteen of these studies are defined as academic studies, 

ten are defined as pharmaceutical studies and four are defined as government studies (see 

Chapter 5.2.3.4 for further details of definitions). 

IPD was requested for a total of 5887 participants from these 30 trials (29 requests) and IPD 

was provided for 4703 (80%) participants from 18 (62%) of these 29 requests. IPD was 

provided from trials published between 1985 and 2001.  Over 90% of IPD requested from 

pharmaceutical and government sponsored studies was successfully received (data provided 
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for 3695 out of 4084 participants from 12 out of 14 studies (86%)). However, only 56% of IPD 

(from 1008 out of 1803 participants) requested from 6 out of 15 academic sponsored studies 

(40% of studies) could be retrieved (see Table 12). IPD was not retrieved from a total of 11 

eligible trials, published between 1981 and 1997, recruiting 1184 participants (38% of all 

eligible trials); for the majority of these trials, data had been lost or was no longer available 

due to the time elapsed since the trial (Table 12).  

5.4.2  IPD requests from 2012-2015 

As outlined in Chapter 5.3.2, 39 IPD requests were initiated between 2012 and 2015. 

According to the type of study sponsorship, 24 of these studies are defined as academic 

studies, 14 are defined as pharmaceutical studies and one is defined as a government study 

(see Chapter 5.2.3.4 for further details of definitions). 

IPD was requested for a total of 8177 participants from these 39 trials. Four of the requests 

for pharmaceutical studies were made via data sharing portal ClinicalStudyDataRequest.com 

(CSDR) (or original platform ‘GSK Share’ between May 2013 and January 2014, see Chapter 

1.3 for further details of data sharing portals). All other requests were made directly to the 

relevant sponsor.  

At the close of the database at the end of 2015, IPD had been received for 5251 participants 

(64% of the total requested) from 15 (38%) trials requested from 2012 to 2015 (Table 12).  

Figure 8 shows the duration and outcome of the 39 IPD requests. For the fifteen successful 

requests, the median time from initial request to receiving data was similar between 24 

academic studies (343 days (range 154 to 861 days)) and 14 pharmaceutical studies (363 days 

(range 280 to 725 days)). The time taken to receive IPD for a single trial via CSDR was 364 

days, but it must be noted that the request was first submitted in June 2013 when the 

platform was newly initiated and processes still under development so this may not reflect 

current timelines to providing data in CSDR. 

IPD was not retrieved from a total of 24 eligible trials published between 1989 and 2012. For 

11 trials recruiting 1537 participants, the data provider confirmed that IPD was not available 

(i.e. a negative response to the data request). The median time from initial request to 

negative response from these 11 trials was 287 days (range 1 to 784 days).  
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Figure 8: Duration and outcome of data requests for 39 randomised controlled trials of antiepileptic drugs 
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Table 12: Outcome of individual participant data requests conducted between approx. 1995 to 2005 and 2012 to 2015.  

Number of studies and 
participants requested1,2 

Original requests (approx. 1995 – 2005) New requests (2012-2015) All requests (approx. 1995-2015) 

Ac Go Ph Total Ac Go Ph Total Ac Go Ph Total 

Eligible studies requested 15 4 10 293 24 1 14 39 39 5 24 68 

Studies providing IPD (n (%)) 
6  
(40%) 

3  
(75%) 

9 
(90%) 

18  
(62%) 

7  
(29%) 

0 
(0%) 

8 
(57%) 

15  
(38%) 

13  
(33%) 

3  
(60%) 

17  
(71%) 

33 
(49%) 

Eligible participants requested 1803 1178 2906 5887 1813 593 5771 8177 3616 1771 8677 14084 

Participants IPD is provided for 
(n (%)) 

1008  
(56%) 

1091 
(93%) 

2604  
(90%) 

4703 
(80%) 

717 
(40%) 

0  
(0%) 

4534 
(79%) 

5251 
(64%) 

1725  
(48%) 

1091 
 (62%) 

7138  
(82%) 

9954 
(71%) 

Reason data was not available: Number of studies (n (%)) 

Data lost  5 (33%) 1 (25%) 0 (0%) 6 (21%) 3 (13%) 0 (0%) 0 (0%) 3 (8%) 8 (21%) 1 (20%) 0 (0%) 9 (13%) 

Relevant data not recorded 2 (13%) 0 (0%) 0 (0%) 2 (7%) 1 (4%) 0 (0%) 0 (0%) 1 (3%) 3 (8%) 0 (0%) 0 (0%) 3 (4%) 

Unable to make contact with 
an author / sponsor 1 (7%) 0 (0%) 0 (0%) 1 (3%) 11 (46%) 0 (0%) 0 (0%) 11 (28%) 12 (31%) 0 (0%) 0 (0%) 12 (18%) 

Positive response but no data 
received 1 (7%) 0 (0%) 0 (0%) 1 (3%) 1 (4%) 1 (100%) 0 (0%) 2 (5%) 2 (5%) 1 (20%) 0 (0%) 3 (4%) 

Incomplete dataset provided 
which could not be used 0 (0%) 0 (0%) 1 (10%) 1 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 1 (1%) 

Local authority / ethical 
restrictions 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 1 (3%) 1 (3%) 0 (0%) 0 (0%) 1 (1%) 

“Data not available”4  0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (21%) 3 (8%) 0 (0%) 0 (0%) 3 (13%) 3 (4%) 

Costs of providing data are 
prohibitive 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (14%) 2 (5%) 0 (0%) 0 (0%) 2 (8%) 2 (3%) 

Country specific restrictions 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 1 (3%) 0 (0%) 0 (0%) 1 (4%) 1 (1%) 

Total 9 (60%) 1 (25%) 1 (10%) 11 (38%) 17 (61%) 1 (100%) 6 (43%) 24 (62%) 26 (67%) 2 (40%) 7 (29%) 35 (51%) 

Abbreviations: Ac: Academic studies, IPD: Individual Participant Data, Go: Government Studies, NMA: Network Meta-Analysis, Ph: Pharmaceutical Studies (see next page for 

footnotes) 



 

114 
 

1. In addition, we had IPD available from our own ‘SANAD’ trial [264, 265], the largest ever 

in epilepsy at the time, which randomised 2437 participants 

2. An additional search was conducted in July 2016 and six eligible trials (recruiting 1460 

participants) were identified. IPD requests for these trials have been initiated and any 

IPD made available will be included in an update of the Cochrane IPD-NMA (see Chapter 

5.4.2 for further details). 

3. In total, 29 data requests were made, one request resulted in the provision of data from 

two trials (reported in a single publication). These two trials are treated as a single 

request in this table. 

4. Refers to a non-specific reason (data not available for secondary analysis with no further 

reason provided). 

 

Reasons for negative response were: 

(i) country specific restrictions over anonymisation of data (one request submitted to 

CSDR for a pharmaceutical study conducted in 2005) 

(ii) cost of retrieving and preparing data prohibitive due to age of study (two requests 

submitted to CSDR for pharmaceutical studies conducted in 2002 and 2007) 

(iii) data cannot be made available, no more specific details provided (three requests 

directly to pharmaceutical sponsors for studies conducted between 1997 and 2007) 

(iv) concerns regarding ethical approval for sharing data (one academic author, study 

conducted 2011) 

(v) the data requested were not recorded (one academic author, study conducted 2005)   

(vi) data were lost (three academic authors of studies conducted between 1992 and 

2012; one of which provided additional unpublished summary data) 

For the remaining 13 trials, two (one government and one academic) had indicated an initial 

positive response to data requests but data was not provided by the close of database, whilst 

for 11 trials (nine academic and two pharmaceutical) no response was received to any 

communications. These 13 data requests were closed at a median of 972 (range 640 to 1448 

days) after initial request (Figure 8). If response is received to any of these 13 data requests 

following the close of database and IPD is subsequently provided, it will be included in an 

update of the Cochrane IPD-NMA.  

It must be emphasised when interpreting the timelines of the requests between 2012 and 

2015, that data sharing policies and platforms were under development, and that all of the 

pharmaceutical sponsors contacted directly at the time of request have since committed to 

CSDR or an equivalent data sharing platform such as YODA [298].  
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5.4.3  Total IPD available for Cochrane IPD-NMA 

At the close of database at the end of 2015, the total number of participants data provided 

from IPD requests was 9954 out of 14084 participants (71% of total eligible participants 

requested) from 33 out of 68 trials (49% of eligible trials requested, Table 12).  

As outlined in Chapter 5.3.1, IPD for two trials recruiting 2437 participants were available on 

site at the University of Liverpool (data requests not required) and a single data request 

resulted in provision of data from two separate trials. Further, IPD requests for six trials, 

recruiting 1460 participants, identified and initiated following the close of database did not 

provide any IPD for the current Cochrane IPD-NMA (but any IPD provided will be included in 

an update of the IPD-NMA, see Chapter 5.4 for further details). 

Therefore, IPD for 12,391 out of a total of 17,961 eligible participants (69% of total data) from 

36 out of the 77 eligible trials (47%) was provided for the current Cochrane IPD-NMA. The 

statistical analyses and results of the Cochrane IPD-NMA are presented in Chapter 6. 

Data were available for the following participant characteristics (percentage of 12,391 

participants with data available): sex (99.5%, data missing for 75 participants), seizure type 

(96%, data missing for 555 participants), drug randomised (99.9%, data missing for 11 

participants), age at randomisation (99%, data missing for 98 participants), number of 

seizures in six months prior to randomisation (83%, data missing for 2135 participants), and 

time since first seizure to randomisation (37%, data missing for 7820 participants).Thirteen 

trials provided the results of neurological examinations for 5367 participants (43%). 

Seventeen trials provided electroencephalographic (EEG) results for 2990 participants (24%). 

Fifteen trials provided computerised tomography/magnetic resonance imaging (CT/MRI) 

results for 2083 participants (16%). 

Sufficient IPD was provided to calculate all four outcomes (see Chapter 5.3.3.2) for 20 of the 

36 trials. Time-to-12-month remission could not be calculated for nine trials as the duration 

of the trial was less than 12 months and for a further four trials, neither time-to-12-month 

remission or time-to-6-month remission could be calculated as the duration of the trial was 

less than 6 months. For one additional trial, only the date of first seizure recurrence after 

randomisation was provided (dates of subsequent seizures not available), therefore only 

time-to-first seizure could be calculated and remission outcomes could not. For four trials, 

time-to-withdrawal of allocated treatment could not be calculated; for three trials, 

insufficient information was available regarding dates or reasons for withdrawal and for one 

trial, all participants completed the twelve week follow-up without treatment withdrawal. 
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Table 13 shows the number of participants randomised to each of the 10 drugs, split 

according to the trials for which IPD were available and not available. 

Table 13: Number of participants randomised to each drug for trials with IPD provided or 

not provided 

 

Trials providing IPD 

Trial \ Drug1 CBZ PHB PHT VPS LTG OXC LEV TPM GBP ZNS Total5 

Banu 2007 54 54 0 0 0 0 0 0 0 0 108 

Baulac 2012 301 0 0 0 0 0 0 0 0 282 583 

Bill 1997 0 0 144 0 0 143 0 0 0 0 287 

Biton 2001 0 0 0 69 66 0 0 0 0 0 136 

Brodie 1995a 66 0 0 0 70 0 0 0 0 0 136 

Brodie 1995b 63 0 0 0 61 0 0 0 0 0 124 

Brodie 1999 48 0 0 0 102 0 0 0 0 0 150 

Brodie 2007 291 0 0 0 0 0 288 0 0 0 579 

Chadwick 

1998 

74 0 0 0 0 0 0 0 218 0 292 

Craig 1994 0 0 81 85 0 0 0 0 0 0 166 

de Silva 1996 54 10 54 49 0 0 0 0 0 0 173 

Dizdarer 2000 26 0 0 0 0 26 0 0 0 0 52 

Eun 2012 41 0 0 0 43 0 0 0 0 0 84 

Guerreiro 

1997 

0 0 94 0 0 99 0 0 0 0 193 

Heller 1995 61 58 63 61 0 0 0 0 0 0 243 

Kwan 2009 0 0 0 44 37 0 0 0 0 0 81 

Lee 2011 53 0 0 0 57 0 0 0 0 0 110 

Mattson 1985 155 155 165 0 0 0 0 0 0 0 475 

Mattson 1992 236 0 0 244 0 0 0 0 0 0 480 

Nieto-Barrera 

2001 

202 0 0 0 420 0 0 0 0 0 622 

Ogunrin 2005 19 18 18 0 0 0 0 0 0 0 55 

Pal 1998 0 47 47 0 0 0 0 0 0 0 94 

Placencia 

1993 

95 97 0 0 0 0 0 0 0 0 192 

Privitera 

2003 (CBZ)2 

129 0 0 0 0 0 0 266 0 0 395 

Privitera 

2003 (VPS)2 

0 0 0 78 0 0 0 147 0 0 225 

Ramsey 1992 0 0 50 86 0 0 0 0 0 0 136 

Ramsey 2010 0 0 128 0 0 0 0 133 0 0 261 

Reunanen 

1996 

121 0 0 0 230 0 0 0 0 0 351 

Richens 1994 151 0 0 149 0 0 0 0 0 0 300 
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SANAD A 2007 378 0 0 0 378 210 0 378 377 0 1721 

SANAD B 2007 0 0 0 238 239 0 0 239 0 0 716 

Steiner 1999 0 0 95 0 86 0 0 0 0 0 181 

Stephen 2007 0 0 0 109 117 0 0 0 0 0 227 

Trinka 

2013 (CBZ)2 

503 0 0 0 0 0 493 0 0 0 999 

Trinka 

2013 (VPS)2 

0 0 0 353 0 0 350 0 0 0 703 

Turnbull 1985 0 0 70 70 0 0 0 0 0 0 140 

Verity 1995 130 0 0 130 0 0 0 0 0 0 260 

Werhahn 2015 121 0 0 0 118 0 122 0 0 0 361 

Total 3372 439 1009 1765 2067 478 1253 1163 595 282 12391 

Trials not providing IPD 

Trial \ Drug CBZ PHB PHT VPS LTG OXC LEV TPM GBP ZNS Total1  

Aikia 1992 0 0 18 0 0 19 0 0 0 0 37 

Bidabadi 2009 36 35 0 0 0 0 0 0 0 0 71 

Brodie 2002 0 0 0 0 151 0 0 0 158 0 309 

Callaghan 

1985 

59 0 58 64 0 0 0 0 0 0 181 

Capone 2008 17 0 0 0 0 0 18 0 0 0 35 

Castriota 2008 14 0 0 0 0 0 13 0 0 0 27 

Chen 1996 26 25 0 25 0 0 0 0 0 0 76 

Cho 2011 15 0 0 0 0 0 16 0 0 0 31 

Christe 1997 0 0 0 121 0 128 0 0 0 0 249 

Consoli 2012 66 0 0 0 0 0 62 0 0 0 128 

Cossu 1984 6 6 0 0 0 0 0 0 0 0 12 

Czapinski 1997 30 30 30 30 0 0 0 0 0 0 120 

Dam 1989 100 0 0 0 0 94 0 0 0 0 194 

Donati 2007 28 0 0 29 0 55 0 0 0 0 112 

Feksi 1991 152 150 0 0 0 0 0 0 0 0 302 

Forsythe 1991 23 0 20 21 0 0 0 0 0 0 64 

Fritz 2006 0 0 0 0 21 27 0 0 0 0 48 

Gilad 2007 32 0 0 0 32 0 0 0 0 0 64 

Jung 20153 64 0 0 0 0 0 57 0 0 0 121 

Kalviainen 

2002 

70 0 0 0 73 0 0 0 0 0 143 

Kopp 2007 6 0 0 3 0 0 6 0 0 0 15 

Korean LTG  

Study Group 

20083 

129 0 0 0 264 0 0 0 0 0 393 

Lukic 2005 0 0 0 38 35 0 0 0 0 0 73 

Mitchell 1987 15 18 0 0 0 0 0 0 0 0 33 

Miura 1990 66 0 51 46 0 0 0 0 0 0 163 
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Motamedi 

20133 

0 0 0 0 50 0 50 0 0 0 100 

NCT014988223 0 0 0 0 0 178 175 0 0 0 353 

NCT019541213 215 0 0 0 0 0 218 0 0 0 433 

Pulliainen 

1994 

23 0 20 0 0 0 0 0 0 0 43 

Ramsey 1983 42 0 45 0 0 0 0 0 0 0 87 

Ramsey 20074 ? 0 0 0 0 0 ? 0 0 0 37 

Rasgoti 1991 0 0 45 49 0 0 0 0 0 0 94 

Ravi Sudhir 

1995 

20 0 20 0 0 0 0 0 0 0 40 

Resendiz 2004 42 0 0 0 0 0 0 46 0 0 88 

Rowan 2005 198 0 0 0 200 0 0 0 195 0 593 

Saetre 2007 92 0 0 0 93 0 0 0 0 0 185 

Shakir 1981 0 0 15 18 0 0 0 0 0 0 33 

So 1992 17 0 0 16 0 0 0 0 0 0 33 

Suresh 20153 30 0 0 0 0 0 30 0 0 0 60 

Steinhoff 2005 

(CBZ)2 

88 0 0 0 88 0 0 0 0 0 176 

Steinhoff 2005 

(VPA)2 

0 0 0 30 33 0 0 0 0 0 63 

Thilothammal 

1996 

0 51 52 48 0 0 0 0 0 0 151 

Total 1721 315 374 538 1040 501 645 46 353 0 5570 

Grand total 5093 754 1383 2303 3064 979 1898 1209 948 282 17950 

 

IPD provided 66% 58% 73% 77% 66% 49% 66% 96% 63% 100% 69% 

1. See Appendix 10 for reference of the primary publication of each trial and Chapter 5.2.1.3 for 

abbreviations of drugs. 

2. Trials designed in strata based on clinician recommended treatment. Within the two strata, 
participants were randomised to TPM (Privitera 2003), LEV (Trinka 2013) or LTG (Steinhoff 
2005) or CBZ / VPS depending on the strata. Data analysed according to the separate strata.  

3. Trial identified in an updated search in 2016, following closure of database for analysis. IPD 
request initiated, any IPD provided will be included in an update of the Cochrane IPD-NMA. 

4. One trial provided the total number randomised but not the numbers randomised to each 
group. The 37 participants randomised are counted in the overall totals. 

5. Drug allocated missing for 11 participants in the IPD provided. 
 

Figure 9 shows the networks of trials with and without IPD provided. Specifically, IPD was 

provided for all direct pairwise comparisons in the overall network except for OXC compared 

to VPS and OXC compared to LEV. In fact, out of all drugs included in the network, the lowest 

proportion of data was received for OXC (49%, Table 13). Aside from the lack of IPD for the 

OXC / VPS and OXC / LEV comparisons, the networks of the trials with and without IPD appear 

visually similar (Figure 9).  
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Figure 9: Network plots of pairwise comparisons for all trials, for trials providing IPD and 

for trials not providing IPD for a network meta-analysis of 10 antiepileptic drugs 

  
See Table 12 and Table 13 for numbers of trials and participants providing and not providing 

IPD and Chapter 5.2.1.3 for abbreviations of drugs. 
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Figure 10: Characteristics of studies providing or not providing IPD 

 

 
1. See Chapter 5.2.3.4 for further details of the definitions of characteristics 

2. High risk of bias defined as at least one domain of the Cochrane Risk of Bias tool deemed to be 

at high risk of bias, see Chapter 5.2.3.5 for further details 

3. P-values calculated from Fishers Exact test due to small numbers in some categories of 

characteristics. 𝜒2 p-values were also calculated for completeness, conclusions were unchanged.  
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Further exploratory examination of the characteristics of the studies with and without IPD 

was carried out via graphical plots and using Fisher’s Exact Test (due to some small numbers 

in categories of characteristics); see Table 10 and Figure 10. Principally, due to additional 

communications with data providers regarding trial design for trials providing IPD compared 

to replying on published information only for trials without IPD; there were much fewer cases 

of a characteristic ‘not stated’ in trials providing IPD across all characteristics.  

There were no significant differences between trials with and without IPD in terms of ages 

and epilepsy type recruited and designs permitting participants with previous AED use. There 

was also no significant difference in terms of methodological quality of the trials with and 

without IPD (in terms of a least one domain of the Cochrane Risk of bias tool at high risk of 

bias, Table 11) or in terms of the date of publication of trials with and without IPD.  

There were significant differences between trials with and without IPD in terms of the design 

and source of funding of trials; with more multi-centre trials and more pharmaceutical trials 

providing IPD and more single centre trials and more academic trials not providing IPD. There 

were also significant differences in the sizes of trials with and without IPD; trials providing 

IPD tended to be larger than trials not providing IPD. This is also reflected in the proportion 

of participant data (69%) provided compared to the proportion of trials providing data (49%). 

These three significant characteristics are all related to the resources of the trial; larger multi-

centre pharmaceutical trials are likely to have more resources to prepare IPD than small, 

single centre academic trials (also see Table 12 for reasons IPD was not provided).  

The majority of studies not providing IPD did not report any of the outcomes of interest to 

the Cochrane review; this was not a criteria for inclusion in the review as the intention was 

to calculate these outcomes in a standardised manner using IPD. Therefore, it was difficult 

to examine whether ‘significant’ or ‘positive’ trial results were related to provision of IPD or 

conversely whether trials with ‘negative’ results were less likely to provide IPD. Figure 11 

shows a comparison-adjusted funnel plot of the trial-specific effect sizes for primary outcome 

‘Time-to-withdrawal of allocated treatment’ for the network of interventions, produced via 

the ‘netfunnel’ command in Stata version 14 [299]. 

Visual inspection of this network funnel plot and a test for asymmetry does not suggest that 

‘publication bias’ (i.e. bias from missing results from studies without IPD) is present for this 

outcome. However, an association between trial resources and provision of IPD may have 

implications for updates of this Cochrane IPD-NMA (and for systematic IPD-MA generally).  
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Figure 11: Comparison-adjusted network funnel plot of trial-specific ln HRs for time-to-

withdrawal of allocated treatment 

 
1. Produced via ‘netfunnel’ command in Stata 14 [299].  

2. Dotted line corresponds to the study effect sizes centred at the comparison-specific summary 

plotted against the standard error of the log hazard ratio. P-value corresponds to a t-test of 

the gradient of the line (difference from zero which would indicate asymmetry). 

5.5  Discussion 

5.5.1  Reflection of experiences Group and implications 

The first in the series of Cochrane Epilepsy Group IPD-MA was published in 2000 when such 

an approach was relatively novel and methodology limited [67]. This meta-analysis included 

IPD from 63% of total trials and 83% of total participants, a good retrieval rate in the wider 

context of all IPD-MAs (see Chapter 4). Success rate of the group of retrieving IPD has 

declined from 80% up to around 2005 to 65% between 2012 and 2015 (Table 12). It should 

be noted that this difference in IPD retrieval rate could be due to chance, nonetheless, the 

apparent decline in the proportion of IPD provided is of concern.   

Results of the systematic review outlined in Chapter 4 of this thesis showed that Cochrane 

reviews were less likely to retrieve all or a high proportion of IPD than non-Cochrane reviews. 

This may be explained by the inclusion of thorough search methods within Cochrane reviews, 

as well as advances in systematic searching of larger electronic databases generally, leading 

to the identification of larger numbers of studies including more grey literature studies where 

IPD may be difficult to retrieve with the resources available to review authors, such as 

Cochrane review authors who usually undertake systematic reviews on a voluntary basis. 



 

123 
 

Also of concern are changes in the reported reasons for lack of data availability. Table 12 

demonstrates that loss of datasets is an issue for academic trials and has been for many 

years, highlighting a need for better methods of data curation and solutions for long-term 

storage and access. As highlighted in Chapter 4, lack of specific reasons for unavailability of 

IPD remains an issue in the reporting of IPD-MA and Cochrane Epilepsy Group experiences of 

data requesting show that this issue is not restricted to the reporting of IPD-MA and also 

exists at the study request level; IPD from three out of 35 studies was ‘not available’ with no 

further reason stated (Table 12). During more recent requests, ‘prohibitive costs’ have 

prevented the sharing of pharmaceutical data. Additional costs and resources associated 

with IPD-MA are generally considered to be incurred by the meta-analysts [22-24]; however 

in this new era of commercial data sharing platforms [91] and requirement of high level data 

de-identification, costs to data providers have certainly increased and should be taken under 

consideration when planning an IPD-MA [300]. Collaboration, financial or otherwise, 

between meta-analysts and data providers may assist in sharing costs and resources, 

potentially maximising retrieval rates of IPD.  

Despite our highlighted concerns, recent changes in methods of data sharing have resulted 

in several benefits to our analyses. Our most common reason for not retrieving data, an issue 

only for academic trials, was due to failing to make contact with data providers. In our 

experience, facilities within pharmaceutical data sharing platforms allowed a clear and 

transparent pathway of communication between data requestors and providers; but the 

continued benefit of such facilities will require increasing uptake of such platforms from both 

data users and data providers, from both a pharmaceutical and non-pharmaceutical setting.  

In addition to improvements in Good Clinical Practice over time, resulting from regulations 

such as the European Union Clinical Trials Directive [298], a greater focus on data privacy and 

additional preparation required to share a dataset has resulted in ‘cleaner’ datasets provided 

in the most recent requests compared to earlier and previous requests. As described in 

Chapter 5.3.3, the exact time required to check and prepare datasets was not recorded but 

the most recent datasets provided (see Figure 8) required minimal to no clarification of 

inconsistencies, therefore reducing the relative time to prepare the dataset for analysis.  

While under the new framework of data sharing platforms, additional time and resources 

must allow for constructing a research proposal, independent scientific review, signing of 

data sharing agreements and de-identification of data; recent datasets provided have 

required much less data cleaning prior to analysis than in previous years, implying a shift in 
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the time required to perform an IPD-MA, rather than an increase. However, the research 

community must ensure that procedures to access IPD do not become over-burdensome, 

over-costly and prohibitive and that common sense and responsible risk proportionate 

approaches should be used [79, 84]. 

5.5.2  Relation to the wider context of clinical trial data sharing 

A summary of the development and processes of data sharing platforms such as CSDR and 

YODA is provided in Chapter 1.3. Both CSDR and the YODA project provide metrics related to 

submitted research proposals [91, 93]. Metrics provided by YODA relate to requests for de-

identified individual participant datasets and to de-identified clinical study reports (CSRs) 

combined whereas requests to CSDR relate only to individual participant datasets.  

To 31st May 2017, out of 291 research proposals submitted to CSDR and processed, 235 (81%) 

met initial requirements and 198 (68%) were approved (or approved with conditions) by the 

independent review panel. Out of 296 proposals submitted since January 2014, 50 (17%) 

were multi-sponsor proposals. Data sharing agreements have been signed for 163 proposals 

and de-identified datasets provided for 153 proposals. Results for eight data requests 

(provided with access to between one and fourteen datasets from a single sponsor) have 

been published to date [69, 100-103, 106-108] and one publication is listed to be in press 

according to CSDR [91] with other requests remaining ‘in process.’ 

According to metrics provided on the YODA project website, to 1st July 2017, all 65 fully 

reviewed research proposals were approved by YODA for Johnson & Johnson datasets or 

CSRs with a median of eight days for YODA project review. Data access (to IPD or CSRs) has 

been granted for 59 proposals and results of two proposals have been published to date [104, 

105]. Further partners of the YODA project are Medtronic Inc. and SI-Bone Inc. The YODA 

data sharing model was first put into practice via independently performed systematic 

reviews of the safety and efficacy of Medtronic’s recombinant human bone morphogenetic 

protein-2 product [301, 302]. Up to July 2017, no requests had been made via the YODA 

project to use SI-Bone data.  

Metrics are also provided for the number of ‘enquiries’ for non-listed studies on both the 

CSDR and YODA project websites. To 31st March 2017, out of 784 unique studies requested 

via enquiries on CSDR, following feasibility checks, a positive response was provided for 321 

studies (41%) (I.e. a researcher would be able to submit a research proposal for that study 

and the study would subsequently be listed on CSDR). A negative response was provided for 

the remaining 389 studies (59%) and access to data from the study would not be provided. 
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To 1st July 2017; out of 164 unique studies within answered enquiries to the YODA project, a 

positive response was provided for 100 studies (61%) and a negative response was provided 

for the remaining 64 studies (38%).  

Table 14: Reasons why access could not be provided to de-identified study data following 
enquiries to CSDR and YODA 

Reason why access cannot be provided to data1 Number of studies 

CSDR YODA2 Total 

Sponsor did not agree to share data from Phase I 

or Phase IV trials 

143 (31%) 25 (39%) 168 (32%) 

Interventional product not approved  / 

unapproved indication or terminated  

77 (16%) 11 (17%) 88 (17%) 

Considered out of scope as per the Sponsor 

Specific Information1 

75 (16%) 0 (0%) 75 (14%) 

Cannot be anonymised or likelihood of re-

identification 

53 (11%) 0 (0%) 53 (10%) 

Study ongoing or unpublished 33 (7%) 16 (25%) 49 (9%) 

Interventional product not or no longer owned 

by that sponsor 

43 (9%) 0 (0%) 43 (8%) 

Sponsor does not have legal authority to share 

the data 

15 (3%) 0 (0%) 15 (3%) 

Data sharing commitment with a development 

partner, partner does not agree to share 

1 (<1%) 10 (17%) 11 (2%) 

Foreign language studies or documentation not 

available in English 

7 (2%) 4 (7%) 11 (2%) 

Data unavailable 7 (2%) 0 (0%) 7 (1%) 

Costs / resources prohibitive to providing data 

due to age of studies 

5 (1%) 0 (0%) 5 (<1%) 

Beyond the period that sponsor retains study 

data and documentation 

2 (<1%) 0 (0%) 2 (<1%) 

Requested data is already publicly available 2 (<1%) 0 (0%) 2 (<1%) 

Data cannot be converted to electronic format 0 (0%) 1 (2%) 1 (<1%) 

Total  463 67 530 

Abbreviations: CSDR: ClinicalStudyDataRequest; YODA: Yale University Data Access 

1. Classified into 'general' reasons and merged for all sponsors, exact wording for each sponsor 

(including Sponsor Specific Information) can be found on CSDR and YODA websites [91, 93] 

2. Number of reasons listed (67) is greater than number of studies listed (64); assumed that 

more than one reason for a negative response can be given per study 

A summary of the list of sponsor reported reasons for a negative response to enquiries to 

CSDR and the YODA project is provided in Table 14. The majority of reported reasons (around 

70%) were related to the legal authority of the sponsor to share the requested data; e.g. data 

from early phase studies (a third of negative responses were requests for Phase I study data), 

from studies of unapproved or terminated intervention products, from ongoing studies and 

from studies with a development partner who does not agree to share data. Such reasons, 
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other than restrictions around ongoing or unpublished studies, would generally not be 

applicable in the context of IPD syntheses with the objective of establishing clinical 

effectiveness or safety of approved interventions. Research proposals or further objectives 

of projects for which early phase or off-licence product use were requested via enquiries to 

CSDR or the YODA project are not available; but would make an interesting comparison to 

the objective of the list of approved research proposals provided on the respective websites. 

As reflected in the Cochrane Epilepsy Group requests, a proportion (around 15%) of sponsor 

reported reasons listed on the CSDR website were non-specific such as ‘Data not available’ 

or ‘Considered out of scope as per the Sponsor Specific Information’ without further detail 

Furthermore, ‘Sponsor Specific Information’ for all sponsors states (in various wording) that 

studies with a risk of re-identification such as single centre studies, studies in rare diseases 

or studies with very small sample sizes will not be provided [91]. Documentation of the 

anonymisation standards employed by each sponsor are provided but details are not 

provided on any methodology employed by sponsors to quantify the re-identification risk 

[303] or criteria for judging when the risk of re-identification is too high to share data, even 

though this reason is listed for 9% of studies requested via enquires to CSDR. 

As outlined in Chapter 5.4.2, three out of the four requests made by the Cochrane Epilepsy 

Group via CSDR resulted in a negative response related to resources to fulfil the requests (i.e. 

prohibitive costs or facilities to translate documentation of foreign language studies). Such 

resource related reasons seem to have been specific to the studies under request for 

Cochrane Epilepsy reviews and are in the minority (around 2%) of sponsor reported reasons 

for all negative responses to enquires made to CSDR and the YODA project. Informal 

comparison of the IPD retrieval rate of the Cochrane Epilepsy Group for the conduct of 

systematic IPD-MAs and NMAs and reasons provided for unavailability of data to the 

researcher reported ‘approved research proposals’ and sponsor reported reasons for 

negative responses to data requests may provide some insight to the type of data requests 

and research projects suited to data request platforms. 

Considering the 161 approved research proposals published on the CSDR website up to July 

2017 (restricted to IPD requests, whereas requests to YODA may be for IPD or CSRs), 30 (19%) 

clearly describe a proposal for meta-analysis but only 12 (7% of total proposals) clearly 

describe a systematic approach to meta-analysis. Information provided on the CSDR website 

regarding research proposals is limited so a larger proportion may in fact intend to perform 

a systematic IPD-MA, however IPD-MA (systematic or not), are currently in minority of 

approved research proposals on CSDR. At the time of writing, two systematic IPD syntheses 

including data provided from a data sharing platform have been published [69, 108].  
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Results from Chapter 4 suggest as many as 105 new IPD-MAs per year are being published 

up to 2015, yet only 30 IPD-MA projects seem to have been submitted as research proposals 

on CSDR between October 2013 and July 2017. This could be for the simple reason that only 

a small proportion of the 3461 studies listed on CSDR have been identified as eligible for an 

IPD-MA, or this could indicate that authors conducting IPD-MA over recent years are not 

using data request platforms; perhaps due to lack of awareness of the existence of such 

platforms or perhaps because IPD-MA projects are not suited to data request platforms. In 

fact, up to July 2017, three projects, two identified as IPD-MAs within their research 

proposals, could not be completed due to the restrictions of the remote platforms preventing 

merging of individual participant datasets [93] 

The suitability and practicality of data request platforms and remote data access for the 

conduct of IPD-MA should become clear in future years as further research proposals are 

submitted and further research projects making use of the data available via data request 

platforms are published.  

5.5.3  Concluding remarks 

Twenty years of Cochrane Epilepsy IPD-MA and NMA have shown a decline in IPD retrieval 

rate from has declined from 80% in 2005 to 65% between 2012 and 2015. Recent years, in 

line with data transparency initiatives in the pharmaceutical industry and across the research 

community as a whole, have shown that provision of IPD seems to be related to the resources 

of the trial, with larger multi-centre pharmaceutical trials more likely to have more resources 

to prepare IPD than small, single centre academic trials.  However, resources alone do not 

guarantee provision of IPD with ‘prohibitive costs’ preventing sharing of some 

pharmaceutical data in recent years. On the other hand, loss of datasets continues to be an 

issue for academic trials and has been for many years, highlighting a need for better methods 

of data curation and solutions for long-term storage and access.  

Consideration of approved research proposals for access to IPD via CSDR show that less than 

20% of proposals have been for an IPD-MA, whether systematic or ‘opportunistic.’ IPD-MAs 

which are systematic may identify older studies, small studies and foreign language studies, 

many of which are outside of the scope of CSDR sponsors to provide data due to resources, 

restrictions and risks from re-identification. While data sharing platforms such as CSDR and 

YODA may be suitable for some objectives of secondary research, the implications of limited 

resources, increased costs and increased awareness of data privacy and risks from re-

identification may result in a decline in the amount of IPD made available from both a study 

and patient-level for systematic IPD-MA.   
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Chapter 6: Approaches to network meta-analysis of 

antiepileptic drug monotherapy  

6.1 Introduction 

The clinical setting and rationale of IPD-MAs and IPD-NMAs of AED monotherapy trials 

performed by the Cochrane Epilepsy Group is described in Chapter 1.2. There are strong 

clinical beliefs that some AEDs are more effective in certain seizure types than others and 

current NICE guidelines recommend different first-line treatments for individuals with partial 

seizures (carbamazepine or lamotrigine) and for individuals with generalised seizures 

(sodium valproate)[74]. Furthermore, some RCTs of AED monotherapy have built this clinical 

preference for certain drugs for different seizure types into their design by recruiting 

participants with different seizure types separately [264, 265] or by stratifying randomisation 

by ‘clinician choice’ of first-line treatment according to seizure type [304, 305].  

A previous IPD-NMA of AED monotherapy published in 2007 demonstrated results which are 

in line with current NICE guidelines for recommended first-line AED treatment for individuals 

with new onset partial or generalised seizures [74, 285] and the objective of the illustrative 

example of the IPD-NMA described throughout this thesis was to update the previous IPD-

NMA, including evidence from all trials published since 2007 and for two additional AEDs, 

licenced for epilepsy monotherapy treatment after 2007 (levetiracetam and zonisamide). 

The objective of this Chapter is to describe the approaches for the statistical methodology of 

an IPD-NMA of AED monotherapy, taking account of current clinical practice for treating 

individuals with partial onset and generalised onset seizures. IPD-NMA results for the 

different approaches described as also presented. 

6.2  Statistical methodology  

The outcomes of the IPD-NMA are outlined in Chapter 5.3.3.2 and details of data preparation 

is provided in Chapter 5.3.3. All preparation of data for analysis was performed in SAS 

statistical software (version 9.3) [306] and all syntheses were performed in Stata statistical 

software (version 14) [307].  
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Figure 12: Network plots of pairwise comparisons for all individuals, participants with 
partial seizures and participants generalised seizures. 

 

 

 
11978 participants classified as experiencing partial seizures (66.7% of total), 4407 participants 
classified as experiencing generalised seizures (24.5% of total) and 1576 had an unclassified or missing 
seizure type (8.8% of total). Generalised tonic-clonic seizures with or without other seizure types was 
shortened to 'generalised seizures' for brevity. See Chapter 5.2.1.3 for abbreviations of drugs.
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Epilepsy type is classified according to the main seizure type an individual has experienced at 

baseline (partial-onset or generalised-onset). Partial seizures (simple or complex) and partial 

secondarily generalised seizures are classified as partial epilepsy. Primarily generalised tonic-

clonic seizures (with or without other seizure types) are classified as generalised epilepsy. 

Figure 12 presents the networks of evidence for participants with partial seizures and with 

generalised seizures (for all individuals eligible for inclusion in the review, not just those for 

whom IPD was provided for analyses). Overall and for individuals with partial seizures there 

are a total of 45 possible pairwise comparisons between the ten AEDs of interest. At the time 

of analysis, zonisamide (ZNS) had been randomised in one trial recruiting individuals with 

partial-onset seizures only [267], therefore ZNS does not feature in the network of evidence 

for generalised seizures. Hence, there are a total of 36 possible pairwise comparisons 

between the nine AEDs of interest in network of evidence for generalised seizures. 

As outlined in Chapter 6.1, current clinical practice treats different seizure types with 

different drugs, suggesting the existence of a ‘clinical’ treatment-by-epilepsy type (partial or 

generalised) interaction. If such an interaction is also present statistically, then the key 

assumption made in NMA of an exchangeable treatment effect across all included trials 

would be violated. Furthermore, it would be of little relevance to current and future medical 

decision making to perform an NMA ignoring the differences in the treatment of partial and 

generalised seizure types in ‘real-world’ clinical practice.  

Within this Chapter, several approaches are outlined with regard to the association between 

epilepsy type and treatment effect in IPD-NMA.  The NMA was performed in two stages. 

Firstly, trial-specific estimates of treatment effects relating to a reference AED were obtained 

by fitting a stratified Cox PH regression model (based on Equation 23, outlined in Chapter 

2.3.3) to the entire individual participant dataset. Secondly, the trial-specific estimates 

obtained from the ‘first-stage’ were synthesised in an NMA under a multivariate framework. 

The following sections describe the how epilepsy type was modelled in the ‘first-stage’ of 

each approach and the ‘second-stage’ multivariate approach to NMA. 

6.2.2 First-stage: IPD-NMA with separate models by epilepsy type 

In this approach, NMA is performed separately for individuals with partial seizures and for 

individuals with generalised seizures (i.e. no treatment-by-epilepsy type interaction term).  
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In the first-stage, for the 𝑖𝑡ℎ participant in the 𝑗𝑡ℎ trial, the following fixed-effects models, 

stratified by trial to preserved within-trial randomisation to the IPD datasets for individuals 

with partial and generalised seizures respectively: 

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)𝑒𝑥𝑝((𝛼2𝑗𝑥2𝑖𝑗 + …+ 𝛼10𝑗𝑥10𝑖𝑗)  (Equation 29) 

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)𝑒𝑥𝑝((𝛽2𝑗𝑥2𝑖𝑗 + …+ 𝛽9𝑗𝑥9𝑖𝑗)  (Equation 30)  

Where 𝑥2𝑖𝑗 …𝑥10𝑖𝑗 are indicator variables for each of comparator AED of interest in relation 

to reference treatment CBZ (first-line treatment for partial seizures, constrained to be 0) in 

Equation 29 and VPS (first-line treatment for generalised seizures, constrained to be 0) in 

Equation 30.  Note that treatment with ZNS (i.e.  𝑥10𝑖𝑗) is not included in  Equation 30 for 

individuals with generalised seizures as this treatment is not present in the network for 

generalised seizures (see Figure 12).  

Coefficients 𝛼2𝑗 …𝛼10𝑗 for individuals with partial seizures and 𝛽2𝑗…𝛽9𝑗 for individuals with 

generalised seizures correspond to trial-specific fixed effect estimates (i.e. the ln (𝐻𝑅)) of 

each AED compared to the reference treatment which will be synthesised in NMA. 

To facilitate NMA, the models described in Equation 29 and Equation 30 were applied by 

running the ‘stcox’ command in Stata via ‘mvmeta_make’ command. In other words, 

Equation 29 is fit using the following command for 𝑥2𝑖𝑗 …𝑥10𝑖𝑗: 

xi: mvmeta_make stcox _ x2 _x3 _x4 _x5 _x6 _x7 _x8 _x9 _x10, strata(trial) ppfix(none) nohr 

by(trial) names(y S) esave(N) keepmat saving(Partial1) replace   

This command outputs and saves a dataset ‘Partial1’ with trial-specific estimates 

(coefficients 𝛼2𝑗 …𝛼10𝑗 or equivalently 𝛽2𝑗…𝛽9𝑗 for generalised seizures), their associated 

variances and covariances if applicable (i.e. correlation between treatment effects for trials 

with more than two treatment arms)[308]. The subsequent dataset is within the correct 

format for the ‘mvmeta’ command to be run (see Chapter 6.2.5 for further details). 

6.2.3 First stage: IPD-NMA with treatment-by-epilepsy type interaction 

In this approach, in the first-stage a single Cox PH model is fitted to the IPD with a treatment-

covariate interaction.  In other words, for the 𝑖𝑡ℎ participant in the 𝑗𝑡ℎ trial, the following 

model, stratified by trial with treatment-by-epilepsy type interaction, was fitted to the entire 

individual participant dataset:  
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ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)𝑒𝑥𝑝((𝛼2𝑗𝑥2𝑖𝑗 + …+ 𝛼10𝑗𝑥10𝑖𝑗) + 𝑧𝑖𝑗 (𝜋𝑗 + 𝛾2𝑗𝑥2𝑖𝑗 + … +  𝛾9𝑗𝑥9𝑖𝑗)) (Equation 31) 

Where 𝑥2𝑖𝑗 …𝑥10𝑖𝑗 are indicator variables for each of comparator AED of interest in relation 

to reference treatment CBZ constrained to be 0 and 𝑧𝑖𝑗  is an indicator variable for whether 

an individual has partial (𝑧𝑖𝑗 = 0) or generalised seizures (𝑧𝑖𝑗 = 1). 

Coefficients 𝛼2𝑗 …𝛼10𝑗 correspond to the trial-specific effect sizes (i.e. the ln (𝐻𝑅)) of each 

AED compared to CBZ for individuals with partial seizures, coefficient 𝜋𝑗 is the trial-specific 

effect size of generalised seizures compared to partial seizures (reference) and coefficients 

𝛾2𝑗…𝛾9𝑗  correspond to trial-specific interaction effects of each AED compared to the 

reference treatment CBZ (i.e. the additional effect of the drug in individuals with generalised 

seizures compared to individuals with partial seizures).  

It should be noted that under this approach, the treatment effect sizes for individuals with 

generalised seizures are calculated as follows. For example in the  𝑗𝑡ℎ  trial, let �̂�2𝑗  and 

var (�̂�2𝑗)  be the estimates of 𝑙𝑜𝑔 (𝐻𝑅)  and variance for drug 2 compared to CBZ for 

individuals with partial seizures and let  𝛾2𝑗  and var (𝛾2𝑗) be the 𝑙𝑜𝑔 (𝐻𝑅) and variance for 

the treatment-epilepsy type interaction term for drug 2 compared to CBZ. To obtain the 

𝑙𝑜𝑔 (𝐻𝑅) and variance for individuals with generalised seizures, �̂�2𝑗  and var (�̂�2𝑗)   : 

�̂�2𝑗   = �̂�2𝑗 + 𝛾2𝑗      (Equation 32) 

var(�̂�2𝑗) = var(�̂�2𝑗) + var(𝛾2𝑗) + 2 𝑐𝑜𝑣𝑎𝑟(�̂�2𝑗, 𝛾2𝑗)      (Equation 33) 

Where 𝑐𝑜𝑣𝑎𝑟(�̂�2𝑗, 𝛾2𝑗) is the covariance between treatment effect �̂�2𝑗  and interaction 

effect 𝛾2𝑗. As described above in Chapter 6.2.2, the model described in Equation 31 is fit by 

running the ‘stcox’ command in Stata via ‘mvmeta_make’ command to produce a dataset in 

correct format for ‘mvmeta’ (see Chapter 6.2.5 for further details). 

This approach was pre-specified in the protocol of Cochrane IPD-NMA, which was written in 

2014 [68] and detailed results of the Cochrane IPD-NMA [69], including investigation of 

heterogeneity and inconsistency, sensitivity analyses and clinical interpretation of the IPD-

NMA results are presented in Chapter 7 of this thesis. 

Recent work has highlighted the importance of the appropriate specification of one-stage 

IPD models with treatment-covariate interactions by separating within-study and across-

study interactions to avoid inadvertent ecological bias [25, 38, 41, 185], particularly within a 

TTE setting [25]. The most recent work in this area has illustrated this within the context of 
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epilepsy, showing that the magnitude and statistical significance of age as a treatment effect 

modifier is reduced when within-trial and across-trial interactions are separated in IPD-MA 

compared to the original IPD-MA where they are amalgamated [25]. Furthermore, the 

importance of separating within-study and across-study associations increases as the 

variability of the covariate value across the included studies increases [25, 41, 46]. In the 

present example, some studies recruit only individuals with partial seizures, some recruit 

only individuals with generalised seizures and the proportion of individuals with partial 

seizures within the studies designed to recruit both seizure types ranges from 18% to 86%, 

therefore, there is a risk of ecological bias in the approach presented above. 

An additional analysis was performed following the completion of main analysis for the 

Cochrane Review [69]. The additional analysis separates the within and across-study 

interactions in the Cox PH model (specified in Equation 31) by centering the treatment-by-

epilepsy type interaction:   

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡)𝑒𝑥𝑝((𝛼2𝑗𝑥2𝑖𝑗 + …+ 𝛼10𝑗𝑥10𝑖𝑗) + (𝑧𝑖𝑗 − 𝑧�̅�)(𝜋𝑗 + 𝛾2𝑗𝑥2𝑖𝑗 + … + 𝛾9𝑗𝑥9𝑖𝑗)) 

          (Equation 34) 

Where 𝑧�̅� is the proportion of individuals with generalised seizures within each trial and 

other parameters are defined as in Equation 31. 

6.2.4 First stage: IPD-NMA via the ‘meta-analysis of interactions’ approach 

This approach is based on the ‘meta-analysis of interactions’ approach by Simmonds and 

Higgins [309]. In this approach, rather than a ‘complete’ IPD analysis, IPD is reduced to 

summary statistics with a treatment-by-epilepsy type interaction.  

In other words, a model of the structure outlined in Equation 31 (with a treatment-by-

epilepsy type interaction) is fitted separately to the IPD of each trial, producing separate 

summary statistics of treatment effect for individuals with partial seizures 𝛼2𝑗 …𝛼10𝑗 and 

individuals with generalised seizures 𝛽2𝑗…𝛽9𝑗 (calculated as described above in Equation 32 

and Equation 33).  

The summary statistics for each epilepsy type from each trial are then combined in separate 

NMAs by epilepsy type as if they were AD. This was achieved by producing a dataset of the 

summary statistics structured as a list of pairwise comparisons and converted from ‘pairs’ to 

‘augmented’ format via the ‘network’ command within Stata version 14 [310] (see Appendix 

13)  and NMA is performed via ‘mvmeta’ as described in Chapter 6.2.5.  
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6.2.5 Second stage: IPD-NMA methods  

NMA was performed under a multivariate meta-analysis framework, where the pairwise 

treatment comparisons are treated as different outcomes and NMA is performed via 

multivariate meta-regression techniques [220]. 

Assume that each trial provides 𝑝 treatment effects of interest in relation to a reference 

treatment. This framework will be demonstrated assuming a simple example of a three-

armed trial which randomises participants of both seizure types to the reference treatment 

CBZ and two other AEDs (say drug 2 and drug 3). Using the notation outlined in Chapter 6.2.2 

and Chapter 6.2.3, in the 𝑗𝑡ℎ trial with 𝑖 participants, with reference CBZ (constrained to be 

0) and two other AEDs defined by indicator variables 𝑥2𝑖𝑗   and 𝑥3𝑖𝑗 , then the 𝑗𝑡ℎ  trial will 

provide four effect estimates of interest (i.e. here 𝑝 = 4 ): 𝛼2𝑗  and 𝛼3𝑗 for individuals with 

partial seizures and 𝛽2𝑗  and 𝛽3𝑗  for individuals with generalised seizures. For trial 𝑗, the 𝑝 

effects of interest can be written as a (1 x 𝑝 ) vector 𝒚𝒋  and the within-trial variance-

covariance (𝑝  x 𝑝) matrix can be written as 𝑺𝒋 . So in this example:  

𝒚𝒋 = (

𝛼2𝑗  
𝛼3𝑗  
𝛽2𝑗
𝛽3𝑗

)     (Equation 35) 

𝑺𝒋 =

(

 
 

𝑣𝑎𝑟(𝛼2𝑗 ) 𝑐𝑜𝑣(𝛼2𝑗 , 𝛼3𝑗 ) 𝑐𝑜𝑣(𝛼2𝑗 , 𝛽2𝑗 ) 𝑐𝑜𝑣(𝛼2𝑗 , 𝛽3𝑗 )

𝑐𝑜𝑣(𝛼3𝑗 , 𝛼2𝑗 ) 𝑣𝑎𝑟(𝛼3𝑗 ) 𝑐𝑜𝑣(𝛼3𝑗 , 𝛽2𝑗 ) 𝑐𝑜𝑣(𝛼3𝑗 , 𝛽3𝑗 )

𝑐𝑜𝑣(𝛽2𝑗 , 𝛼2𝑗 )

𝑐𝑜𝑣(𝛽3𝑗 , 𝛼2𝑗 )

𝑐𝑜𝑣(𝛽2𝑗 , 𝛼3𝑗 )

𝑐𝑜𝑣(𝛽3𝑗 , 𝛼3𝑗 )

𝑣𝑎𝑟(𝛽2𝑗)

𝑐𝑜𝑣(𝛽3𝑗 , 𝛽2𝑗 )

𝑐𝑜𝑣(𝛽2𝑗 , 𝛽3𝑗 )

𝑣𝑎𝑟(𝛽3𝑗) )

 
 

  (Equation 36) 

The aim of the multivariate analysis is to estimate the ‘network parameters’ which are 

unknown i.e. in this case the treatment effect of drug 2 in relation to CBZ and the drug 3 in 

relation to CBZ, for individuals with partial seizures and for individuals with generalised 

seizures across all trials and across the whole network of AEDs. These ‘network parameters’ 

can be written as (𝑝 x 1) matrix 𝝁. So in this example: 

𝝁 = (𝛼2 , 𝛼3 , 𝛽2 , 𝛽3)    (Equation 37) 

The general form of multivariate random-effects meta-regression for 𝑗 trials is [220]: 

𝒚𝒋~𝑁(𝝁 𝑿𝒋, Σ + 𝑆𝑗)    (Equation 38)
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Where 𝒚𝒋, 𝝁 and 𝑺𝒋 are defined as above for the 𝑝 treatment effects of interest in the 𝑗𝑡ℎ 

trial, 𝑿𝒋 is a (𝑞 x 𝑝) matrix with all elements equal to 0 or 1 to indicate which treatment effects 

are present in each trial (up to a maximum of 𝑞 ‘network parameters’ to be estimated) and 

Σ is a (𝑞 × 𝑞) matrix of between-trials variance-covariance which is assumed to be the same 

for all trials. Various assumptions can be made about the structure of this variance-

covariance matrix; see White et al [220] for further discussion. Multivariate meta-regression 

under this framework can also be performed using fixed-effects, with Σ assumed to be a zero 

matrix (i.e. no heterogeneity). 

Therefore for the two separate models for individuals of each seizure type described in 

Chapter 6.2.2,  for individuals with partial seizures, the network parameters to be estimated 

are 𝝁 = (𝛼2  … , 𝛼10 ) (i.e. 𝑞 =9) and for individuals with generalised seizures the network 

parameters to be estimated are 𝝁 = (𝛽2… 𝛽9)  (i.e. 𝑞  =8). Similarly, for the approaches 

described in Chapter 6.2.3 and Chapter 6.2.4 where seizure types are considered within the 

same model via a treatment-by-epilepsy type interaction, the network parameters to be 

estimated are 𝝁 = (𝛼2…𝛼10 , 𝛽2…  𝛽9),  (i.e. 𝑞 = 17).   

Both fixed-effects and random-effects models were fitted via ‘mvmeta’ command in Stata 

using the default estimation method of restricted maximum likelihood estimation (REML) 

[220, 308]. Random-effects models were fitted assuming equal heterogeneity for all pairwise 

comparisons (i.e. between-trial-covariance structure (variance-covariance matrix Σ ) 

proportional to single unknown heterogeneity parameter 𝜏2  rather than allowing for 

heterogeneity to vary across the comparisons). It was necessary to make an assumption 

regarding the between-trial covariance structure as not all possible pairwise comparisons 

between the treatments of interest were present in the network (see Figure 9). This 

multivariate meta-regression approach requires that all studies report on a common 

reference treatment (in this example, CBZ or VPS depending on the ‘first-stage’ model 

approach). For studies that do not include this reference treatment, to allow this approach 

to be used a minimally informative reference arm (i.e. a very small treatment effect and 

variance) can be imputed via a data augmentation technique describe by White et al [308]. 

Due to the assumption made of ‘proportional’ heterogeneity, an 𝐼2  statistic cannot be 

directly calculated for the NMA. Alternatively, an R statistic can be estimated directly via the 

‘randfix’ option of ‘mvmeta’ which is a ratio measure of the standard errors in the random-

effects NMA model compared to the fixed-effects NMA model [311], and it has been shown 

that R can be used to calculate 𝐼2 as follows [312]: 
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𝐼2 = (𝑅2 − 1) 𝑅2⁄     (Equation 39) 

An 𝐼2  statistic was estimated for the whole treatment network for each NMA and the 

estimate of 𝜏2  from the random-effects NMA model was also used in interpreting the 

presence of any heterogeneity in the treatment network (with higher 𝐼2  and 𝜏2  values 

indicating more heterogeneity present). It should also be noted that the 𝑅  statistic and 

therefore this  𝐼2 statistic are dependent on the number of parameters in the NMA model. 

Therefore when seizure types are considered in separate NMA models (Chapter 6.2.2), these 

models have fewer network parameters to estimate than the models which consider the two 

seizure types via an interaction term (Chapter 6.2.3 and Chapter 6.2.4) so the models with 

the interaction terms are likely to have higher 𝑅 and 𝐼2  values which may be due to the 

number of parameters rather than necessarily due to increased variability in the model. For 

this reason, direct numerical comparisons of the  𝜏2 , 𝑅 and 𝐼2  statistics across the NMA 

models was not made and any relative comparisons were made in the context of the number 

of parameters included in each model. 

The estimated network parameters (matrix 𝝁  for each model) represent the relative 

treatment effects for each AED compared to reference treatment CBZ. To obtain a complete 

set of pairwise comparisons for the treatments, some algebraic manipulation was required 

in a similar manner to the calculations described above in Equation 32 and Equation 33.  

For example, let �̂�2  and var (�̂�2) be the ‘network parameter’ estimates of 𝑙𝑜𝑔 (𝐻𝑅) and 

variance for drug 2 compared to CBZ (for individuals with partial seizures) and let �̂�3  and 

var (�̂�3)  be the ‘network parameter’ estimates of 𝑙𝑜𝑔 (𝐻𝑅)  and variance for drug 3 

compared to CBZ. To obtain the ‘network parameter’ estimates of 𝑙𝑜𝑔 (𝐻𝑅) and variance for 

drug 3 compared to drug 2, �̂�3𝑣𝑠.2  and var (�̂�3𝑣𝑠.2) : 

�̂�3𝑣𝑠.2   = �̂�3 − �̂�2        (Equation 40) 

var(�̂�3𝑣𝑠.2) = var(�̂�2) + var(�̂�3) + 2 𝑐𝑜𝑣𝑎𝑟(�̂�2, �̂�3)      (Equation 41) 

Where 𝑐𝑜𝑣𝑎𝑟(�̂�2, �̂�3) is the covariance between treatment effects �̂�2𝑗  and �̂�3.  Other 

pairwise comparisons for each epilepsy type were calculated in a similar way. 
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6.3  Results  

The main focus of this Chapter is the consideration of different methodological approaches 

to modelling epilepsy type in this IPD-NMA of AED monotherapy. Therefore, for brevity, 

results for primary outcome ‘Time-to-withdrawal of allocated treatment’ only are reported 

in this Chapter. Further details of secondary outcomes, additional consideration of 

inconsistency and heterogeneity and clinical implications are presented in Chapter 7.  

6.3.1. IPD-NMA results according to the approach for modelling epilepsy type 

Table 15 and Table 16 show IPD-NMA results for individuals with partial seizures and with 

generalised seizures respectively according to the approach for modelling epilepsy type; see 

Chapter 6.2 for further details of all methods. 

Table 15: Fixed-effects IPD-NMA results for time-to-withdrawal of allocated treatment 

according to approach of modelling epilepsy type (individuals with partial seizures) 

Comparison1,2 Model for partial 
seizures only3  

Model with 
amalgamated 
interaction term4  

Model with 
separated 
interaction term4  

Meta-analysis of 
interactions 
model5 

CBZ vs PHB 1.57 (1.20 to 2.05) 1.55 (1.18 to 2.04) 1.56 (1.19 to 2.04) 1.58 (1.14 to 2.18) 

CBZ vs PHT 1.16 (0.93 to 1.45) 1.13 (0.92 to 1.38) 1.12 (0.92 to 1.36) 1.20 (0.89 to 1.62) 

CBZ vs VPS 1.10 (0.90 to 1.35) 1.04 (0.86 to 1.25) 0.90 (0.76 to 1.07) 0.90 (0.70 to 1.17) 

CBZ vs LTG 0.72 (0.63 to 0.83) 0.75 (0.65 to 0.86) 0.73 (0.64 to 0.85) 0.78 (0.61 to 0.98) 

CBZ vs OXC 1.07 (0.84 to 1.37) 1.09 (0.84 to 1.42) 1.09 (0.80 to 1.47) 1.34 (0.48 to 3.72) 

CBZ vs TPM 1.17 (0.99 to 1.38) 1.18 (0.98 to 1.43) 1.17 (0.94 to 1.47) 1.01 (0.50 to 2.05) 

CBZ vs GBP 1.18 (1.01 to 1.39) 1.20 (1.00 to 1.43) 1.18 (0.95 to 1.47) 1.12 (0.83 to 1.53) 

CBZ vs LEV 0.83 (0.70 to 0.99) 0.82 (0.69 to 0.97) 0.85 (0.70 to 1.02) 0.69 (0.51 to 0.95) 

CBZ vs ZNS 1.08 (0.81 to 1.44) 1.08 (0.79 to 1.48) 1.08 (0.75 to 1.55) 1.08 (0.81 to 1.44) 

PHB vs PHT 0.74 (0.49 to 1.11) 0.73 (0.55 to 0.96) 0.72 (0.54 to 0.95) 0.76 (0.44 to 1.31) 

PHB vs VPS 0.70 (0.50 to 0.99) 0.67 (0.48 to 0.92) 0.58 (0.43 to 0.78) 0.57 (0.37 to 0.88) 

PHB vs LTG 0.46 (0.34 to 0.62) 0.48 (0.35 to 0.66) 0.47 (0.35 to 0.64) 0.49 (0.33 to 0.73) 

PHB vs OXC 0.68 (0.48 to 0.98) 0.70 (0.48 to 1.03) 0.70 (0.47 to 1.04) 0.85 (0.28 to 2.54) 

PHB vs TPM 0.75 (0.54 to 1.02) 0.76 (0.55 to 1.06) 0.75 (0.53 to 1.07) 0.64 (0.29 to 1.41) 

PHB vs GBP 0.76 (0.55 to 1.03) 0.77 (0.55 to 1.07) 0.76 (0.54 to 1.07) 0.71 (0.46 to 1.11) 

PHB vs LEV 0.53 (0.39 to 0.73) 0.53 (0.38 to 0.73) 0.54 (0.39 to 0.75) 0.44 (0.28 to 0.69) 

PHB vs ZNS 0.69 (0.47 to 1.02) 0.70 (0.46 to 1.06) 0.69 (0.44 to 1.09) 0.69 (0.45 to 1.05) 

PHT vs VPS 0.95 (0.70 to 1.29) 0.92 (0.70 to 1.21) 0.81 (0.62 to 1.04) 0.76 (0.49 to 1.16) 

PHT vs LTG 0.62 (0.48 to 0.80) 0.66 (0.52 to 0.85) 0.66 (0.51 to 0.83) 0.65 (0.44 to 0.95) 

PHT vs OXC 0.92 (0.67 to 1.28) 0.97 (0.69 to 1.35) 0.97 (0.68 to 1.39) 1.12 (0.37 to 3.40) 

PHT vs TPM 1.01 (0.77 to 1.32) 1.05 (0.80 to 1.39) 1.05 (0.78 to 1.41) 0.85 (0.38 to 1.87) 

PHT vs GBP 1.02 (0.78 to 1.34) 1.06 (0.81 to 1.40) 1.05 (0.79 to 1.41) 0.94 (0.61 to 1.45) 

PHT vs LEV 0.72 (0.54 to 0.95) 0.73 (0.56 to 0.95) 0.76 (0.58 to 0.99) 0.58 (0.37 to 0.90) 
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PHT vs ZNS 0.93 (0.65 to 1.34) 0.96 (0.66 to 1.39) 0.97 (0.64 to 1.46) 0.90 (0.60 to 1.37) 

VPS vs LTG 0.65 (0.51 to 0.84) 0.72 (0.58 to 0.90) 0.81 (0.66 to 1.01) 0.86 (0.60 to 1.22) 

VPS vs OXC 0.97 (0.71 to 1.34) 1.05 (0.76 to 1.44) 1.21 (0.86 to 1.70) 1.48 (0.51 to 4.28) 

VPS vs TPM 1.06 (0.81 to 1.38) 1.14 (0.88 to 1.48) 1.30 (0.98 to 1.72) 1.12 (0.51 to 2.45) 

VPS vs GBP 1.07 (0.83 to 1.39) 1.15 (0.89 to 1.49) 1.31 (0.99 to 1.73) 1.24 (0.83 to 1.85) 

VPS vs LEV 0.76 (0.58 to 0.98) 0.79 (0.61 to 1.03) 0.94 (0.73 to 1.21) 0.77 (0.51 to 1.16) 

VPS vs ZNS 0.98 (0.69 to 1.39) 1.04 (0.73 to 1.50) 1.20 (0.80 to 1.79) 1.20 (0.82 to 1.76) 

LTG vs OXC 1.49 (1.10 to 2.02) 1.46 (1.11 to 1.92) 1.48 (1.08 to 2.03) 1.73 (0.60 to 4.95) 

LTG vs TPM 1.62 (1.27 to 2.06) 1.59 (1.29 to 1.95) 1.60 (1.26 to 2.03) 1.31 (0.61 to 2.78) 

LTG vs GBP 1.64 (1.29 to 2.09) 1.60 (1.31 to 1.96) 1.61 (1.27 to 2.04) 1.45 (0.99 to 2.13) 

LTG vs LEV 1.16 (0.92 to 1.45) 1.10 (0.89 to 1.35) 1.15 (0.92 to 1.44) 0.89 (0.58 to 1.38) 

LTG vs ZNS 1.50 (1.09 to 2.07) 1.45 (1.03 to 2.04) 1.47 (1.00 to 2.18) 1.40 (0.97 to 2.02) 

OXC vs TPM 1.09 (0.78 to 1.51) 1.09 (0.82 to 1.44) 1.08 (0.78 to 1.49) 0.76 (0.21 to 2.74) 

OXC vs GBP 1.10 (0.80 to 1.53) 1.10 (0.83 to 1.45) 1.09 (0.78 to 1.50) 0.84 (0.29 to 2.44) 

OXC vs LEV 0.78 (0.58 to 1.05) 0.75 (0.55 to 1.03) 0.78 (0.55 to 1.11) 0.52 (0.18 to 1.51) 

OXC vs ZNS 1.01 (0.69 to 1.47) 0.99 (0.66 to 1.49) 0.99 (0.62 to 1.59) 0.81 (0.28 to 2.33) 

TPM vs GBP 1.01 (0.78 to 1.32) 1.01 (0.82 to 1.25) 1.01 (0.77 to 1.31) 1.11 (0.51 to 2.41) 

TPM vs LEV 0.71 (0.56 to 0.90) 0.69 (0.54 to 0.89) 0.72 (0.54 to 0.96) 0.69 (0.31 to 1.49) 

TPM vs ZNS 0.93 (0.67 to 1.29) 0.91 (0.64 to 1.31) 0.92 (0.60 to 1.41) 1.07 (0.50 to 2.29) 

GBP vs LEV 0.70 (0.56 to 0.89) 0.69 (0.54 to 0.88) 0.72 (0.54 to 0.95) 0.62 (0.40 to 0.96) 

GBP vs ZNS 0.91 (0.66 to 1.27) 0.90 (0.63 to 1.30) 0.92 (0.60 to 1.40) 0.96 (0.63 to 1.47) 

LEV vs ZNS 1.30 (0.93 to 1.81) 1.32 (0.93 to 1.88) 1.28 (0.85 to 1.92) 1.56 (1.02 to 2.39) 

τ2 statistic 7 x 10-21 0.0037 7 x 10-13 2 x 10-20 

R statistic 1.000 1.064 1.131 1.000 

I2 statistic  0% 11.7% 21.8% 0% 

1. Order of drugs in the table: most commonly used drug first (CBZ), then drugs are ordered 

approximately by the date they were licenced as a monotherapy treatment (oldest first). 

2. HRs and 95% CIs are calculated from fixed-effects analyses. HR < 1 indicates an advantage to the 

second drug in the comparison; results in highlighted in bold are statistically significant. 

3. Results taken from the model outlined in Chapter 6.2.2 

4. Results taken from the models outlined in Chapter 6.2.3  

5. Results taken from the model outlined in Chapter 6.2.4  

 

For individuals with partial seizures for the majority of comparisons, the conclusions that 

would be drawn in terms of statistical significance are consistent across the four modelling 

approaches (i.e. either all statistically significant or non-significant). For eleven comparisons, 

there is variability across the modelling approaches in terms of the conclusions that would 

be drawn based on statistical significance, most notably for the important comparisons of 

CBZ vs LEV and VPS vs LTG (see Chapter 7 for further discussion of important AEDs); although 

the general direction of effect is consistent for all of the eleven comparisons. 
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Notably, when comparing the results of the two models described in Chapter 6.2.3 with the 

within-trial and across-trial interaction terms amalgamated or separated respectively, 

numerical results of these two models are mostly very similar (to one or two decimal places) 

and conclusions mostly the same. Also notably, for the comparisons of CBZ vs LEV and VPS 

vs LTG, the conclusions drawn in terms of statistical significance would be different, with the 

amalgamated interaction model showing a significant effect and the separated interactions 

model showing no statistically significant difference; although the direction of effect is the 

same for both comparisons across the two approaches and numerical results for the CBZ vs 

LEV comparison are the same to one decimal place. 

In comparison to the other modelling approaches, the ‘meta-analysis of interactions’ 

approach seems to produce the most different results to the other methods, particularly in 

terms of the precision of the results but also in terms of the numerical results (e.g. see 

comparisons of LTG vs OXC, TPM, GBP and ZNS in Table 15). The differences in results from 

this approach may have occurred for two reasons. Firstly, other approaches analyse IPD only 

in the ‘first-stage’ and this is the only method which reduces the IPD to aggregate data for 

each trial in the ‘first-stage’ and then performs the NMA as if the data was aggregate data. 

This aspect of the approach could have resulted in the loss of precision observed in the results 

in Table 15.  

Table 16: Fixed-effects IPD-NMA results for time-to-withdrawal of allocated treatment 

according to approach of modelling epilepsy type (individuals with generalised seizures) 

Comparison1,2 Model for 
generalised 
seizures only3  

Model with 
amalgamated 
interaction term4  

Model with 
separated 
interaction term4  

Meta-analysis of 
interactions 
model5 

CBZ vs PHB 1.63 (0.86 to 3.08) 1.47 (0.83 to 2.61) 1.27 (0.55 to 2.92) 0.76 (0.25 to 2.28) 

CBZ vs PHT 1.05 (0.73 to 1.52) 0.92 (0.59 to 1.42) 0.97 (0.54 to 1.75) 0.73 (0.32 to 1.63) 

CBZ vs VPS 0.83 (0.62 to 1.12) 0.70 (0.54 to 0.92) 0.70 (0.45 to 1.08) 0.63 (0.36 to 1.09) 

CBZ vs LTG 0.69 (0.48 to 1.01) 0.63 (0.45 to 0.89) 0.75 (0.47 to 1.19) 0.89 (0.49 to 1.61) 

CBZ vs OXC 0.83 (0.16 to 4.43) 1.00 (0.21 to 4.81) 0.90 (0.17 to 4.66) 0.73 (0.20 to 2.59) 

CBZ vs TPM 0.90 (0.42 to 1.93) 1.24 (0.90 to 1.71) 0.83 (0.42 to 1.63) 0.82 (0.40 to 1.68) 

CBZ vs GBP 0.92 (0.11 to 8.07) 0.90 (0.11 to 7.29) 0.76 (0.09 to 6.55) 0.65 (0.03 to 12.6) 

CBZ vs LEV 0.78 (0.43 to 1.42) 0.74 (0.44 to 1.23) 0.80 (0.48 to 1.32) 0.84 (0.45 to 1.58) 

PHB vs PHT 0.65 (0.30 to 1.39) 0.62 (0.32 to 1.24) 0.77 (0.30 to 1.97) 0.95 (0.22 to 4.20) 

PHB vs VPS 0.51 (0.24 to 1.09) 0.48 (0.27 to 0.86) 0.55 (0.23 to 1.33) 0.83 (0.22 to 3.11) 

PHB vs LTG 0.43 (0.20 to 0.89) 0.43 (0.22 to 0.83) 0.59 (0.23 to 1.52) 1.16 (0.32 to 4.28) 

PHB vs OXC 0.51 (0.09 to 3.06) 0.68 (0.13 to 3.60) 0.71 (0.11 to 4.48) 0.95 (0.16 to 5.57) 

PHB vs TPM 0.55 (0.20 to 1.49) 0.84 (0.44 to 1.60) 0.66 (0.22 to 1.92) 1.08 (0.27 to 4.25) 

PHB vs GBP 0.57 (0.06 to 5.43) 0.61 (0.07 to 5.34) 0.60 (0.06 to 6.03) 0.86 (0.04 to 20.7) 

PHB vs LEV 0.48 (0.20 to 1.15) 0.50 (0.23 to 1.09) 0.63 (0.24 to 1.67) 1.11 (0.31 to 4.03) 
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PHT vs VPS 0.79 (0.49 to 1.28) 0.77 (0.46 to 1.27) 0.72 (0.36 to 1.45) 0.87 (0.28 to 2.69) 

PHT vs LTG 0.66 (0.39 to 1.12) 0.69 (0.39 to 1.20) 0.77 (0.36 to 1.62) 1.22 (0.38 to 3.90) 

PHT vs OXC 0.79 (0.14 to 4.38) 1.09 (0.21 to 5.56) 0.92 (0.16 to 5.31) 1.00 (0.16 to 6.23) 

PHT vs TPM 0.85 (0.36 to 1.99) 1.35 (0.79 to 2.30) 0.85 (0.35 to 2.10) 1.13 (0.33 to 3.92) 

PHT vs GBP 0.88 (0.10 to 7.91) 0.98 (0.12 to 8.30) 0.78 (0.08 to 7.29) 0.90 (0.04 to 20.9) 

PHT vs LEV 0.74 (0.37 to 1.49) 0.80 (0.42 to 1.55) 0.82 (0.38 to 1.77) 1.16 (0.40 to 3.37) 

VPS vs LTG 0.83 (0.51 to 1.36) 0.90 (0.60 to 1.35) 1.07 (0.59 to 1.93) 1.41 (0.55 to 3.62) 

VPS vs OXC 1.00 (0.18 to 5.46) 1.42 (0.29 to 6.92) 1.28 (0.24 to 7.01) 1.15 (0.26 to 5.13) 

VPS vs TPM 1.08 (0.47 to 2.44) 1.76 (1.22 to 2.53) 1.19 (0.53 to 2.65) 1.30 (0.45 to 3.76) 

VPS vs GBP 1.11 (0.12 to 9.89) 1.28 (0.16 to 10.5) 1.09 (0.12 to 9.74) 1.04 (0.05 to 22.0) 

VPS vs LEV 0.93 (0.48 to 1.82) 1.05 (0.58 to 1.90) 1.14 (0.58 to 2.23) 1.34 (0.53 to 3.39) 

LTG vs OXC 1.20 (0.21 to 6.91) 1.58 (0.33 to 7.67) 1.20 (0.23 to 6.27) 0.82 (0.18 to 3.77) 

LTG vs TPM 1.29 (0.53 to 3.13) 1.96 (1.25 to 3.08) 1.11 (0.51 to 2.41) 0.93 (0.32 to 2.65) 

LTG vs GBP 1.33 (0.14 to 12.4) 1.42 (0.17 to 11.6) 1.02 (0.12 to 8.81) 0.74 (0.03 to 16.1) 

LTG vs LEV 1.12 (0.55 to 2.28) 1.17 (0.63 to 2.19) 1.07 (0.54 to 2.11) 0.95 (0.39 to 2.35) 

OXC vs TPM 1.07 (0.15 to 7.86) 1.24 (0.26 to 5.94) 0.93 (0.18 to 4.80) 1.13 (0.23 to 5.61) 

OXC vs GBP 1.11 (0.06 to 21.8) 0.90 (0.08 to 9.96) 0.85 (0.07 to 9.91) 0.90 (0.03 to 26.0) 

OXC vs LEV 0.93 (0.16 to 5.49) 0.74 (0.14 to 3.86) 0.89 (0.16 to 4.99) 1.16 (0.27 to 4.95) 

TPM vs GBP 1.03 (0.09 to 11.6) 0.73 (0.09 to 5.89) 0.92 (0.11 to 7.90) 0.8 (0.03 to 18.36) 

TPM vs LEV 0.87 (0.33 to 2.29) 0.60 (0.33 to 1.09) 0.96 (0.41 to 2.23) 1.03 (0.38 to 2.78) 

GBP vs LEV 0.84 (0.09 to 7.97) 0.82 (0.10 to 7.10) 1.05 (0.11 to 9.58) 1.29 (0.06 to 27.0) 

τ2 statistic 0.0701 0.0037 7 x 10-13 2 x 10-20 

R statistic 1.225 1.064 1.131 1.000 

I2 statistic  33.3% 11.7% 21.8% 0% 

1. See Table 15 for abbreviations and other footnote labels 

Secondly, the largest differences in the results of this approach compared to the other 

modelling approaches seem to occur within the pairwise comparisons where no direct 

evidence exists or only very limited direct evidence from a single study contributes to the 

network (see Figure 12 and Chapter 7.2 for further discussion of direct evidence contributed 

for each comparison). The ‘meta-analysis of interactions’ approach fits only within-trial 

interactions and does not take account of across-trial interactions. The differences in the 

results across the modelling approaches suggest that any association between treatment 

effect and epilepsy type may be different within the trials compared to across the trials; in 

other words that ecological bias may be present within the model with an amalgamated 

interaction. If this is the case, then an approach to NMA which does not allow for across-trial 

relationships is likely to produce different results, particularly in this example where within-

trial information is quite limited or non-existent for some comparisons. 
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Table 16 shows that statistically significant differences between pairs of AEDs are rarely 

found across any of the methodological approaches for individuals with generalised seizures; 

in fact no differences between the drugs in any of the pairwise comparisons is found from 

the model with separated within-trial and across-trial interactions, or from the ‘meta-analysis 

of interactions’ model. There is also more variability in the numerical results across methods 

for individuals with generalised seizures and more changes in the statistical significance and 

direct of effect of numerical results. As for individuals with partial seizures, the ‘meta-analysis 

of interactions’ approach seems to produce the most numerically different results to the 

other methods. Overall, it is not surprising that a different approach to modelling the 

relationship between treatment and epilepsy type has had less impact on the numerical 

results and conclusions for individuals with partial seizures (the majority epilepsy type, 

around 70%) but a larger impact on the numerical results and conclusions for individuals with 

generalised seizures (the minority epilepsy type, around 25%).  

It is well documented that VPS is the most effective drug for controlling generalised seizures 

[69, 74]. However this AED is not suitable for all individuals, particularly females of 

childbearing age due to the potential teratogenic effects of the drug [74, 75].  Therefore 

interest lies in identifying AEDs which are suitable alternatives for VPS, rather than AEDs 

which are significantly better than VPS. This is starting to be reflected within clinical practice, 

with recent trials aiming to demonstrate non-inferiority of new AEDs compared to ‘standard’ 

treatments, rather than superiority [261, 262]. In terms of the important comparisons shown 

in Table 16 (see Chapter 7 for further discussion), consistently across all of the methods, 

despite some numerical differences in results and general direction of effect, no statistically 

significant differences are shown for the comparisons VPS vs LTG and VPS vs LEV, suggesting 

that LTG and LEV do not seem to be any worse than VPS in terms of retention which may 

make these two treatments potential alternatives to VPS.  

Another notable difference is that the conclusion that may be drawn for the comparison of 

VPS over CBZ for individuals with generalised seizures in terms of statistical significance 

differs according to the methodological approach. Despite this, the direction of effect for the 

comparison of VPS and CBZ is consistent across all approaches and the statistical significance 

(or lack thereof) of this comparison is unlikely to impact on clinical practice due to 

documented evidence that CBZ may exacerbate some generalised seizure types [287, 288]. 
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6.3.2 Additional consideration of treatment-covariate interaction 

Hua et al [25] note the risk of an interaction being missed or incorrectly interpreted where 

within-study and across-study interactions are amalgamated. While this is an important and 

valid concern when performing analysis to establish the existence of treatment-covariate 

interactions, within this context, the aim was not to test for a statistical interaction. Strong 

clinical evidence and current guidelines [74] assume that a clinical interaction between 

treatment and epilepsy type exists, hence within current clinical practice clinicians do tend 

to have a preference for specific drugs for different seizure types (see Chapter 1.2 and 

Chapter 6.1 for further details). Therefore for this IPD-NMA to be useful to future clinical 

practice, it was essential to provide results by seizure type and missing an ‘interaction’ was 

not a specifically a concern to this NMA.   

However, previous Cochrane IPD-MAs (e.g. [59, 67]) as well as the analysis of Hua et al [25] 

have shown mixed results regarding whether a statistical interaction between treatment and 

epilepsy type actually exists. It is possible that misclassification of seizure type has 

confounded the results of previous Cochrane IPD-MAs, with one of the Cochrane IPD-MAs 

showing a significant interaction between treatment and epilepsy type following 

reclassification [59]; see Chapter 7.1.3 for further details of additional analyses to account 

for misclassification of seizure type in this IPD-NMA.  

Within this example, due to the ‘two-stage’ nature of the methodology (see Chapter 6.2), 

statistical interactions could only be tested at the ‘first-stage’ of the modelling approach (see 

Chapter 6.2.3). A further analysis was performed for ‘Time-to-withdrawal of allocated 

treatment’ comparing results for the interaction terms of one-stage IPD-MA models (with 

amalgamated or separated interactions, of the structure of the models outlined in Equation 

31 and Equation 34) fitted to subsets of the IPD for the most important pairwise comparisons 

in this context; CBZ vs LTG, CBZ vs LEV, CBZ vs VPS and VPS vs LTG (see Chapter 7).  

Results of these analyses are presented in Table 17. It should be noted that these analyses 

are considered exploratory and that across-study interactions (the �̂�𝐴 defined by Hua et al 

[25]) are not presented due to the computational complexity of estimating this parameter 

within the current framework.  

For the comparisons of CBZ vs LTG, CBZ vs LEV, CBZ vs VPS, results presented in Table 17 

show that the interaction term is not statistically significant (i.e. no evidence of a statistical 

interaction between treatment effect and epilepsy type for these particular AEDs). 
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Furthermore, the same conclusions regarding the interaction between treatment and 

epilepsy type would be drawn (based on the statistical significance), although the magnitude 

of the interaction appears numerically larger for CBZ vs LTG where interactions are 

amalgamated rather than separated (-0.433 compared to -0.313).  

Table 17: One stage meta-analysis results for time-to-withdrawal of allocated treatment 

according to approach of modelling treatment-by-epilepsy type interaction 

Comparison1 Parameter Amalgamated interaction Separated interactions2 

β SE P-value β SE P-value 

CBZ vs LTG 
N=1,889 
(8 trials) 

Drug -0.328 0.100 0.001 -0.402 0.091 <0.001 

Epilepsy type 0.248 0.174 0.154 0.195 0.191 0.308 

Interaction -0.433 0.241 0.072 -0.313 0.274 0.253 

CBZ vs VPS 
N=1,219 
(5 trials) 

Drug 0.020 0.120 0.869 -0.024 0.104 0.816 

Epilepsy type -0.178 0.179 0.32 -0.127 0.195 0.515 

Interaction -0.136 0.235 0.562 -0.238 0.279 0.395 

CBZ vs LEV 
N=1,818 
(3 trials) 

Drug -0.165 0.087 0.059 -0.181 0.082 0.028 

Epilepsy type -0.127 0.179 0.478 -0.079 0.177 0.655 

Interaction -0.105 0.252 0.676 -0.204 0.257 0.427 

VPS vs LTG 
N=774 
(3 trials) 

Drug -0.782 0.249 0.002 -0.028 0.138 0.84 

Epilepsy type -0.392 0.234 0.094 -0.237 0.268 0.376 

Interaction 1.108 0.300 <0.001 0.719 0.393 0.067 

Abbreviations: β = parameter estimate; CBZ = carbamazepine; LEV= Levetiracetam; LTG = 

lamotrigine; SE=standard error; VPS = sodium valproate 

1. The first drug in the comparison is the reference treatment 

2. For the separated interaction model, only the within-study interaction presented 

( �̂�𝑊  of Hua et al [25]) due to computational time of estimating across study 

interaction (�̂�𝐴 of Hua et al [25]) within Stata version 14.  

For the comparison of VPS vs LTG, the interaction is highly significant from the amalgamated 

model (p<0.001) but the within-study interaction is not significant from the separated model 

(p=0.067). The magnitude of the interaction is also numerically reduced in the separated 

model compared to the amalgamated model (0.719 compared to 1.108). The differences 

across the modelling approaches shown for this comparison are in line with the results 

presented above for the NMA in Table 16. 
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6.3  Discussion 

6.3.1 Summary of main results and implications 

This Chapter presents several methodological approaches for an IPD-NMA of AED 

monotherapy, taking account of current clinical practice for treating individuals with partial 

onset and generalised onset seizures. Results from the different approaches presented in this 

Chapter demonstrate that for individuals with partial seizures (the majority epilepsy type, 

around 70%), numerical results and conclusions that could be drawn from them are fairly 

robust to the approach of modelling epilepsy type (within a separate model or via interaction 

terms). However, across methodological approaches for individuals with generalised seizures 

(the minority epilepsy type, around 25%) some numerical results change quite substantially, 

as well as some changes in the statistical conclusions. 

Also of note, the ‘meta-analysis of interactions approach’ which reduces IPD to aggregate 

data and models the treatment-by-epilepsy type interaction separately within each trial 

(rather than also the interaction across-trials as the methods analysing the entire IPD dataset 

across all trials do) seems to produce the most numerically different results to the other 

methods, with these differences even more pronounced for individuals with generalised 

seizures where less data is available. This may be due to potential ecological bias originating 

from this approach. 

It should be noted that definition of the primary outcomes of the IPD-NMA considered in this 

Chapter ‘time-to-withdrawal of allocated treatment’ is complex as multiple reasons for 

treatment withdrawal that are possible for each individual and how these reasons may be 

classified as events or censored observations compared to the definition of planned 

secondary outcomes of the IPD-NMA such as ‘time-to-first seizure,’ (i.e. whether an 

individual experiences a seizure during the study or not). Where different modelling 

approaches were applied to an IPD-NMA of ‘time-to-first seizure,’ numerical results again 

were similar and conclusions mostly unchanged for both seizure types (results not shown for 

brevity).  For such complex outcomes, modelling of the association between treatment effect 

and epilepsy type on the individual patient level is even more important where outcome 

definitions may vary across trials (i.e. more withdrawal events in some trials may occur due 

to adverse events and due to lack of efficacy in other trials), whereas the definition of seizure 

recurrence is the same across all trials so the analysis of ‘time-to-first seizure’ is more robust 

to varying assumptions regarding the treatment-covariate relationships.  
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Further consideration of outcome definitions, particularly ‘time-to-withdrawal of allocated 

treatment’ which can be modelled under a competing risks framework and the impact on 

treatment-covariate relationships (including modelled as interactions) for both meta-analysis 

and NMA would be of interest for future research.    

Result of additional exploratory analyses within this Chapter have also shown no evidence of 

a statistical interaction between treatment effect and epilepsy type for several commonly 

used AEDs which are assumed within current clinical practice to be more effective for 

particular seizure types [74]. This may indicate that such an interaction does not actually 

exist, despite the clinical perception of this interaction. Alternatively, it is possible that the 

existence of a statistical interaction has been not been identified due to lack of power or due 

to confounding from misclassification of epilepsy type, as was the case within a Cochrane 

IPD-MA of phenytoin (perceived to be a better treatment for partial seizures) compared to 

sodium valproate (perceived to be a better treatment for generalised seizures) [59].  

Therefore to inform future clinical practice which assumes a ‘clinical’ interaction between 

AEDs and seizure type, it is essential that future trials reflect clinical practice and this 

‘interaction’ within their designs; by recruiting participants with different seizure types 

separately (e.g. [264, 265] ) or performing stratified randomisation and presenting results for 

each seizure type separately (e.g. [304, 305]). Accurate seizure classification (as far as 

possible) of individuals recruited into future trials is also of great importance to avoid 

confounding of any associations between specific AEDs and seizure types; further discussion 

of this implication can be found in Chapter 7.3.3.  

6.3.2 Strengths and weaknesses 

The use of IPD in these analyses allowed several approaches to consider the relationship 

between treatment effect and epilepsy type and allowed for results to be presented 

separately by epilepsy type in the context of the recommended first line treatment of the 

epilepsy type, such an approach which would not have been possible without the use of IPD. 

At the time of planning this analysis during 2014 [68], there were few methodological 

publications for IPD-NMA, and no work has been published which had considered IPD-NMA 

of TTE data with treatment-covariate interactions (amalgamated interactions or separated 

into within and across-trial interactions). To my knowledge at the time of writing, there are 

still no published methods which allow such a ‘one-stage’ model to be fitted. 
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Hence the proposed methodology was adapted from a previous IPD-NMA in epilepsy 

conducted by the group [285] and a ‘two-stage’ approach was taken for all of the analyses 

presented within this Chapter. Recent work has outlined scenarios where one-stage and two-

stage approaches to meta-analysis may produce different results depending on modelling 

assumptions and estimation methods, choice of fixed or random-effects, clustering within 

studies, correlation between model parameters and handling of treatment-covariate 

interactions [169]. It should be noted that two-stage approaches are methodologically 

accessible and generally extend to any type of synthesis or type of data [40]. 

Further investigation of whether any existing NMA methodology (e.g. [44, 158, 159]) can be 

extended or whether new methodology could be developed within the context of this IPD-

NMA, within either the present multivariate framework or alternative frameworks (such as 

hierarchical Bayesian frameworks), would be of interest for further work. 

A common approach for presenting NMA results is to present the ‘ranks’ of the treatments 

(i.e. the probability that each treatment in the network is the best)[313] which may be of 

interest to readers, particularly clinicians or participants facing a treatment choice. Within 

the present analysis of a complex and chronic condition (epilepsy) with multiple outcomes 

relating to efficacy and tolerability, including a complex composite primary outcome of ‘time-

to-withdrawal of allocated treatment’ to which the individual participant can make a 

contribution, it was not deemed appropriate to present ‘best’ treatment for each outcome. 

For some individuals with epilepsy, complete remission of seizures may be a priority whereas 

for others intolerable side effects may be deemed more unacceptable than an occasional 

seizure so what would be deemed the ‘best’ treatment for one individual would not be the 

‘best’ treatment for another. Further discussion of the clinical implications of the results and 

an informal ‘ranking’  by ordering according treatment effect sizes from the IPD-NMA 

compared to the reference treatment (e.g. better or worse than carbamazepine) and are 

presented graphically in Chapter 7 and in the Cochrane IPD-NMA [69]. 

It should be noted that for some of the present analysis approaches, if it had been deemed 

appropriate to present treatment ‘ranks,’ due to the treatment-by-epilepsy type interaction 

in this model, rankings separated by epilepsy type cannot be calculated directly. Not being 

able to present a clearly ‘best’ treatment from NMA results according to different covariate 

values (where appropriate) is a general limitation and future research which allows ranking 

treatments from models with treatment-covariate interactions would be of value. 
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6.3.3 Concluding remarks 

Results across the statistical approaches outlined in this Chapter demonstrate that for 

individuals with partial seizures are fairly robust to the approach of modelling epilepsy type 

(within a separate model or via interaction terms) but results are more variable across the 

methodological approaches for individuals with generalised seizures.  

Current clinical practice assumes that a clinical interaction between treatment effect and 

epilepsy type exists, with clinician preference for certain drugs and current NICE guidelines 

recommend different first-line treatments for individuals with different seizure types [74]. 

Despite this perception, the statistical approaches investigated within this Chapter do not 

provide consistent evidence that such an interaction exists statistically. 

Nonetheless, it is essential for this IPD-NMA to be informative to future clinical practice of 

epilepsy monotherapy that separate inferences by seizure type can be made and that future 

trials of epilepsy monotherapy reflect clinical practice and this perceived ‘interaction’ within 

their designs. Such future designs would better allow for more accurate investigation of any 

true statistical interaction between treatment effect and epilepsy type as well as further 

consideration of any differences of interactions across-trials and within-trials. 
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Chapter 7: A Cochrane IPD-NMA of antiepileptic drug 

monotherapy: additional considerations 

Chapter 6 of this thesis presents detailed statistical methodology for several approaches to 

modelling the association between epilepsy type and treatment effect in IPD-NMA. 

Methodology outlined in Chapter 6.2.3 was pre-specified in the protocol of Cochrane IPD-

NMA, which was written in 2014 [68]. This Chapter presents the clinical results and 

implications of the Cochrane IPD-NMA [69] and additional methodological considerations 

including comparison of NMA results to direct evidence, investigation of heterogeneity and 

inconsistency, additional and sensitivity analyses.   

7.1  Additional methodological considerations 

7.1.1  Direct (pairwise) evidence 

Where pairwise evidence was available (see Figure 9 in Chapter 5 for network diagram of 

comparisons made between the ten AEDs of interest), the 𝑗𝑡ℎ trial, a  trial-specific 𝑙𝑛 (𝐻𝑅)𝑗  

and 𝑠𝑒(𝑙𝑛 (𝐻𝑅))𝑗  was estimated using methods outlined in Chapter 6.2.5 of this thesis. 

These trial specific estimates were then combined via the ‘metan’ command in Stata (inverse-

variance meta-analysis, see Equation 13 and Equation 14 in Chapter 2.3.2), resulting in a 

pooled 𝑙𝑛 (𝐻𝑅) and 𝑣𝑎𝑟 (𝑙𝑛 (𝐻𝑅)) for each available pairwise comparison.  

For each pairwise comparison where data could be synthesised for at least two trials, the 

presence of statistical heterogeneity was assessed using the Q test (P-value < 0.10 for 

significance) and the 𝐼2  statistic [314].  The presence of clinical heterogeneity was assessed 

by comparing trial design characteristics and participant demographics and by visual 

inspection of forest plots, particularly in terms of the magnitude and direction of effects. In 

the first instance, a fixed-effects model was to be used for all pairwise meta-analyses. If an 

important amount of heterogeneity (defined here as 𝐼2 > 50%) was found to be present 

which could not be explained by differences in trial or participant characteristics, pairwise 

meta-analyses would be repeated using a Der Simonanian-Laird random-effects model [12].  

It should be noted that this is a ‘two-stage’ method of IPD-MA which was performed to allow 

visual comparison forest plots to assess for clinical heterogeneity. Such an approach may be 

associated with some limitations compared to one stage IPD-MA but is unlikely to produce 

different results to a one-stage method as both approaches have otherwise made the same 

assumptions [169].  For completeness, one-stage IPD-MA was also performed fitting a one-
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stage stratified Cox PH model with fixed-treatment effects, treatment-by-epilepsy type 

interaction and stratified by trial for each pairwise comparison. Numerical results were very 

similar and conclusions unchanged for all pairwise comparisons (results not shown). 

7.1.2  Investigation of consistency  

As outlined in Chapter 1.1.2, the key assumption made in NMA is that average treatment 

effect is "exchangeable" across all included trials. Due to the clinical perception of a clinical 

(and potentially statistical) interaction between treatment effect and epilepsy type within 

this network, judgements of exchangeability were made separately by epilepsy type. 

In the context of the present network, transitivity requires that all treatments are "jointly 

randomisable;" given that all of the ten drugs within this network are licenced and commonly 

used as monotherapy treatments for individuals with newly diagnosed partial-onset seizures 

or generalised-onset tonic-clonic seizures (with or without other generalised seizure types) 

and have all been used within trials of similar designs, there were no concerns over 

transitivity in this network. 

The consistency assumption can be evaluated statistically comparing the difference between 

the direct treatment effect estimate and the indirect estimate for each loop of evidence. In 

general, methods for evaluating inconsistency take either a ‘local’ or ‘global’ approach; the 

former approach is loop specific, focusing on inconsistency within each specific treatment 

comparison while the latter approach evaluates the presence of inconsistency across the 

entire network of evidence [18]. A recent literature review of NMA methodology 

recommends the use of both ‘local’ and ‘global’ methods, where possible, to gain a better 

understanding of both the plausibility of the consistency assumption in the network as a 

whole and also the sources of possible discrepancies within the network [18]. 

Given the complexity of the network model fitted (with treatment-by-epilepsy type 

interaction) and the number of multi-arm trials included in analysis, two methods were used 

to evaluate inconsistency within this network. Firstly, node-splitting was performed via the 

‘network sidesplit’ command in Stata [310, 315]; this ‘local’ method separates evidence from 

a particular comparison (node) into direct and indirect, allowing for formal comparison of 

difference between direct (pairwise), indirect and NMA (direct and indirect evidence 

combined) estimates. Secondly, a ‘design-by-treatment’ inconsistency model was fitted via 

the ‘network meta inconsistency’ command in Stata [310, 316]; a ‘global’ method which 

evaluates both loop and design inconsistencies, particularly within multi-arm trials. For 
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example, the A versus B treatment effect in a study comparing only treatments A and B (i.e. 

an AB design) may vary from the A versus B effect in a three arm study of an ABC design [18].  

Here a ‘design’ was classified to reflect both the treatment comparisons made in the study 

and the epilepsy types recruited within the trial. For example, a trial of CBZ compared to LTG 

in individuals with partial-onset seizures only was considered to be a different design to a 

trial of CBZ compared to LTG recruiting individuals of both epilepsy types.  

For investigation of inconsistency via node-splitting, treatment effect estimates are 

presented graphically for direct evidence (pairwise meta-analysis from the trials which make 

direct comparisons of the pair of drugs), indirect evidence (from the node-splitting model 

which makes indirect comparisons from the trials which do not make a direct comparison of 

the pair of drugs) and direct plus indirect evidence (from NMA model of the whole network) 

for each pairwise comparison.   Numerical results for direct evidence, indirect evidence and 

NMA results for each pairwise comparison were examined, particularly the overlap of CIs of 

the estimate. It would be expected that numerical results for the NMA would be the most 

precise as the largest amount of data contributes to these analyses and due to the ‘borrowing 

of strength’ across the network. P-values and heterogeneity statistics are also presented 

from ‘design-by-treatment’ inconsistency models for each outcome. 

Potentially important inconsistency was noted to be present if the global test for 

inconsistency from the ‘design-by treatment’ model was statistically significant and/or where 

CIs of results from direct evidence and NMA results do not overlap (i.e. there is a statistically 

significant difference between pairwise and NMA results). If deemed present, potential 

origins of inconsistency were investigated. Also, while of less concern than the potential 

inconsistency described above, it was also noted where CIs of results from indirect evidence 

did not overlap with the CIs of the direct and NMA estimates and reasons for any numerical 

differences in results were considered. 

7.1.3  Additional analyses and sensitivity analyses 

As outlined in Chapter 5.3.2, a range of participant covariates (including age, sex, seizure 

history, EEG and scan results) were requested in addition to outcome data in all IPD requests 

in order to explore these covariates as potential modifiers of treatment effect and as 

potential sources of heterogeneity and/or inconsistency. However,  due to large proportions 

of missing data and variability in the definitions of data provided for most of these covariates 

(see Chapter 5.4.3 for further details), adjusted analyses with all covariates of interest was 

deemed not appropriate.  
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Age at randomisation was provided for the majority of participants (99% of total eligible 

participants) and previous Cochrane IPD-MAs have shown an association between age and 

treatment effect for commonly used drugs CBZ, VPS and LTG [61, 67]. Therefore, an 

additional analysis was performed adjusting for age at randomisation where an additional 

interaction term of treatment-by-age (centred by mean age of participants in each trial) was 

added to the initial Cox PH model (described in Chapter 6.2.3). NMA was repeated and results 

compared to those from the primary analysis (without age). 

A range of sensitivity analyses were conducted to examine the robustness of results to 

assumptions made in pairwise and NMA: 

 Trial-specific treatment effects were estimated via a Cox PH model (see Chapter 6.2.3). 

To assess the validity of the PH assumption, the statistical significance of time-varying 

covariates for all covariates in the model were tested. If there was indication that the 

PH assumption has been violated, in sensitivity analysis, for the 𝑖𝑡ℎ participant in the 𝑗𝑡ℎ 

trial, a parametric accelerated failure time (AFT) model, stratified by trial, was fitted to 

the entire individual participant dataset:    

ℎ𝑖𝑗(𝑡) = ℎ0𝑗(𝑡/exp (𝜑𝑖𝑗)𝑒𝑥𝑝(−𝜑𝑖𝑗)   (Equation 42) 

Where  𝜑𝑖𝑗 = (𝛼2𝑗𝑥2𝑖𝑗 + …+ 𝛼10𝑗𝑥10𝑖𝑗) + 𝑧𝑖𝑗 (𝜋𝑗 + 𝛾2𝑗𝑥2𝑖𝑗 + … + 𝛾9𝑗𝑥9𝑖𝑗) 

Other parameters are defined as in Equation 31, outlined in Chapter 6.2.3. NMA was 

repeated according to the methods outlined in Chapter 6.2.5 and results were compared 

to those from the primary analysis with the Cox PH model. 

 As outlined in Chapter 5.3.3, where minor inconsistencies remained in IPD provided 

following clarification from data providers, sensitivity analyses were conducted.  Details 

of inconsistencies identified in IPD and sensitivity analyses conducted to account for 

these inconsistencies are presented in Appendix 14. 

 Misclassification of epilepsy type is a recognised problem in epilepsy; whereby some 

individuals with partial seizures have been mistakenly classed as having generalised-

onset seizures and vice versa. Such a misclassification has impacted on results of 

previous Cochrane IPD-MAs [66, 67]. Clinical evidence suggests that individuals with 

generalised-onset seizures are unlikely to have an 'age of onset' greater than 25 to 30 

years [317]; out of the 12,371 participants with IPD provided for analysis, 1,164 (9%) 

were classified as experiencing generalised seizures and had an estimated age of onset 

as greater than 30 years.  Two sensitivity analyses were performed to investigate the 

impact of potential misclassification: 
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o Re-classification of 1,164 individuals with generalised seizures and age of onset over 

30 years as having partial-onset seizures. NMA was then repeated with the 

interaction term of treatment-by-epilepsy type with the reclassified epilepsy type. 

o Re-classification of 1,164 individuals with generalised seizure and age at onset over 

30 years and 574 participants with missing epilepsy type into an 'unclassified 

epilepsy type' group. NMA was then repeated with the interaction term of 

treatment-by-epilepsy type where epilepsy type is partial epilepsy compared to 

generalised or unclassified epilepsy.  

It was not possible to achieve convergence of NMA with a 'three-way' interaction (i.e. partial 

epilepsy compared to generalised epilepsy compared to unclassified epilepsy). This is likely 

due to small numbers of participants with unclassified epilepsy and with generalised epilepsy 

following reclassification) receiving some AEDs.  

7.2  Results  

For brevity, results for ‘Time-to-withdrawal of allocated treatment’ and ‘Time-to-first seizure’ 

only are reported within this Chapter. Numerical results for the two remission outcomes can 

be found in Appendix 15 of this thesis and further discussion of the clinical implications of 

these results within the published Cochrane IPD-NMA [69]. 

All tables and figures of NMA results indicate the proportion of the treatment effect estimate 

which is contributed by direct evidence (ranging from 0% where no direct comparison exists 

to 100% for the CBZ vs ZNS comparison which is disconnected from the rest of the network, 

see Figure 12). These proportions were determined from a ‘contribution plot’ (derived via 

the ‘netweight’ command in Stata version 14), described by Chaimani et al [299].  It should 

be noted that due to a limited amount of evidence for individuals with generalised seizures 

for some comparisons in the network, some CIs of treatment effect sizes are very wide. 
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Table 18: Reasons for withdrawal from allocated treatment 

Reason for 

withdrawal 

Classification 

for analysis 

Randomised Drug3 

CBZ PHB PHT VPS LTG OXC TPM GBP LEV ZNS Total 

Adverse events Event 505 

(45%) 

24 

(20%) 

93 

(35%) 

132 

(28%) 

235 

(41%) 

56 

(41%) 

259 

(48%) 

73 

(20%) 

134 

(39%) 

31 

(32%) 

1542 

(38%) 

Inadequate response Event 232 

(20%) 

20 

(16%) 

46 

(17%) 

140 

(29%) 

144 

(26%) 

36 

(26%) 

148 

(27%) 

223 

(62%) 

89 

(26%) 

23 

(24%) 

1101 

(27%) 

Adverse events and 

inadequate response 

Event 148 

(13%) 

51 

(41%) 

54 

(20%) 

107 

(22%) 

32  

(6%) 

11 

 (8%) 

46  

(8%) 

32  

(9%) 

0  

(0%) 

0  

(0%) 

481 

(12%) 

Protocol violation / 

non-compliance 

Event 102 

(9%) 

15 

(12%) 

41 

(15%) 

11  

(2%) 

68 

(12%) 

27 

(20%) 

0  

(0%) 

21  

(6%) 

21 

 (6%) 

3  

(3%) 

309 

(8%) 

Withdrew consent Event 121 

(11%) 

13 

(11%) 

25  

(9%) 

64 

(13%) 

65 

(11%) 

2  

(1%) 

55 

(10%) 

4  

(1%) 

68 

(20%) 

35 

(36%) 

452 

(11%) 

Other1 Event 29 

 (3%) 

0  

(0%) 

7  

(3%) 

24  

(5%) 

26  

(5%) 

5  

(4%) 

37  

(7%) 

9  

(2%) 

32  

(9%) 

4  

(4%) 

173 

(4%) 

Total events3 1137 

(35%) 

123 

(38%) 

266 

(31%) 

478 

 (28%) 

570 

 (29%) 

137 

(29%) 

545 

(47%) 

362 

(61%) 

344 

(27%) 

96 

(34%) 

4058 

(34%) 

Illness or death Censored 34  

(2%) 

10  

(5%) 

17  

(3%) 

7  

(1%) 

20  

(1%) 

1  

(0%) 

10  

(2%) 

9  

(4%) 

0  

(0%) 

0  

(0%) 

108 

(1%) 

Remission of seizures Censored 49  

(2%) 

4  

(2%) 

38  

(6%) 

75  

(6%) 

40  

(3%) 

12  

(4%) 

44  

(7%) 

21 

 (9%) 

0  

(0%) 

0  

(0%) 

283 

(4%) 

Lost to follow-up Censored 81  

(4%) 

31 

(16%) 

51  

(9%) 

63  

(5%) 

33  

(3%) 

24  

(7%) 

18  

(3%) 

0  

(0%) 

41  

(5%) 

0  

(0%) 

342 

(4%) 
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Other2 Censored 104 

(5%) 

6  

(3%) 

22  

(4%) 

82  

(7%) 

31  

(2%) 

5  

(2%) 

26  

(4%) 

26 

(12%) 

0  

(0%) 

25 

(13%) 

327 

(4%) 

Completed Study Censored 1829 

(87%) 

139 

(73%) 

468 

(79%) 

949 

(81%) 

1272 

(91%) 

291 

(87%) 

501 

(84%) 

166 

(75%) 

868 

(95%) 

161 

(87%) 

6644 

(86%) 

Total censored3 2097 

(65%) 

190 

(62%) 

596 

(69%) 

1176 

(72%) 

1396 

(71%) 

333 

(71%) 

599 

(53%) 

222 

(39%) 

909 

(73%) 

186 

(66%) 

7704 

(66%) 

Missing4 
 

24 7 1 26 12 8 14 11 0 0 103 

Total5 
 

3258 320 863 1680 1978 478 1158 595 1253 282 11,865 

 

1. Other treatment related reasons included: Physician’s decision, drug-related death, pregnancy or perceived remission or non-specific (drug related) reason. 

2. Other non-treatment related reasons included: epilepsy diagnosis changed, participants developed other medical disorders including neurological and psychiatric 

disorders or non-specific (non-drug related) reason. 

3. Proportions for specific reasons indicate proportion of total events or total censored. Proportion for total events and total censored indicate the proportion of total 

participants. 

4. Those with missing reason for withdrawal were primarily classified as censored in analysis and performed a sensitivity analysis treating these individuals as having 

withdrawal 'events.' Results of sensitivity analysis were practically identical and conclusions unchanged. 

5. Four studies did not contribute to analysis of time-to-withdrawal of allocated treatment.  
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7.2.1  Primary outcome: Time-to-withdrawal of allocated treatment 

11,865 out of 12,391 participants (96%) contributed to analysis of 'Time-to-withdrawal of 

allocated treatment'. Withdrawal information was not available for three trials and all 

participants completed follow-up in one trial so 'Time-to-withdrawal of allocated treatment' 

could not be calculated for four trials (4% of participants with IPD provided).   

Table 18 shows the reported reasons for premature withdrawal from the trial and these 

reasons were classified in analysis. In some instances, participants many have withdrawn 

from treatment for a combination of reasons. For the purpose of analysis a judgement was 

made regarding the primary reason for withdrawal (see Chapter 5.3.3.2 for further details of 

classification). It should be noted that the information reported in Table 18 does not take 

account of randomisation within trials and should be interpreted as exploratory. 

Out of 11865 individuals, 4058 (34%) prematurely withdrew and 7704 were censored in 

analysis (65%). For 103 participants, reason for withdrawal was missing (ranging by drug from 

0 participants (LEV and ZNS) to 26 participants (VPS)). We treated those with missing reason 

for withdrawal as censored in analysis and performed a sensitivity analysis treating these 

individuals as having withdrawal 'events'. Results of sensitivity analysis were practically 

identical and conclusions unchanged (results not presented for brevity), therefore these 

individuals are censored in results presented.  

7.2.1.1  Direct evidence 

Table 19 (individuals with partial seizures) and Table 20 (individuals with generalised 

seizures) show the number of trials and participants contributing direct evidence for each of 

the pairwise comparisons in the network. Results highlighted in bold indicate statistically 

significant results and HR <1 indicates an advantage to the second drug in the comparison. 

All results presented are calculated with fixed-effects. 

Twenty out of 45 comparisons had no direct evidence for individuals with partial seizures. 

Thirteen out of 36 comparisons had no direct evidence for individuals with generalised 

seizures and eight comparisons for individuals with generalised seizures had less than 20 

individuals contributing direct evidence resulting in wide CIs around the treatment effect 

estimate. Comparisons with the most participants contributing to analysis were CBZ vs LTG 

and CBZ vs LEV (partial seizures) and VPS vs LEV and VPS vs TPM (generalised seizures). 
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Table 19: Pairwise and network meta-analysis results - Time-to-withdrawal of allocated 
treatment for individuals with partial seizures 

Comparision1 Direct Evidence  

(Pairwise meta-analysis) 

Direct plus Indirect Evidence 

(Network Meta-Analysis) 

Number of 

studies 

(participants) 

HR (95% CI)2,3 I² (%) Proportion 

of direct 

evidence5 

HR (95% CI)2,3 

CBZ vs PHB 4 (520) 1.57 (1.16 to 2.13) 0% 52.50% 1.55 (1.18 to 2.04) 

CBZ vs PHT 3 (428) 1.03 (0.74 to 1.42) 63.6% 12.80% 1.13 (0.92 to 1.38) 

CBZ vs VPS 5 (814) 0.94 (0.73 to 1.19) 0% 40.10% 1.04 (0.86 to 1.25) 

CBZ vs LTG 9 (2268) 0.76 (0.61 to 0.95) 39.3% 28.90% 0.75 (0.65 to 0.86) 

CBZ vs OXC 2 (562) 4.62 (0.95 to 22.4) 0% 5.70% 1.09 (0.84 to 1.42) 

CBZ vs TPM 2 (937) 1.04 (0.52 to 2.07) 0% 7.40% 1.18 (0.98 to 1.43) 

CBZ vs GBP 2 (954) 1.14 (0.84 to 1.55) 0% 87.10% 1.20 (1.00 to 1.43) 

CBZ vs LEV 3 (1567) 0.70 (0.52 to 0.94) 0% 37.90% 0.82 (0.69 to 0.97) 

CBZ vs ZNS 1 (583) 1.08 (0.81 to 1.44) NA4 100% 1.08 (0.79 to 1.48) 

PHB vs PHT 3 (404) 0.67 (0.50 to 0.91) 65% 15.20% 0.73 (0.55 to 0.96) 

PHB vs VPS 2 (75) 0.68 (0.34 to 1.36) 23% 8.80% 0.67 (0.48 to 0.92) 

PHB vs LTG No direct evidence 0% 0.48 (0.35 to 0.66) 

PHB vs OXC No direct evidence 0% 0.70 (0.48 to 1.03) 

PHB vs TPM No direct evidence 0% 0.76 (0.55 to 1.06) 

PHB vs GBP No direct evidence 0% 0.77 (0.55 to 1.07) 

PHB vs LEV No direct evidence 0% 0.53 (0.38 to 0.73) 

PHB vs ZNS No direct evidence 0% 0.70 (0.46 to 1.06) 

PHT vs VPS 4 (168) 1.00 (0.60 to 1.64) 58.5% 9% 0.92 (0.70 to 1.21) 

PHT vs LTG 1 (90) 1.10 (0.57 to 2.14) NA 11.60% 0.66 (0.52 to 0.85) 

PHT vs OXC 2 (325) 0.65 (0.32 to 1.32) 0% 40.40% 0.97 (0.69 to 1.35) 

PHT vs TPM 1 (53) 0.77 (0.38 to 1.57) NA 10.90% 1.05 (0.80 to 1.39) 

PHT vs GBP No direct evidence 0% 1.06 (0.81 to 1.40) 

PHT vs LEV No direct evidence 0% 0.73 (0.56 to 0.95) 

PHT vs ZNS No direct evidence 0% 0.96 (0.66 to 1.39) 

VPS vs LTG* 3 (221) 1.40 (1.00 to 1.96) 45.1% 5.10% 0.72 (0.58 to 0.90) 

VPS vs OXC No direct evidence 0% 1.05 (0.76 to 1.44) 

VPS vs TPM 2 (111) 1.66 (1.24 to 2.23) 48.1% 33.70% 1.14 (0.88 to 1.48) 

VPS vs GBP No direct evidence 0% 1.15 (0.89 to 1.49) 

VPS vs LEV 1 (190) 1.14 (0.73 to 1.75) NA 17.20% 0.79 (0.61 to 1.03) 

VPS vs ZNS No direct evidence 0% 1.04 (0.73 to 1.50) 

LTG vs OXC 1 (506) 0.69 (0.12 to 4.14) NA 4.40% 1.46 (1.11 to 1.92) 

LTG vs TPM 1 (648) 1.18 (0.86 to 1.62) NA 20.90% 1.59 (1.29 to 1.95) 

LTG vs GBP 1 (659) 0.62 (0.06 to 6.01) NA 1% 1.60 (1.31 to 1.96) 

LTG vs LEV 1 (240) 0.86 (0.58 to 1.28) NA 23.70% 1.10 (0.89 to 1.35) 

LTG vs ZNS No direct evidence 0% 1.45 (1.03 to 2.04) 

OXC vs TPM 1 (496) 0.87 (0.16 to 4.73) NA 4.90% 1.09 (0.82 to 1.44) 

OXC vs GBP 1 (507) 0.90 (0.08 to 9.96) NA 2.30% 1.10 (0.83 to 1.45) 

OXC vs LEV No direct evidence 0% 0.75 (0.55 to 1.03) 
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OXC vs ZNS No direct evidence 0% 0.99 (0.66 to 1.49) 

TPM vs GBP 1 (649) 1.04 (0.12 to 9.33) NA 1.10% 1.01 (0.82 to 1.25) 

TPM vs LEV No direct evidence 0% 0.69 (0.54 to 0.89) 

TPM vs ZNS No direct evidence 0% 0.91 (0.64 to 1.31) 

GBP vs LEV No direct evidence 0% 0.69 (0.54 to 0.88) 

GBP vs ZNS No direct evidence 0% 0.90 (0.63 to 1.30) 

LEV vs ZNS No direct evidence 0% 1.32 (0.93 to 1.88) 

1. Order of drugs in the table: most commonly used drug first (CBZ), then drugs are ordered 

approximately by the date they were licenced as a monotherapy treatment (oldest first). 

2. HRs and 95% CIs are calculated from fixed-effects analyses.  

3. HR<1 indicates an advantage to the second drug in the comparison; results in highlighted in bold 

are statistically significant. 

4. NA - heterogeneity is not applicable as only one study contributes direct evidence. 

5. Proportion of the estimate contributed by direct evidence (see Chaimani et al [299]) . 

Comparisons marked with a *, confidence intervals of direct evidence and network meta-analysis do 

not overlap indicating the inconsistency may be present in the results. 

Table 19 and Table 20 also show heterogeneity in the direct treatment effects. No substantial 

heterogeneity was present (I2 greater than 50%) for any comparison for individuals with 

generalised seizures. For three comparisons for individuals with partial seizures, substantial 

heterogeneity was present (I2 greater than 50%). The heterogeneity in these comparisons 

seemed to originate from difference in trial designs contributing to the pooled result; i.e. 

pooling of trials recruiting children only, adults only or elderly participants only and pooling 

of double-blind and open label trials (previous pairwise Cochrane Epilepsy IPD reviews in this 

series have discussed the importance of blinding to the outcome of time-to-withdrawal of 

allocated treatment) [61, 318]. Repeating analysis with random-effects did not change 

conclusions for two of the comparisons (CBZ vs PHT and PHT vs VPS) but for one comparison 

(PHB vs PHT), when repeating analysis with random-effects there was no longer a statistically 

significant advantage to PHT; pooled HR 0.42 (95% CI 0.16 to 1.06). 
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Table 20: Pairwise and network meta-analysis results - Time-to-withdrawal of allocated 
treatment for individuals with generalised seizures 

Comparision1 Direct Evidence  

(Pairwise meta-analysis) 

Direct plus Indirect Evidence 

(Network Meta-Analysis) 

Number of 

studies 

(participants) 

HR (95% CI)2,3 I2 (%) Proportion 

of direct 

evidence5 

HR (95% CI)2,3 

CBZ vs PHB 3 (156) 1.21 (0.51 to 2.86) 11.8% 27.30% 1.47 (0.83 to 2.61) 

CBZ vs PHT 2 (118) 2.68 (0.95 to 7.57) 0% 11.30% 0.92 (0.59 to 1.42) 

CBZ vs VPS 4 (405) 1.26 (0.73 to 2.20) 6.6% 27.30% 0.70 (0.54 to 0.92) 

CBZ vs LTG 7 (302) 1.23 (0.72 to 2.10) 0% 39.20% 0.63 (0.45 to 0.89) 

CBZ vs OXC 1 (9) 0.39 (0.03 to 4.35) NA4 3.90% 1.00 (0.21 to 4.81) 

CBZ vs TPM 2 (101) 1.10 (0.51 to 2.36) 0% 23.20% 1.24 (0.90 to 1.71) 

CBZ vs GBP 1 (6) 0.49 (0.03 to 7.90) NA 8.50% 0.90 (0.11 to 7.29) 

CBZ vs LEV 2 (251) 1.22 (0.74 to 2.02) 0% 57% 0.74 (0.44 to 1.23) 

PHB vs PHT 2 (95) 1.56 (0.49 to 4.99) 0% 16.10% 0.62 (0.32 to 1.24) 

PHB vs VPS 2 (94) 0.56 (0.20 to 1.54) 0% 19.40% 0.48 (0.27 to 0.86) 

PHB vs LTG No direct evidence 0% 0.43 (0.22 to 0.83) 

PHB vs OXC No direct evidence 0% 0.68 (0.13 to 3.60) 

PHB vs TPM No direct evidence 0% 0.84 (0.44 to 1.60) 

PHB vs GBP No direct evidence 0% 0.61 (0.07 to 5.34) 

PHB vs LEV No direct evidence 0% 0.50 (0.23 to 1.09) 

PHT vs VPS 3 (326) 0.66 (0.30 to 1.45) 22.6% 19.30% 0.77 (0.46 to 1.27) 

PHT vs LTG 1 (91) 1.11 (0.42 to 2.94) NA 14.90% 0.69 (0.39 to 1.20) 

PHT vs OXC 2 (155) 1.05 (0.44 to 2.52) 0% 37.90% 1.09 (0.21 to 5.56) 

PHT vs TPM 1 (150) 1.68 (0.49 to 5.69) NA 11.20% 1.35 (0.79 to 2.30) 

PHT vs GBP No direct evidence 0% 0.98 (0.12 to 8.30) 

PHT vs LEV No direct evidence 0% 0.80 (0.42 to 1.55) 

VPS vs LTG 3 (387) 0.46 (0.22 to 0.97) 0% 14.80% 0.90 (0.60 to 1.35) 

VPS vs OXC No direct evidence 0% 1.42 (0.29 to 6.92) 

VPS vs TPM* 2 (443) 0.53 (0.27 to 1.07) 48.5% 22.40% 1.76 (1.22 to 2.53) 

VPS vs GBP No direct evidence 0% 1.28 (0.16 to 10.5) 

VPS vs LEV 1 (512) 0.68 (0.30 to 1.59) NA 18.60% 1.05 (0.58 to 1.90) 

LTG vs OXC 1 (10) 2.09 (0.34 to 12.8) NA 7.60% 1.58 (0.33 to 7.67) 

LTG vs TPM 1 (14) 1.10 (0.42 to 2.89) NA 7.30% 1.96 (1.25 to 3.08) 

LTG vs GBP 1 (7) 2.63 (0.27 to 25.7) NA 13.80% 1.42 (0.17 to 11.6) 

LTG vs LEV No direct evidence 0% 1.17 (0.63 to 2.19) 

OXC vs TPM 1 (14) 1.31 (0.24 to 7.32) NA 9% 1.24 (0.26 to 5.94) 

OXC vs GBP 1 (7) 1.26 (0.11 to 14.1) NA 12.70% 0.90 (0.08 to 9.96) 

OXC vs LEV No direct evidence 0% 0.74 (0.14 to 3.86) 

TPM vs GBP 1 (11) 0.96 (0.11 to 8.67) NA 14.60% 0.73 (0.09 to 5.89) 

TPM vs LEV No direct evidence 0% 0.60 (0.33 to 1.09) 

GBP vs LEV No direct evidence 0% 0.82 (0.10 to 7.10) 

1. See Table 19 for details of footnotes 
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7.2.1.2  NMA results (direct plus indirect evidence) 

Figure 13 shows how each AED performs compared to first-line treatment CBZ for individuals 

with partial seizures (ordered by treatment effect estimate); LTG and LEV are significantly 

better than CBZ and CBZ is significantly better than GBP and PHB. Figure 14 shows how each 

AED performs compared to first-line treatment LTG for individuals with partial seizures 

(ordered by treatment effect estimate); LTG is significantly better than all AEDs except for 

LEV. Figure 15 shows how each AED performs compared to first-line treatment VPS for 

individuals with generalised seizures (ordered by treatment effect estimate); VPS is 

significantly better than CBZ, TPM and PHB. 

Table 19 and Table 20 (above) show treatment effect estimates for all pairwise comparisons 

in the network combining direct with indirect evidence (NMA). In addition to the 

performance of the AEDs compared to the first-line treatments (as described above), for 

individuals with partial seizures, LEV seems to perform better than most other AEDs and for 

individuals with generalised seizures, LTG seems to perform better than most other AEDs. 

For both individuals with partial seizures and individuals with generalised seizures, PHB 

seems to perform worse than most other AEDs. 

Figure 13: All AEDs compared to carbamazepine (CBZ) for time to treatment withdrawal, 
individuals with partial seizures 
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Figure 14: All AEDs compared to lamotrigine (LTG) for time to treatment withdrawal, 
individuals with partial seizures 

 

Figure 15: All AEDs compared to sodium valproate (VPS) for time to treatment 
withdrawal, individuals with generalised seizures 
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As described in Chapter 6.2.5., an I2 statistic could not be directly calculated for the NMA but 

could be estimated. The estimated I2 statistic was 11.7% and when repeating NMA with 

random-effects, calculated the τ2 statistic was 0.0037. Numerical results for treatment effects 

were very similar (the same to one decimal place, results not presented) and conclusions 

remained unchanged. Therefore, if any heterogeneity is present within this NMA, the impact 

upon results is negligible. 

7.2.1.3  Investigation of inconsistency  

The ‘design-by-treatment’ inconsistency model was fitted to 17 variables and regressed on 

23 designs, five of which were multi-arm trials (up to five treatment arms). Accounting for 

the multi-arm trials, this resulted in a 𝜒2 test for inconsistency with 36 degrees of freedom 

which was not significant: (𝜒2 (36) = 45.6, p-value = 0.131, heterogeneity (τ) = 5.65 x 10-10). 

Notably, for most pairwise comparisons, numerical results of direct evidence and NMA are 

similar, mostly in the same direction and CIs of estimates overlap. For all pairwise 

comparisons, results from NMA are more precise than results from direct evidence (in some 

cases, much more precise where limited direct evidence exists, for example, see CBZ 

compared to OXC, Appendix 16, Figure 36).  For the following comparisons, conclusions 

drawn from direct evidence and from NMA are different (see Table 19 and Table 20): 

 Direct evidence shows a significant advantage to one of the AEDs and the NMA results 

show no significant difference between the AEDs: VPS vs TPM (partial seizures) 

 Direct evidence shows no significant difference between the AEDs and NMA shows a 

significant advantage for one of the AEDs: CBZ vs GBP, LTG vs OXC, LTG vs TPM, LTG vs 

GBP (all partial seizures); CBZ vs VPS, CBZ vs LTG, PHB vs VPS, VPS vs TPM, LTG vs TPM 

(all generalised seizures) 

 No direct evidence exists between the AEDs while NMA shows a significant advantage 

for one of the AEDs: PHB vs LTG, PHB vs LEV, LTG vs ZNS, TPM vs LEV, GBP vs LEV (all 

partial seizures); PHB vs LTG (generalised seizures) 

For the following comparisons; CIs for the results from indirect evidence do not overlap with 

(see Appendix 16): 

 Direct evidence: CBZ vs PHT (generalised seizures), PHB vs PHT (generalised seizures). 

 NMA results: LTG vs PHT (partial seizures), CBZ vs PHT (generalised seizures), LTG vs PHT 

(generalised seizures). 
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For the following comparisons; CIs for the results from direct evidence and from NMA do not 

overlap which indicates potential inconsistency is present (see Table 19 and Table 20, results 

marked with *): VPS vs LTG (partial seizures), VPS vs TPM (generalised seizures). 

For the comparison of VPS vs LTG for individuals with partial seizures, from direct evidence 

only, there is a statistically significant advantage to VPS (HR 1.40 (1.00 to 1.96), however from 

the NMA results, the direction of effect changes to a statistically significant advantage to LTG 

(HR 0.72 (0.58 to 0.90)). However, for this comparison, only 5.1% of the network estimate is 

contributed from direct evidence and a moderate amount of heterogeneity is present in this 

estimate (I2=45%), likely due to variability in the trial design of the three trials contributing 

to this estimate (for example, one trial was designed to only recruit individuals with 

generalised or unclassified seizures but did recruit a small number of individuals with partial 

seizures who contribute to this outcome) [264].  

For the comparison of VPS vs TPM for individuals with generalised seizures, from direct 

evidence, there is no significant difference between the drugs (HR 0.53 (0.27 to 1.07)), 

however from the NMA results, a statistically significant advantage is shown for VPS (HR 1.76 

(1.22 to 2.53)). As above, for this comparison, only 22.4% of the network estimate is 

contributed from direct evidence and a moderate amount of heterogeneity is present in this 

estimate (I2=48.5%). Again, this heterogeneity is likely due to difference in trial design of the 

two trials contributing direct evidence (see characteristics of Privitera et al [304] for details 

of stratification). 

Furthermore, the 'design-by treatment' inconsistency model does not show any significant 

evidence of inconsistency within the network. Therefore, we are not concerned about any 

impact of this observed inconsistency of numerical results on the conclusions of the review. 

7.2.2  Secondary outcome: Time-to-first seizure after randomisation 

12,152 out of 12,391 participants (98%) contributed to analysis of 'Time-to-first seizure post-

randomisation.' For 239 participants (2%) seizure dates after randomisation were missing so 

these individuals could not contribute to analysis.  
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7.2.2.1  Direct evidence 

Table 21 (individuals with partial seizures) and Table 22 (individuals with generalised 

seizures) show the number of trials and participants contributing direct evidence for each of 

the pairwise comparisons in the network. Results highlighted in bold indicate statistically 

significant results and HR <1 indicates an advantage to the second drug in the comparison. 

All results presented are calculated with fixed-effects. 

Twenty out of 45 comparisons had no direct evidence for individuals with partial seizures. 

Thirteen out of 36 comparisons had no direct evidence for individuals with generalised 

seizures and eight comparisons for individuals with generalised seizures had less than 20 

individuals contributing direct evidence resulting in wide CIs around the treatment effect 

estimate. Comparisons with the most participants contributing to analysis were CBZ vs LTG 

and CBZ vs LEV (partial seizures) and VPS vs LEV and VPS vs TPM (generalised seizures). 

Table 21: Pairwise and network meta-analysis results - Time-to-first seizure for individuals 
with partial seizures 

Comparision1 Direct Evidence  

(Pairwise meta-analysis) 

Direct plus Indirect Evidence  

(Network Meta-Analysis) 

Number of 

studies 

(participants) 

HR (95% CI)2,3 I² (%)  Proportion 

of direct 

evidence5 

HR (95% CI)2,3 

CBZ vs PHB 6 (581) 0.99 (0.78 to 1.26) 54.3% 21% 0.79 (0.64 to 0.97) 

CBZ vs PHT 4 (432) 0.91 (0.72 to 1.16) 16.1% 27.10% 0.98 (0.85 to 1.13) 

CBZ vs VPS 5 (813) 1.01 (0.86 to 1.19) 32% 34.60% 1.20 (1.06 to 1.37) 

CBZ vs LTG 9 (2252) 0.98 (0.75 to 1.27) 0% 40.70% 1.29 (1.17 to 1.42) 

CBZ vs OXC 2 (555) 1.47 (0.57 to 3.81) 57.3% 4.80% 1.09 (0.89 to 1.32) 

CBZ vs TPM 2 (925) 1.03 (0.51 to 2.08) 69.3% 1.50% 1.12 (0.97 to 1.29) 

CBZ vs GBP 2 (943) 1.64 (1.14 to 2.36) 17.7% 49% 1.44 (1.25 to 1.66) 

CBZ vs LEV 3 (1552) 1.18 (0.85 to 1.65) 0% 26.20% 1.14 (0.99 to 1.30) 

CBZ vs ZNS 1 (581) 1.30 (0.97 to 1.73) NA4 100% 1.30 (0.97 to 1.73) 

PHB vs PHT 5 (463) 1.07 (0.83 to 1.37) 27.7% 33.60% 1.24 (0.99 to 1.56) 

PHB vs VPS* 2 (80) 0.71 (0.43 to 1.17) 9.10% 12.80% 1.53 (1.20 to 1.94) 

PHB vs LTG No direct evidence 0% 1.63 (1.30 to 2.06) 

PHB vs OXC No direct evidence 0% 1.38 (1.04 to 1.83) 

PHB vs TPM No direct evidence 0% 1.42 (1.11 to 1.83) 

PHB vs GBP No direct evidence 0% 1.83 (1.42 to 2.35) 

PHB vs LEV No direct evidence 0% 1.44 (1.12 to 1.85) 

PHB vs ZNS No direct evidence 0% 1.64 (1.15 to 2.35) 

PHT vs VPS 5 (245) 0.96 (0.72 to 1.29) 0% 25.40% 1.23 (1.02 to 1.48) 

PHT vs LTG 1 (90) 0.77 (0.38 to 1.54) NA 6% 1.31 (1.10 to 1.57) 
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PHT vs OXC 2 (318) 1.46 (0.88 to 2.44) 23.9% 36.10% 1.11 (0.87 to 1.41) 

PHT vs TPM 1 (53) 2.32 (0.95 to 5.70) NA 4% 1.14 (0.93 to 1.40) 

PHT vs GBP No direct evidence 0% 1.47 (1.20 to 1.80) 

PHT vs LEV No direct evidence 0% 1.16 (0.95 to 1.41) 

PHT vs ZNS No direct evidence 0% 1.32 (0.96 to 1.82) 

VPS vs LTG 3 (215) 1.57 (1.23 to 2.00) 39.4% 10% 1.07 (0.92 to 1.24) 

VPS vs OXC No direct evidence 0% 0.90 (0.72 to 1.14) 

VPS vs TPM 2 (111) 1.18 (0.93 to 1.50) 0% 70.20% 0.93 (0.77 to 1.13) 

VPS vs GBP No direct evidence 0% 1.20 (0.99 to 1.44) 

VPS vs LEV 1 (190) 1.27 (0.94 to 1.72) NA 31% 0.94 (0.77 to 1.15) 

VPS vs ZNS No direct evidence 0% 1.08 (0.78 to 1.48) 

LTG vs OXC 1 (499) 0.87 (0.23 to 3.25) NA 5.50% 0.84 (0.69 to 1.03) 

LTG vs TPM 1 (636) 0.73 (0.57 to 0.93) NA 2.30% 0.87 (0.75 to 1.01) 

LTG vs GBP 1 (647) 0.63 (0.07 to 5.42) NA 4.40% 1.12 (0.96 to 1.30) 

LTG vs LEV 1 (229) 0.84 (0.53 to 1.35) NA 15.90% 0.88 (0.75 to 1.04) 

LTG vs ZNS No direct evidence 0% 1.01 (0.74 to 1.36) 

OXC vs TPM 1 (487) 0.55 (0.15 to 2.06) NA 5.40% 1.03 (0.84 to 1.27) 

OXC vs GBP 1 (498) 0.73 (0.08 to 6.49) NA 4.60% 1.32 (1.08 to 1.63) 

OXC vs LEV No direct evidence 0% 1.05 (0.83 to 1.32) 

OXC vs ZNS No direct evidence 0% 1.19 (0.84 to 1.69) 

TPM vs GBP 1 (635) 1.31 (0.15 to 11.2) NA 3.50% 1.28 (1.09 to 1.51) 

TPM vs LEV No direct evidence 0% 1.01 (0.83 to 1.23) 

TPM vs ZNS No direct evidence 0% 1.15 (0.84 to 1.59) 

GBP vs LEV No direct evidence 0% 0.79 (0.65 to 0.96) 

GBP vs ZNS No direct evidence 0% 0.90 (0.65 to 1.24) 

LEV vs ZNS No direct evidence 0% 1.14 (0.83 to 1.57) 

1. See Table 19 for details of footnotes 

Table 21 and Table 22 also show heterogeneity in the direct treatment effects. For three 

comparisons for individuals with partial seizures and for three comparisons for individuals 

with generalised seizures, substantial heterogeneity was present (I2 greater than 50%). The 

heterogeneity in these comparisons seemed to originate from differences in trial designs 

contributing to the pooled result; i.e. pooling of trials recruiting different age groups and 

pooling trials with or without treatment strata (see Chapter 5.2.3.4 for further details).  

For the comparisons for individuals with partial seizures, none of the treatment effects with 

substantial heterogeneity present were statistically significant so conclusions would not 

change if random-effects were applied. For the comparisons for individuals with generalised 

seizures, repeating analysis with random-effects did not change conclusions for two of the 

comparisons (CBZ vs VPS and PHT vs VPS) but for one comparison (CBZ vs PHB), when 

repeating analysis with random-effects there was no longer a statistically significant 

advantage to PHB: HR 0.59 (0.27 to 1.26). 
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Table 22: Pairwise and network meta-analysis results - Time-to-first seizure for individuals 
with partial seizures 

Comparision1 Direct Evidence  

(Pairwise meta-analysis) 

Direct plus Indirect Evidence 

(Network Meta-Analysis) 

Number of 

studies 

(participants) 

HR (95% CI)2,3 I² (%) Proportion 

of direct 

evidence5 

HR (95% CI)2,3 

CBZ vs PHB 5 (237) 0.55 (0.33 to 0.92) 50.4% 35.50% 1.10 (0.80 to 1.51) 

CBZ vs PHT 3 (150) 0.88 (0.51 to 1.54) 0% 26.60% 0.76 (0.59 to 0.98) 

CBZ vs VPS 4 (411) 1.37 (0.98 to 1.92) 84.1% 10.40% 0.88 (0.76 to 1.03) 

CBZ vs LTG 7 (302) 1.49 (0.94 to 2.35) 0% 0.30% 0.98 (0.70 to 1.37) 

CBZ vs OXC 1 (9) 1.55 (0.38 to 6.31) NA4 9% 1.09 (0.36 to 3.36) 

CBZ vs TPM 2 (101) 1.19 (0.56 to 2.50) 62% 9% 1.15 (0.89 to 1.48) 

CBZ vs GBP 1 (6) 2.83 (0.31 to 25.5) NA 10.70% 0.79 (0.10 to 6.08) 

CBZ vs LEV 2 (251) 1.04 (0.65 to 1.64) 0% 44.90% 1.19 (0.78 to 1.83) 

PHB vs PHT 4 (161) 1.41 (0.76 to 2.62) 46.9% 20.30% 0.69 (0.48 to 1.00) 

PHB vs VPS 2 (98) 1.87 (0.87 to 4.00) 69.8% 6.50% 0.80 (0.57 to 1.12) 

PHB vs LTG No direct evidence 0% 0.89 (0.56 to 1.42) 

PHB vs OXC No direct evidence 0% 1.00 (0.31 to 3.20) 

PHB vs TPM No direct evidence 0% 1.05 (0.70 to 1.56) 

PHB vs GBP No direct evidence 0% 0.72 (0.09 to 5.68) 

PHB vs LEV No direct evidence 0% 1.09 (0.64 to 1.85) 

PHT vs VPS 4 (394) 1.11 (0.71 to 1.74) 0% 36.40% 1.16 (0.88 to 1.53) 

PHT vs LTG 1 (91) 1.00 (0.40 to 2.46) NA 16.20% 1.29 (0.85 to 1.97) 

PHT vs OXC 2 (154) 0.60 (0.33 to 1.10) 49.7% 25.20% 1.44 (0.46 to 4.56) 

PHT vs TPM 1 (150) 0.63 (0.18 to 2.26) NA 9.80% 1.51 (1.06 to 2.15) 

PHT vs GBP No direct evidence 0% 1.05 (0.13 to 8.14) 

PHT vs LEV No direct evidence 0% 1.57 (0.96 to 2.58) 

VPS vs LTG 3 (377) 0.64 (0.37 to 1.11) 23.2% 31.30% 1.11 (0.77 to 1.60) 

VPS vs OXC No direct evidence 0% 1.24 (0.40 to 3.84) 

VPS vs TPM* 2 (441) 0.42 (0.23 to 0.80) 46.4% 21% 1.30 (1.01 to 1.68) 

VPS vs GBP No direct evidence 0% 0.90 (0.12 to 6.92) 

VPS vs LEV 1 (512) 0.82 (0.48 to 1.40) NA 34% 1.35 (0.86 to 2.13) 

LTG vs OXC 1 (10) 0.94 (0.25 to 3.57) NA 12.20% 1.12 (0.36 to 3.48) 

LTG vs TPM 1 (14) 0.61 (0.28 to 1.30) NA 13.10% 1.17 (0.78 to 1.77) 

LTG vs GBP 1 (7) 1.72 (0.20 to 14.9) NA 11.90% 0.81 (0.11 to 6.25) 

LTG vs LEV No direct evidence 0% 1.22 (0.71 to 2.10) 

OXC vs TPM 1 (14) 1.90 (0.50 to 7.19) NA 13.60% 1.05 (0.34 to 3.24) 

OXC vs GBP 1 (7) 1.83 (0.20 to 16.5) NA 13.30% 0.73 (0.08 to 6.49) 

OXC vs LEV No direct evidence 0% 1.09 (0.33 to 3.62) 

TPM vs GBP 1 (11) 0.96 (0.11 to 8.29) NA 13.20% 0.69 (0.09 to 5.32) 

TPM vs LEV No direct evidence 0% 1.04 (0.63 to 1.71) 

GBP vs LEV No direct evidence 0% 1.50 (0.19 to 12.0) 

1. See Table 19 for details of footnotes 
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7.2.2.2  NMA results (direct plus indirect evidence) 

Figure 16 shows how each AED performs compared to first-line treatment CBZ for individuals 

with partial seizures (ordered by treatment effect estimate); PHB is significantly better than 

CBZ and CBZ is significantly better than VPS, LTG and GBP. Figure 17 shows how each AED 

performs compared to first-line treatment LTG for individuals with partial seizures (ordered 

by treatment effect estimate); PHB, PHT and CBZ are significantly better than LTG. Figure 18 

shows how each AED performs compared to first-line treatment VPS for individuals with 

generalised seizures (ordered by treatment effect estimate); VPS is significantly better than 

TPM. 

Table 21 and Table 22 (above) show treatment effect estimates for all pairwise comparisons 

in the network combining direct with indirect evidence (NMA). In addition to the 

performance of the AEDs compared to the first-line treatments (as described above); for 

individuals with partial seizures, PHB and PHT seems to perform better than most other drugs 

and for individuals with generalised seizures, PHT seems to perform better than most other 

drugs. There were few notable differences between the newer drugs (OXC, TPM, GBP, LEV 

and ZNS) for either individuals with partial seizures or generalised seizures. 

Figure 16: All AEDs compared to carbamazepine (CBZ) for time-to-first seizure, individuals 
with partial seizures 
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Figure 17: All AEDs compared to lamotrigine (LTG) for time-to-first seizure, individuals with 
partial seizures 

 
 
Figure 18: All AEDs compared to sodium valproate (VPS) for time-to-first seizure, 
individuals with generalised seizures 
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As described in Chapter 6.2.5, an I2 statistic could not be directly calculated for the NMA but 

could be estimated. The estimated I2 statistic was 0% and when repeating NMA with random-

effects, calculated the τ2 statistic was 9 x 10-21. As no heterogeneity was present and τ2 was 

negligible, numerical results for treatment effects and conclusions were identical. 

7.2.2.3  Investigation of inconsistency  

The ‘design-by-treatment’ inconsistency model was fitted to 17 variables and regressed on 

23 designs, seven of which were multi-arm trials (up to five treatment arms). Accounting for 

the multi-arm trials, this resulted in a 𝜒2 test for inconsistency with 43 degrees of freedom 

which was not significant (𝜒2 (43) = 38.2, p-value = 0.680, heterogeneity (τ) = 0.094). 

Notably, for most pairwise comparisons, numerical results of direct evidence and NMA are 

similar, mostly in the same direction and CIs of estimates overlap. For all pairwise 

comparisons, results from NMA are more precise than results from direct evidence (in some 

cases much more precise where limited direct evidence exists, for example see LTG 

compared to GBP, Appendix 16, Figure 39).  For the following comparisons; conclusions 

drawn from direct evidence and from NMA are different (see Table 21 and Table 22): 

 Direct evidence shows a significant advantage to one of the AEDs and the NMA results 

show no significant difference between the AEDs: VPS vs LTG (partial seizures); CBZ vs 

PHB (generalised seizures). 

 Direct evidence shows no significant difference between the AEDs and NMA shows a 

significant advantage for one of the AEDs: CBZ vs PHB, CBZ vs VPS, CBZ vs LTG, PHB vs 

VPS, PHT vs VPS, PHT vs LTG, OXC vs GBP (all partial seizures), CBZ vs PHT, PHB vs PHT 

(generalised seizures). 

 No direct evidence exists between the AEDs while NMA shows a significant advantage 

for one of the AEDs: PHB vs LTG, PHB vs OXC, PHB vs TPM, PHB vs GBP, PHB vs LEV, PHB 

vs ZNS, PHT vs GBP, GBP vs LEV (all partial seizures). 

CIs for the results from indirect evidence overlapped with the CIs from direct evidence and 

from NMA for all comparisons.  

For the following comparisons, CIs for the results from direct evidence and from NMA do not 

overlap which indicates potential inconsistency is present (see Table 21 and Table 22, results 

marked with *): PHB vs VPS (partial seizures), VPS vs TPM (generalised seizures). 
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For the comparison of PHB vs VPS for individuals with partial seizures, from direct evidence, 

there is no significant difference between the drugs (HR 0.71 (0.43 to 1.17)), however from 

the NMA results, a statistically significant advantage is shown for PHB (HR 1.53 (1.20 to 1.94)). 

For the comparison of PHB vs VPS for individuals with partial seizures, from direct evidence, 

there is no significant difference between the drugs (HR 0.71 (0.43 to 1.17)), however from 

the NMA results, a statistically significant advantage is shown for PHB (HR 1.53 (1.20 to 1.94)). 

For this comparison, only 12.8% of the network estimate is contributed from direct evidence 

and only 80 individuals contribute to this estimate. This small sample size and imprecision for 

the direct evidence is likely because VPS is not considered to be a first line treatment for 

partial seizures and although PHB is a broad spectrum agent for the treatment of many 

seizure types, it is no longer used as a first line treatment [68, 74].  

For the comparison of VPS vs TPM for individuals with generalised seizures, from direct 

evidence only, there is a statistically significant advantage to TPM (HR 0.42 (0.23 to 0.80)), 

however from the NMA results, the direction of effect changes to a statistically significant 

advantage to VPS (HR 1.30 (1.01 to 1.68)). Furthermore, for this comparison, only 21% of the 

network estimate is contributed from direct evidence and a moderate amount of 

heterogeneity is present in this estimate (I2=46%). The same two trials contribute evidence 

to this outcome as ‘time-to-withdrawal of allocated treatment’; see Chapter 7.2.1.3 for 

discussion of the differences in design of these trials. 

Furthermore, the 'design-by treatment' inconsistency model does not show any significant 

evidence of inconsistency within the network. Therefore, we are not concerned about any 

impact of this observed inconsistency of numerical results on the conclusions of the review. 

7.2.3  Additional analyses and sensitivity analyses 

Chapter 7.1.3 and Appendix 14  provide for full details and rationale of all additional analyses 

and sensitivity analyses conducted. For all additional analyses and sensitivity analyses, as in 

primary analysis, 95% CIs were very wide for some treatment comparisons for individuals 

with generalised seizures, due to small numbers of participants with generalised seizures 

randomised to some AEDs (such as GBP). 

Additional and sensitivity analyses (where appropriate) were also conducted on the two 

remission outcomes. There were no changes in conclusions following any of these analyses, 

see the Cochrane IPD-NMA for further discussion [69].  
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7.2.3.1  Age adjusted analysis 

An additional analysis was performed also adjusting for age in the original Cox PH model.  

Numerical results of these analyses were similar to results of the primary analysis; mostly the 

same to one or two decimal places for both individuals with partial seizures and individuals 

with generalised seizures.  There were some changes in direction of effect size and some 

changes in the order or 'rank' of AEDs compared to the reference treatment and there were 

a few changes in conclusions following this sensitivity analysis, most notably (see Appendix 

14; Figure 19 and Figure 20 for all numerical results): 

 For individuals with partial seizures, LEV was no longer significantly better than CBZ and 

CBZ became significantly better than TPM for ‘Time-to-withdrawal of allocated 

treatment.’  

 For individuals with generalised seizures, CBZ was no longer significantly better than LTG 

and VPS (but CBZ became significantly better than TPM) for ‘Time-to-withdrawal of 

allocated treatment.’ 

It should be noted that associations between age and treatment effect for commonly used 

AEDs have been shown in earlier Cochrane pairwise IPD-MAs and that age is also known to 

be associated with epilepsy type (and in turn with misclassification of epilepsy type) [67, 296]. 

Therefore, the results of this sensitivity analysis are likely to overlap with the results 

described below in Chapter 7.2.3.4. 

7.2.3.2  Validity of proportional hazards assumption 

For both ‘time-to-withdrawal of allocated treatment’ and ‘time-to-first seizure,’ at least one 

time-varying covariate in the Cox PH model was significant, therefore a sensitivity analysis 

was conducted using a parametric accelerated failure time (AFT) model (see Chapter 7.1.3). 

For both outcomes, numerical results of these sensitivity analyses were similar to results of 

the primary analysis; mostly the same to one or two decimal places for both individuals with 

partial seizures and individuals with generalised seizures.  There were some changes in 

direction of effect size and some changes in the order or 'rank' of AEDs compared to the 

reference treatment and there were a few changes in conclusions following this sensitivity 

analysis, most notably (see Appendix 14, Figure 21 and Figure 22 for all numerical results): 
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 For individuals with partial seizures, LEV became significantly better than VPS and OXC 

for ‘Time-to-withdrawal of allocated treatment,’ making LEV significantly better than all 

other AEDs except for LTG.  

 For individuals with partial seizures, LTG became significantly better than GBP and PHB 

became better than PHT for ‘Time-to-first seizure,’ making PHB significantly better than 

all other AEDs.  

 For both individuals with partial seizures and individuals with generalised seizures VPS 

was no longer significantly better than TPM (or any other treatment) for ‘Time-to-first 

seizure’ and that LEV became significantly better than VPS.  

7.2.3.3  Inconsistencies in individual participant data provided 

Appendix 14 provides full details and rationale of the sensitivity analyses conducted around 

inconsistencies in IPD and results of these additional analyses. 

The IPD from one trial (Stephen 2007) was excluded from all analyses due to inconsistencies 

in provided data. Numerical results of these sensitivity analyses were similar to results of the 

primary analysis; mostly the same to one or two decimal places for both individuals with 

partial seizures and individuals with generalised seizures.  There were no changes in 

conclusions for individuals with generalised seizures. For individuals with partial seizures, 

there were some changes in direction of effect size and some changes in the order or 'rank' 

of AEDs compared to the reference treatment and there were a few changes in conclusions 

following this sensitivity analysis, mostly notably for ‘time-to-withdrawal of allocated 

treatment,’ CBZ became significantly better than TPM and for ‘time-to-first seizure,’ CBZ 

became significantly better than LEV and VPS became significantly better than GBP (see 

Appendix 14, Figure 23 and Figure 24 for all numerical results). 

The IPD from two trials, Reunanen 1996 and Placencia 1993, were each excluded (separately) 

from analysis of ‘time-to-withdrawal of allocated treatment’ due to the definition of 

withdrawal from allocated treatment. The IPD from one trial (Banu 2007), was excluded from 

analysis of ‘time-to-first seizure’ due to inconsistencies in provided data and IPD was also 

excluded from one trial from the analysis of ‘time-to-first seizure’ (Nieto-Barrera 2001) as 

seizure dates for the first four weeks of the trial were not provided. For all four of these 

analyses, numerical results were very similar compared to the primary analysis (the same to 

two decimal places for individuals with partial seizures and one or two decimal places for 

individuals with generalised seizures) and conclusions remained unchanged for the vast 
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majority of results. One notable change to conclusions was that LTG was no longer 

significantly better than CBZ for individuals with generalised seizures for ‘time-to-withdrawal 

of allocated treatment’ following the exclusion of the IPD from Reunanen 1996 (see Appendix 

14, Figure 25, Figure 26, Figure 27, and Figure 28).  

7.2.3.4  Misclassification of epilepsy type 

Sensitivity analyses were performed to investigate the possibility of generalised seizures 

being misclassified; in the first analysis those with generalised seizures and age of onset 

greater than 30 are reclassified as having partial-onset seizures and in the second analysis 

generalised seizure types and age at onset greater than 30 and those with missing epilepsy 

type into an 'unclassified epilepsy type' group (see Chapter 7.1.3 for further details).  

For ‘time-to-withdrawal of allocated treatment,’ for the first analysis, numerical results for 

individuals with generalised seizures were similar; there were some changes in direction of 

effect size and some changes in the order or 'rank' of AEDs compared to the reference 

treatment but no change in statistical significance for any estimate and no notable change to 

conclusions (Appendix 14, Figure 30). 

For individuals with partial seizures, most numerical results were similar but the most notable 

change was that PHT was now significantly better than all other AEDs (Appendix 14, Figure 

29). There was a large amount of heterogeneity present in this analysis; the estimated I2 

statistic was 98% and when repeating NMA with random-effects, calculated the τ2 statistic 

was 7.074 and CIs of all treatment effect estimates were very wide so that no significant 

differences were present between any effect sizes (Appendix 14, Figure 33). There is no clear 

explanation as to why this sensitivity analysis has introduced a large amount of heterogeneity 

into analysis for this outcome but not for the other outcomes. Due to this uncertainty, 

interpretation of the numerical values of this sensitivity analysis is not encouraged. 

For the second analysis of epilepsy type classification, for ‘time to withdrawal of allocated 

treatment, numerical results of this sensitivity analysis were very similar compared to the 

primary analysis (the same to two decimal places for individuals with partial seizures and one 

or two decimal places for individuals with generalised seizures) and conclusions remained 

unchanged (see Appendix 14, Figure 31 and Figure 32 for numerical results).   

For the ‘time-to-first seizure’, results of these sensitivity analysis were similar to the primary 

analysis (see Appendix 14; Figure 29, Figure 30, Figure 31 and Figure 32 for numerical results).   
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7.3 Discussion 

7.3.1 Summary of main results 

A total of 77 trials were identified in which 17,961 individuals with partial-onset or 

generalised-onset tonic clonic seizures (with or without other generalised types) were 

randomised to one of 10 AEDs commonly used as monotherapy. IPD was provided for at least 

one outcome of this review for 12,391 out of 17,961 eligible participants (69% of total data) 

from 36 out of the 77 eligible trials (47%); see Chapter 5 for further details of IPD requests.  

NMA provided a total of 45 pairwise comparisons for individuals with partial seizures and 36 

pairwise comparisons for individuals with generalised seizures (no participants with 

generalised seizures were randomised to ZNS). Direct estimates could be calculated for 

between half and two thirds of comparisons across the outcomes of the review. However for 

many of the comparisons data was contributed by only a single trial and/or by a small number 

of participants. Where synthesis of head-to-head data was possible, direct evidence was 

generally quite consistent and where substantial heterogeneity was present between trials 

(I2 > 50%), it is likely that the heterogeneity originated from variability in design of the trials 

such as synthesis of trials recruiting different age groups, synthesis of double-blind and open 

label trials and pooled of trials with and without treatment stratification. 

NMA showed that for the primary outcome, ‘time-to-withdrawal of allocated treatment,’ for 

individuals with partial seizures, LTG and LEV were significantly better than first line 

treatment CBZ, which was significantly better than GBP and PHB. LTG was significantly better 

than all treatments except LEV. For individuals with generalised-onset seizures, first line 

treatment VPS performed significantly better than CBZ, TPM and PHB. 

NMA also showed that for ‘time-to-first seizure’ for individuals with partial seizures, PHB was 

significantly better than both first line treatments CBZ and LTG; first line treatment CBZ 

performed significantly better than VPS, GBP and first line treatment LTG and PHT also 

performed significantly better than LTG. In general, the earliest licenced treatments (PHT and 

PHB) performed better than the other treatments for both epilepsy types. 

Results from NMA were more precise than results from head-to-head comparisons, often 

much more precise for comparisons where limited direct evidence exists, reflecting the 

added precision of NMA over pairwise meta-analysis. Across outcomes for the majority of 

pairwise comparisons, numerical results of direct evidence and NMA were similar, mostly in 
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the same direction and confidence intervals of estimates overlapped and there was little 

indication of inconsistency between direct and NMA results. For the few pairwise 

comparisons where confidence intervals of direct estimates and NMA estimates did not 

overlap, generally direct evidence was limited and contributed only a small proportion of 

evidence to the NMA estimates.  

Despite some methodological concerns in several trials contributing to analyses which may 

have induced bias into analyses or inconsistencies present within IPD, numerous additional 

and sensitivity analyses were performed to test the robustness of the results in the presence 

of these biases (see Chapter 5 and Chapter 7.2.3). Results of additional and sensitivity 

analyses were numerically similar and did not lead to any consistent changes to conclusions, 

therefore it is unlikely that any methodological inadequacies of individual trials has 

influenced the overall pooled NMA results. 

7.3.2 Strengths and weaknesses 

An IPD approach was taken to analysis due to the many advantages of such a ‘gold-standard’ 

approach. Particularly within this setting, an IPD approach allowed standardisation of 

definitions of outcomes across trials, and attrition and reporting biases were reduced from 

the re-analysis of unpublished data and calculation of additional outcomes which were not 

considered originally within trials. Furthermore, the use of IPD in this analysis allowed the 

consideration of the relationship between treatment effect and epilepsy type via an 

interaction term in the NMA and to present results separately according to epilepsy type in 

the context of the recommended first line treatment of the epilepsy type, such an approach 

which would not have been possible without the use of IPD. 

This analysis includes 69% of eligible IPD from 47% of the eligible trials. Across the ten drugs, 

between 49% and 100% of IPD was provided. Data for the remaining 5570 participants from 

41 trials could not be provided for a variety of reasons; see Chapter 5 for further discussion. 

Figure 9 in Chapter 5 shows network plots of pairwise comparisons in all included trials, trials 

providing IPD and trials without IPD. IPD was provided for all direct pairwise comparisons in 

the total network except for OXC compared to VPS and OXC compared to LEV. In fact, out of 

all drugs included in the network, the lowest proportion of IPD was received for OXC (49%) 

and the lack of data for these comparisons may have contributed to imprecision of some 

effect sizes relating to OXC (e.g. see Figure 15). Therefore, caution should be taken when 

interpreting results for OXC from these analyses. However, it should be noted that the 51% 
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of IPD missing for OXC mostly comes from trials for which we could not establish contact with 

an author or sponsor to request IPD. If additional data can be included in an update for OXC, 

the precision of these estimates to is likely to improve. 

It is inevitable that the exclusion of 31% of eligible participants may have introduced some 

bias into results of analyses; further discussion of differences between studies providing and 

not providing IPD are discussed in Chapter 5.4.3. However, it is likely that the 69% of IPD 

provided for analyses is a representative sample of the total participants included in all 

eligible trials and that the benefits of an IPD approach outweigh the limitations. 

The majority of IPD requested was provided directly but for one trial randomising 136 

participants [319], data was requested via data sharing portal CSDR [91] and was provided 

via a remote secure data access system which allowed analysis in SAS based statistical 

software and export of analysis results. IPD from this trial could not be included with the 

entire individual participant dataset to fit the models outlined in Chapter 6.2 , therefore the 

results exported from the data access system were treated as AD in an additional analysis 

(see Chapter 8 for further discussion and results).  

7.3.3 Clinical implications and relation to other studies  

The majority of participants recruited into these trials were classified as experiencing partial 

seizures (66.8% of participants in all trials and 67.5% of participants with IPD provided); this 

majority is emphasised in the visual similarity of the network plot for individuals with partial 

seizures compared to the plot of all participants and reflected in the relative precision of the 

results of this review for partial seizures compared to generalised seizures (Figure 12). While 

a majority of partial seizures compared to generalised seizures is reflective of clinical practice 

(around 60% of individuals with epilepsy experience partial seizures [320]), the proportion of 

individuals with partial seizures recruited to the trials in this review is even greater.  

The remaining participants were classified as experiencing generalised tonic-clonic seizures 

with or without other generalised seizure types (24.4% of participants in all trials and 26.5% 

of participants with IPD provided) or unclassified / missing epilepsy type (8.8% of participants 

in all trials and 6% of participants with IPD provided). Misclassification of epilepsy type is a 

recognised problem in epilepsy (whereby some individuals with generalised seizures have 

been mistakenly classed as having partial-onset seizures and vice-versa). The potential 

impact of this misclassification on results has been shown in our series of Cochrane IPD 
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reviews of monotherapy for epilepsy [59]. Investigation of misclassification within this 

analysis (reclassification of 1,164 participants with generalised seizures and age of onset of 

over 30 years, 36% of individuals originally classified at experiencing generalised seizures) did 

not show any important changes to treatment effect sizes and no changes to conclusions. 

This does not, however, indicate that misclassification of epilepsy type has not occurred in 

these trials; rather that the primary analysis results are robust to any misclassification. Trials 

included in this analysis were published between 1981 and 2015 and a proportion of trials 

classified generalised and partial-onset seizures according to the ILAE classification of 1981 

[321], rather than the revised classification in 1989 [322] or recently revised terminology 

[323], which may have led to misclassification. Furthermore, several trials were conducted in 

developing countries in Africa, Asia and Central or South America without access to the same 

facilities such as electroencephalograms (EEGs) or magnetic resonance image (MRI) scanners 

as trials conducted in the USA and Europe. Within these trials, it is likely that seizure type 

would have been classified clinically, which may have further contributed to misclassification.  

In reality, it is likely that fewer than 20% of participants recruited into all of these trials 

experienced generalised seizures (17% of participants included in IPD analysis were classified 

as having generalised seizures following reclassification in sensitivity analysis), which is a 

lower proportion than would be expected in clinical practice [320]. For this reason, treatment 

effect sizes for generalised seizures, particularly those which are imprecise, should be treated 

as less applicable than the treatment effect sizes for partial seizures. 

In order to provide more precise evidence, applicable to individuals with generalised 

seizures, it is important both ensure accurate seizure classification (as far as possible) and to 

increase the proportion of individuals with generalised seizures recruited into trials of AEDs 

to better reflect the ‘real world’ ratio of partial to generalised seizures. Increased recruitment 

of may not be straightforward, particularly as those with new onset generalised seizures are 

expected to be children and adolescents and recruitment of children into clinical trials comes 

with difficulties [324]. However, if targeted recruitment strategies could be implemented and 

the evidence base for individuals with generalised seizures increased this may better inform 

treatment decisions for this population, particularly for those of childbearing potential, for 

whom first line treatment sodium valproate may not be appropriate [74].  

An NMA was published by representatives of the Cochrane Epilepsy Group in 2007 including 

IPD for over 6418 patients from 20 trials (also included in the current review) comparing 
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direct and indirect evidence from CBZ, PHB, PHT, VPS, LTG, OXC, TPM and GBP [285]. Results 

of this NMA showed for partial-onset seizures, LTG performed better than all other drugs in 

terms of treatment withdrawal but may not perform better than CBZ in terms of seizure 

control. PHB performed better than other drugs in terms of seizure control but at the expense 

of increased treatment failure. Overall for individuals with partial seizures; LTG, CBZ and OXC 

seemed to provide the best balance of seizure control and treatment failure. As in the current 

review, data for individuals with generalised seizures was limited and results suggested that 

VPS or PHT may provide the best combination of seizure control and treatment failure. 

The present analysis was designed to update the information in the previous NMA with new 

evidence from trials published since 2007 and including evidence for two drugs which were 

licensed for use as monotherapy after 2007 (LEV and ZNS) [68]. The results of the present 

analysis generally agree with the results of the previous NMA in addition to providing 

evidence of the comparative effectiveness of the two new drugs within the spectrum of 

commonly used AEDs and further highlight that nearly 10 years on, data for individuals with 

generalised seizures is still limited. 

7.3.4 Concluding remarks 

Results of this analysis demonstrate that generally the earliest licenced AEDs such as PHT and 

PHB provide increased seizure control, in terms of delaying recurrence of first seizure and 

earlier remission, compared to newer AEDs. However, this comes at the expense of earlier 

treatment failure and it is newer AEDs such as LTG and LEV that perform the best in terms of 

treatment retention. Considering the optimum balance of efficacy (seizure control) and 

tolerability (treatment retention), for individuals with partial seizures, CBZ, LTG and LEV seem 

to be the best treatment options whereas for individuals with generalised tonic-clonic 

seizures (with or without other seizure types); VPS, LTG and LEV seem to be the best 

treatment options. ZNS, the most recently licenced AED for monotherapy treatment, may be 

an effective treatment option for individuals with partial-onset seizures; however further 

evidence from randomised controlled trials is needed and the effectiveness of this drug has 

yet to be evaluated in a published clinical trial for individuals with generalised seizures. 

Overall, these results support the NICE guidelines that CBZ and LTG are suitable first-line 

treatments for individuals with partial-onset seizures and also demonstrates that LEV may be 

a suitable alternative. Results also support the use of VPS as the first-line treatment for 

individuals with generalised tonic-clonic seizures (with or without other seizure types) and 
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also demonstrates that LTG and LEV would be suitable alternative first-line treatments, 

particularly for those of child bearing potential, for whom VPS may not be an appropriate 

treatment option. Evidence for the relative effectiveness of other AEDs for individuals with 

generalised seizures is limited and of moderate quality; further evidence from randomised 

controlled trials is needed. 

This review highlights the need for the design of future AED monotherapy trials that are well 

powered to detect a difference between particular AEDs while recruiting a sample of 

individuals’ representative of the wider population in terms of age and seizure type. An 

approach to best reflect and inform clinical practice, as well as being statistically powerful, 

would be to recruit heterogeneous populations for whom epilepsy syndromes have been 

adequately defined, with testing for interaction between treatment and epilepsy syndrome. 

In view of potential problems of misclassification, syndromes will have to be well defined, 

with adequate checking mechanisms to ensure that classifications are accurate and a system 

to recognise uncertainty surrounding epilepsy syndromes in individuals within trials. 

The choice of outcomes at the design stage of a trial and the presentation of the results of 

outcomes, particularly of a TTE nature, require very careful consideration. While the majority 

of trials of a monotherapy design do record and report outcomes measuring efficacy and 

tolerability of AEDs, there is little uniformity between the definition of the outcomes and the 

reporting of the summary statistics related to the outcomes [325] (see Chapter 3 of this 

thesis) making an AD approach to meta-analysis in reviews of monotherapy trials impossible. 

Where trial authors cannot or will not make IPD available for analysis, excluding a proportion 

of relevant evidence from the review was unavoidable but will inevitably have some impact 

upon the interpretation of results of the review and applicability of the evidence and 

conclusions. The ILAE recommends that trials of a monotherapy design should adopt a 

primary effectiveness outcome of 'time-to-withdrawal of allocated treatment' and should be 

of a duration of at least 48 weeks to allow for assessment of longer-term outcomes, such as 

remission [249].  If trials followed these recommendations, an AD approach to meta-analysis 

may be feasible, reducing the resources and time required from an IPD approach.  
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Chapter 8: Combining individual participant data with 

aggregate data in network meta-analysis 

8.1  Introduction 

8.1.1  Individual participant level compared to aggregate level approaches 

to meta-analysis 

As outlined in Chapter 1.1.3, previous work has demonstrated that meta-analyses of the 

same studies taking IPD or AD approaches can produce different results [23, 43, 52-54]. A 

recent systematic review examined 39 meta-analyses with 190 comparisons taking both IPD 

and AD approaches for meta-analysis of the same studies [52]. Results of this systematic 

review showed that for 38 comparisons (20%) there was a disagreement in statistical 

significance between the IPD and AD approach to meta-analysis, with more IPD-MAs 

detecting a statistically significant result which was not confirmed in the AD-MA. 

Conclusions from this work recommend that before embarking upon a resource intensive IPD 

approach to analysis, researchers should carefully consider the added benefits of IPD to their 

clinical question, and consider whether a less resource intensive AD-MA could provide an 

adequate (and mathematically equivalent) answer to the question [52, 53].  

Specifically from a TTE setting, Haines and Hill [53] have demonstrated that in the context of 

repeated-measures data of accidental falls, a range of approaches may be taken to the 

statistical analysis at a trial level which influence the standard errors of the results and hence 

would influence the pooled result should these estimates be combined in AD-MA. The 

authors therefore argue that IPD-MA and AD-MA would fundamentally produce difference 

results in this setting and question whether AD-MA would ever be appropriate.  

Similarly, Duchateau et al [164, 165] note differing results for TTE outcomes from IPD-MAs 

and AD-MAs in head and neck cancer, concluding that the most likely reason for the 

differences is due to IPD-MAs being based on exact TTE analyses whereas AD-MAs are based 

on mortality as a specific time point. The authors also note that where AD results may have 

been indirectly estimated from a Kaplan-Meier (KM) curve, the estimated number of events 

is likely to be an over-estimation of the true number of events reflected in the IPD, with the 

extent of overestimation increasing as an increasing number of patients are censored. 
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It is argued that where treatment-covariate interactions are of interest to meta-analysis that 

an IPD approach (i.e. modelling the interaction as a parameter within an IPD model) is 

generally superior to an AD approach (i.e. meta-regression) due to limitations of the latter 

approach such as low statistical power and ecological biases. In other words, study-level 

associations may not accurately reflect individual-level associations [26, 309, 326, 327]. 

Simmonds and Higgins [309] define three approaches for the investigation of treatment-

covariate interactions in meta-analysis; a full IPD approach incorporating a treatment-

covariate interaction term into a model, a meta-regression approach (i.e. a fully AD 

approach) and an intermediate ‘meta-analysis of interactions’ approach which uses IPD to 

estimate within-study treatment-covariate interactions and then combines the separate 

estimates for each study using standard meta-analysis techniques. The authors demonstrate 

that theoretically if the IPD model is specified correctly and assuming normally distributed 

participant responses, a full IPD approach will always have at least as much statistical power 

to detect treatment-covariate interactions as meta-regression or meta-analysis of 

interactions. Furthermore, the power of the latter two approaches depends on the 

distribution and heterogeneity of the covariate of interest. The authors also derive a series 

of 𝑄  statistics based on the distributions and heterogeneity of covariates to allow 

comparison of the power of the three approaches for detecting treatment-covariate 

interaction and potentially guiding a choice between the methodological approaches. 

Although an IPD approach is still relatively rare within network meta-analysis (NMA) 

compared to an AD approach [18, 19, 44-47], several authors have highlighted the benefits 

of an IPD approach to NMA, particularly where detailed examination of heterogeneity, 

inconsistency and treatment-covariate interactions are of interest [19-21, 44-47, 328]. 

8.1.2  Combining IPD and AD in meta-analysis 

As an alternative approach to performing either a complete IPD analysis or a complete AD 

analysis, methods have been developed which allow the combination of IPD and AD in meta-

analysis [38-41, 329, 330] and network meta-analysis [19, 20, 44-46]; the latter are further 

discussed in Chapter 8.1.3. 

Such methods have generally been developed for two general reasons; firstly, to increase the 

power and precision of an AD-MA by incorporating participant-level information from IPD 

[19, 39, 46] or secondly for the scenario when an IPD approach to analysis was intended but 

IPD is not available from a subset of trials for analysis. Where AD is available for some or all 

of these trials, this AD could supplement the IPD in analysis, allowing a larger (and more 
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complete) proportion of the relevant evidence base to be included in analysis [40]. These 

methods are particularly appealing where there is a concern that unavailability of IPD for a 

study may be related to the results of that study, hence potentially introducing bias into IPD-

MA [24, 51]. It should, however, be noted that published AD may be prone to bias and not of 

the same quality as IPD [51, 331] so while incorporation of additional AD may increase 

precision, it may not necessarily improve the reliability of the overall analysis results. It is 

therefore recommended that sensitivity analyses are conducted comparing analyses of IPD 

only and IPD combined with AD in meta-analysis and consideration is given to potential 

reasons for unavailability of IPD and the relative quality of any published AD [36, 41, 51]. 

A systematic review of methods employed in IPD-MA conducted by Riley et al [40] showed 

that out of 199 applied IPD-MA identified, 33 published articles combined IPD and AD in 

meta-analysis and 30 clearly described the methods used to do this. In the majority of articles 

(27 out of 33 meta-analyses, 82%), IPD and AD were combined via a two-stage method to 

meta-analysis [32, 141, 142]; in other words, IPD were reduced to AD and combined with 

additional AD using standard meta-analytic techniques (see Chapter 2.3.2 for further 

description). Two-stage approaches have the potential disadvantage of losing participant-

level information provided within the IPD, but as discussed further in Chapter 2.3.2, two-

stage approaches and one-stage approaches often do produce the same results.   

Further, specifically within a TTE setting, it has been shown that employing a two-stage 

method to combine IPD and AD in meta-analysis, where feasible, can have advantages over 

an IPD only approach such as increasing precision of resulting pooled estimates [141, 142].  

Where treatment-covariate interactions are of interest, reducing IPD to AD for meta-analysis 

has the potential for ecological bias. In this case, the two-stage ‘meta-analysis of interactions’ 

approach defined by Simmonds and Higgins [309] may be applicable (see Chapter 6.2.4  and 

Chapter 8.1.1 for further details). The authors argue that this approach which remains within 

familiar meta-analysis frameworks may be more readily understood than complete IPD 

approaches; however, this approach would not readily extend to incorporation of AD with 

IPD, unless treatment-covariate interaction at an AD-level is available. 

The remaining three articles identified by Riley et al [40] combined IPD and ‘partially 

reconstructed IPD’ which could be extracted from published literature, i.e. reconstruction of 

2 x 2 tables for binary outcomes [41] or estimated survival times from KM curves for TTE 

outcomes [153, 157]. Messori et al [153] demonstrate that reconstructed IPD from KM  

curves can act as a good ‘intermediate’ method with advantages over an AD approach where 
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IPD is not available for every study or where resources to take a fully IPD approach are not 

available. The illustrative example of Messori et al [153] shows good correlation between 

estimated IPD and true IPD; however, it must be noted that reconstructed IPD may be less 

reliable than original IPD and may still be prone to ecological biases [40].  

Although not used in any of the articles identified in Riley et al [40], multi-level or ‘hierarchical 

related’ regression modelling approaches allow for IPD and AD to be combined in the same 

meta-analysis model [38-41, 326, 329, 330, 332]; some examples were developed in the 

context of combining summary (e.g. geographic area) level and individual-level data from 

ecological studies rather than in a clinical context [326, 332]. However, such methodology is 

also applicable to evidence synthesis from a clinical setting. 

This modelling approach allows the simultaneous or joint estimation of the likelihood from 

related regression models of each data source (IPD or AD) and a multi-level structure which 

allows the incorporation of AD alongside IPD via dummy variables to indicate the data source 

[38, 40, 329]. Such a structure allows for both data sources to contribute to overall treatment 

effect and any study-level covariates of interest but ensures that only studies providing IPD 

contribute to any participant-level covariates [40]. Simultaneous hierarchical estimation of 

related models for IPD and AD sources, which typically share common parameters, allows for 

both data sources to inform the common parameters which has the advantage of potentially 

reducing biases from both data sources; i.e. the inclusion of IPD may reduce ecological biases 

arising from AD and the combined analysis of IPD and AD together may increase statistical 

power, which may be particularly beneficial  where only a small proportion of IPD is available 

[40, 326, 332]. However, it should be noted that applying models of the same form with 

treatment-covariate interactions to IPD and AD sources will only result in valid estimates of 

treatment effect according to the level of covariate if all individuals in the study have the 

same covariate value or if the relative effect modification of the covariate is the same at the 

individual and aggregate-level [19, 41].  

Ravva et al [330] note that applying the same non-linear model to both IPD and AD sources 

to define common parameters may lead to ‘aggregation bias,’ a type of ecological bias where 

between-study effects are incorrectly interpreted as within-study effects. The authors 

describe a hierarchical linearization modelling technique and an application to 

pharmaceutical drug development (dose-response) to address this issue of aggregation bias 

by allowing AD model parameters to retain their original definition with respect to 

treatment-covariate interactions at the individual-level. 
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Specifically, meta-analysis models for combining IPD and AD have been developed for binary 

outcomes, modelling IPD and AD ‘event-risk’ responses as Bernoulli and Binomial 

distributions respectively [39, 41]. Such models provide pooled ‘event-risk’ estimates across 

studies, while accounting for within-study variability due to interactions between ‘event-risk’ 

and participant-level covariates of interest and can be applied within a Frequentist or 

Bayesian framework [39, 41]. 

Meta-analysis models for combining IPD and AD have also been developed by Goldstein et al 

[329], modelling a continuous response variable via multi-level linear or quadratic regression. 

Riley et al [38] build on the approach of Goldstein et al [329] and outline a series of one and 

two-step meta-analysis models to combine IPD and AD for continuous outcomes and 

demonstrate how these models can be used to incorporate participant-level covariates to 

estimate treatment-covariate interactions in relation to pooled treatment effect and 

between-study heterogeneity. The general framework of the one-step approach also extends 

to other data types (such as TTE data), multiple covariates, multiple correlated outcomes, 

non-linear interaction effects and incorporation of treatment-covariate interactions from the 

trials providing AD. 

Recent work emphasises the importance of parameter specification when fitting one-stage 

meta-analysis models, whether analysing IPD only or incorporating IPD and AD, to ensure 

that within-study and between-study associations are separated to avoid inadvertent 

ecological biases [25, 38, 41]. 

8.1.3  Combining IPD and AD in network meta-analysis 

As described in Chapter 8.1.2 for ‘traditional’ pairwise meta-analysis, a range of methods 

have been developed and described for combining AD with IPD in meta-analysis of various 

data types, allowing for the incorporation of treatment-covariate interactions. However, at 

the time of writing, methodology to combine IPD and AD in NMA across different data types 

and scenarios has been less widely researched. Such methods are arguably even more 

important in this setting, where more treatment comparisons are made across more eligible 

studies, the scope for unavailable IPD from a subset of studies is potentially larger [46]. 

Saramago et al [45]  and Donegan et al [46] have described similar models for combining IPD 

and AD which extend the methodology of Sutton et al [39] for meta-analysis of a binary 

outcome to NMA of a binary outcome. Both approaches are performed in a Bayesian 

framework and extend to fixed or random-effects.  
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Saramago et al [45] describe NMA models for a binary outcome for scenarios where only IPD, 

only AD or a combination of IPD and AD are available for NMA. These models also allow the 

incorporation of individual or aggregate-level covariate data as treatment-covariate 

interactions and to explore within-study and across-study interactions. 

Donegan et al [46] describe an approach for the joint synthesis of IPD and AD within NMA for 

a binary outcome via a ‘shared parameter model’ [46, 333], where available IPD and AD are 

entered as two separate datasets in a single model which allows both datasets to contribute 

to the shared model parameters. The model also extends to include multi-arm trials, 

treatment-covariate interactions and to explore within-study and across-study interactions 

(assuming independent, exchangeable or common treatment-covariate interactions for each 

treatment comparison). However, the authors experienced problems with model 

convergence when applying the proposed methods to explore within-study and across-study 

interactions to an illustrative example examining treatment success in malaria with a 

treatment-by-age interaction, likely due to the similarity in mean age across sites. 

Both Saramago et al [45]  and Donegan et al [46] conclude that the synthesis of IPD and AD 

to include as much available evidence as possible increases precision and the use of IPD in 

NMA has advantages over the usual AD approach to NMA. 

Jansen and Cope [20] present an aggregate-level approach to NMA which allows for the 

incorporation of study-level covariates to adjust for confounding bias due to heterogeneity 

and inconsistency. This method is an extension of a method described in Chapter 2 [158] for 

NMA of TTE data, which is a multi-dimensional approach which does not require a PH  

assumption. The authors note the limitations of this AD approach that the methods described 

do not reflect individual level-effect modification. In a related publication, Jansen [19] 

hypothetically demonstrates the potential differences in NMA results without covariate 

adjustment, with covariate adjustment using AD and with covariate adjustment using IPD. 

Jansen [19] presents two methods for the incorporation of IPD and AD in NMA for a binary 

outcome using non-linear models in the presence of a participant-level covariate. The first 

method can be considered an extension of the methods of Sutton et al [39] (outlined in 

Chapter 8.1.2) to NMA (combined with the methods of Cooper et al  [21]). The second 

method uses a ‘hierarchical related regression’ as introduced by Jackson et al [326, 332] (also 

outlined in Chapter 8.1.2) which derives the AD model by integrating the underlying IPD 

model over the joint within-study distribution of covariates. Results of a simulation study 

show that under the majority of scenarios, the NMA models incorporating IPD and AD were 
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less associated with confounding bias than the NMA models using AD alone and generally 

the hierarchical related regression approach to combining IPD and AD in NMA was associated 

with less confounding bias than the extended approach of Sutton et al [39]. Jansen [19] 

concludes that the incorporation of even a small proportion of IPD into an AD-NMA to model 

participant-level covariates has values, particularly where there are concerns regarding 

heterogeneity, inconsistency or confounding bias. 

Saramago et al [44] describe methodology for combining IPD and AD in NMA in a TTE setting; 

which extends the work of Sutton et al [39] and Saramago et al [45] for binary outcomes. 

Specifically the methods proposed by Saramago et al [44] combine individual event-time data 

with aggregated count data under the assumption that by specifying a parametric TTE 

distribution which can allow for HRs to be generated from the original count AD by estimating 

the cumulative hazard in each trial arm reporting count data for a given follow-up time [221]. 

The methods described also allow for the incorporation of treatment-covariate interactions 

from both IPD and AD sources. 

8.1.4  Objective 

The first objective of this Chapter is to directly extract aggregate TTE data for the outcomes 

of interest to the Cochrane Epilepsy IPD-NMA (outlined in Chapter 7) from the trials not 

providing IPD or to determine whether suitable AD can be estimated from other published 

summary statistics (as outlined in Chapter 2.3.2). 

The second objective of this Chapter is to perform a combined NMA of IPD and any extracted 

or estimated AD and to compare results to those of the IPD-NMA. The principle aim of the 

combined analysis is to investigate whether the incorporation of AD changes the results and 

conclusions of the IPD-NMA, which could indicate that the 69% of IPD obtained for the NMA 

may not be representative of the entire evidence base. 

8.2  Methods 

8.2.1  Extraction of aggregate data from epilepsy studies  

As outlined in Chapter 5 and Table 13, IPD was not provided from 5570 participants from 41 

trials which were eligible for the Cochrane NMA (31% of total participant data). As noted in 

Chapter 5.3.2, if IPD was not available, any unpublished AD related to the outcomes of 

interest of the review was requested and would have been used in a combined analysis if any 

useable unpublished AD had been provided. 
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For each trial without IPD available, published literature (journal articles, clinicaltrials.gov 

entries etc.) were examined to determine whether any relevant AD could be extracted from 

this literature either directly or indirectly estimated (as described in Chapter 2.3.2 of this 

thesis). Aggregate data was extracted and/or estimated in the following order of preference:  

 direct numerical estimates (e.g. a HR and measure of precision could be extracted 

for one or more outcomes of interest) 

 indirect numerical estimates (see Chapter 2.3.2.1) 

 indirect graphical estimates with numbers at risk provided (see Chapter 2.3.2.2) 

 indirect graphical estimates without numbers at risk provided but estimated 

according to methods of Parmar et al [6] (see Chapter 2.3.2.2) 

For graphical estimation, survival proportions were extracted by hand by SJN from an 

enlarged version of the published curve at an appropriate range of time points, according to 

the extent of follow-up of the trial or the intervals at which numbers at risk were reported. 

Indirect estimation was performed by entering extracted summary statistics or survival 

proportions into the macro-enabled spreadsheet developed by Tierney et al [128]. 

As outlined in Chapter 7.3.2, IPD was provided for one trial randomising 136 participants 

(referred to as Biton 2001 [319]) via a remote secure data access system which allowed 

analysis in SAS based statistical software and export of analysis results. IPD from this trial 

could not be included with the entire individual participant dataset to fit the models outlined 

in Chapter 6.2, therefore the results exported from the data access system were treated as 

AD in an additional analysis. 

None of the 41 studies reported AD of any kind for the outcomes of time-to-12-month or 

time-to-6 month remission and none of the studies appeared to have measured either of the 

outcomes. The trial duration of 19 trials was less than 12 months and less than 6 months for 

five trials, therefore these remissions outcomes were not in the scope of the trials. 

Furthermore, the range of follow-up was not reported in seven trials so it was unclear 

whether time-to-12-month or time-to-6 month remission could have been measured. For 

one study (Biton 2001), AD for time-to-6 month remission for all participants and by epilepsy 

type could be calculated from IPD provided within the remote data access system. Results of 

combining AD from this single study to the IPD for time-to-6-month remission did not change 

conclusions and for brevity, results are not reported here.  This trial was of less than a year 

duration so time-to-12-month remission was not in scope.   
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Table 23 and Table 24 summarise the aggregate data which could be extracted for the 

outcomes of interest to the Cochrane Epilepsy IPD-NMA.  

Table 23: Aggregate data available for time-to-withdrawal of allocated treatment 

Trial1 Number of 

participants2 

Number of 

events 

AD available3 

Biton 2001* 

 

136 

(P=82; G=46) 

32 

(P=18; G=16) 

Summary HR and 95% CI available (SAS 

remote data analysis system) 

Brodie 2002 291 99 Summary HR and 95% CI available 

Christie 1997 249 93 Graphical (no numbers at risk) 

Forsythe 1991 64 22 Extracted approximate IPD (Table) 

Gilad 2007* 64 

(all partial) 

11 Extracted approximate IPD (Graphical) 

Rowan 2005 590 314 Graphical (partial numbers at risk 

available at yearly time points) 

Saetre 2007 184 55 Summary HR and 95% CI available 

Shakir 1981* 33 

(P=14; G=19) 

9 

(P=3; G=6) 

Extracted approximate IPD (Table) 

Steinhoff 2005*  239 

(P=176; G=63) 

62 

(P=53; G=9) 

Graphical (no numbers at risk) 

AD = aggregate data; G=generalised seizures; P = partial seizures, * = AD available by epilepsy type 

1. See Appendix 10 for reference of the primary publication of each trial  

2. Number of participants in the evaluable population or included in analysis for the outcome; 

for Biton 2001; epilepsy type was missing for eight participants 

3. For 32 out of 41 trials (3720 participants, 21% of total participant data), ‘time-to-withdrawal 

of allocated treatment’ was not reported as an outcome of the trial so no AD was available. 

 

For the outcome ‘time-to-withdrawal of allocated treatment,’ nine trials reported AD for 

1850 participants across a range of drug comparisons; mostly of CBZ, LTG and VPS but also 

GBP, OXC and PHT. For ‘time-to-first seizure,’ six trials reported AD for 1369 participants 

across a range of drug comparisons; mostly CBZ and LTG but also GBP, LEV and VPS. For three 

trials, a summary HR and 95% CI were available for both outcomes and for one trial, summary 

statistics were estimated for both outcomes from published survival curves with partial 

numbers at risk available at yearly intervals).  

For ‘time-to-withdrawal of allocated treatment,’ summary statistics could be estimated from 

two further studies with published survival curves without published numbers at risk. For the 

remaining trials, approximate IPD could be estimated from tables or graphs and used to 

calculate a summary HR and 95% CI. In two studies, due to the small number of events and 

very clear graphics, approximate event times could be extracted for each participant for both 

outcomes (Gilad 2007) or for time-to-first seizure (Consoli 2012). 
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Table 24: Aggregate data available for time-to-first seizure  

Trial1 Number of 

participants2 

Number of 

events3 

AD available4,5 

Biton 2001* 136 

(P=82; G=46) 

71 

(P=44; G=27) 

Summary HR and 95% CI available (SAS 

remote data analysis system) 

Brodie 2002 291 1383 Summary HR and 95% CI available 

Consoli 2012 104 9 Extracted approximate IPD (Graphical) 

Gilad 2007* 64 

(all partial) 

26 Extracted approximate IPD (Graphical) 

Rowan 2005 590 3053 Graphical (partial numbers at risk available at 

yearly time points) 

Saetre 2007 184 84 Summary HR and 95% CI available 

AD = aggregate data; G=generalised seizures; P = partial seizures, * = AD available by epilepsy type 

1. See Appendix 10 for reference of the primary publication of each trial  

2. Number of participants in the evaluable population or included in analysis for the outcome; 

for Biton 2001; epilepsy type was missing for eight participants 

3. For two trials, the number of events was not reported and was estimated based on the 

reported proportions seizure free at the end of the study. 

4. For 32 out of 41 trials (3022 participants, 17% of total participant data), ‘time-to-first seizure’ 

was not reported as an outcome of the trial so no AD was available. 

5. For 3 out of 41 trials (1179 participants, 7% of total participant data), a ‘time-to-first seizure’ 

outcome was defined but was reported as mean or median time-to-first seizure or number 

of events only with no further statistical analysis so no usable AD was available. 

 

Two studies presented times at which allocated drug was withdrawn and the reason for 

withdrawal in a table. Shakir 1981 presented 'time on trial drug' in months for each 

participant; therefore to calculate 'time-to-withdrawal of allocated treatment,' it was 

assumed, for example, that if 'time spent on trial drug' was five months, the individual spent 

five full months (152 full days) on the trial drug before withdrawal. Forsythe 1991 presented 

'withdrawal and time of occurrence by month’ and therefore to calculate 'Time-to-

withdrawal of allocated treatment’ we assumed that, for example, if withdrawal occurred 

during the fifth month, that withdrawal occurred halfway between the fifth and sixth month 

(i.e. participants spent 167 full days on treatment before withdrawal). This approach to 

analysis of these trials was taken in a pairwise IPD-MA including these two trials [59]; within 

that IPD-MA, sensitivity analysis was conducted examining the assumptions made of the 

withdrawal times in these trials. Results were similar following sensitivity analysis, therefore 

it was assumed that these assumptions were reasonable for the NMA.  

It should be noted that the ‘approximate’ IPD which could be extracted could have been 

included as IPD in the complete IPD approach to the NMA. However, given the potential for 

ecological bias as noted by Riley et al [40], compared to IPD which was provided directly and 
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consistency checked (see Chapter 5), the ‘approximate’ IPD was reduced to a summary HR 

and 95% CI and treated as AD for the purpose of this analysis. 

In relation to the findings of Chapter 3, the majority of trials did not report the TTE outcomes 

of interest for the Cochrane IPD-NMA (rather than outcomes were reported inconsistently). 

No trials reported remission as a TTE outcome in the trial publication. For the 32 trials which 

did not report relevant information for ‘time-to-withdrawal of allocated treatment’ (21% of 

total participant data), withdrawal information was generally reported as the proportion of 

participants withdrawing, rather than as a TTE outcome. Also, for 32 trials without any AD 

for ‘time-to-first seizure’ (17% of total participant data), the outcome was reported as the 

proportion of participants with seizure freedom or the change in seizure frequency rather 

than as a TTE outcome. However, for three trials (Korean LTG Study Group 2008, 

NCT01498822 and NCT01954121, recruiting 7% of total participant data), a ‘time-to first 

seizure’ outcome was defined but reported as the mean or median time-to-first seizure or 

the number of events only.  Therefore this published data could not be used.  

8.2.2  Methods for combining IPD and AD in NMA 

As outlined in the objective (Chapter 8.1.4), the principle aim was to allow comparison of an 

NMA of combined IPD and AD to an NMA of IPD only to investigate whether the IPD-NMA is 

representative of the evidence base and to examine the robustness of results. To allow this 

comparison, methods for combining IPD and AD must use the same framework as the IPD 

only analysis (see Chapter 6.2). Use of a different approach to modelling (e.g. via a Bayesian 

framework [45]) would likely produce different numerical results to the IPD-NMA due to 

methodological differences, which may confound the impact of the AD on the IPD results.  

Table 23 and Table 24 show that for four of the trials, aggregate summary statistics could be 

extracted or estimated according to epilepsy type but none of these aggregate summary 

statistics came from statistical models accounting for a treatment-by-epilepsy type 

interaction.  Methods described in Chapter 6.2 of this thesis require that the epilepsy type of 

each individual was available, so, it would not be appropriate to combine summary statistics 

for all participants (regardless of epilepsy type) with IPD in these models. 

Therefore the following approach was taken to allow IPD and AD to be combined in an NMA 

under a multivariate framework. Firstly, IPD was reduced to summary statistics separately by 

epilepsy type. In other words, models of the structures outlined in Equation 29 and Equation 
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30 (see Chapter 6.2.2) are fitted separately to each trial, producing separate trial-specific 

summary statistics of treatment effect for individuals with partial seizures and individuals 

with generalised seizures. 

The summary statistics for each epilepsy type from each trial (estimated from the IPD) are 

then combined in separate NMAs by epilepsy type. This was achieved by producing a dataset 

of the summary statistics structured as a list of pairwise comparisons and converted from 

‘pairs’ to ‘augmented’ format via the ‘network’ command within Stata version 14 [310] (see 

Appendix 13) and NMA is performed via ‘mvmeta’ as described in Chapter 6.2.5.  

Secondly, these separate trial-specific summary statistics of treatment effect for individuals 

with partial seizures and individuals with generalised seizures estimated from the IPD are 

also combined with additional summary statistics extracted or estimated from published 

study reports. These summary statistics (estimated from the IPD and combined with 

additional AD) are then synthesised as described in the previous paragraph.  

The results of this NMA using IPD only and the NMA with IPD and AD combined for each 

seizure type are then compared. For completeness, these results are also compared to the 

results of the IPD-NMAs from the models outlined in Chapter 6.2.2. 

Table 23 and Table 24 also show that the majority of aggregate summary data available 

related to all participants in the trial, rather than separated by epilepsy type (see Chapter 8.3 

for further discussion). Therefore to allow further investigation of any ‘availability bias’ in the 

results of the IPD-NMA, to incorporate as much additional published AD as possible, an 

additional analysis was conducted without separating epilepsy type. 

In this approach, IPD was reduced to summary statistics without accounting for epilepsy type.   

In other words, a model of the structures outlined in Equation 29  (see Chapter 6.2.2) was 

fitted separately to each trial, producing separate trial-specific summary statistics of 

treatment effect for all individuals (regardless of epilepsy type).  These summary statistics 

(firstly those estimated from the IPD only and secondly those estimated from the IPD 

combined with additional AD) are then synthesised in an NMA as described above. 

It should be noted that results that do not accounting for epilepsy type, are of little clinical 

relevance given the known differences between AEDs in different epilepsy types and current 

clinical practice (see Chapter 1.2.1 for further details).  



 

191 
 

8.3 Results 

As described in Chapter 6.2, 11,865 participants (66% of eligible participant data) contributed 

to the main analysis of ‘time-to-withdrawal of allocated treatment’ with a total of 4109 

withdrawal events and 12,152 participants (68% of eligible participant data) contributed to 

the main analysis of ‘time-to-first seizure’ with a total of 6453 first seizure events. 

An additional 336 participants (85 events) with partial seizures from four trials and an 

additional 128 participants (31 events) with generalised seizures from two trials contributed 

to ‘time-to-withdrawal of allocated treatment.’ In other words, an additional 2% of data was 

contributed by AD for individuals with partial seizures and an additional 0.7% of data for 

individuals with generalised seizures. An additional 146 participants (53 events) with partial 

seizures from two trials and an additional 46 participants (27 events) with generalised 

seizures from one trial contributed to for ‘time-to-first seizure.’ In other words, an additional 

0.8% of data was contributed by AD for individuals with partial seizures and an additional 

0.3% of data for individuals with generalised seizures. An additional 1850 participants (697 

events) from nine trials contributed to ‘time-to -withdrawal of allocated treatment’ (i.e. an 

additional 10% of data) and an additional 1369 participants (633 events) from six trials 

contributed to ‘time-to-first seizure’ (i.e. an additional 8% of data).   

NMA results compared to reference treatments and most commonly used treatments are 

discussed in the remainder of this section; results from all methods for all pairwise 

comparisons for both outcomes are available in Appendix 17. 

8.3.1. Individuals with partial seizures 

Results for all AEDs compared to reference treatment CBZ from NMAs of IPD only and IPD 

combined with AD (as outlined in Chapter 8.2.2) are presented in Table 25 and Table 26 

respectively for ‘time-to-withdrawal of allocated treatment’ and ‘time-to-first seizure.’ 

Comparing the results of the NMA which combines IPD and AD to the NMAs with IPD only, 

NMA results are very numerically similar, except for one change to statistical significance 

when incorporating AD to the comparison of CBZ vs TPM for ‘time-to-withdrawal of allocated  

treatment’ even though no additional AD for this comparison directly was added.  It should 

also be noted that the results of all models for this comparison are the same to two decimal 

places. Overall, incorporating AD with IPD in NMA has had very little impact and the lack of 

notable difference is not surprising given the small amount of additional AD available by 

seizure type, i.e. adding AD contributes only up to an extra 2% of data to the outcomes. 
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Table 25: Network meta-analysis results also incorporating aggregate data: Time-to-

withdrawal of allocated treatment for individuals with partial seizures. 

Comparison1 IPD only1,2 IPD reduced to AD1,3 IPD reduced to AD, plus AD1,3 

CBZ vs PHB 1.57 (1.20 to 2.05) 1.58 (1.21 to 2.07) 1.58 (1.21 to 2.07) 

CBZ vs PHT 1.16 (0.93 to 1.45) 1.18 (0.94 to 1.48) 1.19 (0.95 to 1.49) 

CBZ vs VPS 1.10 (0.90 to 1.35) 1.09 (0.90 to 1.32) 1.05 (0.88 to 1.25) 

CBZ vs LTG 0.72 (0.63 to 0.83) 0.72 (0.63 to 0.83) 0.73 (0.65 to 0.84) 

CBZ vs OXC 1.07 (0.84 to 1.37) 1.02 (0.81 to 1.28) 1.02 (0.82 to 1.28) 

CBZ vs TPM 1.17 (0.99 to 1.38) 1.17 (0.99 to 1.38) 1.17 (1.00 to 1.38) 

CBZ vs GBP 1.18 (1.01 to 1.39) 1.18 (1.00 to 1.38) 1.18 (1.01 to 1.39) 

CBZ vs LEV 0.83 (0.70 to 0.99) 0.84 (0.71 to 0.99) 0.84  (0.71 to 0.99) 

CBZ vs ZNS 1.08 (0.81 to 1.44) 1.08 (0.81 to 1.44) 1.08 (0.81 to 1.44) 

1. Results presented are HR and 95% CIs, See Chapter 5.3.2 for abbreviations of drugs. Results 

highlighted in bold italics show a difference in statistical significance when published AD is 

combined with IPD compared to both of the IPD only models. 

2. Results taken from the model outlined in Chapter 6.2.2 

3. Results taken from the model outlined in Chapter 8.2.2 

Table 26: Network meta-analysis results also incorporating aggregate data. Time-to-first 

seizure for individuals with partial seizures. 

Comparison1 IPD only1,2 IPD reduced to AD1,3 IPD reduced to AD, plus AD1,3 

CBZ vs PHB 0.77 (0.60 to 0.99) 0.80 (0.63 to 1.01) 0.79 (0.60 to 1.02) 

CBZ vs PHT 0.97 (0.80 to 1.16) 1.05 (0.87 to 1.26) 1.03 (0.84 to 1.27) 

CBZ vs VPS 1.19 (1.00 to 1.43) 1.28 (1.10 to 1.49) 1.21 (1.02 to 1.43) 

CBZ vs LTG 1.20 (1.02 to 1.40) 1.22 (1.07 to 1.40) 1.22 (1.05 to 1.42) 

CBZ vs OXC 1.06 (0.78 to 1.44) 1.01 (0.81 to 1.26) 1.01 (0.77 to 1.31) 

CBZ vs TPM 0.99 (0.78 to 1.27) 1.05 (0.86 to 1.28) 1.02 (0.81 to 1.30) 

CBZ vs GBP 1.41 (1.10 to 1.81) 1.41 (1.15 to 1.73) 1.42 (1.10 to 1.83) 

CBZ vs LEV 1.19 (0.94 to 1.51) 1.21 (1.01 to 1.46) 1.20 (0.96 to 1.51) 

CBZ vs ZNS 1.30 (0.86 to 1.95) 1.30 (0.91 to 1.84) 1.30 (0.85 to 1.98) 

See Table 25 for abbreviations, definitions and footnotes. 

8.3.2  Individuals with generalised seizures 

Results for all AEDs compared to reference treatment VPS from NMAs of IPD only and IPD 

combined with AD (as outlined in Chapter 8.2.2) are presented in Table 27 and Table 28 

respectively for ‘time-to-withdrawal of allocated treatment’ and ‘time-to-first seizure.’  

When comparing the results of the NMA which combines IPD and AD to the NMAs with IPD 

only, numerical results are mostly quite similar apart from one change to statistical 

significance when incorporating AD to the important comparison of VPS vs CBZ for ‘time-to-

first seizure’ even though no additional AD for this comparison directly was added.  Aside 

from this one change in conclusion, the lack of notable difference is not surprising given the 
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small amount of additional AD available by seizure type, i.e. adding AD contributes only up 

to an extra 0.8% of data to the outcomes. 

Table 27: Network meta-analysis results also incorporating aggregate data. Time-to-

withdrawal of allocated treatment for individuals with generalised seizures. 

Comparison1 IPD only1,2 IPD reduced to AD1,3 IPD reduced to AD, plus AD1,3 

VPS vs CBZ 1.20 (0.89 to 1.62) 1.50 (1.08 to 2.07) 1.46  (1.07 to 1.98) 

VPS vs PHB 1.95 (0.92 to 4.16) 2.12 (0.98 to 4.58) 2.09 (0.98 to 4.42) 

VPS vs PHT 1.26 (0.78 to 2.04) 1.10  (0.57 to 2.15) 1.13 (0.59 to 2.15) 

VPS vs LTG 0.83 (0.51 to 1.36) 0.97 (0.55 to 1.72) 0.94 (0.54 to 1.65) 

VPS vs OXC 1.00 (0.18 to 5.46) 0.77 (0.30 to 1.98) 0.78 (0.31 to 1.97) 

VPS vs TPM 1.08 (0.47 to 2.44) 1.27 (0.68 to 2.39) 1.26 (0.69 to 2.33) 

VPS vs GBP 1.11 (0.12 to 9.89) 1.20 (0.14 to 10.44) 1.19 (0.14 to 10.25) 

VPS vs LEV 0.93 (0.48 to 1.82) 1.16 (0.62 to 2.18) 1.15 (0.63 to 2.10) 

See Table 25 for abbreviations, definitions and footnotes. 

Table 28: Network meta-analysis results also incorporating aggregate data. Time-to-first 

seizure for individuals with generalised seizures. 

Comparison1 IPD only1,2 IPD reduced to AD1,3 IPD reduced to AD, plus AD1,3 

VPS vs CBZ 1.21 (1.05 to 1.40) 1.20 (0.97 to 1.48) 1.22 (1.01 to 1.49) 

VPS vs PHB 1.36 (0.95 to 1.95) 1.34 (0.86 to 2.08) 1.37 (0.89 to 2.10) 

VPS vs PHT 1.06 (0.81 to 1.39) 0.93 (0.61 to 1.42) 1.10 (0.73 to 1.65) 

VPS vs LTG 1.52 (1.16 to 1.99) 1.34 (0.86 to 2.07) 1.48 (0.96 to 2.29) 

VPS vs OXC 1.67 (0.51 to 5.44) 1.59 (0.85 to 2.99) 1.64 (0.88 to 3.02) 

VPS vs TPM 1.15 (0.58 to 2.30) 1.15 (0.73 to 1.80) 1.19 (0.78 to 1.83) 

VPS vs GBP 0.58 (0.07 to 4.91) 0.55 (0.06 to 4.70) 0.58 (0.07 to 4.93) 

VPS vs LEV 1.45 (0.93 to 2.28) 1.34 (0.86 to 2.09) 1.34 (0.88 to 2.05) 

See Table 25 for abbreviations, definitions and footnotes. 

8.3.3  All individuals (regardless of epilepsy type) 

Results for all AEDs compared to commonly used treatment CBZ from NMAs of IPD only and 

IPD combined with AD (as outlined in Chapter 8.2.2) are presented in Table 29 and Table 30 

respectively for ‘time-to-withdrawal of allocated treatment’ and ‘time-to-first seizure.’ 

Comparing the results of the NMA which combines IPD and AD to the NMAs with IPD only, 

NMA results are very numerically similar and there are no changes in conclusions (i.e. the 

statistical significance of the results) across any of the comparisons of CBZ to the other AEDs. 

Although more AD for all individuals is available to incorporate into analysis than for analyses 

separated by epilepsy type, the proportion of AD incorporated compared to the amount of 

IPD available is still small, i.e. adding AD contributes only up to an extra 10% of data to the 

outcomes. Furthermore, as noted in Chapter 8.2.2, results produced by these methods 
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without accounting for epilepsy type are of little clinical relevance given the known 

differences between AEDs in different epilepsy types and current clinical practice. 

Table 29: Network meta-analysis results also incorporating aggregate data. Time-to-

withdrawal of allocated treatment for all individuals (regardless of epilepsy type) 

Comparison1 IPD reduced to AD1,2 IPD reduced to AD, plus AD1,2 

CBZ vs PHB 1.50 (1.14 to 1.96) 1.50 (1.14 to 1.97) 

CBZ vs PHT 1.02 (0.83 to 1.26) 1.03 (0.84 to 1.27) 

CBZ vs VPS 0.90 (0.76 to 1.05) 0.88 (0.76 to 1.02) 

CBZ vs LTG 0.74 (0.64 to 0.86) 0.73 (0.65 to 0.83) 

CBZ vs OXC 0.91 (0.70 to 1.18) 0.91 (0.72 to 1.16) 

CBZ vs TPM 1.09 (0.92 to 1.30) 1.07 (0.90 to 1.27) 

CBZ vs GBP 1.13 (0.91 to 1.39) 0.99 (0.82 to 1.18) 

CBZ vs LEV 0.83 (0.69 to 1.00) 0.82 (0.68 to 1.00) 

CBZ vs ZNS 1.08 (0.76 to 1.55) 1.08 (0.74 to 1.57) 

1. Results presented are HR and 95% CIs, See Chapter 5.3.2 for abbreviations of drugs. Results 

highlighted in bold italics show a difference in statistical significance when published AD is 

combined with IPD 

2. Results taken from the model outlined in Chapter 8.2.2 

Table 30: Network meta-analysis results also incorporating aggregate data. Time-to-first 

seizure for all individuals (regardless of epilepsy type) 

Comparison1 IPD reduced to AD1,2 IPD reduced to AD, plus AD1,2 

CBZ vs PHB 0.88 (0.73 to 1.05) 0.87 (0.71 to 1.05) 

CBZ vs PHT 1.00 (0.87 to 1.14) 0.99 (0.85 to 1.15) 

CBZ vs VPS 1.06 (0.96 to 1.16) 1.01 (0.90 to 1.13) 

CBZ vs LTG 1.22 (1.11 to 1.33) 1.24 (1.11 to 1.38) 

CBZ vs OXC 1.05 (0.89 to 1.23) 1.04 (0.86 to 1.27) 

CBZ vs TPM 1.09 (0.97 to 1.22) 1.10 (0.95 to 1.27) 

CBZ vs GBP 1.39 (1.21 to 1.59) 1.36 (1.16 to 1.59) 

CBZ vs LEV 1.21 (1.07 to 1.38) 1.19 (1.01 to 1.40) 

CBZ vs ZNS 1.30 (0.97 to 1.73) 1.30 (0.92 to 1.82) 

See Table 29 for abbreviations, definitions and footnotes. 

8.4 Discussion 

8.4.1 Summary of results and clinical implications 

This Chapter presents approaches for combining IPD and AD in NMA, with or without 

accounting for epilepsy type. The principle aim of this Chapter was to investigate whether 

the incorporation of AD changes the results and conclusions of an NMA approach based on 

IPD only, which could indicate that the 69% of IPD obtained for the NMA may not be 

representative of the entire evidence base. 
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Nine trials reported AD for up to 1850 participants for the outcome ‘time-to-withdrawal of 

allocated treatment’ and six trials reported AD for up to 1369 participants for the outcome 

‘time-to-first seizure.’ For three trials, a summary HR and 95% CI could be extracted directly 

for both outcomes and for two trials, summary statistics could be estimated from published 

survival curves for one or both outcomes using the methods described in Chapter 2.3.2.2. For 

the remaining trials, IPD could be approximately reconstructed from tables or survival curves 

and used to estimate an aggregate HR and 95% CI.  

Out of 17,961 participants eligible for the IPD-NMA, 66% of IPD was available for the analysis 

of ‘time-to-withdrawal of allocated treatment’ and 68% was available for the analysis of 

‘time-to-first seizure.’ The additional extracted or estimated AD contributed an extra 3.5% 

and 1% respectively for individuals with partial seizures, 1% and 0.5% respectively for 

individuals with generalised seizures and 13% and 10% respectively for all individuals, 

regardless of seizure type. Therefore, for both outcomes, even with additionally extracted 

AD, around 20% of participants are still missing from the NMA.  

For all analyses, there seems to be very little impact of incorporating AD with IPD in NMA. 

The lack of notable difference compared to the IPD-only approach to the NMA is not 

surprising given the small amount of additional AD available by epilepsy type. 

Of note in the context of this analysis is that for one of the trials which contributed AD to the 

combined IPD and AD-NMA for both outcomes (Biton 2001), IPD was provided for this trial 

but could not be treated as IPD within the analysis. IPD for Biton 2001 was requested via data 

sharing portal CSDR and provided via a remote data access system which allowed analysis in 

SAS-based statistical software and export of analysis results but prohibited exporting of the 

dataset. Therefore, it was not possible to combine this IPD with the other datasets to perform 

the IPD only analyses (described in Chapter 6 and Chapter 7 of this thesis) and the only option 

was to treat results exported from the data access system as AD in analysis.  

As described above, there seems to be little impact on results following the addition of AD 

to the IPD analyses, therefore the restricted access format of this single trial does not seem 

to have impacted on the results of the NMA. However, it is a concern for updates of this NMA 

in particular and for future IPD syntheses in general, that the provision of data in different 

formats and the increased use of remote access systems may restrict the analyses that it is 

possible to perform across all eligible datasets and subsequently impact on results of 

syntheses and the scope of clinical questions that are able to be addressed. 
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8.4.2 Limitations of the methodological approach and future work 

It was assumed for the purpose of these analyses that the AD extracted was reliable and 

consistent in outcome definition with the IPD. It was anticipated from the results of Chapter 

3 that a limited amount of AD would be available for analysis and results of this Chapter show 

that at the most, data for 1850 out of 5570 participants (33%) from 10 out of 41 trials (24%) 

not providing IPD could be extracted or estimated. Further, for all 10 studies for which AD 

could be extracted or estimated, there were concerns regarding definitions of the outcomes 

(particularly for ‘time-to-withdrawal of allocated treatment,’ see Chapter 3 for further 

discussion), definitions of censoring, time origins of the outcomes or statistical analyses 

performed to estimate summary statistics or graphical figures. For the two studies, with 

approximate IPD provided in tables, assumptions had to be made about event times 

(examined in sensitivity analysis, see Chapter 7.2) and for data extracted graphically, graphs 

were generally of poor quality and without numbers at risk provided which will affect the 

precision of these estimated results.  

Additionally, digitisation of survival curves was not used due to the low quality of some 

graphics from older publications and it was preferred for the aim of this analysis to use a 

consistent method across all studies for the extraction of graphical data. It should be noted 

that for practical rather than methodological objectives, where graphical quality allows 

digitisation of curves, such a method may result in more accurate estimates. 

In this context, it can certainly be argued that the extracted or estimated AD was of lower 

quality than the IPD which has been consistency checked and prepared for analysis according 

to a pre-specified procedure to ensure consistency of outcome definition (see Chapter 5.3.3). 

Previous work has argued that incorporation of AD into IPD-MAs may only be justified where 

the amount of missing IPD is large and/or reasons for missing IPD are thought to be 

informative [38-41, 309]; in fact, methods for incorporating IPD and AD within NMA have 

generally been developed in the context of adding a small amount of IPD (from say one or 

two studies) to improve the precision of an AD-NMA [19, 44-46] rather than vice-versa, as 

was the objective of this Chapter.  Sutton et al [39] have argued ‘that even if IPD is available 

from only a selection of studies, assuming no selection bias in which studies have provided 

IPD, IPD analysis to explore treatment – covariate interactions may produce more reliable 

estimates than a more complete AD meta-regression.’ 

Although restricting analysis to IPD only when a subset of AD is available goes against the 

general principle of systematic reviewing of including ‘all available evidence’ [40], it is 
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questionable whether there was any benefit at all in this context of incorporating the small 

amount of AD available with the IPD in analysis, given the relative quality of the two sources, 

the small amount of additional AD available for analysis and no evidence of informative 

missingness when comparing studies with and without IPD (see Chapter 5.4.3).  

Riley et al [38, 40] warn that a joint analysis of IPD and AD may ‘distort the truth’ where AD 

is far less reliable than IPD, and that careful consideration of the approach to synthesis is 

needed within each individual setting. Results described in this Chapter show very few 

notable differences for an NMA incorporating IPD and AD compared to IPD only analyses in 

the same framework and no evidence of an increase in heterogeneity or inconsistency when 

incorporating AD with IPD in the NMA. So within this context, the small amount of ‘lower 

quality’ AD does not seem to have ‘distorted the truth’ of the conclusions from the IPD-only 

analyses but it is unknown whether bias would have been introduced into the NMA if a larger 

proportion of AD had been available for a joint analysis.   

Based on previous work conducted by the Cochrane Epilepsy group [59-67], including an 

earlier IPD-NMA using a subset of the present data [285] and the work outlined in Chapter 3 

of this thesis, it was estimated that around 80% of IPD would be retrievable for analysis and 

very little useable AD would be available. Results of Chapter 5 to Chapter 7 of this thesis 

agree with these a priori assumptions that substantially more IPD than AD would contribute 

to a combined analysis, although the final retrieval rate of 69% of IPD was slightly lower than 

anticipated. Previous methods considering combined analyses of IPD and AD in NMA have 

generally been developed in the context of adding a small amount of IPD to improve the 

precision of an AD-NMA [19, 44-46] and such methods are more methodologically complex, 

requiring analysis within a Bayesian framework.  

Therefore, following consideration, it was felt that the gain to the analysis and precision of 

results would not outweigh the methodological complexity within this context, particularly 

for communicating clinical results to the readership of Cochrane reviews for whom 

interpretations of Bayesian statistics such as credible intervals are quite unfamiliar. Hence a 

two-stage approach to the analyses outlined this Chapter (i.e. reducing IPD to AD and 

combining with additional AD using methods for AD-NMA) was specified in order to 

investigate, as far as possible, the extent of missing IPD on the clinical results of the NMA.  

On the other hand, from a methodological point of view, it would be of interest in future 

work to investigate the benefits of a Bayesian framework as defined in previous work for this 



 

198 
 

example of combining IPD and AD, to determine if any further information can be gained 

throughout the ‘borrowing of strength’ of a Bayesian approach.  

Furthermore, shortly after the submission of the protocol of the present IPD-NMA for 

publication on the Cochrane Database of Systematic reviews [68], we became aware of novel 

methodology proposed by Saramago et al [44] for combining individual event-time data with 

aggregated count data. These methods were not applied within this Chapter due to the 

differences in model distribution (parametric rather than semi-parametric) and framework 

(Bayesian rather than Frequentist) which were outside of the scope of this Chapter, which 

aimed to investigate whether the IPD-NMA is representative of the evidence base and to 

examine the robustness of results.  

These methods perhaps hold the most potential for future work in the context of this 

example. As outlined above, a more accessible two-stage method was preferred over 

methodologically complex methods to combine up to 68% of IPD with up to 13% of AD, 

resulting in a combined IPD and AD-NMA which still had around 20% of eligible patients 

missing. The methods of Saramago et al [44], assuming a parametric distribution, allow for 

HRs to be generated from the original count AD by estimating the cumulative hazard in each 

trial arm reporting count data for a given follow-up time. The example illustrated by the 

authors relates to high compression treatments for venous leg ulcers and the time-to-event 

outcome of interest is time-to-healing (with corresponding aggregate count data outcome of 

number healed) and the authors have IPD for 841 participants from two trials (43% of total 

data) and AD for 1105 participants from 14 trials (57% of total data).  

Examination of the outcomes and summary statistics reported within the epilepsy 

monotherapy trials not providing IPD or any time-to-event AD showed that an additional 16 

trials (recruiting 2806 participants) reported the ‘number of participants seizure-free’ and an 

additional 13 trials (recruiting 2398 participants) reported the ‘number of participants 

withdrawing from treatment.’ Therefore, in principle, using the methods of Saramago et al 

[44] may allow for up to 93% of eligible data to be included in NMA for ‘time-to-withdrawal 

of allocated treatment’ and up to 91% of data for ‘time-to-first seizure.’  

However, before undertaking such an analysis, further consideration would have to be given 

to the follow-up times and the measurement times of the count data within each trial. For 

example, some trials report seizure freedom at a series of time points throughout the trial, 

other trials report only seizure freedom during the maintenance period etc. Additionally, in 

order to synthesise ‘time-to-withdrawal of allocated treatment’ and ‘number of 
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withdrawals,’ consideration would have to be given to reasons for withdrawals which may 

not be as clearly articulated within published reported compared to participant-specific 

withdrawal reasons provided within IPD. Furthermore, within this context where treatment-

epilepsy type interactions are of interest, while the methods of Saramago et al [44] do extend 

to the incorporation of treatment-covariate interactions, for the majority of studies, AD 

(whether TTE or count data) tends to be published for all individuals, rather than separated 

by epilepsy type or adjusted for a treatment-epilepsy type interaction.  

Therefore, as this Chapter has shown for the ‘simple’ two-stage methods incorporating up to 

an additional 2% of epilepsy-type specific AD has very little impact on numerical results 

compared to an IPD only approach, the added benefits of the more complex methodology 

described by Saramago et al [44] may also be very minimal for this example.    

8.4.3 Concluding remarks 

In conclusion, this Chapter demonstrates the numerical results and conclusions of the IPD-

NMA described in Chapter 6 and Chapter 7 seem robust to the incorporation of a small 

amount of additional published AD with IPD in the NMA model. 

Despite best efforts to include as much relevant evidence as possible, including published 

aggregate data, NMAs presented within this Chapter are still missing between 20 and 30% of 

eligible data which almost inevitably will result in bias to some extent and must be taken into 

account when interpreting clinical results. 

The provision of accessible, standardised and high-quality data (whether provided at the 

aggregate or IPD level) is essential to allow updates of this IPD-NMA as further information 

becomes available, particularly for recently licenced and future treatment options. 

It appears that two IPD-MA projects submitted to the YODA project have already been 

prevented due to the restrictive remote access to data [93]. It is of concern that the increased 

use of remote access systems for sharing IPD with researchers will further restrict the 

analyses that it is possible to perform across all eligible datasets and subsequently have even 

further impact on results of syntheses and the scope of clinical questions that are able to be 

addressed. Additional flexibility within data sharing platforms, such as the ability to 

temporarily download IPD from the remote systems to perform syntheses, under the 

additional protection of legal documents such as data sharing agreements to prevent misuse 

of data may offer a solution.  
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Chapter 9: Discussion and Conclusions 

9.1 Summary of main findings of the thesis  

Evidence syntheses are highly regarded techniques for the quantitative summary of evidence 

from a number of sources [8, 34]. In comparison to traditional aggregate-level data 

approaches, an IPD approach to meta-analysis has been widely regarded as the ‘gold-

standard’ for many years [22, 23], with a sharp increase in the number of IPD-MAs published 

in the last decade [33-35]. Recent work has also shown the benefit of an IPD approach for 

NMA [19, 44-48, 328]. 

Within many clinical settings, outcomes of interest are measured as a time to an event. 

Synthesis of TTE data is particularly common in the field of oncology but also important in 

other settings, such as measuring the retention time on treatment or the remission time from 

seizures for people with epilepsy. A range of methods for the meta-analytic synthesis of TTE 

data have been proposed over several decades and applied to a wide range of clinical and 

methodological scenarios; Chapter 2 of this thesis presents a literature review of this 

methodology according to the level of data required for the approach (IPD or AD).  

It is well documented within the field of oncology that the necessary published information 

required to perform AD-MA of TTE data is often not reported or is reported inconsistently 

[31, 144, 160, 235-237]. Therefore, a range of accessible and user-friendly methods have 

been developed with the aim of making use of more commonly reported summary statistics 

and published survival curves to indirectly estimate HRs and associated variances [6, 128]. 

However, whether these methods can be used in practice has been questioned since many 

alternative summary statistics are also not reported or published graphical figures are of 

inadequate quality [6, 141, 144].  Chapter 3 of this thesis summarises previous investigations 

of the reporting of aggregate TTE data in oncology and presents a novel systematic review of 

the reporting of TTE outcomes and associated statistics in epilepsy monotherapy studies.  

This is believed to be the first systematic review of this topic outside of the field of oncology, 

reflecting reporting standards across 35 years and 24 speciality and general medicine 

journals. In line with previous work, results of this systematic review reveal concerning 

reporting inadequacies relating to the definition, analysis and reporting of TTE outcomes 

within these epilepsy monotherapy trials.  In fact, the findings for some areas of reporting, 

particularly relating to definitions of outcomes, seem to be worse than previous reviews in 

oncology. These results also support the rationale of the Cochrane Epilepsy Group of taking 
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an IPD approach to synthesis of AED monotherapy trials, with nine IPD-MAs [59-67] and two 

IPD-NMAs [68, 69, 285] published to date, as a fully AD approach to synthesis based only on 

the published information presented in these trials would not be feasible or recommended 

to inform clinical practice. 

Increasing popularity of IPD approaches to meta-analysis over the last decade has resulted 

in rapid development of methodology allowing questions of growing clinical, statistical and 

computational complexity to be addressed via IPD-MA models [36]; Chapter 2 of this thesis 

summarises IPD-MA methodology specific to TTE outcomes. There has also been a rapid 

increase in the uptake of methods; Chapter 4 of this thesis shows that the number of 

systematic and non-systematic IPD-MAs published per year has increased to an average of 

105 between 2009 and 2015 compared to 49 per year between 2005 and 2009 [34]. 

However, despite the benefits of an IPD approach to synthesis and the increased use of such 

an approach, in practice retrieving all IPD to perform a re-analysis can require a considerable 

amount of time, cost and personnel and can be computationally intensive in the case of large 

individual participant datasets [22, 49]. Furthermore, retrieval of all relevant IPD is not always 

possible for a variety of reasons (IPD may have been destroyed or lost, original investigators 

may be unwilling to collaborate etc.) and only a proportion of IPD may be available for re-

analysis. This leaves the IPD-MA at potential risk of ‘availability bias’ where the subset of IPD 

available is not representative of the evidence base. In this case, a combined synthesis of IPD 

and AD may be a feasible option to increase precision and reduce ‘availability bias;’ 

methodology for the combined synthesis of IPD and AD is summarised in Chapter 8. 

The culture of clinical trial data sharing has changed in recent years, with a shift in attitudes 

towards the support of data sharing and many calls for improved data transparency and data 

sharing initiatives introduced across the research community as a whole [77-87]. The way 

that pharmaceutical clinical trial data is shared for secondary research, such as syntheses, 

has also changed with the launch of data-sharing platforms such as CSDR, YODA and SOAR 

since 2013 [91, 93, 95]. Such platforms allow researchers to request access to IPD via a 

structured process of selecting studies of interest, submitting a scientific research proposal, 

signing of a data sharing agreement by the researcher and sponsor and finally access to de-

identified IPD and related documentation which can be analysed remotely in a SAS analytic 

environment and analysis results exported from the environment. While such initiatives and 

platforms should make access to IPD easier and faster, the impacts of these changes in 

attitudes and data sharing methods may not become clear for some time.  
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Chapter 4 presents a novel systematic review of data retrieval within IPD-MAs. Out of 760 

IPD-MAs using systematic methods to identify eligible studies published between 1987 and 

2015, only 188 (25%) retrieved 100% of the eligible IPD for analysis and only 324 (43%) 

retrieved at least 80% of relevant IPD. Chapter 4 also shows that up to 2015, there is no 

evidence of an improvement in IPD retrieval rates over time but that IPD-MAs that included 

only randomised trials, had an authorship policy, included fewer eligible participants and 

were conducted outside of the Cochrane Database of Systematic Reviews were associated 

with a high or complete IPD retrieval rate.  

Chapter 5 reflects upon the IPD requesting experiences of the Cochrane Epilepsy group over 

the last 20 years, from a time when IPD approaches to synthesis were relatively novel up to 

the end of 2016, throughout the new era of data sharing initiatives. Chapter 5 shows that the 

earliest Cochrane Epilepsy IPD-MA published in 2000 included IPD from 63% of total trials 

and 83% of total participants [67], a good retrieval rate in the wider context of all IPD-MAs 

as presented in Chapter 4; however the latest Cochrane Epilepsy IPD-NMA included IPD from 

47% of  total trials and 69% of total participants [69]. This reflects a decline in the IPD retrieval 

rate from requests made between 1995 and 2005 to requests made between 2012 and 2015.  

Chapter 4 also highlights that reporting inadequacies in IPD-MAs of all clinical contexts are 

not uncommon, with 257 out of the 760 IPD-MAs (34%) not reporting sufficient information 

to calculate the IPD retrieval rate and in 58% of IPD-MAs that failed to retrieve 100% of 

eligible IPD, there were no specific reasons provided for the unavailability of data. 

Furthermore, in around a quarter of IPD-MAs that failed to retrieve 100% of eligible IPD, 

there was a complete lack of discussion or acknowledgement of any biases that may have 

been introduced by the missing IPD.  

Chapter 6 presents the statistical methodology and Chapter 7 presents clinical results for an 

IPD-NMA of ten AEDs used in monotherapy for 12,391 participants from 36 clinical trials that 

IPD was successfully retrieved from, data for 69% of eligible participants from 47% of eligible 

trials as outlined in Chapter 5. Outcomes considered within this IPD-NMA included ‘time-to-

withdrawal of allocated treatment’ and ‘time-to-first seizure after randomisation’ and the 

NMA also incorporated a treatment-covariate interaction between the antiepileptic drug and 

epilepsy type (partial or generalised seizures). Clinical results of this IPD-NMA support 

current NICE guidelines [74] and suggest some alternative treatment options for those 

individuals for which the first-line recommended treatments are not suitable.  
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Chapter 8 presents methodological approaches for including AD with IPD in NMA for this 

example. As predicted by the results of the systematic review presented in Chapter 3, few of 

the epilepsy monotherapy studies without IPD available reported any suitable AD which 

could be extracted or indirectly estimated (numerically or graphically, via the methods 

outlined in Chapter 2). The additional extracted or estimated AD contributed only up to an 

extra 3.5% or 1% of data to the NMA for individuals with partial seizures and individuals with 

generalised seizures respectively and the incorporation of this additional AD with the IPD in 

NMA had a negligible impact on results.  

On the other hand, the methodological approach to the relationship between treatment and 

epilepsy type did have an impact on the results; while different approaches produced very 

similar numerical results and mostly identical conclusions for individuals with partial seizures 

(the majority epilepsy type, around 70%),  numerical results for individuals with generalised 

seizures (the minority epilepsy type, around 25%) change quite substantially, as well as some 

changes in the statistical conclusions, with difference analysis approaches for epilepsy type.     

9.2.  Implications for practice and research 

The implications of this thesis fall into three topics; the methodological implications of the 

findings around IPD retrieval and around conduct and reporting of IPD syntheses, and the 

clinical implications of the illustrative example of the IPD-NMA of antiepileptic drugs.  

9.2.1 Clinical implications 

The findings of this thesis are underpinned by the application of methodology to a large 

Cochrane IPD-NMA of ten AEDs and investigation of the treatment-by-epilepsy type (partial 

or generalised seizures) interaction.   

The results of the IPD-NMA demonstrate that, in line with current NICE guidelines [74], that 

CBZ and LTG are suitable first-line treatments for individuals with partial seizures but also 

adds new information that LEV may be a suitable alternative. Results for individuals with 

partial seizures are robust to additional and sensitivity analyses including investigation of 

different methodological approaches for modelling the relationship between treatment 

effect and epilepsy type, accounting for any observed inconsistencies in the IPD provided and 

following the incorporation of additional AD with IPD into the NMA model. 
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The majority of participants recruited into the trials included in the IPD-NMA were classified 

as experiencing partial seizures, which is reflective of clinical practice that around 60% of 

individuals with epilepsy experience partial seizures [320]. However, the proportion of 

individuals with partial seizures recruited to the trials in the IPD-NMA is greater than would 

be expected in clinical practice with 67.5% of included participants classified as experiencing 

partial seizures, around 26.5% of participants experiencing generalised seizures and the 

remaining 6% experiencing seizures of a type which is difficult to classify. Additionally, there 

was an indication that up to 36% of individuals classified as experiencing generalised seizures 

may have had their seizure type misclassified, so the true proportion of individuals 

experiencing generalised seizures within the IPD-NMA may be as small as 17%.  

Due to this imbalance in the two epilepsy types, results for individuals with generalised 

seizures were less precise and less robust to different approaches to statistical analysis. 

Results of the main analysis for individuals with generalised seizures are also in line with 

current NICE guidelines, supporting the use of VPS as a first-line treatment but also adds new 

information that LTG and LEV may be suitable alternative first-line treatments.  

The findings of this thesis and the IPD-NMA provide recommendations for the design and 

conduct of future AED monotherapy trials. It is essential that future trials are adequately 

powered to detect a difference between particular AEDs while recruiting a sample of 

individuals representative of the wider population in terms of age and epilepsy type. The 

latter is particularly important in order that future syntheses can provide more precise and 

robust evidence for individuals with generalised seizures as additional potential treatment 

options become available. Given that current clinical practice reflects a different selection of 

preferred treatment options of individuals with different epilepsy types [74], it is also 

recommended that future trials should incorporate interactions between treatment effect 

and epilepsy types within statistical analysis and clearly report treatment and interaction 

effects according to different epilepsy types within the trials. 

Furthermore within these trials, the choice of outcomes at the design stage and the 

presentation of the results of outcomes require careful consideration. The ILAE recommend 

that trials of a monotherapy design should adopt a primary effectiveness outcome of 'time-

to-withdrawal of allocated treatment’ and should be of a duration of at least 48 weeks to 

allow for assessment of longer-term outcomes, such as remission [249].  If trials followed 

these recommendations, an AD approach to meta-analysis may be feasible, reducing the 

resources and time required from an IPD approach. 
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In a wider clinical context, the findings of this thesis highlight the importance of an IPD 

approach when considering a clinically complex treatment-covariate interaction, in addition 

to the essential requirement of transparent reporting at all levels, whether at the trial 

publication level, IPD level or data request level (e.g. with respect to reasons why IPD are not 

available), to allow the appropriate conclusions to be drawn from the clinical question. 

9.2.2 Methodological implications: IPD retrieval rate 

Reviews of the literature conducted for this thesis indicate that in recent years, IPD 

approaches to synthesis are rapidly gaining in popularity, with the majority of new 

methodological work relating to meta-analysis requiring the analysis of IPD and it is now 

estimated that over 100 new IPD-MAs are being published each year. In parallel, initiatives 

to promote open and transparent sharing of clinical trial data continue to gain in momentum 

over recent years.   

However, the findings of this thesis show that these substantial changes in culture and 

methodological practice do not seem to be mirrored by improved IPD retrieval rates. This 

may be due, in part, to the increasing uptake of IPD-MAs across a wide range of clinical areas 

and settings and increasing use of sophisticated systematic searching methods, such as those 

employed by the Cochrane Collaboration, which uncover grey literature where IPD may be 

difficult to obtain. 

There has been a decline in the IPD retrieval rate from data requests made by the Cochrane 

Epilepsy group between 2012 and 2015 compared to requests made between 1995 and 2005. 

A concern is that ‘prohibitive costs’ have prevented the sharing of pharmaceutical data for 

recent requests made by the Cochrane Epilepsy group and there seems to be an emerging 

association between the resources of the data provider and the provision of IPD. 

Changes in methods of sharing pharmaceutical and the additional step of rigorous data 

checking and de-identification have anecdotally resulted in the provision of cleaner datasets 

compared to datasets provided in previous requests to the Cochrane Epilepsy group. While 

this is beneficial to the researcher, who is required to spend less time and resource checking 

data and resolving problems or inconsistencies, these changes are associated with additional 

costs and resources to the data provider.  

Recent work has demonstrated that preparation of academic clinical trial data for external 

sharing may take up to 50 hours and the associated cost may be as high as £3000 per trial 

[300]. Such time and financial costs may be even higher for older trials, or trials which are 
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particularly large or of a complex data structure. It can be argued that it is unreasonable for 

data providers to incur all of these costs, without discernible acknowledgement or reward, 

particularly for academic data providers for whom the intellectual property of their data may 

be of great value to the academic institution and to individuals within the institution.  

Furthermore, results of this thesis have also demonstrated that implementation of an 

authorship policy, an incentive to participate in IPD-MAs, is associated with a complete or 

high retrieval rate of IPD compared to IPD-MAs without an authorship policy. Therefore, 

collaboration between researchers and data providers, whether financial, shared authorship 

or otherwise, may assist in sharing costs and resources and also the benefits of any secondary 

research. In turn, collaboration of personnel and resources may potentially maximise 

retrieval rates of IPD.  

Of further concern in the present era of data transparency is the continued reporting of non-

specific reasons for unavailability of IPD. Three out of the 35 requests made by the Cochrane 

Epilepsy group between 2012 and 2015 received a negative response but no specific reason 

was given as to why data could not be provided and metrics available on the CSDR website 

also list non-specific reasons for why data could not be provided for 15% of requests. While 

it is inevitable that some IPD-MAs will not be able to include all relevant IPD for perfectly 

valid reasons, where a specific reason for the unavailability of IPD is not provided, it is difficult 

to make a judgement regarding the presence of availability bias which has implications for 

the interpretation of the results and conclusions of the synthesis.   

Findings of this thesis also suggest that the current format of the data sharing platforms such 

as CSDR and YODA may not be suitable for syntheses due to the restrictive access to the data 

provided and associated legal obligations which prevent collating all available data in a single 

location for analysis.  The impact that the current restrictions of data sharing platforms may 

have on future clinical and statistical analyses, potentially rendering some analysis 

approaches impossible within the framework, are of great concern. Additional flexibility 

within data sharing platforms, such as the ability for ‘approved’ researchers to temporarily 

download IPD to perform syntheses, may offer a solution. 

9.2.3 Methodological implications: conduct and reporting of IPD syntheses 

The findings of this thesis reveal concerning inadequacies of reporting in many areas which 

have implications to the conduct of evidence synthesis and many of which have contributed 

to the conduct of a large IPD-NMA in epilepsy. 
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Concerns regarding inadequate reporting of aggregate TTE data has been well documented 

since 1995 [31] and there does not seem to have been any improvement over time, with 

several other reviews of this topic within oncology trials, the most recent published in 2013 

[242], showing equally poor reporting. Findings of this thesis emphasise the calls from 

previous reviews [31, 242] for the urgent development of minimum reporting standards for 

TTE analyses. In the continuing absence of the development of such standards, use of the 

suggested guidelines from previous work [31, 242] by journal editors and peer reviewers 

when considering study publications using TTE analyses would greatly improve reporting 

rates and in turn facilitate the conduct of AD-MAs and syntheses with TTE endpoints. 

Findings of this thesis also demonstrate inadequacy of reporting in the published results of 

IPD-MAs, particularly regarding study and participant numbers contributing to different 

stages of the IPD-MA, reasons for unavailability of IPD and consideration of potential 

availability bias introduced by missing IPD. It is unknown whether the lack of discussion or 

additional analyses to investigate availability biases are due to inadequate or selective 

reporting, or whether meta-analysts simply were not aware that biases could have been 

introduced into their analyses by a missing subset of eligible IPD. 

A recent scoping review of published IPD-NMAs, a relatively new research field compared to 

IPD-MAs, has also revealed several recurrent areas of inadequate reporting, such as an 

evaluation of consistency assumptions, existence of a study protocol, and methods used to 

request, collect, and manage IPD and management of missing data [48].  

These findings highlight that improvements are needed in the conduct and reporting of IPD 

syntheses. It is highly recommended that all syntheses, whether of an AD or IPD level and 

whether systematic or prospective, follow a registered protocol [284] and that any deviations 

from the protocol are clearly described and justified. It is particularly important for IPD 

approaches of a systematic nature, that researchers demonstrate awareness that despite 

their best efforts, it may not be possible to obtain all eligible IPD for analysis and that it is 

clearly outlined how biases related to missing IPD will be evaluated.   

It is also absolutely essential that the number of eligible studies and participants, how much 

data was requested and obtained with clear reasons for non-availability of IPD, preferably 

via a flow diagram, are transparently reported. Such information is not only important for 

the interpretation of reported results and conclusions, but is also of value for future research; 

providing ‘best practice’ guidance for researchers embarking upon IPD synthesis. 
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Proper uptake of new PRISMA-IPD guidelines for the conduct and reporting of IPD-MA [283], 

in addition to guidance on the use of IPD-MA to synthesise the results of RCTs [282] should 

lead to improvements in the highlighted areas of conduct and reporting that are currently 

inadequate. There has also been a recent call for the development of PRISMA-IPD-NMA 

guidelines, based on the current PRISMA-IPD and PRISMA-NMA guidelines for the conduct 

and reporting of IPD-MAs and NMAs respectively [48]. Such guidelines would be a welcome 

addition to the evidence synthesis literature and may prevent inadequacies of reporting of 

IPD-NMAs becoming commonplace, as this research field continues to develop. 

While existing guidelines such as PRISMA, PRISMA-IPD and PRISMA-NMA provide a minimum 

set of reporting items within each synthesis design (i.e. AD, IPD or NMA); there are currently 

no formal recommendations, from PRISMA or from Cochrane methods groups, to guide 

authors when choosing the most appropriate synthesis approach to the clinical question and 

what information should be reported regarding the rationale for the analysis approach. 

Previous work has recommended that researchers should carefully consider the added 

benefits of IPD whether a less resource intensive AD-MA could provide an adequate (and 

mathematically equivalent) answer to the question [52, 53]. Ideally, the rationale for an IPD 

approach to synthesis should be clearly described and justified in a registered protocol. 

Previous work has also suggested that the additional methodological complexity of 

incorporating both IPD and AD sources within synthesis may not necessarily provide any 

additional benefit to analysis and in fact may introduce biases into the combined analysis 

where AD is of a lower quality than the IPD [38, 40]. Although relatively simple methodology 

was used to incorporate IPD and AD for the illustrative example outlined in this thesis, 

findings are in line with previous work and suggest that there was very little impact to 

incorporating IPD and AD in this context, given that the majority of evidence came from IPD 

sources compared to AD sources. Therefore, it should be recommended that researchers 

consider the added benefits of a combined IPD and AD analysis over an IPD-only approach, 

taking into account the relative quality and available proportion of each data source. Again, 

ideally, any planned methodology for combining IPD and AD in synthesis should be clearly 

outlined in a registered protocol.  
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9.3 Limitations and future work 

The specific limitations to each element of the work presented in this thesis have been 

discussed in detail in the relevant chapters. This section will focus on the overall limitations 

of the work presented in this thesis and make suggestions for future work which may be able 

to address some of the limitations. 

The first major limitation is that many of the findings from this thesis are based on published 

information; such as the results reported in epilepsy monotherapy trials, IPD retrieval rates 

and characteristics of IPD-MAs and metrics from the CSDR and YODA websites.  

Due to the size of the cohorts included in the novel systematic reviews presented in this 

thesis, particularly the systematic review of IPD-MAs, it was out of the scope of the work to 

contact original investigators individually to request additional or unpublished information.  

In the context of Chapter 3, where results showed inconsistent choices of outcomes and 

inadequate reporting of TTE analyses in epilepsy trials, it would be of value to gain further 

insight into potential reasons for these findings. For example, how the trial outcomes were 

selected and why so few trials report the primary outcome according to the definition 

recommended by the ILAE [249]; perhaps clinicians do not agree with current guidelines and 

find recommended outcomes too complex or prefer alternative outcomes? Such insights 

could help to provide updated guidelines that more trials may adhere to, hence improving 

the consistency of outcome reporting across trials and facilitating synthesis of trials.  

Furthermore, it was not possible within the systematic review of IPD-MAs in Chapter 4 to 

examine data requesting and collection methods in detail as this level of information was not 

provided within published journal articles. This is a great limitation of the work as the 

approach to collecting data is likely to be very influential on the proportion of data retrieved. 

Therefore gaining further insight into the approaches taken by different research teams with 

respect to the routes of communications to make data requests, wording of requests, 

number of attempts at a request, any deadline set for data to be provided etc. would be of 

great interest and would be valuable to inform the conduct of future IPD syntheses.  

While word limits of journals do not always allow for detailed descriptions of methodology, 

including data collection methods for IPD-MAs, such information could be provided as online 

appendices or published within registered protocols, for example via PROSPERO [284] where 

word limits are not as restrictive. The detailed data collection methods for the IPD-NMA 

described in this thesis are outlined in Chapter 5 and published in an article in the British 
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Medical Journal [278]. While the methods employed to collect data for this IPD-NMA may 

not necessarily reflect the ‘best practice’ to obtain the maximum amount of IPD as possible; 

we hope providing this additional level of practical information regarding our methodology 

may further aid with interpretation of the results of the IPD-NMA and may act as a starting 

point for research groups planning future IPD syntheses.  

The second main limitation of the work in this thesis is the relatively simplistic ‘two-stage’ 

approach to the IPD-NMA (Chapter 6) and the NMAs combining IPD and AD (Chapter 8). As 

discussed in Chapter 6.3.2, at the time that the IPD-NMA analysis was planned [68], 

methodology in this field was still relatively rare, therefore the proposed methodology was 

adapted from a previous IPD-NMA in epilepsy conducted by the group [285]. Although 

additional IPD-NMA methodology is now available and additional applied IPD-NMAs have 

been published [48], we are still not aware of any existing methodology which would allow 

for one-stage IPD-NMA of a TTE outcome with a treatment-by-covariate interaction, 

separated into within and across-study interactions which also allows the incorporation of 

AD within a single model.  

The majority of methods for NMA, particularly IPD-NMA and models which combine IPD and 

AD in NMA have been developed within a hierarchical Bayesian modelling framework. When 

planning this IPD-NMA, intended for a Cochrane readership, it was decided that analysis and 

presentation of results within a Frequentist framework would be preferable for accessible 

interpretation of results. It would be of interest for further work to investigate the benefits 

of Bayesian framework for this example; particularly whether any gain in precision in results 

for individuals with generalised seizures would be possible from the additional ‘borrowing of 

strength’ across the network of a Bayesian approach. Also it would be of interest to further 

research whether a Bayesian framework is the only feasible option to incorporate all 

requirements of this example together in a one-stage NMA approach (i.e. analysis of IPD only 

or the simultaneous analysis of IPD and AD, analysis of a TTE outcome, consideration of 

within and across-study treatment-covariate interactions).   

Important considerations for further work would also be whether existing IPD-NMA methods 

developed within a Bayesian framework could also be translated into a Frequentist 

framework; hence potentially making results of complex IPD-NMAs more accessible to a 

wider range of non-expert readers, such as the readers of Cochrane reviews.  
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9.4 Concluding remarks 

The work of this thesis has provided a detailed insight into the conduct of an IPD-NMA in 

epilepsy and highlighted many inadequacies of the conduct and reporting of AD and IPD 

syntheses across a wide range of clinical disciplines. It is essential for clinical research of all 

sources, whether an original trial or synthesis, that the study is well-designed, following a 

registered protocol, adhering to any relevant recommendations or minimum reporting 

guidelines and that all results are reported transparently. Recommendations taken from 

previous work and from this thesis and improved conduct and reporting of clinical research, 

whether trials or syntheses, could have a valuable impact on evidence based medicine.  

The work of this thesis was undertaken during a time of great change within the research 

community regarding how clinical trial data is shared for secondary research. These changes 

will have substantial impacts on how IPD syntheses such as meta-analyses and network meta-

analyses can be conducted in the future. While the full extent of the impact of this new era 

of data transparency may not become apparent for some time, the work undertaken in this 

has identified some of the early benefits and importantly some of challenges and restrictions 

of new methods of sharing clinical trial data. If emerging limitations, particularly those 

related to restricted access to data, can be addressed while data sharing platforms are still 

relatively new and under development, in the future, data sharing platforms are likely to be 

a valuable tool rather than a hindrance to IPD syntheses.  
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Appendices  

Appendix 1: Search strategies and reference list for Chapter 2 

Search strategy for Cochrane Methodology Register (searched up to July 2012)  

#1 (meta-analysis):ti,ab,kw in Methods Studies    

#2 (time-to-event):ti,ab,kw in Methods Studies    

#3 (survival analysis):ti,ab,kw in Methods Studies   

#4 (survival data):ti,ab,kw in Methods Studies     

#5 (survival studies):ti,ab,kw in Methods Studies   

#6 (failure time):ti,ab,kw in Methods Studies    

#7 (#2 or #3 or #4 or #5 or #6)      

#8 (#1 and #7)        

#9 (review methodology):ti,ab,kw in Methods Studies   

#10 (#8 and #9)        

#11 (longitudinal):ti,ab,kw in Methods Studies    

#12 (#10 and not #11) 

Search strategy for MEDLINE (searched from 1946 up to 24 January 2017)  

1     *Meta-Analysis as Topic/       

2     (meta-analysis or meta-analyses).ti,ab.     

3     1 or 2         

4     "time-to-event".ti,ab.       

5     (failure time or failure time data).ti,ab.     

6     (survival analys$ or survival data or survival study).ti,ab.   

7     *Survival Analysis/        

8     4 or 5 or 6 or 7        

9     3 and 8         

10     Models, Statistical/       

11     Proportional Hazards Models/      

12     10 or 11         

13     9 and 12     
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Appendix 2: Search strategies used in Chapter 3 

Search Strategy of Cochrane Epilepsy Group’s Specialised Register (search 

conducted 14/09/2012) 

#1 (Carbamazepine or Tegretol or Carbagen or CBZ or Clobazam or Frisium or Urbanol or 

Onfi or CLB or Eslicarbazepine or Zebinix or Exalief or Stedesa or ESL or Ethosuximide or 

Emeside or Zarontin or ESM or Gabapentin or Fanatrex or Gabarone or Neogab or Gralise or 

Neurontin or Nupentin or GBP or Lamotrigine or Lamict* or Lamotrine or Lamitrin or 

Lamogine or Lamitor or LTG or Levetiracetam or Keppra or LEV or Oxcarbazepine or 

Trileptal or OXC or Phenobarbit* or Luminal or PB or Phenytoin or Epanutin or Phenytek or 

Dilantin or Eptoin or Diphenin* or Diphenylhydantoin or PHT or Pregabalin or Lyrica or PGB 

or Primidone or Mysoline or Prysoline or Liskantin or Desitin or Resimatil or Mylepsinum or 

Sertan or PRM or Remacemide or Ecovia or RMC or Sultiam* or Sulthiam* or Ospolot or 

STM or Tiagabine or Gabitril or TGB or Topiramate or Topamax or TPM or Valpro* or 

Convulex or Depak* or Depacon or Valparin or Stavzor or Epilim or Epiject or Episenta or 

Epival or Orlept or Orfiril or Selenica or VPA or Vigabatrin or Sabril or VGB or Zonisamide or 

Zonegran or Excegran or ZNS) AND (INREGISTER) [REFERENCE] [STANDARD] 

#2 ((adjunct* or "add-on" or "add on") NOT monotherap*) AND (INREGISTER) [REFERENCE] 

[STANDARD] 

#3 (#1 NOT #2) AND (INREGISTER) [REFERENCE] [STANDARD] 
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Appendix 3: Data extraction form used in Chapter 3 

Reporting of Time-to-Event outcomes and analyses in 

Epilepsy Monotherapy Studies 

Data Extraction Form 

STAGE 1 – OUTCOMES 

Name of reviewer:   Laura    Sarah   

Date of extraction:   ___  / ___  / _______ 

Study Authors: 

Study Title: 

Journal: 

Year of Study:    

Study ID (first author and year): 

List all outcomes reported in the study: 

 

Is at least one time-to-event outcome reported? Yes  No   

Unclear   If Unclear, why?  

IF YES OR UNCLEAR, CONTINUE TO STAGE 2: TIME-TO-EVENT STUDIES 

IF NO, EXCLUDE STUDY FROM STAGE 2 (DATA EXTRACTION IS COMPLETE)  
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STAGE 2- TIME TO EVENT OUTCOMES (STUDIES) 

Number of treatment arms: 

List of treatment arms (including doses for dose-controlled studies): 

 

Did the study receive pharmaceutical sponsorship/support or have pharmaceutical 

involvement (e.g. authors affiliated with pharmaceutical companies)?   

Yes   No    Unclear   

If yes, provide details of pharmaceutical involvement: 

 

Type of control: Placebo or no treatment  Other AED    

Dose-controlled (same AED)   

Other active control (specify)  

Study sponsorship: Pharmaceutical   Academic   

   Government    Other (specify) 

   Unclear    Details (if unclear): 

 

Blinding  Single-blind    Double-blind   

   Open-Label / Unblinded  Other blinding   

Unclear    

If study was blinded, who was blinded? If open label, was a reason for no blinding 

given? 
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Design of study: Superiority*   Equivalence   

   Non-inferiority  Unclear   

*Superiority design for Epilepsy monotherapy studies as defined by ILAE 2006 guidelines 

Reference: Glauser T, Ben Menachem E, Bourgeois B, et al. ILAE Treatment Guidelines: 
Evidence-based Analysis of Antiepileptic Drug Efficacy and Effectiveness as Initial 
Monotherapy for Epileptic Seizures and Syndromes. Epilepsia 2006;47(7):1094-120) 

Details: 

 

Population (tick all that apply):  

Refractory/ drug resistant seizures    Newly diagnosed seizures  

Relapsed seizures (after AED discontinuation)   Unclear   

Other (specify):           

General information: are the following clearly reported? 

Number of participants randomised:    Yes  No   

Number of participants completing study:   Yes  No   

Number of participants excluded from the study / from analysis:  

Yes  No  

Details of any reasons for exclusions: 

 

Are all above participant numbers specified by treatment arms?  

Yes  No   

Details of anything unclear or not reported: 
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Time frame of the study: are the following clearly reported? 

Length of accrual period of participants (specify):    

Length of titration / baseline / dose-escalation period (specify):   

Length of maintenance period (specify):     

Study Duration (specify):        

Other study period: (e.g. pre-treatment period, open-label extension period etc.): 

 

Frequency / number of follow-up visits (e.g. monthly visits, 4 visits per participant 

etc.): 

 

Minimum follow-up time:    Yes  No   

Maximum follow-up time:    Yes  No   

Mean follow-up time:     Yes  No   

Median follow-up time:    Yes  No   

If yes, is the method used to calculate median follow-up time reported (specify): 

 

 

Details of anything unclear or not reported in time frame of the study: 
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All primary / secondary outcomes: are the following clearly reported? 

Number of outcomes (specify): 

Number of time-to-event outcomes (specify): 

Are all reported outcomes clearly defined?   Yes  No   

If No specify details: 

 

 

 

Is a single primary outcome identified?   Yes  No   

If yes, specify this primary outcome (and whether the outcome is time-to-event, 

binary, continuous etc.): 

 

 

If yes, is a sample size calculation described relating to the primary outcome? 

        Yes  No   

Is time-to-withdrawal of allocated treatment (retention time) reported?  

Yes  No   

If yes, are competing risks taken into account (e.g. withdrawal due to poor seizure 

control and/or adverse events)    Yes  No   

If yes, provide details of how competing risks are taken into account: 
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Is at least one seizure outcome (efficacy) defined?  Yes  No   

If yes specify (and whether the outcome is time-to-event, binary, continuous etc.): 

 

 

 

 

Is at least one adverse event outcome (tolerability) defined?  

Yes  No   

If yes specify (and whether the outcome is time-to-event, binary, continuous etc.): 

 

 

 

 

Other outcomes reported (e.g. cognitive, quality of life outcomes): 

 

 

 

Are outcomes reported consistently in both methods and results sections?  

Yes  No   

Details of anything unclear in outcome reporting: 
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STAGE 3: TIME-TO-EVENT OUTCOME REPORTING  

Repeat STAGE 3 for each time-to-event outcome reported 

Number of time to event outcomes in the study: 

Time-to-event outcome (exact definition): 

 

Is the time origin of the outcome defined?  

Yes  No   Unclear  

Specify details (e.g. date of randomisation, date of first treatment dose etc.): 

 

Is the number of participants contributing to the outcome reported? 

Yes  No   

Is the number of events for the outcome reported?  Yes  No   

Is the definition of an event clear for the outcome?  Yes  No   

If yes, specify definition of event: 

 

Number of participants censored:    Yes  No   

Number of participants lost to follow-up:   Yes  No   

Is the definition of a censored observation clear for the outcome?  

Yes  No   

If yes, specify definition of censored observations: 

 

Are participants censored and participants lost to follow-up reported separately? 

        Yes  No   

Are events, censoring and losses to follow-up reported by treatment group? 

        Yes  No   
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Statistical analysis: Are the following clearly reported?  

Survival probability / event rate:    Yes  No   

Median Survival time:      Yes  No   

Log-rank p-value:      Yes  No   

Other p-value (specify): 

Precision of p-value (e.g. ‘not significant,’ one decimal place etc.): 

 

Hazard ratio:       Yes  No   

Other effect size (specify): 

 

Standard deviation / standard error of effect size:  Yes  No   

Confidence interval of effect size:    Yes  No   

Observed and Expected number of events:   Yes  No   

Statistical tests / models / methods used (describe as much detail as possible 

reported): 

 

 

 

 

 

 

Is it stated that all assumptions of statistical methods have been assessed? 

        Yes  No   

Specify details: 
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Are any multivariable methods /analyses used?  Yes  No   

If yes specify: 

 

 

 

Is a method of choosing variables described (specify)? 

 

 

Are variables measured at baseline?    Yes  No   

Are multivariable model coefficients reported?  Yes  No   

Are multivariable model confidence intervals reported? Yes  No   

Are multivariable model p-values reported?   Yes  No   

Has a statistical software package been used for analysis (specify including version)? 

 

 

Have any subgroup or sensitivity analyses been performed (specify)?  

 

 

 

Are methods reported in sufficient detail to replicate results? 

        Yes  No   

Are reported methods and results sections consistent?  

        Yes  No   

Details of problems or inconsistencies in statistical analyses of outcomes: 

 



 

245 
 

Survival plots  

Is a survival graph presented for the outcome? Yes   No   

Which type of graph is presented? Kaplan-Meier   Actuarial   

Other (specify)  Unclear   

Is a step function used for Kaplan-Meier plots? Yes   No   

Is the direction of the graph up or down?  Up   Down   

Are censored observations clearly marked?  Yes   No   

Are (effective) numbers at risk reported at regular intervals?  

Yes   No   

Are different line types clearly used for multiple curves?  

Yes   No   

Is a clear legend provided for the graph?  Yes   No   

Are the axes of the graph appropriate (e.g. intervals, scale etc.)?  

Yes   No   

Is an effect size (e.g. p-value/hazard ratio) displayed on the graph?  

Yes   No   

Are standard errors/confidence intervals displayed on the graph?  

Yes   No   

Details of any problems or inconsistencies with graphs: 
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STAGE 4: OVERALL REPORTING  

Are published survival graphs consistent with published text?    

Yes  No   No graph(s)   

Are published tables consistent with published text?   

Yes  No   No tables(s)   

Details of any problems with consistency of methods, results, tables, graphs, 

conclusions etc: 

 

 

 

 

 

 

Any other issues with any aspect of reporting of outcomes or analyses: 
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Appendix 4: Screenshot of Microsoft Access Database used in Chapter 3 
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Appendix 6: Additional results from Chapter 3 

Table 31: Outcomes reported in 54 epilepsy monotherapy studies without a time-to-
event outcome defined 

Study ID1  Journal Outcomes reported 

Aikia 1992 
Epilepsy 
Research 

1. Neuropsychological assessment: general intelligence, verbal 
memory, sustained attention, simple psychomotor speed. 

Bawden 
1999 

Epilepsy 
Research 

1. Cognitive and behavioural effects (intelligence, memory, 
attention, psychomotor speed, impulsivity) - difference 
between baseline, 6 weeks and 12 months 

2. Emergence of moderate to severe behavioural side effects 

Beydoun 
1997b 

Neurology 

1. The change in frequency of complex partial seizures per 8 
weeks between the baseline period and the monotherapy 
portion of the experimental period. 

2. The change in seizure frequency of simple partial seizures 
and secondarily generalized tonic-clonic seizures. 

3. The percent change in seizure frequency from baseline 
(responder rate) 

4. Frequency of mild, moderate or severe adverse events 

Bittencourt 
1993 

Epilepsy 
Research 

1. Seizure control  
2. Seizure frequency  
3. Serum drug concentration  
4. EEG results 
5. Mental function (cognitive tests and mood scales) 
6. Side-effects. 

Callaghan 
1982 

Developmental 
Medicine and 
Child Neurology 

1. Response to treatment: complete remission, partial 
remission or no remission  

2. Serum levels of anticonvulsant drugs in relation to seizure 
control  

3. Changes in patterns of EEGs  
4. Side-effects 

Callaghan 
1985 

Journal of 
Neurology, 
Neurosurgery 
and Psychiatry 

1. Seizure control: excellent, good, poor  
2. Number and duration of seizures  
3. EEG findings  
4. Side-effects. 

Chen 1996 Epilepsia 

1. Seizure frequency (low/moderate/high) and duration; 
2. Side-effects  
3. Psychometric tests (WISC-R and Bender-Gestalt), 
4. Neurophysiological data (P_300 recorded by EEG)  
5. AED levels  
6. Blood count; liver function test. 

Cho 2011 Seizure 

1. Change in overnight polysomnography (PSG) scores (sleep 
latency, REM sleep latency, total sleep time, sleep efficiency, 
percentage of each sleep stage, arousal index, and Wake 
time After Sleep Onset (WASO)) from baseline after 4-6 
weeks of treatment 

2. Change in Sleep questionnaires (sleep diaries, the Pittsburg 
Sleep Quality Index (PSQI), the Korean version of the Epworth 
Sleepiness Scale (KESS), Beck’s depression inventory-2 (BDI-2) 
and the Hospital Anxiety Scale (HAS)) and National Hospital 
Seizure severity Scale (NHS3) from baseline after 4-6 weeks 
of treatment 
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Copolla 
2004 

Epilepsia 

1. Proportion of patients remaining seizure-free by treatment 
group:  lack of clinically observed seizures since the previous 
visit and lack of electroclinical seizures during ambulatory 24-
h EEG testing and a video-EEG session with hyperventilation. 

2. Incidence of adverse events 

Copolla 
2007 

Brain and 
Development 

1. Seizure-freedom 
2. Incidence of adverse events 

Craig 1994 Epilepsia 

1. Psychological tests: verbal memory, digit symbol substitution, 
letter cancellation, digit recall, anxiety and depression, recall, 
visual reproduction, reaction time, motor speed and 
coordination 

2. Health profile questionnaire (neuropsychiatric and other 
adverse drug effects)  

3. Drug concentration in blood  
4. Adverse event frequency 
5. Seizure control. 

Dam 1989 
Epilepsy 
Research 

1. Changes in seizure frequency between baseline and the end 
of each maintenance period 

2. Changes in EEG tracings between baseline and the end of 
each maintenance period 

3. Global evaluation of therapeutic efficacy and tolerability by 
the investigator at the end of each maintenance period 

4. Side effects observed by patients and investigators each visit 
5. Laboratory tests (WBC counts and liver function tests, Blood 

pressure and pulse, drug trough serum levels) 

Dodrill 
1998 

Epilepsia 

1. Neuropsychological testing difference from baseline: 
Wechsler Adult Intelligence Scale revised (WAIS-R), Brief 
Psychiatric Rating Scale (BPRS), Profile of mood states 
(POMS), Washington Psychosocial seizure Inventory (WPSI), 
Lafayette Grooved Pegboard, Stroop, Benton Visual 
Retention, Controlled Oral Word Association, Mood Rating, 
Symbol Digit Modalities, Rey Auditory Verbal Learning, 
Wonderlic Personnel, and Digit Cancellation. 

2. Relief from seizures (>= 50% reduction in seizures, < 50% 
reduction in seizures). 

Donati 
2007 

Seizure 

1. Cognitive testing: Computerized Visual Searching Task (CVST), 
assessing mental information processing speed and 
attention.  Rey Auditory Verbal Learning Test (AVLT) and 
Raven’s Standard 

2. Progressive Matrices for children: Psychomotor speed, 
alertness, memory and learning, and non-verbal intelligence. 

3. Percentage of patients remaining seizure-free throughout 
treatment 

4. Most common adverse events 
5. Treatment satisfaction on a 4 point scale: poor to very good 

Easter 
1997 

Seizure 

1. Mean reported percentage weight gain by treatment group 
2. Incidence of excessive body weight velocity (weight velocity 

defined as change in body weight over one year and 
excessive defined as body weight exceeding the 97th centile) 

Eun 2011 Seizure 

1. Seizure-free rate over 6 months (maintenance period) by 
treatment group 

2. Change in cognition (neuropsychological), behavior and 
quality of life from screening to the end of the maintenance 
phase by treatment group 

3. Incidence of adverse events 
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Eun 2012 
Brain and 
Development 

1. Seizure-freedom (seizure-free during 24-wk maintenance 
period after titration); 

2. Greater than 50% seizure reduction after treatment; 
3. Cognitive changes (FSIQ, VIQ, PIQ, verbal comprehension, 

perceptual organisation, attention, concentration); 
4. Behavioral changes (social competence, academic 

competence, total social competence, withdrawn, somatic 
complaints, depression/anxiety, social problem, thought 
problem, attention problem, delinquent behaviour, 
aggressive behaviour, internalizing problem, eternalizing 
problem, total behaviour problem, Conners [parent and 
teacher]); 

5. Adverse events (rashes, tiredness, somnolence) 

Fattore 
2011 

Epilepsia 

1. Responder status: percentage of patients free from clinical 
seizures on days 13 and 14 

2. Freedom from EEG seizures during standard EEG recording 
with hyperventilation and intermittent photic stimulation on 
day 14 

3. Percentage of patients free from clinical and EEG seizures 
lasting > 4 seconds on days 4-7 and days 11-14 
Percentage of patients free from clinical seizures days 1-14 
and free from EEG seizures lasting > 4 seconds on days 7 and 
14 

4. Percentage change (vs. baseline) in number and total 
duration of EEG seizures and spikewave discharges lasting >4 
s during the 24-h EEG on day 14  

5. Percentage of patients with at least 50% reduction (vs. 
baseline) in the total duration of EEG seizures lasting >4 
seconds during the 24-h EEG on day 14  

6. Safety and tolerability data (adverse events) 
Long-term open label follow-up 

Faught 
1993 

Neurology 

1. Number of patients meeting escape criteria (doubling of 2-
day/monthly seizure frequency, worsening of seizure 
subtype, prolongation of seizure duration) 

2. Adverse events  
3. Lab variables (blood counts and urinalyses) 
4. Plasma drug concentration 
5. Vital sign data 
6. Body weights  
7. ECG findings. 

Feksi 1991 Lancet 

1. Seizure activity during therapy (freedom from seizures/ 
seizure frequency)  

2. Difference in drop-out rate  
3. Serum drug concentration  
4. Adverse events. 

Forsythe 
1991 

Developmental 
Medicine and 
Child Neurology 

1. Seizure time, duration and severity  
2. Side-effects  
3. Cognitive assessments (visual recall, auditory recall, visual 

scanning, concentration, speed of information processing, 
intellectual functioning and reading) 

Homan 
1987 

Neurology 

1. Reasons for failure of the initial drug in 223 patients during 
24 months following the onset of therapy 
Composite score (summation of seizure activity, systemic 
toxicity and neurotoxicity)  

2. Drug serum concentrations present at failure times by drug 
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Kang 2007 Epilepsia 

1. Change on a neuropsychological test battery after 28 weeks 
of treatment (Bender Gestalt Test (BGT) 
(correct copy and recall) and KEDI-WISC (Korean Educational 

2. Developmental Institute-Wechsler Intelligence Scale for 
Children) Full Scale Intelligence Quotient (FSIQ), Verbal 
Intelligence Quotient (VIQ), and Performance Intelligence 
Quotient (PIQ), and consists of 12 subtests: information, 
similarities, arithmetic, vocabulary, comprehension, picture 
completion, picture arrangement, block design, object 
assembly, coding, digit span, and maze. 

3. Evaluation for treatment-emergent adverse events 
4. The percentage of patients that were seizure-free 

Kaushal 
2006 

Neurology India 

1. Total number of treatment failures (discontinuation or 
modification to AEDs) in by group due to breakthrough 
seizures or adverse events during the first 6 months of 
follow-up 

Ketter 
1996 

Epilepsy 
Research 

1. Seizure type/frequency  
2. Psychopathology (anxiety, depression, mania, Bunney-

Hamburg, Clinical Global Impression and BPRS scales)  
3. Drop-outs. 

Kwan 2009 
Epilepsy and 
Behaviour 

1. Difference in mean fasting serum insulin concentration at 12 
months between the two treatment groups 

2. Difference in mean changes from baseline at various time 
points in metabolic and endocrine measurements and body 
mass index (BMI) between the two treatment groups and by 
gender. 

3. Frequency of common adverse events experienced by at 
least %% of subjects by treatment group 

Lee 2011 Seizure 

1. Change of neuropsychological and cognitive scores from 
baseline: general intellectual ability, learning and memory, 
attention and executive function (group-by-time interaction) 

2. Frequency of psychological and health related quality of life 
symptoms 

3. Proportion with seizure-freedom during the maintenance 
period 

Levisohn 
2007 

Epilepsy and 
Behaviour 

1. Seizure reduction from baseline (response rates) 
2. Systemic toxicity and neurotoxicity scores (via 

questionnaires) 
3. Physician and patient evaluation of improvement 
4. Proportion of patients experiencing most common adverse 

events during randomised treatment 
5. Weight change from baseline 

Mitchell 
1987 

Epilepsia 

1. Change in cognitive, intelligence (IQ), behavioural and 
psychometric scores between baseline, 6 and 12 months. 

2. Compliance, drug changes and withdrawal rates 
3. Seizure control at 6 and 12 months (excellent / good / fair / 

poor) 

Mitsudome 
1997 

Brain and 
Development 

1. Effects of anticonvulsants on Rolandic discharges 
(disappearance of Rolandic discharges) 

Nasreddine 
2008 

Epilepsia 

1. The relationship between trough valproate plasma levels and 
platelet counts 

2. Incidence of thromobocytopenia (and relationship with 
platelet counts) 

3. Incidence of adverse events (related to thrombocytopenia) 
and premature withdrawals 
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Nejad 2009 
International 
Journal of 
Pharmacology 

1. Incidence of most common adverse events (occuring in more 
than two patients) 

2. Efficacy of anticonvulsants: changes in frequency of 
myoclonic jerks compared to myoclonic seizure frequency in 
the six months prior to commencement of treatment 

3. Seizure reduction by categories (all seizure types): Seizure-
freedom, more than 50% reduction, less than 50% reduction, 
worsening of seizures 

Ogunrin 
2005 

African Journal 
of Neurological 
Sciences 

1. Cognitive outcomes: visual and auditory reaction times, 
psychomotor speed, attention and memory 

Park 2008 
Epilepsy and 
Behaviour 

1. Change in neuropsychological test scores and cognitive 
performance from baseline 

2. Relationship between neuropsychological test scores and 
cognitive performance and ZNS dosage 

3. Frequency of cognitive and mood complaints between 
treatment groups 

4. Change in seizure frequency at one year from baseline 
5. Change in EEG abnormalities at one year from baseline 

Placencia 
1993 

Epilepsy 
Research 

1. Proportion seizure-free at 3, 6 and 12 month follow-ups 
2. Proportion seizure-free, with more than 50% seizure 

reduction and no change in seizure frequency in 6-12 month 
follow-up period. 

3. Incidence of adverse effects 

Pulliainen 
1995 

Epilepsia 

1. Change in neuropsychological scores (motor speed, 
coordination, attention, concentration, memory, learning and 
reasoning) and Profile of Mood States (POMS) between 
baseline, 6 and 12 months.  

2. Recurrence of seizures in study period 
3. Serum drug levels at 6 and 24 months 
4. Incidence of adverse events 

Ramsay 
1983 

Neurology 

1. Laboratory measures (WBC, platelet, blood drug levels, 
hematologic indexes etc.)  

2. Incidence of side effects (major and minor)  
3. Seizure control and treatment failures/discontinuations 

Rasgoti 
1991 

Journal of the 
Association of 
Physicians of 
India 

1. Reduction in frequency of seizures by seizure type 
(response)) 

2. Relationship between drug serum levels and response rate 

Ravi Sudhir 
1995 

Neurology India 

1. Cognitive outcomes pre and post treatment: verbal and 
performance intelligence, visual organisation and visuomotor 
function, memory and dysfunction 

2. Relationship between cognitive outcomes and serum drug 
levels. 

Reinikainen 
1987 

Epilepsy 
Research 

1. Seizure control (antiepileptic efficacy): seizure frequency 
during therapy (including exacerbation of seizures leading to 
treatment withdrawal) 

2. Incidence of side effects during the study (titration and 
maintenance phases). 

3. Mean dosages and concentrations of drug 
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Sackellares 
2002 

Epilepsy and 
Behaviour 

1. Improvements in health related quality of life during the 
study by treatment groups (mean change) via the Quality of 
Life in Epilepsy 89 (QOLIE 89) questionnaire 

2. Change in body weight during the study (pooled groups) 
3. Seizure frequency during the study (pooled groups) 
4. Psychological status (at the end of the study, pooled groups) 

measured by Profile of Mood States, Beck Depression 
Inventory and Cornell Dysthymia Rating Scale (self-report). 

5. Relationships between QOLIE 89 scores and clinical / mood 
variables 

Saetre 
2009 

Epilepsia 

1. Change from baseline to 40 weeks of therapy (mean values 
by treatment group) of electrocardiography (ECG) 
parameters via resting 12 lead ECG recording: QRS interval 
time, heart rate, PQ interval time and QTc interval. 

2. Incidence of abnormalities in ECG recordings at baseline and 
at 40 weeks (by treatment group) 

Saetre 
2010 

Epilepsy and 
Behaviour 

1. Change from baseline health related quality of life scores at 
12, 28 and 40 weeks (median by treatment group) assessed 
by the Side Effects and Life satisfaction (SEALS) inventory and 
Liverpool Adverse Event Profile (AEP) questionnaires 

2. Differences in SEALS and AEP scores for those who did not 
complete the study 

3. Correlation between scores from SEALS and AEP 
questionnaires 

Shakir 
1981 

Epilepsia 
1. Seizure Recurrence during treatment 
2. Serum drug levels 
3. Incidence of side effects 

So 1992 
Journal of 
Epilepsy 

1. Proportion of patients free of complex partial seizures (CPS) 
during the maintenance period 

2. Proportion of patients reporting specific adverse events 

Sobaniec 
2005 

Pharmacologica
l Reports 

1. Seizure control based on percentage reduction of seizures: 
very good, good, mild, no effect (efficacy) 

2. Most frequently reported treatment adverse events (safety) 
3. Changes in EEG activity from baseline 

Stephen 
2007 

Epilepsy 
Research 

1. Percentage of randomised patients achieving a minimum 
period of 12 months seizure-freedom. 

2. Percentage of randomised patients withdrawing due to 
adverse events 

3. Percentage of randomised patients with lack of efficacy at 
maximum tolerated dose 

4. Changes in levels of androgenic hormone levels 
(testosterone, androstenedione and SHBG levels) 

5. Changes in weight and BMI from baseline 

Thilotham
mal 1998 

Indian 
Pediatrics 

1. Seizure recurrence 
2. Incidence of side effects 
3. Relationship between serum AED levels and side effects 

Trudeau 
1996 

Journal of Child 
Neurology 

1. Absence seizure frequency change from baseline to end of 
double-blind treatment from ambulatory EEGs - response 
ratio and responder rate (efficacy) 

2. Frequency of treatment emergent adverse events (safety) 
3. Relationship between gabapentin dosage and plasma 

concentration 
4. Important changes in laboratory assessments from baseline 
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Turnbull 
1982 

Journal of 
Neurology, 
Neurosurgery, 
and Psychiatry 

1. Outcome of therapy (proportion seizure-free, recurrence of 
seizures, drug failure, drug withdrawal) by seizure type 

2. Compliance 
3. Haematological and biochemical parameters 

Wesnes 
2009 

Epilepsy and 
Behaviour 

1. Change of cognitive scores (power of attention, continuity of 
attention, memory and recognition) from baseline 

2. Change of neuropsychological scores from baseline 
3. Seizure recurrence / total number of seizures 
4. Relationship between computerised and conventional 

cognitive and neuropsychological outcomes 

Wilder 
1983 

Neurology 

1. Seizure control / recurrence of seizures (excellent / good / 
poor) 

2. Incidence of side effects 
3. Plasma levels of study drug 
4. Laboratory abnormalities 

Wilson 
1978 

British Medical 
Journal 

1. Development of rash after start of phenytoin treatment  
2. Relationship between development of rash and plasma 

concentration 

Zamponi 
1999 

Archives of 
Neurology 

1. Proportion of patients with relapse of seizures  
2. Frequency of adverse events (tolerability) 

1. Study ID corresponds to first author and year of publication. See Appendix 5 for references 

of the studies.  

Table 32: Outcomes reported in 54 epilepsy monotherapy studies with at least one time-

to-event outcome clearly or possibly defined 

Study ID1  Journal Outcomes reported2,4 

Arroyo 
2005 

Acta 
Neurologica 
Scandinavica 

1. Time-to-first partial-onset seizure or generalized-onset tonic 
clonic seizure during the double-blind phase (P) 

2. Seizure-free rate at 6 months and 1 year 
3. Treatment emergent adverse events 

Banu 2007 
British Medical 
Journal  

1. Behavioural side effects at 1 year (compared to baseline) (P) 
2. Seizure control (freedom of seizures during the last quarter 

of the 12 month follow-up) 
3. Time-to-first seizure 
4. Time-to-withdrawal due to adverse events 

Bast 20033 Epilepsia 
1. Rate of treatment failures per group (P) 
2. Changes in sleep EEGs at 4 weeks, 3 months and 6 months 

Baulac 
2012 

The Lancet 
Neurology 

1. Proportion of patients who achieved seizure-freedom for 26 
weeks or more (maintenance period) in the per protocol 
population (P) 

2. Incidence of treatment emergent results 
3. Time to 26 week (6 months) remission  
4. Time to 52 week (12 month) remission 
5. Proportion of patients with no seizures for at least 52 weeks 
6. Time-to-withdrawal because of absence of efficacy or 

adverse events 

Beydoun 
2000 

Neurology 

1. The percentage of patients meeting one of the exit criteria 
(P) 

2. Time to meeting one of the exit criteria 
3. Incidence of mild, moderate or severe adverse events 
4. Clinically relevant laboratory abnormalities 
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Bill 1997 
Epilepsy 
Research 

1. The proportion of seizure-free patients who had at least one 
seizure during the maintenance period (P) 

2. Time to premature discontinuation due to adverse 
experiences (P) 

3. Rate of premature discontinuations for any reason (P) 
4. Overall assessments of efficacy and tolerability and 

therapeutic effect 
5. Individual adverse experiences 
6. Laboratory values 
7. Seizure frequency during maintenance 

Biton 
20013 

Neurology 

1. Weight change (P) 
2. The proportion of patients seizure-free during the entire 

study 
3. Incidence of the most common drug related adverse events 
4. Time-to-withdrawal from the study 

Brodie 
1995 

The Lancet 

1. Time-to-first seizure after 6 weeks of treatment 
2. Time-to-withdrawal 
3. Proportion of randomised patients remaining seizure-free 

during the last 40 and 24 weeks of trial 
4. Percentages of patients who reported adverse events 

Brodie 
1999 

Epilepsy 
Research 

1. Time-to-first seizure after 6 weeks of treatment 
2. Time-to-withdrawal 
3. Percentage of patients reporting an adverse event 
4. Proportion of patients who were both seizure-free in the 

last 16 weeks of the study and did not discontinue 
treatment 

Brodie 
2002a 

Epilepsia 

1. Time-to-exit (P) 
2. Percentage of completers / time-to-withdrawal for any 

reason 
3. Time-to-first seizure 
4. Percentage who remained seizure-free during the final 12 

weeks of the 30 week evaluation period 
5. Withdrawal rate due to adverse events 

Brodie 
2002b 

Epilepsy and 
Behaviour 

1. Time-to-first seizure after 6 weeks dose titration (P) 
2. Time-to-treatment failure 
3. Time to second, third and fourth seizures after 

randomisation 
4. Proportion of patients remaining seizure-free after 6 and 12 

months of treatment 
5. Most frequently reported adverse events 

Brodie 
2007 

Neurology 

1. Proportion of per protocol (PP) patients achieving at least 6 
months of seizure-freedom at the last evaluated dose (P) 

2. 1 year seizure-freedom rate 
3. 6 month and 1 year seizure-freedom rate by dose level 
4. Time to study withdrawal 
5. Incidence of adverse events 

Canadian 
1998 

Epilepsia 

1. Retention on the study medication for 12 months (P) 
2. Seizure control 
3. Incidence of side effects 
4. Compliance and tolerance of study medication 

Chadwick 
1999 

The Lancet 

1. Time-to-treatment failure (withdrawal because of lack of 
therapeutic effects or adverse events) (P) 

2. Time to 6-month remission of seizures 
3. Time-to-first seizure after initial dose stabilisation and 
4. Time-to-withdrawal due to adverse events 
5. Incidence and severity of adverse events 
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Chadwick 
1998 

Neurology 

1. Time-to-exit (P) 
2. Time-to-exit plus withdrawals because of adverse events 
3. Completion rate (percentage of patients attending end-of-

phase visit),  
4. Exit event rate (percentage of patients who experienced 

an exit event during the evaluation phase), 
5. Adverse event withdrawal rate (percentage of patients who 

withdrew because of adverse events during either titration 
or evaluation phases),  

6. Exit plus adverse event withdrawal rate (the sum of the exit 
rate plus the adverse event withdrawal rate). 

7. Incidence of adverse events 

Christe 
1997 

Epilepsy 
Research 

1. The proportion of seizure-free patients who had at least one 
seizure during the maintenance period (P) 

2. Time to premature discontinuation due to adverse 
experiences (P) 

3. Rate of premature discontinuations for any reason (P) 
4. Overall assessments of efficacy and tolerability and 

therapeutic effect 
5. Individual adverse experiences 
6. Seizure frequency during maintenance 

De Silva 
1996 

The Lancet 
1. Time-to-first seizure after the start of treatment (P) 
2. Time to enter one year remission (P) 
3. Incidence of side effects leading to treatment withdrawal 

Edwards 
2001 

Epilepsy and  
Behaviour 

1. Change in depression scores (Beck Depression Inventory, 
the Cornell Dysthymia Rating Scale, and the Profile of Mood 
States) from screening to weeks 10 and 32 (P) 

2. Weight change 
3. Time-to-withdrawal from the study 
4. Incidence of adverse events 
5. Percentage of patients seizure-free 

Gilad 
20073 

Clinical 
Neuropharmacy 

1. The appearance of a second seizure under treatment or by 
finishing the 12 month follow-up without seizures (P) 

2. Tolerability: Incidence of adverse events 
3. Withdrawals due to adverse events 

Gillham 
2000 

Seizure 

1. Change in Health Related Quality of Life (HRQOL) from 
baseline according to the modified Side Effect and Life 
Satisfaction (SEALS) Inventory with subscales Worry, 
Temper, Cognition, Dysphoria, and Tiredness and the 
relationship between SEALS scores 

2. Withdrawal from the study 

Gilliam 
1998 

Neurology 

1. Proportion of patients in each treatment group meeting 
escape criteria any time after initiation of concomitant AED 
withdrawal (P) 

2. Time to escape  
3. Incidence of adverse events 
4. Changes in plasma concentrations by treatment group 

Gilliam 
2003 

Neurology 

1. Time-to-exit (i.e., time to meeting a seizure-related exit 
criterion) (P) 

2. Seizure frequency distribution (i.e., the proportion of 
patients completing the trial seizure-free or experiencing 
one or two seizures) 

3. Time-to-first-seizure  
4. Association of plasma topiramate concentration with time-

to-first-seizure. 
5. Incidence of adverse events 
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Glauser 
2007 

Journal of Child 
Neurology 

1. Time-to-first partial-onset or generalized-onset tonic-clonic 
seizure during the double-blind phase (P) 

2. Probability of being seizure-free for patients remaining 
in the study at 6 months and at 1 year 

3. Incidence of treatment emergent adverse events 

Glauser 
20103 

The New 
England Journal 
of Medicine 

1. Freedom from treatment failure after 16 weeks (P) 
2. Attention dysfunction (Confidence Index of 0.60 or higher 

on the Conners’ Continuous Performance Test) 
3. Incidence of adverse events by treatment group 
4. Drug concentrations between treatment failures and 

successes within treatment groups 

Guerreiro 
1997 

Epilepsy 
Research 

1. The proportion of seizure-free patients who had at least one 
seizure during the maintenance period (P) 

2. Time to premature discontinuation due to adverse 
experiences (P) 

3. Rate of premature discontinuations for any reason (P) 
4. Overall assessments of efficacy and tolerability and 

therapeutic effect 
5. Individual adverse experiences 
6. Laboratory values 
7. Seizure frequency during maintenance 

Hakami 
2012 

Archives of 
Neurology 

1. Proportions of patients who showed improvement in 
depression symptoms and QOL at 3 months following 
randomization (P) 

2. Proportions of patients who showed improvement in 
depression symptoms and QOL at 12 months following 
randomization. 

3. Changes in HADS depression and anxiety scores and QOL 
scores at 3 months and 12 months  

4. Liverpool Adverse Events Profile (LAEP) scores at 3 months 
and 12 months 

5. Mean IntegNeuro cognitive function scores at 3 months  
6. Freedom from seizures (excluding those occurring during the 

drug titration period)  
7. Adherence to treatment (time on allocated drug) 
8. Treatment failure. 

Heller 
1995 

Journal of 
Neurology, 
Neurosurgery, 
and Psychiatry 

1. Time-to-first seizure after the start of treatment (P) 
2. Time to enter one year remission (P) 
3. Incidence of side effects leading to treatment withdrawal 

Kwan 2011 
Lancet 
Neurology 

1. Proportion of patients who remained seizure-free for 6 or 
more continuous months during the efficacy phase (P) 

2. Time-to-exit because of lack of efficacy, adverse events, or 
any reason  

3. Time to 6-month seizure-freedom 
4. Time-to-first seizure after the dose-escalation phase 
5. Number of seizures during the dose escalation phase 
6. Monthly seizure frequency for all patients 
7. Incidence of adverse events (severity and causal relation) 
8. Anxiety and depression on the Hospital Anxiety and 

Depression Scale (HADS) 
4. Sleep on the Medical Outcomes Sleep Study Scale  
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Kaminow 
20033 

Epilepsy and 
Behaviour 

1. Percentage of patients with treatment success: completion 
of the 24-week Maintenance Phase (MP) without 
prematurely discontinuing study medication because of 
inadequate seizure control or unacceptable side effects (P) 

2. Mean time (days) to withdrawal from the study. 
3. Percentage of patients seizure-free during the last 8 weeks 

of the MP and during the 24-week MP. 
4. Mean percentage reduction in seizure frequency during MP. 
5. Percentage of patients with marked improvement on 

investigator ratings of clinical status, assessed at 
Monotherapy Week 24 (on a 7 point scale) 

6. Percentage of patients rating current study medication as 
better than previous treatment in a self-assessment 
administered at Monotherapy Week 24 (on a 5 point scale) 

7. Health-related quality of life assessed at screening and 
Monotherapy Week 24 with the QOLIE-31 

8. Percentage of patients with adverse events during the 
Escalation/Taper and Maintenance phases 

Marson 
2007A 

The Lancet 

1. Time-to-treatment failure (P) 
2. Time to 1 year (12 month) remission (P) 
3. Time to 2 year remission 
4. Time-to-first seizure 
5. Health related quality of life via the NEWQOL (Newly 

Diagnosed Epilepsy Quality of Life Battery) 
6. Health economic assessment and cost effectiveness of the 

drugs 
(cost per QALY gained and cost per seizure avoided) 

7. Frequency of clinically important adverse events 

Marson 
2007B 

The Lancet 

1. Time-to-treatment failure (P) 
2. Time to 1 year (12 month) remission (P) 
3. Time to 2 year remission 
4. Time-to-first seizure 
5. Health related quality of life via the NEWQOL (Newly 

Diagnosed Epilepsy Quality of Life Battery) 
6. Health economic assessment and cost effectiveness of the 

drugs (cost per QALY gained and cost per seizure avoided) 
7. Frequency of clinically important adverse events 

Mattson 
1985 

The New 
England Journal 
of Medicine 

1. Patient retention (length of time that patient continued to 
take the randomly assigned drug) (P) 

2. Composite score (combined score for the control of seizures 
and incidence of adverse events) 

3. Total seizure control /Seizure rate 
4. Incidence of side effects 

Mattson 
1992 

The New 
England Journal 
of Medicine 

1. Total number of seizures (of each type) during 12 months 
2. Number of seizures per month 
3. Percentage of patients with seizures completely controlled 
4. Time-to-first seizure 
5. Severity of seizures at 12 and 24 months 
6. Composite score (combined score for the control of seizures 

and incidence of adverse events) 
7. Incidence and severity of systemic and neurologic adverse 

events 
8. Time-to-treatment failure 
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Mikkelsen 
19813 Epilepsia 

1. Percentage (of patients) free of seizures 
2. Number of treatment withdrawals 
3. Withdrawal time 
4. Number of seizures until time of treatment withdrawal 
5. Incidence of side effects 

Nieto-
Barrera 
2001 

Epilepsy 
Research 

1. Proportion of patients seizure-free during the last 16 weeks 
of treatment 

2. Efficacy success: proportion of patients who did not 
withdraw before the end of week 18 and were seizure-free 
in the last 16 weeks of the study 

3. Time-to-withdrawal from the study (proportion of patients 
completing the study) 

4. Proportion of patients experiencing adverse events 
5. Withdrawals due to adverse events 

Pal 1998 The Lancet 

1. Frequency of behavioural side effects (assessed by Conner's 
parent rating scale or pre-school behaviour screening 
questionnaire) at 12 months or at withdrawal (P) 

2. Incidence of side effects 
3. Time-to-first seizure after randomisation 
4. Actuarial proportion entering each quarter seizure-free 

Privitera 
2003 

Acta 
Neurologica 
Scandinavica 

1. Time-to-exit (P) 
2. Time-to-first seizure  
3. Proportion of seizure-free patients during the last 6 months 

of double-blind treatment. 
4. Safety : most commonly occurring adverse events 

Ramsay 
1992 

Journal of 
Epilepsy 

1. Time-to-first generalised tonic-clonic seizure after initiation 
of therapy 

2. Six month seizure recurrence rate 
3. Frequency of adverse reactions (events) 
4. Serum drug levels 

Ramsay 
2010 

Epilepsia 

1. Time-to-first complex partial seizure or generalised tonic 
clonic seizure (P) 

2. Patient retention (time to discontinuation of treatment) 
3. Incidence and summary of adverse events 

Rating 
20003 

Epilepsia 
1. Rate of treatment failure events per group (P) 
2. Individual change in EEG recordings over time 
3. Occurrences of Adverse Events (by exposure days, by group)  

Reunanen 
1996 

Epilepsy 
Research 

1. Proportion completing seizure-free after 6 weeks treatment 
2. Time-to-first seizure 
3. Time-to-withdrawal 
4. Frequency of Adverse Events with at least 5% incidence in 

any treatment group 

Richens 
1994 

Journal of 
Neurology, 
Neurosurgery 
and Psychiatry 

1. Remission analysis (time to 6, 12 and 24 month remission) 
2. Retention analysis (time-to-treatment failure) 
3. Adverse event incidence 
4. Incidence of treatment failures due to poor seizure control 

and adverse events 

Rowan 
2005 

Neurology 

1. Retention in the trial for 12 months (P) 
2. Seizure-freedom at 12 months 
3. Time-to-first, second, fifth and tenth seizure (Time to 

seizures) 
4. Incidence of systemic and neurologic toxicities 
5. Serum drug levels and compliance 
5. Seizure-free retention rates 
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Rosenow 
2012 

Journal of 
Neurology, 
Neurosurgery 
and Psychiatry 

1. Rate of seizure-free patients by treatment group in the first 
6 weeks after randomisation (P) 

2. Rate of seizure-free patients by treatment group in the last 
16 weeks of the trial (categorical) 

3. Retention time in the trial (randomisation to 26 weeks) 
4. Rate of seizure-free patients by treatment group in the 

whole treatment period (26 weeks) 
5. Seizure-free time (time-to-first seizure) 
6. Incidence of adverse events  
7. Quality of life according to the Quality of Life in Epilepsy 10 

(QOLIE-10) questionnaire 

Sachdeo 
19923 

Annals of 
Neurology 

1. The number of patients in each treatment group who met 
escape criteria (P) 

2. Seizure frequency data (percentage improvement since 
baseline) 

3. Incidence of adverse experiences 
4. Laboratory test values, vital signs and body weight 

Sachdeo 
1997 

Epilepsia 

1. Time until exit (P) 
2. Clinical response to study medication (investigator and 

patient's global assessments) 
3. Reduction from baseline in average monthly seizure rate for 

patients completing the 16 week double-blind treatment 
phase (>50%, >75% or 100% reduction) 

4. Tolerability of study medication (investigator and patient's 
global assessments) 

Sachdeo 
2001 

Neurology 

1. Efficacy analysis: Time to meeting one of the exit criteria (P) 
2. Percentage of patients meeting one of the exit criteria 
3. Safety analysis: Incidence of adverse events rated as mild, 

moderate or severe  
4. Pharmacokinetic analysis: population-pharmacokinetic 

modelling of MHD plasma levels 

Saetre 
2007 

Epilepsia 

1. Retention in the trial (time-to-withdrawal of allocated 
treatment for any cause) (P) 

2. Seizure-freedom after week 4 
3. Seizure-freedom after week 20 
4. Time-to-first seizure 
5. Adverse event reports 
6. Tolerability according to the Liverpool Adverse Event profile  

Steiner 
1999 

Epilepsia 

1. Percentage of patients remaining on treatment 
2. Percentage of patients remaining seizure-free in the last 24 

and last 16 weeks of treatment 
3. Number of seizures (percentage change from baseline) in 

the last 24 weeks and 16 weeks of treatment 
4. Time-to-first seizure after the first 6 weeks of treatment 

(dose-titration period) 
5. Time to discontinuation 
6. Incidence of adverse events and adverse events leading to 

discontinuation 
7. Quality of Life according to the Side Effects and Life 

Satisfaction (SEALs) inventory 

Steinhoff 
2005 

Seizure 
1. Number of seizure-free patients during weeks 17-24 (P) 
2. "Leaving the study" (retention rates) 
3. Adverse event rates 
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Theodore 
1995 

Epilepsia 

1. Average frequency of all seizure types among study (P) 
completers during the 14-day evaluation period 

2. Average frequency of complex partial seizures, simple 
partial seizures and secondarily generalised seizures among 
study completers during the 14-day evaluation period 

3. Time to dropout  
4. Incidence of side effects and discontinuations 

Turnbull 
1985 

British Medical 
Journal 

1. Time to 24-month remission of seizures 
2. Time-to-first seizure 
3. Incidence of adverse events 
4. Haematological and biochemical variables 

Verity 
1995 

Developmental 
Medicine and 
Child Neurology 

1. Remission analysis (time to 6, 12 and 24 month remission) 
2. Retention analysis (time-to-treatment failure) 
3. Adverse event incidence 
4. Rate of withdrawals and treatment failures 

Wheless 
2004 

Journal of Child 
Neurology 

1. Time-to-exit from the study for any reason (P) 
2. Time-to-first seizure 
3. Proportion of patients seizure-free in the last 6 months of 

treatment 
4. Frequency of most common adverse events 

1. Study ID corresponds to first author and year of publication. See Appendix 5 for references 

of the studies.  

2. Outcomes in Italics were considered to be TTE outcomes for further data extraction and 

outcomes marked with (P) were the study defined primary outcome. 

3. Unclear if the study reported at least one TTE outcome 
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Appendix 7: Search strategies used in Chapter 4 

1 Cochrane Central Register of Controlled Trials (CENTRAL) via CRSO (search dates: 
12/06/2014 and 17/08/2015) 

#1 ("individual patient*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#2 ("individual participant data" OR ipd):TI,AB 

#3 ("individual subject*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#4 ("raw patient*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#5 ("raw subject*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#6 (idiopathic OR "immediate pigment darkening" OR "intermittent peritoneal dialysis" 
OR "invasive pneumococcal disease" OR "indirect photometric detection" OR 
"interaural phase disparity"):TI,AB 

#7 #1 OR #2 OR #3 OR #4 OR #5 

#8 #7 NOT #6 

#9 2004 TO 2014:YR NOT INMEDLINE 

#10 #8 AND #9 

 

2 MEDLINE (Ovid) (search dates: 10/06/2014 and 17/08/2015) 

1. (individual patient$ adj6 data).ti,ab. 

2. (individual patient$ adj6 report$).ti,ab. 

3. (individual patient$ adj6 outcome$).ti,ab. 

4. (individual patient$ adj6 level$).ti,ab. 

5. individual participant data.ti,ab. 

6. ipd.ti,ab. 

7. (individual subject$ adj6 data).ti,ab. 

8. (individual subject$ adj6 report$).ti,ab. 

9. (individual subject$ adj6 outcome$).ti,ab. 

10. (individual subject$ adj6 level$).ti,ab. 

11. (raw patient$ adj6 data).ti,ab. 

12. (raw patient$ adj6 report$).ti,ab. 

13. (raw patient$ adj6 outcome$).ti,ab. 
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14. (raw patient$ adj6 level$).ti,ab. 

15. (raw subject$ adj6 data).ti,ab. 

16. (raw subject$ adj6 report$).ti,ab. 

17. (raw subject$ adj6 outcome$).ti,ab. 

18. (raw subject$ adj6 level$).ti,ab. 

19. idiopathic.ti,ab. 

20. immediate pigment darkening.ti,ab. 

21. intermittent peritoneal dialysis.ti,ab. 

22. invasive pneumococcal disease.ti,ab. 

23. indirect photometric detection.ti,ab. 

24. interaural phase disparity.ti,ab. 

25. or/1-18 

26. or/19-24 

27. 25 not 26 

28. limit 27 to ed=20050601-20140610 

 

3. SCOPUS (search dates: 10/06/2014 and 18/08/2015) 

(((((TITLE-ABS-KEY("individual patient*" PRE/6 data)) OR (TITLE-ABS-KEY("individual 
patient*" PRE/6 report*)) OR (TITLE-ABS-KEY("individual patient*" PRE/6 outcome*)) OR 
(TITLE-ABS-KEY("individual patient*" PRE/6 level*)) OR (TITLE-ABS-KEY("individual 
participant data")) OR (TITLE-ABS-KEY(ipd)) OR (TITLE-ABS-KEY("individual subject*" PRE/6 
data)) OR (TITLE-ABS-KEY("individual subject*" PRE/6 report*)) OR (TITLE-ABS-
KEY("individual subject*" PRE/6 outcome*))) OR ((TITLE-ABS-KEY("individual subject*" 
PRE/6 level*)) OR (TITLE-ABS-KEY("raw patient*" PRE/6 data)) OR (TITLE-ABS-KEY("raw 
patient*" PRE/6 report*)) OR (TITLE-ABS-KEY("raw patient*" PRE/6 outcome*)) OR (TITLE-
ABS-KEY("raw patient*" PRE/6 level*)) OR (TITLE-ABS-KEY("raw subject*" PRE/6 data))) OR 
((TITLE-ABS-KEY("raw subject*" PRE/6 report*)) OR (TITLE-ABS-KEY("raw subject*" PRE/6 
outcome*)) OR (TITLE-ABS-KEY("raw subject*" PRE/6 level*)))) AND NOT ((TITLE-ABS-
KEY(idiopathic)) OR (TITLE-ABS-KEY("immediate pigment darkening")) OR (TITLE-ABS-
KEY("intermittent peritoneal dialysis")) OR (TITLE-ABS-KEY("invasive pneumococcal 
disease")) OR (TITLE-ABS-KEY("indirect photometric detection")) OR (TITLE-ABS-
KEY("interaural phase disparity")))) AND PUBYEAR > 2004) AND NOT (INDEX(medline)) AND 
( LIMIT-TO(SUBJAREA,"MEDI" ) OR LIMIT-TO(SUBJAREA,"BIOC" ) OR LIMIT-
TO(SUBJAREA,"NEUR" ) OR LIMIT-TO(SUBJAREA,"PHAR" ) OR LIMIT-TO(SUBJAREA,"IMMU" ) 
OR LIMIT-TO(SUBJAREA,"NURS" ) OR LIMIT-TO(SUBJAREA,"HEAL" ) OR LIMIT-
TO(SUBJAREA,"PSYC" ) OR LIMIT-TO(SUBJAREA,"DENT" )) 
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4 Epilepsy Specialized Register (CRS) (search dates: 12/06/2014 and 17/08/2015) 

#1 ("individual patient*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#2 ("individual participant data" OR ipd):TI,AB 

#3 ("individual subject*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#4 ("raw patient*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#5 ("raw subject*" ADJ6 (data OR report* OR outcome* OR level*)):TI,AB 

#6 (idiopathic OR "immediate pigment darkening" OR "intermittent peritoneal dialysis" OR 
"invasive pneumococcal disease" OR "indirect photometric detection" OR "interaural phase 
disparity"):TI,AB 

#7 #1 OR #2 OR #3 OR #4 OR #5 

#8 (#7 NOT #6) AND >2003:YR 

5. CINAHL Plus and PsycINFO (EBSCOhost) (search dates: 10/06/2014 and 18/08/2015) 

S9 S7 NOT S6  
Published: 20040601- 

S8 S7 NOT S6 

S7 S1 OR S2 OR S3 OR S4 OR S5 

S6 TX ( idiopathic OR "immediate pigment darkening" ) OR TX "intermittent peritoneal 
dialysis" OR TX "invasive pneumococcal disease" OR TX "indirect photometric 
detection" OR TX "interaural phase disparity" 

S5 "raw subject*" W6 (data OR report* OR outcome* OR level*) 

S4 "raw patient*" W6 (data OR report* OR outcome* OR level*) 

S3 "individual subject*" W6 (data OR report* OR outcome* OR level*) 

S2 "individual participant data" OR TX ipd 

S1 "individual patient*" W6 (data OR report* OR outcome* OR level*) 

 

6. Web of Science: Core Collection 1900- and BIOSIS Previews (Biological Abstracts) 

(search dates: 10/06/2014 and 18/08/2015) 

#12 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014) AND Databases: (WOS OR 

BIOSIS) AND [excluding]:Databases: (MEDLINE) AND RESEARCH DOMAINS: 

(SCIENCE TECHNOLOGY) AND RESEARCH AREAS: (BEHAVIORAL SCIENCES OR 

OTORHINOLARYNGOLOGY OR PHARMACOLOGY PHARMACY OR PSYCHIATRY OR 

TRANSPLANTATION OR ONCOLOGY OR RHEUMATOLOGY OR ALLERGY OR 

CARDIOVASCULAR SYSTEM CARDIOLOGY OR ANESTHESIOLOGY OR PSYCHOLOGY 

OR DERMATOLOGY OR GENERAL INTERNAL MEDICINE OR REHABILITATION OR 

HEMATOLOGY OR ORTHOPEDICS OR REPRODUCTIVE BIOLOGY OR IMMUNOLOGY 

OR CRITICAL CARE MEDICINE OR NEUROSCIENCES NEUROLOGY OR 
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OPHTHALMOLOGY OR NUTRITION DIETETICS OR TROPICAL MEDICINE OR PUBLIC 

ENVIRONMENTAL OCCUPATIONAL HEALTH OR GASTROENTEROLOGY HEPATOLOGY 

OR DENTISTRY ORAL SURGERY MEDICINE OR OBSTETRICS GYNECOLOGY OR 

GERIATRICS GERONTOLOGY OR PATHOLOGY OR RADIOLOGY NUCLEAR MEDICINE 

MEDICAL IMAGING OR PARASITOLOGY OR SUBSTANCE ABUSE OR RESEARCH 

EXPERIMENTAL MEDICINE OR SURGERY OR RESPIRATORY SYSTEM OR 

DEVELOPMENTAL BIOLOGY OR HEALTH CARE SCIENCES SERVICES OR PHYSIOLOGY 

OR UROLOGY NEPHROLOGY OR VIROLOGY OR ENDOCRINOLOGY METABOLISM OR 

PEDIATRICS OR INFECTIOUS DISEASES OR NURSING OR MICROBIOLOGY OR 

TOXICOLOGY) AND [excluding]:DOCUMENT TYPES: (PATENT OR EDITORIAL)  

DocType=All document types; Language=All languages;  

#11 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014) AND Databases: (WOS OR 

BIOSIS) AND [excluding]:Databases: (MEDLINE) AND RESEARCH DOMAINS: 

(SCIENCE TECHNOLOGY) AND RESEARCH AREAS: (BEHAVIORAL SCIENCES OR 

OTORHINOLARYNGOLOGY OR PHARMACOLOGY PHARMACY OR PSYCHIATRY OR 

TRANSPLANTATION OR ONCOLOGY OR RHEUMATOLOGY OR ALLERGY OR 

CARDIOVASCULAR SYSTEM CARDIOLOGY OR ANESTHESIOLOGY OR PSYCHOLOGY 

OR DERMATOLOGY OR GENERAL INTERNAL MEDICINE OR REHABILITATION OR 

HEMATOLOGY OR ORTHOPEDICS OR REPRODUCTIVE BIOLOGY OR IMMUNOLOGY 

OR CRITICAL CARE MEDICINE OR NEUROSCIENCES NEUROLOGY OR 

OPHTHALMOLOGY OR NUTRITION DIETETICS OR TROPICAL MEDICINE OR PUBLIC 

ENVIRONMENTAL OCCUPATIONAL HEALTH OR GASTROENTEROLOGY HEPATOLOGY 

OR DENTISTRY ORAL SURGERY MEDICINE OR OBSTETRICS GYNECOLOGY OR 

GERIATRICS GERONTOLOGY OR PATHOLOGY OR RADIOLOGY NUCLEAR MEDICINE 

MEDICAL IMAGING OR PARASITOLOGY OR SUBSTANCE ABUSE OR RESEARCH 

EXPERIMENTAL MEDICINE OR SURGERY OR RESPIRATORY SYSTEM OR 

DEVELOPMENTAL BIOLOGY OR HEALTH CARE SCIENCES SERVICES OR PHYSIOLOGY 

OR UROLOGY NEPHROLOGY OR VIROLOGY OR ENDOCRINOLOGY METABOLISM OR 

PEDIATRICS OR INFECTIOUS DISEASES OR NURSING OR MICROBIOLOGY OR 

TOXICOLOGY)  

DocType=All document types; Language=All languages;  

#10 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014) AND Databases: (WOS OR 

BIOSIS) AND [excluding]:Databases: (MEDLINE) AND RESEARCH DOMAINS: 

(SCIENCE TECHNOLOGY)  

DocType=All document types; Language=All languages;  

#9 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014) AND Databases: (WOS OR 

BIOSIS) AND [excluding]:Databases: (MEDLINE)  
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DocType=All document types; Language=All languages;  

#8 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014) AND Databases: (WOS OR 

BIOSIS)  

DocType=All document types; Language=All languages;  

#7 #5 OR #4 OR #3 OR #2 OR #1 

Refined by: PUBLICATION YEARS: (2013 OR 2004 OR 2012 OR 2011 OR 2010 OR 

2009 OR 2008 OR 2007 OR 2005 OR 2006 OR 2014)  

DocType=All document types; Language=All languages;  

#6 #5 OR #4 OR #3 OR #2 OR #1  

DocType=All document types; Language=All languages;  

#5 TOPIC: ("raw subject*" NEAR/6 (data OR report* OR outcome* OR level*)) NOT 

TOPIC: (idiopathic OR "immediate pigment darkening" OR "intermittent peritoneal 

dialysis" OR "invasive pneumococcal disease" OR "indirect photometric detection" 

OR "interaural phase disparity")  

DocType=All document types; Language=All languages;  

#4 TOPIC: ("raw patient*" NEAR/6 (data OR report* OR outcome* OR level*)) NOT 

TOPIC: (idiopathic OR "immediate pigment darkening" OR "intermittent peritoneal 

dialysis" OR "invasive pneumococcal disease" OR "indirect photometric detection" 

OR "interaural phase disparity")  

DocType=All document types; Language=All languages;  

#3 TOPIC: ("individual subject*" NEAR/6 (data OR report* OR outcome* OR level*)) 

NOT TOPIC: (idiopathic OR "immediate pigment darkening" OR "intermittent 

peritoneal dialysis" OR "invasive pneumococcal disease" OR "indirect photometric 

detection" OR "interaural phase disparity")  

DocType=All document types; Language=All languages;  

#2 TOPIC: ("individual participant data" OR ipd) NOT TOPIC: (idiopathic OR 

"immediate pigment darkening" OR "intermittent peritoneal dialysis" OR "invasive 

pneumococcal disease" OR "indirect photometric detection" OR "interaural phase 

disparity")  

DocType=All document types; Language=All languages;  

#1 TOPIC: ("individual patient*" NEAR/6 (data OR report* OR outcome* OR level*)) 

NOT TOPIC: (idiopathic OR "immediate pigment darkening" OR "intermittent 

peritoneal dialysis" OR "invasive pneumococcal disease" OR "indirect photometric 

detection" OR "interaural phase disparity")  

DocType=All document types; Language=All languages;  
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Appendix 8: Data extraction form used in Chapter 4 

Individual Participant Data Meta-Analyses: Data Extraction Form 

Date of Extraction: 

Name of data extractor: 

Meta-analysis First Author: 

Meta-analysis Year: 

Meta-analysis Title: 

Journal or Source: 

Authorship policy (individual authorship, collaborative group, none): 

Source of funding: 

Clinical area (lung cancer, breast cancer, epilepsy, diabetes etc.): 

Design of studies included (Randomised / Non-randomised/ both / Other 

(diagnostic test accuracy etc.): 

Type of studies included (Drug / Device / Observational / Other (diagnostic test 

accuracy etc.): 

Type of pooled analysis: Systematic search performed or existing database of 

studies pooled/ collaboration? 

Number of studies eligible for meta-analysis: 

Number of participants in all eligible studies: 

Year range of eligible studies: 

Number of studies providing IPD: 

Number of participants IPD is provided for: 
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Number of studies providing aggregate data (AD): 

Number of participants AD is provided for: 

Number of studies excluded due to no IPD or AD available: 

Number of patients excluded due to no IPD or AD available: 

Year range of studies IPD is not available for: 

Any reported reasons that IPD was not provided (data no longer available, authors 

unwilling to collaborate)? 

 

Were any adjustments/ sensitivity analyses performed to account for missing IPD? 

Or do meta-analysis authors note the limitation of missing IPD? 

 

Additional notes: 

 

 

 

 

Footnotes: 

1. Reasons for IPD not being provided and sensitivity analyses recorded as free text 

and later classified into broad categories.  

2. Source of funding recorded as free text and later classified as Commercial, Non-

Commercial, Mixed (Commercial and Non-Commercial), No funding, Not stated. 

3. Clinical area was also recorded as free text and later classified in broad categories 

based on the clinical areas covered by the review groups of the Cochrane 

Collaboration. 
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Appendix 9: Additional results from Chapter 4 

Table 33 Characteristics of 85 reviews in which IPD was extracted from included studies 

IPD-MA Characteristic1 Number of IPD-MA2 

Year of publication of IPD-MA 

1987 – 1995 2 

1996 – 2000 3 

2001 – 2005 9 

2006 – 2010 22 

2010 – 2015 49 

Clinical area of IPD-MA 

Breast Cancer 1 

Cancer (other) 11 

Cardiology 9 

Central Nervous System, Neurology and Brain Injury 11 

Cervical Cancer and Ovarian Cancer 1 

Diabetes and Endocrinology 0 

Gastroenterology, Colorectal and Gastric Cancer 13 

Gynaecology, Pregnancy and Neonatology 3 

Haematology, Leukaemia and Blood Cancer 2 

Head and Neck Cancer 6 

Hepatitis and Liver Disease 1 

HIV 1 

Infection and Infectious Diseases 3 

Injuries and Wounds 1 

Lung Cancer 0 

Mental and Psychiatric Disorders 5 

Musculoskeletal and Pain 4 

Other 2 

Otolaryngology, Ophthalmology and Periodontology 5 

Renal and Urology 3 

Respiratory and Pulmonary  0 

Stroke, Thrombosis and Hypertension  3 

Design of included studies 

Randomised 8 

Non-Randomised 59 

Diagnostic Test Accuracy 8 

Both Randomised and Non-Randomised 10 

Type of included studies 

Diagnostic Test Accuracy 8 

Drug or device 20 

Epidemiology / Risk Factor 28 

Non-drug (interventional) 29 
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Type of IPD-MA 

Cochrane Review 2 

Non Cochrane Review 83 

Authorship Policy 

Individual authorship 0 

Collaborative Group 2 

None 83 

Source of Funding 

Non-commercial 24 

Commercial 2 

Mixed 1 

No funding 13 

Not stated 45 

Number of eligible studies 

2 to 5 2 

6 to 10 14 

11 to 15 7 

16 to 20 6 

21 to 30 10 

31 to 40 12 

41 to 50 8 

over 50 22 

Not stated 4 

Number of eligible participants 

under 100 10 

101 to 200 12 

201 to 500 17 

501 to 1000 12 

1001 to 5000 10 

5001 to 10000 2 

over 10000 0 

Not stated 22 
1. See Table 5 for full definitions of characteristics. 

2. All IPD-MA were systematic 
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Results of additional and sensitivity analyses 

See Table 7 in Chapter 4.3.3.1 for definitions of characteristics and footnotes of the tables 

Table 34: Results of univariate logistic regression analysis  

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2 0.918 0.748 to 1.126 0.411 1.102 0.897 to 1.355 0.355 

Number of eligible 

participants2 

0.701 0.625 to 0.787 <0.001 0.872 0.789 to 0.965 0.008 

Includes randomised  

studies only 

1.113 0.768 to 1.613 0.571 2.517 1.729 to 3.666 <0.001 

Cochrane IPD-MA 0.365 0.179 to 0.746 0.006 0.471 0.264 to 0.839 0.011 

Authorship Policy3 1.225 0.840 to 1.786 0.292 3.123 2.132 to 4.577 <0.001 

Commercial source of 

funding4 

1.360 0.834 to 2.218 0.218 1.606 0.938 to 2.750 0.084 

 

Table 35: Multivariable logistic regression: further examination of authorship policy 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2 1.137 0.923 to 1.402 0.228 1.155 0.939 to 1.420 0.173 

Number of eligible 

participants2 

0.843 0.791 to 0.898 <0.001 0.889 0.838 to 0.943 <0.001 

Includes randomised  

studies only 

1.491 0.957 to 2.322 0.078 2.748 1.761 to 4.288 <0.001 

Cochrane IPD-MA 0.450 0.208 to 0.973 0.042 0.432 0.221 to 0.844 0.014 

No Authorship Policy 

Individual authorship 

Collaborative Group3 

Ref. 

2.795 

0.761 

Ref. 

1.729 to 4.519 

0.442 to 1.309 

Ref. 

<0.001 

0.324 

Ref. 

3.583 

3.130 

Ref. 

2.173 to 5.908 

1.867 to 5.249 

Ref. 

<0.001 

<0.001 

Commercial source of 

funding4 

1.623 0.933 to 2.824 0.086 1.061 0.576 to 1.953 0.849 

 

Table 36: Multivariable logistic regression: inclusion of type of study 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2 1.068 0.874 to 1.306 0.520 1.138 0.924 to 1.402 0.224 

Number of eligible 

participants2 

0.845 0.794 to 0.898 <0.001 0.881 0.830 to 0.936 <0.001 

Includes randomised 

studies only 

1.220 0.756 to 1.971 0.415 2.253 1.372 to 3.670 0.001 

Drug or device 1.374 0.887 to 2.130 0.155 1.492 0.936 to 2.379 0.093 

Cochrane IPD-MA 0.403 0.189 to 0.862 0.019 0.429 0.219 to 0.841 0.014 

Authorship Policy3 1.710 1.101 to 2.658 0.017 3.491 2.252 to 5.413 <0.001 

Commercial source of 

funding4 

1.207 0.707 to 2.059 0.491 0.948 0.511 to 1.757 0.865 
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Table 37: Multivariable logistic regression results: excluding studies with no information 

regarding funding 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2 1.029 0.804 to 1.318 0.818 1.094 0.848 to 1.411 0.490 

Number of eligible 

participants2 

0.847 0.789 to 0.909 <0.001 0.891 0.833 to 0.952 0.001 

Includes randomised  

studies only 

1.318 0.783 to 2.217 0.298 3.013 1.779 to 5.103 <0.001 

Cochrane IPD-MA 0.419 0.180 to 0.977 0.044 0.392 0.188 to 0.818 0.013 

Authorship Policy3 1.726 1.014 to 2.936 0.044 3.583 2.154 to 5.961 <0.001 

Commercial source of 

funding4 

1.544 0.885 to 2.694 0.126 1.003 0.529 to 1.902 0.992 

 

A sensitivity analysis was conducted including all 760 IPD-MAs, assuming the following 

scenarios for the 257 IPD-MAs for which the proportion of IPD retrieved was unknown: 

a. Less than 80% of IPD was retrieved 

b. 80% or more IPD was retrieved 

c. 100% of IPD was retrieved 

Table 38: Multivariable logistic regression results:  a. less than 80% of IPD was retrieved 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2  0.641 0.554 to 0.739 <0.001 0.713 0.624 to 0.816 <0.001 

Includes randomised 

studies only 

1.667 1.160 to 2.393 0.006 2.906 2.076 to 4.067 <0.001 

Cochrane IPD-MA 0.334 0.161 to 0.701 0.004 0.489 0.278 to 0.861 0.013 

Authorship Policy3 0.505 0.372 to 0.685 <0.001 0.842 0.635 to 1.115 0.230 

Commercial source of 

funding4 

1.102 0.687 to 1.767 0.687 0.994 0.642 to 1.541 0.980 

 

Table 39: Multivariable logistic regression results:  b. 80% or more IPD was retrieved  

IPD-MA 

Characteristic 

100% of IPD retrieved compared to 

less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2  0.641 0.554 to 0.739 <0.001 1.206 1.046 to 1.392 0.010 

Includes randomised 

studies only 

1.667 1.160 to 2.393 0.006 1.479 0.999 to 2.190 0.051 

Cochrane IPD-MA 0.334 0.161 to 0.701 0.004 0.428 0.233 to 0.784 0.006 

Authorship Policy3 0.505 0.372 to 0.685 <0.001 3.222 2.340 to 4.439 <0.001 

Commercial source of 

funding4 

1.102 0.687 to 1.767 0.687 1.002 0.577 to 1.743 0.993 
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Table 40: Multivariable logistic regression results:  C. 100% of IPD was retrieved 

IPD-MA 

Characteristic 

100% of IPD retrieved compared 

to less than 100% of IPD1 

At least 80% of IPD retrieved 

compared to less than 80% of IPD1 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2  1.109 0.975 to 1.392 0.114 1.206 1.046 to 1.392 0.010 

Includes randomised 

studies only 

0.682 0.492 to 0.947 0.022 1.479 0.999 to 2.190 0.051 

Cochrane IPD-MA 0.477 0.269 to 0.846 0.011 0.428 0.233 to 0.784 0.006 

Authorship Policy3 1.762 1.331 to 2.332 <0.001 3.222 2.340 to 4.439 <0.001 

Commercial source of 

funding4 

1.092 0.704 to 1.693 0.993 1.002 0.577 to 1.743 0.993 

 

Table 41: Multivariable logistic regression results: proportion of IPD known compared to 

proportion of IPD unknown 

IPD MA Characteristic Proportion of IPD retrieved unknown compared 

to proportion of IPD retrieved known  

OR 95% CI P-value 

Age of publication2  0.869 0.761 to 0.992 0.039 

Includes randomised studies only 0.361 0.256 to 0.508 <0.001 

Cochrane IPD-MA 0.658 0.332 to 1.303 0.231 

Authorship Policy3 1.397 1.043 to 1.869 0.025 

Commercial source of funding4 0.849 0.523 to 1.379 0.509 

 

Table 42: Results of fractional logistic regression 

IPD-MA Characteristic OR 95% CI* P-value 

Age of publication2  1.339 1.152 to 1.555 <0.001 

Number of eligible participants2  0.998 0.946 to 1.032 0.591 

Includes randomised studies only 2.432 1.775 to 3.333 <0.001 

Cochrane IPD-MA 0.446 0.288 to 0.691 <0.001 

Authorship Policy3 2.511 1.835 to 3.436 <0.001 

Commercial source of funding4 0.871 0.544 to 1.394 0.565 

*Calculated with robust standard errors. 

 

Table 43 Multivariate logistic regression by proportion of study data retrieved 

IPD MA 

Characteristic 

100% of study data retrieved 

compared to less than 100% of 

study data 

At least 80% of study data 

retrieved compared to less than 

80% of study data 

OR 95% CI P-value OR 95% CI P-value 

Age of publication2  1.172 0.961 to 1.431 0.116 1.235 1.050 to 1.454 0.011 

Number of eligible 

participants2  
0.498 0.428 to 0.576 <0.001 0.681 0.610 to 0.759 <0.001 

Includes randomised 

studies only 

1.555 1.050 to 2.304 0.028 1.301 0.936 to 1.807 0.117 

Cochrane IPD-MA 0.441 0.207 to 0.937 0.033 0.664 0.373 to 1.181 0.163 

Authorship Policy3 1.078 0.739 to 1.573 0.695 1.851 1.355 to 2.529 <0.001 

Commercial source of 

funding4 

1.339 0.819 to 2.187 0.244 1.227 0.781 to 1.927 0.375 
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Appendix 11: Template IPD request letter and data request form  

Cochrane Epilepsy Group 

Department of Molecular and Clinical Pharmacology 

Institute of Translational Medicine 

Room 2.28, Clinical Sciences Centre for Research and Education 

Lower Lane, Liverpool, L9 7LJ 

UK 

 
 
 
<Date / month / year> 
 
Dear <Author> 

 
We are contacting you on behalf of the Cochrane Epilepsy Group. The Cochrane 

Collaboration is an international organisation dedicated to providing summaries of the best 

evidence about medical treatments in the form of systematic reviews. You can find more 

about the Collaboration and the Cochrane Epilepsy Group at www.epilepsy.cochrane.org  

 

We plan to carry out a Cochrane overview and network meta-analysis of studies comparing 

monotherapy for patients with epilepsy. The current overview (published 2007) which we 

wish to update as a Cochrane overview is enclosed: 

 

i) Time-to-withdrawal from treatment (retention time) 

ii) Time to 6 and 12 month remission (seizure-free period) 

iii) Time-to-first seizure post randomisation. 

iv) Adverse events 

 

Due to the complexity in definition of these outcomes, the review is an individual patient 

data review which allows the most reliable methods to be used for meta-analysis. As you will 

see, this approach has been used in a number of epilepsy monotherapy Cochrane Reviews. 

 

Following a recent search for reports for the review update, we believe your study may meet 

the criteria for inclusion in the review update: 

 

<Insert full citation of study> 

 

We would be grateful if you could provide some further information about your study so that 

we can confirm that it meets our inclusion criteria. 

 

If your study does meet the inclusion criteria we would like to ask if you would be willing to 

provide individual patient data from your trial. It would also be helpful if you could complete 

the attached form to indicate the data that you have for your study. 

 

If you would like any further information please do not hesitate to contact us. 

 

http://www.epilepsy.cochrane.org/
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Yours sincerely 

 

 

 

 

Sarah Nolan, Statistician (sarah.nolan@liv.ac.uk) 

Dr Catrin Tudur Smith, Statistical Editor (cat1@liv.ac.uk) 

Professor Tony Marson, Co-ordinating Editor (a.g.marson@liv.ac.uk) 

 

Cochrane Epilepsy Group 

 

Enclosed: 

 

Current Overview: Multiple treatment comparisons in epilepsy monotherapy trials 

   Data request form 
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Data request form 

Cochrane Epilepsy Network Meta-Analysis  

Lead Trial Author:   

Address: 

Telephone: 

E-mail: 

Study Reference: 

Would you be able to supply the following data for each individual patient in the study 

(delete as appropriate)? 

If data is unavailable, please indicate reasons (where possible) in comments section: 

Patient Characteristics 

 Patient Identifier       YES/NO 

 Age          YES/NO 

 Gender         YES/NO 

 Presence of neurological signs       YES/NO 

 EEG results (prior to randomization)     YES/NO 

 MRI / CT results (prior to randomisation)    YES/NO 

 Aetiology (known/unknown origin of seizures)    YES/NO 

 Number of seizures before randomisation    YES/NO 

 Dates of seizures before randomisation     YES/NO 

 Seizure type at randomisation      YES/NO 

o Partial: simple/complex partial or secondary generalised tonic-clonic 

o Generalised: generalised tonic-clonic  

o Other seizure type (myoclonic, absence etc.) 

 Patient  type        YES/NO 

o Newly onset epilepsy 

o Active Seizures 

o Drug resistant seizures etc. 

Comments: 
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Follow-up data 

 Date of randomisation       YES/NO 

 Name of drug randomised      YES/NO 

 Dose of drug randomised      YES/NO 

 Dates of follow-up       YES/NO 

 Dates of dose changes       YES/NO 

 Number of seizures after randomisation (at each follow-up)  YES/NO 

 Dates of seizures after randomisation  (at each follow-up)  YES/NO 

 Date of withdrawal of randomised treatment    YES/NO 

 Reason for withdrawal of randomised treatment   YES/NO 

 Adverse events (at each follow-up)      YES/NO 

Comments: 

 

Trial Methods 

 Method of randomisation (generation of random list)   YES/NO 

 Method of concealment of randomisation    YES/NO 

 Stratification factors       YES/NO 

 Blinding methods (if applicable)      YES/NO 

 Analysis approach       YES/NO 

o Intention to treat / per protocol / other 

Comments: 

 

Please indicate any further information you feel may be relevant: 

 

Please return completed form to:  

Professor A.G Marson, Co-ordinating Editor, Cochrane Epilepsy Group, Department of 

Molecular and Clinical Pharmacology, Institute of Translational Medicine,  Room 2.28, Clinical 

Sciences Centre for Research and Education, Lower Lane, Liverpool, L9 7LJ, UK 
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Appendix 12: Procedure for preparing a raw IPD dataset into an 

analysis ready dataset 

Context: Data is received via an e-mail attachment, CD, other portable device or via remote 

SAS data access system (ClinicalStudyDataRequest.Com) 

Stage 1: Initial general checks to make on the data in the format in which it 

is sent:  

1. Has all additional documentation required been provided with the data?  

o Documents: Protocols, Case Report Forms, Variable Labels or Formats etc. 

2. What format is/are the dataset(s) and accompanying documentation in?  

o Do the data and accompanying documents open?   

o Is any reformatting required? 

3. Is documentation and narrative text within the data written in clearly in English?  

o Translation may be required into English from authors or Cochrane translators.  

4. Has a single dataset been provided or multiple datasets?  

o If multiple datasets, how has the data been split? Can the datasets be linked with 

a Unique Identifier? 

5. Did the data provider previously complete an individual participant data request form to 

specify which data could be provided?  

a. If yes, does the data provider give data for all of the variables specified as 

available on the IPD request form or provide reasons why data is not available?  

b. Has sufficient data been provided to calculate outcomes? (i.e. randomisation 

date, withdrawal reason and date, last follow-up date, seizure dates following 

randomisation) 

6. Are variable labels with full and clear descriptions provided?  

o Does each column of data have a variable name and label? 

o Are clear labels given for coded/categorical variables?  

7. Is original or de-identified data provided? If data has been de-identified, are sufficient 

details provided of the de-identification?  

o For example, whether actual dates or offset dates are provided, do empty cells 

correspond to missing or redacted values?  

Action to take following checks 

 Contact with data providers will be required if: 

o Data does not open 

o Data is not in an appropriate format 

o Essential accompanying documentation is missing or if insufficient 

o Important data which was reported to be available is missing  

o Data is not clearly labelled or described. 

 Data which satisfies all of these checks (in the first instance or following contact with data 

providers) can now be imported into SAS and proceed with Stage 2 checking. 
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Stage 2: Checks on the content of the data (general): 

1. Has a unique identification number been provided for each participant in the dataset?  

o Is this the original randomisation number (or equivalent) or has a new number been 

produced for de-identification purposes?  

o If a new de-identified ID number is used, are details provided of how this number 

was generated? If not, no checks can be performed. 

o If the original number is used or a de-identified number has been produced which 

takes account of the original sequence: 

 Are any numbers missing from the sequence which may indicate excluded 

patients? 

 Does the randomisation sequence appear random? (i.e. no trends are present in 

participants being randomised to any of the drugs, baseline characteristics, 

prognostic factors are balanced across the allocations)  

2. For each variable start with exploratory analyses (range for continuous variables, 

frequencies in each category for categorical variable)  

o Are there any extreme (e.g. age of 100) or impossible (age of -1) values? 

o How much data is for missing each variable?  

o Will missing data for a given variable affect calculation of outcomes (e.g. missing 

seizure dates)?  

3. In comparison to any publications (journal article / clinical trials.gov entry etc.) or other 

related documents (protocols / clinical study reports etc.): 

o Is the same number of participants included in the publication / document provided 

in the dataset?  

o Does all information reported in publication/ document match what is provided in 

the data? For example 

 Inclusion and exclusion criteria 

 Enrolment / randomisation dates / other specified dates 

 Demographics and participant characteristics  

 Number of participants contributing to each outcome (exclusions etc.) 

 Number of participants randomised to each drug and doses started / achieved. 

o Can relevant results within the publication be recreated accurately (where possible 

with data provided)?  

 If not, why not? For example numerical differences between published results 

and IPD, unclear methods of analysis in publications etc.   

Action to take following checks 

 If data does not seem to follow a random sequence, enquire with the data provider 

regarding randomisation methods.  Data which is not truly random the data may not be 

able to be used.  

 If large amounts of missing data are present, particularly within variables needed to code 

outcomes, contact data provider for reasons of missingness:  
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o If missingness cannot be explained or data required cannot be provided for an 

outcome, the data cannot be included in the analysis of the outcome. 

 Contact data provider for clarification of numerical inconsistencies between published 

results and IPD or where published results cannot be recreated due to unclear 

methodology.  

 Make a list of ‘general’ inconsistencies (prioritising large numerical inconsistencies or 

those which influence calculation of outcomes) for the attention of the data provider.   

o This list will be combined with any queries or inconsistencies following Stage 3. 

Stage 3: Checks on the content of the data and initial coding of outcomes 

for the analysis dataset (clinically (epilepsy) specific): 

1. Checks to make on dates/ relative days (convert dates to relative days before and after 

randomisation if desired):  

o If provided, is date of birth the earliest date in the dataset? 

o If provided, is date of death the latest date in the dataset? 

o If provided, do all dates of seizures before randomisation occur before date of 

randomisation? 

o If provided, do follow-up dates / post randomisation visit dates occur after the date 

of randomisation?  

 Do follow-up dates occur in order? (E.g. follow-up 2 occurs after follow-up 1).  

 Do follow-up dates match (approximately) information reported in publications 

(e.g. follow-ups every six weeks)? 

 If any follow-up dates are missing, how is this recorded? For example if a 

participant misses follow-up visit 2 at 2 months but attends the third visit at 3 

months, is this visit recorded as visit 2 or visit 3 for this participant?  

o If provided, do all dates of seizures after randomisation occur after the date of 

randomisation?  

o If provided, does the date of withdrawal of allocated treatment occur after 

randomisation? 

 Is the date of withdrawal of allocated treatment also the last date in the dataset 

for all participants? If not, are dates recorded after treatment withdrawal (e.g. 

death, seizure dates for the participant on an alternative treatment)? 

2. Data provided relating to epilepsy diagnoses and seizure types: 

o Where results of pre-randomisation investigations are reported (EEG, CT, MRI, 

Neurological Signs): 

 Are results reported as normal / abnormal or are specific results given? 

 Where specific results are given are the results clearly described and clinically 

reasonable (consult AGM for assistance here if needed)? 

o Are all participants defined as ‘newly diagnosed’ (specified in dataset or 

publications)? 

 For trials also recruiting participants with relapsed seizures, are any concomitant 

antiepileptic drug treatments reported for these participants during the trial?   
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o Where seizures before randomisation are specified, did all participants have at least 

two seizures before randomisation or satisfy other specified diagnostic criteria of 

epilepsy?  

o Has the seizure type for all participants been classified before randomisation?  

 If applicable, are any participants over the age of 30 are classified as experiencing 

newly diagnosed generalised-onset seizures? 

 If types of seizures before randomisation are specified, do seizure types recorded 

before and after randomisation correspond?  

 Where generalised seizures are specified before randomisation, do all 

participants experience a generalised tonic clonic seizure with or without other 

generalised seizure types? Are other generalised seizure types only without 

other than tonic clonic seizures reported for any participants? 

3. Is sufficient information provided to calculate primary effectiveness outcome for all 

participants (time-to-withdrawal of allocated treatment)? 

o Date of withdrawal of allocated treatment / time spent on allocated treatment from 

randomisation.  

o Reason for withdrawal of allocated treatment in enough detail to allow a judgement 

whether the withdrawal was related to the allocated drug or not. 

4. Is sufficient information provided to calculate secondary efficacy outcomes for all 

participants (time-to-first seizure and time-to-6-month and 12 month remission)? 

o Dates / relative dates (e.g. study day) of seizure recurrences after randomisation 

(first seizure recurrence and subsequent seizure recurrences) 

o Numbers of seizures over a specific time period (between follow-up visits) 

o Total number of seizures during the follow-up period 

5. Adverse event / side effects (if provided) 

o How are adverse events recorded? Narratively as reported by participants or 

according to dictionary terms (e.g. MEDRA high level or low level terms)?  

o Are adverse events reported at each follow-up or overall across the whole study? 

o Is it specified when adverse events were ‘serious’ or led to treatment withdrawal? 

o Is it specified whether adverse events were likely to be directly caused by study drug? 

Action to take following checks 

 Enquire with data providers regarding any potentially wrong dates (e.g. follow-up data 

reported before randomisation or apparently outside the scope of the study) with 

inconsistencies of dates relating to outcomes (e.g. withdrawal or seizure dates) taking 

priority.  

 Enquire with data provider regarding any uncertainties regarding diagnosis of epilepsy 

and classification of seizure type. Particularly note where potentially:  

o Participants may not have had a certain diagnosis of epilepsy 

o Participants may not be treated with monotherapy  

o Participants were not experiencing either partial-onset or generalised-onset tonic 

clonic seizures with or without other seizure types 
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o Participants over the age of 30 were experiencing new onset generalised seizures or 

seizures of both partial and generalised types.  

 Is enough data provided for the calculation of appropriate outcomes? If not, enquire with 

data providers for additional information. 

 Enquire with data providers regarding any uncertainties or inconsistencies regarding 

adverse events, particularly serious adverse events and/or those resulting in treatment 

withdrawal. 

Make a list of specific inconsistencies (by order of magnitude and importance) for the 

attention of the data provider to be combined with any enquiries from Stage 2. In order of 

priority:  

1. Enquiries relating to variables used in the calculation of outcomes 

2. Large inconsistencies within other variables in the dataset (compared to 

publications) 

3. Any other enquiries 

Data which satisfies all checks and is sufficient for analysis (in the first instance or following 

clarification from data provider) can now be used to calculate outcomes for analysis. 

Note: If inconsistencies remain following clarification with data provider which cannot be 

resolved, discuss the magnitude of inconsistencies with AGM and CTS before proceeding to 

Stage 4. 

Stage 4: Coding of effectiveness and efficacy outcomes 

Primary outcome: Time-to-withdrawal of allocated treatment  

Two variables are to be calculated: 

 Time-to-withdrawal of allocated treatment = ‘withtime’ 

 Censoring indicator for withtime = ‘wcens’  

Coding ‘Time-to-withdrawal of allocated treatment’ 

1. The following reasons for withdrawal are classed as ‘events’ in time-to-event analysis 

(drug related withdrawals) and the censoring indicator wcens = 1; 

a. Recurrent seizures, lack of efficacy etc. 

b. Intolerable adverse events, side effects, poor tolerability etc. 

c. Combination of lack of efficacy and poor tolerability 

d. Non-compliance, poor compliance, patient choice etc. 

e. Any other reason described as related to the allocated drug 

If wcens=1 and both date of withdrawal and date of randomisation are not missing: 

Withtime = Date of withdrawal – Date of randomisation 
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2. The following reasons for withdrawal are classed as ‘censored’ in time-to-event analysis 

(withdrawals not related to the study drug) and the censoring indicator wcens = 0; 

a. Completed the study without withdrawing from treatment 

b. Loss to follow-up 

c. Remission of seizures 

d. Death (for reasons not related to study drug)  

e. Any other reason not related to the study drug 

If wcens=0 and participant completed the study without withdrawing (reason a):  

Withtime = Study duration  or   

Withtime = Date of last follow-up – Date of randomisation 

If wcens=0 and participant withdrew for a reasons not related to the study drug (reasons b 

to e): 

Withtime = Date of withdrawal/last follow-up – Date of randomisation 

Points to consider when coding this outcome 

 If all participants completed the study, time-to-withdrawal of allocated treatment cannot 

be calculated. 

 If reason for withdrawal, date of withdrawal / last follow-up or date of randomisation are 

missing (following clarification from data providers, see Stage 3), wcens and/or withtime 

are classed as missing for the participant   

 Where any minor inconsistencies exist between data and publication results (reported 

number of withdrawals or reasons) or unclear reasons for withdrawal are documented 

which could not be resolved by data provider in Stage 3; if assumptions are made (e.g. 

whether to class a reason for withdrawal as event or censored), perform sensitivity 

analysis to test robustness of results. 

Efficacy outcomes: Seizure and Remission outcomes  

Six new variables are to be calculated:  

 Time-to-first seizure after randomisation = ‘seztime’ 

 Censoring indicator for seztime = ‘scens’  

 Time-to-12-month remission = ‘remtime’ 

 Time-to-6-month remission = ‘remtime6’ 

 Censoring indicator for remtime = ‘rcens’  

 Censoring indicator for remtime6 = ‘rcens6’ 

The procedure for coding the outcomes described below assumes the data is in “wide” 

format:  
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Example (with seizure dates provided): 

ID Seizure1 Seizure2 Seizure3 Seizure4 Seizure5 Seizure6 

101       

102 01/01/2010 04/01/2010 22/01/2010 26/01/2010 05/06/2010 01/09/2010 

103 06/06/2010 01/01/2011 03/04/2011    

 

Example (no seizure dates provided): 

ID Visit1 Seizures Visit2 Seizures Visit3 Seizures 

111 01/02/2010 0 01/03/2010 0 01/06/2010 0 

112 22/01/2010 2 25/03/2010 1 02/07/2010 0 

113 01/06/2010 5 05/07/2010 1 01/12/2010 1 

 

Therefore data in “long” format (below) must be reshaped to “wide” format (use PROC 

TRANSPOSE in SAS, reshape in Stata or reshape() in R) 

Example (with seizure dates provided)  Example (no seizure dates provided)  

ID Seizuredate  ID Visitdate Seizures 

102 01/01/2010  111 01/02/2010 0 

102 04/01/2010  111 01/03/2010 0 

102 22/01/2010  111 01/06/2010 0 

102 26/01/2010  112 22/01/2010 2 

102 05/06/2010  112 25/03/2010 1 

102 01/09/2010  112 02/07/2010 0 

103 06/06/2010  113 01/06/2010 5 

103 01/01/2011  113 05/07/2010 1 

103 03/04/2011  113 01/12/2010 1 

 

Coding time-to-first seizure before randomisation  

If no seizure recurrence occurs at any point during follow-up, the participant is censored for 

this outcome and scens=0  

Seztime = Date of last follow-up – Date of randomisation 

If a seizure occurs at any point during follow-up, an event has occurred for this outcome and 

scens=1.  

1. Calculation of seztime if scens =1 and seizure dates are provided 

Sort seizure dates into ascending order and minimum date is the date of first seizure 

Seztime = Date of first seizure after randomisation – Date of randomisation 
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2. Calculation of seztime if scens =1 and seizure dates are not provided 

Calculation of the following variables is needed for the following steps 

 Total number of seizures in time period X = ‘totalsezX’ 

o Sum of all seizures in the time period (including if seizures split by seizure 

type) 

 Total number of seizures in the whole study = ‘totalsez’ 

o Sum of all seizures in the study (including if seizures split by seizure type) 

 Follow-up time in days of time period X = ‘fuX’ 

o fuX = Date of fu(X) – Date of Randomisation 

 Time between follow-up visits in days = ‘futimeX’ 

o futimeX= Date of fu(X) – Date of fu(X-1) where Date of fu(0) is date of 

randomisation 

o futimeX=Last day of fu(X) – first day of fu(X) 

 

a. Number of seizures over a specified time period X (e.g. between follow-up visits) is 

given  

 

o Calculate approximate seizure times during the time period X by assuming a uniform 

distribution of seizure times across time period X (rounded up to the nearest day): 

Days been seizures in time period X (sezrateX) = CEILING (futimeX / (totalsezX +1)) 

For example: over follow-up period 1 from 01/01/2010 to 17/01/2010 (16 days), 3 seizures 

occurred 

sezrate1 = CEILING (16/ (3+1))) = 4 days – i.e. a seizure occurred every 4 days 

o For n seizures occurring during time period X, the dates of the seizure i where i=1…n : 

sezdateX(i) = sezdateX(i-1)+sezrateX  where sezdateX(0) is the first day of time period X 

For example: over follow-up period 1 from 01/01/2010 to 17/01/2010 (16 days), 3 seizures 

occurred 

sezdate1(1) = 01/01/2010 + 4 days = 05/01/2010 

sezdate1(2) = 05/01/2010 + 4 days = 09/01/2010 

sezdate1(3) =09/01/2010 + 4 days = 13/01/2010 

o Date of first seizure (first seizure) is the minimum date across all time periods (1, 2, …, N)  

 

Firstsez = minimum (sezdate1(1), sezdate1(2), …, sezdateX(i))   
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Seztime = Date of first seizure after randomisation (firstsez) – Date of 

randomisation 

 

b. Total number of seizures across the whole study duration are given  

 

o Calculate approximate seizure times, assuming uniform distribution of seizure times 

across the whole study duration (rounded up to the nearest day): 

sezrate=CEILING (study duration / (totalsez +1)) 

For example over a 24 week study (168 days from 01/02/2011 to 19/07/2011), 3 seizures 

occurred 

sezrate=CEILING (168/ (3+1)) = 42 days – i.e. a seizure occurred every 42 days 

o For n seizures occurring over the study duration, the dates of the seizure i where i=1…n 

: 

sezdate(i) = sezdate(i-1)+sezrate  where sezdateX(0) is the first day of time period X 

For example over a 24 week study (168 days from 01/02/2011 to 19/07/2011), 3 seizures 

occurred 

sezdate(1) = 01/02/2011 + 56 days = 15/03/2011 

sezdate(2) = 15/03/2011 + 56 days = 26/04/2011 

sezdate(2) = 26/04/2011 + 56 days = 07/06/2011 

o Date of first seizure (first seizure) is the minimum date across all time periods (1, 2, …, N)  

 

Firstsez = minimum (sezdate(1), sezdate(2), …, sezdate(i))   

Seztime = Date of first seizure after randomisation (firstsez) – Date of 

randomisation 

 

c. If seizure recurrence status is reported over a specified time period X (e.g. seizure-free 

since last follow-up, yes or no) 

 

o Calculate approximate first seizure time (sezday) during time period X, assuming uniform 

distribution of seizure times across the time period X (rounded up to the nearest day): 

SezdateX= CEILING (fuX + (futimeX/2)) 

For example seizure-free up to 3 weeks (21 days between 01/09/2012 and 22/09/2012) and 

seizure recurrence happened in week 4 (7 days between 23/09/2012 and 30/09/2012). 

SezdateX=CEILING (21 + (7/2)) = 24days – i.e. on the 24/09/2012 
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o Date of first seizure (first seizure) is the minimum date across all time periods (1, 2, …, N)  

 

Firstsez = minimum (sezdate1, sezdate2, … , sezdateN)   

Seztime = Date of first seizure after randomisation (firstsez) – Date of 

randomisation 

 

Coding time to remission of seizures after randomisation (6 and 12 month remission). 

The following steps calculate 12 month remission but can also be extended to a remission 

period of 6 months or any other length by replacing 365 days with the required number of 

days of remission. 

Calculation of the following variable is needed: 

Follow-up time (maxfu) = Date of last follow-up – date of randomisation 

1. If participant has less than 12 months follow-up (i.e. maxfu < 365 days) 

The participant is censored for the outcome (cannot achieve 12 month remission); rcens=0 

and remtime=maxfu 

2. If participant has at least 12 months follow-up and no seizure recurrence during 

the trial 

The participant has an event for the outcome (immediate remission); rcens=1 and 

remtime=365 

3. If participant has at least 12 months follow-up and one-or-more seizures during the 

trial 

Using exact seizure dates / days provided (or estimates where number of seizures are 

provided using steps 2a – 2c described in the coding of ‘time-to-first seizure’) sorted into 

ascending order across all time periods, calculate the time between each seizure during the 

trial (i = 0…n, where n is the last seizure) : 

Time between seizures (sezdiff(i))=sezdate (i+1)- sezdate(i) 

Note that  sezdiff(0) = sezdate(1) – date of randomisation  

Note that sezdiff(n) = Maxfu – sezdate(n) 

Calculate the maximum difference (maxdiff) between seizure times: 

maxdiff = maximum (sezdiff(0), sezdiff(1)… sezdiff(n)) 

o If maxdiff less than 365 then the participant does not have a remission period of at least 

365 days during the trial; rcens=0 and remtime=maxfu 



 

298 
 

o If maxdiff is at least 365 then the participant does have a remission period of at least 365 

days; rcens=1 

 For each participant, identify the first time between seizures (sezdiff (i)) greater 

than 365; by sorting sezdiff (i) variables or by manual inspection. Let sezdiff(j) be 

the first time between seizures greater than 365: 

Remtime=sezdate(j)+365 

Points to consider when coding these outcomes (first seizure and reemission) 

 If no participants experienced seizure recurrence, time-to-first seizure cannot be 

calculated 

 If the duration of the study was less than 6 or 12 months, time to 6 and 12 month 

remission respectively cannot be calculated 

 If all data on seizure recurrence, all follow-up dates or date of randomisation is 

missing, the participant is excluded from analyses.  

 If relative study days are provided rather than dates (e.g. seizures occurred on day 5, 

10, 15 etc. of the study) then ‘firstsez’ and ‘seztime’ are equivalent. 

 If any minor inconsistencies exist between data and publication results (reported 

number of seizure recurrences etc.) which cannot be resolved by the data provider, 

or if seizure data required for the calculation of outcomes is missing, censor 

outcomes at the time of last follow-up. Consider sensitivity analysis excluding these 

participants from analysis and/or assuming seizure recurrence occurs during earlier 

or subsequent time periods. The presence of missing data may require visual 

inspection to judge whether remission occurred. 

 Where exact seizure recurrence dates are not available and seizure dates are 

estimated (using methods 2 a – 2c outlined above in the coding of ‘time-to-first 

seizure’, consider sensitivity analysis (for example, assuming seizure recurrence time 

over a range of times over the time period X or study duration).  
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Stage 5: Adding new data into the Epilepsy IPD master dataset 

The analysis ready dataset has the following variables, create an analysis dataset for the new 

data with as many of the following variables as possible: 

Note: Missing data is indicated by  `  .  ‘  for all variables.   

TRIALNO = Unique patient identifier for each participant in each trial (may be original or de-

identified ID provided with data, or a new unique ID created)  

TRIAL = Trial number assigned to each trial (see assignment list prepared by SJN) 

RAND = Date of randomisation 

DRUG= Randomised drug (labelled from 1 – 10)    

1= Carbamazepine (CBZ)    2= Phenobarbitone (PHB)    

3= Phenytoin (PHT)    4= Sodium Valproate (VPS)   

5= Lamotrigine (LTG)      6= Oxcarbazepine (OXC)   

7= Levetiracetam (LEV)     8= Topiramate (TPM)     

9= Gabapentin (GBP)     10 Zonisamide (ZNS)     

Outcome variables created in Stage 4 

WITHTIME = Time-to-withdrawal of allocated treatment     

WCENS = Withdrawal censoring indicator (1 = event, 0= censored)  

REMTIME = Time-to-12-month remission       

RCENS = 12 month remission censoring indicator (1 = event, 0= censored) 

REMTIME6= Time-to-6-month remission  

RCENS6 = 6 month remission censoring indicator (1 = event, 0= censored)   

SEZTIME = Time-to-first seizure after randomisation 

SCENS = First seizure censoring indicator (1 = event, 0= censored)  

Demographic variables (if data provided, further coding may be needed from original 

dataset) 

AGE = age at randomisation 
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SEX = Gender (1 = female, 0 = male) 

EPTYPE= Epilepsy Type (1 = partial, 0 = generalised)  

EPTYPE2 = Epilepsy Type Reclassified (participants with generalised seizures and age of 

onset over 30 years reclassified to partial - 1 = partial, 0 = generalised)     

EPTYPE3 = Epilepsy Type Reclassified (participants with generalised seizures and age of 

onset over 30 years and participants with missing seizure type reclassified to unknown 

seizure type – 2 – unknown,  1 = partial, 0 = generalised)   

NEURSIGN=Presence of Neurological Signs (1 = Yes, 0 = No)  

EEG = EEG results (1 = abnormal 0 = normal)   

SCAN= MRI / CT results (1 = abnormal 0 = normal)   

TIMESZD = Time from first (ever) seizure to nearest day to randomisation (calculated in a 

similar manner to ‘time-to-first seizure, see Stage 4)  

TIMESZY = Time from first (ever) seizure to nearest year to randomisation (calculated in a 

similar manner to ‘time-to-first seizure, see Stage 4)  

NUMSEIZ = Number of seizures 6 months prior to randomisation  

Example of analysis ready data  

 

Screenshot taken from SAS 9.3 of analysis ready data for Cochrane Epilepsy Individual 

Participant Data Network Meta-Analysis  
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Appendix 13: Example data structure for NMA in Chapter 6 

Method described in Chapter 6 and Chapter 8 reduce IPD to summary statistics, with the 

overall objective of being able to incorporate aggregate data with IPD in NMA. Summary 

statistics estimated from IPD from each study were then combined in separate NMAs by 

epilepsy type as if they were aggregate data.  

Table 44: Example structure of a dataset in ‘pairs’ format in Stata version 14.  

Id loghr seloghr drug1 drug2 eptype 

trial 1 0.651982 0.467607 CBZ PHB partial 

trial 1 0.235209 0.449843 CBZ PHB generalised 

trial 1 0.064524 0.490908 CBZ PHT partial 

trial 1 -1.21468 0.667371 CBZ PHT generalised 

trial 1 -0.05105 0.519561 CBZ VPS partial 

trial 1 0.140863 0.451576 CBZ VPS generalised 

trial 1 -0.58746 0.450693 PHB PHT partial 

trial 1 -1.44989 0.651693 PHB PHT generalised 

trial 1 -0.70303 0.484911 PHB VPS partial 

trial 1 -0.09435 0.427372 PHB VPS generalised 

trial 1 -0.11558 0.505825 PHT VPS partial 

trial 1 1.355542 0.651716 PHT VPS generalised 

trial 2 1.711753 0.60801 CBZ PHB partial 

trial 2 0.794814 0.592827 CBZ PHB generalised 

trial 2 0.241746 0.425658 CBZ PHT partial 

trial 2 -0.58901 0.548477 CBZ PHT generalised 

trial 2 0.227631 0.460312 CBZ VPS partial 

trial 2 -0.02997 0.479234 CBZ VPS generalised 

trial 2 -1.47001 0.590079 PHB PHT partial 

trial 2 -1.38382 0.673133 PHB PHT generalised 

trial 2 -1.48412 0.610886 PHB VPS partial 

trial 2 -0.82478 0.62 PHB VPS generalised 

trial 2 -0.01412 0.442092 PHT VPS partial 

trial 2 0.559036 0.573396 PHT VPS generalised 

trial 3 0.450873 0.177159 CBZ PHB partial 

trial 3 0.183851 0.179511 CBZ PHT partial 

trial 3 -0.26702 0.162971 PHB PHT partial 

trial 4 -0.03332 0.154534 CBZ VPS partial 

trial 5 0.190944 0.311932 CBZ VPS partial 

trial 5 -0.61638 0.353263 CBZ VPS generalised 

trial 6 -0.02297 0.353657 CBZ VPS partial 

trial 6 0.306479 0.386035 CBZ VPS generalised 
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This was achieved by producing a dataset of the summary statistics structured as a list of pairwise comparisons and converted from ‘pairs’ to ‘augmented’ 

format via the ‘network’ command within Stata version 14 [310]. In other words, the following code was applied to the data in Table 44 which produced a 

dataset of the format in Table 45: 

network import, tr(drug1 drug2) eff(loghr) study(id) stderr(seloghr) 

network convert augmented 

Table 45: Example structure of a dataset in ‘augmented’ format in Stata version 14.  

id eptype logvar _design loghr_2 loghr_3 loghr_4 _S_2_2 _S_2_3 _S_2_4 _S_3_3 _S_3_4 _S_4_4 

trial 1 partial 0.255859 1 2 3 4 0.651982 0.064524 -0.05105 0.218656 0.128262 0.126731 0.240991 0.127538 0.269944 

trial 1 generalised 0.424734 1 2 3 4 0.235209 -1.21468 0.140863 0.202359 0.111519 0.111816 0.445384 0.112285 0.203921 

trial 2 partial 0.195445 1 2 3 4 1.711753 0.241746 0.22763 0.369676 0.101334 0.104191 0.181185 0.098814 0.211887 

trial 2 generalised 0.328783 1 2 3 4 0.794813 -0.58901 -0.02997 0.351444 0.099581 0.098355 0.300827 0.100854 0.229665 

trial 3 partial 0.02656 1 2 3 0.450873 0.183851 
 

0.031385 0.018525 
 

0.032224 
  

trial 4 partial 0.023881 1 4 
  

-0.03332 
     

0.023881 

trial 5 partial 0.097302 1 4 
  

0.190944 
     

0.097302 

trial 5 generalised 0.124795 1 4 
  

-0.61638 
     

0.124795 

trial 6 partial 0.125073 1 4 
  

-0.02297 
     

0.125073 

trial 6 generalised 0.149023 1 4 
  

0.306479 
     

0.149023 

Subsequently, NMA was performed via the ‘network meta’ command. 
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Appendix 14: Additional analysis and sensitivity analyses of IPD-NMA 

performed to account for inconsistencies in IPD (Chapter 7) 

The following sensitivity analyses were performed where minor inconsistencies were 

identified when preparing IPD for analysis (see Chapter 5.3.3 and Appendix 12). See Chapter 

7.1.3 for full details of other additional and sensitivity analyses performed. 

 In Stephen 2007, there were minor inconsistencies between rates of seizure recurrence 

and reasons for withdrawal between the data provided and the publication, which could 

not be resolved with the original trial authors. Therefore, a sensitivity analysis was 

performed excluding Stephen 2007 from all analyses. 

 In Reunanen 1996, participants were considered to have completed the trial and hence 

treatment was withdrawn if they experienced a seizure after week six. This does not 

correspond with the treatment withdrawal definition used in this review and analysis 

(see Chapter 5.3.3.2). Therefore a sensitivity analysis was performed excluding Reunanen 

1996 for the analysis of 'Time-to-withdrawal of allocated treatment.' 

 In Banu 2007, there were minor inconsistencies between rates of seizure recurrence 

between the data provided and the published paper, which could not be resolved. 

Therefore, a sensitivity analysis was performed excluding Banu 2007 from analysis of 

'Time-to-first seizure.' (Data provided was insufficient to contribute to outcomes time-

to-6-month remission and time-to-12-month remission, see Chapter 5.4.3).  

 In Nieto-Barrera 2001, seizures that occurred during the first four weeks of the trial were 

not included in efficacy analyses and dates of seizures before week four were not 

provided. Therefore, ‘time-to-first seizure’ was calculated after week four rather than 

after randomisation and a sensitivity analysis was performed excluding Nieto-Barrera 

2001 from analysis of 'time-to-first seizure' (this trial was 24 weeks duration so did not 

contribute to outcomes time-to-6-month remission and time-to-12-month remission). 

 In Placencia 1993, there were minor inconsistencies between reasons for withdrawal 

between the data provided and the published paper. In the primary analysis, withdrawals 

were classified according to the reasons provided in IPD and a sensitivity analysis was 

performed for analysis of 'time-to-withdrawal of allocated treatment' with withdrawals 

reclassified according to definitions from the published paper.  
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Results of additional and sensitivity analyses 

Figure 19: Time-to-withdrawal of allocated treatment and time-to-first seizure adjusted 

for age (partial seizures) 

 
Figure 20: Time-to-withdrawal of allocated treatment and time-to-first seizure adjusted 

for age (generalised seizures) 
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Figure 21: Time-to-withdrawal of allocated treatment using parametric AFT model (both 

seizure types) 

 
 

Figure 22: Time-to-first seizure using parametric AFT model (both seizure types) 
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Figure 23: Time-to-withdrawal of allocated treatment and time-to-first seizure, Stephen 

2007 excluded (partial seizures) 

   

Figure 24: Time-to-withdrawal of allocated treatment and time-to-first seizure, Stephen 

2007 excluded (generalised seizures) 
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Figure 25: Time-to-withdrawal of allocated treatment, Reunanen 1996 excluded (both 

seizure types) 

 

Figure 26: Time-to-withdrawal of allocated treatment, Placencia 1996 excluded (both 

seizure types) 
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Figure 27: Time-to-first seizure, Banu 2007 excluded (both seizure types) 

 

Figure 28: Time-to-first seizure, Nieto-Barrera 2001 excluded (both seizure types) 
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Figure 29: Time-to-withdrawal of allocated treatment and time-to-first seizure, seizure 

type reclassification 1 (see Notes below, results for individuals with partial seizures) 

 

Figure 30: Time-to-withdrawal of allocated treatment and time-to-first seizure, seizure 

type reclassification 1 (see Notes below, results for individuals with generalised seizures) 
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Figure 31: Time-to-withdrawal of allocated treatment and time-to-first seizure, seizure 

type reclassification 2 (see Notes below, results for individuals with partial seizures) 

 

Figure 32: Time-to-withdrawal of allocated treatment and time-to-first seizure, seizure 

type reclassification 2 (see Notes below, results for individuals with generalised seizures) 
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Figure 33: Time-to-withdrawal of allocated treatment, seizure type reclassification 1 with 

random-effects (see Notes below, both seizure types) 

 

Notes 

See Appendix 10 for references of the trials included in the Cochrane IPD-NMA and Chapter 

5.2.1.3 for abbreviations of drugs. 

Results shown on all figures are those from NMA (direct and indirect evidence combined).  

Generalised tonic-clonic seizures with or without other seizure types is shortened to 

'Generalised seizures' for brevity 

Reclassification 1: Re-classification of 1,164 individuals with generalised seizures and age of 

onset greater than 30 years as having partial-onset seizures. 

Reclassification 2: Re-classification of 1,164 individuals with generalised seizure and age at 

onset greater than 30 years and 574 individuals with missing seizure type to 'unclassified 

epilepsy type'   

 



 

312 
 

3
1

2
 

Appendix 15: Additional results of the IPD-NMA: time to 12 month and time to 6 month remission 

Figure 34: Time to 12 month remission: All IPD-NMA results by epilepsy type 
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Figure 35: Time to 6 month remission: All IPD-NMA results by epilepsy type 
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Appendix 16: Investigation of inconsistency in Chapter 7 

All figures present direct evidence (from pairwise meta-analysis), indirect evidence (from node-splitting) and NMA results. 

Figure 36: Time-to-withdrawal of allocated treatment and time-to-first seizure (carbamazepine (CBZ) reference) for individuals with generalised seizures 
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Figure 37: Time-to-withdrawal of allocated treatment and time-to-first seizure (gabapentin (GBP) reference) for individuals with generalised seizures 
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Figure 38: Time-to-withdrawal of allocated treatment and time-to-first seizure (levetiracetam (LEV) reference) for individuals with generalised seizures 
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Figure 39: Time-to-withdrawal of allocated treatment and time-to-first seizure (lamotrigine (LTG) reference) for individuals with generalised seizures 
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Figure 40: Time-to-withdrawal of allocated treatment and time-to-first seizure (oxcarbazepine (OXC) reference) for individuals with generalised seizure 
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Figure 41: Time-to-withdrawal of allocated treatment and time-to-first seizure (phenobarbitone (PHB) reference) for individuals with generalised seizures 
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Figure 42: Time-to-withdrawal of allocated treatment and time-to-first seizure (phenytoin (PHT) reference) for individuals with generalised seizures 

 



 

321 
 

3
2

1
 

Figure 43: Time-to-withdrawal of allocated treatment and time-to-first seizure (topiramate (TPM) reference) for individuals with generalised seizures 
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Figure 44: Time-to-withdrawal of allocated treatment and time-to-first seizure (sodium valproate (VPS) reference) for individuals with generalised seizures 
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Figure 45: Time-to-withdrawal of allocated treatment and time-to-first seizure (carbamazepine (CBZ) reference) for individuals with partial seizures 

 



 

324 
 

3
2

4
 

Figure 46: Time-to-withdrawal of allocated treatment and time-to-first seizure (gabapentin (GBP) reference) for individuals with partial seizures 
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Figure 47: Time-to-withdrawal of allocated treatment and time-to-first seizure (levetiracetam (LEV) reference) for individuals with partial seizures 
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Figure 48: Time-to-withdrawal of allocated treatment and time-to-first seizure (lamotrigine (LTG) reference) for individuals with partial seizures 
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Figure 49: Time-to-withdrawal of allocated treatment and time-to-first seizure (oxcarbazepine (OXC) reference) for individuals with partial seizures 
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Figure 50: Time-to-withdrawal of allocated treatment and time-to-first seizure (phenobarbitone (PHB) reference) for individuals with partial seizures 
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Figure 51: Time-to-withdrawal of allocated treatment and time-to-first seizure (phenytoin (PHT) reference) for individuals with partial seizures 
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Figure 52: Time-to-withdrawal of allocated treatment and time-to-first seizure (topiramate (TPM) reference) for individuals with partial seizures 
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Figure 53: Time-to-withdrawal of allocated treatment and time-to-first seizure (sodium valproate (VPS) reference) for individuals with partial seizures 
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Figure 54: Time-to-withdrawal of allocated treatment and time-to-first seizure (zonisamide (ZNS) reference) for individuals with partial seizures 
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Appendix 17: Additional results from Chapter 7 

Figures presented within this Appendix show NMA results for all pairwise comparisons for 

the additional analyses described in Chapter 8.   

See Appendix 10 for references of the trials included in the Cochrane IPD-NMA and Chapter 

5.2.1.3 for abbreviations of drugs.  

Results shown on all figures are those from NMA (direct and indirect evidence combined).  

Generalised tonic-clonic seizures with or without other seizure types is shortened to 

'Generalised seizures' for brevity 

Figure 55: NMA results of IPD reduced to summary statistics: individuals with partial 

seizures  
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Figure 56: NMA results of IPD combined with AD: individuals with partial seizures  
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Figure 57: NMA results of IPD reduced to summary statistics: individuals with generalised 

seizures 
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Figure 58: NMA results of IPD combined with AD: individuals with generalised seizures  
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Figure 59: NMA results of IPD reduced to summary statistics for all individuals regardless of 

epilepsy type  
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Figure 60: NMA results of IPD combined with AD for all individuals regardless of epilepsy 

type  
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Appendix 18: Published work from this thesis 

A full list of publications and presentations of work in this thesis is provided at the start of 

this thesis. Locations of publications directly relating to this thesis are provided: 
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