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Abstract

In this paper we adopt an approach suitable for monitoring the time evolution of the

intramolecular contribution to the spectral density of a set of identical chromophores

embedded in their respective environments. We apply the proposed method to the

Fenna–Matthews–Olson (FMO) complex, with the objective to quantify the differences

among site–dependent spectral densities and the impact of such differences on the

exciton dynamics of the system. Our approach is based on the one recently proposed in

J. Phys. Chem. Lett., 2016, 7, 3171–3178 and takes advantage of the Vertical Gradient

approximation to reduce the computational demands of the normal modes analysis.

We show that the region of the spectral density that is believed to strongly influence

the exciton dynamics changes significantly over a large time scale. We then studied

the impact of the intramolecular vibrations on the exciton dynamics by considering a

model of FMO in a vibronic basis and neglecting the interaction with the environment

to isolate the role of the intramolecular exciton-vibration coupling. In agreement with

the assumptions in the literature, we demonstrate that high frequency modes at energy

much larger than the excitonic energy splitting have negligible influence on exciton

dynamics despite the large exciton-vibration coupling. We also find that the impact

of including the site–dependent spectral densities on exciton dynamics is not very

significant, indicating that it may be acceptable to apply the same spectral density on

all sites. However, care needs to be taken for the description of the exciton–vibrational

coupling in the low frequency part of intramolecular modes because exciton dynamics

is more susceptible to low frequency modes despite their small Huang-Rhys factors.
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1 Introduction

When trying to understand the physics of energy transfer in Light Harversting Complexes

(LHCs),1–3 a number of authors have tried, on one hand, to build models as realistic as

possible4–14 and, on the other hand, to capture the essence of the phenomenon with model

Hamiltonians containing a reduced number of parameters.15–20 Ideally, one wants to under-

stand the system in terms of the simplest possible model that captures the physics explaining

a range of experiments. The coupling between exciton and high frequency vibrations localised

on each chromophore is a highly debated point in recent works as it has been proposed that

such coupling is essential for efficient energy transfer.21–27 Moreover, the inclusion of high

frequency intramolecular vibrations greatly complicates the description of the quantum dy-

namics, giving rise to non-Markovian effects (if the vibrations are part of the bath) or very

large Liouville space (if the vibrations are included in the sytem). The aim of this work is to

present a detailed calculation of the intramolecular exciton–vibrational coupling in multicro-

mophoric systems and an assessment of the level of detail needed to describe the quantum

dynamics of the exciton.

A common way to evaluate the spectral density of a chromophore embedded in a protein

involves the Fourier Transform of the autocorrelation function of the excitation energy.1

This is computed by sampling a classical molecular dynamics (MD) trajectory at very small

time intervals, so that the high frequency region of the spectral density can be retrieved,

and for several picoseconds, so that the low frequency region is described accurately. A set

of snapshots is then extracted from the classical MD trajectory, and excitation energies are

computed for each snapshot at various levels of accuracy, usually including the environment

in a classical scheme (point charges),4,5,7,9,10,12 sometimes even taking polarisation effects

into account.1,8,13,14 The major problem involving this approach is the inconsistency between

the potentials used to estimate the electronic–nuclear coupling and the excitation energies,

leading to inaccurate descriptions.28,29 Other problems related to the nature of this approach,

such as the choice of the classical force–field,30 the so–called “geometry mismatch”,1 the
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treatment of quantised (intramolecular) vibrations in a classical framework,11 can lead to

further inaccuracies. The methodology is also extremely expensive computationally, forcing

most users to adopt semiempirical quantum chemical methods (like ZINDO)4,5,8,9,12,14 or

investing such a large amount of resources that makes the calculations difficult to repeat or

modify. The procedure described leads to an analysis limited to small time intervals (tens

of picoseconds at best), making it virtually impossible to evaluate the evolution of the elec-

tron-phonon coupling on a time scale where conformational rearrangements of the protein

may occur.

The objective of this paper is to monitor the time evolution of the intramolecular part

of the spectral density of a set of identical chromophores embedded in their respective en-

vironments, starting from other approaches and approximations that have been proposed

recently.28,29,31 For this purpose, we will focus on the most studied LHC, namely the Fenna–

Matthews–Olson (FMO) complex. We computed the spectral densities for each chromophore

over a large time scale to highlight the differences of this strategy in comparison to MD–

based approaches. The spectral densities are then used to extract a set of effective frequencies

(Sec. 2.1) to describe in a vibronic basis the dynamics of the excitation within the closed

excitonic system (Sec. 2.2). This will provide insight as to whether the high frequency part

of intramolecular modes has a negligible influence on the exciton dynamics for this system.

Finally, we evaluate the differences among the set of site–dependent spectral densities in

terms of impact on the physics of the system.

2 Results and Discussion

2.1 Computation of the exciton–vibrational coupling

It is possible to improve the consitency between the classical and the quantum–mechanical

(QM) potential and to solve, at least partially, some of the problems discussed in the Intro-

duction. For instance, to avoid the “geometry mismatch” problem it is possible to run expen-
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sive quantum–mechanics/molecular–mechanics (QM/MM) MD simulations,14 or to project

QM optimised structures onto the MD geometries with an RMSD minimisation procedure.32

An alternative would be to parametrise the MM force–fields so that they reproduce the QM

behaviour.33,34 A different solution involves the separation of the spectral density into intra–

and intermolecular contributions.28,29,31 In refs.28,29, Lee and Coker devised a strategy to

compute the intramolecular contributions (the ones that classical potentials describe inac-

curately11) at a high level of accuracy: assuming that the harmonic approximation holds in

both electronic states and that the vibrational motions and frequencies are the same in the

two electronic states, they propose a procedure to map the ground state Potential Energy

Surface (PES) to the excited state one, by monitoring the slope of the excitation energy gap

upon distortion of the ground state geometry along a normal mode coordinate. In this way,

it is possible to retrieve the displacement from the equilibrium position along each normal

mode, and thus the Huang–Rhys factor and the reorganisation energy. These are the needed

quantities to obtain the intramolecular part of the spectral density,28 as in

J(ω) = π
∑
i

ωiλiδ(ω − ωi), (1)

where ωi and λi are the frequency and reorganisation energy of the i-th normal mode,

respectively. While the strategy proposed resulted in an impressive agreement with experi-

mental data, its numerical implementation is nonetheless computationally demanding, since

it involves distortion of the geometry along each normal mode coordinate for an arbitrarily

chosen number of points, followed by an excited state calculation. The nature of the ap-

proach leaves space for easy automatisation, but the number of TDDFT calculations to be

run is still of the order of at least several thousands.

Starting from the same assumptions (harmonic approximation, same frequencies and nor-

mal modes in both electronic states), it is possible to use the so–called “Vertical Gradient”

(VG) approximation,35,36 which allows the approximation of the full excited state PES from

a single gradient calculation at the Franck–Condon point of the ground state equilibrium
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geometry. The method, also known with the names “Linear Coupling Model” (LCM)37 or

“Vertical Franck–Condon” (VFC),38 has been widely applied35–42 and is particularly useful

for molecules for which a geometry optimisation in the excited state is either difficult or com-

putationally unfeasible.39 Within the harmonic approximation we can write the electronic

ground state (GS) PES as35,36

EGS(QGS) =
1

2
QT

GSΩ2
GSQGS, (2)

where QGS is the vector of ground state normal modes (expressed in mass-weighted

coordinates), and ΩGS is the diagonal matrix of ground state vibrational frequencies. For

the electronic excited state (ES) PES, we consider a truncated Taylor expansion about the

GS equilibrium position, as in

EES(QGS) = ∆Ev + (∇EES)TQGS +
1

2
QT

GSHESQGS, (3)

where ∆Ev is the vertical energy difference at the ground state minimum, ∇EES is the

vector of excited state gradients along each normal mode at the ground state minimum, and

with HES we indicate the excited state Hessian. The Hessian is, in general, not diagonal,

i.e. the normal modes of the excited state (QES) can be expressed in terms of the ones of

the ground state according to43

QES = JQGS + K, (4)

where J is the Duschinsky matrix and K the displacement vector. If we assume that

the normal modes and the vibrational frequencies in the two states are the same, we are

setting J = 1 and we can replace HES in Eq. 3 by Ω2
GS. We thus need to determine the

displacement vector K, which, following Santoro,35 we can express in terms of the excited

state gradient at the ground state minimum as in
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K = −Ω−2GS∇EES. (5)

It is convenient to convert the mass-weighted displacements to dimensionless units,44

using ∆i = Ki

√
ωi

~ , where ωi is the frequency of the i-th normal mode. We obtained the

Huang–Rhys factor Si = 1
2
∆2

i and the reorganisation energy λi = ~ωiSi for the i-th normal

mode, and the total one as λ =
∑3N−6

i=1 λi.

To summarise, the model requires the knowledge of the ground state equilibrium ge-

ometry, normal modes (QGS) and vibrational frequencies (ΩGS), and of the excited state

gradients at the ground state equilibrium geometry (∇EES). All these quantities can be ob-

tained in a QM framework, even considering environmental effects with continuum (PCM,45

COSMO46) or atomistic models (ONIOM,47 QM/MM1). The latter in particular allows the

consideration of the differences that might characterise identical chromophores embedded

in different environments, allowing to study the spectral density of local minima visited

along the trajectory. More details on the protocol followed to obtain the required data

for the vibrational analysis are given in Sec. 4. This approximation is appropriate because

bacteriochlorophyll–A (BCL) molecules do not undergo large amplitude motions upon elec-

tronic excitation. To conclude this overview, we stress that the basic assumptions of the

model are exactly the same used in MD–based approaches, namely a linear coupling of the

excitation with an harmonic bath. The major advantages in comparison to MD–based meth-

ods are: (i) a faster evaluation of the spectral density (ii) a more realistic description of

intramolecular modes (iii) the possibility to study environmental effects over very large time

scales, that may involve conformational rearrangements of the protein.

We implemented the VG approach to calculate the displacements, the Huang–Rhys fac-

tors, and reorganisation energies for the 8 BCLs in a monomeric unit of FMO, including

environmental effects in an ONIOM scheme (see Sec. 4), similarly to what proposed in

ref.28. The ONIOM approach results particularly convenient in the geometry optimisation

process in comparison to QM/MM microiteration approaches because of subtle difficulties
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that the latter may present, such as an excessive proximity between QM atoms and point

charges. However, one major drawback of the ONIOM approach is the lack of inclusion of

any polarisation effect whatsoever. For a more accurate description of a process involving

an electronic rearrangement, better results could be obtained using an approach that takes

into account polarisation of the QM density due to an electrostatic embedding rather than

the ONIOM approach, which can be further improved considering mutual polarisation ap-

proaches. Table 1 shows the values we obtained from the normal modes analysis within the

VG framework, and it shows the difference with respect to gas phase calculations. The

agreement with experimental data from Difference Fluorescence Line Narrowing (∆FLN)

performed on FMO at low temperature48 is reasonable, validating the VG approximation

for this molecule. There is a clear tendency in underestimating the total reorganisation

energy, which can be explained considering the lack of polarisation effects intrinsic to the

ONIOM description discussed a few lines above. Finally, the computed values agree with

other literature data on the same49 or on similar chromophores.31

Table 1: Total reorganisation energies (λ) obtained from the normal modes anal-
ysis in a VG framework.

Chrom. Env. λ (cm−1)

∆FLN exp.48 209
BCL gas phase 128

BCL367 ONIOM 152
BCL368 ONIOM 149
BCL369 ONIOM 167
BCL370 ONIOM 152
BCL371 ONIOM 135
BCL372 ONIOM 136
BCL373 ONIOM 147
BCL400 ONIOM 147

From the normal modes analysis, we computed the spectral densities convolving the dis-

crete line spectrum (see Eq. 1) with a continuous lineshape function describing the response

of a Brownian harmonic oscillator to an external field50
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J(ω) = π

3N−6∑
i=1

ωiλi
γω2

(γω)2 + (ω2
i − ω2)2

(6)

where ωi and λi are the frequency and reorganisation energy of the i-th normal mode,

respectively, and γ is a broadening parameter arbitrarily chosen. Out of simplicity, we used

the same γ for all normal modes, convolving the discrete spectrum with γ = 5 cm−1 for

comparison with data obtained at different times (see Figs. 1 and 2), and γ = 125 cm−1

to extract a coarse–grained model of the spectral density (see Fig. 3), assuming it is the

result of a small number of damped harmonic oscillators, to use in the study of the exciton

dynamics.

In Fig. 1 we show the comparison between spectral densities separated by an 8 ns time

window. The spectral densities of the eight chromophores show very similar profiles. In all

cases, the 1200–1400 cm−1 region is rich of highly contributing modes characterised by com-

bined stretching and in–plane bending motions of the ring. A lower contribution can be

identified in the 700–800 cm−1 region, where the ring is involved in combined bending vi-

brations. The main feature that we can identify in these regions due to time evolution is the

redistribution of the coupling with the excitation, but the modes involved seem to be the

same. BCL367 seems to be the chromophore with the most significant variations in terms of

frequency of the modes involved and intensity of the coupling. The region below 500 cm−1

is characterised by out-of-plane motions involving the whole ring. This last region is the one

that is more influenced by the time evolution (i.e. environmental rearrangements) and, as

assumed in the literature and demonstrated in the second part of this paper, it is the region

that influences the most the exciton dynamics.

A visual comparison with computed spectral densities reported by Coker28 shows that

our VG–based strategy gives similar results in terms of molecular vibrations coupled to the

electronic excitation, and also in terms of relative intensities of the various regions. Results

obtained from MD–based approaches describing the same system4,12,30 show rather different

profiles for ω > 1000cm−1, overestimating the effect of modes in the 1300–1600 cm−1 region
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Figure 1: Comparison between calculated spectral densities at t = 0 ns (blue line) and
t = 8 ns (red line), with broadening parameter γ = 5 cm−1.
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because of the problematic treatment of quantised vibrations in classical simulations,11 as

mentioned in the Introduction. A more sophisticated QM/MM MD approach describing

structurally similar chromophores in a different protein environment,14 is qualitatively in

agreement with our calculations.

We highlight how this calculation strategy allows to study quickly the changes of the spec-

tral density over large time scales, which cannot be easily done with MD–based approaches:

averaging over different conformations explored on such time scales would not be correct,

as the energy transfer process occurs in one of the possible conformations exclusively. Addi-

tionally, the computational cost of an MD–based approach applied to such time scales would

make the calculations impossible. The equivalent alternative using an MD–based approach

would consist of repeating a few thousands TDDFT calculations on portions of trajectory

separated in time, which clearly makes the procedure extremely costly. In summary, we

highlight a computational insight that cannot be achieved with other methods and, conse-

quently, a mechanistic insight which is not present in literature. To support this perspective,

in Fig. 2 we show the repeated calculation of the spectral density at various points along

the trajectory for BCL367. We notice how the time evolution of the spectral density has a

significant influence on the intramolecular modes at ω ≤ 500 cm−1. We also observe minor

redistributions of the coupling with modes at 1200–1400 cm−1, and considerable changes at

≈ 1600 cm−1, but, as commonly assumed and demonstrated in the second part of this paper,

these modes have a low impact on the exciton dynamics.

The objective at this point is to build the best possible phenomenological model of the

excitonic system retaining the most important information of the spectral density. We start

by constructing a coarser representation of the spectral density based on a reduced number of

modes but still able to capture the shape of the spectral density and differentiate between the

spectral densities of the different chromophores. We fit the broadened spectral density with

the sum of the spectral densities of 4 damped harmonic oscillators, each with a characteristic

frequency ωk, damping (broadening) γk and intensity Ak, as in
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Figure 2: Comparison between calculated spectral densities at various times for BCL367,
with broadening parameter γ = 5 cm−1 (top) and γ = 125 cm−1 (bottom).

J(ω) =
4∑

k=1

Ak
γkω

2

(γkω)2 + (ω2
k − ω2)2

, (7)

where we fit the parameters Ak, γk, and ωk. We imposed constraints in terms of allowed

intervals for each ωk, setting 0 cm−1 < ω1 < 500 cm−1, 500 cm−1 < ω2 < 1000 cm−1
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and ω3, ω4 > 1000 cm−1, which seemed reasonable intervals, considering the coarse spectral

densities reported in Figs. 2–3. We introduced constraints because the high intensity region

is not necessarily the most important one but, as we will see below, it also depends on the

energy range of the excitonic system. It is important that the approximate spectral densities

correctly sample all frequency ranges, while an unconstrained fit would describe better the

regions at higher intensity. In Fig. 3 we report the broadened and fitted spectral densities,

from which we obtained the Huang–Rhys factor of the k-th effective mode Sk.

λk =
1

π

ˆ ∞
0

Jk(ω)

ω
dω

Sk =
λk
ωk

.

(8)

The total fitted reorganisation energies (λfit =
∑4

k=1 λk) are slightly lower (≈ 10cm−1)

with respect to the ones obtained from the previously discussed normal modes analysis,

thus we rescaled them to match the values reported in Table 1 for the exciton dynamics

calculations.

The coarse spectral densities reported in the bottom panel of Fig. 2 highlight more clearly

how the time evolution has no significant impact on the ω > 500 cm−1 region, while it is

non negligible in the ω ≤ 500 cm−1 one, resulting in a shift of several wavenumbers of the

effective frequency describing this region, and thus potentially impacting the exciton dy-

namics. In Table 2 we report a summary of the evolution of the effective modes along the

MD trajectory for BCL367, based on the broad spectral densities reported in the bottom

panel of Fig. 2. These data highlight that the time evolution has a high influence on the

intramolecular modes in the ω1 region, showing a huge change in the position of the effective

mode over the 210–350 cm−1 range. Modes in the ω2 region are affected to a much lesser

extent, showing a homogeneous behaviour along the trajectory. Modes in the ω3,4 regions are

somehow reciprocally influenced depending on the presence of an effective mode above 1500
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cm−1: when ω4 > 1500 cm−1, S3 � S4. When ω4 < 1500 cm−1, S3 and S4 are comparable.

However, the effective frequencies in these regions behave homogeneously as well.

Table 2: Results from the fitting of broadened spectral densities (γ = 125 cm−1)
for BCL367 along the MD trajectory. Time in ns, ωk and γk in cm−1, Sk dimen-
sionless.

Time ω1 γ1 S1 ω2 γ2 S2 ω3 γ3 S3 ω4 γ4 S4

0.0 224.39 167.06 0.0306 787.79 258.80 0.0583 1210.59 172.63 0.0186 1320.01 391.87 0.0399
3.0 281.45 152.67 0.0137 776.19 263.79 0.0589 1200.34 173.91 0.0210 1360.12 400.79 0.0390
3.5 216.54 184.02 0.0344 789.27 276.01 0.0554 1195.53 180.10 0.0205 1335.33 402.34 0.0366
4.0 291.47 414.15 0.0232 773.11 198.21 0.0568 1248.29 328.72 0.0604 1557.52 150.78 0.0049
4.5 286.68 333.07 0.0276 783.26 249.19 0.0490 1252.42 302.99 0.0608 1561.23 185.24 0.0088
5.0 276.03 195.40 0.0152 796.72 248.41 0.0591 1253.85 325.10 0.0614 1551.68 152.35 0.0057
5.5 228.36 170.61 0.0367 794.84 254.01 0.0592 1224.45 240.97 0.0500 1481.72 349.49 0.0157
6.0 240.71 204.40 0.0253 811.05 315.02 0.0576 1195.55 148.48 0.0156 1343.30 419.76 0.0428
6.5 351.57 377.87 0.0342 781.22 245.27 0.0624 1213.04 159.65 0.0164 1334.34 370.48 0.0462
7.0 239.87 255.10 0.0576 781.82 239.63 0.0466 1200.92 110.06 0.0158 1322.74 398.94 0.0520
7.5 222.03 124.94 0.0232 800.86 295.12 0.0673 1207.50 156.07 0.0244 1375.79 429.56 0.0373
8.0 300.88 298.15 0.0209 770.88 229.88 0.0501 1234.96 309.28 0.0694 1562.64 174.78 0.0082

In Table 3 we report a summary of the effective modes we extracted with this fitting

procedure. In the ω1 region, we obtain effective frequencies in the 240–300 cm−1 range, with

the exception of BCL369. BCL400 is the only one showing the largest Huang–Rhys factor in

this region. In the ω2–ω4 regions, the behaviour of the various chromophores is pretty much

similar. The only exception in this homogeneous behaviour is BCL367, which is the only

chromophore showing a maximum above 1500 cm−1. Overall, we observe a consistent picture

arising from the coarse graining of the spectral densities, and we do not expect significant

differences among chromophores at this point. To confirm this hypothesis, we studied the

exciton dynamics of the system, and our results are discussed in the next sections.

2.2 Exciton dynamics

In this section we study the exciton dynamics using the effective modes extracted from

the spectral densities in Sec. 2.1. We first establish whether the differences in the exciton-

vibrational coupling for different chromophores are significant and what the most important

component is for the construction of the model Hamiltonian. As we want to isolate the effect
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Figure 3: Left: calculated spectral densities (t = 8 ns) with broadening parameter γ =
125 cm−1. Right: fitted spectral densities (see Eq. 7) used to extract effective modes,
summarised in Table 3.

Table 3: Results from the fitting of broadened spectral densities (γ = 125 cm−1).
ωk and γk in cm−1, Sk dimensionless.

ω1 γ1 S1 ω2 γ2 S2 ω3 γ3 S3 ω4 γ4 S4

BCL367 300.88 298.15 0.0209 770.88 229.88 0.0501 1234.96 309.28 0.0694 1562.64 174.78 0.0082
BCL368 242.41 108.44 0.0205 794.68 257.77 0.0744 1220.08 175.40 0.0290 1407.96 389.34 0.0290
BCL369 352.68 505.15 0.0555 780.76 228.73 0.0611 1207.15 117.51 0.0229 1336.75 347.33 0.0466
BCL370 243.05 205.42 0.0415 790.14 264.03 0.0728 1216.89 123.46 0.0133 1327.38 348.18 0.0440
BCL371 271.50 180.39 0.0252 783.19 250.54 0.0689 1214.97 135.86 0.0154 1349.34 403.36 0.0351
BCL372 277.42 429.20 0.0278 790.26 273.38 0.0630 1200.20 141.26 0.0117 1340.24 389.80 0.0418
BCL373 249.19 124.50 0.0106 788.84 248.38 0.0698 1199.56 131.05 0.0162 1335.10 401.22 0.0460
BCL400 253.10 259.79 0.0653 777.33 206.68 0.0541 1208.25 173.99 0.0264 1378.26 416.03 0.0340
Exp.48 306.50 417.21 0.0737 759.49 235.32 0.0978 1218.09 362.51 0.0815

of intramolecular (high frequency) modes, we include them in the system and we ignore

the effect of the bath (which may mask some of the effect and would require additional

parameters).

2.2.1 Hamiltonian of the vibronically coupled system

To describe the exciton dynamics of the FMO complex, where effective intramolecular vibra-

tional modes are explicitly included in the system Hamiltonian, we consider one electronic

state per monomer. Here each electronic state can be in principle coupled to any arbi-

trary number of intramolecular vibrational modes, which are assumed to be localized on a

monomer. The Hamiltonian of the vibronically coupled system can then be written in a site

basis as follows:51
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Ĥ =
∑
i,v

(
Ei + ~ω · v

)
|i,v〉〈i,v|+

∑
i,j 6=i

∑
v,w

τijV
i,j
v,w|i,v〉〈j,w|, (9)

where Ei is the excitation energy localized on molecule i with zero-point energy included;

ω and v are the vectors of vibrational frequency and vibrational quantum number, respec-

tively, of vibronic state |i,v〉, where a monomer i is in its electronic excited state and the

other monomers are in their electronic ground state; τij is the excitonic coupling between

states i and j; and V i,j
v,w =

∏
m S i,j

vm,wm
is the Franck-Condon factor, where S i,j

vm,wm
is the

vibrational overlap integral for the vibrational mode m associated with molecule i or j and

determined by the Huang-Rhys factor Si,j
m and the vibrational quantum numbers vm and

wm.52 (Note that the S i,j
vm,wm

is zero if m is not localized on i or j.)

We employ an eight-site model of the FMO complex and use the matrix elements in

refs.53,54 for the excitation energies Ei and the excitonic coupling τij given by in cm−1

ĤExciton =



310 −98 6 −6 7 −12 −10 38

−98 230 30 7 2 12 5 8

6 30 0 −59 −2 −10 5 2

−6 7 −59 180 −65 −17 −65 −2

7 2 −2 −65 405 89 −6 5

−12 11 −10 −17 89 320 32 −10

−10 5 5 −64 −6 32 270 −11

38 8 2 −2 5 −10 −11 505



(10)

Each site is coupled to four effective vibrational modes extracted from the spectral density of

each chromophore (see Table 3) unless noted otherwise. The dimension of the Hilbert space

increases rapidly with the increase of the vibrational quantum number. Since it is not likely

that vibronic states with a large quantum number are populated by a substantial amount,

we impose a cut-off for the vibrational quantum number as discussed in detail in the next
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Figure 4: Population of the vibrational excited states with a maximum total quantum num-
ber of 2. Total population of the low-lying vibrational excited states almost amounts to the
total population of the vibrational excited states, i.e., P1000 +P2000 +P0100 ≈ 1−P0000. The
inset shows that higher excited states have negligible population (1−P0000−P1000−P2000−
P0100 < 1×10−3) and therefore can be truncated.

section. We assume an instantaneous excitation of site i=8 (BCL400), which has the largest

excitation energy, in its vibrational ground state at t=0. The time evolution of the initial

state is obtained by |ψ(t)〉 = e−iĤt/~|ψ(0)〉, where the time evolution operator is expanded

using Chebychev polynomials.55–57

2.2.2 Impact of site-dependent spectral densities on exciton dynamics

Table 3 shows that the strongest exciton-vibrational coupling appears at high frequency

modes (ω > 770 cm−1) except for BCL400, where the lowest frequency mode exhibits the

strongest coupling. However, the vibrational energy of high frequency modes is much larger

than the excitonic transition energy and therefore the amount of population transferred to

these states may still be insignificant. To find which effective modes contribute most to the

exciton dynamics, we analyze how the population is distributed among different vibronic

states for 1 ps with a maximum total vibrational quantum number of 2 (note that 1 ps is the

relevant time window in the LHC exciton dynamics,58,59 and our result, as described below,

suggests that a cut-off of total vibrational quanta to 2 is good enough to this end). Fig. 4

illustrates that most of the population of the vibrational excited states is distributed among
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the low-lying vibrational excited states. (In the figure, Pn000 / P0100 denotes the total popu-

lation of the vibrational excited states with the lowest / 2nd lowest frequency mode excited

by n quanta / one quantum while all other modes kept in the ground state, and P0000 is

the total population of the vibrational ground states.) We find that the excitation of the

lowest frequency mode by up to two quanta (with all other modes in the ground state) and

excitation of the 2nd lowest frequency mode by one quantum can account for the total pop-

ulation of the vibrational excited states, i.e., P1000 +P2000 +P0100 ≈ 1−P0000. This indicates

that the population of the vibrational excited states of high frequency modes is negligible

despite the large Huang-Rhys factor. In fact, the maximum value of P1000, P0100, P0010, and

P0001 over 1 ps time window is 1.2×10−1, 2.3×10−3, 5.8×10−4, and 1.9×10−4, respectively.

As well, the population of the excited states decreases rapidly increasing of the quantum

number, e.g. P1000=0.95, P2000=0.04, and P3000=0.005 at t=1 ps. Our result suggests that

the exciton dynamics can be studied with high frequency modes (those with frequencies ω3

and ω4) kept in the ground state and the vibrational quantum number of the low frequency

mode restricted to small number. (Note that keeping high frequency modes in the ground

state is not the same as neglecting exciton-vibrational coupling with high frequency modes

because the effective excitonic coupling is still modulated by the Franck-Condon factor.)

Therefore, we set the maximum vibrational quantum number of the modes (ω1, ω2, ω3, ω4)

in Table 3 to (2, 1, 0, 0) and restrict the maximum total vibrational quantum number to 2

to study the impact of site–dependent spectral densities on exciton dynamics.

To determine whether the differences in the exciton-vibrational coupling for different

chromophore are significant, we obtain the population dynamics using a model Hamiltonian,

where each site is coupled to four vibrational modes with the same frequency and Huang-Rhys

factor for each chromophore. We use 8 possible values for the exciton-vibrational coupling

corresponding to each of the 8 spectral densities given in Table 3. In Fig. 5 we compare

the population evolution with uniform spectral density with the population evolution where

each chromophore has a different coupling with the vibrations. Broadly speaking, our results

18



0.6

0.8

1

P
o

p
u

la
ti

o
n

 o
f 

si
te

 8

0 0.5

0.6

0.8

1

0 0.5

Time (ps)
0 0.5 0 0.5 1

BCL367 BCL368 BCL370

BCL400BCL373BCL372BCL371

BCL369
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employing the spectral density of different chromophores with all sites coupled to the same
effective modes. Results using different spectral densities on each site are plotted as dashed
lines.

suggest that the differences in the exciton-vibrational coupling for different chromophores

are not too significant in terms of exciton dynamics when a reduced model of the spectral

density is employed and that in most cases one can assume the same exciton-vibrational

coupling on all sites to study the quantum dynamics of the FMO complex.

It should be noted, however, that although the details of the spectral density seem unim-

portant in the exciton dynamics, some differences in exciton-vibrational coupling are more in-

fluential than others. The differences in the low frequency modes, of which vibrational energy

is closer to the excitonic transition energy, have more impact on the exciton dynamics, which

explains why the population dynamics using the spectral density of chromophore BCL369

is somewhat different from the rest (note that ω1 is much higher for BCL369 (353 cm−1)

as compared to other chromophores). Replacing the ω1 of the spectral density of BCL369

with that of BCL370 (243 cm−1) leads to a population dynamics very similar to the rest (see

thin blue line in Fig. 5). On the other hand, the differences in exciton-vibrational coupling

for high frequency modes are not very important. For example, BCL367 has the largest

Huang-Rhys factor S for ω3, whereas BCL372 has the smallest S for ω3, but their popula-

tion dynamics is not significantly different from each other. Our result confirms that the
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difference in the spectral density for the low frequency part has more impact on the dynamics

even if the exciton-vibrational coupling is much smaller than that of high frequency modes

and therefore care needs to be taken for the description of the exciton-vibrational coupling

in the low frequency region.

3 Conclusions

We adopted a fast and accurate method to calculate the intramolecular part of the spectral

density of a chromophore embedded in its environment, based on the normal modes anal-

ysis proposed recently by Lee and Coker28,29 and combining it with the Vertical Gradient

approximation.35–38 This allows a significant reduction in the computational effort with re-

spect to the methods proposed previously, retaining the accuracy guaranteed by QM–based

approaches. Additionally, we highlighted in the discussion a new aspect in terms of access

to computational insight regarding conformational changes that occur over large time scales,

which showed a significant influence on the intramolecular modes that have large effects on

the exciton dynamics. We extracted effective frequencies from our spectral densities to check

the impact of the coupling of the electronic excitation with intramolecular modes on the exci-

ton dynamics of the system. The dynamics obtained using an eight-site model suggests that

the differences in exciton-vibrational coupling for different chromophores are not significant

in terms of exciton dynamics and high frequency modes with much larger vibrational energy

than the excitonic transition energy have negligible influence on exciton dynamics despite

the large Huang-Rhys factor. While this was commonly assumed throughout the literature,

our calculations confirm it without any prior assumption. The oscillatory behaviour is exci-

tonic rather than vibronic, and the small changes can be ascribed to the small importance of

the vibronic part rather than the details of the spectral density. As a side note, the method

adopted is of general interest for the description of excitation dynamics, as other proteins60,61

and phenomena62,63 exist in which high frequency intramolecular vibrations play a central
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role.

Furthermore, our results provide useful information concerning the sampling needed for

MD–based approaches to obtain the spectral density (in particular regarding the time sep-

aration between snapshots, which determines the highest sampled frequency). In fact, we

do not expect the intermolecular modes to influence the spectral density above 500 cm−1,

and we showed that this region is virtually identical for identical chromophores. The main

findings of this work will be useful to guide the development of model Hamiltonians for light

harvesting complexes that retain only information on the system that is essential to describe

the exciton physics.

4 Computational Details

Starting structure. We obtained the crystal structure of FMO from the Protein Data Bank

(PDB: 3BSD). We prepared the system for the QM simulations with the GROMACS 5.0.5

software.64 The protein was embedded in a cubic box of suitable dimensions. Histidine

residues have been assigned the appropriate protonation state to allow coordinating Mg

atoms of BCLs, otherwise they have been assigned the proton in position ε. We added

water molecules and we set the ionic strength of the starting box to 150 mM by adding

the appropriate number of potassium and chloride ions. The system has been described

using the TIP3P model for water molecules, the CHARMM36 force field for the protein,65

and literature parameters for the BCLs.66 We initially minimised the system keeping all

BCLs frozen, with 2000 steps of Steepest Descent. For all the following steps, we used an

integration step of 2 fs and constrained all the bonds with the LINCS algorithm implemented

in GROMACS.67 We then equilibrated the system in two steps of 500 ps each, run in NVT

(heating up to 300K) and NPT conditions (Berendsen barostat) respectively. Finally, we ran

8 separate equilibrations of several nanoseconds, in which each one of the 8 chromophores

in one of the 3 monomeric units of FMO was kept frozen. For the following QM analysis, a
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series of snapshots from the last portion of the trajectory were picked for each chromophore.

QM calculations. Starting from the snapshots extracted, we reduced the number of

atoms for our following calculations by keeping only the residues within 8 Å of the frozen

chromophore. For all the following calculations we used a two-layer ONIOM scheme, using

(TD)DFT/B3LYP/6-31G* for the QM region and UFF parameters for the MM region. The

number of atoms of BCLs chromophores in the QM region has been reduced from 140 to 85

by inserting a link atom between the first and second Carbon atoms of the Phythyl chain.

Geometry optimisations were run keeping the atoms belonging to the protein backbone fixed,

to preserve a configuration as close as possible to the one in the protein. On the optimised

systems, we computed vibrational frequencies (only for the QM region) and excited state

gradients. All calculations were run using the Gaussian09 package.68
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