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Abstract: A simple modelling method is proposed to study the orbit-attitude coupled dynamics 11 

of large solar power satellites based on natural coordinate formulation. The generalized 12 

coordinates are composed of Cartesian coordinates of two points and Cartesian components of 13 

two unitary vectors instead of Euler angles and angular velocities, which is the reason for its 14 

simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force 15 

and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to 16 

approximate the gravitational potential energy. The equations of motion are constructed through 17 

constrained Hamilton’s equations. Then, an energy- and constraint-conserving algorithm is 18 

presented to solve the differential-algebraic equations. Finally, the proposed method is applied to 19 

simulate the orbit-attitude coupled dynamics and control of a large solar power satellite 20 

considering gravity gradient torque and solar radiation pressure. This method is also applicable 21 

to dynamic modelling of other rigid multibody aerospace systems. 22 
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1. Introduction 25 

The focus of this paper is to investigate very large solar power satellites (SPSs) that collect solar 26 

                                                 

* Corresponding author, Email address: dweifan@nwpu.edu.cn. 



energy to generate electricity in space and then transmit it to the Earth. Due to the reducing 27 

resources and environmental problems of fossil fuel [1], SPSs have attracted much attention from 28 

scientists [2]. Since the first concept of SPS was proposed [3], many concepts have been put 29 

forward, such as 1979 SPS reference system [1], sail tower SPS [4], tethered SPS [5], integrated 30 

symmetrical concentrator (ISC) [6], and so on. The concept of ISC can avoid the use of slip rings 31 

and long distance power delivery that appear in other concepts [7]. The concept of ISC is that, by 32 

siting the primary reflectors at the ends of a long truss and reflecting solar radiation to the solar 33 

panel, solar power at high intensity is collected, and then the generated electricity is transmitted 34 

to the ground by transmitting antenna. Based on the concept of ISC, Japan Aerospace 35 

Exploration Agency (JAXA) has developed several concepts of SPS, such as 2001 JAXA 36 

reference model [8], 2002 JAXA reference model [8] and formation flying SPS model [9]. 37 

Since an SPS is a very large space system, its dynamics and control are of great importance. 38 

However, there are few investigations into the dynamics and control issues of SPSs [10]. 39 

McNally et al. [11] studied the orbit dynamics of SPSs in geosynchronous Laplace plane (GLP) 40 

orbit and geosynchronous equatorial orbit (GEO), and they found that SPSs located in GLP orbit 41 

required almost no fuel to maintain its orbit and could minimize the risk of debris, compared 42 

with SPSs in GEO. Wie and Roithmayr [12, 13] investigated the effects of perturbations on orbit 43 

and attitude dynamics of Abacus SPS, and they designed orbit and attitude controllers 44 

considering perturbations and system uncertainties using electric propulsion thrusters. Wu et al. 45 

[10] proposed a time-varying robust optimal control strategy and applied it to the attitude control 46 

of Abacus SPS. Liu et al. [14] studied the effects of fourth order gravitational force and torque 47 

on the dynamic response and control accuracy of the sail tower SPS. Fujii et al. [15, 16] 48 

investigated the vibration control algorithm for solar panels of tethered SPS by adjusting the 49 

tension of tethers, and they verified their method through experiments on the ground. Ishimura 50 

and Higuchi [17] studied the coupled dynamics of attitude motion and structural vibration of 51 

tethered SPS, and they found that the coupling phenomenon results from low stiffness of tethers 52 

and thermal deformation of solar panels. Senda and Goto [18] constructed a dynamic model of 53 

tethered SPS and proposed an attitude control method by geomagnetic force. Jin et al. [19, 20] 54 

studied the trajectory planning for SPSs with reflectors to obtain real-time Earth pointing and 55 

Sun pointing by rotating the truss and the reflectors cooperatively. 56 

From the aforementioned review, the Euler angle representation was used to investigate 57 



simple single-rigid-body problems. For complicated rigid multibody systems, such as ISC and 58 

sail tower SPS, natural coordinate formulation (NCF) is an effective method to simplify the 59 

modelling process [21]. NCF uses two Cartesian coordinate points and two Cartesian unitary 60 

vectors as dependent generalized coordinates of a rigid body so that the modelling process is 61 

very easy to understand [22]. Meanwhile, by sharing the Cartesian coordinate points by 62 

contiguous bodies, NCF reduces the number of joint constraints [21, 23]. On the basis of NCF, 63 

zhao et al. [24] established the solar sails model and investigated the dynamic behavior of 64 

deployment. Based on the NCF, Liu et al. [25], constructed the dynamic model for rigid-flexible 65 

satellite system, and they [26] investigated the dynamics and control of a satellite-based robot 66 

with six arms. However, it is necessary to mention that, in the above works on NCF, the effect of 67 

gravity gradient torque was neglected. Gravity gradient torque is one of the main sources of 68 

attitude perturbations for SPSs [12], hence, it is necessary to be taken into account [14]. 69 

The objective of this paper is to develop NCF to take gravitational force as well as gravity 70 

gradient torque into consideration so that this simple modelling method is applicable to orbit-71 

attitude coupled modelling of complicated SPSs. This paper is organized as follows. The orbit-72 

attitude coupled modelling method for a rigid body is proposed in section 2. In section 3, an 73 

energy- and constraint-conserving algorithm for DAEs is presented. A simple example is carried 74 

out to validate the proposed modelling method and proposed numerical method in section 4. 75 

Section 5 presents dynamic modelling and attitude controller design for 2002 JAXA reference 76 

model of SPS. Simulation results are given and discussed in section 6 and conclusions are drawn 77 

in the last section. 78 

2. Orbit-attitude coupled modelling method 79 

This section presents the derivation of NCF to take gravitational force and gravity gradient 80 

torque of a rigid body into account, which begins with some basic concepts of NCF. In NCF, a 81 

rigid body is described in a global inertial coordinate system 𝑂-𝑋𝑌𝑍, as shown in Fig. 1. Pi and 82 

Pj are two fixed points of the rigid body. 𝒆, 𝒖 and 𝒗 are orthogonal unit vectors connected to the 83 

rigid body. 𝒓𝑖 and 𝒓𝑗 are the vectors of global coordinates of Pi and Pj. 𝑙 is the distance between 84 

Pi  and Pj . In order to describe the motion of a rigid body, 𝒓𝑖 , 𝒓𝑗 , 𝒖  and 𝒗  are selected as 85 

generalized coordinates 86 

 𝒒=[𝒓𝑖
T, 𝒓𝑗

T, 𝒖T, 𝒗T ]
T
∈ R12. (1) 87 



These generalized coordinates are dependent since there are only 6 degrees of freedom for a rigid 88 

body. They are subjected to the following constraints [21] 89 

 

{
 
 
 

 
 
 (𝒓𝑗 − 𝒓𝑖)

T
(𝒓𝑗 − 𝒓𝑖) − 𝑙

2 = 0,

𝒖T𝒖 − 1 = 0,

𝒗T𝒗 − 1 = 0,

(𝒓𝑗 − 𝒓𝑖)
T
𝒖 = 0,

(𝒓𝑗 − 𝒓𝑖)
T
𝒗 = 0,

𝒖T𝒗 = 0,

 (2) 90 

which describe in sequence the distance between two points, the lengths of two vectors and the 91 

orthogonality between vectors. The above constraints are abbreviated as 92 

 𝒈(𝒒)=𝟎 ∈ R6. (3) 93 

 94 

Fig. 1 NCF description of a rigid body 95 

 The equations of motion of the rigid body are constructed by constrained Hamilton’s 96 

equations. Generally, there are two steps: firstly to obtain the constrained Hamiltonian function, 97 

and secondly to calculate the derivatives of the constrained Hamiltonian function with respect to 98 

generalized variables. The constrained Hamiltonian function of the rigid body is written as [27] 99 

 𝐻 = 𝑇(𝒒̇)+𝑈(𝒒)+T𝒈(𝒒) =
1

2
𝒒̇T𝑴𝒒̇ + 𝑈(𝒒)+T𝒈(𝒒), (4) 100 

where  𝑇(𝒒̇)  is the kinetic energy, 𝑴  is the mass matrix of the rigid body, 𝑈(𝒒)  is the 101 

gravitational potential energy and  ∈ R6 is the vector of Lagrange multipliers. The mass matrix 102 

is calculated by [21] 103 

 𝑴 =

[
 
 
 
 
 (𝑚 +

𝐼𝑥

𝑙2
−
2𝑚𝑥𝐺

𝑙
) 𝑰3 (

𝑚𝑥𝐺

𝑙
−

𝐼𝑥

𝑙2
) 𝑰3 (𝑚𝑦𝐺 −

𝐼𝑥𝑦

𝑙
) 𝑰3 (𝑚𝑧𝐺 −

𝐼𝑥𝑧

𝑙
) 𝑰3

𝐼𝑥

𝑙2
𝑰3

𝐼𝑥𝑦

𝑙
𝑰3

𝐼𝑥𝑧

𝑙
𝑰3

symmetric 𝐼𝑦𝑰3 𝐼𝑦𝑧𝑰3
𝐼𝑧𝑰3 ]

 
 
 
 
 

, (5) 104 
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where 𝑰3 ∈ R
3×3 is an identity matrix, 𝑚 is the mass of the rigid body, and [𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺  ]

T is the 105 

coordinates of centre of mass in Pi-𝒆𝒖𝒗 coordinate system. 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 are the moments of 106 

inertia with respect to Pi-𝒆𝒖𝒗, 𝐼𝑥𝑦, 𝐼𝑦𝑧 and 𝐼𝑥𝑧 are the products of inertia with respect to Pi-𝒆𝒖𝒗. 107 

𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 are calculated as 108 

 [

𝐼𝑥
𝐼𝑦
𝐼𝑧

] =
1

2
[
−1 1 1
1 −1 1
1 1 −1

] [

𝐼𝑥𝑥
𝐼𝑦𝑦
𝐼𝑧𝑧

]. (6) 109 

The gravitational potential energy in Eq. (4) is calculated as [28] 110 

 𝑈(𝒒) = −𝜇 ∫
𝜌

√𝒓T𝒓
d𝑉

𝑉
= −𝜇 ∫ 𝜌𝑓(𝒓) d𝑉

𝑉
, (7) 111 

where  𝒓 is the Cartesian coordinates of an arbitrary point in the rigid body, 𝑓(𝒓) = 1 √𝒓T𝒓⁄  is a 112 

nonlinear function of 𝒓, 𝜇 = 3.986 × 1014 m3s−2 is the standard gravitational parameter of the 113 

Earth, 𝜌 is the density of the rigid body, and  𝑉 is the volume of the rigid body. However, it is 114 

not easy to obtain 𝑈(𝒒)  analytically. Wang and Xu employed Taylor series expansion to 115 

approximate the gravitational potential energy of a rigid body [28]. According to their results, 116 

both the lowest order of gravity gradient torque and second order of gravitational potential 117 

energy are expressed by the inertia matrix of the rigid body. Therefore, in order to take gravity 118 

gradient torque into account, a second-order Taylor series expansion is adopted to approximate 119 

𝑓(𝒓)  around the centre of mass 𝒓0 , and the approximated gravitational potential energy is 120 

expressed by 121 

𝑈(𝒒) ≈
−𝜇

2(𝒓0T𝒓0)5 2⁄ (𝑑𝑥𝑥
𝐼𝑥

𝑙2
+ 𝑑𝑦𝑦𝐼𝑦 + 𝑑𝑧𝑧𝐼𝑧 + 𝑑𝑥𝑦

𝐼𝑥𝑦

𝑙
+ 𝑑𝑥𝑧

𝐼𝑥𝑧

𝑙
+ 𝑑𝑦𝑧𝐼𝑦𝑧 + 𝑑𝑥𝑚

𝑥𝐺

𝑙
+ 𝑑𝑦𝑚𝑦𝐺 +122 

𝑑𝑧𝑚𝑧𝐺 + 𝑑0𝑚),  (8) 123 

where 124 



 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑥𝑥 = ℎ(𝒓𝑗 − 𝒓𝑖, 𝒓𝑗 − 𝒓𝑖, 𝒓0),

𝑑𝑦𝑦 = ℎ(𝒖, 𝒖, 𝒓0),

𝑑𝑧𝑧 = ℎ(𝒗, 𝒗, 𝒓0),

𝑑𝑥𝑦 = 2ℎ(𝒓𝑗 − 𝒓𝑖, 𝒖, 𝒓0),

𝑑𝑥𝑧 = 2ℎ(𝒓𝑗 − 𝒓𝑖, 𝒗, 𝒓0),

𝑑𝑦𝑧 = 2ℎ(𝒖, 𝒗, 𝒓0),

𝑑𝑥 = 2ℎ(𝒓𝑗 − 𝒓𝑖, 𝒓𝑖, 𝒓0) − 3ℎ(𝒓𝑗 − 𝒓𝑖, 𝒓0, 𝒓0),

𝑑𝑦 = 2ℎ(𝒖, 𝒓𝑖, 𝒓0) − 3ℎ(𝒖, 𝒓0, 𝒓0),

𝑑𝑧 = 2ℎ(𝒗, 𝒓𝑖, 𝒓0) − 3ℎ(𝒗, 𝒓0, 𝒓0),

𝑑0 = ℎ(𝒓𝑖, 𝒓𝑖, 𝒓0) − 3ℎ(𝒓𝑖, 𝒓0, 𝒓0) + 3ℎ(𝒓0, 𝒓0, 𝒓0),

 (9) 125 

and  ℎ(∙,∙,∙) is a scalar function defined as 126 

 ℎ(𝜶, 𝜷, 𝝌) = 3(𝜶T𝝌)𝜷T𝝌 − (𝜶T𝜷)𝝌T𝝌. (10) 127 

Now that the constrained Hamiltonian function is obtained, the second step is to calculate the 128 

derivatives of it. By introducing the generalized momenta vector [27] 129 

 𝒑 =
𝜕𝑇(𝒒̇)

𝜕𝒒̇
= 𝑴𝒒̇, (11) 130 

Eq. (4) can be re-written as 131 

 𝐻 =
1

2
𝒑T𝑴−1𝒑 + 𝑈(𝒒)+T𝒈(𝒒). (12) 132 

Both the generalized coordinates and generalized momenta are generalized variables of the 133 

equations of motion. By calculating the derivatives of Eq. (12) [27], the equations of motion are 134 

obtained: 135 

 

{
 
 

 
 𝒒̇ =

𝜕𝐻

𝜕𝒑
= 𝑴−1𝒑,

𝒑̇ = −
𝜕𝐻

𝜕𝒒
= −𝒈𝒒

T(𝒒)+ 𝒇g,

𝒈(𝒒) = 𝟎,

 (13) 136 

where 𝒈𝒒(𝒒) ∈ R
6×12  is the Jacobian matrix of 𝒈(𝒒) , 𝒇g = −𝜕𝑈(𝒒) 𝜕𝒒⁄  is the vector of 137 

generalized gravitational force. If the term 𝒇g is ignored, the proposed method is reduced to NCF 138 

method. 139 

It can be seen from Eq. (1) that the generalized coordinates of the proposed method consist of 140 

Cartesian coordinates of two points and the Cartesian components of two unit vectors, therefore 141 

it is easy to understand. The mass matrix (Eq. (5)) is a constant matrix, and the equations of 142 

motion (Eqs. (13)) are very simple. Furthermore, the proposed method avoids the singularity and 143 

additional body-fixed reference frame, compared with the most widely used Euler angle method. 144 



3. Energy- and constraint-conserving algorithm 145 

This section introduces a new method to solve the equations of motion numerically. The 146 

equations of motion obtained by NCF are differential-algebraic equations (DAEs). Eqs. (13) can 147 

be re-written as a more compact form 148 

 {
𝒙̇ = 𝒇(𝑡, 𝒙,),

𝒈(𝒙) = 𝟎,
 (14) 149 

where  𝒙 = [𝒒T, 𝒑T]T ∈ R24 is the vector of state variables, and 150 

 𝒇(𝑡, 𝒙, ) = [
𝑴−1𝒑

−𝒈𝒒
T(𝒒)+ 𝒇g

]. (15) 151 

One of the most important problems in solving DAEs is constraint violation, which means 152 

that the constraint equations are not satisfied strictly [29, 30]. There are many methods to deal 153 

with constraint violation, such as generalized α method [31], projection method [32] and energy- 154 

and constraint-conserving algorithm [33]. The energy- and constraint-conserving algorithm, 155 

which not only preserves the total energy and constraints of the constrained Hamiltonian systems 156 

but also has the characteristics of high accuracy and long-term stability, is suitable for long-time 157 

simulation of SPS. Based on the idea of literature [33], a new energy- and constraint-conserving 158 

algorithm is developed using Runge-Kutta method. 159 

In order to solve Eqs. (14), the Runge-Kutta algorithm [34] is developed to discretize Eqs. (14) 160 

into the following nonlinear equations: 161 

 {

𝒙𝑛+1 = 𝒙𝑛 + 𝜏∑ 𝑏𝑖𝒌𝑖
𝑠
𝑖=1 ,

𝒌𝑖 = 𝒇(𝑡𝑛 + 𝑐𝑖𝜏, 𝒙𝑛 + 𝜏∑ 𝑎𝑖𝑗𝒌𝑗
𝑠
𝑗=1 , 𝑛), 𝑖 = 1,2,⋯ , 𝑠,

𝒈(𝒙𝑛+1) = 𝟎,

 (16) 162 

where 𝜏  is the time step size, 𝒃 = [𝑏1, 𝑏2, ⋯ , 𝑏𝑠]
T ∈ R𝑠 , 𝑨 = [𝑎𝑖𝑗]𝑠×𝑠 ∈ R

𝑠×𝑠 , and 𝑐𝑖 =163 

∑ 𝑎𝑖𝑗,
𝑠
𝑗=1 𝑖 = 1,2,⋯ , 𝑠 are the coefficients of Runge-Kutta method. In Eqs. (16), the unknowns 164 

are 𝒙𝑛+1, 𝒌𝑖, 𝑖 = 1,2,⋯ , 𝑠, and 𝑛. The number of unknowns is equal to the number of equations 165 

so that Eqs. (16) can be solved by Newton-Raphson iteration. To improve the efficiency of the 166 

algorithm, one can substitute 𝒙𝑛+1  into the constraint equations, and then Eqs. (16) can be 167 

divided into a linear part 168 

 𝒙𝑛+1 = 𝒙𝑛 + 𝜏∑ 𝑏𝑖𝒌𝑖
𝑠
𝑖=1  (17) 169 

and a nonlinear part 170 



 {
𝒌𝑖 = 𝒇(𝑡𝑛 + 𝑐𝑖𝜏, 𝒙𝑛 + 𝜏∑ 𝑎𝑖𝑗𝒌𝑗

𝑠
𝑗=1 , 𝑛), 𝑖 = 1,2,⋯ , 𝑠,

𝒈(𝒙𝑛 + 𝜏∑ 𝑏𝑖𝒌𝑖
𝑠
𝑖=1 ) = 𝟎.

 (18) 171 

Consequently, the nonlinear equations (18) instead of (16) need to be solved at every step so that 172 

the efficiency is improved. A 2-stage, 4th order symplectic Runge-Kutta algorithm is adopted in 173 

this paper, and the coefficients are given as follows [34]: 174 

 𝑨 = [

1

4

1

4
−
√3

6

1

4
+
√3

6

1

4

] , 𝒃 = [
1

2
,
1

2
]. (19) 175 

Consequently, there are three steps to solve Eqs. (14): 176 

Step 1: the initial values of Eqs. (18) are 𝒌1 = 𝒌2 = 𝟎, 𝑛 = 𝟎; 177 

Step 2: solve Eqs. (18) by Newton-Raphson iteration to obtain 𝒌1, 𝒌2, and 𝑛; 178 

Step 3: 𝒙𝑛+1 = 𝒙𝑛 +
𝜏

2
𝒌1 +

𝜏

2
𝒌2, 𝑛 = 𝑛 + 1, go to Step 1. 179 

4. Validation of the proposed modelling and numerical method 180 

In order to validate the modelling method and the numerical method developed by the authors, 181 

the dynamic response of a rigid body (a disc) in space as a simple example is analysed, as shown 182 

in Fig. 2. In this example, the proposed modelling method and proposed numerical method are 183 

compared with the well-developed Euler angle method and Runge-Kutta method. The radius and 184 

thickness of the disc are all taken as 1 m. The orbital radius of the disc is 𝑟0 = 42,164 km and 185 

the initial angular velocity of orbital motion is 𝜔0 = √𝜇 (𝑟03)⁄ . The initial angular velocity of 186 

the disc is 𝜔0 × [0,1,1.1]
T. 187 

Four cases are discussed as shown in Table 1. In Case 1, the gravity gradient torque is 188 

calculated on the base of Euler angle method (Chapter 3 of [35]), and the Runge-Kutta method 189 

[36] is used to solve the ordinary differential equations. The results of Case 1 are considered 190 

accurate results and the other cases are compared against Case 1, because the methods of Case 1 191 

are the most widely used modelling method and numerical method. In Case 2, the simulation is 192 

carried out based on the proposed modelling method and proposed numerical algorithm. In Case 193 

3, the gravity gradient torque is neglected, so the proposed modelling method is reduced to NCF 194 

method. In Case 4, the proposed modelling method is adopted, however, the equations are solved 195 

by the generalized α method [31]. Simulation results are depicted in Fig. 3 - Fig. 5. The error, 196 

relative energy error and constraint error are defined as 197 



 {

𝐸𝑟𝑟𝑜𝑟=𝒗Case 𝑘(𝑧) − 𝒗Case 1(𝑧), 𝑘 = 2,3,4,

𝐸error =
𝐸−𝐸0

𝐸0
,

𝐶error = 𝒖T𝒗,

 (20) 198 

where  𝐸 is the total system energy of the disc, and 𝐸0 is the initial value of 𝐸. 199 

 200 

Fig. 2 A disc in space 201 

Table 1. Four cases of simulation of a disc in space 202 

 
Gravity gradient 

torque 

Modelling 

method 
Numerical method 

Case 1 Yes Euler angles Classical Runge-Kutta method 

Case 2 Yes NCF Energy- and constraint-conserving algorithm 

Case 3 No NCF Energy- and constraint-conserving algorithm 

Case 4 Yes NCF Generalized α method 

Fig. 3 shows the errors of Z component of vector 𝒗 compared with Case 1. From the results, 203 

one can easily find that the differences between Case 1 and Case 2 are very small, which 204 

indicates that the proposed modelling method is validated, and the gravity gradient torque of a 205 

space rigid body has been taken into account accurately. It also verifies that the proposed 206 

numerical method for DAEs produces accurate results in the simulation. From the errors of Case 207 

3, it is found that the gravity gradient torque has a significant effect on the attitude dynamics of 208 

spacecraft and needs to be taken into account. The increasing errors of Case 4 indicate that 209 

generalized α method is not suitable for long-time simulation. 210 
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 211 

Fig. 3 Errors of Z component of vector 𝒗 compared with Case 1 212 

Fig. 4 gives the relative errors of total system energy of Case 2 and Case 4. From the results, 213 

it is clearly found that the relative error of total system energy of the proposed numerical method 214 

is around 10−13 while the error of the generalized α method is above 10−3. Fig. 5 shows the 215 

error of constraint of Case 2, and it can be seen that the constraint is well satisfied. The 216 

conservation of total system energy using the proposed numerical method is due to the 217 

cofficients of Runge-Kutta method in Eqs. (19). The constraint is preserved precisely because the 218 

second equation in Eqs. (18) is well satisfied when solving Eqs. (18) by Newton-Raphson 219 

iteration method. 220 

It can be concluded that the proposed modelling method and numerical method are validated. 221 

The following simulations of the SPS are carried out based on the proposed modelling method 222 

and numerical algorithm. 223 

 224 

Fig. 4 Relative errors of total system energy of Case 2 and Case 4 225 
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 226 

Fig. 5 Error of constraint of Case 2 227 

5. Application on an SPS 228 

Section 2 presents the modelling process of a single space rigid body. This section focuses on 229 

the dynamics and control of a rigid multibody aerospace system (an SPS). Firstly, a simplified 230 

three-rigid-body model is established based on the proposed modelling method. It will be shown 231 

that for rigid multibody aerospace system, the modelling process is also very simple and easy to 232 

understand. Then, an attitude controller is designed so that the transmitter can track the Earth and 233 

the primary reflectors can track the Sun synchronously. Finally, the effect of solar radiation 234 

pressure (SRP) is introduced, which is one of the most important attitude perturbations of SPSs. 235 

5.1. Orbit-attitude coupled modelling 236 

This sub-section presents the modelling process of a rigid multibody aerospace system, and 237 

the focus is given to 2002 JAXA reference model of SPS [8]. The difference between rigid 238 

multibody system and single rigid body is that there are additional constraints among rigid 239 

bodies in the rigid multibody system. Therefore, an important problem of modelling process of a 240 

rigid multibody aerospace system is how to deal with the additional constraints according to its 241 

characteristics. In the following paragraphs, the characteristics of 2002 JAXA reference model of 242 

SPS is given, and the modelling process is presented accordingly. 243 

2002 JAXA reference model of SPS has two elliptic primary reflectors, two refracting lens, a 244 

truss and a transmitter, as illustrated in Fig. 6 and Fig. 7. The lens and the transmitter are fixed to 245 

the truss, and the primary reflectors can rotate around the truss to track the incident sunlight. The 246 

geometric and mass parameters are summarized in Table 2. Gij, Gt, Gr1, and Gr2 are the centers 247 

of mass of the truss, the transmitter, refracting lens 1 and 2, respectively. The primary reflectors 248 

are considered to have a 45-degree and a 135-degree inclinations (to the truss axis) to reflect 249 

solar radiation to the refracting lens. 250 
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A global coordinate system O-XYZ is established as shown in Fig. 8. The origin is located at 251 

the center of the Earth. The OZ axis is along the rotational axis of the Earth and the OX axis 252 

points to the spring equinox at J2000. The OY axis can be determined by the right-hand rule. 253 

 254 

Fig. 6 2002 JAXA reference model of SPS 255 

 256 

Fig. 7 Simplified three-rigid-body model of 2002 JAXA reference model of SPS (body 1: 257 

reflector 1; body 2: reflector 2; body 3: the truss with lens and transmitter) 258 

 259 

Fig. 8 Coordinate definition of motion (other components are not shown in the figure for 260 

simplicity) 261 

Table 2. Geometric and mass parameters of 2002 JAXA reference model of SPS [8] 262 

Sunlight radiation
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Component Length (m) Diameter (m) Weight (kg) 

Truss 6,000 100 m (Assumed) 200,000 

Primary 

reflectors 
100 (Assumed) 

3,500 × 2,500 (Long and short 

axes) 
1,000,000 

Refracting lens 50 (Assumed) 2,000 400,000 

Transmitter 50 (Assumed) 2,000 7,000,000 

The three-rigid-body model has 8 degrees of freedom: three translations, three rotations of the 263 

whole structure as one rigid object, and one relative rotational degree of freedom of each primary 264 

reflector. In Fig. 7, Pi3 and Pj3 are coincide with Pi1 and Pi2, respectively. 𝒆1 and 𝒆2 are collinear 265 

with 𝒆3. 𝒖1 and 𝒖2 coincide with minor axes of primary reflectors. 𝒖3  is the direction of the 266 

microwave beaming. Other vectors can be decided by the right-hand rule. In Fig. 7 and Fig. 8, 267 

G-𝒆𝒖𝒗 is a local coordinate system, where G represents the center of mass of the whole SPS, 𝒆, 268 

𝒖 and  𝒗 axes are parallel to 𝒆3, 𝒖3 and 𝒗3 axes respectively. The coordinates of each rigid body 269 

is defined as 270 

  𝒒𝑘=[𝒓𝑖𝑘
T, 𝒓𝑗𝑘

T, 𝒖𝑘
T, 𝒗𝑘

T ]
T
, 𝑘 = 1,2,3. (21) 271 

Apparently, there are 6 internal constraints for each rigid body (see Eqs. (2)). Apart from 272 

these constraints, there are 6 linear constraints and 4 nonlinear constraints among three bodies, 273 

described by the following equations: 274 

 

{
  
 

  
 

𝒓𝑖1 − 𝒓𝑖3 = 𝟎,
𝒓𝑖2 − 𝒓𝑗3 = 𝟎,

(𝒓𝑖1 − 𝒓𝑖2)
T𝒖1 = 0,

(𝒓𝑖1 − 𝒓𝑖2)
T𝒗1 = 0,

(𝒓𝑖1 − 𝒓𝑖2)
T𝒖2 = 0,

(𝒓𝑖1 − 𝒓𝑖2)
T𝒗2 = 0,

 (22) 275 

which restrict the relative translation and rotation among three bodies. In practice, the linear 276 

constraints can be eliminated to improve simulation efficiency. Eventually, 𝒓𝑖3 and 𝒓𝑗3 can be 277 

replaced by 𝒓𝑖1  and 𝒓𝑖2  respectively, and the generalized coordinates of the three-rigid-body 278 

model are chosen as 279 

 𝒒=[𝒓𝑖1
T, 𝒓𝑗1

T, 𝒖1
T, 𝒗1

T, 𝒓𝑖2
T, 𝒓𝑗2

T, 𝒖2
T, 𝒗2

T, 𝒖3
T, 𝒗3

T ]
T
∈ R30. (23) 280 

Then, the nonlinear constraints of Eqs. (22) and the internal constraints of each rigid body are 281 

denoted concisely as 282 



 𝒈(𝒒)=𝟎 ∈ R22. (24) 283 

It is seen that the linear constraints can be eliminated to reduce the number of generalized 284 

coordinates and improve simulation efficiency. Alternatively, one may prefer not to eliminate the 285 

linear constraints to further simplify the modelling process, despite of simulation efficiency. 286 

The equations of motion of the three-rigid-body model are also derived by constrained 287 

Hamilton’s equation. Both the kinetic energy and the gravitational potential energy of the system 288 

can be calculated by summing those of each rigid body. Therefore, the constrained Hamiltonian 289 

function of the three-rigid-body model can be written as [27] 290 

 𝐻 = 𝑇(𝒒̇)+𝑈(𝒒)+T𝒈(𝒒) = ∑ 𝑇𝑘(𝒒̇𝑘)
3
𝑘=1 +∑ 𝑈𝑘(𝒒𝑘)

3
𝑘=1 +T𝒈(𝒒), (25) 291 

where  ∈ R22 is the vector of Lagrange multipliers, 𝑇(𝒒̇) is the kinetic energy of the system and 292 

 𝑈(𝒒) is the gravitational potential energy of the system. The expression of 𝑈𝑘(𝒒𝑘) is shown in 293 

Eq. (8), and the mass matrix of each rigid body is given in Eq. (5). By replacing 𝒓𝑖3 and 𝒓𝑗3 with 294 

𝒓𝑖1 and 𝒓𝑖2, the kinetic energy of the system can be written as 295 

 𝑇(𝒒̇) =
1

2
𝒒̇T𝑴𝒒̇, (26) 296 

where  𝑴 ∈ R30×30  is the constant mass matrix of the system. By using the constrained 297 

Hamilton’s equations [27], the equations of motion are obtained: 298 

 {

𝒒̇ = 𝑴−1𝒑,

𝒑̇ = −𝒈𝒒
T(𝒒)+ 𝒇g + 𝒇d + 𝒇c,

𝒈(𝒒) = 𝟎,

 (27) 299 

where 𝒈𝒒(𝒒) ∈ R
22×30  is the Jacobian matrix of 𝒈(𝒒), 𝒇g = −𝜕𝑈(𝒒) 𝜕𝒒⁄ , 𝒇d  and 𝒇c  are the 300 

vectors of generalized gravitational force, disturbing force, and control force respectively. 𝒇d and 301 

𝒇c are obtained by the principle of virtual work. The mass matrix and the vector of generalized 302 

external force of the three-rigid-body model can be assembled from those of each rigid body. 303 

5.2. Attitude controller design 304 

The SPS needs to track the Earth and the Sun synchronously while it travels on GEO. In this 305 

sub-section, a proportional-derivative (PD) controller is designed for Earth-tracking and Sun-306 

tracking control of the SPS. In order to describe the attitude of the SPS, a 3-1-2 sequence of 307 

Euler angle representation of  G-𝒆𝒖𝒗 (denoted by  for 𝒗 axis, 𝜑 for 𝒆 axis, and 𝜃 for 𝒖 axis) is 308 

adopted. The initial orientations of  𝒆, 𝒖, and 𝒗 are parallel to OX, OY, and OZ axes respectively. 309 



In this paper, NCF is used to model the SPS, and Euler angle representation is adopted to 310 

design an attitude controller for the SPS. The relationship between NCF and Euler angles can be 311 

found through the mathematical expression of attitude matrix. The attitude matrix of Euler angle 312 

method is given by (Chapter 2 of [35]) 313 

 𝑨 = [

coscos𝜃 − sinsin𝜑sin𝜃 sincos𝜃 + cossin𝜑sin𝜃 −cos𝜑sin𝜃
−sincos𝜑 coscos𝜑 sin𝜑

cossin𝜃 + sinsin𝜑cos𝜃 sinsin𝜃 − cossin𝜑cos𝜃 cos𝜑cos𝜃
]. (28) 314 

On the other hand, attitude matrix can also be written as [23] 315 

 𝑨m = [𝒆3, 𝒖3, 𝒗3]
T. (29) 316 

By comparing Eq. (28) with Eq. (29), the Euler angles can be expressed by 𝒆3, 𝒖3, and 𝒗3. 317 

The primary reflectors need to track the Sun to collect solar power in space, meanwhile the 318 

transmitter needs to track the Earth to transmit power to the ground, as demonstrated in Fig. 9. 319 

The objective of the attitude control can be represented by the geometric relationship as 320 

 {
𝒆3 = [0,0,1]T,
𝒖3 = 𝒖Earth,

𝒖1
T𝒖Sun = 𝒖1

T𝒖Sun = 0,

 (30) 321 

where 𝒖Earth is a unit vector from point G to point O and 𝒖Sun is a unit vector from point G to 322 

the Sun. Because the SPS travels on GEO, 𝒖Earth and 𝒖Sun can be simply expressed by 323 

 {
𝒖Earth = [−sin(𝜔Earth𝑡), cos(𝜔Earth𝑡), 0]

T,

𝒖Sun = [−sin(𝜔Sun𝑡), cos(𝛾)cos(𝜔Sun𝑡), sin(𝛾)cos(𝜔Sun𝑡)]
T,

 (31) 324 

where 𝜔Earth = 2𝜋 (23 × 3600 + 56 × 60 + 4)⁄  is the angular velocity of the Earth, 𝜔Sun =325 

𝜔Earth 365.25⁄ , 𝛾 = 23°26′ is obliquity of the ecliptic. By solving Eqs. (30) and Eqs. (22), the 326 

planed value of 𝒆3, 𝒖3, and 𝒗3 are obtained, and then the planed Euler angles can be obtained by 327 

comparing Eq. (28) with Eq. (29). 328 



 329 

Fig. 9 Simple demonstration of Earth-tracking and Sun-tracking attitude 330 

Fig. 10 shows the results of planed Euler angles of the SPS. From the results, one can easily 331 

find that 
Planned

 increase linearly with time, 𝜑Planned remains zero and 𝜃Planned remains 𝜋 2⁄ . 332 

The angular errors of , 𝜑  and 𝜃  are denoted as 𝑒 , 𝑒𝜑  and 𝑒𝜃 , respectively. Synchronously, 333 

bodies 1 and 2 can rotate around the truss so that 𝒗1 and 𝒗2 can point to 𝒖Sun direction. The 334 

error of attitude angle of body 1 (denoted by 𝑒1 ) is defined in Fig. 11, where 𝒖′Sun  is the 335 

projection of 𝒖Sun to Pi1-𝒖1𝒗1 plane. 𝑒2 is defined similarly. 336 

 337 

Fig. 10 Results of trajectory planning for body 3 338 

 339 

Fig. 11 Definition of attitude angle error of body 1 340 
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In order to track the Earth and the Sun synchronously, a simple PD controller [37] is designed 341 

as shown in Fig. 12. This PD controller is applied identically to 𝑒, 𝑒𝜑, 𝑒𝜃, 𝑒1 and 𝑒2, therefore 342 

the subscripts are neglected for simplicity. Therefore, the output control moment of the PD 343 

controller is 344 

 𝑀′ = 𝐾p𝑒 + 𝐾d𝑒̇, (32) 345 

where 𝐾p and 𝐾d are proportional and derivative gains respectively. 346 

 347 

Fig. 12 Structure of attitude controller 348 

In engineering applications, the output of an actuator is always limited to a specific maximum 349 

value. This phenomenon is termed actuator saturation. Under this practical consideration, a 350 

saturation function is employed to simulate the actuator saturation: 351 

 𝑀 = {

−𝑀max, 𝑀′ < −𝑀max,

𝑀′, −𝑀max < 𝑀′ < 𝑀max

𝑀max, 𝑀max < 𝑀′,

, (33) 352 

where 𝑀max  is the upper bound of actuator output. The upper bound should be determined 353 

through simulations so that it is known how big moments the actuators need to provide to track 354 

the planned attitude. At the same time, it should not be so large that the abilities of actuators are 355 

underutilized. 356 

5.3. Solar radiation pressure (SRP) 357 

Gravity gradient torque, SRP and the reactive force of microwave beaming are considered as 358 

three main sources of disturbing torques for SPS [12]. The gravity gradient torque has been taken 359 

into account by using the proposed formulation of gravitational potential energy. In addition, the 360 

direction of microwave beaming, which is 𝒖3 direction, passes through the centre of mass of the 361 

SPS. Consequently, the torque generated by reactive force of microwave beaming can be 362 

neglected. Thus, the main perturbation of attitude motion of the SPS is SRP. 363 

The SRP force of a flat surface can be expressed as [12] 364 

 𝑭s = 𝑃s𝐴(𝒏 ∙ 𝒖Sun) {(𝜌a + 𝜌d)𝒖Sun + [2𝜌s(𝒏 ∙ 𝒖Sun) −
2

3
𝜌d] 𝒏}, (34) 365 
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where 𝑃s = 4.5 × 106 𝑁 ∙ 𝑚−2  is the SRP constant, 𝐴 is the area of the flat surface, 𝒏 is the 366 

normal vector of the surface and points into the surface, 𝜌s , 𝜌d , and 𝜌a  are coefficients of 367 

specular reflection, diffuse reflection, and absorption. The primary reflectors are assumed to be 368 

ideal mirrors with 𝜌s = 1, 𝜌d = 𝜌a = 0. For other components, the coefficients are considered to 369 

be 𝜌s = 𝜌d = 0, 𝜌a = 1. For the primary reflector 1, 𝒏 = √2 (𝒆1 − 𝒗1) 2⁄ . According to Eq. (34) 370 

and the parameters in Table 2, the SRP force of primary reflector 1 is 371 

 𝑭s,reflector1 = 2𝑃s𝐴(𝒏 ∙ 𝒖Sun)
2𝒏 ≈ 𝟔𝟏. 𝟖(𝒏 ∙ 𝒖Sun)

2𝒏. (35) 372 

According to Eqs. (31) and the planed attitude of the SPS, the maximum value of the SRP force 373 

of a primary is 53.5 N. The SRP force would produce a large torque (104~ 105N ∙ m) on the SPS 374 

because the distance between the centre of pressure and the centre of mass of the system would 375 

reach the magnitude of kilometer. 376 

6. Simulation results 377 

The effects of gravity gradient torque and SRP on the orbit-attitude coupled dynamics of the 378 

SPS are presented in this section. The initial position and orientation of 2002 JAXA reference 379 

model of SPS in all cases are shown in Fig. 8. The system travels on GEO initially, and the initial 380 

angular velocities in Z direction are all 𝜔Earth for three bodies. SRP forces of all components are 381 

calculated by Eq. (34). To include 20% of uncertain offset between centers of mass and centers 382 

of pressure, the local coordinates of centers of pressure of primary reflectors 1 and 2 are assumed 383 

to be [250,100,200]T  and [230,−150,190]T  in Pi1-𝒆1𝒖1𝒗1  and Pi2-𝒆2𝒖2𝒗2  respectively. The 384 

centers of pressure of other components are assumed to coincide with their centers of mass. 385 

Five cases are summarized in Table 3. The proposed method is used to establish the dynamic 386 

model of the SPS in Case 5 - Case 8, while the SPS is treated as a particle in Case 9. In Case 9, 387 

the attitude of the SPS is considered to be well-controlled. 388 

Table 3. Five cases of simulation 389 

 Modelling method SRP Attitude controller 

Case 5 Proposed method No No 

Case 6 Proposed method No Yes 

Case 7 Proposed method Yes No 

Case 8 Proposed method Yes Yes 



Case 9 Particle Yes - 

6.1. Effects of gravity gradient torque 390 

The effects of gravity gradient torque are studied by comparing Case 5 and Case 6. The 391 

relative errors of energy and the constraint error of Case 5 are illustrated in Fig. 13 and Fig. 14 to 392 

validate the simulation. They are defined as 393 

 {
𝐸SPS,error =

𝐸−𝐸0

𝐸0
,

𝐶SPS,error = 𝒖3
T𝒗3,

 (36) 394 

where  𝐸 is the total energy of the system, and 𝐸0 is the initial value of  𝐸. It can be seen from 395 

Fig. 13 that the total relative errors of energy of Case 5 remains below 10−8. It means that when 396 

SRP and control force are not considered, the total energy of the system remains a constant. Fig. 397 

14 indicates that the constraints of the system are well preserved in long-time simulation. 398 

 399 

Fig. 13 Relative errors of energy of the three-rigid-body model (Case 5) 400 

 401 

Fig. 14 Constraint errors of the three-rigid-body model (Case 5) 402 

 The errors of 𝜑, the errors of primary reflector 1 and the control moments of primary reflector 403 

1 are shown in Fig. 15, Fig. 16 and Fig. 17, respectively. It can be seen that when the attitude of 404 

the SPS is not controlled (Case 5), the Earth-pointing error remains zero in the first three days 405 

but increase greatly during the fourth day. The Sun-pointing error rises from the beginning of the 406 

simulation and reaches around 0.2 rad at the end. For Case 6, the Earth-pointing and Sun-407 
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pointing errors remain almost zero during the simulation. The control moment of primary 408 

reflector 1 oscillates periodically. The period of the control moment is about 12 hours, and the 409 

magnitude is about 56 N ∙ m. 410 

 This simulation suggests that the initial attitude of the SPS is equilibrium due to its symmetry. 411 

However, the equilibrium is unstable under the disturbance of gravity gradient torque. Therefore 412 

attitude controller is significant to maintain the Earth-pointing stability and accuracy. On the 413 

other hand, periodic control moments on primary reflectors are required to counteract the effect 414 

of gravity gradient torque. 415 

 416 

Fig. 15 Errors of 𝜑 (Earth-pointing errors) 417 

 418 

Fig. 16 Errors of primary reflector 1 (Sun-pointing errors) 419 

 420 

Fig. 17 Control moments of primary reflector 1 (Sun-pointing control moments) 421 

6.2. Effects of SRP 422 

This sub-section studies the effects of SRP on the orbital motion and attitude motion of the 423 

SPS. The orbital motion of the SPS can be represented by the orbital motion of its centre of mass 424 

0 1 2 3 4







  Case 5  Case 6 

e 
 /

ra
d

Time/Day

0 1 2 3 4






  Case 5  Case 6 

e 
/r

ad

Time/Day

0 1 2 3 4







   Case 5  Case 6 

M

/(

N
m

)

Time/Day



(Point G in Fig. 7). Based on the theory of two-body problem (Chapter 2 of [38]), the 425 

eccentricity of Point G can be expressed by the position vector and velocity vector of Point G. 426 

Fig. 18 shows the orbital eccentricity of the SPS in one-year simulation. It can be found that 427 

the orbital eccentricity of Case 5 remains zero during the simulation, because SRP is not 428 

considered in Case 5. In Case 7- Case 9, the eccentricity of the SPS increases in the first half 429 

year and then decreases to about zero at the end of the year. The results of Case 8 and Case 9 are 430 

slightly different. The reason is that the attitude errors of Case 9 are considered to be zero while 431 

in Case 8 the attitude errors actually vibrate in a small range (see Fig. 19). The magnitude of 432 

eccentricity of Case 7 is lower than that of Case 8, because the attitude of Case 7 is not 433 

controlled and consequently cannot capture as much solar radiation as Case 8. The good 434 

agreement between Case 8 and Case 9 indicates that NCF method can predict the orbit of rigid 435 

multibody systems properly. It can also be concluded that the attitude of the SPS has 436 

considerable influence on its orbit when SRP is taken into account. 437 

 438 

Fig. 18 Orbital eccentricity of the SPS 439 

By comparing the control results of Case 6 and Case 8 in Fig. 19 and Fig. 20, we can find that 440 

SRP has a great influence on Earth-pointing control of 2002 JAXA reference model of SPS. SRP 441 

produces periodic Earth-pointing errors and necessitates large periodic control moments to 442 

counteract the disturbance of SRP. Although the control errors of Case 8 are below 10−3 rad 443 

(less than 0.1 degree), they are highly dependent on the gains of the controller. In other words, if 444 

the gains of PD controller were not chosen appropriately, the errors would rise. Therefore, the 445 

Earth-pointing controller should be further investigated to enhance Earth-pointing accuracy and 446 

reliability. 447 
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 448 

Fig. 19 Errors of , 𝜑 and 𝜃 (Earth-pointing errors) 449 

 450 

Fig. 20 Control moments of body 3 (Earth-pointing control moments) 451 

 The Sun-pointing control errors and control moments are presented in Fig. 21 and Fig. 22. It 452 

can be found that the control errors of primary reflectors in Case 8 increase significantly at the 453 

beginning of the simulation and then remain steady with a small fluctuation. The control errors in 454 

Case 6 keep fluctuating in a small value during the simulation. The control moments experience 455 

similar variations. The magnitude of control moment is determined by the magnitude of SRP 456 

torque, which can be further attributed to the offset between centre of mass and centre of 457 

pressure. It can be concluded that SRP generates a steady Sun-pointing error by exerting steady 458 

torques on primary reflectors. The torques is steady because the primary reflectors steadily point 459 

to the sun, and thus the SRP force and the offset between the centre of pressure and the centre of 460 

mass of the primary reflectors remain steady. 461 

 462 

Fig. 21 Errors of primary reflector 1 and primary reflector 2 (Sun-pointing errors) 463 
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 464 

Fig. 22 Control moments of primary reflector 1 and primary reflector 2 (Sun-pointing control 465 

moments) 466 

7. Conclusion 467 

A simple method is proposed for orbit-attitude coupled modelling of large solar power 468 

satellite (SPS) based on natural coordinate formulation (NCF). An energy- and constraint-469 

conserving algorithm is then presented to solve the differential-algebraic equations. Then, a 470 

simple example is carried out to show the validity of the proposed method. Finally, based on the 471 

proposed modelling method and numerical method, the orbit-attitude coupled model of 2002 472 

JAXA reference model of SPS is constructed. According to simulation results, the Earth-pointing 473 

attitude of the SPS is an unstable equilibrium state under the disturbance of gravity gradient 474 

torque. Besides, periodic control moments on primary reflectors are required to counteract the 475 

effect of gravity gradient torque. On the other hand, solar radiation pressure (SRP) produces 476 

periodic Earth-pointing control errors and steady Sun-pointing control errors under proportional-477 

derivative controller. Furthermore, it is found that the effect of SRP on orbital eccentricity of the 478 

SPS is dependent on its attitude, which necessitates the orbit-attitude coupled modelling of large 479 

SPS. 480 

The proposed modelling method is an extension of NCF to consider gravitational force and 481 

gravity gradient torque for rigid multibody aerospace systems. Compared with Euler angle 482 

method, the proposed modeling method is simpler to use and easier to understand, because the 483 

generalized coordinates of the proposed method are all Cartesian coordinates in a global 484 

coordinate system. The proposed modelling method is also applicable to the simulation of other 485 

rigid multibody aerospace system, such as space robots, satellite rendezvous and docking, and 486 

on-orbit construction. Future works can be addressed to consider the effects of other space 487 

perturbations. On the other hand, the attitude controller of the SPS can be developed to deal with 488 

steady errors as well as periodic errors. 489 
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