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Abstract

This thesis considers one of the central topics in the actuarial mathematics literature,

deriving the probability of ruin in the collective risk model. The classical risk model and

renewal risk models are focused in this project, where the claim number processes are

assumed to be Poisson counting processes and any general renewal counting processes,

respectively. The first part of this project is about the classical risk model. We look

at the case when claim sizes follow a gamma distribution. Explicit expressions for ruin

probabilities are derived via Laplace transform and inverse Laplace transform approach.

The second half is about the renewal risk model. Very general assumptions on inter-

arrival times are possible for the renewal risk model, which includes the classical risk

model, Erlang risk model and fractional Poisson risk model. A new family of differential

operators are defined in order to construct the fractional integro-differential equations

for ruin probabilities in such renewal risk models. Through the characteristic equation

approach, specific fractional differential equations for the ruin probabilities can be solved

explicitly, allowing for the analysis of the ruin probabilities.
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Chapter 1

Introduction and Literature Review

1.1 Risk theory

The story of collective risk theory starts from the days of Lundberg and has been de-

veloped by Cramér, Segerdahl, Esscher, Ammeter, de Finetti and many other actuarial

and mathematical researchers. The traditional approach is to consider the model of the

surplus of an insurance company and find the probability that the risk reserve drops

below zero, which is known as the ruin probability. The most fundamental model is the

Cramér-Lundberg model or classical risk process,

R(t) = u+ ct−
N(t)∑
i=1

Xi,

(
0∑
i=1

Xi
..= 0

)
, t > 0. (1.1)

This model was proposed by Lundberg (1903, 1926) and Cramér (1930). The classi-

cal risk model describes the surplus of an insurance company over time, R(t), where

the non-negative constant u is the initial capital, the positive constant c is the income

cashflow rate, the Poisson process N(t) describes the total claim number before or at

time t and the random variable Xi represents the i-th claim size. Moreover, all random

variables in the classical model are assumed to be independent.

Deriving the ruin probability (see definition in expression (2.23)) is a central topic

in the risk theory literature. Lundberg (1926) derived a bound and the asymptotic be-
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1. Introduction and Literature Review

havior for the ruin probability in the classical model, making use of an equation that

in the risk theory literature is commonly referred to as the Lundberg’s equation (see in

(2.24)). The simplest case of a classical risk model is when claim sizes are exponentially

distributed. Cramér (1930) used a differential argument to derive an equation for the

non-ruin probability and solved it under the assumption of exponential claim sizes. As

a sequential survey, Cramér (1955) gave a version of the differential argument. Since

then, many actuarial mathematicians have analysed the ruin problem. One direction

of research analyses ruin results for particular claims’ distributions. Numerous approxi-

mations (Beekman, 1969; Kingman, 1962; Bloomfield and Cox, 1972; De Vylder, 1978;

Willmot and Lin, 2001) and asymptotic results (Klüppelberg et al., 2004; Palmowski

and Pistorius, 2009; Albrecher et al., 2012) have been derived, especially for heavy-

tailed claims (Ramsay, 2003). However, ever since the explicit form of ruin probabilities

in the case of exponential claim sizes was established, searching for explicit formulas for

other (light-tailed) distributions has become a frequent direction of research.

The literature of deriving explicit expressions for the ruin probability of the classical

compound Poisson risk model for various claims distributions is abundant in methods

and results. Feller (2008) and Cramér (1955) separately derived the non-ruin probability

φ(u) as a solution of an integro-differential equation, which, under some conditions, can

be solved analytically when the claims are exponentially distributed by either differen-

tiating both sides or taking the Laplace transform. Gerber (1973) used martingales to

analyse the risk process with independent and stationary increments. Pakes (1975) de-

rived the relationship between ruin probability and tail distribution of the claim severity.

Thorin and Wikstad (1977) analysed the ruin problem when claims are log-normal dis-

tributed. Gerber et al. (1987) obtained the ruin probability for mixed Erlang-distributed

claims by studying the severity of ruin, as well as its probability. Ramsay (2003) inverted

the Laplace transforms over the complex domain to derive a closed-form solution of the

ruin probability when the claim sizes follow a special Pareto distribution. Hubalek and

Kyprianou (2011) considered a class of spectrally negative Lévy processes, called Gaus-
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1.1. Risk theory

sian tempered stable convolution, whose Lévy measure has a gamma component with

shape parameter less than or equal to 1. They showed that their scale functions, which

are essentially proportional to the non-ruin probability, admit expressions in terms of

Mittag-Leffler functions.

The first half of this thesis falls into this category, exploring the classical ruin model

with gamma-distributed claims, extending and generalising earlier results of Thorin

(1973). Among the first distributions considered in the risk theory literature are the in-

teger shaped gammas, or the so-called Erlang distributions. These have rational Laplace

transforms and at the same time are phase-type distributed, dense in the class of con-

tinuous distributions. The ruin probability has closed-form expressions for classical risk

models with phase-type claims, see e.g. Asmussen and Albrecher (2010) or rational

Laplace transform distributions, see e.g. Albrecher et al. (2010). One interest of this

thesis is to focus on gamma-distributed claim sizes with the shape parameter r > 0 and

the rate parameter α > 0 in classical risk model. When the shape parameter r is integer,

namely when the claims are Erlang-distributed, then explicit expressions for non-ruin

probabilities appear due to the fact that its Laplace transform can be written as the ra-

tio of two polynomial functions. One can then use a partial fraction decomposition and

further invert back to obtain a linear combination of exponential functions (Grandell,

1991a).

In Chapter 3 we go beyond Erlang distributions and derive results for gamma dis-

tributions that allow real shape parameters, using Laplace transform properties and

deriving Pollaczeck-Khinchine type formulas. We first use shifting Laplace transform

to get the expression of the non-ruin probability in closed-form when rational shape

gamma claim sizes are assumed (see equation (3.4)). When the shape parameter is a

rational number r = m/n ∈ Q, the shifted Laplace transform of non-ruin probability

is a ratio of polynomials of orders m and m + n in t = s1/n. This again permits a

partial fraction decomposition which can further give an explicit expression of non-ruin

3



1. Introduction and Literature Review

probability consisting of Mittag-Leffler functions. However, extending these results to

a real shape parameter r proves to be non-trivial. Prior to this work, the only known

(to us) result for non-integer shape gamma-distributed claims is that of Thorin (1973)

and it deals with a special case of the Γ(1/b, 1/b), b > 1, distribution, although the

results in general can only be calculated numerically. Then we comment on the merit of

the series expressions obtained. More precisely, for real-shaped gamma claims, we first

introduce two different methods, leading to two different series expressions in terms of

Mittag-Leffler functions. The first approach is to extend the method of shifting Laplace

transform to the real shape parameter case. Using geometric expansions, we present

an explicit form in terms of an infinite sum of convolutions of exponential and Mittag-

Leffler functions (see equation (3.8)). The second approach is also applying geometric

expansion, but from a different aspect. We derive an explicit form in terms of an in-

finite sum of derivatives of Mittag-Leffler functions (see equation (3.12)), by carefully

reconstructing geometric sum on the Laplace side. Moreover, for the third approach, we

present a general Pollaczeck-Khinchine type form for the ruin probability in the classical

Cramér-Lundberg model with light-tailed claims, in terms of moments, which in case

of gamma claims reduces to a third, tractable expression (3.18). This last approach

actually applies to any claim size distributions with finite moments, gamma distribution

being a special case. All three results are shown to retrieve the classical exponential ruin

probability result when reduced to exponential claims. Some numerical computations

are presented afterwards to show the advantage of each expression. Independently, we

also consider discrete claim sizes assumption in the classical risk model. Explicit expres-

sion (3.22) of ruin probability is obtained when geometric claims by using martingale

method and optional stopping theorem.

Another direction that captured a lot of attention over the last hundred years is

to consider altering the assumptions of either independence or memory loss of claim

arrivals, thus analysing ruin probabilities in renewal risk models (Andersen, 1957) or

models with various dependence structures (Albrecher and Boxma, 2004, 2005; Cheung

4



1.1. Risk theory

et al., 2010; Constantinescu et al., 2013). Considering a gamma aggregate claims pro-

cess, Dufresne et al. (1991) derived bounds for the ruin probabilities. Adding financial

considerations to the model, such as returns in investments, see e.g. Garrido (1989);

Paulsen (1998); Frolova et al. (2002); Kalashnikov and Norberg (2002); Paulsen (2008);

Albrecher et al. (2012); Ramsden and Papaioannou (2017), interest rate models, see

e.g. Cai and Dickson (2004) or perturbations in premium cash-flow, see e.g. Temnov

(2014), asymptotics of ruin probabilities have been derived. Lévy risk models were con-

sidered and first passage and exit times were derived via fluctuation theory and scale

functions, see e.g. Furrer et al. (1997); Furrer (1998); Yang and Zhang (2001); Avram

et al. (2002); Kyprianou (2006); Garrido and Morales (2006); Palmowski and Pistorius

(2009); Hubalek and Kyprianou (2011).

The renewal risk model in risk theory is also known as the Sparre Andersen model.

The number of claims N(t) is allowed to follow not only a Poisson counting process,

but also a more general renewal process. The ruin probability ψ(u) of a renewal risk

model solves an integral equation, obtained from the renewal property (see e.g. Feller

(2008)). Among renewal risk processes, Dickson (1998) and Dickson and Hipp (1998,

2001) considered the risk process with Erlang(2, β) distributed or mixed 2-exponentially

distributed inter-arrival times. They obtained an explicit expression for the Laplace

transform of the ruin probability by solving a second-order differential equation. Lin

and Willmot (1999) studied in detail the solution of a defective renewal equation which

involves the time of ruin, the surplus immediately before ruin, and the deficit at the time

of ruin. As a subsequent paper, Lin and Willmot (2000) derived explicitly the joint and

marginal moments of the time of ruin, the surplus before ruin, and the deficit at ruin in

the case where the inter-arrival times have a Kn distribution, for which the associated

Laplace-Stieltjes transform is the ratio of a polynomial of degree m < n to a polyno-

mial of degree n. Examples are given for the cases when the claim size distribution is

exponential, combinations of exponentials or mixtures of Erlangs. Dufresne (2002) ob-

tained the Laplace transform of the non-ruin probability for a wide class of inter-arrival
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1. Introduction and Literature Review

times with a rational Laplace transform representation. Li and Garrido (2004b) used

a similar approach in Gerber and Shiu (1998) to derive a defective renewal equation

for the expected discounted penalty due at ruin in a risk model with Erlang(n, β) inter-

arrival times. Li and Garrido (2004a) considered a compound renewal risk process in the

presence of a constant dividend barrier in which the claim inter-arrival times are gener-

alised Erlang(n, β) distributed and derived an integro-differential equation with certain

boundary conditions for the Gerber-Shiu function. Li and Garrido (2005) considered a

compound renewal risk process whose inter-claim times that have a Kn distribution and

derived the Laplace transform of the expected discounted penalty function at ruin. Ger-

ber and Shiu (2005) analysed the renewal equation for Gerber-Shiu functions in Sparre

Andersen models and consider the case of inter-arrival times following a sum of expo-

nentials as a special case. Constantinescu (2006) used a unified approach to derive an

integro-differential equation for the probability of ruin, under conditions regarding the

claim sizes, claim arrivals and the returns from investment. Chen et al. (2007) derived

a linear ordinary differential equation for the Gerber-Shiu function in a Poisson jump-

diffusion process with phase-type jumps and solved it explicitly for penalty functions

that depend only on the deficit at ruin. Chadjiconstantinidis and Papaioannou (2013)

considered an extension to the compound Poisson risk process perturbed by diffusion

in which two types of dependent claims, main claims and by-claims, are incorporated.

An integro-differential equation system for the Gerber-Shiu expected discounted penalty

functions is derived and solved by proving that the Gerber-Shiu function satisfies a de-

fective renewal equation.

There are two algebraic structures for treating integral operators in conjunction with

derivations, integro-differential operators and integro-differential polynomials. The name

of integro-differential operator was first introduced in Rosenkranz and Regensburger

(2008b) to describe a differential equation, its boundary conditions and its solution op-

erator (Greens operator) of a BVP (linear boundary value problem for ordinary differ-

ential equations) in a uniform language. In Rosenkranz and Regensburger (2008a), the

6



1.1. Risk theory

authors presented another terminology called “integro-differential polynomial”, which

allows them to deal with nonlinear integro-differential equations. This algebraic sym-

bolic structure has nice applications in ruin theory. For instance, as an extension of

the Erlang risk model, Albrecher et al. (2010) transformed the integral equation for

the Gerber-Shiu function into an integro-differential equation whenever the inter-arrival

time distributions exhibit rational Laplace transforms. If the claim size distributions

also have rational Laplace transforms, the integro-differential equations can be further

reduced to linear boundary value problems with the appropriate boundary conditions.

This applies to random variables that are mixed or sums of Erlang random variables.

Another application of these algebraic structures is to the renewal insurance model

with premiums depending on the present surplus of the insurance portfolio. Albrecher

et al. (2013) developed a symbolic technique to obtain asymptotic expressions for ruin

probabilities and discounted penalty functions, based on boundary problems for linear

ordinary differential equations with variable coefficients.

In Chapter 4 of this thesis, we present an approach to generalise the results from

Albrecher et al. (2010). Inspired from Babenko (1986) and Podlubny (1998), we define

a new class of operators, fractional differential operators, that we will refer to as the

Rock operators in Section 4.1. Using these new operators, we are able to construct frac-

tional differential equations for densities of random variables which are mixture or sums

of heterogeneous gamma random variables and Mittag-Leffler random variables. These

fractional differential equations can be regarded as extensions of homogeneous ordinary

differential equations with constant coefficients. The Rock operators themselves possess

many good properties since they are all defined by fractional derivatives, which are well

developed in the fractional calculus literature. As an application, we consider a risk

model (see in Section 4.2.1) with inter-arrival times from this family of distributions.

The corresponding ruin probability will satisfy a fractional integro-differential equation

due to the property of time density function. Furthermore, in this model, if the claim

sizes are assumed to be a sum of heterogeneous gamma random variables, the ruin prob-

7



1. Introduction and Literature Review

ability satisfies a fractional differential equation with constant coefficients.

In Section 4.3, we look into two specific risk models, in which the time density

functions both solve fractional differential equations. The first model, gamma-time risk

model, is a natural generalisation of Erlang risk model considered in Li and Garrido

(2004b). Since the parameter estimation in practice always gives non-integer valued

shape parameters for gamma random variables, it is quite necessary to study the ruin

theory related to the non-integer-valued gamma random variables. Prior to this work,

there are no obtained results for non-integer shape gamma-distributed time in risk the-

ory literature. Another risk model considered is the (time-)fractional Poisson risk model.

This model has been analysed by Beghin and Macci (2013) and Biard and Saussereau

(2014), the fractional differential equation approach being applied for the first time on

the fractional Poisson risk model. The ruin probabilities in these two models can be

solved explicitly when the claim sizes are from the class of distributions with rational

Laplace transforms and retrieved by our approach. Several concrete examples are dis-

cussed in details in Section 4.3.

The Rock operators can also be applied in the analysis of the dual risk model. The

dual risk model, describes the surplus D(t) of a company as

D(t) = u− ct+

N(t)∑
i=1

Yi,

(
0∑
i=1

Yi ..= 0

)
, t > 0, (1.2)

where u > 0 is the initial capital and c > 0 represents the constant expense rate. The

aggregate income up to time t is assumed to be a renewal counting process N(t) and Yi

independent, identically distributed, representing the amount of individual gain. This

model has been of increasing interest in ruin theory in recent years. The risk model

(1.1) is appropriate for an insurance company, and the dual risk model (1.2) seems to be

natural for companies that have occasional gains whose amount and frequency can be

modeled by the process
N(t)∑
i=1

Yi. Avanzi et al. (2007) explained thoroughly where appli-

cations of the dual model make sense, e.g. pharmaceutical or petroleum companies, and

8



1.1. Risk theory

commission-based businesses. The ruin probability is also one of the main issues people

consider. Among pioneering work on the subject we would like to cite Cramér (1955);

Takács (1966); Seal (1969); Gerber (1979); Bühlmann (2007), and the references cited

therein.

Recent works on the dual risk model mainly focus on the optimal dividend prob-

lem, along with the ruin problem analysis. By using Laplace transforms, Avanzi et al.

(2007) studied the optimal dividend problem for a Lévy process which is skip-free down-

wards, whereas Avanzi and Gerber (2008) studied the similar dividend problem when

the aggregate gains process is the sum of a shifted compound Poisson process and an

independent Wiener process. Two practical optimization problems in relation to venture

capital investments and/or Research and Development (R&D) investments have been

studied by Bayraktar and Egami (2008). Cheung and Drekic (2008) derived integro-

differential equations for the moments of the total discounted dividends as well as the

Laplace transform of the time of ruin, which can be solved explicitly assuming the jump

size distribution has a rational Laplace transform. Gerber and Smith (2008) investigated

and examined the De Vylder approximations, diffusion approximations, gamma approx-

imations and the gamma process approximations in the dual model. Song et al. (2008)

allowed the surplus process in the dual risk model to continue if the surplus falls below

zero. By introducing the renewal measure of the defective renewal sequence constituted

by the zero points of the surplus process, Song et al. (2008) obtained the probability

of hitting the zero point and derived formulas for the Laplace transform, expectation

and variance of the total duration of negative surplus. Zhu and Yang (2008) considered

both the finite and infinite horizon ruin probabilities under a dual Markov-modulated

risk model. Upper and lower bounds of Lundberg type are derived for these ruin prob-

abilities and a time-dependent version of Lundberg type inequalities is obtained. Ng

(2009) considered the compound Poisson dual risk model under a threshold dividend

strategy and derived a set of two integro-differential equations satisfied by the expected

total discounted dividends until ruin. Ng (2010) studied the compound Poisson dual

9



1. Introduction and Literature Review

risk model when gains follow a phase-type distribution and obtained explicit formulas

for the expected total discounted dividends until ruin and the Laplace transform of the

time of ruin under a variety of dividend strategies.

By establishing a proper connection between the compound Poisson dual risk model

and the classical risk model, Afonso et al. (2013) showed and explained the dividends

process dynamics for the dual risk model. Properties for the different random quantities

involved and their relations lead to an analysis of different ruin and dividend proba-

bilities, such as the calculation of the probability of a dividend, the distribution of the

number of dividends, the expected and amount of dividends as well as the time of getting

a dividend. Moreover, integro-differential equations for some of the above results and

their Laplace transforms are obtained. Yang and Sendova (2014) studied the renewal

dual risk model in which the times between positive gains are independent and identi-

cally distributed and have a generalised Erlang(n) distribution. They derived an explicit

expression for the Laplace transform of the ruin time and obtained the expected dis-

counted dividends with a threshold-dividend strategy. Rodŕıguez-Mart́ınez et al. (2015)

generalised the compound Poisson dual risk models to renewal dual risk models where

waiting times are Erlang(n) distributed, and obtained expressions for the ruin probabil-

ity and the Laplace transform of the time of ruin for an arbitrary single gain distribution

by using the roots of the fundamental and the generalised Lundberg’s equations. Fur-

thermore, Rodŕıguez-Mart́ınez et al. (2015) computed expected discounted dividends,

as well as higher moments, when the individual common gains follow a phase-type dis-

tribution. Bergel et al. (2017) studied the renewal dual risk model when the waiting

times are phase-type distributed. Using the roots of the fundamental and the generalised

Lundbergs equations, Bergel et al. (2017) obtained expressions for the ruin probability

and the Laplace transform of the time of ruin for an arbitrary single gain distribution

and addressed the calculation of the expected discounted future dividends particularly

when the individual common gains follow a phase-type distribution. In Chapter 4 of

this thesis, we consider a dual risk model in which the inter-arrival times are assumed
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1.2. Fractional calculus

to be the sum of gamma-distributed random variables (see in Section 4.2.2). Fractional

integro-differential equations for non-ruin probabilities are obtained using the Rock op-

erators.

1.2 Fractional calculus

Fractional calculus was born in 1695, when Leibniz (1695) wrote to l’Hôpital in a letter

about half derivatives. In his answer, Leibniz foresaw the beginning of the fractional

calculus area. In fact, fractional calculus is as old as the traditional calculus proposed

independently by Newton and Leibniz (Dzherbashyan and Nersesian, 1958; Oldham and

Spanier, 1974; Miller and Ross, 1993). In the following centuries, lots of mathematicians

tried to find the “proper” definition for fractional integrals and fractional derivatives

(Samko et al., 1993; Rubin, 1996; Butzer and Westphal, 2000; Hilfer, 2008).

In classical calculus, the derivative has an important geometric interpretation, namely,

it is associated with the concept of tangent. However, this interpretation failed in the

fractional case until recent decades (Podlubny, 2004; Tavassoli et al., 2013; Karci, 2015).

This difference can be seen as a problem for the slow progress of fractional calculus up to

1900. After Lebniz, it is Euler (1738) who constructed one kind of non-integer derivatives

when he was introducing the gamma function. After almost another century, Fourier

(1822) suggested an integral representation in order to define the fractional derivative.

This version is the first definition for the derivative of arbitrary (positive) order in

the literature. Meanwhile, fractional calculus has started to attract attention from the

1820s. The first application of fractional calculus is in solving an integral equation as-

sociated with the tautochrone problem (Abel, 1826). Liouville (1832) defined fractional

derivatives for functions representable as a sum of exponentials as for differentiating the

exponential function. This expression is known as the first version of Liouville’s defi-

nition. The second definition formulated by Liouville is in terms of an integral and is

now called the version by Liouville for fractional integral (see Definition 2.1.2). Liouville
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(1832) also introduced the modified Riemann-Liouville fractional derivatives by apply-

ing fractional integrals on integer-order derivatives, which are lately named after Caputo

(Caputo and Mainardi, 1971a). Riemann (1876) published an important paper in the

history of fractional calculus after a series of works by Liouville, in which the Riemann-

Liouville definition is formulated (see Definition 2.1.4). Both Liouville and Riemann

formulations carry the so-called complementary function, which remains a problem to

be solved. Independently of each other, Grünwald (1867) and Letnikov (1868) devel-

oped an approach to non-integer order derivatives in terms of a convenient convergent

series, not by an integral as in the Riemann-Liouville approach. Specifically, Grünwald

(1867) claimed that the fractional derivatives are integro-derivatives and he was the first

to establish a general fractional derivative operator by taking limit of fractional differ-

ence quotients. Letnikov (1868) showed that his definition coincides with the versions

formulated by Liouville, for particular values of the order, and with Riemann, under a

convenient interpretation of the so-called non-integer order difference. Hadamard (1892)

discussed the case when the non-integer order derivative of an analytic function must

be taken in terms of its Taylor series.

The developments of fractional calculus afterwards have become much more system-

atic. Weyl (1917) introduced a derivative in order to circumvent a problem involving the

periodic functions. In the same paper, the Weyl-Liouville fractional derivative is intro-

duced, which is a special case of the Riemann-Liouville fractional derivative, with upper

or lower infinite limit of integral (see Definition 2.1.5). Marchaud (1927) introduced a

new definition for non-integer order of derivatives, which is equivalent to the Liouville

version for some appropriate functions. Hardy and Littlewood (1928) presented several

systematic treatments of certain theorems and properties of the Riemann-Liouville inte-

grals and derivatives. A few standard classes were considered in Hardy and Littlewood

(1928), including “Lebesgue classes”, “Lipschitz classes” and more general classes of

functions which satisfy “integrated Lipschitz conditions”. Erdélyi (1940); Kober (1940);

Erdélyi and Kober (1940) presented a distinct definition for non-integer order of integra-
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1.2. Fractional calculus

tion that is applicable in problems involving integral and differential equations. Riesz

(1939, 1949) proved the mean value theorem for fractional integrals and introduced

another formulation that is associated with the Fourier transform. Caputo (1967) for-

mulated a definition (see Definition 2.1.6), more restrictive than the Riemann-Liouville

one but more appropriate to discuss problems involving a fractional differential equation

with initial conditions. A detailed review of fractional calculus can be found in Hilfer

(2008); De Oliveira and Tenreiro Machado (2014) and other references mentioned above.

Meanwhile, it has been shown that fractional-order models are more adequate than

previously used integer-order models in various fields (Caputo and Mainardi, 1971b; Hil-

fer, 2000). Some of the areas of present-day applications of fractional models include fluid

flows (He, 1998; Odibat and Momani, 2006), solute transport or dynamical processes in

self-similar and porous structures (Liu et al., 2004; Baleanu et al., 2011), diffusive trans-

port akin to diffusion (Metzler et al., 1994), material viscoelastic theory (Bagley and

Torvik, 1983; Bagley and Calico, 1991; Koeller, 1984), electromagnetic theory (Zhang

et al., 1989), dynamics of earthquakes (El-Misiery and Ahmed, 2006), control theory of

dynamical systems (Vinagre et al., 2000; Baleanu et al., 2011), optics and signal pro-

cessing (Sheng et al., 2011), bio-sciences (Magin, 2004, 2010), economics and finance

(Mainardi et al., 2000; Scalas et al., 2000; Mendes, 2009), geology (DePaolo, 1981), as-

trophysics (Lee et al., 1996), probability and statistics (Carpinteri and Mainardi, 2014),

chemical physics (Seki et al., 2003), and so on. The mathematical modelling and simu-

lation of systems and processes, based on the description of their properties in terms of

fractional derivatives, naturally leads to fractional differential equations. The question

of the existence and uniqueness of solutions of initial value fractional differential equa-

tions has been considered in detail (Podlubny, 1998). Methods for solving fractional

differential equations of rational order (Oldham and Spanier, 1974; Bagley and Calico,

1991; Miller and Ross, 1993) do not work in the cases of real order. Other authors used

in their investigations the one-parameter Mittag-Leffler function (Bagley and Calico,

1991; Caputo and Mainardi, 1971b) or Fox H-function (Fox, 1961; Schneider and Wyss,
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1989; Gloeckle and Nonnenmacher, 1991). In order to eliminate several disadvantages of

previous known mehods, Podlubny (1998) has introduced a method which is suitable for

a wide class of initial value problems for fractional differential equations. The method

uses the Laplace transform technique and is based on the formula of the Laplace trans-

forms (2.3) of the two-parameter Mittag-Leffler functions.

On the other hand, Meshkov (1974) used the notion of Green’s function of a frac-

tional differential equation for the first time. The definition of fractional Green’s function

is suggested and formally used by Miller and Ross (1993) when applying to fractional

differential equations containing only derivatives of order kα, where k is integer. Pod-

lubny (1998) has given a more general definition of the fractional Green’s function and

discussed some of its properties, necessary for constructing solutions of initial value

problems for fractional linear differential equations with constant coefficients. Some fur-

ther analytical methods for solving fractional order integral and differential equations

are also discussed in Podlubny (1998), namely the Mellin transform method, the power

series method, and symbolic method which is firstly introduced by Babenko (1986). The

Babenko’s symbolic method itself is close to the Laplace transform method, but it can

be used in more cases. The main idea of this method is to use some specific expansions,

e.g. a binomial expansion or geometric expansion, on the differential operators, which

will lead to an infinite sum of fractional derivatives. However, it is always necessary to

check the validity of the formal solutions since the interchange of infinite summation and

integration requires justification. In general, the justification of Babenko’s approach is

unknown yet, and therefore it is needed to look for such justification on a case to case

basis. However, it is a powerful tool for determining the possible form of the solution.

Numerous examples of the application of this method appearing in heat and mass trans-

fer problems are discussed by Babenko (1986). The way of how to construct the Rock

operators is actually a specific application of Babenko’s approach. The idea behind the

Rock operator is based on the binomial expansion, which will be discussed in detail in

Chapter 4.
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All the methods mentioned in the above paragraph are for solving fractional differen-

tial equations equipped with left fractional derivatives. In this thesis we are going to deal

with right fractional derivatives. The Laplace transforms of right fractional derivatives

do not have any analytic expressions. Thus, we need to find other approaches to solve

these kind of initial (or terminal) value problems for fractional differential equations.

Since the exponential function is the eigenfunction of the right Weyl-Liouville fractional

derivatives, we apply the characteristic equation method to solve these fractional Weyl-

Liouville differential equations.

1.3 Fractional Poisson process

The Poisson process is one of the fundamental processes in stochastic analysis. The frac-

tional Poisson process Nµ(t) is a fractional non-Markovian generalisation of the Poisson

process. The idea of this process is first raised by Repin and Saichev (2000), who dis-

cussed the “fractional Poisson law” by generalising the standard Poisson process for

which the Laplace transform of the interval distribution between jumps has the form

f̂(s) = (1 + sµ)−1. This further inverts back to a Mittag-Leffler density function with

intensity parameter 1 and fraction parameter 0 < µ 6 1. Jumarie (2001) constructed the

fractional master equation for a long-range dependence process via Riemann-Liouville

fractional derivative. The name “fractional Poisson process” is formally introduced

by Laskin (2003), who introduced this fractional non-Markovian process by solving

a fractional generalisation of the Kolmogorov-Feller equation (2.17). The fractional

Kolmogorov-Feller equation is one of the fractional master equations constructed by Ju-

marie (2001).

Besides Laskin’s contribution, there have been quite a few other researchers inter-

ested in the fractional Poisson process in the literature. Wang and Wen (2003) pro-

posed a class of non-Gaussian stationary increment processes, named Poisson fractional
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processes, which were defined as a ‘moving average’ representation of the fractional

Brownian motion. Mainardi et al. (2004) analysed some properties of the fractional

Poisson process and compared it with other renewal processes. Mainardi et al. (2005)

compared the classical Poisson process with the renewal process of Mittag-Leffler type

and the renewal process of Wright type, furthermore considering corresponding renewal

processes with rewards and calculated numerically their long-time behavior. Beghin

and Orsingher (2009) presented three different fractional versions of the Poisson pro-

cess and some related results concerning the distribution of the order statistics and

the compound Poisson process. Beghin et al. (2010) showed that the so-called “gener-

alised Mittag-Leffler functions” Ek
α,β(x) arise as solutions of some fractional extensions

of the recursive differential equation governing the Poisson process. The corresponding

processes are proved to be of renewal type, with the density of the intearrival times

possessing power instead of exponential decay for t→∞. Cahoy et al. (2010) proposed

a formal estimation procedure for parameters of the fractional Poisson process and es-

tablished the asymptotic normality of the estimators for the two parameters appearing

in the fractional Poisson model. Scalas (2011) showed that the functional limit of the

compound fractional Poisson process is an α-stable Lévy process subordinated to the

fractional Poisson process. Meerschaert et al. (2011) showed that a traditional Poisson

process, with the time variable replaced by an independent inverse stable subordinator,

is a fractional Poisson process. Another characterisation of the process was proposed

by Politi et al. (2011): they introduced formulae for its finite-dimensional distribution

functions, fully characterising the process. Beghin and Macci (2012) studied different

fractional versions of the compound Poisson process, whose fractionalities are introduced

in the counting process representing the number of jumps as well as in the density of the

jumps themselves. Orsingher and Polito (2012) introduced the space-fractional Poisson

process by applying the fractional backward operator in the master equation. Biard and

Saussereau (2014) established the long-range dependence property of this non-stationary

process. Rao (2015) introduced a class of processes termed as filtered fractional Poisson

processes and filtered fractional Lévy processes. Di Crescenzo et al. (2016) considered
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a fractional counting process with jumps of amplitude 1, 2, . . . , k, whose probabilities

satisfy a suitable system of fractional difference-differential equations and obtained the

moment-generating function and the probability law of the resulting process in terms of

generalised Mittag-Leffler functions.

The fractional Poisson process has a wide application in different fields. For in-

stance, the residual life-time in statistics is generalised using this process (Politi et al.,

2011). As a physical application, a new family of quantum coherent states has been

introduced and studied (Laskin, 2009) and anomalous diffusions started to draw more

attention (Politi et al., 2011). In meteorology (Blender et al., 2015) and earthquake

analysis, results using the fractional Poisson process have potential implications for the

predictability of extreme phenomenons. In ruin theory, the fractional Poisson process is

first considered by Beghin and Macci (2013), who presented large deviation estimates

for the ruin probabilities of a fractional Poisson risk model with light-tailed claim sizes.

The ruin probabilities in this case have asymptotic exponential decay with rate equals

to the solution R of Lundberg’s equation. Biard and Saussereau (2014) established the

long-range dependence property of fractional Poisson risk model and obtained several

results for ruin-related quantities, e.g. ruin time, ruin probability and finite ruin proba-

bility under exponential claim size and heavy-tailed claim size assumptions.

The thesis is organsied as follows. Chapter 2 gives several related preliminary results

covering the fractional calculus, probability essentials and risk theory basics. Chapter

3 presents the results about ruin probabilities in the classical risk model when gamma

claims or geometric claims. Chapter 4 defines a new class of fractional differential

operators and discusses ruin problems in renewal risk models when inter-arrival time

density solves fractional differential equations. Chapter 5 summarises this project and

talks about several potential future work directions. A few long proofs will be put in

Appendix.
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Chapter 2

Preliminary Results

This chapter provides the foundation of the concepts to be presented in this thesis.

As our goal is to apply fractional calculus in the context of actuarial theory, concepts

from these two backgrounds will be introduced. Technically, probability distributions

and some stochastic processes will be presented since they are strongly related to the

contents of Chapter 3 and 4. Three sections in this chapter will cover fractional calculus,

probability essentials and risk theory basics respectively. The definitions of fractional

calculus theory are taken mainly from Samko et al. (1993) and Podlubny (1998). The

definitions of probability theory follow Feller (2008), Haight (1967) and Rolski et al.

(1999). The classical risk model is presented as in Asmussen and Albrecher (2010), a

reference that could be considered for further risk theory results.

2.1 Fractional calculus

Fractional calculus is the theory of integrals and derivatives of arbitrary order, which

unifies and generalises the notions of integer-order differentiation and n-fold integration

(Podlubny, 1998). The definitions of several special functions, fractional integrals and

fractional derivatives, used in this paper are listed below in this section.
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2.1.1 Mittag-Leffler function

The Mittag-Leffler function was firstly introduced by Mittag-Leffler (1903) as a gener-

alisation of an exponential function. Some other mathematicians managed to generalise

further this function in the sense that more parameters may appear in the expressions

(Anders, 1905; Bateman et al., 1955; Prabhakar, 1971; Shukla and Prajapati, 2007). In

this paper, one-parameter and two-parameter Mittag-Leffler functions are considered,

which are defined as below.

Definition 2.1.1. The one-parameter Mittag-Leffler function is defined on the complex

plane, as the series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, <(α) > 0, z ∈ C. (2.1)

The two-parameter Mittag-Leffler function is a generalised form of the one-parameter

version, which is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, <(α) > 0, <(β) > 0, z ∈ C. (2.2)

Proposition 2.1.1. The Laplace transform of the function zαk+β−1E
(k)
α,β(±azα) is (Pod-

lubny, 1998)∫ ∞
0

e−szzαk+β−1E
(k)
α,β(±azα) dz =

k!sα−β

(sα ∓ a)k+1
, <(s) > |a|1/α. (2.3)

2.1.2 Fractional integrals

A fractional integral is the generalisation of a classical integral, which allows one to

express r-fold integrals, where r is a real number. Riemann-Liouville approach is one

of two classical approaches to achieve this. Based on the limits of integrations, the

Riemann-Liouville fractional integrals have a left definition and a right definition (Hilfer,

2008).
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Definition 2.1.2. The left Riemann-Liouville fractional integral of order r > 0 with

lower limit a is defined as

aI
r
xf(x) =

1

Γ(r)

∫ x

a

(x− y)r−1f(y) dy, x > a,

and the right Riemann-Liouville fractional integral of order r > 0 with upper limit b is

defined as

xI
r
bf(x) =

1

Γ(r)

∫ b

x

(y − x)r−1f(y) dy, x < b.

These two operators are well defined on Ldre([a, b]), a space of functions for which the

dre-th power of the absolute value is Lebesgue integrable on [a, b] (Rubin, 1996). dre

denotes the ceiling function, taking as input a real number r and giving as output the

least integer that is grater than or equal to r.

Definition 2.1.3. The Weyl fractional integrals are special cases of the Riemann-

Liouville integrals, when a is replaced by −∞ or b is replaced by∞, denoted respectively

as

−∞I
r
xf(x) =

1

Γ(r)

∫ x

−∞
(x− y)r−1f(y) dy, x ∈ R,

and

xI
r
∞f(x) =

1

Γ(r)

∫ ∞
x

(y − x)r−1f(y) dy, x ∈ R.

2.1.3 Fractional derivatives

The fractional derivatives have been generalised by various approaches in the litera-

ture. One of the approaches starts from the Riemann-Liouville fractional integral. Once

equipped with the fractional integral, one can define a fractional derivative either by

taking integer order derivatives of a fractional order integral, named Riemann-Liouville

fractional derivatives, or by applying fractional integration on integer order derivatives,

called Caputo derivatives.

Definition 2.1.4. The left Riemann-Liouville fractional derivative of order r > 0 with

lower limit a is defined as the integer order derivative of a fractional integral

aD
r
xf(x) =

1

Γ(n− r)
dn

dxn

∫ x

a

(x− y)n−r−1f(y) dy, x > a, (2.4)
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and similarly, the right Riemann-Liouville fractional derivative of order r > 0 with upper

limit b is defined as

xD
r
bf(x) = (−1)n

1

Γ(n− r)
dn

dxn

∫ b

x

(y − x)n−r−1f(y) dy, x < b, (2.5)

where n = brc+1 is the smallest integer larger than r. brc denotes the the floor function,

taking as input a real number r and giving as output the greatest integer that is less

than or equal to r.

The expression (2.4) is the generalisation of differential operator d
dx

, while the ex-

pression (2.5) can be regarded as the generalisation of operator − d
dx

.

Proposition 2.1.2. For suitable functions f , the Riemann-Liouville fractional deriva-

tives have semigroup properties (Valério et al., 2013)

dk

dxk aD
r
xf(x) = aD

r+k
x f(x),

and
dk

dxk xD
r
bf(x) = (−1)k xD

r+k
b f(x).

Proposition 2.1.3. The Riemann-Liouville fractional derivatives are the left inverse

operators of corresponding fractional integrals (Valério et al., 2013)

aD
r
x aI

r
xf(x) = f(x),

and

xD
r
b xI

r
bf(x) = f(x).

This holds for any r ∈ C.

Using the change of variables and the definition of the beta function,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, <(x),<(y) > 0,

one has the following proposition.
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Proposition 2.1.4. The left Riemann-Liouville fractional integral aI
r
x and left fractional

derivative aD
r
x of the power function (x− a)p are (Podlubny, 1998)

aI
r
x(x− a)p =

Γ(1 + p)

Γ(1 + p+ r)
(x− a)p+r,

and

aD
r
x(x− a)p =

Γ(1 + p)

Γ(1 + p− r)
(x− a)p−r.

Since the Mittag-Leffler function is defined as an infinite series of power functions,

its fractional integrals and derivatives can be computed by applying Proposition 2.1.4.

Proposition 2.1.5. The left Riemann-Liouville fractional integral 0I
r
x and left fractional

derivative 0D
r
x of the Mittag-Leffler functions are (Podlubny, 1998)

0I
r
x

(
xβ−1Eα,β(λxα)

)
= xβ+r−1Eα,β+r(λx

α)

and

0D
r
x

(
xαk+β−1E

(k)
α,β(λxα)

)
= xαk+β−r−1E

(k)
α,β−r(λx

α).

The next proposition is about an extension of the Leibniz integral rule to fractional

calculus.

Proposition 2.1.6. The left Riemann-Liouville fractional derivative 0D
r
x of an integral

depending on a parameter is given by

0D
r
x

∫ x

0

K(x, t) dt =

∫ ∞
0

tD
r
xK(x, t) dt+ lim

t→x−0
tD

r−1
x K(x, t).

The following formula will be used when taking the left Riemann-Liouville fractional

derivative 0D
r
x on a convolution integral of two functions with positive supports

[f ∗ g](x) = [g ∗ f ](x) =

∫ x

0

f(t)g(x− t) dt, x > 0.

Proposition 2.1.7. The left Riemann-Liouville fractional derivative 0D
r
x of the (positive

density) convolution integral equals to

0D
r
x [g ∗ f ] (x) = [0D

r
xg ∗ f ] (x) + lim

t→+0
f(x− t) 0D

r−1
t g(t), x > 0.
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2.1. Fractional calculus

Definition 2.1.5. The Weyl-Liouville fractional derivatives (Samko et al., 1993; Butzer

and Westphal, 2000) are special cases of the Riemann-Liouville definition when a is

replaced by −∞ or b is replaced by ∞, denoted as

−∞D
r
xf(x) =

1

Γ(n− r)
dn

dxn

∫ x

−∞
(x− y)n−r−1f(y) dy, x ∈ R,

and

xD
r
∞f(x) = (−1)n

1

Γ(n− r)
dn

dxn

∫ ∞
x

(y − x)n−r−1f(y) dy, x ∈ R, (2.6)

where n = brc+ 1.

Another widely used definition of fractional derivatives are the so-called Caputo

fractional derivatives.

Definition 2.1.6. The Caputo fractional derivatives are modified Riemann-Liouville

fractional derivatives in the sense of interchanging the order of fractional integration

and integer-order differentiation

C
aD

r
xf(x) =

1

Γ(n− r)

∫ x

a

(x− y)n−r−1f (n)(y) dy, x > a, (2.7)

and

C
xD

r
bf(x) =

1

Γ(n− r)

∫ b

x

(y − x)n−r−1f (n)(y) dy, x < b, (2.8)

where n = brc+ 1.

Proposition 2.1.8. For suitable functions f , the Caputo fractional derivatives have

semigroup properties with integer order derivatives, which are

C
aD

r
x

dk

dxk
f(x) = C

aD
r+k
x f(x),

and

C
xD

r
b

dk

dxk
f(x) = C

xD
r+k
b f(x).

Proposition 2.1.9. The Caputo fractional derivatives are the left inverse operators of

corresponding fractional integrals (Valério et al., 2013)

C
aD

r
x aI

r
xf(x) = f(x),
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2. Preliminary Results

and

C
xD

r
b xI

r
bf(x) = f(x).

This holds for r ∈ N or <(r) /∈ N.

The following proposition illustrates the relationships between Riemann-Liouville

fractional derivatives and Caputo fractional derivatives (Almeida and Torres, 2011).

Proposition 2.1.10. For suitable functions f , one has

aD
r
xf(x) = C

aD
r
xf(x) +

brc∑
k=0

(x− a)k−r

Γ(k − r + 1)
f (k)(a), x > a,

and

xD
r
bf(x) = C

xD
r
bf(x) +

brc∑
k=0

(b− x)k−r

Γ(k − r + 1)
f (k)(b), x < b. (2.9)

These two identities show that Riemann-Liouville fractional derivatives and Caputo

fractional derivatives are equivalent if and only if, for all 0 6 k 6 brc, the derivatives

f (k)(a) or f (k)(b) equal to zeros respectively.

In the classical integration, there are lots of useful rules in calculus, like the chain

rule, the Leibniz rule, the integration by parts and so on. In order to apply these rules

in fractional calculus, one has to adapt each formula. The main difference consists in

the appearance of more residual terms.

Proposition 2.1.11. The fractional integration by parts rules are (Almeida and Torres,

2011) ∫ b

a

g(x) CxD
r
bf(x) dx =

∫ b

a

f(x) aD
r
xg(x) dx

+

brc∑
j=0

[
(−1)brc+1+j

(
aD

r+j−brc−1
x g(x)

) (
aD
brc−j
x f(x)

)]b
a

(2.10)

and ∫ b

a

g(x) CaD
r
xf(x) dx =

∫ b

a

f(x) xD
r
bg(x) dx

+

brc∑
j=0

[(
xD

r+j−brc−1
b g(x)

)(
xD
brc−j
b f(x)

)]b
a
. (2.11)
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2.1. Fractional calculus

In the case that 0 < r < 1 and f(a) = f(b) = 0, the results become∫ b

a

g(x) CxD
r
bf(x) dx =

∫ b

a

f(x) aD
r
xg(x) dx

and ∫ b

a

g(x) CaD
r
x dx =

∫ b

a

f(x) xD
r
bg(x) dx. (2.12)

The fractional integration by parts rules (2.10) to (2.12) offer one of the connections

between left derivatives and right derivatives.

The next proposition gives the possibility that we can adopt a characteristic equation

approach to solve a specific kind of fractional differential equations.

Proposition 2.1.12. The eigenfunction of the fractional derivative xD
r
∞ is e−λx, where

λ ∈ R+.

Proof. In fact, one has

xD
r
∞e
−λx =(−1)k

dk

dxk

∫ ∞
x

1

Γ(k − r)
(t− x)k−r−1e−λt dt

=(−1)k
dk

dxk

∫ ∞
0

1

Γ(k − r)
sk−r−1e−λ(s+x) ds

=(−1)k
dk

dxk
e−λx

∫ ∞
0

1

Γ(k − r)
sk−r−1e−λs ds

=(−1)k(−λ)ke−λxλr−k

=λre−λx.

There are many useful transformations for fractional integrals and derivatives, e.g.

Laplace transforms, Fourier transforms and Mellin transforms (Podlubny, 1998). The

next proposition is one of them which will be used in the thesis.

Proposition 2.1.13. The Laplace transform of the left Riemann-Liouville fractional

derivative of order r > 0 is

L{0D
r
xf(x); s} = srf̂(s)−

brc∑
k=0

sk
[

0D
r−k−1
x f(x)

]∣∣
x=0

. (2.13)
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2.2 Probability theory and statistics

In this section, several discrete and continuous random variables used in the thesis are

listed along with their probability-generating functions (for discrete random variable X)

GX(z) ..= E
(
zX
)
, z ∈ {z |GX(z) <∞},

moment-generating functions (for continuous random variable Z)

MZ(s) ..= E
(
esZ
)
, s ∈ {s |MZ(s) <∞},

or the (unilateral) Laplace transforms of density functions fZ(z) supported on t > 0

L{fZ(z); s} = f̂Z(s) ..=

∫ ∞
0

e−szf(z) dz, s ∈
{
s ∈ C

∣∣∣∣ ∫ ∞
0

|e−<(s)zf(z)| dz <∞
}
.

2.2.1 Discrete and continuous distributions

The geometric random variable X describes either the number of Bernoulli trials

needed to get one success or the failures before the first success. In the following context,

the second definition is chosen, i.e., the probability mass function is

P(X = k) = p · (1− p)k, k ∈ N (2.14)

where p ∈ (0, 1] denotes the probability of success on each single trial. The mean and

variance of a geometric random variable are equal to 1−p
p

and 1−p
p2

. The probability-

generating function of a geometric random variable is

GX(z) =
p

1− (1− p)z
, |z| < (1− p)−1. (2.15)

The Poisson random variable N expresses the number of events occurring in a

fixed time interval if these events occur with a known average rate λ > 0 and indepen-

dently of the time since the last event. Its probability mass function is given as

P(N = k) =
λke−λ

k!
, k ∈ N.
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2.2. Probability theory and statistics

The mean and variance of a Poisson random variable are both equal to λ. The probability-

generating function of a Poisson random variable is

GN(z) = eλ(z−1), z ∈ R.

The exponential random variable is a continuous random variable which is de-

fined as the time between events in Poisson process. For an exponential random variable

Z ∼ exp(λ) with parameter λ > 0, the probability density function is

fZ(z) = λe−λz, z > 0,

and cumulative distribution function

FZ(z) =

∫ z

0

f(s) ds = 1− e−λz, z > 0.

The mean and variance of an exponential random variable are are equal to 1
λ

and 1
λ2

,

respectively. The moment-generating function of an exponential random variable is

MZ(s) =
λ

−s+ λ
, s < λ.

The Laplace transform of the exponential density function equals to

L{fZ(z); s} = f̂Z(s) =
λ

s+ λ
, <(s) > −α.

The gamma random variable is a continuous random variable with shape param-

eter α > 0 and rate parameter β > 0. When α takes integer values n, it is also known

as an Erlang random variable, which could be regarded as the sum of n independent

and identically distributed exponential random variables with parameter β. The density

function of a gamma random variable Y ∼ Γ(α, β) is

fY (y) =
βα

Γ(α)
yα− 1e−βy, y > 0,

with mean and variance equal to α
β

and α
β2 . The moment-generating function of a gamma

random variable is

MY (s) =

(
β

−s+ β

)α
, s < β.
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The Laplace transform of the gamma density function equals to

L{fY (y); s} = f̂Y (s) =

(
β

s+ β

)α
, <(s) > −β.

The Mittag-Leffler random variable refers to two different family of distribu-

tions. The first family of Mittag-Leffler distributions is defined by a relation between

the Mittag-Leffler function and their cumulative distribution functions. For a first kind

of Mittag-Leffler random variable X ∼ ML(µ, λ) with parameters µ ∈ (0, 1] and λ > 0,

the probability density function is

fX(x) = λxµ−1Eµ,µ(−λxµ), x > 0,

and cumulative distribution function

FX(x) = 1− Eµ(−λxµ), x > 0,

where Eµ and Eµ,µ are given in (2.1) and (2.2). When µ ∈ (0, 1), its mean and variance

do not exist. The Laplace transform of the first kind Mittag-Leffler density function

equals to

L{fX(x) ; s} = f̂X(s) =
λ

sµ + λ
, (2.16)

The second family of Mittag-Leffler distributions is defined by a relation between the

Mittag-Leffler function and their moment-generating function. For a second kind of

Mittag-Leffler random variable X ′ with parameter µ ∈ [0, 1], its moment-generating

function equals to

E
(
ezX

′
)

= Eµ(Cz),

for some constant C > 0, where the convergence stands for all z ∈ C if α ∈ (0, 1], and

all |z| < 1/C if α = 0. In this thesis we are going to use the first family.

2.2.2 Stochastic processes

The homogeneous Poisson point process, Poisson process in short, is usually de-

noted as {N(t), t > 0}. A counting process is a Poisson counting process with rate λ > 0

if it has the following three properties:
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2.2. Probability theory and statistics

• N(0) = 0;

• has independent increments; and

• the number of events in any interval of length t is a Poisson random variable with

parameter λt.

This definition has important features:

• the number of points in each finite interval has a Poisson distribution;

• the number of points in disjoint intervals are independent random variables;

• the distribution of each interval (a+ t, b+ t] only depends on the interval’s length

b− a;

• the distance between two consecutive points of a Poisson process is an exponential

random variable with parameter λ.

The renewal counting process, renewal process in short, is a generalisation of the

Poisson process. It allows that the inter-arrival times take on a more general indepen-

dent and identical distribution.

The fractional Poisson process denoted by Nµ(t), t > 0, µ ∈ (0, 1], is a fractional

non-Markovian generalisation of Poisson process N(t), t > 0. The distribution of a frac-

tional Poisson process Pµ(n, t) = P (Nµ(t) = n) is defined as the solution of a fractional

generalisation of the Kolmogorov-Feller equation (Laskin, 2003)

0D
µ
t Pµ(n, t) = λ(Pµ(n− 1, t)− Pµ(n, t)) +

t−µ

Γ(1− µ)
δn,0, t > 0 (2.17)

where λ is the intensity parameter and δn,0 is the Kronecker symbol. The solution of

equation (2.17) is given by

Pµ(n, t) =
λntµn

n!

∞∑
j=0

(n+ j)!(−λtµ)j

j!Γ(µj + µn+ 1)
=

(
(−z)n

n!

dn

dzn
Eµ(z)

)∣∣∣∣
z=−λtµ

, t > 0,
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where Eµ(z) is the one-parameter Mittag-Leffler function. Moreover, Laskin (2003)

showed that the inter-arrival time tµ of the fractional Poisson process has as cumulative

distribution function

Fµ(t) = 1− Pµ(0, t) = 1− Eµ(−λtµ), t > 0

and as probability density function

fµ(t) = λtµ−1Eµ,µ(−λtµ), t > 0. (2.18)

The Laplace transform of the inter-arrival time fµ(t) of the fractional Poisson process

is given in equation (2.16). It follows that the density function of the k-th event, τk,

possesses the Laplace transform

L
{
f ∗kµ (t) ; s

}
=

(
λ

sµ + λ

)k
,

yielding that (see equation (2.3))

f ∗kµ (t) = λktkµ−1E
(k)
µ,kµ(−λtµ), t > 0. (2.19)

The moment-generating function Hµ(s, t) of a fractional Poisson process is given by

Hµ(s, t) =
∞∑
n=0

e−snPµ(n, t) = Eµ(λtµ(e−s − 1)), t > 0.

The mean and variance of Nµ(t) equal to (Laskin, 2003)

E (Nµ(t)) =
λtµ

Γ(µ+ 1)
, Var (Nµ(t)) =

2(λtµ)2

Γ(2µ+ 1)
− (λtµ)2

(Γ(µ+ 1))2 +
λtµ

Γ(µ+ 1)
. (2.20)

In general, the m-th order moment of a fractional Poisson process Nµ(t) is given by

(Laskin, 2009)

E ((Nµ(t))m) =
∞∑
i=0

Sµ(m, i) · (λtµ)i,

where

Sµ(m, i) =
1

Γ(µi+ 1)

i∑
j=0

(−1)i−j
(
i

j

)
jm, m ∈ Z+, i ∈ N
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2.3. Actuarial concepts

is the fractional Stirling number (Laskin, 2009). In Repin and Saichev (2000), it is

proved that, for t→∞, there exists a constant C, such that

P (tµ > t) ∼ Ct−µ.

Consequently the inter-arrival times tµ have heavy tails and infinite mean for 0 < µ < 1.

The fractional Poisson process has long-range dependence property when 0 < µ < 1

(Biard and Saussereau, 2014), namely,

lim sup
t→∞

Var (Nµ(t))

t
=∞.

2.3 Actuarial concepts

Here are some basic insurance mathematical concepts which will be seen through out

the thesis.

• An insurance premium is simply referred to as a “premium”. The premium rate,

denoted by c in the thesis, is the amount of money that policyholders pay to an

insurance company per unit time.

• Claims are the amount of losses an insurer needs to pay for an insured product.

The value of a claim is referred to as the claim size and it is considered as a

non-negative random variable, denoted by Xi, with common distribution function

FX .

• The number of claims that occur in a certain period is a non-negative integer-

valued random variable. The claim counting process is often denoted by {N(t), t >

0} where N(t) is the number of claims up to time t.

• An epoch of a claim, or sometimes called a claim arrival time is the time at which

a claim happens. We denote the epochs by τ1, τ2, . . . and the inter-arrival times

or waiting times by Ti = τi − τi−1, with common distribution function FT .
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• A risk surplus denoted here by R(t) is the amount of capital of an insurance

company by time t. It increases by collecting premiums and drops by the payment

of claims.

• The net profit condition for a risk model is

c · E(Ti) > E(Xi), (2.21)

describing the situation where the insurance company can avoid certain ruin. If

the net profit condition is not satisfied, i.e., c ·E(Ti) 6 E(Xi), then the ruin occurs

almost surely irrespective of the large value of the initial surplus.

2.4 Ruin probabilities

We start with formulating the risk model. Let (Ω,F ,P) be a complete probability space

carrying the the following objects:

1. a counting point process N = {N(t); t > 0} with N(0) = 0;

2. a sequence {Xi} of independent and identically distributed positive random vari-

ables.

The stochastic process

R(t) = u+ ct−
N(t)∑
i=1

Xi, t > 0, (2.22)

is called a risk process with initial capital u. This model describes the amount of surplus

R(t) of an insurance portfolio at time t. The ruin probability of a company having initial

capital u is defined by

ψ(u) = P
(

inf
t>0

R(t) < 0
∣∣∣R(0) = u

)
= P (τu <∞) , u > 0, (2.23)

where τu is the first hitting time

τu = inf

t ≥ 0 :

N(t)∑
k=1

Xk − ct > u

 .
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2.4. Ruin probabilities

The non-ruin, or survival probability, is denoted by

φ(u) = 1− ψ(u), u > 0.

Lundberg (1926) identified a very important equation whose solution is used to find

the asymptotic behavior of the ruin probability. The equation is referred to as the

Lundberg’s equation:

MX(s)MT (−cs) = 1, (2.24)

where MX(s) and MT (s) are the moment-generating functions of the claim size distri-

bution and the inter-arrival time distribution respectively given these functions exist.

The smallest positive solution of equation (2.24) is referred to the adjustment coefficient

R, which is used quite often when doing asymptotic analysis (Asmussen and Albrecher,

2010).

The risk process R(t) in (2.22) is referred to as the “classical risk process” if N(t) is

a homogeneous Poisson process. Cramér (1930) used the properties of Poisson processes

and a differential argument to derive an integro-differential equation for the non-ruin

probability. Consider R(t) in a sufficiently small time interval (0,∆] and separate the

four possible cases as follow (Grandell, 1991a):

1. no claim occurs in (0,∆];

2. one claim occurs in (0,∆], but ruin does not happen;

3. one claim occurs in (0,∆], and ruin happens;

4. more than one claims occurs in (0,∆].

By applying the law of total probability assuming the differentiability of the non-ruin

probability φ(u), one obtains the integro-differential equation

d

du
φ(u) =

λ

c
φ(u)− λ

c

∫ u

0

φ(u− y)fX(y) dy, u > 0, (2.25)

where λ is the parameter of Poisson process. This method is very intuitive but not

mathematically rigorous. Instead of using a differential argument, Feller (2008) derived
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an integral equation for the non-ruin probability by a renewal argument, which can be

used not only for the classical risk model, but also for the renewal risk process (formally

proposed and analysed seven years later by Andersen (1957)). As a renewal model, the

classical risk process is a discrete-time Markov process since it “renews” at every jump

time. The renewal argument states, that the non-ruin probability solves the following

equation

φ(u) = E [φ(u+ cT1 −X1)] =

∫ ∞
0

λt−λt
∫ u+ct

0

φ(u+ ct− y) dFX(y) dt. (2.26)

After changing variables and further simplification, one obtains

φ(u) = φ(0) +

∫ u

0

φ(u− y)(1− FX(y)) dy,

with initial value φ(0) = 1− λ
c
· E(X).

The simplest classical risk model scenario consists of claim sizes following an exponen-

tial distribution with parameter α. Under the net profit condition, the ruin probability is

obtained by solving an ordinary differential equation with boundary conditions (Cramér,

1930)

ψ(u) =
λ

αc
e−(α−λc )u, u > 0. (2.27)

Laplace transformation is another way to derive the expression of non-ruin probabil-

ity. Taking a Laplace transform on the integro-differential equation (2.25) leads to

φ̂(s) =
cφ(0)

cs− λ+ λf̂X(s)
. (2.28)

When the claim sizes are Erlang-distributed, i.e., the Laplace transform of the claim size

density equals

f̂X(s) =

(
α

s+ α

)n
, <(s) > −α,

then the expression on the right hand side of (2.28) can be written as the ratio of two

polynomial functions in s. In the Erlang-distributed claim case, one can then use the

partial fraction decomposition and invert φ̂ to obtain a linear combination of exponential
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functions (Grandell, 1991a; He et al., 2003).

Notice that for a rational shape parameter r = m/n ∈ Q where m and n are both

positive integers, with <(s) > α, one could shift the argument s to obtain

φ̂(s− α) =
cφ(0)

c(s− α)− λ+ λ(α
s
)m/n

=
cφ(0)sm/n

c(s− α)sm/n − λ+ λαm/n
,

which is a ratio of polynomials of orders m and (m+1) in t = s1/n. This again permits a

partial fraction decomposition which can further give an explicit expression for the non-

ruin probability. In this case, an explicit expression can be obtained as in Zhu (2013),

using the two parameter Mittag-Leffler function:

φ(u) = e−αuu
1
n
−1

m+n−1∑
k=0

mkE 1
n
, 1
n

(
sku

1
n

)
, u > 0 (2.29)

with sk and mk real constants, determined on a case-by-case basis.

Extending these results to positive real shape parameters r proves to be non-trivial

and different approaches are presented in this thesis. Prior to this work, the only known

(to us) result for non-integer shape gamma-distributed claims is that of Thorin (1973),

which deals with the classical collective risk model with Poisson arrival intensity λ = 1,

Γ(1/b, 1/b)-distributed claims, b > 1, and positive loading c > 1, the ruin probability for

u > 0 is

ψ(u) =
(c− 1)(1− bR)e−Ru

1− cR− c(1− bR)

+
c− 1

bπ
sin

π

b

∫ ∞
0

x1/be−(x+1)u/b[
x1/b

(
1 + cx+1

b

)
− cos π

b

]2
+ sin2 π

b

dx,

where R is the positive solution of Lundberg’s equation (2.24). This approach explores

the properties of completely monotone functions. This class of gamma distribution,

Γ(1/b, 1/b), fits in the completely monotone class of distributions of the form

P (y) =



∫∞
0

(1− e−αy) dV (α), y ≥ 0,

0, y < 0,
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where V (α) is a distribution function with V (0) = 0, which means its tail distribution

is completely monotone. Thorin (1973) then derived the ruin probability as a function

of V ′. For Γ(1/b, 1/b) distributed, with b > 1,

P (y) =
1

Γ(1/b)

∫ y/b

0

x1/b−1e−x dx, y ≥ 0, b > 1,

is completely monotone and

d

dx
V (x) =

1

π
sin

π

b
x−1(bx− 1)−1/b, x > 1/b.

When b = 2, the expression of ruin probability becomes a linear combination of exponen-

tials and error functions, which expression (2.29) can recover when r = 1/2. However,

notice that the general form of the integral term appearing in the result can only be

calculated numerically.

Another research direction in risk theory is to consider a general renewal risk model.

The risk process R(t) in (2.22) is referred to as the “renewal risk process” when N(t) is a

renewal counting process. Instead of the classical methods (Grandell, 1991a) described

before equation (2.25), we would like to apply the renewal argument (2.26) in its full

generality. The ruin probability in a renewal risk model satisfies (Feller, 2008)

ψ(u) =

∫ ∞
0

fT (t)

(∫ u+ct

0

ψ(u+ ct− y) dFX(y) +

∫ ∞
u+ct

dFX(y)

)
dt, u > 0 (2.30)

with the universal boundary condition lim
u→∞

ψ(u) = 0.

A renewal risk process is a continuous stochastic process, but has Markov property

conditional on discrete jump times. Therefore one needs to find its generator, instead

of an infinitesimal generator. However, once the inter-arrival time distribution is given,

through similar probabilistic arguments, the equations for the ruin probability could be

obtained as follows.

1. Exp(λ) distributed inter-arrival times (classical risk model). Let fT (t) = λe−λt, for

t > 0, be the density function of inter-arrival times. The ruin probability satisfies(
−c d

du
+ λ

)
ψ(u) = λ

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0.
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2.4. Ruin probabilities

2. Erlang(2, λ) distributed inter-arrival times (Erlang(2) risk model considered by

Dickson (1998)). Let fT (t) = λ2te−λt, for t > 0, be the density function of inter-

arrival times. The ruin probability satisfies(
−c d

du
+ λ

)2

ψ(u) = λ2

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0.

3. Erlang(n, λ) distributed inter-arrival times (Erlang(n) risk model considered by Li

and Garrido (2004b)). Let fT (t) = λn

Γ(n)
tn−1e−λt, for t > 0, be the density function

of inter-arrival times. The ruin probability satisfies(
−c d

du
+ λ

)n
ψ(u) = λn

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0.

4. Sum of n exponentially distributed inter-arrival times (Gerber and Shiu, 2005).

Let inter-arrival times Ti be the sum of n independent heterogeneous exponential

random variables, with parameters λ1, λ2, . . . , λn. The ruin probability satisfies

n⊙
i=1

(
−c d

du
+ λi

)
ψ(u) =

n∏
i=1

λi

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0,

where
⊙

denotes left-composition of operators, namely

m⊙
j=1

Lj[f ] := (Lm ◦ · · · ◦ L1)[f ].

In the literature of risk theory, the product sign
∏

usually denotes the composition

of operators.

5. More general inter-arrival times (Albrecher et al., 2010). Let the inter-arrival time

density function fT satisfy

LT
(
d

dt

)
[fT ](t) = f

(n)
T (t) + an−1f

(n−1)
T (t) + · · ·+ a0fT (t) = 0,

with almost homogeneous initial conditions

f
(k)
T (0) = 0, for k = 0, . . . , n− 2,

f
(n−1)
T (0) = a0.
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The ruin probability satisfies

L∗T
(
c
d

du

)
[ψ](u) = α0

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0,

where L∗T is the formal adjoint of LT defined by∫ ∞
0

LT [f ](x) g(x) dx =

∫ ∞
0

f(x)L∗T [g](x) dx.

If moreover the claim size density fX satisfies a linear ordinary differential equation

with constant coefficients

LX
(
d

dy

)
[fX ](y) = f

(m)
X (y) + bm−1f

(m−1)
X (y) + · · ·+ b0fX(y) = 0,

with almost homogeneous initial conditions

f
(k)
X (0) = 0, for k = 0, . . . ,m− 2,

f
(m−1)
X (0) = a0,

the ruin probability further satisfies

LX
(
d

du

)
L∗T
(
c
d

du

)
[ψ](u) = a0b0 · ψ(u), u > 0.

Constantinescu (2006) mentioned in her thesis about one of the main venues of

future research when considering general gamma inter-arrival times in risk theory. This

problem has been left to be solved until Constantinescu et al. (2017) managed to extend

the result to more general renewal risk models.
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Chapter 3

Compound Poisson Risk Models

In this chapter we will consider the ruin problem in the classical risk model. Explicit

ruin probabilities in the classical risk model when gamma-distributed claim sizes are

derived in Section 3.1. Another small result in classical risk model is in the case of

geometric-distributed claim sizes, whose explicit ruin probability will be presented in

Section 3.2.

3.1 Explicit expressions for non-ruin probabilities

in the case of gamma claims

The focus of this section is on gamma-distributed claim sizes, i.e., with the density

fX(y) =
αr

Γ(r)
yr−1e−αy, y > 0, (3.1)

where r > 0 is the shape parameter, and α > 0 is the rate parameter. The gamma

distribution Γ(r, α) has two positive parameters. When the shape parameter r takes

value in r = n ∈ N+, it is also known as Erlang distribution and can be interpreted

as the sum of n independent and identically distributed exponential random variables.

However, this interpretation fails if the shape parameter has non-integer values. In the

risk literature, explicit expressions for ruin probabilities in the classical risk model have

been previously obtained only under Erlang claim sizes assumption. In this section, we
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3. Compound Poisson Risk Models

consider the classical ruin problem with gamma-distributed claim sizes.

The starting point is the classical integro-differential equation for the non-ruin prob-

ability (2.25)

d

du
φ(u) =

λ

c
φ(u)− λ

c

∫ u

0

φ(u− y)fX(y) dy, u > 0 .

An immediate conclusion is that the Laplace transform of non-ruin probability

φ̂(s) =
cφ(0)

cs− λ+ λMX(−s)
=

cφ(0)

cs− λ+ λ( α
s+α

)r
, <(s) > 0. (3.2)

We would like to mention that the non-ruin probability of the classical risk model (1.1)

with zero initial capital equals to

φ(0) = 1− λE(X)

c
,

where E(X) denotes the expected claim size, see e.g. Rolski et al. (1999). Throughout

this chapter, by φ(0) we refer to this expression.

When the shape parameter r is integer, namely when the claims are Erlang-distributed,

the expression in the right hand side of (3.2) can be written as the ratio of two poly-

nomial functions. One can then use the partial fraction decomposition and invert φ̂ to

obtain a linear combination of exponential functions (Grandell, 1991a).

3.1.1 Gamma-distributed claim sizes with rational shape

parameters

The following theorem gives the explicit expression for non-ruin probability when claim

sizes are gamma-distributed with rational shape parameters. Notice that for a rational

shape parameter r = m/n ∈ Q, with <(s) > α, one could shift the argument s to obtain

φ̂(s− α) =
cφ(0)

c(s− α)− λ+ λ(α
s
)m/n

=
cφ(0)sm/n

c(s− α)sm/n − λ+ λαm/n
, (3.3)

which is a ratio of polynomials of orders m and m+ n in t = s1/n. This again permits a

partial fraction decomposition.
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

Theorem 3.1.1. For a classical compound Poisson risk model (1.1) with claim sizes

distributed as Γ
(
m
n
, α
)
, the probability of non-ruin is given by

φ(u) = e−αuu
1
n
−1

m+n−1∑
k=0

mkE 1
n
, 1
n

(
sku

1
n

)
, u > 0, (3.4)

where E 1
n
, 1
n

is the two-parameter Mittag-Leffler function defined in (2.2) with sk and

mk are constants (see Remark 3.1.1 and 3.1.2 below).

Proof. Since the Laplace transform of fX is
(

α
s+α

)m
n , equation (3.2) leads to the expres-

sion of φ̂(s) as

φ̂(s) =
cφ(0)

cs− λ+ λ
(

α
s+α

)m
n

, <(s) > −α.

Shifting the Laplace argument gives (3.3) which has as denominator a polynomial in s
1
n

and thus can be further decomposed in partial fractions:

φ̂(s− α) =
φ(0)s

m
n

m+n−1∏
k=0

(
s

1
n − sk

) =
m+n−1∑
k=0

mk

s
1
n − sk

,

where for each k = 0, 1, . . . ,m+n− 1, sk, mk are constants to be determined on a case-

by-case basis. Once the values of above parameters are obtained, one could invert it

back to the sum of Mittag-Leffler function due to Proposition 2.1.1. Thus, the non-ruin

probability for claim size with m/n shape gamma distribution has the form (3.4).

Remark 3.1.1. All of the constants sk in (3.4) are the roots of Lundburg equation

(2.24)

xm+n =

(
α +

λ

c

)
xm − λ

c
α
m
n . (3.5)

Note that both sides of (3.5) are analytic and s0 = α
1
n is always a root of this equation.

For x = a+ b i on the closed contour Γ = {x : |x| = α1/n}, i.e.,

a2 + b2 = α
2
n ,

the maximum norm of the right-hand side of equation (3.5) equals

max
x∈Γ

∣∣∣∣(α +
λ

c

)
xm − λ

c
α
m
n

∣∣∣∣ = α
m+n
n
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3. Compound Poisson Risk Models

when a = α1/n and b = 0. This means that on the closed contour Γ = {x : |x| = α1/n}

except the real value x = α1/n we have∣∣xm+n
∣∣ > ∣∣∣∣(α +

λ

c

)
xm − λ

c
α
m
n

∣∣∣∣ .
By Rouché’s theorem, equation (3.5) and xm+n = 0 have the same number of roots m+n

inside the circle {x : |x| = α1/n}. We conclude that the other roots s1, s2 . . . , sm+n−1

have real parts less than α1/n.

Remark 3.1.2. All of the constants sk in (3.4) are the solutions of systems of linear

equations by adopting the method of undetermined coefficients.

Remark 3.1.3. There are no repeated roots among s0, s1, . . . , sm+n−1 in (3.4). In order

to validate this argument, we check the derivative

d

dx

(
cxm+n − (cα + λ)xm + λα

m
n

)
=c(m+ n)xm+n−1 − (cα + λ)mxm−1

=cxm−1

(
(m+ n)xn −

(
α +

λ

c

)
m

)
.

Assuming there exist repeated roots si = sj = η, the value of η must simultaneously

satisfy the following two equations (the original function and its derivative at this point

both equal to zero) 
c ηm+n − (cα + λ)ηm + λα

m
n = 0,

(m+ n)ηn −
(
α + λ

c

)
m = 0.

Starting from the second equation and substituting it into the first one gives

(cα + λ)n

m+ n
ηm = λα

m
n ,

which has different roots of the second equation, a contradiction.

Remark 3.1.4. The case of positive integer r = m
1

in Theorem 3.1.1 reverts to the

classical case of Erlang(m,α) distributed claim sizes. The non-ruin probability becomes

φ(u) = e−αuu
1
1
−1

m∑
k=0

mkE1,1(sku) =
m∑
k=0

mke
(sk−α)u, u > 0,

42



3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

coincides with the existed result in risk theory literature Li and Garrido (2005).

Remark 3.1.5. Thorin (1973) provides a closed-form expression for the ruin probability

when the claims are gamma-distributed with parameters k = α. When k = α = 1
2

and

the inter-arrival times are exponentially distributed with parameter λ = 1, this becomes

ψ(u) =
(c− 1)(1− 2R)e−Ru

1 + c(3R− 1)
+
c− 1

2π

∫
∞

0

√
xe−(x+1)u/2

(x+ 1)
[
c2

4
x2 + ( c

2

4
+ c)x+ 1

] dx, u > 0,

(3.6)

where R is the unique positive solution of Lundberg’s equation

(1 + cR)
√

1− 2R = 1,

which can be solved to be R = c−4+
√
c2+8c

4c
.

On the other hand, we can show that in our result (2.29), for r = 1/2, the non-ruin

probability equals

φ(u) = e−αuu−
1
2

2∑
k=0

mkE 1
2
, 1
2

(
sku

1
2

)
, u > 0. (3.7)

Here the roots s0, s1, s2 and coefficients m0, m1, m2 can be calculated explicitly,

s0 =
√
α, s1 = −

√
α

2
+

√
α

4
+
λ

c
, s2 = −

√
α

2
−
√
α

4
+
λ

c
,

and

m0 =
s0

(
1− λ

2cα

)
(s1 − s0)(s2 − s0)

=

√
α
(
c− λ

2α

)
2cα + λ

,

m1 =
s1

(
1− λ

2cα

)
(s0 − s1)(s2 − s1)

=

(
−
√
α

2
+
√

α
4
− λ

c

) (
1− λ

2cα

)
(

3
2

√
α−

√
α
4
− λ

c

)(
−2
√

α
4
− λ

c

) ,
m2 =

s2

(
1− λ

2cα

)
(s0 − s2)(s1 − s2)

=

(
−
√
α

2
−
√

α
4
− λ

c

) (
1− λ

2cα

)
(

3
2

√
α +

√
α
4
− λ

c

)(
2
√

α
4
− λ

c

) .
It can be proved that (3.7) is the same as (3.6). The proof will be put in the appendix

chapter.
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3. Compound Poisson Risk Models

3.1.2 Gamma-distributed claim sizes with real shape

parameters

In this section, we provide three equivalent expressions for ruin probabilities in a Cramér-

Lundberg model with real-gamma distributed claims. The results are solutions of

integro-differential equations, derived by means of (inverse) Laplace transforms. All

three formulas have infinite series forms, two involving Mittag-Leffler functions and the

third one involving moments of the claims distribution. This last result applies to any

claim size distribution that exhibits finite moments. The content is this section is mainly

from Constantinescu et al. (2017).

3.1.2.1 Method One - Infinite sum of convolutions of Mittag-Leffler

functions

For the first approach, we recognise certain geometric expansions present in the Laplace

transform of the non-ruin probability when the claim sizes are gamma-distributed. These

expansions can be inverted to obtain an explicit form of the non-ruin probability. The

result is in terms of an infinite sum of convolutions. The convolution power of a locally

integrable function f is defined recursively by f ∗1 = f , f ∗n = f ∗(n−1) ∗ f , n ≥ 2.

Theorem 3.1.2. For a classical compound Poisson risk model with claim sizes Xk ∼

Γ(r, α), the non-ruin probability is

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
∞∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]∗n

)}
, (3.8)

for any u > 0.

Proof. Rearranging the expression (3.2) for φ̂(s), one can identify a geometric series with

general term easily set to be between 0 and 1 for any s > 0,

λ

c

(
1

s
− MX(−s)

s

)
< 1,

so we can write

φ̂(s) =
φ(0)

s

1

1− λ
c

(
1
s
− f̂(s)

s

) =
φ(0)

s

∞∑
n=0

(
λ

c

)n(
1

s
−

( α
s+α

)r

s

)n
.
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

For <(s) > α we can shift the argument as explained in (3.2), to obtain

φ̂(s− α) =
φ(0)

s− α

∞∑
n=0

(
λ

c

)n(
1

s− α
− αr

(s− α)sr

)n
.

Notice that

1

s− α
− αr

(s− α)sr
=

1

s− α
− αr

sr+1

∞∑
i=0

(α
s

)i
=

∫ ∞
0

e−su

(
eαu −

∞∑
i=0

αr+i

Γ(r + i+ 1)
ur+i

)
du ,

which is the Laplace transform of a positive function. Therefore, we have

e−αuφ(u) = φ(0)

{
eαu + eαu ∗

(
∞∑
n=1

(
λ

c

)n [
eαu −

∞∑
i=0

αr+i

Γ(r + i+ 1)
ur+i

]∗n)}

= φ(0)

{
eαu + eαu ∗

(
∞∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]∗n

)}
,

as required.

Remark 3.1.6. Note that the Mittag-Leffler functions in the expression (3.8) can be

expressed in terms of incomplete gamma functions (Simon, 2015)

E1,β(x) =
∞∑
k=0

xk

Γ(k + β)
=
∞∑
k=0

xk

Γ(β − 1)Γ(k + 1)
B(β − 1, k + 1)

=
1

Γ(β − 1)

∫ 1

0

(1− t)β−2

∞∑
k=0

(xt)k

Γ(k + 1)
dt

=
1

Γ(β − 1)

∫ 1

0

(1− t)β−2ext dt = x1−βex
γ(β − 1, x)

Γ(β − 1)
(3.9)

with the lower incomplete gamma function γ(r, z) =
∫ z

0
tr−1e−t dt.

Remark 3.1.7. Note that Theorem 3.1.2 is an exponentially tilted variant of the

Pollaczeck-Khinchine (Beekman) formula for gamma claims, see Rolski et al. (1999)

and Asmussen and Albrecher (2010). To clarify this connection, consider the upper tail

of claims F̄X(u) = P[X > u], which, as in Remark 3.1.6, identity (3.9), can be regarded

as

eαuF̄X(u) = eαu − αrurE1,1+r(αu),
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3. Compound Poisson Risk Models

so that equation (3.8) becomes

φ(u) = φ(0) + e−αuφ(0)

(
∞∑
n=1

(
λ

c

)n
eαu ∗

[
eαuF̄ ∗nX (u)

])

= φ(0) + φ(0)
∞∑
n=1

(
λ

c

)n ∫ u

0

F̄ ∗nX (y) dy.

This is equivalent to

ψ(u) = 1−

(
1 + φ(0)

∞∑
n=1

(
λ

c

)n ∫ u

0

F̄ ∗nX (y) dy

)

= φ(0)
∞∑
n=1

(
λ

c

)n ∫ ∞
u

F̄ ∗nX (y) dy,

the Pollaczeck-Khinchine formula for the ruin probability, as in, e.g. Rolski et al. (1999).

Remark 3.1.8. When r = 1 in (3.8), we recover (2.27).

Proof. The expression in the square bracket in (3.8) equals to 1 for all u > 0, and its

n-fold convolution power is the function un−1/(n− 1)!, u > 0. Therefore, one has

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
∞∑
n=1

(
λ

c

)n [
eαu −

∫ u

0

αeαxdx

]∗n)}
, (3.10)

where the term in the square bracket is

H(u) = eαu −
∫ u

0

αeαxdx =

1, u ≥ 0,

0, u < 0.

The convolution ofH(x) and itself is
∫∞
−∞ 1 ds = u. This implies that the n-th convolution

in will become some power function times constants. In this case, the infinite sum in

(3.10) just converges to the exponential function, which means

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
∞∑
n=1

(
λ

c

)n
un−1

Γ(n− 1)

)}

= φ(0) + e−αuφ(0)

{
eαu ∗

(
λ

c
e
λ
c
u

)}
.
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

The convolution term can be calculated by definition directly,

φ(u) = φ(0) + e−αuφ(0)

{
λ

c

(
α− λ

c

)−1

e
λ
c
u
[
e(α−

λ
c )u − 1

]}

= φ(0)
α

α− λ
c

[
1− λ

αc
e−(α−λc )u

]
.

Since φ(0) = 1− λ/αc, one concludes that

φ(u) = 1− λ

αc
e(

λ
c
−α)u, u > 0,

which coincides with equation (2.27).

Remark 3.1.9. For an integer number r, recall from Podlubny (1998) that

E1,1+r(αu) =
1

(αu)r

(
eαu −

r−1∑
k=0

(αu)k

k!

)
, (3.11)

and so by (3.8) the non-ruin probability equals to

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
∞∑
n=1

(
λ

c

)n [ r−1∑
k=0

(αu)k

k!

]∗n)}
, u > 0. (3.12)

Consider the case r = 2. The expression (3.12) agrees with the elementary partial

fraction inversion mentioned in Grandell (1991a). Proof will be put in the appendix

chapter.

3.1.2.2 Method Two - Infinite sum of derivatives of Mittag-Leffler

functions

Now we present a different method to derive the non-ruin probability when claim sizes

are gamma-distributed, which leads to an explicit form in terms of an infinite sum of

derivatives of Mittag-Leffler functions.

Theorem 3.1.3. For a classical compound Poisson risk model (1.1) with claim sizes

Xk ∼ Γ(r, α), the non-ruin probability can be written as

φ(u) = e−αuφ(0)
∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α +

λ

c

)
u

)
, u > 0, (3.13)

where E
(n)
α,β is the n-th derivative of the Mittag-Leffler function.
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Proof. Let β > α. The first step is to find a function G whose Laplace transform is, for

sufficiently large s > 0,

g(s) =
1

asβ + bsα + c
,

where a, b, c are non-zero constants. One can rewrite

g(s) =
1

c

c

asβ + bsα
asβ + bsα

asβ + bsα + c
=

1

c

c
a
s−α

sβ−α + b
a

1

1 +
c
a
s−α

sβ−α+ b
a

.

Denoting P =
c
a
s−α

sβ−α+ b
a

, which is a number in (0, 1) for large s, the expression becomes

g(s) =
1

c

P

1− (−P )
=

1

c

∞∑
k=0

(−1)kP k+1 =
1

c

∞∑
k=0

(−1)k
( c
a

)k+1 s−αk−α(
sβ−α + b

a

)k+1
.

Recognizing the Laplace transform formula (2.1.1), one can invert this expression term

by term, to see that g is the Laplace transform of the function (Podlubny, 1998)

G(t) =
1

a

∞∑
k=0

(−1)k

k!

( c
a

)k
tβ(k+1)−1E

(k)
β−α,β+αk

(
− b
a
tβ−α

)
.

Recall from (3.3) that for a classical risk model with gamma-distributed claim sizes, the

Laplace transform of non-ruin probability after shifting the argument becomes, when s

is large enough,

φ̂(s− α) =
cφ(0)sr

csr+1 − (cα + λ)sr + λαr

=
cφ(0)sr

csr+1 − (cα + λ)sr

∞∑
k=0

(−1)k
(

λαr

csr+1 − (cα + λ)sr

)k
=
∞∑
k=0

(−1)k
φ(0)

(
λ
c
αr
)k
s−rk(

s−
(
α + λ

c

))k+1
,

which permits term-by-term inversions

φ(u) =e−αuφ(0)
∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α +

λ

c

)
u

)
,

as required. The last expression can be rewritten in the form

φ(u) = e−αuφ(0)
∞∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)k

∞∑
j=0

(j + k)!
((
α + λ

c

)
u
)j

j!Γ(k(r + 1) + 1 + j)
. (3.14)
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

Remark 3.1.10. For r = 1, note that expression (3.13) also reduces, as it should, to

the classical result (2.27). The proof is put in the appendix chapter.

3.1.2.3 Method Three - Tail convolutions

Finally, we start with the classical risk model with any light-tailed distributed claims.

The non-ruin probability φ will be obtained as integral of an infinite sum of moments of

claim size distributions. When the claims are gamma-distributed, the resulting formulas

can be relatively efficiently evaluated.

Recall the form (3.2) of the Laplace transform of the ruin probability in a compound

Poisson process with a generic claim size X and the moment-generating function MX :

φ̂(s) = φ(0)
1

s

1

1− λ
c

1−MX(−s)
s

. (3.15)

Notice that the term in the denominator,

ĝ(s) =
1−MX(−s)

s
, s > 0,

is the Laplace transform of the distributional tail

g(x) = P (X > x), x > 0. (3.16)

By the positive loading assumption (2.21) we have

φ̂(s) = φ(0)
1

s

∞∑
n=0

(
λ

c

)n
(ĝ(s))n, (3.17)

since the ratio in the series is smaller than 1. Inverting the Laplace transforms in (3.17)

gives us immediately the first statement of the next theorem. The key part of the

theorem is the expression (3.19) for the ingredients in (3.18).

Theorem 3.1.4. The non-ruin probability in classical risk model can be written in the

form

φ(u) = φ(0)

(
1 +

∫ u

0

∞∑
n=1

(
λ

c

)n
g∗n(y) dy

)
, u > 0. (3.18)
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Here g∗n is the n-th convolution of the tail distribution of claim Xj. It can be computed

for n ≥ 2 as

g∗n(x) =
1

(n− 1)!
E

( n∑
j=1

Xj − x

)n−1

1

(
n∑
j=1

Xj > x

)
− 1

(n− 1)!

n−1∑
i=1

(
n− 1

n− i− 1

)
bn−i(FX)E

( i∑
j=1

Xj − x

)i

1

(
i∑

j=1

Xj > x

) ,
(3.19)

n ∈ Z+. The sequence (bi(FX), i ∈ Z+) depends on the distribution FX of claim sizes.

It is defined recursively by

b1(FX) = 1,

bm+1(FX) = E

(
n∑
j=1

Xj

)m

−
m∑
i=1

(
m

i− 1

)
bi(FX)E

(
n−i∑
j=1

Xj

)m+1−i

, (3.20)

for m = 1, . . . , n− 1. Thus defined, bm is independent of n > m.

Proof. The proof is postponed to appendix chapter.

Remark 3.1.11. The third method computes the convolution powers for the tail-

distribution in a Pollaczeck-Khinchine formula via a sequence of integrals of increas-

ing dimension which simplify to one-dimensional integrals in the gamma case. See the

discussion part for details.

3.1.3 Numerical result of three methods

The results shown in this chapter refer to extensions of the classical ruin models and all

of them coincide with the classical result when claim sizes are exponentially distributed.

In this section, we will present the advantages of each method and its result, including

some numerical examples. Since all three expressions present infinite sums, we truncate

those to their first 20 terms to be able to obtain a numerical value. The corresponding

truncation errors are less than 10−5 for all three expressions, and we have noticed that
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

considering more than the first 20 terms will not decrease substantially the numerical

errors.

The first expression in Theorem 3.1.2 is an infinite sum of convolution terms. When

r takes integer value, the expression reduces to a sum of finite terms due to Proposition

(3.11) of the Mittag-Leffler function and thus explicit results can be implemented. As

long as r is not integer, numerical methods are needed to calculate the probability.

One choice is to use the relationship between the Mittag-Leffler function and incomplete

gamma function, mentioned in Remark 3.1.6, identity (3.9), since the incomplete gamma

functions are available in most numerical libraries and systems. The other choices would

be to use “Mittag-Leffler function” MATLAB codes by Igor Podlubny (which calculates

the Mittag-Leffler function with desired accuracy) or “MittagLeffleR” R package by

Gurtek Gill and Peter Straka (which provides probability density, distribution function,

quantile function and random variate generation for the Mittag-Leffler distributions,

and the Mittag-Leffler function). For instance, we will take the sum of the first 20

convolutions in the expression for a numerical result for the non-ruin probability

φ(u) = φ(0) + e−αuφ(0)

{
eαu ∗

(
20∑
n=1

(
λ

c

)n
[eαu − (αu)rE1,1+r(αu)]∗n

)}
. (3.21)

The second expression (3.13) is a quite time efficient method, which is very easy to

implement with accurate results. Due to the fact that the derivative of a Mittag-Leffler

function is an infinite series, this expression contains two-fold infinite sums. Moreover,

inside each series, only gamma functions and power functions are needed to be calculated.

Therefore, any software having ‘addition’ and loop functions can handle this expression.

Compared with the first result, which contains convolution terms, this one is more time

efficient in a numerical sense. The disadvantage is that we have no instance where we

can get exact result, for r 6= 1. In this case, we could evaluate the first 20 derivatives in

the expression to obtain a numerical approximation of the non-ruin probability

φ(u) = e−αuφ(0)
20∑
k=0

(−1)k

k!

(
λαr

c

)k
u(r+1)kE

(k)
1,rk+1

((
α +

λ

u

)
u

)
.
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The third result in Theorem 3.1.4 is presented in terms of moments of the claim size

distribution. In principle, this method is valid for any claim distribution, but in the

case of gamma claims, the distribution of the sum of X is- known analytically, so the

computations are tractable. Note that since∫ u

0

∞∑
n=1

(
λ

c

)n
g∗n(y) dy =

∞∑
n=1

(
λ

c

)n ∫ u

0

g∗n(y) dy,

one needs to be able to compute efficiently

∫ u

0

g∗n(y) dy =
1

(n− 1)!
E
∫ u

0

(
n∑
j=1

Xj − x

)n−1

1

(
n∑
j=1

Xj > x

)
dx

− 1

(n− 1)!

n−1∑
i=1

(
n− 1

n− i− 1

)
bn−1(FX)E

∫ u

0

(
i∑

j=1

Xj − x

)i

1

(
i∑

j=1

Xj > x

)
dx.

As it is easy to compute the sequence (bn(FX)) for gamma claims, one only needs to

evaluate efficiently the functions

an,k(u) = E
∫ u

0

(
n∑
j=1

Xj − x

)k

1

(
n∑
j=1

Xj > x

)
dx,

for k = n − 1 and n. However, these functions can be further expressed in terms of

incomplete gamma functions as

an,k(u) =
αnr

Γ(nr)(k + 1)

[
Γ(nr + k + 1)

αnr+k+1
−

k+1∑
j=0

(
k + 1

j

)
(−u)k+1−jΓ(nr + j, αu)

αnr+j

]

for k = n−1 and n. Therefore, the whole calculation consists on evaluating some incom-

plete gamma functions, and those have already been efficiently implemented. The first

20 convolutions in expression (3.18) would be sufficient when implementing the non-ruin

probability numerically.

Note that in comparison with the other two results, this method can be used with any

claim size distribution. The numerical complexity, however, can be higher than in the

case of gamma-distributed claims. Mixed exponentially distributed is one of the other
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

examples that would have explicit result by method three. For instance, we consider the

claim sizes Xj follow a mixed exponential distribution with density function

f(x) = αλ1e
−λ1x + (1− α)λ2e

−λ2x,

then the distribution of
n∑
j=1

Xj can be obtained by its Laplace transform(
αλ1

s+ λ1

+
(1− α)λ2

s+ λ2

)n
=

n∑
i=0

(
n

i

)
αiλi1

(s+ λ1)i
(1− α)n−iλn−i2

(s+ λ2)n−i

=
αnλn1

(s+ λ1)n
+

(1− α)nλn2
(s+ λ2)n

+
n−1∑
i=1

(
i∑

m=1

βmλ
m
1

(s+ λ1)m
+

n−i∑
m=1

γmλ
m
2

(s+ λ2)m

)
,

where all βm, m = 1, . . . , i and γm, m = 1, . . . , n− i are computed from partial fraction

decomposition. Thus, the sum of independent and identically distributed Xm in this

case has density function

fΣ(x) =αn
λn1

Γ(n)
xn−1e−λ1x + (1− α)n

λn2
Γ(n)

xn−1e−λ2x

+
n−1∑
i=1

(
i∑

m=1

βm
λm1

Γ(m)
xm−1e−λ1x +

n−i∑
m=1

γm
λm2

Γ(m)
xm−1e−λ2x

)
,

which can be regarded as a finite mixed gamma distribution. Thus, the expression for

an,k in this case is

an,k =
αnλn1

Γ(n)(k + 1)

[
Γ(n+ k + 1)

λn+k+1
1

−
k+1∑
j=0

(
k + 1

j

)
(−u)k+1−jΓ(n+ j, λ1u)

λn+j
1

]

+
(1− α)nλn2
Γ(n)(k + 1)

[
Γ(n+ k + 1)

λn+k+1
2

−
k+1∑
j=0

(
k + 1

j

)
(−u)k+1−jΓ(n+ j, λ2u)

λn+j
2

]

+
n−1∑
i=1

(
i∑

m=1

βmλ
m
1

Γ(m)(k + 1)

[
Γ(m+ k + 1)

λm+k+1
1

−
k+1∑
j=0

(
k + 1

j

)
(−u)k+1−jΓ(m+ j, λ1u)

λm+j
1

]

+
n−i∑
m=1

γmλ
m
2

Γ(m)(k + 1)

[
Γ(m+ k + 1)

λm+k+1
1

−
k+1∑
j=0

(
k + 1

j

)
(−u)k+1−jΓ(m+ j, λ2u)

λm+j
2

])
for k = n− 1 and n. These terms can again be efficiently evaluated.

The next figure shows the difference on accuracy of these three results.
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Figure 3.1: Difference on accuracy of three results

In order to test the accuracy of the three results, we choose the parameter values λ = 1,

c = 1, r = 2 and α = 2.4. All the dashed lines stand for the first method and solid

one for the method two and three. In order to numerically evaluate the convolution

integral in equation (3.21), we break up the interval [0, 10] into subintervals of length

h, then apply the trapezoid rule and use Newton-Cotes formula to realize the numerical

integration. We compare results obtained for different lengths h. One can see that using

the second method, the results converge relatively fast. Moreover, for the third method,

the results are exactly the same as the true values because the moments of gamma

random variables have explicit expressions. Note that for r = 2, one retrieves the case

of Erlang(2) claims. Several equivalent results under this model assumption have been

obtained in the past and the formula chosen in this test comes from (He et al., 2003)

φ(u) = 1 +
v2(v1 + α)2

(v1 − v2)α2
ev1u +

v1(v2 + α)2

(v2 − v1)α2
ev2u,

where

v1 =
λ− 2cα +

√
λ2 + 4cαλ

2c
,

v2 =
λ− 2cα−

√
λ2 + 4cαλ

2c
.
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

Here is the corresponding table.

initial
capital

Method 1
h=0.1

Method 1
h=0.01

Method 1
h=0.001

Method 2
Method 3 &
True Value

u=0 0.167 0.167 0.167 0.167 0.167
u=1 0.340 0.350 0.352 0.352 0.352
u=2 0.480 0.503 0.505 0.506 0.506
u=3 0.588 0.620 0.623 0.623 0.623
u=4 0.674 0.709 0.713 0.713 0.713
u=5 0.742 0.777 0.781 0.782 0.782
u=6 0.796 0.830 0.833 0.834 0.834
u=7 0.839 0.870 0.873 0.873 0.873
u=8 0.874 0.900 0.903 0.903 0.903
u=9 0.900 0.923 0.925 0.926 0.926
u=10 0.920 0.939 0.941 0.944 0.944

Table 3.1: Difference on accuracy of three results

The errors between the results obtained from method two and true values are signif-

icantly smaller at 10−11 level.

As mentioned before, the second result is the most efficient one among all three, in

numerical sense. In Table 3.2 are some results run by MATLAB using method two.

These results can also be obtained using method one if one sets the step length to be

as small as h = 0.0001, which takes more time. In Table 3.2, the parameter values are

set to be λ = 1, c = 1 and safety loading θ = 0.2. Because the safety loading is held

constant, for each r, we choose an α such that the average claim size r
α

stays the same.
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Initial
Capital

r = 0.5 r = 1 r = 1.5 r = 2 r = 2.5 r = 3

u = 0 0.167 0.167 0.167 0.167 0.167 0.167
u = 1 0.281 0.318 0.338 0.352 0.361 0.368
u = 2 0.371 0.441 0.481 0.506 0.523 0.536
u = 3 0.449 0.543 0.593 0.623 0.644 0.660
u = 4 0.517 0.626 0.680 0.713 0.735 0.750
u = 5 0.576 0.693 0.749 0.782 0.802 0.817
u = 6 0.628 0.749 0.803 0.834 0.852 0.865
u = 7 0.673 0.795 0.846 0.873 0.890 0.901
u = 8 0.713 0.832 0.879 0.903 0.918 0.927
u = 9 0.749 0.862 0.905 0.926 0.939 0.947
u = 10 0.779 0.887 0.926 0.944 0.954 0.961

Table 3.2: Non-ruin probabilities of classical risk model with safety loading is 0.2

The corresponding plotting figure is shown as follows.
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Figure 3.2: Non-ruin probabilities of classical risk model with safety loading is 0.2

One can observe that when the safety loading and other model parameters are fixed,

the larger r is, the higher non-ruin probability the model has. The reason is that in this

case, the expected claim size is fixed, further means that the ratio r
α

is fixed, whereas

the variance of claim size r
α2 decreases as r increases, i.e., the chance of having large
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3.1. Explicit expressions for non-ruin probabilities in the case of gamma claims

claims will decrease. Since ruin is usually caused by some large claims, the model with

a larger shape parameter r is more likely to survive.

The next table and figure will show how the non-ruin probability changes with various

premium rates and same safety loading when claim has gamma distribution with r = 1.5.

initial
capital

c = 1 c = 1.2 c = 1.4 c = 1.6 c = 1.8 c = 2

u=0 0.167 0.167 0.167 0.167 0.167 0.167
u = 1 0.338 0.311 0.291 0.276 0.264 0.255
u = 2 0.481 0.437 0.403 0.377 0.356 0.338
u = 3 0.593 0.540 0.498 0.465 0.437 0.414
u = 4 0.680 0.624 0.578 0.540 0.508 0.481
u = 5 0.749 0.693 0.645 0.605 0.570 0.540
u = 6 0.803 0.749 0.702 0.660 0.624 0.593
u = 7 0.846 0.795 0.749 0.708 0.672 0.639
u = 8 0.879 0.833 0.789 0.749 0.713 0.680
u = 9 0.905 0.863 0.823 0.785 0.749 0.717
u = 10 0.926 0.888 0.851 0.815 0.781 0.749

Table 3.3: Non-ruin probabilities of classical risk model with safety loading is 0.2

The corresponding plotting figure is shown as follows.
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Figure 3.3: Non-ruin probabilities of classical risk model with safety loading is 0.2
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Since the safety loading θ is fixed, the larger premium rate c is, the larger the expected

claim size is. In this case, the shape parameter of claim distribution r is set to be

constant 1.5, which means the larger expectation gives larger variance. Thus, similar

to the previous test, this result is quite reasonable. When the safety loading and claim

shape parameter are fixed, decreasing premium rate can make the company less likely

to have ruin.

3.2 Explicit expressions for ruin probabilities in

the case of geometric claims

In this section, the claim sizes are assumed to follow geometric distribution (see in (2.14))

in the classical risk model. Discrete claim sizes assumption usually rises in discrete-time

risk models in the literature. While most theoretical risk models use the concept of time

continuity, the practical reality is discrete. One widely used discrete risk model is the

compound binomial model, first proposed by Gerber (1988), which is a discrete analog

of the compound Poisson model in risk theory. It is a fully discrete-time model where

premiums, claim amounts, and the initial surplus are assumed to be integer valued,

but can be used as an approximation to the continuous-time compound Poisson model.

Unlike continuous-time risk models, discrete-time risk models have not attracted much

attention and the literature counts fewer contributions. A very detailed review can be

found in Li et al. (2009).

However, only a few publications in risk theory have considered the case of dis-

crete claim sizes appearing in continuous-time risk models. One interpretation of this

assumption would be that some insurance policies might use step functions for claim

payments. In this case, the claim sizes can only take finitely or at most countably many

values. In this section, we use the martingale approach to derive the explicit ruin prob-
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3.2. Explicit expressions for ruin probabilities in the case of geometric claims

ability for classical risk model with geometric claims. The first use of martingales in

risk theory is due to Gerber (1973), which is later studied by Gerber (1979); Delbaen

and Haezendonck (1985); Dassios and Embrechts (1989); Grandell (1991a,b); Embrechts

et al. (1993); Schmidli (1994, 2010) and discussed in detail in Asmussen and Albrecher

(2010).

Theorem 3.2.1. In the classical risk model (1.1), if (Xi)i>1 are i.i.d. geometric random

variables with probability mass function pk = p(1 − p)k, the ruin probability has the

form:

ψ(u) =
1− (1− p)e−γ

p
eγu =

1

p

(
eγu − (1− p)eγu−γ

)
, u > 0, (3.22)

where γ is the negative root of

cγ + λ

(
p

1− (1− p)e−γ
− 1

)
= 0. (3.23)

Proof. The moment-generating function of process R(t) is

GR(t)(s) =E

es
(
u+ct−

N(t)∑
i=1

Xi

) = e
s(u+ct)+λt

(
p

1−(1−p)e−s−1
)
.

Denote

κ(s) = cs+ λ

(
p

1− (1− p)e−s
− 1

)
,

then Mt = e−sRt+tκ(s) is a martingale. Let γ be the negative root of κ(γ). Applying the

optional stopping theorem, one has

eγu =E(M0) = E(Mτ )

=E
(
eγRτ

∣∣ τ <∞)P(τ <∞)

=
p

1− (1− p)e−γ
ψ(u), u > 0,

which completes the proof.

Remark 3.2.1. It is well known that a sequence of discrete geometric distributions

converges to the exponential distribution. Denoting np = α and x = k/n, one will have

1 =
∞∑
k=0

P(X = k) =
∞∑
k=0

α

((
1− α

n

)nk/n 1

n

)
→
∫ ∞

0

αe−αx dx.
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Therefore, the moment-generating function of the geometric distribution also converges,

p

1− (1− p)ez
= lim

n→∞

α

n− (n− α)ex/n
=

α

α− x
.

Theorem 3.2.1 can be analysed by using this technique. In such case, γ will be the

negative root of the limiting version of equation (3.23)

cγ + λ

(
α

α− γ
− 1

)
= 0,

which leads to γ = λ
c
− α. At the same time, the expression of ruin probability ψ(u)

becomes

ψ(u) =
α + γ

α
eγu =

λ

αc
e(

λ
c
−α)u,

which coincides with the classical result (2.27).

3.3 Summary

New results for the (non-)ruin probabilities in the classical risk model in the case of

gamma or geometric-distributed claim sizes are obtained in this chapter. Classical results

are retrieved when certain parameters take specific values or limits.
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Chapter 4

Renewal Risk Models

The renewal risk model in risk theory, also known as Sparre Andersen model, is intro-

duced and analysed by Andersen (1957)

R(t) = u+ ct−
N(t)∑
i=1

Xi, t > 0. (4.1)

In this model it is allowed that the number of claims N(t) could not only follow the

Poisson counting process, but also a more general renewal counting process. The ruin

probability ψ(u) of a renewal risk model solves an integral equation (2.30) by using the

renewal property (Feller, 2008).

In this chapter, we are going to consider a family of renewal risk models with the

inter-arrival time density functions solving fractional differential equations. A new class

of fractional differential operators are defined in order to tackle the ruin problems in

these models. Explicit expressions for ruin probabilities are obtained when claim size

distributions have rational Laplace transforms. The content in this chapter is mainly

from the working paper (Constantinescu et al., 2017).
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4.1 Fractional differential operators

Let L(y) denote an n-th degree polynomial yn + p1y
n−1 + · · · + pn−1y + pn and con-

sider the following associated homogeneous ordinary differential equation with constant

coefficients

L
(
d

dx

)
[f ](x) = f (n)(x) + p1f

(n−1)(x) + · · ·+ pn−1f
′(x) + pnf(x) = 0. (4.2)

Suppose further that equation (4.2) can be expressed in the form

m⊙
j=0

(
d

dx
+ λj

)kj
[f ](x) = 0 (4.3)

for positive real number λj and integers kj, j = 1, · · · ,m. The solution f(x) to (4.3)

is the probability density function of either a sum of Erlang random variables or a

mixed Erlang random variable, depending on the boundary conditions (see examples in

Albrecher et al. (2010)). For instance, one can express any density function which is a

convolution of n exponential densities with parameters λj in equation (4.3), with almost

homogeneous initial conditions

f (k)(0) = 0 (for k = 0, 1, . . . ,m− 2)

and f (m−1)(0) =
m∏
j=1

λj.

In the special case of exponentials with the same parameter λ, this is an Erlang(m) den-

sity function. We would like to generalise equation (4.3), and characterise its solutions,

in the case where the exponents kj are no longer integers.

4.1.1 Rock operators

In order to generalise expression (4.2), it is necessary to explore the world of frac-

tional calculus. Solving fractional differential equations has become an essential issue as

fractional-order models appear to be more adequate than previously used integer-order

models in various fields. A large host of available analytical methods for solving frac-

tional order integral and differential equations is discussed in Podlubny (1998), including
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4.1. Fractional differential operators

the Mellin transform method, the power series method, and the symbolic method.

The symbolic method was first introduced in Babenko (1986) and generalises the

Laplace transform method: it uses a specific expansion (e.g., binomial or geometric) on

the differential operator and write it as an infinite sum of fractional derivatives. However,

it is always necessary to check the validity of the formal expansion since the interchange

of infinite summation and integration requires justification. It is nevertheless a powerful

tool for determining the possible form of the solution. Numerous examples of the applica-

tion of this method to heat and mass transfer problems are discussed by Babenko (1986).

In this section we define a new family of operators based on the binomial expansion.

The important motivation underlying the following definition comes from realising that

for positive integer n and α ∈ R,(
d

dx
+ α

)n
[f ](x) = e−αx

dn

dxn
(eαxf(x)) ,

and similarly for
(
− d
dx

+ α
)n

. We thus introduce the Rock operators as the natural

generalisation:

Definition 4.1.1. Let r > 0, α ∈ R, a ∈ [−∞,∞) and b ∈ (−∞,∞]. The left Rock

operator α
aR

r
x is defined by

α
aR

r
x [f ] (x) ..= e−αx aD

r
x (eαx f(x)) ,

and the right Rock operator α
xR

r
b, r > 0, α ∈ R by

α
xR

r
b [g] (x) ..= eαx CxD

r
b

(
e−αx g(x)

)
.

The domain of definition of αaR
r
x and α

xR
r
b, r > 0, α ∈ R are those of the left Riemann-

Liouville fractional derivative aD
r
x and the right Caputo fractional derivative C

xD
r
b re-

spectively, which are given in (2.4) and (2.8).
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4. Renewal Risk Models

Remark 4.1.1. 1. The Rock operators have right inverses which we denote by
α
aR
�r
x

and
α
xR
�r
b. By Proposition 2.1.3 and 2.1.9 the right inverses are given by

α

aR
�r
x[f ](x) ..= e−αx aI

r
x (eαx f(x)) , ∀ r ∈ C,

and
α

xR
�r
b[g](x) ..= eαx xI

r
b

(
e−αx g(x)

)
, <(r) /∈ N ∨ r ∈ N.

2. The Rock operators generalise two families of differential operators(
d

dx
+ α

)n
and

(
− d

dx
+ α

)n
when n could be any positive real numbers.

3. When α = 0, the Rock operators can also be reduced to the fractional derivatives

aD
r
x and C

xD
r
b respectively.

Furthermore, in the case a = 0, integration by parts yields the following character-

isation of the formal adjoint of α
0R

r
x. Along with the integration by parts formula in

Proposition 2.1.11, this is the key calculation needed for the proof of our main result.

Proposition 4.1.1. Let α ∈ R and r > 0. The formal adjoint with respect to integration

by parts of the left Rock operator α
0R

r
x is the right Rock operator α

xR
r
∞, namely,∫ ∞

0

α
0R

r
x[f ](x) g(x) dx =

∫ ∞
0

f(x) α
xR

r
∞[g](x) dx,

for appropriate functions f and g (see Definition 2.1.6).

4.1.2 Rock operators and some related distributions

The left Rock operator can be used to construct differential equations for density func-

tions. Consider a gamma probability density function with shape parameter r ∈ R+ and

rate parameter λ ∈ R+

fr(x) =
λr

Γ(r)
xr−1e−λx, x > 0.
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4.1. Fractional differential operators

Recall that when r takes integer value, namely n, the gamma density function solves a

homogeneous ordinary differential equation with constant coefficients(
d

dx
+ λ

)n
fr(x) = 0, x > 0,

along with boundary conditions f
(n−1)
r (0) = λn and f

(n−k)
r (0) = 0 for k = 2, . . . , n.

When r is no longer necessary integer, instead of an ordinary differential equation,

the gamma density function solves a fractional differential equation

λ
0R

r
x[fr](x) = e−λx 0D

r
x

(
eλx fr(x)

)
= 0, x > 0, (4.4)

with boundary conditions λ
0R

r−1
x [fr](0) = λr and λ

0R
r−k
x [fr](0) = 0 for k = 2, . . . , dre.

This can be proved by substituting the density function into the equation to have

e−λx 0D
r
x

(
eλx

λr

Γ(r)
xr−1e−λx

)
= e−λx

λr

Γ(r) 0D
r
xx

r−1.

It is known from Podlubny (1998) that the left Riemann-Liouville fractional derivative

of a power function has an explicit form (see Proposition 2.1.4), which gives

λ
0R

r
x[fr](x) = e−λx

λr

Γ(r − r)
x−1.

Since the gamma function explodes at zero, one concludes that the above quantity equals

to zero. Using similar calculation, for the boundary conditions we have

λ
0R

r−k
x [fr](x)

∣∣
x=0

= e−λx
λr

Γ(k)
xk−1

∣∣∣∣
x=0

,

which equals to λr, when k = 1 and 0, when k > 1.

Another distribution related to the left Rock operator is the Mittag-Leffler distribu-

tion, which is the inter-arrival time distribution in the fractional Poisson process. The

Mittag-Leffler probability density function with parameters µ ∈ (0, 1] and λ ∈ R+ is

fµ(x) = λxµ−1Eµ,µ(−λxµ), x > 0,

65



4. Renewal Risk Models

and solves the following fractional differential equation(
0
0R

µ
x + λ

0R
0
x

)
[fµ](x) = (0D

µ
x + λ)[fµ](x) = 0, x > 0, (4.5)

with the boundary condition
(

0
0R

µ−1
x + λ

0R
−1
x

)
[fµ](0) = 0D

µ−1
x [fµ](0) = λ. Equation

(4.5) holds since that

0D
µ
x

(
λxµ−1Eµ,µ(−λxµ)

)
= −λ2xµ−1Eµ,µ (−λxµ) ,

with the boundary condition proved by

0D
µ−1
x fµ(0) =

1

Γ(1− µ)

∫ x

0

(x− y)µλyµ−1Eµ,µ(−λyµ) dy

∣∣∣∣
x=0

= λEµ(−λxµ)|x=0 = λ.

The next theorem considers a family of random variables to which the approach

presented in this chapter applies to. In its full generality, we consider risk processes with

waiting times that can be written as finite sums of independent heterogeneous gamma

and Mittag-Leffler random variables. We now characterise the fractional boundary value

problem satisfied by the density function of such waiting times.

Theorem 4.1.1. Consider a random variable T defined by

T =
m∑
i=1

Yi +
n∑
j=1

Zj, (4.6)

in terms of gamma random variables Yi ∼ Γ(ri, λ1,i) and Mittag-Leffler random variables

Zj ∼ ML(µj, λ2,j), all independent of each other. Here ri, λ1,i, λ2,j ∈ R+ and µj ∈ (0, 1].

Then the density function fm,nT (t) of T solves the following fractional differential equation

Am,n
(
d

dt

)
[fm,nT ] (t) ..=

(
n⊙
j=1

(
0D

µj
t + λ2,j

) m⊙
i=1

λ1,i
0R

ri
t

)
[fm,nT ] (t) = 0, t > 0, (4.7)

with the boundary conditions (when n 6= 0)(
0D

µ1−1
t

n⊙
j=2

(
0D

µj
t + λ2,j

) m⊙
i=1

λ1,i
0R

ri
t

)
[fm,nT ] (0) =

m∏
i=1

λri1,i

n∏
j=1

λ2,j,

and (
0D

µ1−k
t

n⊙
j=2

(
0D

µj
t + λ2,j

) m⊙
i=1

λ1,i
0R

ri
t

)
[fm,nT ] (0) = 0,

for k = 2, . . . ,

⌈
n∑
j=1

µj +
m∑
i=1

ri

⌉
.
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4.1. Fractional differential operators

Proof. In order to prove equation (4.7), we will use induction principle for two variables

to validate equation (4.7) together with an extra statement: for any function g supported

on [0,∞), Am,n
(
d
dt

)
[fm,nT ∗ g](t) = cm,n · g(t) where constant cm,n =

m∏
i=1

λri1,i
n∏
j=1

λ2,j.

Base step: when m = 1, n = 0 or m = 0, n = 1, recall from equation (4.4) and (4.5)

we have

A1,0

(
d

dt

)[
f 1,0
T

]
(t) = 0 and A0,1

(
d

dt

)[
f 0,1
T

]
(t) = 0.

Furthermore, by simple calculation we obtain

A1,0

(
d

dt

)[
f 1,0
T ∗ g

]
(x) = e−λ1,1t · 0D

r1
t

(
eλ1,1t

[
f 1,0
T ∗ g

])
(t)

=

∫ t

0

e−λ1,1y 0D
r1
y

(
eλ1,1yf 1,0

T (y)
)
· g(t− y) dy + g(t) · 0D

r1−1
y

(
eλ1,1yf 1,0

T (y)
)∣∣
y=0

=λr11,1 · g(t).

and

A0,1

(
d

dt

)[
f 0,1
T ∗ g

]
(t) = (0D

µ1
t + λ2,1)

[
f 0,1
T ∗ g

]
(t)

=

∫ t

0
0D

µ1
y

(
f 0,1
T (y)

)
· g(t− y) dy + g(t) · 0D

µ1−1
y

(
f 0,1
T (y)

)∣∣
y=0

+ λ2,1

∫ t

0

f 0,1
T (y) · g(t− y) dy

=λ2,1 · g(t)

The representations hold for m = 1, n = 0 and m = 0, n = 1.

Inductive step: for non-negative m and n, we assume that the statement

Am,n
(
d

dt

)
[fm,nT ] (t) = 0 and Am,n

(
d

dt

)
[fm,nT ∗ g](t) = cm,n · g(t)

hold. Left to prove that they hold for m+ 1 and n+ 1,

Am+1,n

(
d

dt

)[
fm+1,n
T

]
(t) = 0 and Am+1,n

(
d

dt

)[
fm+1,n
T ∗ g

]
(t) = cm+1,n · g(t)
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and

Am,n+1

(
d

dt

)[
fm,n+1
T

]
(t) = 0 and Am,n+1

(
d

dt

)[
fm,n+1
T ∗ g

]
(t) = cm,n+1 · g(t).

Beginning with the “left statements” in both cases,

Am+1,n

(
d

dt

)[
fm+1,n
T

]
(t) = e−λ1,m+1t · 0D

rm+1

t

(
eλ1,m+1tAm,n

(
d

dt

)[
fm,nT ∗ f 1,0

T

])
(t)

=e−λ1,m+1t · 0D
rm+1

t

(
eλ1,m+1t · cm,n · f 1,0

T (t)
)

= 0.

and

Am,n+1

(
d

dt

)[
fm,n+1
T

]
(t) = (0D

µn+1

t + λ2,n+1)Am,n
(
d

dt

)[
fm,nT ∗ f 0,1

T

]
(t)

= (0D
µn+1

t + λ2,n+1)
(
cm,n · f 0,1

T (t)
)

= 0

For the “right statements”, we have

Am+1,n

(
d

dt

)[
fm+1,n
T ∗ g

]
(t)

=e−λ1,m+1t · 0D
rm+1

t

(
eλ1,m+1tAm,n

(
d

dt

)[
fm,nT ∗

(
f 1,0
T ∗ g

)])
(t)

=e−λ1,m+1t · 0D
rm+1

t

(
eλ1,m+1t cm,n · f 1,0

T ∗ g
)

(t) = cm+1,n · g(t),

and

Am,n+1

(
d

dt

)[
fm,n+1
T ∗ g

]
(t) = (0D

µn+1

t + λ2,n+1)Am,n
(
d

dt

)[
fm,nT ∗

(
f 0,1
T ∗ g

)]
(t)

= (0D
µn+1

t + λ2,n+1)
[
cm,n · f 0,1

T ∗ g
]

(t) = cm,n+1 · g(t),

thereby showing m+1 and n+1 cases are true. It holds for any m and n. This completes

the mathematical induction proof.
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4.1. Fractional differential operators

To validate the boundary conditions, we compute(
0D

µ1−k
t

n⊙
j=2

(
0D

µj
t + λ2,j

) m⊙
i=1

λ1,i
0R

ri
t

)[
fm,n−1
T ∗ f 0,1

T

]
(0)

=
m∏
i=1

λri1,i

n∏
j=2

λ2,j · 0D
µ1−k
t

[
f 0,1
T

]
(0)

=
m∏
i=1

λri1,i

n∏
j=2

λ2,j · λ2,1 t
k−1Eµ1,k(−λ2,1t

µ
1)
∣∣
t=0

=



m∏
i=1

λri1,i
n∏
j=1

λ2,j, k = 1

0, k > 1.

This completes the proof.

Remark 4.1.2. One can show that the boundary conditions in (4.1.1) have various

equivalent expressions. For any positive integer number

k 6

⌈
m∑
i=1

ri +
n∑
j=1

µj

⌉
,

by choosing non-negative integers k1,i and k2,j such that

m∑
i=1

k1,i +
n∑
j=1

k2,j = k,

we have the boundary conditions of equation (4.7) as

(
n⊙
j=1

(
0D

µj−k2,j
t + λ2,j · 0I

k2,j
t

) m⊙
i=1

λ1,i
0R

ri−k1,i
t

)
[fm,nT ](0) =



m∏
i=1

λri1,i
n∏
j=1

λ2,j, k = 1

0, k > 1.

Remark 4.1.3. One can show that every operator
λ1,i

0R
ri
t or

(
0D

µj
t + λ2,j

)
commute

with each other for all i = 1, . . . ,m and j = 1, . . . , n on density function fm,nT .

Remark 4.1.4. Equation (4.7) along with its boundary conditions can be regarded

as the generalisation of a pair of boundary problems discussed in Rosenkranz and Re-

gensburger (2008b). When the fractional differential algebra is properly defined these

fractional-order boundary problems can be factorised and further solved by obtaining

their corresponding Green’s operators.
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4. Renewal Risk Models

4.2 Fractional integro-differential equations for

(non-)ruin probabilities in risk models and

dual risk models

The Rock operators give us the ability to study a very general family of distributions

that may find applications in various areas, e.g, queuing theory, risk theory and control

theory. Although many of the available techniques for the analysis of the associated

equations are numerical or asymptotic, the fractional differential approach still can offer

an analytic insight of the related problems. In this section, we aim at accomplishing

that with particular problems in the theory of risk that involve the Rock operators. A

special family of renewal risk models will be considered, among which the Erlang(n) and

fractional Poisson risk models are included. We will show that the ruin probabilities in

these models solve fractional integro-differential equations involving Rock operators.

4.2.1 Applications of the Rock operators in risk models

Before moving to the main result, we introduce a lemma that allows us to change the

argument of the Rock operators on a bivariate function under certain circumstances.

Lemma 4.2.1. For positive real numbers α, r and c, the following identity holds

α
xR

r
∞[f(x+ cy)](x, y) = c−r · αcyRr

∞[f(x+ cy)](x, y). (4.8)

Proof. We start from the left-hand side of equation (4.8). By definition we have

α
xR

r
∞[f(x+ cy)](x, y) = eαx

1

Γ(n− r)

∫ ∞
x

(t− x)n−r−1 d
n

dtn
(
e−αtf(t+ cy)

)
dt.

Letting s = 1
c
(t− x) + y leads to

α
xR

r
∞[f(x+ cy)](x, y) =

1

Γ(n− r)

∫ ∞
y

eαcy(s− y)n−r−1c−r
dn

dyn
(
e−αcsf(cs+ x)

)
ds,

which is the right-hand side of equation (4.8).
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Lemma 4.2.1 allows us to change the argument of the Rock operators to a bivariate

function, as long as certain conditions fulfilled.

Theorem 4.2.1. Consider the renewal risk model

Rm,n(t) = u+ ct−
Nm,n(t)∑
i=1

Xi, t > 0, (4.9)

where the inter-arrival times Tk are assumed to be sum of independent gamma random

variables Yi ∼ Γ(ri, λ1,i) and Mittag-Leffler random variables Zj ∼ ML(µj, λ2,j) as in

(4.6). Then the ruin probability ψ(u) under model Rm,n, satisfies the following fractional

integro-differential equation of the form(
n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[ψ](u)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

(∫ u

0

ψ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0, (4.10)

with the universal boundary condition lim
u→∞

ψ(u) = 0.

Proof. For a general renewal risk model, the ruin probability solves the renewal equation

(Feller, 2008)

ψ(u) =

∫ ∞
0

fm,nT (t)

(∫ u+ct

0

ψ(u+ ct− y) dFX(y) +

∫ ∞
u+ct

dFX(y)

)
dt, u > 0. (4.11)

Denoting the terms in parentheses of (4.11) as

h(u+ ct) =

∫ u+ct

0

ψ(u+ ct− y) dFX(y) +

∫ ∞
u+ct

dFX(y),

we now apply
n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

)
on both sides of (4.11) and use property 4.8 to obtain(

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[ψ](u)

=

∫ ∞
0

fm,nT (t)

(
n⊙
j=1

(
C
tD

µj
∞ + λ2,j

) m⊙
i=1

λ1,i
tR

ri
∞

)
[h(u+ ct)](u, t) dt.
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The fractional integration by parts rule 2.10 is applicable here. We move the operator(
C
tD

µ1
∞ + λ2,1

)
from function h to fm,nT , to reduce to

∫ ∞
0

fm,nT (t)

(
n⊙
j=1

(
C
tD

µj
∞ + λ2,j

) m⊙
i=1

λ1,i
tR

ri
∞

)
[h(u+ ct)](u, t) dt

=

∫ ∞
0

(0D
µ1
t + λ2,1) [fm,nT ](t) ·

(
n⊙
j=2

(
C
tD

µj
∞ + λ2,j

) m⊙
i=1

λ1,i
tR

ri
∞

)
[h(u+ ct)](u, t) dt

+

bµ1c∑
k=0

[
(−1)bµ1c+1+k · 0D

µ1+k−bµ1c−1
t [fm,nT ](t)

·

(
n⊙
j=2

(
C
tD

µj
∞ + λ2,j

) m⊙
i=1

λ1,i
tR

ri
∞

)
[h(u+ ct)](u, t)

]∞
0

The boundary condition term evaluated at t = 0 could be computed using the initial

value theorem of Laplace transforms,

0I
1−µ1
t [fm,nT ](0)

= lim
s→∞

s

∫ ∞
0

e−st 0I
1−µ1
t [fm,nT ](t) dt

= lim
s→∞

(
sµ1 ·

n∏
j=1

λ2,j

sµj + λ2,j

·
m∏
i=1

(
λ1,i

s+ λ1,i

)ri)
= 0.

Another boundary condition term evaluated at t = ∞ also equals zero due to the fact

that the definition of the right Caputo fractional derivative is an integral from t to ∞.

Analogously, we are able to move the first n operators
n⊙
j=1

(
C
tD

µj
∞ + λ2,j

)
from function

h to fm,nT with all boundary conditions vanishing, which leads to

∫ ∞
0

n⊙
j=1

(
0D

µj
t + λ2,j

)
[fm,nT ](t) ·

m⊙
i=1

λ1,i
tR

ri
∞[h(u+ ct)](u, t) dt.

Now we use the integration by parts formula in Proposition 4.1.1 to take the first Rock

operator
λ1,1

tR
r1
∞ off of h. Furthermore it can be shown that its adjoint

λ1,1
0R

r1
t commutes

72
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with
(

0D
µj
t + λ2,j

)
for all j = 1, . . . , n on density function fm,nT . We therefore get:

∫ ∞
0

(
n⊙
j=1

(
0D

µj
t + λ2,j

) λ1,1
0R

r1
t

)
[fm,,nT ](t) ·

m⊙
i=2

λ1,i
tR

ri
∞[h(u+ ct)](u, t) dt

+

br1c∑
k=0

[
(−1)br1c+1+k ·

m⊙
i=2

λ1,i
tR

ri
∞[h(u+ ct)](u, t)

·

(
n⊙
j=1

(
0D

µj
t + λ2,j

) λ1,i
0R

r1+k−br1c−1
t

)
[fm,nT ](t)

]∞
0

.

The boundary condition at t = 0 can be computed by applying the initial value theorem(
n⊙
j=1

(
0D

µj
t + λ2,j

) λ1,1
0R

r1+k−br1c−1
t

)
[fm,nT ](0)

=
n∏
j=1

λ2,j ·
(
e−λ1,1t 0D

r1+k−br1c−1
t

(
eλ1,1tfm,0T (t)

))∣∣∣
t=0

=
n∏
j=1

λ2,j · lim
s→∞

(
s

∫ ∞
0

e−(s+λ1,1)t
0D

r1+k−br1c−1
t

(
eλ1,1tfm,0T (t)

)
dt

)

=
n∏
j=1

λ2,j · lim
s→∞

(
λr11,1 · s

(s+ λ1,1)br1c+1−k

m∏
i=2

(
λ1,i

s+ λ1,i

)ri
− s

k−1∑
l=0

(s+ λ1,1)l
[

0D
r1+k−br1c−l−2
t

(
eλ1,1fm,0T (t)

)]∣∣∣
t=0

)
.

We continue to iteratively use the initial value theorem on the terms

s(s+ λ1,1)l
[

0D
r1+k−br1c−l−2
t

(
eλ1,1tfm,0T (t)

)] ∣∣∣
t=0

until it eventually gives us

s(s+ λ1,1)br1c−1
[

0I
br1c+1−r1
t

(
eλ1,1tfm,0T (t)

)] ∣∣∣
t=0

= s(s+ λ1,1)r1−2

m∏
i=1

(
λ1,i

s

)ri
,

which tends to zero when s → ∞. The boundary condition term evaluated at t = ∞

gives zero since the right Caputo derivatives vanish at infinity. Analogously, we are

able to move the rest operators
m⊙
i=1

λ1,i
tR

ri
∞ from function h to fm,nT with all boundary
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conditions vanishing, which leads to∫ ∞
0

(
n⊙
j=1

(
0D

µj
t + λ2,j

) m⊙
i=1

λ1,i
0R

ri
t

)
[fm,,nT ](t) · [h(u+ ct)](u, t) dt

+

[
[h(u+ ct)](u, t) ·

(
n⊙
j=1

(
0D

µj
t + λ2,j

) λ1,n
0R

rn−1
t

m−1⊙
i=1

λ1,i
0R

ri
t

)
[fm,nT ](t)

]
0

.

Since the time density satisfies equation (4.7), the integral term of the above equation

vanishes. The boundary conditions of fm,nT ensure that the lower summand is, at t = 0,(
n⊙
j=1

(
0D

µj
t + λ2,j

) λ1,n
0R

rn−1
t

m−1⊙
i=1

λ1,i
0R

ri
t

)
[fm,nT ](0) =

m∏
i=1

λri1,i

n∏
j=1

λ2,j.

This completes the proof.

Corollary 4.2.1. The non-ruin probability φ(u) = 1 − ψ(u) for the risk model in

Theorem 4.2.1 satisfies the following fractional integro-differential equation(
n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[φ](u)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

(∫ u

0

φ(u− y) dFX(y)

)
, u > 0, (4.12)

with the universal boundary condition lim
u→∞

φ(u) = 1.

Theorem 4.2.1 characterises a fractional integro-diferential equation satisfied by the

ruin probability ψ for a large class of waiting times distributions. Whether or not one

can solve for it depends on the particular form of the claim size distribution function

FX . We now restrict the rest of the analysis to claim sizes Xi distributed as a sum of an

arbitrary number of independent Gamma random variables. The next theorem shows

that, in this case, the whole equation (4.10) can be written as a boundary value problem

with only fractional derivatives. It is important to note that if the claim sizes included

any Mittag-Leffler components, as it is the case of T in Theorem 4.2.1, we would have

E(Xi) =∞ and ruin would happen with probability one.
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Theorem 4.2.2. Consider the same renewal risk model (4.9) in Theorem 4.2.1. Assume

further that the claim sizes Xi are each distributed as a sum of l independent Γ(sk, αk)

distributed random variables for some sk, αk > 0, k = 1, . . . , l i.e.,

l⊙
k=1

αk
0R

sk
y [fX ] (y) = 0, y > 0,

with the boundary conditions(
α1

0R
s1−1
y

l⊙
k=2

αk
0R

sk
y

)
[fX ] (0) =

l∏
k=1

αk,

and (
α1

0R
s1−k′
y

l⊙
k=2

αk
0R

sk
y

)
[fX ] (0) = 0,

for k′ = 2, . . . ,

⌈
l∑

k=1

sk

⌉
. The non-ruin probability φ(u) satisfies a fractional differential

equation (
l⊙

k=1

αk
0R

sk
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[φ](u)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=1

αskk · φ(u), u > 0, (4.13)

with the universal boundary condition lim
u→∞

φ(u) = 1 and initial-value boundary condi-

tions(
α1

0R
s1−k′
u

l⊙
k=2

αk
0R

sk
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[φ](0) = 0, (4.14)

for k′ = 1, . . . ,

⌈
l∑

k=1

sk

⌉
− 1.

Proof. Taking operators
l⊙

k=1

αk
0R

sk
u on two sides of (4.12) leads to

(
l⊙

k=1

αk
0R

sk
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[φ](u)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j ·
l⊙

k=1

αk
0R

sk
u

(∫ u

0

φ(u− y)fX(y) dy

)
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Recall from Theorem 4.1.1, we know that the non-ruin probability function φ(u) is

supported on [0,∞), so the identity

l⊙
k=1

αk
0R

sk
u [φ ∗ fX ](u) =

l∏
k=1

αskk · φ(u)

holds in this case, which gives equation (4.13).

For the boundary conditions, we compute(
α1

0R
s1−k′
u

l⊙
k=2

αk
0R

sk
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

))
[φ](0)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j · α1
0R

s1−k′
u

l⊙
k=2

αk
0R

sk
u

(∫ u

0

φ(u− y)fX(y) dy

)∣∣∣∣∣
u=0

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j · α1
0R

s1−k′
u

l⊙
k=2

αk
0R

sk
u (φ(u) ∗ fl−1(u) ∗ f1(u) ) |u=0

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=2

αskk ·
α1

0R
s1−k′
u (φ(u) ∗ f1(u) ) |u=0

where fl−1 stands for the density function of sum of Γ(sk, αk), k = 2, . . . , l and f1 stands

for the density function of Γ(s1, α1). Applying equation (2.1.7) gives

m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=2

αskk · e
−α1u

0D
s1−k′
u

[∫ u

0

eα1(u−y)φ(u− y) · eα1yf1(y) dy

]∣∣∣∣∣
u=0

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=2

αskk · e
−α1u

[
eα1uφ(u) ∗ 0D

s1−k′
u (eα1uf1(u))

]∣∣∣∣∣
u=0

+
m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=2

αskk · φ(0) 0D
s1−k′−1
y (eα1yf1(y))

∣∣∣
y=0

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

l∏
k=2

αskk

[
e−α1u

[
eα1uφ(u) ∗ αs11

Γ(k′)
uk
′−1

]∣∣∣∣
u=0

+ φ(0)
αs11

Γ(k′ + 1)
yk
′
∣∣∣∣
y=0

]

=0, for k′ = 1, . . . ,

⌈
l∑

k=1

sk

⌉
− 1.

This completes the proof.

76
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Our next goal is solving the fractional differential boundary value problem in Theo-

rem 4.2.2 via a characteristic equation from the ansatz φ(u) = e−zu. The main technical

difficulty in the full generality of Theorem 4.2.2 arises from the fact that the operators

in equation (4.13) combine two different types of differential derivatives, right Caputo

fractional derivatives and left Rock operators which are ultimately defined in terms of

left Riemann-Liouville fractional derivatives. The proposed ansatz is an eigenfunction

only for the operators in

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

)
so we will restrict to the case of sk ∈ N , k = 1, . . . , l which simplifies things greatly

since
l⊙

k=1

αk
0R

sk
u =

l⊙
k=1

(
d

du
+ αk

)sk
reduces to a combination of ordinary derivatives.

Note that assuming sk ∈ N , k = 1, . . . , l is equivalent to assuming that the claim sizes

Xi are each distributed as a sum of l independent Erlang random variables. Moreover,

under this case, the operator

l⊙
k=1

αk
0R

sk
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

)
on the left hand side of (4.13) is a composition of right Caputo fractional derivatives.

Furthermore, with the ansatz φ(u) = e−zu, equation (4.13) yields the following charac-

teristic equation for z:

l∏
k=1

(−z + αk)
sk ·

n∏
j=1

(cµjzµj + λ2,j) ·
m∏
i=1

(cz + λ1,i)
ri = Λm,n ·

l∏
k=1

αskk . (4.15)

Note that z = 0 is always a root of (4.15). If equation (4.15) has N > 0 additional dis-

tinct complex roots with positive real part, say z1, . . . , zN , then the non-ruin probability

φ that solves (4.13) is

φ(u) = 1 +
N∑
p=1

Kpe
−zpu (4.16)
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The constants Kp, p = 1, . . . , N are to be determined from the boundary conditions

(4.14) which we now characterise.

Proposition 4.2.1. Suppose sk ∈ N, k = 1, . . . , l, in Theorem 4.2.2. The number of

initial-value boundary conditions of φ(u) is N =
l∑

k=1

sk and they are given explicitly by:

l⊙
k=1

αk
0R

sp,k
u

n⊙
j=1

(
cµj · CuDµj

∞ + λ2,j

) m⊙
i=1

(
cri · λ1,i/cuRri

∞

)
[φ](0) = 0, p = 1, . . . , N (4.17)

where the values of sp,k are to be computed as follows: let

L(p) = inf

{
` ∈ N :

∑̀
k=1

sk 6 p

}
, p = 1, . . . , N (4.18)

and define

sp,k =



sk, if k < L(p),

p−
L(p)−1∑
i=1

si − 1, if k = L(p),

...

0, if k > L(p).

Proof. We consider the p-th boundary condition

l⊙
k=1

αk
0R

sp,k
u A∗m,n

(
c
d

du

)
[φ](0)

=
m∏
i=1

λri1,i

n∏
j=1

λ2,j

L(p)−1∏
k=1

αskk
αL(p)

0R
sp,L(p)
u

[
φ ∗ fL(p) ∗ fL(p)+

]
(0),

where fL(p) stands for the density function of a Γ
(
sL(p), αL(p)

)
random variable and

fL(p)+ for the density function of a sum of random varibales with distributions Γ (sk, αk) ,

k = L(p) + 1, . . . , L. Let Φ = φ ∗ fL(p)+ and apply (2.1.7) to compute

αL(p)

0R
sp,L(p)
u

[
Φ ∗ fL(p)

]
(u) = Φ(u) 0D

sp,L(p)−1
y

(
eαL(p)yfL(p)(y)

)∣∣
y=0

+ e−αL(p)u
[
eαL(p)(u)Φ(u) ∗ 0D

sp,L(p)
u eαL(p)ufL(p)(u)

]
.
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Note that sp,L(p)−1 < sL(p) and we have

αL(p)

0R
sp,L(p)
u

[
Φ ∗ fL(p)

]
(0) =

∫ u

0

Φ(u− y)
αL(p)

0R
sp,L(p)
y fL(p)(y) dy

∣∣∣∣
u=0

= 0.

Since this holds for all 1 6 p 6 N , we complete the proof.

Substituting the expression (4.16) for φ(u) into the boundary conditions (4.17) yields

explicit linear equations for the unknown constants Kp, p = 1, . . . , N . First, denote

∆p
..=

n∏
j=1

(cµjzµjp + λ2,j)
m∏
i=1

(czp + λ1,i)
ri , p = 1, . . . , N. (4.19)

Then, the constants Kp, p = 1, . . . , N in (4.16) satisfy

Λm,n +
N∑
p=1

∆pKp = 0

α1Λm,n + ∆
N∑
p=1

(−zp + α1)Kp = 0

· · ·

αs11 Λm,n +
N∑
p=1

∆p (−zp + α1)s1 Kp = 0

αs11 α2Λm,n +
N∑
p=1

∆p (−zp + α1)s1 (−zp + α2)Kp = 0

· · ·

αs11 α
s2
2 Λm,n +

N∑
p=1

∆p (−zp + α1)s1 (−zp + α2)s2 Kp = 0

· · ·
l−1∏
k=1

αskk α
sl−1
l Λm,n +

N∑
p=1

∆p

l−1∏
k=1

(−zp + αk)
sk (−zp + αl)

sl−1Kp = 0,

(4.20)

where

Λm,n =
m∏
i=1

λri1,i

n∏
j=1

λ2,j.
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4.2.2 Applications of the Rock operators in dual risk models

The dual risk model describes the surplus D(t) of a company as in (1.2). Due to the

renewal property, the non-ruin probability φD of a dual risk model satisfies an integral

equation (Afonso et al., 2013), for u > 0,

φD(u) =

∫ u/c

0

fT (t)

∫ ∞
0

φD(u− ct+ y) dFY (y) dt =
1

c

∫ u

0

fT

(
u− s
c

)
W (s) ds, (4.21)

where

W (s) =

∫ ∞
0

φD(s+ y) dFY (y).

In this section, we consider a family of dual risk models, whose inter-arrival times

are assumed to be the sum of gamma random variables.

Theorem 4.2.3. Consider the dual risk model

Dm(t) = u− ct+

N(t)∑
i=1

Yi, t > 0,

where the inter-arrival times Tk are assumed to be sum of m independent gamma random

variables Zi ∼ Γ(ri, λi), i = 1, . . . .,m. The non-ruin probability, φD(u), satisfies, in this

case, a fractional integro-differential equation of the form(
m⊙
i=1

(
cri · λi/c0Rri

u

))
[φD](u) =

m∏
i=1

λrii

∫ ∞
0

φD(u+ y) dFY (y), u > 0, (4.22)

with boundary conditions φD(0) = 0 and other boundary conditions. When all ri ∈ N,

we have explicitly M =
m∑
i=1

rk initial conditions, namely,

(
m⊙
i=1

(
cri · λi/c0Rrq,i

u

))
[φD](0) = 0.

Like in renewal risk models, here rq,i ∈ {0, 1, . . . , ri} take different values, for different

boundary conditions. For instance, for the q-th (out of M in total) boundary condition,

we denote

M(q) = inf

{
` ∈ N :

∑̀
i=1

ri 6 q

}
,
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then the values for rq,i in this case equal to

rq,i =



ri, i < M(q),

q −
M(q)−1∑
j=1

rj − 1, i = M(q),

...

0, i > M(q).

Proof. Taking operators
m⊙
i=1

(
cri · λi/c0Rri

u

)
on both sides of (4.21) leads to

(
m⊙
i=1

(
cri · λi/c0Rri

u

))
[φD](u) =

1

c

m⊙
i=1

(
cri · λi/c0Rri

u

)∫ u

0

fT

(
u− s
c

)
W (s) ds

=
m⊙
i=1

λi
0R

ri
v

∫ v

0

fT (v − x)W (cx) dx =
m⊙
i=1

λi
0R

ri
v

∫ v

0

fT (v − x)V (x) dx,

where v = u
c

and V (x) = W (cx). Recall from Theorem 4.1.1 that the function V is

supported on [0,∞), hence we obtain

m⊙
i=1

λi
0R

ri
v [V ∗ fT ](v) =

m∏
i=1

λrii · V (v) =
m∏
i=1

λrii

∫ ∞
0

φD(u+ y) dFY (y).

For the q-th boundary condition, we have(
m⊙
i=1

(
cri · λi/c0Rrq,i

u

))
[φD](u) =

M(q)−1∏
i=1

λrii ·
λM(q)

0R
rq,M(q)
v

[
V ∗ fM(q) ∗ fM(q)+

]
(v),

where fM(q) stands for the density function of Γ
(
rM(q), λM(q)

)
random variable and fM(q)+

for the the density function of sum of Γ (ri, λi) random variables, for M(q) < i 6 L. Let

V = V ∗ fM(q)+ and compute the following term

λM(q)

0R
rq,M(q)
v

[
V ∗ fM(q)

]
(v)

=e−λM(q)v
0D

rq,M(q)
v

(∫ v

0

eλM(q)(v−y)V(v − y) · eλM(q)yfM(q)(y) dy

)
=e−λM(q)v

[
eλM(q)(v)V(v) ∗ 0D

rq,M(q)
v eλM(q)vfM(q)(v)

]
+ V(v) 0D

rq,M(q)−1
y

(
eλM(q)yfM(q)(y)

)∣∣
y=0
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by applying the rule of fractional derivatives on a convolution integral. Note that since

rq,M(q)−1 < rM(q), we conclude that

λM(q)

0R
rq,M(q)
v

[
V ∗ fM(q)

]
(0) =

(∫ v

0

V(v − y) · λM(q)

0R
rq,M(q)
y fM(q)(y) dy

)∣∣∣∣
v=0

= 0.

This holds for all 1 6 q 6M , which completes the proof.

Remark 4.2.1. When r is integer, say n, equation (4.22) reduces to(
c
d

du
+ λ

)n
φD(u) = λn

∫ ∞
0

φD(u+ y) dFY (y), u > 0,

with the corresponding boundary conditions. This is equivalent to the existed result

for ruin probability in Erlang-time dual risk model (see e.g. Rodŕıguez-Mart́ınez et al.

(2015)).

4.3 Explicit expressions for ruin probabilities in

gamma-time and fractional Poisson risk models

The model we consider in Theorem 4.2.1 is a very general class in the renewal risk model.

In this section, we focus on two specific models which might be more appealing than

others. Explicit forms of ruin (non-ruin) probabilities are derived.

Remark 4.3.1. It has been shown Asmussen and Albrecher (2010) that for any renewal

risk model, the ruin probability always has an exponential form when the claim distri-

bution is exponential. However, the fractional differential equation approach bridges a

solid connection between classical risk model and a class of renewal models, which might

be applied in a more sophisticated model.

4.3.1 Gamma-time risk models

A gamma-time risk model, describes the reserve process Rr(t) of an insurance company

as

Rr(t) = u+ ct−
Nr(t)∑
i=1

Xi, t > 0,
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which replaces the Poisson process N(t) in the classical model (1.1) by a renewal counting

process Nr(t) with Γ(r, λ) inter-arrival times. This is a natural extension of an Erlang(n)

risk model consiered for instance, by Li and Garrido (2004b). Being a special case of

Theorem 4.2.1, the equation for ruin probability ψr(u) in gamma-time risk model can

be written as

cr · e
λ
c
u C
uD

r
∞

(
e−

λ
c
uψr(u)

)
= λr

(∫ u

0

ψr(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0.

(4.23)

When r takes integer values, say n, the Caputo fractional derivative reduces into the

classical derivative

C
uD

n
∞ = (−1)n

dn

dun
.

Thus, equation (4.23) reduces to the existed result of Li and Garrido (2004b),(
−c d

du
+ λ

)n
ψn(u) = λn

(∫ u

0

ψn(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0.

Equation (4.23) has an explicit solution whenever the claim size distribution has

rational Laplace transform.

Example 4.3.1. In the risk model (4.1) with Γ(r, λ) distributed inter-arrival times and

Exp(α) distributed claim sizes, the ruin probability equals to

ψr(u) =

(
λ

cx2

)r
e(

λ
c
−x2)u, u > 0, (4.24)

where x2 >
λ
c

is the larger root of equation

crxr
(
x−

(
λ

c
+ α

))
+ αλr = 0. (4.25)

Proof. This example falls into the category of Theorem 4.2.2. In order to solve the

equation (
α
0R

1
u

(
cr · λ/cuRr

∞

))
[φr](u) = αλr · φr(u), (4.26)

one needs to assume that the ruin probability satisfies(
dj

duj

(
e−

λ
c
uφr(u)

))∣∣∣∣
u→∞

= 0, j = 0, 1, . . . , [r] + 1.
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4. Renewal Risk Models

Using the identity (2.9), we replace the Caputo derivative by a Riemann-Liouville deriva-

tive, in equation (4.26), thus having

cr
(
d

du
+ α

) (
e
λ
c
u
uD

r
∞

(
e−

λ
c
uφr(u)

))
= αλrφr(u).

Multiplying both sides by e−
λ
c
u and denoting g(u) = e−

λ
c
uφr(u), one obtains the frac-

tional differential equation for g(u)

cr−1λ uD
r
∞g(u)− cr uD

r+1
∞ g(u) + αcr uD

r
∞g(u)− αλrg(u) = 0. (4.27)

The corresponding characteristic equation for (4.27) is

crxr
(
x−

(
λ

c
+ α

))
+ αλr = 0. (4.28)

This characteristic equation has an explicit root at x1 = λ
c
. Solving the equation after

differentiation gives the unique stationary point

xs =
r
(
λ
c

+ α
)

r + 1
>
r
(
λ
c

+ λ
rc

)
r + 1

=
λ

c

on the positive axis, which is strictly larger than the root x1 due to the net premium

condition α > λ
rc

. Since the function on the left-hand side of equation (4.28) is a dif-

ferentiable in x, and positive when x = 0 and x → ∞, one could use the mean value

theorem to locate the other real root x2, on the positive half axis.

x
[
0, λ

c

)
λ
c

(
λ
c
, x2

)
x2 (x2,∞)

Sign positive zero negative zero positive

Table 4.1: The function crxr
(
x−

(
λ
c + α

))
+ αλr

Consequently, the expression of g(u) has the form

K1 · e−
λ
c
u +K2 · e−x2u,

which means that the non-ruin probability equals to

φr(u) = K1 +K2 · e(
λ
c
−x2)u. (4.29)
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The constant K1 can be obtained from the universal boundary condition of φr(u), which

is

K1 = lim
u→∞

φr(u) = 1.

Since another boundary condition in this case is given by[
cre

λ
c
u
uD

r
∞

(
e−

λ
c
uφr(u)

)]∣∣∣
u=0

=
[
λr + cre

λ
c
uK2 x

r
2 e
−x2u

]∣∣∣
u=0

= 0,

one concludes that K2 = −
(

λ
cx2

)r
. Thus, the ruin probability of the risk model (4.1)

with Γ(r, λ) distributed inter-arrival times and Exp(α) distributed claim sizes is

ψr(u) = 1− φr(u) =

(
λ

cx2

)r
e(

λ
c
−x2)u.

The last step is to verify the assumption made in the beginning of the proof. Indeed,

for j = 0, 1, . . . , [r] + 1, all those derivatives are equal to

dj

duj

(
e−

λ
c
u − e−

λ
c
u

(
λ

cx2

)r
e(

λ
c
−x2)u

)
=

(
−λ
c

)j
e−

λ
c
u +

(
λ

cx2

)r
(−x2)j e−x2u,

and go to zero when u tends to infinity. This completes the proof.

Remark 4.3.2. Let s = x2−λ
c

in the expression (4.24). One has the following calculation

(MX(s)MT (−cs))−1 − 1 =
(

1− s

α

)(
1 +

cs

λ

)r
− 1

=
cr

λr

((
1−

x2 − λ
c

α

)(
λ

c
+ x2 −

λ

c

)r
− λr

cr

)

=
cr

λrα

((
α +

λ

c
− x2

)
xr2 −

λr

cr

)
=
−1

λrα

(
crxr+1

2 −
(
cr−1λ+ αcr

)
xr2 + αλr

)
= 0,

which means that x2− λ
c

is the unique positive solution γ of the Lundberg’s fundamental

equation. This finding coincides with the result from Asmussen and Albrecher (2010)

for the renewal risk model with exponential claims.

Example 4.3.2. In the risk model (4.1) with Γ(r, λ) distributed inter-arrival times and

Γ(2, α) distributed claim sizes, the ruin probability equals to

ψr(u) =
λ
c
− z3

z2 − z3

(
λ

cz2

)r
e(

λ
c
−z2)u +

λ
c
− z2

z3 − z2

(
λ

cz3

)r
e(

λ
c
−z3)u, u > 0,
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where z3 >
λ
c

+ α > z2 >
λ
c

are the two larger roots of the equation

crzr
(
z −

(
λ

c
+ α

))2

− α2λr = 0.

Proof. In order to solve the equation(
α
0R

2
u

(
cr · λ/cuRr

∞

))
[φr](u) = αλr · φr(u), (4.30)

one needs to assume that the non-ruin probability satisfies(
dj

duj

(
e−

λ
c
uφr(u)

))∣∣∣∣
u→∞

= 0, j = 0, 1, . . . , [r] + 1.

Under this assumption, one could rewrite equation (4.30) as

cr
(
d

du
+ α

)2 (
e
λ
c
u
uD

r
∞

(
e−

λ
c
uφr(u)

))
= α2λrφr(u).

Analogously, we denote h(u) = e−
λ
c
uφr(u) to obtain the fractional differential equa-

tion for h(u)

cr

(
uD

r+2
∞ h(u)− 2

(
λ

c
+ α

)
uD

r+1
∞ h(u) +

(
λ

c
+ α

)2

uD
r
∞h(u)

)
= α2λrh(u)

with its characteristic equation

crzr
(
z −

(
λ

c
+ α

))2

− α2λr = 0. (4.31)

By observation, one finds that equation (4.31) has an explicit root z1 = λ
c
. Taking one

derivative of the equation gives two stationary points

zs1 =
r
(
λ
c

+ α
)

r + 2
>
r
(
λ
c

+ 2λ
rc

)
r + 2

=
λ

c
and zs2 =

λ

c
+ α > zs1 >

λ

c

on the positive axis. One is strictly larger than root z1 due to the net premium condition

α > 2λ
rc

. The function on the left-hand side of equation (4.31) is a differentiable function

of z, negative when z = 0 and positive when z →∞. In order to verify the existence of

other roots, one needs to check the value of the function crzr
(
z −

(
λ
c

+ α
))2 − α2λr at

z = zs2, which is negative

cr
(
λ

c
+ α

)r (
λ

c
+ α−

(
λ

c
+ α

))2

− α2λr = −α2λr < 0.
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z
[
0, λ

c

)
λ
c

(
λ
c
, z2

)
z2 (z2, z3) z3 (z3,∞)

Sign negative zero positive zero negative zero positive

Table 4.2: The function crzr
(
z −

(
λ
c + α

))2 − α2λr

Thus, the mean value theorem can be applied to locate the other real roots λ
c
< z2 <

λ
c
+α

and z3 >
λ
c

+ α on the positive half axis.

After solving equation (4.31), one obtains the expression of h(u), which is

K1 · e−
λ
c
u +K2 · e−z2u +K3 · e−z3u.

It implies that the non-ruin probability equals to

φr(u) = K1 +K2 · e(
λ
c
−z2)u +K3 · e(

λ
c
−z3)u. (4.32)

The universal boundary condition of φr(u) ensures that K1 = 1, and the other boundary

conditions in this case are given by[
cre

λ
c
u
uD

r
∞

(
e−

λ
c
uφr(u)

)]∣∣∣
u=0

= 0,

and

[(
d

du
+ α

)(
cre

λ
c
u
uD

r
∞

(
e−

λ
c
uφr(u)

))]∣∣∣∣
u=0

= 0.

Substituting the expression (4.32) into these two boundary conditions
λr + cr zr2 K2 + cr zr3 K3 = 0

αλr + cr zr2
(
λ
c

+ α− z2

)
K2 + cr zr3

(
λ
c

+ α− z3

)
K3 = 0,

gives 

K2 =
z3 − λ

c

z2 − z3

(
λ

cz2

)r

K3 =
z2 − λ

c

z3 − z2

(
λ

cz3

)r
.

87



4. Renewal Risk Models

Hence, the ruin probability of the risk model (4.1) with Γ(r, λ) distributed inter-arrival

times and Γ(2, α) distributed claim sizes is

ψr(u) =
λ
c
− z3

z2 − z3

(
λ

cz2

)r
e(

λ
c
−z2)u +

λ
c
− z2

z3 − z2

(
λ

cz3

)r
e(

λ
c
−z3)u.

The last step is to verify the assumption made in the beginning of the proof. In fact,

for j = 0, 1, . . . , [r] + 1, all those derivatives are equal to

dj

duj

(
e−

λ
c
u
(

1 +K2 e
(λc−z2)u +K3 e

(λc−z3)u
))

=

(
−λ
c

)j
e−

λ
c
u +K2 (−z2)j e−z2u +K3 (−z3)j e−z3u,

and go to zero when u tends to infinity. The completes the proof.

4.3.2 Fractional Poisson risk models

In this section, we focus on the fractional Poisson risk process. The fractional (com-

pound) Poisson risk model is a special case of the Sparre Anderson model,

Rµ(t) = u+ ct−
Nµ(t)∑
i=1

Xi, t > 0, (4.33)

whose counting process chosen as fractional Poisson process Nµ(t). The ultimate ruin

problem for this model is nontrivial since we have E(cT1 − X1) = ∞ almost surely.

Recall from Theorem 4.2.1, the ruin probability ψµ(u) of a fractional Poisson risk model

satisfies a fractional integro-differential equation

cµ CuD
µ
∞ψµ(u) + λψµ(u) = λ

(∫ u

0

ψµ(u− y) dFX(y) +

∫ ∞
u

dFX(y)

)
, u > 0, (4.34)

with the universal boundary condition lim
u→∞

ψµ(u) = 0.

Note that the operator C
uD

µ
∞ tends to the identity operator when µ→ 0+. Thus, we

obtain the following result.
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Corollary 4.3.1. In a fractional Poisson risk model, the ruin probability ψµ(u) con-

verges to a function ψ0(u), as µ→ 0. Moreover, the function ψ0(u) satisfies an integral

equation

(1 + λ)ψ0(u) = λ

∫ u

0

ψ0(u− y) dFX(y) + λ

∫ ∞
u

dFX(y), > 0, (4.35)

with the universal boundary condition lim
u→∞

ψ0(u) = 0.

Substituting u = 0 into equation (4.35) gives ψ0(0) = λ
λ+1

, which only depends on

the value of λ. Taking Laplace transform both sides with respect to u and rearranging

leads to

ψ̂0(s) =
1− f̂(s)

(λ+ 1)s− λsf̂(s)
,

which can be explicitly inverted back in some cases.

Since when µ = 1, the fractional Poisson process degenerates to a Poisson process, we

need the net profit condition to compute the ruin probability. The following examples

are under the assumption 0 < µ < 1 in the fractional Poisson risk model (4.33) when

the net profit condition always holds.

Biard and Saussereau (2014) derived the explicit expression for ruin probability of

fractional Poisson risk model with exponential claims. In this section, the same result, as

well as other new results will be derived via one fractional differential equation approach.

Example 4.3.3. In a fractional Poisson risk model (4.33) with Exp(α) distributed claim

sizes, the ruin probability equals

ψµ(u) =
(

1− x2

α

)
e−x2u, u > 0, (4.36)

where x2 is the unique positive solution of

cµx− αcµ + λx1−µ = 0. (4.37)

Proof. In order to solve equation

α
0R

1
u

(
cµ · CuDµ

∞ + λ
)

[φµ](u) = λαφµ(u) (4.38)
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one needs to assume that the non-ruin probability satisfies(
dj

duj
(φµ(u))

)∣∣∣∣
u→∞

= 0, j = 0, 1, 2.

Under this assumption, one could rewrite equation (4.38) as(
d

du
+ α

)
(cµ uD

µ
∞ + λ)φµ(u) = λαφµ(u),

with the characteristic equation

cµxµ+1 − αcµxµ + λx = 0. (4.39)

We look for all the roots besides the apparent one x1 = 0. Assuming that x 6= 0 leads

the above equation to

cµx− αcµ = −λx1−µ. (4.40)

Since the order of left-hand side is higher than the right-hand side, there exists a larger

positive real number M1 > α, such that both sides of equation (4.40) are analytic on the

closed contour Γ1 = {x : |x| = M1} in C and |cµx − αcµ| > | − λx1−µ| on the contour

Γ1. Then by Rouché’s theorem, both cµx− αcµ = 0 and equation (4.40) have the same

root within the closed contour Γ1 = {x : |x| = M1}. This means equation (4.40) has a

unique solution. Since the continuous real-valued function cµx−αcµ +λx1−µ is negative

when x → 0+ and positive when x → ∞, there must exist a point x2 > 0 such that

cµx2 − αcµ + λx1−µ
2 = 0.

x (0, x2) x2 (x2,∞)

Sign negative zero positive

Table 4.3: The function cµx− αcµ + λx1−µ

After finding (numerically or explicitly) the value of x2, one derives the expression

of non-ruin probability as

ψµ(u) = K1 · e−x1u +K2 · e−x2u = K1 +K2 · e−x2u.
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The universal boundary condition of φµ(u) ensures K1 = 1. Another boundary condition

in this case is

[(cµ uD
µ
∞ + λ)φµ(u)]|u=0 =

[
λ+ cµK2x

µ
2e
−x2u + λK2e

−x2u
]∣∣
u=0

= 0.

It can be used to obtain the other constant,

K2 = − λ

(cx2)µ + λ
=
x2

α
− 1.

The last step is to verify the assumption made in the beginning of the proof. In fact,

for j = 0, 1, 2, all those derivatives are equal to

dj

duj

(
1 +

(x2

α
− 1
)
e−x2u

)
=
(x2

α
− 1
)

(−x2)je−x2u,

and go to zero when u tends to infinity. This completes the proof.

4.4 Numerical calculation and discussion

We have shown that the explicit ruin probabilities can be obtained when the claim sizes

have rational Laplace transforms. In this section we will use a mathematical symbolic

computation program to implement the numerical calculations for obtained ruin proba-

bilities. A few discussions and comparisons will be considered for each specific model.

4.4.1 Discussion on gamma-time risk models

In order to compare the classical and gamma-time risk models, in 4.1 we show numeri-

cally obtained ruin probabilities in the case of Example 4.3.1 with different combinations

of r and λ1 such that the mean inter-arrival time is fixed to r/λ1 = 1.

Assume that claim sizes are exponentially distributed, also with mean α = 1 and

that c = 1.2 to ensure the net profit condition, then the corresponding ruin probabili-

ties can be obtained by expression (4.24) and (4.25). Many mathematical programming

languages can help to solve equation (4.25) numerically. In this section we use Wolfram
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Mathematica to implement the numerical calculation step. The resulting ruin probabil-

ities are graphed in Figure 4.1.
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Figure 4.1: Ruin probabilities in the case of Example 4.3.1 for λ = r = 0.5, 1, 1.5, 2 and 2.5, and
claim sizes are taken exponentially distributed with mean α = 1 and c = 1.2 in order to ensure the net
profit condition

Note the substantial impact on ψr(u) when changing the Poisson assumption (r = 1).

Ruin probabilities for gamma-time risk model (inter-arrival times r > 1) are relatively

smaller, and vice versa. The reason is that in this case, the expected inter-arrival time

r/λ1 is fixed whereas the variance of inter-arrival time r/λ2
1 decreases as r increases,

which means that the chance of having a short waiting period between claims will de-

crease. Since ruin is usually caused by not enough capital accumulating, the model with

a larger shape parameter r is more likely to survive. Figure 4.1 coincides with the finding

from Li and Garrido (2004b), which focuses on Erlang(n) risk models.

In Figure 4.2 we illustrate the sensitivity to the parameters r, λ of the ruin probability

ψr(u) in Example 4.3.1. In order to do this, we define the statistic

u5
..= inf {u ≥ 0 : ψr(u) < 0.05} . (4.41)

Namely, u5 is the minimum capital needed to achieve a ruin probability of 5%. Note

that any combinations of r and λ1 on or above the dashed line marking the net profit
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4.4. Numerical calculation and discussion

condition, will make the ruin happen for sure. The value of u5 tends to infinity as the

parameters approach the dashed line since the safety loading cE(T )
E(X)

− 1 tends to zero.

When r takes large enough values or λ1 take small enough values (in bluer areas), the

ruin probability might be less than 5% even with zero initial capital. Note that along

contour lines, dλ1 ≈ 1
c
dr, so the sensitivity of the ruin probabilities to its parameters

depends almost exclusively on c.
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Figure 4.2: Natural log of u5 (see (4.41)) for the ruin probability in Equation 4.3.1 with continuously
varying parameters r, λ, and the claim sizes have fixed exponential distribution with mean α = 1 and
premium rate c = 1.2. The dotted line limits the region where the net profit condition r/λ1 < c holds
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4.4.2 Discussion on fractional Poisson risk models

Figure 4.3 shows the ruin probability ψµ(u) for different combinations of the parameters

λ2, µ and fixed exponential claim size distribution.
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T ∼ML(0.85,2)

Figure 4.3: Ruin probabilities in the case of Example 4.3.3 for different combinations of λ2, µ. Claim
sizes are taken exponentially distributed with mean α = 1 and c = 1.2

Note the substantial impact on ψµ(u) when changing the Poisson assumption (µ = 1).

Increasing λ2 or µ increases the chances for ruin to happen. The reason is that, the

expected number of jumps before time t in the fractional Poisson process (see equation

(2.20)) is a monotone increasing function of λ2 > 0. For argument µ, the derivative of

the expected number of jumps before time t with respect to µ equals to

d

dµ

λtµ

Γ(µ+ 1)
=

λtµ

Γ(µ+ 1)

(
ln(t)−Ψ(0)(1 + µ)

)
, (4.42)

where meromorphic function Ψ(0) refers to the digamma function, defined as the loga-

rithmic derivative of the gamma function:

Ψ(0)(x) =
d

dx
ln (Γ(x)) =

Γ′(x)

Γ(x)
.

Since we are considering the ultimate ruin probabilities, number of claims happen in

small time intervals are not interested. Thus, we only focus on the case when t is

large enough. In this case, equation (4.42) is positive when 0 < µ 6 1, which means
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the expected number of jumps before time t in the fractional Poisson process is also a

monotone increasing function of µ.
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Figure 4.4: Natural log of u5 (see (4.41)) for the ruin probability in Example 4.3.3 with continuously
varying parameters µ, λ2, and the claim sizes have fixed exponential distribution with mean α = 1 and
premium rate c = 1.2

Moreover, Figure 4.4 shows the values of natural logarithm of u5 computed from

(4.41) with ψµ as a function of µ and λ2. Note that the contour lines in this plot are

not parallel to each other. As the value of µ decreases, the parameter λ2 plays a less

significant role in the ruin probability function.
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Chapter 5

Concluding Remarks and Future

Work

This thesis mainly considers ruin probabilities in the classical risk model and the re-

newal risk models. Various equations and explicit expressions for ruin probabilities are

obtained. By using properties of Mittag-Leffler functions, the Laplace transforms of

ruin probabilities in the classical risk model when gamma claims can be inverted back.

Independently, a new family of fractional differential operators is defined, which can be

used to construct fractional integro-differential equations for ruin probabilities in collec-

tive risk and dual risk models. Classical results can be retrieved by setting appropriate

parameter values. This brand new approach is based on constructing and solving frac-

tional differential equations. It gives more analytical information on ruin probabilities

and other related functions in risk theory.

5.1 Conclusions

Using a shift argument in Laplace transform, Theorem 3.1.1 obtains an explicit expres-

sion for non-ruin probabilities the in the classical risk model with rational shape gamma

claims, which is a finite sum of Mittag-Leffler functions. Further, applying geometric

expansions or iterative expressions, Theorem 3.1.2, 3.1.3 and 3.1.4 manage to extend
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the result to a more general case, where real-valued shape gamma claims are assumed

in the classical risk model. Three formulas, all in infinite series forms, two involving

Mittag-Leffler functions and a third one involving moments of the claims distribution

are presented. It has been shown that these expressions can be reduced to existing

results when Erlang claims. This thesis also considers the ruin problem when discrete

claim sizes are assumed. Using a martingale approach, Theorem 3.2.1 obtains an explicit

ruin probability expression in classical risk model with geometric claims.

In the case of renewal ruin theory, this thesis follows the idea from Albrecher et al.

(2010), of an algebraic approach to study the ruin problem in both collective risk models

and dual risk models. The inter-arrival times in such renewal models are assumed

to be the sum of gamma and Mittag-Leffler random variables. Theorem 4.1.1 shows

that the corresponding time density function solves a fractional differential equation

equipped with the left Rock differential operator (defined in Definition 4.1.1). Theorem

4.2.1 and 4.2.3 apply the Rock operators in renewal risk models and dual risk models

respectively. Fractional integro-differential equations for (non-)ruin probabilities in these

models are obtained. Theorem 4.2.2 tells that when the claim sizes in renewal risk models

are distributed as the sum of gamma random variables, the problem of getting ruin

probabilities is transformed into solving fractional differential equations with appropriate

initial-value boundary conditions. Especially when the claim size distributions have

rational Laplace transforms, all initial-value boundary conditions have analytic forms.

In this case, the fractional differential equations for ruin probabilities can be solved

explicitly and the solutions are always sums of exponential functions. Specific models,

gamma-time risk model and fractional Poisson risk model are analysed in detail.

5.2 Future research

There are four main venues of future research to pursue.

1. All existed literature (including this project) in risk theory can only obtain ex-
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plicit expressions for ruin probabilities when claim sizes have rational Laplace

transform. The main reason is that a classical method to solve integro-differential

equations is via Laplace transforms. In this thesis, fractional differential equations

for ruin probabilities are constructed, which gives an alternative direction to derive

explicit/numerical ruin probabilities. One of the future projects would focus on

solving these fractional differential equations numerically, when analytical solu-

tions do not exist. One can attempt to derive numerical solutions/approximations

by means of the partial differential equation parametrix method. This is one of the

methods of studying boundary value problems, for differential equations with vari-

able coefficients. Using integral equations, a parametrix is an approximation of a

fundamental solution of a differential equation, which is essentially an approximate

inverse to a differential operator. In the case of ruin probabilities, the fractional

integro-differential equations can be transformed (back) to double-integral equa-

tions of Fredholm type, by an operator expansion, which can be understood as a

parametrix of a heat equation of a certain type. As an approximation, a parametrix

of a differential operator is often easier to construct than a fundamental solution,

and for most purposes is almost as good. A sufficiently good parametrix can of-

ten be used to construct an exact fundamental solution by a convergent iterative

procedure. Recently, the research group of Ritsumeikan University is working on

exact/unbiased simulation of stochastic differential equations, where the key idea

is lying in understanding the parametrix as a ruin probability of certain type. The

link or the duality may be trivial when we deal with exponential waiting time

but for the fractional case (gamma or Mittag-Leffler inter-arrivals) we do not have

any intuition to support it. Once the link is established, we can on one hand

export our results to stochastic calculus. The explicit solutions of the above case

will establish an interesting formula for the theory of stochastic differential equa-

tions. On the other hand, the vast literature of the stochastic calculus, like the

martingale theory of Kunita-Watanabe, Yamada-Watanabe theory for stochastic

differential equations, Malliavin calculus, could be made available for ruin the-
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ory. Ruin probability acts as a timely measure of risk for insurance companies

and in general for risk management purposes. Better understanding of the ruin

probability could improve the capital management of the insurance company and

their premium policies. In the meantime, introducing the Malliavin calculus in the

analysis would bring a new dimension to the risk theory literature, by accounting

for more sophisticated models.

2. The Rock operators defined in this project have played an important role in the

generalisation step. The motivation of using such operators comes from the ordi-

nary differential equations for Erlang density functions. Following the same idea

of Babenko’s symbolic method, we would like to find a more generalised form of

the Rock operators. Consider a positive random variable T with density function

fT . Suppose the Laplace transform of fT is given by

f̂T (s) =

(
λ

sµ + λ

)r
,

where µ ∈ (0, 1], λ and r are positive real numbers. When r takes integer value,

the random variable T can be interpreted as the sum of i.i.d. Mittag-Leffler ran-

dom variables. By using one property of Mittag-Leffler function, the expression

of density function fT can be obtained in terms of the fractional derivatives of

Mittag-Leffler functions. When µ = 1, the random variable T becomes a gamma

random variable. The purpose of this research direction is to find the correspond-

ing fractional differential equation that fT satisfies. Intuitively, we need to use

such a differential operator

(0D
µ
t + λ)r (5.1)

to construct the desired fractional differential equation. Once the proper definition

of (5.1) is found, most results derived in this thesis can be smoothly extended to

a more general risk model.

3. In Gerber and Shiu (1998) the expected discounted penalty at ruin function Φ(u),

also known as Gerber-Shiu function, is introduced,

Φ(u) = E
[
w(R(τu−), |R(τu)|)e−δτu1(τu <∞)

∣∣R(0) = u
]
,
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where τu is the time of ruin, R(τu−) represents the surplus immediately before

ruin and |R(τu)| the deficit at ruin, often called the severity of ruin. Albrecher

et al. (2010) considered a renewal risk model when inter-arrival time distribution

with rational Laplace transform and transformed the usual integral equation into

a boundary value problem, which can be solved by symbolic techniques. We would

like to derive fractional integro-differential equations for Gerber-Shiu functions in

more general renewal risk models, where the Rock operators might appear.

4. Waters and Papatriandafylou (1985) used martingale techniques to derive upper

bounds for the probability of ruin for a risk process explicitly which allows for de-

lays in the claims settlement. After that the issues around ruin problems involving

delayed claim settlements have been studied (Boogaert and Haezendonck, 1989;

Klüppelberg and Mikosch, 1995; Brémaud, 2000; Macci and Torrisi, 2004; Yuen

et al., 2005; Albrecher and Asmussen, 2006; Trufin et al., 2011). We would like

to advocate an approach to study the ruin problem in a renewal risk model with

delayed claims by applying the Rock operators defined in this thesis. Fractional

delayed-integro-differential equations might be constructed and further analysed.
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Proof of Remark 3.1.5

Since the Mittag-Leffler function is related to the error function, for special parameter

values as follows

E 1
2
, 1
2

(
sku

1
2

)
=
∞∑
i=0

(
sku

1
2

)i
Γ
(
i+1

2

) =
1√
π

+ sku
1
2E 1

2
,1

(
sku

1
2

)
=

1√
π

+ sku
1
2 es

2
kuerfc

(
−sku

1
2

)
=

1√
π

+ sku
1
2 es

2
ku

2√
π

∫ ∞
−sku

1
2

e−t
2

dt,

where the error function and the complementary error function defined by

erf(x) = 1− erfc(x) =
2√
π

∫ x

0

e−t
2

dt,

one can express the non-ruin probability as

φ(u) = e−αuu−
1
2 (m0 +m1 +m2)

1√
π

+
2∑

k=0

skmke
(s2k−α)u 2√

π

∫ ∞
−sku

1
2

e−t
2

dt.

Note that in this case

m1 +m2 =
φ(0)

s1 − s2

(
s1

s0 − s1

+
s2

s0 − s2

)
=

φ(0)

s1 − s2

−s1s0 + s2s0

(s0 − s1)(s0 − s2)

= − s0φ(0)

(s0 − s1)(s0 − s2)
= −m0,

and

m0 =
s0φ(0)

(s1 − s0)(s2 − s0)
=
α

1
2

(
1− λ

2cα

)
9
4
α− 1

4
α− λ

c

=
1

2
√
α
,
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one can obtain by simple calculation that

φ(u) =
1√
π

∫ ∞
−(αu)

1
2

e−t
2

dt

+
s2

1

(
1− λ

2cα

)
(s0 − s1)(s2 − s1)

e(s
2
1−α)u 2√

π

∫ ∞
−s1u

1
2

e−t
2

dt

+
s2

2

(
1− λ

2cα

)
(s0 − s2)(s1 − s2)

e(s
2
2−α)u 2√

π

∫ ∞
−s2u

1
2

e−t
2

dt.

Moreover, one can show that R = α − s2
1. Hence, the non-ruin probability can be

expressed as

φ(u) =
2s2

1

(
1− 1

c

)
(s0 − s1)(s2 − s1)

e−Ru + 1− 1

2
erfc

(
s0u

1
2

)
−

s2
1

(
1− 1

c

)
(s0 − s1)(s2 − s1)

erfc
(
s1u

1
2

)
e(s

2
1−

1
2)u

+
s2

2

(
1− 1

c

)
(s0 − s2)(s1 − s2)

erfc
(
−s2u

1
2

)
e(s

2
2−

1
2)u,

which is equivalent to say the ruin probability equals to

ψ(u) =−
2s2

1

(
1− 1

c

)
(s0 − s1)(s2 − s1)

e−Ru +
1

2
erfc

(
s0u

1
2

)
+

s2
1

(
1− 1

c

)
(s0 − s1)(s2 − s1)

erfc
(
s1u

1
2

)
e(s

2
1−

1
2)u

−
s2

2

(
1− 1

c

)
(s0 − s2)(s1 − s2)

erfc
(
−s2u

1
2

)
e(s

2
2−

1
2)u. (5.2)

Here is the proof that expression (3.6) and (5.2) are the same. Indeed, the first term of

(5.2) equals to

−
2s2

1

(
1− 1

c

)
(s0 − s1)(s2 − s1)

e−Ru =
(c− 1)2s2

1

−c(s0s2 − (s0 + s2)s1 + s2
1)
e−Ru

=
(c− 1)2s2

1

1 + c(1
2
− 3s2

1)
e−Ru =

(c− 1)(1− 2R)

1 + c(3R− 1)
e−Ru

and the second term of (3.6) can be rewritten as

2(c− 1)

πc2

∫ ∞
0

√
xe−(x+1)u/2

(x+ 1)(x+ a)(x+ b)
dx =

4(c− 1)

πc2

∫ ∞
0

t2e−(t2+1)u/2

(t2 + 1)(t2 + a)(d2 + b)
dt

where

a =
1

2
+

2

c
−
√

1

4
+

2

c
= 2s2

1, b =
1

2
+

2

c
+

√
1

4
+

2

c
= 2s2

2.
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Using partial fraction decomposition, the integral becomes

4(c− 1)

πc2

(
A

∫ ∞
0

e−(t2+1)u/2

t2 + 1
dt+B

∫ ∞
0

e−(t2+1)u/2

t2 + a
dt+ C

∫ ∞
0

e−(t2+1)u/2

t2 + b
dt

)
,

where

A =
−1

(a− 1)(b− 1)
, B =

−a
(1− a)(b− a)

, C =
−b

(1− b)(a− b)
.

Denoting f(θ) =
∫∞

0
e−(t2+1)θ

t2+ε
dt, one has

e−(ε−1)θf(θ) =

∫ ∞
0

e−(t2+ε)θ

t2 + ε
dt =

∫ ∞
0

∫ ∞
θ

e−(t2+ε)r dr dt

=

∫ ∞
θ

e−εr
(∫ ∞

0

e−rt
2

dt

)
dr =

∫ ∞
θ

e−εr
1

2

√
π

r
dr =

√
π

ε

∫ ∞
√
θε

e−s
2

ds

=
π√
2ε

erfc
(√

θε
)
,

which leads to ∫ ∞
0

e−(t2+1)u/2

t2 + ε
dt =

π√
2ε
e(ε−1)u/2erfc

(√
εu/2

)
.

Substituting the three integral terms into the special case of Thorin (1973) expression

(3.6), one has

2(c− 1)

c2

−erfc
(√

u/2
)

(a− 1)(b− 1)
+ e(a−1)u/2

−
√
a erfc

(√
au/2

)
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+ e(b−1)u/2
−
√
b erfc

(√
bu/2

)
(1− b)(a− b)


=
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c2

(
−erfc (s0

√
u)
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+ e(a−1)u/2−

√
aerfc (s1

√
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√
b erfc (−s2

√
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1
2

)
+

2(1− c)
(
−
√
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)
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2
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1
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√
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erfc
(
−s2u

1
2

)
e(s

2
2−

1
2)u,

which coincides with our expression (5.2).
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Proof of Remark 3.1.9

When r = 2,the n-fold convolution in expression (3.12) becomes

(1 + αu)∗n =
n∑
i=0

(
n

i

)
αiun+i−1

(n+ i− 1)!
, (5.3)

which needs to be further convolved with eαu. Recall that the convolution of an expo-

nential function and a power function is given by

eαu ∗ uk =

∫ u

0

eα(u−s)sk ds =
k!

αk+1
eαu −

k∑
j=0

k!uj

αk+1−j j!
. (5.4)

Using the linearity of the convolution, one may conclude from identities (5.3) and (5.4)

that

eαu ∗ (1 + αu)∗n =
n∑
i=0

(
n

i

)(
eαu

αn
−
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uj
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)
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2neαu

αn
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n∑
i=0

(
n

i
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uj

αn−j j!

)
,

which leads to the non-ruin probability

φ(u) = e−αuφ(0)
∞∑
n=0

(
λ

c

)n [
2neαu

αn
−

n∑
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(
n

i

)(n+i−1∑
j=0

uj

αn−j j!

)]

= φ(0)
1

1− 2λ
cα

− e−αuφ(0)
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n=0

(
λ
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)n n∑
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(
n

i
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uj

αn−j j!

)
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(

1− 2λ

αc

)
e−αu
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n=0

(
λ

c

)n n∑
i=0

(
n

i

)(n+i−1∑
j=0

uj

αn−j j!

)
.

To deal with the infinite series term

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)(n+i−1∑
j=0

uj

αn−j j!

)

104



Appendix

in the above expression, first take its Laplace transform to obtain the following expression

for s > α,

∞∑
n=0

(
λ

c

)n n∑
i=0

(
n

i

)(n+i−1∑
j=0

αj

αn sj+1
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∞∑
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∞∑
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)n (1 + α/s)n
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)
,

where one detects a sum of two geometric series with general terms 2λ
αc

and λ
cs

(
1 + α

s

)
respectively. Therefore, the term of infinite series can be further expressed as

1
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cs
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m1

s− s1

+
m1

s− s2

)
,

where the last step involves a partial fraction decomposition, with

s1,2 =
λ±
√
λ2 + 4λαc

2c
.

One can invert the Laplace transform back to obtain

∞∑
n=0

(
λ

c

)n n∑
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(
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i

)(n+i−1∑
j=0

uj

αn−j j!

)
=

2λ

αc− 2λ
(δ(u) +m1e

s1u +m2e
s2u) ,

and so the non-ruin probability for r = 2 is

φ(u) = 1−
(

1− 2λ

αc

)
e−αu

2λ

αc− 2λ
(m1e

s1u +m2e
s2u)

= 1− 2λ

αc

(
m1e

(s1−α)u +m2e
(s2−α)u

)
,

where s1,2 are given above, and m1,2 can be calculated from the fraction decomposition

step.
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Proof of Remark 3.1.10

When r = 1, the non-ruin probability expression obtained by the second method can be

written as

φ(u) = e−αuφ(0)
∞∑
k=0

(−1)k

k!
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c
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u2k
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Denote p = λu
c

and q = αu, then

φ(u) = e−αuφ(0)
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After furthermore setting k + i = m, k + j − i = n and k + j = l, then i = l − n,

j − i = l −m and k = m+ n− l, one has

φ(u) = e−αuφ(0)
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Now let us focus on the last summation term in the above expression, denoting by

f(m,n) =
m+n∑

l=min(m,n)
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with boundary values f(0, 0) = f(1, 0) = f(0, 1) = 1. By induction, we have f(m,n) =

1. Thus, the non-ruin probability equals
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as desired.
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Proof of Theorem 3.1.4

We start by proving that the sequence
(
bi(FX), i = 1, 2 . . .

)
defined in (3.20) has the

property that bm is independent of n ≥ m. Since the statement is clear for m = 1, we

proceed by induction. Assume that bk(FX) is independent of n > k for all k 6 m, and

let n > m+ 1. We have:
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Recognizing the binomial coefficients, we carry on the calculation

E

n+1∑
j=1

Xj

m

−
m∑
i=1

(
m

i− 1

)
bi(FX)E

n+1−i∑
j=1

Xj

m+1−i

=
m∑
k=1

(
m

k

)
E
(
Xk
)
·

E
 n∑
j=1

Xj

m−k

−
m+1−k∑
i=1

(
m− k
i− 1

)
bi(FX)E

n−i∑
j=1

Xj

m−k+1−i


=
m∑
k=1

(
m

k

)
E
(
Xk
)
·E

 n∑
j=1

Xj

m−k

−
m−k∑
i=1

(
m− k
i− 1

)
bi(FX)E

n−i∑
j=1

Xj

m−k+1−i

− bm−k+1


=

m∑
k=1

(
m

k

)
E
(
Xk
)

(bm−k+1 − bm−k+1) = 0
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by (3.20). This completes the induction step and, hence, proves that bm is independent

of n ≥ m.

In order to prove the representation (3.19) we start from the cases n = 2 and n = 3,

checking the structure of the formula in those cases and then proceed by induction. For

n = 2 we have

g∗2(x) =

∫ x

0

g(y)g(x− y)dy =

∫ x

0

dy

∫ ∞
y

f(v)dv

∫ ∞
x−y

f(w)dw

=

∫ ∫
v+w>x

(min(v, x)− (x− w)) f(v)f(w) dv dw

=

∫
v>x

f(v)dv

∫ ∞
0

wf(w)dw +

∫ ∫
v6x, v+w>x

(v + w − x)f(v)f(w) dv dw

=P(X > x)E(X) + E [(X1 +X2 − x)1(X1 +X2 > x)]

−
∫ ∫

v>x

(v + w − x)f(v)f(w) dv dw

=P(X > x)E(X) + E [(X1 +X2 − x)1(X1 +X2 > x)]

− E [(X − x)1(X > x)]− P(X > x)E(X)

=E [(X1 +X2 − x)1(X1 +X2 > x)]− E [(X − x)1(X > x)] ,

which coincides with (3.19) for n = 2 with b1(FX) = 1.

For a generic random variable Y with a finite mean consider the function

h1(x) = E ((Y − x)1(Y > x)) , x > 0.

Note the appearance of such functions in the above expression for g∗2. We proceed

with calculating the convolution of this function with g. The notation in the following

calculation assumes that X and Y are defined on the same probability space and are
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independent.

g ∗ h1(x) =

∫ x

0

g(y)E ((Y − (x− y))1(Y > x− y)) dy

=

∫ ∞
0

∫ ∞
0

fX(v) dvfY (w) dw

∫ ∞
0

(w − x+ y)1(x− w 6 y 6 min(x, v)) dy

=
1

2

∫ ∫
v+w>x

(min(w, v + w − x))2 fX(v)fY (w) dv dw

=
1

2
P(X > x)E(Y 2) +

1

2
E
(
(X + Y − x)21(X + Y > x)

)
− 1

2

∫ ∫
v>x

(v + w − x)2fX(v)fY (w) dv dw

=
1

2
E
(
(X + Y − x)21(X + Y > x)

)
− 1

2
E
[
(X − x)21(X > x)

]
− E [(X − x)1(X > x)]E(Y ),

with the last step following by simple algebraic manipulations.

Applying this result, first with Y = X1 + X2 and then with Y = X, we obtain the

following expression for g∗3:

g∗3(x) =g ∗ g∗2(x)

=
1

2
E
[
(X1 +X2 +X3 − x)21(X1 +X2 +X3 > x)

]
− 1

2
E
[
(X − x)21(X > x)

]
− 2E(X)E [(X − x)1(X > x)]− 1

2
E
[
(X1 +X2 − x)21(X1 +X2 > x)

]
+

1

2
E
[
(X − x)21(X > x)

]
+ E(X)E [(X − x)1(X > x)]

=
1

2
E
[
(X1 +X2 +X3 − x)21(X1 +X2 +X3 > x)

]
− 1

2
E
[
(X1 +X2 − x)21(X1 +X2 > x)

]
− E(X)E [(X − x)1(X > x)] .

This coincides with (3.19) for n = 3 with b1(FX) = 1, b2(FX) = EX. Accordingly, we

are led to introduce, for a generic random variable Y , and n ≥ 1, the function

hn(x) = E [(Y − x)n1(Y > x)] , x > 0,

and calculate its convolution with g. Once again, in the following calculation we assume

110



Appendix

that X and Y are defined on the same probability space and are independent.

g ∗ hn(x) =

∫ x

0

g(y)E [(Y − (x− y))n1(Y > (x− y))] dy (5.5)

=
1

n+ 1

∫ ∫
v+w>x

(min(w, v + w − x))n+1fX(v)fY (w) dv dw

=
1

n+ 1
P(X > x)E(Y n+1) +

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
− 1

n+ 1

∫ ∫
v>x

(v + w − x)n+1fX(v)fY (w) dv dw

=
1

n+ 1
P(X > x)E(Y n+1) +

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
− 1

n+ 1

n+1∑
j=0

(
n+ 1

j

)
E(Y n+1−j)E

[
(X − x)j1(X > x)

]
=

1

n+ 1
E
[
(X + Y − x)n+11(X + Y > x)

]
− 1

n+ 1

n+1∑
j=1

(
n+ 1

j

)
E(Y n+1−j)E

[
(X − x)j1(X > x)

]
.

Assume now that the statement (3.19) holds for g∗k with all k ≤ n for some n ≥ 3.

We will establish the validity of this formula for k = n+ 1. We have by (5.5):

g∗(n+1)(x) =
1

(n− 1)!

1

n

{
E

[(
n+1∑
j=1

Xj − x

)n

1

(
n+1∑
j=1

Xj > x

)]

−
n∑
i=1

(
n

i

)
E

( n∑
j=1

Xj

)n−i
E

[
(X − x)i1(X > x)

]
− 1

(n− 1)!

n−1∑
k=1

(
n− 1

n− k − 1

)
bn−k(FX)

1

k + 1

E

(k+1∑
j=1

Xj − x

)k+1

1

(
k+1∑
j=1

Xj > x

)
−

k+1∑
i=1

(
k + 1

i

)
E

( k∑
j=1

Xj

)k+1−i
E

[
(X − x)i1(X > x)

] .
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By further simplification, we get

g∗(n+1)(x) =
1

n!
E

[(
n+1∑
j=1

Xj − x

)n

1

(
n+1∑
j=1

Xj > x

)]

− 1

n!

n∑
k=2

n

k

(
n− 1

n− k

)
bn−k+1(FX)E

( k∑
j=1

Xj − x

)k

1

(
k∑
j=1

Xj > x

)
−

n∑
i=2

E
[
(X − x)i1(X > x)

]  1

n!

(
n

i

)
E

(
n∑
j=1

Xj

)n−i

− 1

(n− 1)!

n−1∑
k=i−1

(
n− 1

n− k − 1

)
bn−k(FX)

1

k + 1

(
k + 1

i

)
E

(
k∑
j=1

Xj

)k+1−i


+ θn(FX)E [(X − x)1(X > x)]

=
1

n!
E

[(
n+1∑
j=1

Xj − x

)n

1

(
n+1∑
j=1

Xj > x

)]

− 1

n!

n∑
k=2

n

k

(
n− 1

n− k

)
bn−k+1(FX)E

( k∑
j=1

Xj − x

)k

1

(
k∑
j=1

Xj > x

)
+ θn(X)E [(X − x)1(X > x)] ,

with the cancellation due to the defining expression (3.20). Here

θn(FX) =− n

n!
E

(
n∑
j=1

Xj

)n−1

+
1

(n− 1)!

n−1∑
k=0

(
n− 1

n− k − 1

)
bn−k(FX)

1

k + 1
E

(
k∑
j=1

Xj

)k

(k + 1)

=− 1

(n− 1)!
b1(FX),

once again by the defining Proposition (3.20). Therefore,

g∗(n+1)(x) =
1

n!
E

[(
n+1∑
j=1

Xj − x

)n

1

(
n+1∑
j=1

Xj > x

)]

− 1

n!

n∑
i=1

(
n

n− i

)
bn+1−i(FX)E

( i∑
j=1

Xj − x

)i

1

(
i∑

j=1

Xj > x

) .
This completes the induction step.
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american puts. Stochastic Processes and their Applications 100 (1), 75–107.

Babenko, Y. I. (1986). Heat and mass transfer. the method of calculation for the heat

and diffusion flows.

Bagley, R. L. and R. Calico (1991). Fractional order state equations for the control of vis-

coelastically damped structures. Journal of Guidance, Control, and Dynamics 14 (2),

304–311.

114



Bibliography

Bagley, R. L. and P. Torvik (1983). A theoretical basis for the application of fractional

calculus to viscoelasticity. Journal of Rheology 27 (3), 201–210.

Baleanu, D., J. A. T. Machado, and A. C. Luo (2011). Fractional dynamics and control.

Springer Science & Business Media.
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Lundberg, F. (1926). Försäkringsteknisk riskutjämning: Teori.

Macci, C. and G. L. Torrisi (2004). Asymptotic results for perturbed risk processes with

delayed claims. Insurance: Mathematics and Economics 34 (2), 307–320.

Magin, R. L. (2004). Fractional calculus in bioengineering, part 1. Critical Reviews in

Biomedical Engineering 32 (1).

123



Bibliography

Magin, R. L. (2010). Fractional calculus models of complex dynamics in biological

tissues. Computers & Mathematics with Applications 59 (5), 1586–1593.

Mainardi, F., R. Gorenflo, and E. Scalas (2004). A fractional generalization of the

Poisson processes. Vietnam Journal of Mathematics 32 (Special Issue), 53–64.

Mainardi, F., R. Gorenflo, and A. Vivoli (2005). Renewal processes of Mittag-Leffler

and Wright type. Fractional Calculus and Applied Analysis 8 (1), 7–38.

Mainardi, F., M. Raberto, R. Gorenflo, and E. Scalas (2000). Fractional calculus and

continuous-time finance ii: the waiting-time distribution. Physica A: Statistical Me-

chanics and its Applications 287 (3), 468–481.
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Valério, D., J. J. Trujillo, M. Rivero, J. T. Machado, and D. Baleanu (2013). Frac-

tional calculus: A survey of useful formulas. The European Physical Journal Special

Topics 222 (8), 1827–1846.

Vinagre, B., I. Podlubny, A. Hernandez, and V. Feliu (2000). Some approximations of

fractional order operators used in control theory and applications. Fractional Calculus

and Applied Analysis 3 (3), 231–248.

128



Bibliography

Wang, X.-T. and Z.-X. Wen (2003). Poisson fractional processes. Chaos, Solitons and

Fractals 18 (1), 169–177.

Waters, H. R. and A. Papatriandafylou (1985). Ruin probabilities allowing for delay in

claims settlement. Insurance: Mathematics and Economics 4 (2), 113–122.

Weyl, H. (1917). Bemerkungen zum Begriff des Differentialquotienten gebrochener Ord-

nung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 62, 296–302.
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