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Damped Posterior Linearization Filter
Matti Raitoharju, Lennart Svensson, Ángel F. García-Fernández, and Robert Piché

Abstract—In this letter, we propose an iterative Kalman
type algorithm based on posterior linearization. The proposed
algorithm uses a nested loop structure to optimize the mean
of the estimate in the inner loop and update the covariance,
which is a computationally more expensive operation, only in
the outer loop. The optimization of the mean update is done
using a damped algorithm to avoid divergence. Our simulations
show that the proposed algorithm is more accurate than existing
iterative Kalman filters.

Index Terms—Bayesian state estimation; nonlinear; estimation;
Kalman filters

I. INTRODUCTION

In Bayesian state estimation, a state that evolves stochasti-
cally in time is estimated from noisy measurements. In this
letter, we concentrate on the measurement update stage of
the Bayesian filter. In the measurement update, a prior (the
dynamic model’s state prediction) is updated using information
from a measurement. If the measurement model is linear and
Gaussian the posterior density can be computed analytically
using the Kalman filter [1], but for a general measurement
model, the computation of the posterior density is intractable.
One approximate approach is the general Gaussian filter
(GGF), which represents the joint state and measurement
distribution by a multivariate Gaussian using moment match-
ing, and then uses standard marginalization and conditioning
formulas to compute the conditional state distribution given the
measurement to obtain the posterior estimate [2]. The GGF
moment matching is also intractable, but there exist several
Kalman filter extensions (KFEs) that are approximations of
the GGF. The standard way to apply GGF is to do statistical
linear regression (SLR), or an approximation of the SLR, in
the prior; this can be interpreted as the optimal linearization
with the given prior. The GGF approach does not work well
for severe nonlinearities or low measurement noise [3] so there
is interest in developing alternatives.

Iterative algorithms generate approximative solutions based
on previous solutions with the goal of improving the ap-
proximation. The iterated extended Kalman filter (IEKF) [4,
pp. 349-351] produces a sequence of mean estimates by
making first-order Taylor approximations of the measurement
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function. In [5], it was shown that the IEKF measurement
update is equivalent to the Gauss-Newton (GN) algorithm
for computing the maximum a posteriori (MAP) estimate.
IEKF performs well in situations where the true posterior
is close to a Gaussian. Convergence of the GN algorithm is
not guaranteed. Better convergence is offered by damped (or
descending) GN algorithms [6], which ensure that the cost
function is nonincreasing at each iteration. An alternative to
damped GN is the Levenberg-Marquadt algorithm [7].

There are many other iterated filters in the literature. The
iterated sigma point Kalman filter [8], at each iteration, uses
a linearization that mixes SLR with respect to the prior and
analytical linearization at the current MAP estimate. The
recursive update filter (RUF) uses several updates of the prior
with down-weighted Kalman gain [9]. Progressive Gaussian
Filtering is a homotopy continuation method that updates
the prior starting from an easily computable measurement
likelihood that gradually evolves into the true measurement
likelihood [10]–[12]. The Kullback-Leibler partitioned update
Kalman filter (KLPUKF) can be used when the measure-
ment is multidimensional [13]. It sequentially updates using
nonlinearity-minimizing linear combinations of the measure-
ments.

In this paper, we focus on the iterated posterior linearization
filter (IPLF), which uses SLR w.r.t. the posterior density.
SLR’s linearization is based on a larger area determined by a
probability density function (PDF) instead of a point as in the
Taylor linearization, which improves the accuracy of the filter.
In [14], it was shown that it is better for the linearization to be
w.r.t. the posterior instead of the prior. The basic idea in the
IPLF is to compute a posterior estimate using the prior, then
use this estimate to compute a better linearization and posterior
estimate, and so on. In this letter, we observe that the IPLF
does not always converge, and we propose a damped version
of the algorithm with improved convergence properties.

We show in simulations how the proposed algorithm is less
prone to filter divergence than the original IPLF. Furthermore,
we compare the posterior estimate accuracy with other iterative
Kalman filter methods and show that the proposed algorithm
is more accurate in the simulations.

II. BACKGROUND

We consider measurements of the form

y = h(x) + ε, (1)

where y is the ny dimensional real measurement value, h(·)
is the measurement function, x is the nx dimensional real
random state vector and ε is zero mean Gaussian noise with
covariance R.
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A. GGF

The GGF [2] for measurement model (1) uses the ex-
pected value of predicted measurement ŷ, cross covariance of
measurement and state Ph(x)x, and measurement covariance
Ph(x)h(x). These moments are

ŷ =

∫
h(x)pN(x;µ−, P−)dx (2)

Ph(x)x =

∫
(h(x)− ŷ)

(
x− µ−)T pN(x;µ−, P−)dx (3)

Ph(x)h(x) =

∫
(h(x)− ŷ) (h(x)− ŷ)

T
pN(x;µ−, P−)dx, (4)

where pN(x|µ−, P−) is the multivariate normal PDF of the
prior that has mean µ− and covariance P−. The update
equations for the mean and covariance of the posterior are
then

µ+ = µ− +K(y − ŷ) (5)

P+ = P− −KSKT , (6)

where

S = Ph(x)h(x) +R (7)

K = Pxh(x)S
−1. (8)

The integrals (2)-(4) do not have in general closed form
solutions. Many KFEs, such as unscented Kalman filter (UKF)
[15] and cubature Kalman filter (CKF) [16], can be interpreted
as numerical approximations of GGF.

B. IPLF

In [14], it is shown that a lower bound of the Kullback-
Leibler divergence (KLD) of a GGF with respect to the true
posterior is minimized if the moments (2)-(4) are computed
using the posterior instead of the prior. This update cannot be
computed directly with the GGF equations (2)-(8), but instead
a linear model that has correct moments is generated and is
then applied to the prior.

The IPLF algorithm iteratively approximates the posterior
using SLR, creating a sequence of updated means µi and
covariance matrices Pi as follows. First, set µ1 = µ− and
P1 = P−. Then, at the ith iteration, compute the SLR of h(·)
with respect to (µi, Pi) by first computing moments (2)-(4)
and then defining the linear measurement that corresponds to
those moments [14]:

ĥ(x) = Jix+ bi + εΩi + ε, (9)

where

Ji = Pxh(x)
T
i
P−1
i (10)

bi = ŷi − Jiµi (11)

Ωi = Ph(x)h(x)i
− JiPiJTi (12)

εΩi ∼ N(0,Ωi), (13)

εΩi is an independent noise whose covariance Ωi is the
covariance of the linearization error. For linear systems Ωi
is 0.

TABLE I
MEAN ESTIMATES OF FIRST 6 ITERATIONS OF IPLF AND IEKF

Iteration 1 2 3 4 5 6
IPLF -2.51 5.28 -31.75 17.52 -40.56 11.96
IEKF -7.64 58.28 -1.77 2.60 -6.66 48.47

Finally, compute the posterior mean and covariance that
correspond to the linearized measurement function (9):

S = JiP
−JTi +R+ Ωi (14)

Ki = P−JTi S
−1 (15)

µi+1 = µ− +Ki(y − Jiµ− − bi) (16)

Pi+1 = P− −KiSiK
T
i . (17)

The obtained posterior is used for the next linearization. The
process is repeated for a predetermined number of steps or
until a convergence criterion is met, e.g. until the KLD of two
consecutive estimates is below a threshold.

However, the IPLF, like the GN, can diverge, as illustrated
in the next example.

Example 1: The measurement model is

y = arctan(x) + ε. (18)

State x has prior mean 2.75 and variance 1, the measurement
value is y = 0 and measurement noise variance is R = 10−4.
The integrals (2)-(4) are computed using Monte Carlo (MC)
integration with 105 samples and also with IEKF. Table I gives
the means in the first 6 iterations. Neither of the algorithms
converge to the true posterior, which is close to 0, even after 50
iterations. In the supplementary material, we provide another
example, whose moments have closed form solutions, where
the IPLF does not converge.

C. IEKF as a GN algorithm

IEKF is similar to IPLF, but it uses a first order Taylor
series approximation of the measurement function instead of
SLR. The IEKF iteration formulas are as in Section II-B, but
with (10)-(12) replaced by

Ji =
dh(x)

dx

∣∣∣∣
µi−1

(19)

bi = h(µi−1)− Jiµi (20)
Ωi = 0. (21)

In [5], it is shown that the IEKF for measurements of form
(1) is equal to the GN algorithm [6] that minimizes the cost
function

q(µ) =
1

2
(h(µ)− y)TR−1(h(µ)− y)

+
1

2
(µ− µ−)TP−1(µ− µ−).

(22)

To decrease the possibility of the divergence of GN, the
damped (or descending) version of the GN algorithm can
be used [6]. A damped IEKF that uses line search [6] in
minimization of (22) is given in [17]. The mean update is

µi+1 = (1− α)µi + α(µ0 +Ki(y − h(µi))) (23)
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with step length parameter α selected so that 0 ≤ α ≤ 1 and
q(µi+1) ≤ q(µi). Finally, in the IEKF, the posterior covariance
matrix is computed based on the linearization at the MAP point
after the last iteration [5].

III. DAMPED ITERATED POSTERIOR LINEARIZATION FILTER
(DIPLF)

The main weakness of the IPLF is that it sometimes
diverges. In this section, we present a damped version of the
IPLF, which has substantially better convergence properties.
The key insight is that the update of the mean can be seen
as an optimization problem and solved with a damped GN
algorithm that decreases the cost function in every iteration.
A detailed motivation of the algorithm is presented in Sec-
tion III-A, followed by a description of line search required
to implement it. Further implementation details are discussed
in the Supplementary material.

A. Derivation of DIPLF

Ideally, we want the posterior mean and covariance to be
used in the SLR to linearize the measurement function [14].
Our approach to iteratively finding the mean and covariance
for the linearization is to use a separate loop for the opti-
mization of the mean. Thus, the proposed filter computes the
estimate using two nested loops. The inner loop uses a damped
GN algorithm to optimize the mean µi while keeping Pj and
Ωj fixed. The outer loop updates the covariances Pj and Ωj .
Index i increases in every iteration of the inner loop and j in
the outer loop.

1) Inner loop: The purpose of the inner loop is to find
optimal µi when Pj and Ωj are fixed. At an optimum µi
coincides with the mean used in the SLR and we can write:

µi = µ− +K(µi)(y − J(µi)µ
− − b(µi)), (24)

where we used (µi) to identify vectors and matrices that
depend on the mean. In the supplementary material, we show
that the above equation is fulfilled when

q(µi) =
1

2
(ŷ(µi)− y)T (R+ Ωj)

−1(ŷ(µi)− y)

+
1

2
(µi − µ−)T

(
P−)−1

(µi − µ−)
(25)

achieves its minimum. Therefore, we use it as the cost function
for the inner loop. The optimization problem is analogous to
the optimization of the cost function of the IEKF (22), but
using ŷ instead of h(µ). Because the step is taken in a descent
direction of the target function we can use a scaling factor α
(0 < α ≤ 1) in the update as in (23):

µi+1 = (1− α)µi + α (µ0 +Ki(y − Jiµ0 − bi)) (26)

and select α using line search so that the value of our target
function (25) decreases. Thus, the next mean is a weighted
sum of previous mean and the mean provided by IPLF. This
makes the algorithm locally convergent on almost all nonlinear
least squares problems, provided that the line search is carried
out appropriately. In fact, it is usually globally convergent [6,
Chapter 9.2.1]. To facilitate the stopping of the inner loop,

Algorithm 1: DIPLF
1 i← 0, j ← 0, µ0 ← µ−, P0 ← P−

2 Compute ŷi, Ji, and Ωj at prior using (2), (10), and (12)
3 while pN(ŷi|y,R+ Ωj)pN(µi|µ−, P−) increases significantly

do
4 while q(µi, Pj) < βq(µi−1, Pj) do
5 i← i+ 1
6 Find 0 < αi ≤ 1 for (26) so that (25) becomes smaller

using line search (Section III-B)
7 Compute µi using (26)
8 Compute Ji using (3) and (10)
9 Compute ŷi using (2)

10 end
11 j ← j + 1
12 Compute Pj using (17)
13 Compute Ωj using (12)
14 end
15 Use the mean and covariance from the second last round of the

outer loop, i.e. those that had highest
pN(ŷi|y,R+ Ωj)pN(µi|µ−, P−), as the posterior estimate

we propose that the algorithm should repeat the inner loop as
long as (25) reduces significantly at each iteration i.e. while

q(µi+1, Pj) < βq(µi, Pj) (27)

with, e.g., β = 0.9.
2) Outer loop: The outer loop updates the covariances Pj

and Ωj for the next iteration of the inner loop. To define a
stopping condition for the outer loop, we first exponentiate
function (25) and normalize to get a product of normal
distributions:

1√
(2π)ny |R+ Ωj |(2π)nx |P−|

e−q(x)

=pN(ŷi|y,R+ Ωj)pN(µi|µ−, P−).

(28)

If we treat Pi and Ωi as constants, (25) achieves its minimum
when (28) achieves its maximum. We thus continue the outer
loop as long as (28) is increasing significantly. Compared
to using (25), the factor containing Ωi in (28) causes the
stopping condition based on (28) to favor estimates with
smaller nonlinearity.

3) Full algorithm: The algorithm is summarized in Algo-
rithm 1. The inner loop does the optimization of the target
function (25) while keeping the state covariance and nonlin-
earity covariance constant. The direction of change in a GN
algorithm is a descent direction of the cost function [6, Chapter
9.2.1]. Thus, with small enough α the cost function value
should decrease, unless the estimate is in a local extremum
or a saddle point. By using α = 1 and exiting the inner loop
after a single iteration, Algorithm 1 becomes equivalent to an
IPLF algorithm.

The outer loop changes the optimization problem of the
inner loop as Ω changes and the covariance, for which the
expected measurement value ŷ is computed, changes.

B. Line search

The value of α can be computed with different line search
techniques [6, Chapter 9.2.1]. Backtracking line search, also
known as the Armijo-Goldstein step length principle, is one
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TABLE II
KLDS OF ESTIMATES PRODUCED BY DIFFERENT FILTERS IN arctan TEST

GGF RUF IPLF DIPLF
MC 15.9 0.04 88.69 3 · 10−6

EKF 4009.10 0.01 65.12 10−6

CKF 3370.78 0.01 64.39 10−6

UKF 92.55 0.01 10−6 10−6

of the simplest and most widely used options, and is done as
follows.

First, α is set to 1, and a value of µ is found using (23).
If this value does not decrease (25), w.r.t. the previous value
of µ, then α is multiplied by a constant factor 0 < τ < 1 and
the procedure is repeated. To reduce the computational load
one can terminate the inner loop when α is smaller than a
predetermined value (we use 2−4) as then the change is the
estimate is negligible.

IV. SIMULATIONS

In our first test, we evaluate the situation in Example 1.
We compare posterior estimates obtained with estimation al-
gorithms that are based on approximating integrals (2)-(4). We
use MC integration with 105 samples, extended Kalman filter
(EKF), UKF with parameters from [15], and third-degree CKF
[16] to compute the moment approximations. The algorithms
used are GGF, RUF [9], IPLF [14], and DIPLF. The GGF with
different moment computation algorithms is equivalent to the
algorithms from which the moment computation was taken.
RUF applies the measurement using down-weighted Kalman
gains and uses 10 iterations in our tests. When EKF is used
to compute the moments GGF is EKF, RUF is equivalent to
the algorithm in [18], DIPLF is IEKF, and DIPLF is damped
IEKF. We use τ = 0.5 for reducing the step length. For the
threshold of inner loop, we use β = 0.9 and we exit the
outer loop if 0.999pN(ŷi|y,R + Ωj) is not larger than the
corresponding likelihood of the previous iteration. A more
thorough discussion on the selection of parameters is given
in the supplementary material.

Results are given in Table II. DIPLF gives good posterior
estimates with all moment computation methods. IPLF con-
verges towards an estimate within 50 iterations only when
using UKF for moment computation. Though the UKF and
CKF usually have similar accuracy, in this case, the IPLF
did not converge when using the CKF; changing the prior
mean a little may make it to converge with different moment
computation algorithms. RUF has slightly worse estimates than
DIPLF and GGF does not provide good estimates with any of
the tested moment computation methods.

In our second test, we computed estimates for two di-
mensional positioning using three range measurements in a
single measurement update. The prior has zero mean with
covariance I . Ranges were computed to beacons located at[
−1 0

]T
,
[
0 1

]T
and

[
1 −2

]T
. Measurement noise co-

variance was I and measurements were generated by sampling
a true location from the prior and then generating correspond-
ing measurements. In this test, we used the same filters as
in the previous test and KLPUKF [13]. KLPUKF uses a

TABLE III
MEAN KLDS OF ESTIMATES IN RANGE TEST

GGF KLPUKF RUF IPLF DIPLF
MC 0.25 0.17 0.21 0.26 0.17
EKF 0.48 0.60 0.48 0.55 0.55
CKF 0.28 0.22 0.29 0.38 0.23
UKF 0.35 0.34 0.33 0.37 0.26

linear transformation to decorrelate measurement elements in
such a way that the nonlinearity of a measurement element
is minimized and applies measurement elements sequentially.
For the first test with only a scalar measurement, KLPUKF
would have been identical to GGF.

The test is repeated 1000 times using different true location
and measurement values. We analyze only state after one
update step, but a more accurate update step can be expected to
lead to improved stability in the filtering recursion. The mean
KLDs, which are computed numerically using a dense grid, are
presented in Table III. The iterative algorithms that use EKF
moment computation, except RUF, produce worse estimates
than EKF itself. This is probably because the posterior may
be multimodal in this test. With other moment computation
methods the IPLF is worse than GGF, but DIPLF is better
than either of those. In this test, KLPUKF and DIPLF were
the most accurate algorithms, except when tested with EKF.
The residuals of the mean estimates compared to true locations
were similar for all algorithms, thus the largest improvement
of using DIPLF comes from better posterior covariance esti-
mation. In this test, the computational time of DIPLF was 8
times higher than the computational cost of KLPUKF. Our im-
plementations of other algorithms had runtimes between these,
IPLF taking similar time as DIPLF. The exact comparison of
computational complexity of algorithms evaluated in this letter
cannot be done, because algorithms have different conditions
for loops. These conditions depend on the estimation problem
and computational complexity cannot be stated as a function
of dimensionalities of the state and the measurement vector.

V. CONCLUSIONS AND FUTURE WORK

We have shown that by fixing the covariance matrices of the
IPLF algorithm, the optimal posterior mean in the posterior
linearization approach is the solution of an optimization prob-
lem. We solved this optimization problem using a damped GN
algorithm. Then we updated the covariance matrices Pj and Ωj
and repeated the mean optimization. Compared to IPLF, this
algorithm is less prone to diverge. The proposed algorithm was
more accurate than other tested algorithms in our simulations.

One topic for future research is to see how posterior
linearization could be done with other optimization algorithms
than GN, such as Levenberg-Marquadt. Another interesting
research topic would be extending the algorithm to work
with non-additive noise. We have done some preliminary
simulations in time series, where we found that the proposed
algorithm is more accurate than other iterative algorithms, but
all iterative algorithms have a risk of converging to a wrong
local solution. Investigating this is one future topic.
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