How to Analyse The Spatiotemporal Tumour Samples Needed To Investigate Cancer Evolution: A Case Study using Paired Primary and Recurrent Glioblastoma 
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Article Type: Short Report

Novelty and Impact: We present a new two-stage approach to identifying somatic mutations that are shared across multiple tumour samples or datasets (eg RNA and DNA sequenced separately) from the same patient, and test it in three independent cohorts of paired primary and recurrent glioblastoma samples. Our results show that our approach more sensitively detects shared genetic variants, which are candidate drivers of tumour progression.

ABSTRACT 
Many traits of cancer progression (e.g. development of metastases or resistance to therapy) are facilitated by tumour evolution: Darwinian selection of subclones with distinct genotypes or phenotypes that enable such progression. Characterising these subclones provides an opportunity to develop drugs to better target their specific properties but requires the accurate identification of somatic mutations shared across multiple spatiotemporal tumours from the same patient. Current best practices for calling somatic mutations are optimised for single samples, and risk being too conservative to identify shared mutations with low prevalence in some samples. We reasoned that datasets from multiple matched tumours can be used for mutual validation and thus propose an adapted two-stage approach: 1) low-stringency mutation calling to identify mutations shared across samples irrespective of the weight of evidence in a single sample; 2) high-stringency mutation calling to further characterise mutations present in a single sample. We applied our approach to three independent cohorts of paired primary and recurrent glioblastoma tumours, two of which have previously been analysed using existing approaches, and found that it significantly increased the amount of biologically-relevant shared somatic mutations identified. We also found that duplicate removal was detrimental when identifying shared somatic mutations. Our approach is also applicable when multiple datasets e.g. DNA and RNA are available for the same tumour.

INTRODUCTION
Analysing multiple tumours from the same patient provides novel insights into cancer evolution
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. Genomic subclones shared across spatiotemporal samples highlight candidate drivers of progressive behaviours, such as metastasis (spatially separated samples) and recurrence (temporally separated samples) HYPERLINK \l "_ENREF_1" \o "Gerlinger, 2014 #1652" 
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. Using high-coverage DNA sequencing to characterise somatic mutations in all samples is the first step to identifying shared subclones. Best practices for somatic mutation calling in sequencing data were developed for application to single tumour samples and aim to reduce false positive calls caused by the relatively high error rates in high-throughput sequencers
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. However when analysing multiple tumours, the most biologically relevant mutations are arguably those present in small subclones in one sample but expanded in others. Analysis must, therefore, maximise the chance of capturing such situations, ensuring shared low-allelic fraction mutations are not filtered out from the sample where they are less prevalent. This is especially important for formalin fixed and paraffin embedded (FFPE) samples because this process is known to introduce artefacts at low-allelic fractions, and where multiple samples exist from the same patient it is likely that at least some will be in FFPE HYPERLINK \l "_ENREF_6" \o "DePristo, 2011 #1191" 
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. In considering this problem, we reasoned that multiple samples from the same patient provide internal and mutual validation for mutations that may have otherwise been more difficult to assign correctly. We therefore propose a new approach to somatic mutation calling across multiple matched samples:
1) A first round of low-stringency mutation calling to identify tumour-specific variants that self-validate i.e. are present in more than one dataset irrespective of the strength of evidence of any one call. We denote these Somatic TPs (true positives);
2) A second round of stringent mutation calling to additionally identify variants found only in one sample. We denote these Somatic Unknowns.
MATERIALS AND METHODS
More detailed methods are given in Supplementary Materials and Methods

Samples
We identified three independent cohorts of paired patient GBM samples (surgical tissue from primary GBM and subsequent recurrent samples). Clinical information is given in Supplementary Table S1.
Stead Cohort: Eight patients from three tissue banks (Leeds, Liverpool and Preston) with tumours in paraffin blocks and matched blood samples available. Ethical approval was acquired (REC 13/SC/0509). DNA and RNA were extracted simultaneously from tumours (>60% cancer cells), and DNA from blood, using appropriate Qiagen kits (Qiagen, Sussex, UK). PE100 exome libraries (tumour and blood DNA) were made using the SureSelectXT V5 kit (Agilent). PE100 strand-specific whole transcriptome libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England BioLabs, UK), following rRNA depletion with NEBNext rRNA Depletion Kit or Ribo-Zero Gold. Libraries were sequenced on a HiSeq2500.
Rabadan Cohort: Ten patients from Wang, et al. 11

 with exome and whole transcriptome sequencing data for paired tumours, and exome data for matched blood, downloadable from the sequencing read archive (accession SRP074425).

Verhaak Cohort: Four patients from 
Sequencing Data Processing

Quality processed exome sequencing data was aligned to human reference genome hg19 using BWA mem (v0.7.15)15

.
13

. Two bam files were produced per sample: one with duplicates removed and one with them retained (Picard tools (v2.6.0). All bam files underwent base recalibration and indel realignment (GATK v3.4-46)
Variant Calling 

Variants were called in all DNA and RNA datasets using Varscan2 (v2.3.9). Briefly: samtools mpileup was run with low mapping and base quality threshold (Phred>=1) and duplicates ignored where required; Varscan2 is then run twice in somatic mode, once with the primary tumour and matched blood, and once with the recurrent tumour and matched blood (minimum coverage: 10X; minimum variant allele frequency [VAF] 3.5%); Varscan2 processSomatic (max VAF in the blood 0.5%) somaticFilter commands are run; finally a customised perl script iterates through the low confidence somatic calls in the primary tumour and re-annotates them as high confidence if they were also called as somatic (either high or low confidence) in the recurrent sample and then repeats this for the low confidence somatic calls in the recurrent tumour via iterative inspection in the primary tumour somatic calls. Variant consequences were assigned using the Ensembl (release 86) Variant Effect Predictor16

. All of our wraparound scripts are specific to the variant calling pipeline we have established in house but are available upon request, and guidance in the adaption of existing pipelines is also available via the corresponding author.
Assessment of Variant Calls

Three tables of annotated variation data were created per patient: Germline variants (found in either tumour DNA and in the blood DNA), Somatic TP (true-positive somatic mutations: found in more than one tumour dataset and not in the blood) and Somatic Unknown (found only in the DNA of one tumour only and not in the blood). 

Comparative Analysis

To compare the number of Somatic TPs identified in our approach using paired versus unpaired samples, the somatic mutations in each primary tumour were also compared with three unpaired recurrences i.e. random selection of the same number of mutations that were in the paired recurrence from three unpaired recurrences from the same cohort. Somatic TPs identified by our approach were also compared with those from the original analyses (listed in supplementary tables of both published papers
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SNP arrays

80ng DNA from three Stead cohort tumours underwent the OncoScan™ FFPE SNP array assay. B-allele frequencies (BAFs) in the raw_snps.txt files were compared with those from variant calling in the exome data.

RESULTS
To test our two-stage approach (Fig.1) we acquired high-coverage exome and RNA sequencing data from three independent cohorts of longitudinal glioblastoma (GBM) samples: the Verhaak cohort (four patients from 


Kim, et al.12
); the Rabadan cohort (ten patients from 
Wang, et al.11

); the Stead cohort (our own six patients). These were first diagnosis GBM samples acquired from an initial surgical resection (denoted the primary sample) and post-treatment recurrences (recurrent sample) from a second surgical resection. The Verhaak and Rabadan samples had mutations called, and published, using best practices and validated somatic mutation calling pipelines
11, 12
. Stead tumours were FFPE; Rabadan and Verhaak were snap frozen. Clinical information and sequencing metrics for all samples are in Supplementary Tables S1-3. Supplementary Table S4 shows how many Somatic TPs were validated in the DNA of the remaining tumour and how many, instead, in the RNA of either tumour. The ability to validate within RNA was varied (8±14% of TPs were validated this way) but indicates the applicability of this approach when a single tumour is being analysed but using more than one sequencing dataset.
Our Approach Identifies Additional Shared Variants that are Biologically Relevant
A paired sample analysis identifies significantly more biologically relevant shared mutations. Our approach assumes that observing a mutation in more than one dataset from the same patient validates its existence, irrespective of the strength of evidence in any single dataset. To assess this assumption, in contrast to the possibility than the same mutations may be observed in different tumours owing to technical errors biased towards certain genomic loci, or by chance because relaxed filters identify so many variant loci, we also inspected the number of Somatic TPs acquired when our approach was applied to unpaired primary and recurrent tumours i.e. from different patients. We repeated our analysis three times per primary tumour, randomly selecting the same number of mutations found in its paired recurrence from the mutations called in a different patient’s recurrence (same cohort). On average, there were 98±1% (97±5% with duplicates retained) fewer Somatic TPs in unpaired snap frozen samples versus the paired analyses, and 92±6% (93±5% with duplicates retained) fewer in FFPE samples. This indicates that our approach identifies variants that are shared for biological rather than technical reasons.
Comparison with the original Verhaak cohort analysis. Variants called in both our and the original Verhaak cohort (n=4) analysis are in Supplementary Table S5. 241 Somatic TPs were identified in both studies and for these the VAF correlation was 1.00 for both primary and recurrent tumour samples (0.99 when we retained duplicates). The previous analysis identified one Somatic TP that we called germline as there were reads supporting the variant in the blood according to our alignment. We, however, identified 583 protein-altering Somatic TPs not previously published, likely because they were filtered out during independent tumour variant calling. These were in 517 genes enriched in members of Signalling Pathways in Glioblastoma (Wikipathways WP2261, hypergeometric adjusted p=0.036) including: a PTEN splice site mutation previously observed in glioma (COSM39456) and predicted to be pathogenic (fathmm score of 0.99); a NF1 splice site mutation; an EGFR missense mutation, predicted to be damaging (PolyPhen2 p=0.997), only identified in the recurrence in the original analysis. Within the 60 Somatic TPs, uniquely identified by our approach, with a VAF increase of 5% or more from primary to recurrence (i.e. potentially located within clones that not only survived but expanded following therapy), 29 were predicted to be damaging by SIFT, PolyPhen2 and/or fathmm including several in genes previously associated with gliomagenesis e.g. EXT1, NOTCH1 and TRAF1
Comparison with the original Rabadan cohort analysis. Variants called in both our and the original Rabadan cohort (n=10) study are in Supplementary Table S6. 357 Somatic TPs were identified in both analyses; 7 that were experimentally validated and all 14 known GBM driver mutations. The VAF correlation was 0.99 for both tumours (0.95 and 0.96 with duplicates retained). The previous analysis identified 25 unclustered Somatic TPs that our approach did not: we called 24% germline, 60% only in one tumour and did not observe 16%. We missed one experimentally validated mutation in the primary tumour as it was below our VAF threshold. However, we identified 6416 protein-altering Somatic TPs not previously published. The 4667 genes containing these are: significantly expressed in brain (normal and tumour) and epithelial tissue; enriched for genes involved in nervous system and neuron development and in Signalling Pathways in Glioblastoma (Wikipathways WP2261, Table 1) (hypergeometric, q<0.05); contain a significant number of the 75 GBM mutational driver genes listed in the Integrative Onco-Genomics database (n=35, chi-squared p=0.04). The uniquely identified genes in which VAF increased by 5% or more were enriched for members of MAPK and Wnt signalling (Wikipathways WP382 and WP399, hypergeometric q<0.05), both strongly associated with gliomagenesis
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Duplicate Removal Can Reduce Biological Information
Detecting low VAF (potentially subclonal) variants requires high sequencing coverage6

. However, duplicate removal programmes define duplicates as reads sharing start and end alignment coordinates, ignoring actual sequence. As coverage increases, the chance of two independent reads sharing alignment coordinates increases; if such reads span the position of a low allelic fraction variant, the evidence for it will likely be removed as the programme selects one ‘duplicate’ at random (or the best according to the summation of base qualities) to retain. We inspected how retaining duplicates affects the number and VAF of each type of variant (Fig.2). Retaining duplicates increases the number of both types of internally validated variation: Germline and Somatic TPs. However, there is a disproportionate increase (note the log scale, Fig.2B) in the number of Somatic Unknowns (comprising false and true positives). The VAF correlation between duplicate removed versus duplicate retained data is always >0.8, though a reduction in the correlation coefficient is observed as the proportion of duplicates increases (Fig.2C). To recap from above, retaining duplicates also did not i) increase the Somatic TPs found in unpaired samples, ii) reduce the VAF between ours and previously published (duplicate removed analyses) Somatic TPs.7

. Most analysis pipelines remove duplicates before variant calling for fear that these are PCR artefacts that will amplify errors
We then compared results from SNP microarrays to those of sequencing data (10-27% duplicates) for three Stead cohort samples. In all cases (duplicate removed and retained), the BAF correlated significantly. However, duplicate retention increased the number of variants that could be used in the comparison by 2-5%.

DISCUSSION
Best practice analysis pipelines aim to maximise both sensitivity (detection of real events) and specificity (avoidance of non-real events) and standardise approaches for better cross-dataset comparison. Their use must be with the understanding that each analysis is unique (different data, different questions) and even best-practice cannot reveal the whole truth. For identifying somatic mutations in tumours from sequencing data, best practices were developed for application to single tumour samples, with matched normal (most often blood DNA) providing a germline reference. Commonly studies now require somatic mutation calling across multiple tumours, or regions, from the same patient. We propose that these analyses would benefit from an adapted two-stage approach (Fig.1) that exploits mutual validation across samples to increase the sensitivity of shared mutations detection; mutations of particular interest as they are candidates for conferring clinically relevant phenotypes e.g. the ability metastasize or resist therapy. We recognise, however, that this attempt to increase sensitivity could reduce specificity; low-stringency mutations could appear shared between samples owing to the repeated introduction of technical artefacts or FFPE-induced mutations. We tested this by assessing the number of Somatic TPs identified when primary tumours were analysed with unpaired recurrences i.e. where shared variation is due to artefacts at the same position in both samples or independently arising real mutations, which cannot be ruled out but could also be the case in paired samples owing to convergent evolution. We found a large (>90%) reduction in Somatic TPs in unpaired versus paired samples, indicating that our approach identifies real, biological mutations even in FFPE samples. Alternatively, our approach is mis-calling germline variants as shared somatic mutations. This is unlikely as all mutations are called in parallel to a matched blood, also sequenced to a high coverage (167±54X or 213±72X in duplicate removed and retained data) with minimum 10X is required at variant loci. Furthermore, Somatic TPs identified uniquely by our approach in the Verhaak and Rabadan cohorts are enriched in genes in biologically relevant pathways; germline variants and artefacts would occur randomly throughout the genome whereas somatic mutations occur more often in genes activated in the diseased tissue owing to DNA exposure upon transcription23

; more accurately indicate therapy-driven mutational load; inform on modes of evolution
We inspected the effect of duplicate removal on shared variant calling and found that the first round of low-stringency variant calling benefitted from duplicate retention but the second more stringent round of variant calling should be in duplicate-removed data. 
Numerous variant callers exist and benchmarking studies show they often give very different results7

. The Verhaak and Rabadan cohort studies used different callers: MuTect and SAVI2 respectively (with different versions of BWA for the initial alignment). Despite this, we identified a high percentage of the same Somatic TPs (99.6% and 93.5% for each study respectively) but our approach additionally identified many more biologically relevant mutations. We suggest, therefore, that it is worth adapting existing pipelines, irrespective of the variant caller employed, to incorporate a reduced stringency first round of mutation calling and subsequent identification of mutually validating shared variants. 25

. Such studies are, however, challenging owing to the difference in parameter defaults for each caller, and the need to account for external variables e.g. sequencing depth and tumour purity. We herein used Varscan2, which we previously found to accurately identify low VAF somatic mutations
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FIGURE LEGENDS
Fig.1. An overview of our two-stage approach to identifying somatic variants across multiple tumour samples or datasets from the same patient.

Fig.2. Assessing the effect of duplicate removal on variant calling in multiple glioblastoma (GBM) tumour samples. A) The fraction of reads marked as duplicates (± SD). B) The effect of retaining duplicates on the number of different types of mutation called (± SD). C) Scatterplot showing how the fraction of duplicates alters the correlation between allelic frequencies in variants identified in duplicate-removed versus duplicate-retained sequencing data. Verhaak, Rabadan and Stead are three independent cohorts of samples trios (blood, primary GBM and recurrent GBM). See Methods for the definition of Germline, Somatic TP and Somatic Unknown variants.
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