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Abstract 

Author: Padraic Eoin Walsh 
Thesis title: Title: Variable selection for classification in complex ophthalmic data: a multivariate 
statistical framework 

Variable selection is an essential part of the process of model-building for classification or prediction. 
Some of the challenges of variable selection are heterogeneous variance-covariance matrices, 
differing scales of variables, non-normally distributed data and missing data. Statistical methods 
exist for variable selection however these are often univariate, make restrictive assumptions about 
the distribution of data or are expensive in terms of the computational power required.  

In this thesis I focus on filter methods of variable selection that are computationally fast and propose 
a metric of discrimination. The main objectives of this thesis are (1) to propose a novel Signal-to-
Noise Ratio (SNR) discrimination metric accommodating heterogeneous variance-covariance 
matrices, (2) to develop a multiple forward selection (MFS) algorithm employing the novel SNR 
metric, (3) to assess the performance of the MFS-SNR algorithm compared to alternative methods of 
variable selection, (4) to investigate the ability of the MFS-SNR algorithm to carry out variable 
selection when data are not normally distributed and (5) to apply the MFS-SNR algorithm to the task 
of variable selection from real datasets. 

The MFS-SNR algorithm was implemented in the R programming environment. It calculates the SNR 
for subsets of variables, identifying the optimal variable during each round of selection as whichever 
causes the largest increase in SNR. A dataset was simulated comprising 10 variables: 2 discriminating 
variables, 7 non-discriminating variables and one non-discriminating variable which enhanced the 
discriminatory performance of other variables. In simulations the frequency of each variable’s 
selection was recorded. The probability of correct classification (PCC) and area under the curve 
(AUC) were calculated for sets of selected variables. I assessed the ability of the MFS-SNR algorithm 
to select variables when data are not normally distributed using simulated data. 

I compared the MFS-SNR algorithm to filter methods utilising information gain, chi-square statistics 
and the Relief-F algorithm as well as a support vector machines and an embedded method using 
random forests. A version of the MFS algorithm utilising Hotelling’s T2 statistic (MFS-T2) was 
included in this comparison. The MFS-SNR algorithm selected all 3 variables relevant to 
discrimination with higher or equivalent frequencies to competing methods in all scenarios. 
Following non-normal variable transformation the MFS-SNR algorithm still selected the variables 
known to be relevant to discrimination in the simulated scenarios.  

Finally, I studied both the MFS-SNR and MFS-T2 algorithm’s ability to carry out variable selection for 
disease classification using several clinical datasets from ophthalmology. These datasets represented 
a spectrum of quality issues such as missingness, imbalanced group sizes, heterogeneous variance-
covariance matrices and differing variable scales. In 3 out of 4 datasets the MFS-SNR algorithm out-
performed the MFS-T2 algorithm. In the fourth study both MFS-T2 and MFS-SNR produced the same 
variable selection results.  

In conclusion I have demonstrated that the novel SNR is an extension of Hotelling’s T2 statistic 
accommodating heterogeneity of variance-covariance matrices. The MFS-SNR algorithm is capable 
of selecting the relevant variables whether data are normally distributed or not. In the simulated 
scenarios the MFS-SNR algorithm performs at least as well as competing methods and outperforms 
the MFS-T2 algorithm when selecting variables from real clinical datasets.  
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Symbols and statistical notation 

 

𝑛1 = sample size in group 1 

𝑛2 = sample size in group 2 

𝑛𝑇 = total sample size in group 1 and 2 

𝑋  = random variable  

𝑋1 = random variable in group 1 

𝑋2= random variable in group 2 

𝑥= realisation of random variable (i.e. the measurement) 

𝑥1 = realisation of random variable in group 1 (i.e. the measurement) 

𝑥2= realisation of random variable in group 2 (i.e. the measurement) 

�̿�= sample mean of random variable  𝑋 i.e. the total mean over groups 1 and 2 

�̅�1 = sample mean of random variable 𝑋 in group 1 

�̅�2 = sample mean of random variable 𝑋 in group 2 

𝑠𝑝
2 = overall sample variance, i.e. pooled sample variance over groups 1 and 2  

𝑠1
2 = sample variance in group 1  

𝑠2
2 = sample variance in group 2 

𝑿  = random vector (several variables)  

𝑿1 = random vector in group 1 

𝑿2= random vector in group 2 

𝒙  = realisation of random vector (i.e. the vector of measurements)  

𝒙1 = realisation of random vector in group 1 (i.e. the vector of measurements) 

𝒙2= realisation of random vector in group 2 (i.e. the vector of measurements) 
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�̿� = vector of sample means of random vector 𝑿 i.e. the total mean over groups 1 and 2 

�̅�1 = vector of sample means of random vector 𝑿  in group 1 

�̅�2 = vector of sample means of random vector 𝑿  in group 2 

𝑺𝑝
2  = overall sample variance-covariance matrix, i.e. pooled over groups 1 and 2  

𝑺1
2 = sample variance-covariance matrix in group 1  

𝑺2
2 = sample variance-covariance matrix in group 2 

T2 = Hotelling T2 statistic 
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Chapter 1. Introduction 

1.1 The importance of biomarkers  

In any effort to accurately classify observations or cases to the appropriate groups it is necessary to 

identify those variables which have the greatest discriminatory potential. The process of identifying 

these variables is termed variable selection. In the arena of clinical science the variables we are 

interested in are referred to as “biomarkers”.  The World Health Organisation (WHO) has defined a 

biomarker as “any substance, structure or process that can be measured in the body or its products 

and influence or predict the incidence of outcome or disease” (WHO, 2001).  

The definition of biomarkers is quite broad and accordingly there are several biomarker sub-types. 

Surrogate biomarkers are biomarkers which are used as substitutes for clinically relevant end-points 

(Strimbo and Tavel, 2010). A surrogate biomarker may not be directly associated with the underlying 

condition being monitored but it will have been demonstrated to reliably and accurately predict a 

relevant clinical outcome.  An example is measuring a patient’s blood pressure (BP) as an indirect 

assessment of left ventricular function instead of using echocardiography (Aronson, 2005).  

A prognostic biomarker may be used to determine the likelihood of a patient experiencing a clinical 

event, disease recurrence or progression given that they are already afflicted with a particular 

medical condition or disease. An example is the breast cancer susceptibility gene (BRCA) 1. A high 

level of expression of BRCA1 in untreated breast cancer patients is associated with a worse 

prognosis (James et al., 2007). 

A predictive biomarker may be used to determine whether one of a pair of individuals who are 

physiologically similar (except in respect of the presence or absence of the predictive biomarker) 

may experience a reaction to some medical, chemical or environmental agent. An example is the 

Excision Repair Cross-Complementation Group 1 (ERCC1) in non-small cell lung cancer (NSCLC). High 

expression of the ERCC1 gene predicts resistance to cisplatin-based chemotherapy in NSCLC patients 

(Olaussen et al., 2006). 

An example of a disease in which biomarkers are important is diabetes mellitus, a chronic long-term 

disease. Patients with diabetes mellitus are at risk of developing diabetic retinopathy. There is 

significant literature on identifying biomarkers which may be used to predict the progression of 

diabetic retinopathy and associated visual loss. Well established examples that are used in clinical 

practice include haemoglobin A1c (HbA1c), BP and lipid profile. The link between a lower blood 
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sugar concentration and reduced levels of HbA1c was first demonstrated in 1976 (Keonig et al., 

1976) and has since become the standard for measuring blood glucose levels. HbA1c is an example 

of a metabolite which is also a biomarker for progression (Caveney and Cohen, 2011). Lactate is 

another metabolite with potential as a biomarker in diabetes mellitus as a strong association with 

lactate levels and type 2 diabetes has been established (Crawford et al., 2010). It is commonly used 

as a measure of the difference between energy expenditure and oxidative capacity of muscle tissue. 

For BP it has been demonstrated that hypertension and diabetes are risk factors for atherosclerosis 

and that both hypertension and diabetes may occur sequentially in individuals as they share several 

metabolic pathways (Cheung and Li, 2012). 

A number of less well established biomarkers have been suggested as potential candidates including 

several cytokines which have been found to play a role in the pathology of diabetic retinopathy. 

Tumour necrosis factor-α (TNF-α) is a cytokine which is active in the acute phase of the immune 

response. It has been demonstrated that TNF-α plays an important role in the development of 

diabetic retinopathy (Joussen et al., 2009). Vascular endothelial growth factor (VEGF) is active in 

stimulating angiogenesis. In healthy individuals this is an important aspect of normal somatic cell 

proliferation and development. However it has been shown that VEGF levels are upregulated in 

hypoxic conditions and that the upregulated expression of VEGF is active in mediating active 

intraocular neovascularisation in patients with ischaemic retinal diseases (Aiello et al, 1994). Similar 

conclusions about the role of VEGF and cytokines in general have been reached by other 

researchers. Monocyte-chemoattractant protein 1 (MCP-1) as well as VEGF have been identified as 

regulators of diabetic retinopathy which might be suitable as biomarkers for risk assessment in 

diabetic patients (Ozturn et al, 2009).  

1.2 The search for biomarkers is a statistical problem of variable selection 

for discrimination  

The main question is how to find the best marker or set of markers for disease stage diagnosis. This 

question can be seen as a statistical problem of finding the variable or set of variables that can best 

discriminate between disease groups. The question is how to select a subset of variables which will 

capture enough information about the groups of interest to be capable of discriminating between 

them and thus make appropriate assignments for new patients. Suppose that we have a set of 

potential explanatory variables 𝑋1 …𝑋𝑝 measured on 𝑛 patients which may be used to predict 

membership of the appropriate group. How do we select from these potential explanatory variables 

the subset that will best discriminate between each of our groups of interest? Furthermore how do 
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we select from among those variables which can distinguish between the groups of interest where 

there may be multiple variables with the same discriminatory potential?  

One possible solution to the variable selection problem is simply to evaluate every possible subset of 

variables.  This is not a practical solution as it requires increasing computing power as the number of 

variables increases. Alternatively we might consider selecting variables based on some prior 

knowledge of the condition being studied. For example in studying patients with diabetes it is 

intuitively obvious that the insulin level of a patient is an important variable. However, diabetes is a 

very well researched condition on which a significant amount of research has been conducted. For 

conditions which are less well-known and less well-researched there may not be as much 

information at the disposal of researchers and clinical workers.  

The difficulties of the variable selection problem are not limited to logistic considerations such as the 

number of variable subsets which must be analysed or the size of the dataset. The quality of the 

collected data is also a complex issue for variable selection. Problems can occur in how well data are 

balanced across groups as a large disparity in group sizes risks biasing any conclusions or inferences 

made using a given dataset. We must also consider the composition of the datasets. In addition to 

continuous variables we can expect to have to deal with ordinal and nominal variables possessing 

multiple levels which may require specialised techniques for their analysis. Missingness further 

complicates the task of variable selection as does the presence of noise in the data. While some 

issues may be addressed through effective study design there is a limited capacity to anticipate 

potential issues which means that researchers will always be faced with some of these problems. 

This makes the task of variable selection particularly complex. 

1.3 Aim of this thesis  

The aim of this thesis is to identify and improve the statistical methods of variable selection for 

discrimination that are suitable for complex data such as clinical ophthalmic data that is associated 

with studies of diabetic retinopathy. 

1.4 The structure of this thesis 

The structure of this thesis is as follows. In Chapter 2 I present a literature review outlining the major 

categories of current variable selection methods the filter, wrapper and embedded methods. In 

Chapter 3 I outline the theoretical background of the linear discriminant analysis (LDA) and quadratic 

discrimination analysis (QDA) classifiers and Hotelling’s T2 statistic. I also propose an extension to 

Hotelling’s T2 statistic to produce the novel SNR and describe the multiple forward selection 
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algorithm I have created which uses either the SNR (MFS-SNR) or Hotelling’s T2 statistic (MFS-T2) to 

carry out variable selection. In Chapter 4 I present the results of a study using simulated datasets to 

compare the novel MFS-SNR algorithm with several existing variable selection methods including 

univariate and multivariate filter methods and an embedded method utilising random forests. In 

Chapter 5 I present the results of an assessment of the MFS-SNR algorithm’s ability to carry out 

variable selection when data are not normally distributed. In Chapter 6 I present the results of 

variable selection from 4 ophthalmological datasets using the MFS-SNR and MFS-T2 algorithms. 

Finally in Chapter 7 I present a summary and discussion of the work I have completed over the 

course of my studies and outline possible future work. 
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Chapter 2. Literature review 

2.1 Introduction 

The problem of variable selection for classification is complex (see Section 1.2) and has been the 

subject of considerable research. Consequently there are numerous methods of variable selection 

for classification available (Bolòn-Canedo et al., 2011; Chandrashekar & Sahin, 2004; Lazar et al., 

2012; Pacheco et al., 2006; Saeys et al., 2007). However, these are often univariate in nature, failing 

to take account of relationships between variables. Methods which are designed to take account of 

such relationships often do so by analysing large numbers of variable subsets which makes the 

application of these methods to high dimensional datasets impractical. Existing methods may not be 

robust to quality issues that are common with datasets. These quality issues can include large 

proportions of missingness in datasets, imbalances in group sizes and mixtures of variable types. 

This chapter is a literature review. It is focused on two methodological areas: 

 current statistical methods of variable selection for classification focusing on clinical datasets 

where data can be missing, where correlation structure can be different across disease 

groups and where variables can be measured in different units. 

 measurement of information via signal-to-noise ratio. 

As the goal of my work was to produce a novel multivariate filter method the focus of my literature 

review is on filter methods with a view to investigating if existing methods addressed the 

shortcomings of filter methods. The structure of this chapter is as follows. I first review the method 

of principal components analysis (PCA) (in Section 2.2) which is an alternative to variable selection 

that achieves dimensionality reduction. Then I provide an overview of the general classes of variable 

selection methods: filter methods (Section 2.3), wrapper methods (Section 2.4) and embedded 

methods (Section 2.5). I then discuss the current relevant methods of information evaluation via 

signal-to-noise ratio (Section 2.6). Finally, the chapter concludes with a discussion (Section 2.7) on 

existing gaps in the literature and a description of which gaps this thesis is addressing.  

2.2 PCA as a variable selection method for classification 

The purpose of variable selection is to identify those variables which are most effective at 

discriminating between the groups of interest. Variable selection tacitly assumes that some variables 

contain the same information that is useful for discriminating between groups, hence the number of 

variables can be reduced before classification. By identifying these variables the optimal 

discriminatory performance can be achieved while also reducing dimensionality. PCA is an 
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alternative to variable selection which generates new variables using the starting set of variables and 

it ignores information about group membership. 

PCA is a means of achieving dimensionality reduction by generating linear combinations of the initial 

variables which serve to account for the largest amount of information (measured via variance) 

possible in the new orthogonal variables produced (Cox, 2005). The application of PCA will be most 

constructive when variables are not independent, i.e. some correlation exists between variables. 

This can be assessed using tests such as Bartlett’s chi-squared test or the Kaiser-Meyer-Olkin statistic 

(Lattin, 2003). Once correlation between variables has been established eigenvalues may be 

calculated using the correlation matrix (or variance-covariance matrix) for a given set of variables 

with each matrix having a number of eigenvalues (𝑒𝑣) less than or equal to the number of 

variables/parameters (𝑒𝑣 ≤ 𝑝). The eigenvalues 𝜆𝑗 (𝑗 = 1. . 𝑝, where p is number of variables) can be 

calculated by solving 

   𝑑𝑒𝑡(𝑅 − 𝜆𝐼) = 0     (2.2.1) 

here 𝑅 is the correlation matrix. Similarly the p eigenvectors, represented by 𝑣𝑗, can be found by 

solving 

   (𝑅 − 𝜆𝑗𝐼)𝑣𝑗 = 0     (2.2.2) 

here 𝑅 is the correlation matrix. Principal components (PCs) are then obtained as a linear 

combination following multiplication of the variables by the eigenvectors corresponding to the 

calculated eigenvalues. 

𝑦 = 𝐴′𝑥     (2.2.3) 

In this equation 𝑦 is the vector of principal components derived from the original variables. The 

matrix 𝐴′ is the matrix of eigenvectors and 𝑥 Is a variable which has mean vector µ and variance-

covariance matrix Σ. The principal components are orthogonal by design with each one accounting 

for decreasing amounts of variance in a given system so the first PC accounts for the largest 

proportion of variance with each subsequent component accounting for a smaller proportion of 

total variance. The decreasing variance associated with each PC is ensured by choosing the largest 

eigenvalue and associated eigenvector as it is true by construction that the variance is equal to the 

eigenvalue (Cox, 2005; Lattin et al., 2003). Therefore choosing the largest eigenvalue ensures that 

the first PC accounts for the largest proportion of variance. Of the remaining eigenvalues the largest 

will be selected for the second PC and so on until all of the PCs have been calculated.  
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Once the PCs have been calculated there are numerous ad hoc methods available on which to base 

the decision of how many PCs to use. The number of PCs can be dictated by the minimum amount of 

variance we wish to account for using the new PCs, for example we may wish to account for at least 

70 % of total variance within the system and therefore we will select the lowest number of PCs 

which has a cumulative variance equal to or greater than 70 %. In addition to reducing 

dimensionality, analysis of PCs can also tell us a great deal about the underlying relationships and 

structures of the correlations between variables being studied.  PCs can reveal relationships 

between different variables by studying the coefficients applied to calculate them. Principal 

component loadings are also useful in this regard as they represent the correlations between the 

original variables and the principal components produced. In terms of analysing PCA output 

commonly used graphical devices include scree plots which represent the relative contribution of 

PCs to the cumulative variance accounted for and biplots which plot PCs against each other and 

allow visualisation of variables which are shared by different PCs. 

While PCA is not strictly speaking a method for selecting variables the logic behind the method of 

PCA is focused on identifying those variables which account for the largest proportions of variance in 

a particular dataset. The motivation for this approach is the idea that the variance is related to the 

amount of information. This aspect of PCA has been exploited for the purpose of variable selection. 

Paul et al. (2008) describe a method for carrying out variable selection which uses supervised 

principal components analysis to pre-condition the variable selection process. Those variables with 

the highest correlation with the outcome of interest (or highest discriminatory strength) are 

subjected to supervised principal components analysis. A least squares regression is then carried out 

using the principal components produced. This regression model is then used to produce anan 

estimate of the outcome of interest. Variable selection is then carried out using this estimate of the 

outcome of interest and the initial set of variables. By utilising the estimate of the outcome of 

interest the resulting data are less noisy and so the selection of variables using standard procedures 

such as LASSO or forward selection is more effective.  

A disadvantage of PCA is that its effectiveness is proportional to the level of correlation between 

variables. For a dataset where there is little or no correlation between variables PCA will be of very 

limited benefit. Additionally because PCA focuses on correlations and covariances between variables 

while not taking into account group membership any variable selection method utilising it may fail to 

select variables which are important to discriminating between groups.  
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2.3 Review of filter methods of variable selection 

Filter methods of variable selection operate by using a suitable data summary metric. The data 

summary metric should be easy to use and should require much less computational time than 

classification.  

One way to utilise the filter metric is to rank each of the candidate variables i.e. as a univariate 

approach. The ranked list of variables produced can then be used to select those variables which 

have the highest ranks and are therefore assumed to be the most relevant to classification and 

discrimination. There are many different kinds of data summary metrics which may be used by filter 

methods to rank variables.  

Another way to utilise the filter metrics is taking a multivariate approach to selecting a set of 

variables. Multivariate filter methods can take correlations and covariances between variables into 

account when calculating values for the data summary metric. Forward and backward selection 

protocols may also be used with filter methods. Once a set of variables has been chosen, this set is 

then be evaluated and estimates of performance calculated. In the following subsections I list some 

of the most frequently used filter variable selection methods. 

2.3.1 Filter methods based on Kullback-Leibler divergence 

The first filter method for variable selection among 𝑋1, … , 𝑋𝑝 that I will mention is a method based 

on the Kullback-Leibler (KL) divergence. There are several concepts for utilizing the KL divergence 

metric. In this section I will mention two filter methods based on KL divergence: the method of 

Mahat et al. (2007) and the method of Dasgupta (2015). 

The method of Mahat et al. (2007) assesses differences between groups by calculating the smoothed 

Kullback-Leibler divergence and uses this as a metric to carry out variable selection. Mahat calls this 

concept the location model-based variable selection method. It utilises forward, backward and 

stepwise selection. Each variable set is assessed by calculating a test statistic using the sample-based 

divergence for the addition/removal of a variable. Where no change in the divergence occurs 

following the addition or removal of a given variable the difference in the divergence values 

calculated with or without that variable should approximately follow a chi-squared distribution with 

altered degrees of freedom to accommodate whether that variable is categorical or continuous. 

Analytically, this test statistic can be written as: 
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𝑋0
𝑓

=
𝑛1𝑛2

𝑛1+𝑛2
(𝐷𝐽𝑗

− 𝐷𝐽𝑗−1
)~𝜒(𝑣=𝑣𝑗−𝑣𝑗−1)

2   (2.3.1.1) 

where 𝑋0
𝑓

 is the rescaled difference in KL distances and its asymptotic distribution is the chi-squared 

distribution 𝜒2 with 𝑣 degrees of freedom. The values 𝑛1and 𝑛2 are the group sizes, 𝐷𝑗 and 𝐷𝑗−1 

are the estimated Kullback-Leibler divergences calculated for (forward or backward) steps 𝑗 and 

𝑗 − 1 while 𝑣𝑗 and 𝑣𝑗−1 are the degrees of freedom associated with the chi-squared distribution of 

𝐷𝑗 and 𝐷𝑗−1. When a continuous variable is being assessed using forward or backward selection in 

step j the test statistic 𝑋0
𝑓
 is compared with 

𝜒(𝑣=2𝑞−1,1−𝛼)
2      (2.3.1.2) 

When a binary variable is being assessed using forward selection in step j the test statistic 𝑋0
𝑓
 is 

compared with 

𝜒(𝑣=2𝑞(2+𝑝),1−𝛼)
2      (2.3.1.3) 

Here 𝑝 and 𝑞 are the numbers of continuous and binary variables, respectively, at step 𝑗 − 1 and 𝛼 is 

the type 1 error. 

Using backward selection where a binary variable is being assessed the test statistic 𝑋0
𝑓

 is compared 

with 

𝜒
(𝑣=2𝑞+𝑝2𝑞−1,1−𝛼)
2 .     (2.3.1.4) 

When forward selection is used a variable is added to the selection if the test statistic is larger than 

the chi-squared critical value otherwise variable selection is terminated. When backward selection is 

used a variable is selected if the test statistic is smaller than the chi-squared critical value otherwise 

selection is terminated.  

Where stepwise selection is used every time a new variable is added to the set of discriminatory 

variables, the significance of the other variables in that set is reassessed, to ensure that they all 

remain significant for discrimination. The criterion used for adding a variable is the same as when 

forward selection is used alone. The criterion for removing a variable becomes 

𝑋0
𝑠 =

𝑛1𝑛2

𝑛1+𝑛2
(𝐷𝑗𝑖

𝑓
− 𝐷𝑗𝑖

𝑏)     (2.3.1.5) 

Here 𝐷𝑗𝑖

𝑓
is the estimated distance at step 𝑗 calculated using forward selection and 𝐷𝑗𝑖

𝑏 is the 

estimated distance at step 𝑗 obtained using backward selection. This test statistic is compared to a 
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chi-squared distribution with the degrees of freedom described above for backward selection. 

Stepwise selection terminates when both the forward and backward selection sequences satisfy the 

stopping criteria. 

Variable selections made using this method are validated by splitting the data into training and 

validation sets. The training set is used to train a classifier which is then used to classify cases from 

the validation set. The results are evaluated by counting the proportion of misclassified cases. Mahat 

et al. (2007) simulated data sets to evaluate their method. The data sets contained a mixture of 3, 4 

or 8 binary variables and 4 continuous variables with group sizes 25 and 100. A mixture of both 

discriminating and non-discriminating variables was present in each of the data sets. Results were 

evaluated in terms of the proportion of discriminating variables selected by each method out of the 

total number of discriminating variables and the error rate calculated for a model using the selected 

variables. Overall backward selection performed better than either forward or stepwise selection in 

terms of the selection of discriminating variables and the error rates calculated. However, Mahat et 

al. (2007) note that given the lack of prior knowledge regarding which variables are discriminating in 

a given real data set the optimal method of variable selection must be determined on a case-by-case 

basis.  

The main limitation of the KL filter method of variable selection of Mahat et al. (2007) is that it is 

designed to work only with continuous variables and binary variables. While it is possible to apply 

this method to datasets that contain mixtures of continuous and categorical variables it is necessary 

to transform ordinal and nominal variables into binary variables to facilitate their use with this 

method. A problem with this approach is that any transformation can result in a loss of information. 

This can lead to misrepresentation of the importance of a given variable following transformation. 

A second filter variable selection method based on KL divergence was proposed by Dasgupta (2015). 

Their work presents a method which utilises the KL divergence in place of the squared error loss 

when calculating regression coefficients for each of the variables in a dataset. Using the formula 

�̅�𝐾𝐿 = arg𝑚𝑖𝑛 {∑ [𝑙𝑜𝑔
ƒ(𝑦𝑖|𝑥𝑖,𝛽

∗)

ƒ(𝑦𝑖|𝑥𝑖,𝛽)
]𝑛

𝑖=1 + 𝜆𝑛 ∑ �̂�𝑗|𝛽𝑗|𝑗 }   (2.3.1.6) 

the “Adaptive Penalized KL Divergence” estimator (�̅�𝐾𝐿) is calculated. In this formula �̂�𝑗 is a weight 

vector, ƒ(𝑦𝑖|𝑥𝑖, 𝛽
∗) and ƒ(𝑦𝑖|𝑥𝑖 , 𝛽) are the normal probability densities associated with the true 

regression coefficients 𝛽∗ and 𝛽. 𝜆𝑛 Is one of two tuning parameters used with this method. 
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The method of Dasgupta (2015) works by first finding the ordinary least squares estimate of 𝛽∗. This 

is then used to calculate �̂� for some value of γ > 0, γ is the second tuning parameter used with 

this method. Coefficient estimates are calculated by solving 

�̂�∗ = arg𝑚𝑖𝑛‖�̂� − ∑ 𝑥𝑗
∗𝛽𝑗

𝑝
𝑗−1 ‖

2
+ 𝜆𝑛 ∑ |𝛽𝑗|

𝑝
𝑗=1      (2.3.1.7) 

For all possible values of 𝜆𝑛. The “Adaptive Penalized KL Divergence” is then calculated by dividing 

these estimates by the weight vector �̂�𝑗. A list of regression coefficients associated with each of the 

predictor variables is produced in this way and can be used to select which variables are the most 

important to predicting the outcome of interest. 

Dasgupta (2015) successfully demonstrated his method on a dataset of measurements taken from n 

= 442 patients with diabetes. The variables age, sex, body mass index (bmi), average blood pressure 

and six blood serum measurements (total count (tc), low-density lipoprotein (ldl), high density 

lipoprotein (hdl), total cholesterol (tch), low tension glaucoma (ltg), glutamic acid (glu)) were 

considered for each of the patients. Age and the blood serum measurements hdl and glu were 

determined to have no significant influence on the progression of the disease one year after 

baseline.  

The use of regression coefficients in carrying out variable selections is a logical approach as the 

regression coefficients are designed to reflect the influence of a particular variable on the outcome 

of interest. However, Dasgupta’s method (2015) involves the use of two tuning parameters 𝜆𝑛 and 𝛾, 

which is a disadvantage. The quality of the final subset of variables will be directly affected by the 

values of these tuning parameters. The researcher must specify the optimal value of 𝛾. As part of the 

procedure the estimated �̂�∗ is calculated for all possible values of 𝜆𝑛. For sufficiently high 

dimensional datasets this may not be a practical approach as it can be time consuming. It should also 

be noted that while Dasgupta (2015) provides some assessment of his method using a diabetes 

dataset there is no effort to validate the selections made from the dataset. There are also no other 

datasets used for comparison in his paper and there is no attempt to compare this method to any 

alternative method of variable selection. 

2.3.2 Filter methods based on Biomarker Identifier Measure 

Another example of filter methods is based on the Biomarker Identifier (BMI) developed by Lee et al. 

(2011). BMI assesses differences in distributions of the variables across two outcome groups. The 

BMI measure involves calculation of several terms: the ratio of overall control group variance to the 

overall variance, the ratio of the two groups’ means and the product of the true positive rates 
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obtained using a logistic regression to assign subjects to each of the two groups. The formula for the 

BMI is  

𝐵𝑀𝐼(𝑋) = 𝜆  𝑇𝑃2√|𝛥𝑑𝑖𝑓𝑓|
𝐶𝑉𝑐𝑡𝑟

𝐶𝑉
     (2.3.2.1) 

Here 𝜆 is a scaling factor, 𝑇𝑃2 is the product of the true positive rates across each group calculated 

using logistic regression with the format ‘outcome ~ variable’. The terms 𝐶𝑉 and 𝐶𝑉𝑐𝑡𝑟 denote the 

coefficients of total variance in both groups and in the control group, respectively. The factor 

𝛥𝑑𝑖𝑓𝑓 is based on 𝛥 which is calculated according to 

𝛥 =
�̅�

�̅�𝑐𝑡𝑟
     (2.3.2.2) 

 �̅� and �̅�ctr are the overall mean value of the variable 𝑋 in both groups and in the control group, 

respectively. If the value of 𝛥 is greater than or equal to 1 then 

𝛥𝑑𝑖𝑓𝑓 = 𝛥     (2.3.2.3) 

otherwise 

𝛥𝑑𝑖𝑓𝑓 = −
1

𝛥
     (2.3.2.4) 

The quantity 𝛥𝑑𝑖𝑓𝑓 is designed to take account of the differences in the distribution of a given 

variable across the disease and control groups as measured by the differences in the mean values. 

The logic is that if a variable is capable of discriminating between two groups there will be a 

difference in the means across the two groups and hence 𝛥𝑑𝑖𝑓𝑓 will have a larger deviation from a 

value of 1. The ratio of control group variation to overall variation is designed to act as a measure of 

how well defined or how noisy the control group is. A smaller ratio means that the overall variance is 

different from the variance of the control group indicating that the disease group is noisier relative 

to the control group. Conversely a larger ratio means that the difference between the overall 

variation and the variation of the control group is small indicating that the disease group is less noisy 

relative to the control group. The true positive rate for a given variable is calculated using logistic 

regression. The incorporation of the true positive rate in the BMI formula takes the discriminative 

performance of the variable into account when calculating the BMI. 

BMI was compared to 6 alternative variable selection methods by Lee et al. (2011): Information gain, 

Relief-F, two versions of the t-test (moderated t-test and window t-test) and a chi-squared test.  
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These methods and the BMI were evaluated using two real datasets. The first comprised 129 sets of 

microarray data from 60 smokers with lung cancer and 69 smokers without lung cancer. Seven genes 

had previously been identified from this data set as being able to differentiate between cancerous 

and non-cancerous samples evaluated using quantitative polymerase chain reaction (PCR). The 

second dataset contained breast cancer data where subjects were grouped based on receptor status 

(i.e. whether estrogen receptors were present or not). This data set contained 130 samples used as 

training data and 100 samples used as validation data. 

Information gain assesses whether or not a given variable adds information regarding the group 

variable. This is done by looking at the differences in the marginal and conditional distributions of 

the grouping variable.  The marginal distribution gives the probability of the group variable having 

certain values independent of the predictor variable. Conversely the conditional distribution gives 

the probability of the group variable having certain values when it is dependent on the predictor 

variable. RELIEF-F assesses the discriminatory ability of a variable by selecting 𝑘 nearest neighbours 

for a random sample evaluating how well the variable differentiates between neighbours in the 

same and different groups (Kononenko, 1994).The moderated t-test is an adaptation of the 

student’s t-test using a hierarchical Bayesian approach and knowledge of posterior residual standard 

deviations while the window t-test uses multiple genes with similar expression levels to calculate the 

variance to be incorporated into the t-test. The Chi-squared test is used to select variables by testing 

if the distribution of a given variable is different across the groups.  

In Lee et al. (2011) the performance of each of the variable selection methods on the lung cancer 

dataset was evaluated using classifier performance as well as the ranking of features known to 

discriminate between groups. The breast cancer dataset was evaluated using classifier performance 

only as the variables relevant to discriminating between the groups were not known. For both 

datasets 10-fold cross-validation was used to validate the classifier developed with the training 

dataset, and the resulting classification data was used to calculate area under the curve (AUC) 

values. For the lung cancer dataset performance was also evaluated by observing how the 7 genes 

known to differentiate between cancerous and non-cancerous samples were ranked. Multiple 

different classifiers were used with both datasets.  

In terms of classifier performance it was found that the performance of BMI in terms of the 

estimated AUC values was comparable to that of other methods. The set of variables selected using 

the BMI was stable regardless of which classifier was used for both datasets. For the lung cancer 

dataset the performance of BMI and the alternative methods was also evaluated in relation to the 

ranking of genes known to successfully differentiate between cancerous and non-cancerous 
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samples. In this respect BMI exhibited superior performance to the alternative methods ranking 

these genes within the top 4,000 ranked genes. 

One limitation is that the BMI is univariate in nature. Each of the variables is assessed independently 

and relationships between variables are not considered. The authors also do not explain how the 

scaling factor 𝜆 is calculated for different datasets. It is also reasonable to question how appropriate 

it is to combine multiple statistical measures into a single composite measure. The conclusions that 

may be made based on individual statistical measures may not extend to the use of a composite 

measure. It should be noted that while this is not addressed directly in the article, the results of the 

comparison study involving other methods reflect favourably on the BMI index.  

2.3.3 Filter methods for variable selection based on correlation between predictors and 

outcome group variable 

Here I present a filter method of variable selection based on correlation between predictor variables 

and the outcome group variables proposed by Li et al. (2012). They describe a filter method that is a 

sure independence screening procedure based on a distance correlation metric (DC-SIS). The sure 

independence screening property states that as the sample size approaches infinity all variables 

relevant to predicting the outcome of interest can be selected. Distance correlation measures the 

dependence between two random variables. Two properties of the distance correlation that make it 

suited to DC-SIS are that it is equal to zero for random vectors when they are independent and that 

it is a strictly increasing function of the absolute value of the Pearson correlation of the two normal 

random variables. The DC-SIS method considers correlations between predictor variables and the 

outcome variable. Using the DC-SIS metric (Li et al., 2012) it is possible to split variables into active 

and inactive predictors. The sample distance correlation is calculated according to 

𝑑𝑐𝑜𝑟�̂�(𝑋, 𝑌) =
𝑑𝑐𝑜�̂�(𝑋,𝑌)

√𝑑𝑐𝑜𝑣(𝑋,𝑋)𝑑𝑐𝑜𝑣(𝑌,𝑌)
     (2.3.3.1) 

where 𝑋 and 𝑌 are two random vectors from a joint probability distribution. The term 𝑑𝑐𝑜𝑣 is the 

sample distance covariance defined as  

𝑑𝑐𝑜�̂�2(𝑋, 𝑌) = �̂�1 + �̂�2 + �̂�3,     (2.3.3.2) 

where �̂�1, �̂�2 and �̂�3 are calculated according to 

𝑆1̂ =
1

𝑛2
∑ ∑ ‖𝑥𝑖 − 𝑥𝑗‖𝑑𝑋

‖𝑦𝑖 − 𝑦𝑗‖𝑑𝑦

𝑛
𝑗=1

𝑛
𝑖=1    (2.3.3.3) 

𝑆2̂ =
1

𝑛2
∑ ∑ ‖𝑥𝑖 − 𝑥𝑗‖𝑑𝑋

1

𝑛2
∑ ∑ ‖𝑦𝑖 − 𝑦𝑗‖𝑑𝑦

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1   (2.3.3.4) 
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𝑆3̂ =
1

𝑛3
∑ ∑ ∑ ‖𝑥𝑖 − 𝑥𝑙‖𝑑𝑋

‖𝑦𝑗 − 𝑦𝑙‖𝑑𝑌

𝑛
𝑙=1

𝑛
𝑗=1

𝑛
𝑖=1    (2.3.3.5) 

where (𝑥𝑖 , 𝑦𝑖) is a random sample taken from the joint probability distribution of (𝑋, 𝑌). Once the 

sample distance correlation is calculated the metric ωk is calculated 

�̂�𝑘 = 𝑑𝑐𝑜𝑟�̂�2(𝑋𝑘, 𝑌)     (2.3.3.6) 

𝜔𝑘 is then used to rank the importance of each variable 𝑋𝑘. The random vector 𝑋𝑘 represents the 

𝑘𝑡ℎ  potential predictor variable and 𝑌 is a vector representing the response variable. Once the 

variables 𝑋𝑘  have been ranked in this way the final set of active predictors is chosen using the 

following rule; 

�̂�∗ = {𝑘: �̂�𝑘 ≥ 𝑐𝑛−𝜅, 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑝}           𝑐 > 0,   0 ≤ 𝜅 <
1

2
  (2.3.3.7) 

Here �̂�∗ is a set which will contain the index values for the variables which are determined to be 

active in predicting the outcome of interest. 𝑐 and 𝜅 in this equation are parameters with values set 

in accordance with the rules 𝑐 > 0 and 0 ≤ 𝜅 <
1

2
. 

The performance of the DC-SIS based filter method of variable selection was assessed using both 

real and simulated data (Li et al., 2012). The simulated data were normally distributed with varying 

correlations and dimensionality. The real data was a cardiomyopathy microarray dataset containing 

expression data for 6,319 genes. Three criteria for evaluating performance were used: S, the 

minimum size of the models including all active predictors; PS, the probability that an individual 

active predictor is selected for a particular model over 500 replications and Pa, the proportion that 

all active predictors are selected for a particular model over 500 replications. The DC-SIS method 

was compared to the sure independence screening (SIS) methods of Fan & Lv (2008) and the sure 

independent ranking and screening method of Zhu et al (2011).  

For each of the models used with the simulated data the DC-SIS method out-performed the SIS and 

sure independent screening and ranking (SIRS) methods in terms of the minimum size of the models 

S; DC-SIS models contained fewer variables out of 500 simulations. Similarly the DC-SIS method had 

Pa values larger than those of the competing SIS and SIRS models in the majority of the simulations 

(Li et al., 2012). The results for Ps exhibit similar patterns with DC-SIS values being larger than those 

for SIS and SIRS in a majority of scenarios. Data were also simulated to investigate the performance 

of the DC-SIS method when selecting grouped predictors. The results of this indicate that the 

minimum model size to ensure the inclusion of all active predictors is small. The last example using 

simulated data assessed the ability of the DC-SIS method to handle multivariate responses. The 
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results indicate that the DC-SIS method retains the sure screening property even when dealing with 

multivariate responses. 

Lastly the DC-SIS method was used to select variables from a microarray dataset with the goal of 

identifying the most influential genes for expression of the G protein-coupled receptor in mice. 

Previous work with this dataset identified Msa.2877.0 and Msa.1166.0 (Hall & Miller, 2009) however 

the DC-SIS method identified Msa.2134.0 and Msa.2877.0. When the two selections were compared 

in terms of the performance of a model using these predictors it was found that the DC-SIS 

selections achieved better performance with a larger adjusted 𝑅2 value of 96.8 % and a larger 

explained deviance value of 98.3 % compared to 84.5 % and 86.6 % respectively for the previously 

determined selections. 

While the method of Li et al. (2012) does take correlations into account it is only concerned with 

correlations that exist between predictor variables and the outcome variable. It does not consider 

correlations that may exist between predictor variables. Therefore the DC-SIS method is a univariate 

method in the sense that the correlations are only considered between each predictor variable and 

the outcome variable. Any interactions between predictor variables that may exist are not 

considered when carrying out variable selection. 

Bouhamed et al. (2012) present a method for selecting categorical predictor variables using the 

correlations between the predictor variables and the response variable. Their method analyses 

variables in a univariate and a multivariate context over a 5-stage procedure. In the first stage 

redundant variables are eliminated from the dataset. In the second stage the chi-square statistics 

and the associated p-values are calculated for each of the predictor variables and the response 

variable. Those variables with a p-value above the designated significance level are considered 

redundant and eliminated from the process at this stage. In the third stage bootstrapped k-means 

clustering based on proximity to a principal component generated using the kmeansvar function 

of the ClustOfVar package is used to produce clusters of predictor variables. In the fourth stage 

the clusters are then analysed using the Truncated Product Method (TPM). TPM scores are subjected 

to the logarithmic transformation. The logarithmic transformation makes it easier to identify which 

clusters of variables are most important as it is easier to identify high scores (which are associated 

with a high degree of significance). In the fifth and final stage clusters of variables are selected based 

on a composite scoring of each cluster using the results of analyses from each of the previous steps.  

Bouhamed et al. (2012) applied their method to 2 datasets. The first is a cardiac database. It 

comprises 23 variables measured on 267 patients. The second is an automotive database comprising 
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18 variables. Bouhamed et al. use their method to identify the optimal subset of variables from each 

of these datasets. Several other methods are also used to identify the optimal subset from each of 

these datasets and the results are compared to those obtained using the method of Bouhamed et al. 

The competing methods include wrapper methods employing forward and backward selection. The 

conclusion presented in their manuscript is that the method of Bouhamed et al. (2012) is more 

effective than the competing methods. 

The most obvious shortcoming of the work of Bouhamed et al. (2012) is that their method is only 

effective when selecting categorical variables. It cannot be applied to continuous data or any 

mixture of categorical and continuous predictor variables. A further disadvantage with the work 

relates to the comparison of their method with alternative methods. Results are presented 

demonstrating the functioning of this novel method and defending the variable selections it makes 

from the automotive and cardiac datasets. However, there is no data on the performance of the 

final selections made using each method (including the method of Bouhamed et al., 2012). It 

appears that no work was done to validate the selections of any of the methods.  

2.3.4 Filter variable selection methods based on correlations between predictor variables  

Another category of filter variable selection methods is based on correlations between predictor 

variables. Andrews & McNicholas (2014) describe a variable selection method (VSCC – Variable 

Selection for Clustering and Classification) which utilises the within-group variances as well as the 

correlations between variables.  The within-group variances are calculated according to 

𝑊𝑗 = 
∑ ∑ 𝑦𝑖𝑔(𝑥𝑖𝑗−𝜇𝑔𝑗)

2𝑛
𝑖=1

𝐺
𝑔=1

𝑛
    (2.3.4.1) 

Here 𝑥𝑖𝑗  is the observation for subject 𝑖 on variable 𝑥𝑗, 𝜇𝑔𝑗  is the mean of variable 𝑥𝑗 in group 𝑔, 𝑛 is 

the number of subjects and 𝐺 is the total number of groups. The term 𝑦𝑖𝑔 is set to 1 if a given 

subject belongs to group 𝑔 and 0 otherwise. 

Data are standardised so that all variables have mean and variance equal to 1. Within-group 

variances of the variables are then calculated and listed in ascending order so that the first variable 

has the lowest within-group variance and is thus automatically selected. Each of the unselected 

variables remaining is then considered for addition to the selected variable subset in order of their 

within-group variances and whether their correlation with each of the selected variables is less than 

some threshold. The stopping criterion for the algorithm is that 𝑘 ≥  𝑝. 𝑘 is initially set equal to 1 

and is incremented by 1 each time a variable is selected. The term 𝑝 is the total number of 

considered predictor variables. The stopping criterion is designed to ensure that the correlation 
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between the selected variables and each of the candidate variables is assessed (i.e. all variables are 

analysed but only those with a sufficiently low correlation when paired with each of the previously 

selected variables are added to the set of selected variables). This is in contrast to other methods 

where the stopping criterion is designed to terminate variable selection when a sufficient number of 

variables have been picked (as determined by the stopping criterion). 

The simplest relationship illustrating the acceptable threshold of correlation between variables is  

|𝜌𝑘𝑟| < 1 − 𝑊𝑘      (2.3.4.2) 

where 𝑘 is the index of the variable under consideration for selection, 𝑟 is the index of each of the 

variables which has already been selected. Thus the correlation between variable 𝑘 and each of the 

already selected variables must be less than the difference between 1 and the within-group variance 

of variable 𝑘 or this variable will not be added to the selection. However this is just one possible 

threshold and not necessarily the optimal threshold. Higher order relationships exist and those 

considered are quadratic, cubic, quartic and quantic in order of the increasing exponent of the 

within-group variance.  

The algorithm is run using each of these thresholds which results in a maximum of 5 different 

variable subsets. The authors (Andrews & McNicholas, 2014) propose identifying the subset that is 

the optimal for classification by calculating the fuzzy classification matrix for each of the possible 

variable selections. This is an 𝑛 𝑥 𝐺 matrix containing the �̂�𝑖𝑔 values which are estimates of the 

quantity 𝑦𝑖𝑔. The quantity 𝑦𝑖𝑔 is a measure of the strength of the evidence that observation 𝑖 

belongs to group 𝑔. Where clusters are well-defined each row of the fuzzy classification matrix will 

contain one entry approximately equal to 1 and all of the other entries approximately equal to zero. 

The fuzzy classification matrix is used to calculate the uncertainty associated with each variable 

selection according to the formula; 

𝑛 − ∑ 𝑚𝑎𝑥𝑔{�̂�𝑖𝑔}𝑛
𝑖=1       (2.3.4.3) 

Unfortunately it is not possible to use this novel uncertainty calculation. This is because the VSCC 

algorithm cannot be computed as described when there is only 1 group (i.e. 𝐺 = 1), it implicitly 

assumes that 𝐺 > 1.  

Therefore the optimal variable subset for classification is identified in one of two ways. The known 

𝑦𝑖𝑔 values may be used to calculate Wj initialising the algorithm or the �̂�𝑖𝑔 values are calculated 

using model-based classification and these are used with the known 𝑦𝑖𝑔 values to initialise the 
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algorithm. The optimal subset is then determined by selecting the associated model using the 

Bayesian Information Criterion (BIC).  

Andrews & McNicholas (2014) compared the model-based classification of their selection algorithm 

to model-based classification using the MCLUST family of models on a simulated data set containing 

15 groups. Classification performance was assessed using the adjusted Rand index (ARI) calculated as 

the number of pairwise agreements between the estimated classifications and the known groups. 

The ARI is adjusted to allow for the occurrence of pairwise agreements between random groups. The 

VSCC algorithm achieved mean ARI of 0.85 with a standard deviation of 0.02 compared to 0.81 and 

0.05 respectively for the MCLUST family of models. The VSCC algorithm also selected the relevant 

variables for discriminating between the groups in over 90 % of the data sets analysed. 

The method of Andrews & McNicholas (2014) has the advantages of being multivariate and 

considering the correlations that may exist between variables. However in order to effectively use 

this method it is necessary to determine the optimal threshold for the correlation between one of 

the variables which has not yet been selected and each of the variables which has already been 

selected. To address this the variable selection procedure needs to be carried out multiple times to 

determine what the optimal variable subset is. This greatly increases the work and time required to 

use this method. 

In the paper entitled “Hotelling’s T2 multivariate profiling for detecting differential expression in 

microarrays”, Lu et al. (2005) outline a method for identifying groups of differentially expressed 

genes (DEGs) from microarray data. The method of Lu et al. works by using the Hotelling’s T2 statistic 

associated with a variable as a measure of the discriminatory potential of that variable. During each 

round of variable selection the variable with the largest Hotelling’s T2 statistic is identified and 

selected. The p-value associated with a particular variable (or set of variables) is calculated. Provided 

the p-value is below the specified significance level (and lower than the p-value calculated during the 

previous round of selection) another round of variable selection will take place. Variable selection 

continues until the p-value associated with a particular round of variable selection is not lower than 

the p-value for the previous round, or until all the number of selected variables is larger than 

𝑛1 + 𝑛2 − 2 (𝑛1 and 𝑛2 being the sizes of groups 1 and 2).  

The main limitation of the method of Lu et al. is in the use of Hotelling’s T2 statistic as the metric of 

discriminatory potential. Hotelling’s T2 statistic assumes that the variance-covariance matrices are 

homogeneous across groups. This is often an invalid assumption when dealing with real data and is 

therefore a limiting factor in its application. 
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2.3.5 Filter variable selection methods based on conditional mutual information 

There are filter methods for variable selection which utilise mutual information (MI) for variable 

selection. Here I describe three methods and give their advantages and disadvantages. 

Todorov and Setchi (2014), describe the use of the conditional mutual information as an index for 

the selection of variables. The standard measure of information exchange is entropy, defined as; 

𝐻(𝑋) = −∑ 𝑝(𝑋 = 𝑢)log (𝑝(𝑋 = 𝑢))𝑢      (2.3.5.1) 

where 𝑋 is a random variable, 𝑢 is a value of 𝑋 and 𝑝(𝑋 = 𝑢) is the probability that X will take the 

value 𝑢. The entropy calculated in this way is always greater than zero and is bounded by the 

logarithm of the set of values which 𝑋 may take. The larger the value of 𝐻(𝑋) the more information 

we obtain by observing the values of 𝑋. If on the other hand the value is zero, when there is only one 

value 𝑢 with 𝑝(𝑋 = 𝑢) = 1, no information is obtained by observing 𝑋. 

This definition can be extended to produce the conditional entropy which is a measure of the 

amount of information that a given variable 𝑋 contributes to the outcome of interest 𝑌. The 

conditional entropy is calculated according to 

𝐻(𝑌|𝑋) = −∑ 𝑝(𝑌 = 𝑢, 𝑋 = 𝑣)𝑢,𝑣 log (𝑝(𝑌 = 𝑢|𝑋 = 𝑣))  (2.3.5.2) 

where 𝑢 and 𝑣 are the values that 𝑌 and 𝑋 can take respectively. The term 𝑝(𝑌 = 𝑢, 𝑋 = 𝑣) is the 

probability of 𝑌 equal to the value 𝑢 given that 𝑋 is equal to the value 𝑣.  

Conditional entropy can be further extended to produce the mutual information which is a measure 

of the distance between the probability distributions of 𝑋 and 𝑌 as the following 

𝐼(𝑌; 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)    (2.3.5.3) 

The mutual information calculated in this way is always greater than zero with an upper bound that 

is the minimum value of (𝐻(𝑌), 𝐻(𝑋)). The correct interpretation of the mutual information is that 

it represents the reduction in uncertainty of 𝑌 when we have knowledge of 𝑋. 

The naïve approach to variable selection using mutual information involves calculating the mutual 

information 𝐼(𝑌; 𝑋1…𝑘) for all subsets of variables from a 𝑝-dimensional multi-variate random vector 

𝑋, where 𝑘 < 𝑝. However, as the number of variables increases the computational requirements 

become prohibitive. The classical approach to variable selection using mutual information addresses 

this problem by calculating 𝐼(𝑌; 𝑋) for all 𝑋𝑖  and 𝑌 pairs of 𝑘 variables then selecting those variables 
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with the highest mutual information with 𝑌. However, this method is univariate and hence does not 

consider redundancy between variables.  

One way to include more than one 𝑋𝑖  variable is via the conditional mutual information (CMI). CMI is 

the change in the entropy of a variable 𝑌 conditional on variable 𝑋𝑖  compared to the entropy of the 

variable Y conditional on variables 𝑋𝑖  and 𝑋𝑗. The conditional mutual information is calculated as; 

𝐼(𝑌; 𝑋𝑖|𝑋𝑗) = 𝐻(𝑌|𝑋𝑗) − 𝐻(𝑌|𝑋𝑖 , 𝑋𝑗)    (2.3.5.4) 

where 𝐻(𝑌|𝑋𝑗) is the entropy of the variable 𝑌 conditional on 𝑋𝑗 and 𝐻(𝑌|𝑋𝑖, 𝑋𝑗) is the entropy of 

the variable Y conditional on 𝑋𝑖  and 𝑋𝑗. A further reduction in the computational requirements is 

achieved by utilising the mutual information instead of the conditional mutual information. Under 

the assumption that the ratio of information between variables 𝑋𝑖  and 𝑋𝑗 is not altered where 

conditioning is based on the class variable 𝑌. On that basis the CMI may be approximated as; 

𝐼(𝑌; 𝑋𝑖|𝑋𝑗) = 𝐼(𝑌; 𝑋𝑖) −
(𝐼(𝑌; 𝑋𝑖)∗𝐼(𝑋𝑖; 𝑋𝑗))

𝐻(𝑋𝑗)
  (2.3.5.5) 

Another filter method that utilises the mutual information is proposed by Yu and Liu (2003). They 

developed a method for variable selection which exploits knowledge of correlation between 

variables and thus their method is multivariate. The principle of this method is that a variable which 

is useful for discriminating between two or more groups will have relatively high correlation with the 

groups of interest but will have low correlation to other variables. By selecting variables with low 

correlation to other variables redundancy in the final variable selection is minimised. The linear 

correlation 𝑟 between two variables (𝑋, 𝑌) is calculated using the Pearson correlation coefficient 

𝑟 =
∑ (𝑥𝑖−𝑥�̅�)(𝑦𝑖−𝑦�̅�)𝑖

√∑ (𝑥𝑖−𝑥�̅�)
2

𝑖 √∑ (𝑦𝑖−𝑦�̅�)
2

𝑖
   (2.3.5.6) 

Here �̅�𝑖 and �̅�𝑖  are the mean values of the variables 𝑋 and 𝑌 respectively. It is possible to use this 

value to determine the level of correlation and redundancy between variables. However the Pearson 

correlation assumes associations are linear which may not be the case. The Pearson correlation also 

assumes equal correlations across the groups which may not be the case. For this reason Yu and Liu 

(2003) do not use the Pearson correlation coefficient and rather they calculate the information gain 

using the entropy  

𝐼𝐺(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)    (2.3.5.7) 
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According to this measure, a feature Y is regarded as being more correlated to variable 𝑋 than to 

variable 𝑍, if 𝐼𝐺(𝑋|𝑌) > 𝐼𝐺(𝑍|𝑌). There is still a limitation to using the information gain in that its 

calculation is biased toward variables which have more values. To address this problem and also 

normalize the calculated values Yu and Liu use the symmetrical uncertainty (SU) calculated according 

to the formula 

𝑆𝑈(𝑋, 𝑌) = 2 [
𝐼𝐺(𝑋|𝑌)

𝐻(𝑋)+𝐻(𝑌)
]     (2.3.5.8) 

A value of 1 for the SU indicates that knowledge of the value of one variable will allow us to predict 

the value of the other while a value of 0 indicates that the two variables are independent. 

To determine which variables are most relevant to classification and least redundant to other 

variables two parameters are calculated: the predominant correlation and the predominant feature. 

The predominant correlation is the correlation between some variable 𝑋𝑖and the group 𝑔 which is 

larger than the user-specified threshold δ and has the largest SU with the group 𝑔. The predominant 

feature is a feature 𝑋𝑖 that has the predominant correlation to the group 𝑔 of interest.  These 

calculations are implemented in the fast correlation based filter (FCBF) algorithm. The FCBF first 

calculates the SU values for all variables and uses these to identify the predominant variables as any 

variable with a symmetrical uncertainty greater than δ. This selection is then refined to identify 

predominant variables and remove redundant variables.  

The FCBF algorithm was compared to Relief-F, CorrSF and ConsSF by Yu and Liu (2003). CorrSF and 

ConsSF utilize correlation and consistency measures to select variables. The Relief-F algorithm 

selects nearest neighbours to probe the classification accuracy of variables. 10 datasets were 

subjected to each of the variable selection methods and the results recorded. Performance was 

analysed in terms of the number of variables selected and the running time for each method. In this 

regard the FCBF algorithm was found to run faster than the competing methods as well as selecting 

the smallest number of variables. When the data were analysed for accuracy the FCBF selections 

were shown to be at least equivalent to those made by competing methods. 

By analysing the correlations between variables and groups of interest the method of Yu & Liu is 

designed to eliminate redundancy between selected variables while favouring those variables which 

are highly correlated with the group(s) of interest. However the process of removing variables 

whose correlations are above a certain threshold implicitly assumes that the inclusion of such 

variables would not have any positive influence on the discriminatory performance of the final 

subset of variables. The method may eliminate variables which may have limited discriminatory 
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potential by themselves but may be capable of enhancing the discriminatory performance of other 

variables.    

Zhang and Zhang (2011) propose a 2-stage method for selecting variables based on the concept of 

cumulate conditional mutual information minimization. In the first stage of their method redundant 

variables are removed from the full set of variables. This is achieved using a dynamic sequential 

forward strategy to obtain a set of variables for which the mutual information with the class C is 

equal to the mutual information for the full set of variables. This is represented as 

I(S, C) = I(F, C)     (2.3.5.9) 

where 𝐹 is the starting set of variables and S is a subset of variables obtained following the removal 

of redundant variables in stage 1. Zhang & Zhang demonstrate that the first step of their method is 

theoretically guaranteed to produce a subset of variables containing all of the relevant variables. 

However as dimensionality increases so does the likelihood that S will still contain redundant 

variables. At higher dimensionalities the estimation of the conditional mutual information also 

becomes less reliable. In order to address these issues in the second step the conditional mutual 

information for each variable found in 𝑆 is compared to a predefined threshold ε.  

This method is compared to Relief-F, FCBF and correlation based feature selection (CFS). Nine 

benchmark datasets were used in this comparison ranging in sample size from 2,000 to 72,626 and 

in number of variables from 22 to 5,000. The methods were all compared in terms of the number of 

selected variables, the time taken to carry out variable selection and the accuracy of a naïve 

Bayesian classifier, k-nearest neighbour classifier and c4.5 classifier. The method of Zhang and Zhang 

exhibited similar performance to each of the methods used in the study.  

The quality of the variable subset returned by the algorithm of Zhang & Zhang (2011) is heavily 

dependent on the value assigned to the threshold ε. Zhang & Zhang (2011) do not explain how an 

appropriate value of ε can be identified. Presumably researchers are required to find the optimal 

threshold value by trial and error. Alternatively it may be possible to determine the optimal value 

analytically using prior knowledge of the dataset under study but this may not always be possible. 

Either way the performance of the method is heavily dependent on the threshold value but there is 

no means of identifying the optimal threshold presented in the article. A question remains about the 

reproducibility of the performance reported by Zhang and Zhang (2011).  

The RELIEF algorithm is another example of a univariate filter method. It was originally proposed by 

Kira and Rendell (1992). The RELIEF algorithm operates by calculating the quantity 𝑊[𝑋] for each 

variable. 𝑊[𝑋] is first set to 0.0. 



24 
 

𝑊[𝑋]: = 𝑊[𝑋] −
𝑑𝑖𝑓𝑓(𝑋,𝑅,𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝑋,𝑅,𝑀)

𝑚
  (2.3.5.10) 

𝑅 is an observation of the variable 𝑋. 𝐻 is an observation of variable 𝑋 from the same group (called 

a nearest hit). 𝑀 is an observation of variable 𝑋 from a different group (called a nearest miss). The 

term 𝑚 specifies the number of observations of variable 𝑋 which are used to estimate the weight 

𝑊[𝑋]. Dividing the difference terms by 𝑚 normalises the weights so they all fall within the interval [-

1, 1]. 

The quantity 𝑊[𝑋] calculated by RELIEF is itself an approximation of  

𝑊[𝐴] = 𝑃(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴|𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠) −

                              𝑃(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴|𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠) (2.3.5.11) 

which estimates the information gain associated with the variable 𝑋. 𝑊[𝑋] is used to assign weights 

to variables which may then be used to carry out variable selection. 

The original RELIEF algorithm is limited to scenarios with two groups. It is also not robust to 

significant levels of noise in data or missingness. Relief-F is an extension of RELIEF developed by 

Kononenko (1994) that is robust to noisy data and missingness and which can be applied to 

scenarios with more than 2 groups. 

Relief-F differentiates itself from the original RELIEF algorithm by selecting one nearest miss from 

each of the different classes (RELIEF selects a single nearest miss). The contribution of all of the 

nearest misses to the calculation of 𝑊[𝑋] is averaged and then weighted using the prior probability 

of each group. When using RELIEF-F 𝑊[𝑋] is calculated according to 

𝑊[𝑋]: = 𝑊[𝑋] −
𝑑𝑖𝑓𝑓(𝐴,𝑅,𝐻)

𝑚
+ ∑ [𝑃(𝐶) 𝑥 

𝑑𝑖𝑓𝑓(𝐴,𝑅,𝑀(𝐺))

𝑚
]𝐺≠𝑔𝑟𝑜𝑢𝑝(𝑅)  (2.3.5.12) 

𝐺 identifies the group which observation R is being compared to. 𝑃(𝐶) is the prior probability of 

each class. 

Kononenko compared the RELIEF-F extension to RELIEF-E. RELIEF-E is a simpler extension of RELIEF 

which selects a nearest miss from one of the different groups available. For this comparison 

Kononenko simulated 4 datasets. All of the variables in these simulated datasets were binary. The 

simulated datasets A and B had 3 and 4 groups respectively. Each of the groups in the first two 

datasets had equal prior probabilities. Each of the datasets A and B were composed of 3 random 

variables and 3 informative variables for each pair of groups. Thus dataset A (3 groups) had 12 binary 
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attributes while dataset B (4 groups) had 21 attributes. A third dataset (C) was created by replacing 

each informative attribute in dataset A with 3 binary attributes.  

The performance of RELIEF-F and RELIEF-E were assessed by calculating the linear correlation 

coefficient between the intended information gain of the variables and the factual information gain. 

The intended information gain was calculated using the probabilities that the simulated datasets 

were based on. The factual information gain was the value 𝑊[𝑋] (which is an estimate of the 

information gain). A high correlation between the intended and factual information indicated that 

the RELIEF method being used was effective at estimating the information gain associated with a 

particular variable. A low correlation indicated that the RELIEF method being used was less effective 

at estimating information gain. Datasets were simulated with up to 20 % noise. Two scenarios were 

investigated using either dependent or independent variables. In all scenarios the RELIEF-F method 

achieved high correlations with that of the RELIEF-E method. 

In his article Kononenko (1994) acknowledges that there can be differences between the factual 

information gain and the intended information gain. In his work this is attributed to the random 

number generation aspect of data simulation. This is a potential limitation of the RELIEF-F metric as 

it implicitly assumes the factual information gain and the intended information gain will be highly 

correlated. The RELIEF-F metric is available for use as part of the FSelector package and is 

implemented as part of the comparison study presented in Chapter 4. 

In summary, the information gain based filter methods are intuitive methods due to their 

interpretation in terms of information. Some are univariate (Todorov & Setchi, 2014, Kononenko, 

1994) and some are multivariate (Yu & Liu, 2003; Zhang & Zhang, 2011).  

2.3.6 Filter variable selection methods based on t-scores 

Filter methods can also be based on measures that are known as t-score metrics.  Ahdesmaki and 

Strimmer (2010) describe a method of variable selection which utilises correlation-adjusted t-scores 

as summary scores representing the discriminating ability of a particular variable. Linear discriminant 

analysis (LDA) assumes a mixture model for the p-dimensional data with multivariate probability 

density function, 

𝑓(𝑥) = ∑ 𝜋𝑔𝑓(𝑥|𝑔)𝐺
𝑔=1      (2.3.6.1) 

Where each of G groups is represented by a multivariate normal density, 𝑓(𝑥|𝑔). Then LDA is used 

to estimate a feature weight vector 𝜔𝑔 which is then used to calculate the correlation-adjusted t-

scores.  
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For this mixture model, given the a priori mixing weights 𝜋𝑔, the posterior probability of 

membership of group 𝑔 given some value 𝑥 is calculated according to; 

𝑃𝑟(𝑔|𝑥) =
𝜋𝑔𝑓(𝑥|𝑔)

𝑓(𝑥)
    (2.3.6.2) 

Ahdesmaki and Strimmer define the LDA discriminant score 𝑑𝑔(𝑥) as; 

𝑑𝑔(𝑥) = 𝑙𝑜𝑔{𝑃𝑟(𝑔|𝑥)}    (2.3.6.3) 

Once terms that are constant across groups have been dropped this equation becomes; 

𝑑𝑔
𝐿𝐷𝐴(𝑥) = 𝜇𝑔

𝑇𝛴−1𝑥 −
1

2
𝜇𝑔

𝑇𝛴−1𝜇𝑔 + 𝑙𝑜𝑔(𝜋𝑔) 

𝛴 here is the common variance-covariance matrix. 𝜇𝑔 represents the group mean which is replaced 

with the pooled mean 𝜇𝑝𝑜𝑜𝑙  the centred score can be interpreted as a log posterior ratio that is 

equivalent to the discriminant score 𝑑𝑔
𝐿𝐷𝐴. The discriminant score can then be simplified to  

∆𝑔
𝐿𝐷𝐴(𝑥) = 𝜔𝑔

𝑇𝛿𝑔(𝑥) + 𝑙𝑜𝑔(𝜋𝑔)    (2.3.6.4) 

The term 𝜔𝑔 is the feature weight vector and is calculated according to; 

𝜔𝑔 = 𝑅−
1

2𝑉−
1

2 (𝑥 −
𝜇𝑔+𝜇𝑝𝑜𝑜𝑙

2
)    (2.3.6.5) 

where 𝑉 is the diagonal matrix of variances and 𝑅 is the correlation matrix. James-Stein-type 

shrinkage rules are then applied to 𝑅, 𝑉 and 𝜋𝑔. The weight vector 𝜔𝑔 is used to calculate the 

correlation-adjusted vector of t-scores 𝜏𝑔
𝑎𝑑𝑗

 as follows  

𝜏𝑔
𝑎𝑑𝑗

= (
1

𝑛𝑔
−

1

𝑛
)

1

2
𝜔𝑔 = 𝑅−

1

2𝜏𝑔     (2.3.6.6) 

The vector 𝜏𝑔 contains the variable-specific t-scores between the mean of group 𝑔 and the pooled 

mean. These values are used to calculate summary scores 𝑆𝑘 for each variable which reflect the 

impact of each of them on group discrimination.  

𝑆𝑘 = ∑ (𝜏𝑘,𝑔
𝑎𝑑𝑗

)
2

𝐺
𝑔=1      (2.3.6.7) 

Where 𝑘 refers to the 𝑘𝑡ℎ variable and 𝑔 refers to the 𝑔𝑡ℎgroup. The scores produced in this way are 

de-correlated t-scores. Using these scores the variables can be ranked in terms of their 

discriminatory potential. Since the goal here is to select variables which can be used to train a 
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classifier the false non-discovery rate (FNDR) is used to set a threshold for variable selection. The 

FNDR can be estimated using the summary score 𝑆𝑘 for each variable and then it can be used to 

identify that subset of variables which does not contribute any information in terms of group 

separation. Once this subset of variables is identified it is removed from the full set of variables and 

the remaining variables are used for group predictions. 

Ahdesmaki and Strimmer (2010) analysed a gene expression dataset described in Singh et al., (2002). 

The dataset contains expression measurements for 6,033 genes from 102 patients. 52 of the 

patients had been diagnosed with cancer the remaining 50 had not (i.e. this was the non-disease 

group). Variable selection was carried out for two scenarios one assuming correlations of zero and 

one assuming non-zero correlations.  Under the assumption of zero correlations using a FNDR 

threshold of 0.2 with diagonal discriminant analysis (DDA) 166 genes were selected. Prediction 

errors were then estimated for this selection as well as selections made using LDA and the false 

discovery rate. Their method was compared to the empirical Bayes estimate method of Efron (2008) 

and the nearest shrunken centroids algorithm (PAM). The selections were assessed by calculating 

the prediction error of each method’s selections. The lowest error rate was found for the selections 

made using LDA and FNDR at 0.0550. This method chose 131 genes as being relevant to 

discrimination. The DDA-FNDR method selected 166 genes with a prediction error of 0.0640. These 

prediction errors were lower than those for any of the other methods used in this comparison 

including DDA using all 6,033 genes which had a prediction error of 0.3327. 

In summary, the use of cat scores as a filter variable selection method offers a multivariate 

assessment of the importance of each variable to the task of discriminating between groups. The use 

of a priori mixing weights may not be the optimal choice depending on how the weights are chosen. 

It may be the case that using a posteriori weights might lead to more accurate assessments of each 

gene.  

2.3.7 Probabilistic approach to variable selection 

Filter methods of variable selection method may also be based on probabilistic approaches. Liu and 

Setiono, (1996) describe such an approach. Their method is a type of Las Vegas algorithm, which is a 

form of probabilistic algorithm that is unbounded in relation to the resources used to identify the 

correct answer and is guaranteed to return a correct answer i.e. the set of variables that best 

discriminate between two groups (Brassard and Bratley, 1996). It selects sets of variables at random 

from the full set of variables. Once a subset S of variables has been chosen it is compared to the 

current best subset of variables. If the number of variables in the two subsets is equal then the 

inconsistency of both sets is compared. A smaller inconsistency is considered better. Where the 
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inconsistency of the new proposed subset is less than that of the current subset then the new 

proposed subset is identified as the best current selection. 

The method of Liu and Setiono requires a prespecified threshold γ of the inconsistency criterion. 

Inconsistency between two observations is identified when they are identical except in their class 

memberships. The inconsistency of the data described by a particular variable or set of variables is 

calculated by counting the total number of inconsistencies in the data and subtracting from this the 

largest number of instances of a particular class label (i.e. the class label with the highest frequency).  

To assess the performance of this method several real and simulated datasets were used (Liu and 

Setiono, 1996). The simulated datasets were CorrAL (6 binary variables, one of which is correlated to 

the class label 75 % of the time), Monk1, Monk2, Monk3 (each of these datasets contains 6 

variables, Monk1 and Monk3 require 3 variables only to describe the target concepts, Monk 2 

requires all 6 variables, Monk3 is also specified to contain some noise) and Parity5+5 (10 variables, 5 

of these are irrelevant). The real datasets are Vote (16 variables, 300 training instances, 135 test 

instances), Credit (15 variables, 490 training instances, 200 test instances), Labor (16 variables, 40 

training instances, 17 test instances) and Mushroom (22 variables, 8,124 instances of which 1,000 

are randomly selected for testing). 

For the simulated data Liu and Setiono (1996) were able to evaluate the performance of the variable 

selection method using knowledge of the relevant variables. Since the relevant variables from the 

real datasets were unknown it was necessary to evaluate the selections by calculating estimates of 

their performance. Using the method of Liu and Setiono the relevant variables were selected from 

the simulated datasets. For the real and simulated datasets the performance of selections was 

evaluated using the learning algorithms ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). Comparing the 

performance estimates before and after variable selection a drop in the error rate from 37.5 % to 

20.8 % for both ID3 and C4.5 was observed so the variable selection improved the classification. 

In summary, the inconsistency measure used in this method satisfies the definition of a filter method 

and is relatively easy to interpret. However, the actual mechanism of the selection method involves 

generating multiple random subsets of variables and then analysing these to determine the optimal 

subset. This aspect of the method is similar to how wrapper (see Section 2.4) and embedded 

methods operate in that it involves the analysis of multiple variable subsets. The drawback of this is 

that the time required to identify the optimal subset of variables increases with the total number of 

variables. 
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2.4 Wrapper methods for variable selection 

Another category of variable selection methods are wrapper methods (Kohavi & John, 1997; Xiong et 

al., 2001). The main principle of wrapper methods is using a specific classifier to evaluate every 

possible subset of variables for its discriminatory potential in order to identify the optimal subset of 

variables. If there are p potential discriminatory variables this leads to 2𝑝 number of subsets, and 

hence 2𝑝 runs of classification to evaluate the discrimination potential which can be time consuming 

and  impractical. The advantage is that wrapper methods are multivariate so that the relationships 

between variables are taken into account. However, as wrapper methods evaluate all possible 

variable subsets the computational overhead is considerably larger than competing methods 

particularly as the number of variables increases leading to a combinatorial explosion and an 

increase in the time taken to evaluate each variable subset. An outline of a general approach to 

wrapper variable selection follows. 

The typical format of a wrapper algorithm to select the set of the best discriminatory variables is as 

follows. Let us assume a set 𝐷 = {𝑆, 𝐿} where 𝑆 is the set of 𝑝 variables and 𝐿 is a vector containing 

the appropriate group labels. A set 𝑆′ is a pre-defined initial variable subset, let 𝜃 represent the 

stopping criterion. 𝑆𝑜𝑝𝑡 is the optimal subset of variables. The wrapper algorithm initialises by 

evaluating the initial variable subset 𝑆′, producing a value of 𝜑  which is a measure of the 

performance of the variable subset 𝑆′ that is calculated using a classifier. In each round of variable 

selection by the wrapper algorithm the value of 𝜑 is re-calculated for each new subset of variables 

which is generated by the algorithm. If this new value is greater than the previous one the new 

subset replaces the previous one as the optimal variable subset 𝑆𝑜𝑝𝑡. This process continues until 

the stopping criteria 𝜃 is reached. 

There are many implementations of wrapper methods, depending on the type of chosen 

classification method. Kirapech-Umpai and Aitken (2005) describe a wrapper method employing an 

evolutionary algorithm classifier for variable selection from large microarray datasets. The method 

they describe is an example of a genetic algorithm which maintains a list of predictors which are 

effective at classification between groups. This initial list is generated randomly from the complete 

set of variables and is refined with deletions and additions as different combinations of variables are 

applied to the classification task. Petracoin et al. (2002) describe a wrapper method employing an 

iterative search algorithm classifier applied to the task of identifying markers which may be used to 

identify ovarian cancer. In their work mass spectroscopy data is collected on cancerous and non-

cancerous samples. This data is then subjected to a combination of clustering and genetic algorithms 

designed to identify those proteomic patterns which can be used to differentiate between cancerous 
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and non-cancerous samples. Xiong et al. (2001) outline the use of a wrapper method to identify 

biomarkers in gene expression studies. Using a subset of variables they use the classification 

accuracy of three classifiers, (Fischer linear discriminant analysis, support vector machine and the 

logistic regression (LR) model) as the assessment criteria. Inza et al. (2004) describe the use of a 

wrapper method which employs the classifier that will be used with a particular model. A subset of 

variables is applied to the task of classification using the chosen classifier and the performance of 

this subset is assessed using the leave-one-out-cross-validation (LOOCV) technique which returns 

percentage accuracies.  

In summary, the advantage of wrapper methods is that they are all multivariate methods and that 

they evaluate all possible variable subsets and thus identify the best possible subset for 

discriminating between groups. Conversely the main disadvantage of wrapper methods is that this is 

a non-deterministic polynomial time (NP) hard problem and when there are a large number of 

variables these methods have large computational overheads. Another disadvantage is that they are 

classifier-specific so the variable subset identified using a particular classifier may not work as well 

with an alternative classification method. 

2.5 Embedded methods for variable selection 

Another type of variable selection method is the embedded methods. They are a hybridisation of 

both filter and wrapper methods. The principle is to extend a specific classifier into a framework that 

facilitates both classification and variable selection in one step. In other words the variable selection 

is embedded into the classifier. This is facilitated by calculating a contribution score (also called 

variable importance) of each variable for the classification of the subjects. The classification is 

therefore executed only once. 

Depending on the particular selection strategy employed these estimates of variable importance can 

be used to remove the worst-performing variables from the variable set and then re-evaluate the 

remaining variables or to keep the best-performing variables from the variable set and add them to 

the final (optimal) variable selection. Because these methods do not evaluate every possible variable 

subset the computational overhead is considerably reduced compared to wrapper methods.  

Typically, the embedded methods assume a relationship between group membership and the 

variables. Zakharov and Dupont (2011) assume a logistic model between the group membership and 

the predictors. They apply a logistic regression model to the task of variable selection as part of an 

embedded approach. Initially their method ranks the available variables univariately using a 

modified t-test. The modified t-statistic is calculated according to the formula 
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𝑡𝑗 =
𝜇𝑗+−𝜇𝑗−

√
𝜎𝑗+

2

𝑚+
+

𝜎𝑗−
2

𝑚−

     (2.5.1) 

Here 𝜇𝑗+ and 𝜇𝑗− are the average values of the feature j for the positively and negatively labelled 

examples specified by 𝑚+ and 𝑚−, while 𝜎𝑗+ and 𝜎𝑗− are the standard deviations. Once calculated 

the values of this t-statistic are used to rank the variables. This ranking of the variables is then 

normalised to produce a probability distribution vector. The probability distribution vector is applied 

as a feature sampling probability from which variables are selected. Logistic regressions carried out 

using subsets of these variables and the predictive performance of these regressions are used to 

refine the probability distribution vector of the variables until the optimal subset is identified. The 

authors apply their method to produce a regularised logistic regression model which may be suited 

to the selection of genes from microarray data. A drawback of this method is that the initial rankings 

which are used to construct feature sampling probabilities are univariate in nature. However the use 

of a standard t-test in the ranking of variables is far less computationally demanding than alternative 

ranking metrics and the method benefits from its use.  

Ju and Brasier (2013) describe an embedded method based on random forests (RF). Multiple trees 

are grown by randomly selecting variables at each split. By allowing the trees to develop fully (i.e. no 

pruning of any trees) the authors minimise bias in the final trees. Multiple forests are grown in an 

iterative process which removes a proportion of the worst performing variables at each iteration. 

Diáz-Uriarte and Alvarez de Andres (2006) describe the use of random forests for variable selection 

from gene microarray data for differentiating between cancerous and non-cancerous samples. The 

optimal variable subset for discriminating between groups is associated with the forest that has the 

best performance. Jiang et al. (2004) also describe the use of random forests to select genes from 

microarray data. Ensemble method selections which are made using random forests are an 

aggregate of multiple classification trees (500 is a common number of trees in a random forest) and 

it may be expected that this will produce a final selection which is an accurate representation of the 

discrimination potential of each variable. At the same time the “random” element means that, 

particularly for high dimensional data no two forests are ever the same making it necessary to carry 

out considerable validation of results to confirm their accuracy.  

Tang and Mao (2007) describe a method for carrying out variable selection from datasets containing 

mixtures of continuous and nominal variables. This method is termed the mixed feature selection 

algorithm. For a dataset containing mixtures of continuous and nominal variables the variables are 

split into continuous and ordinal variables in the first step. Each of the continuous (or ordinal) 

variables is added to the set of previously selected variables 𝑆 and the performance of this new 
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subset is assessed. For continuous variables this is done using the Mahalanobis distance. For ordinal 

variables this is done using the SU. 

Having identified the optimal continuous and ordinal variable from the remaining candidate 

variables each of these two variables is individually added to 𝑆. The performance of the resultant 

dataset(s) is then assessed by estimating the classification error probability. This is calculated 

according to; 

𝑃𝑒(𝑋, 𝑍) = ∑ 𝑝(𝑧𝑖)𝑃𝑒(𝑋|𝑧𝑖)
𝑁
𝑖=1      (2.5.2) 

This gives us the error probability for a mixed feature set (𝑋, 𝑍) when the data could belong to one 

of G groups 𝑦𝑗  where 𝑗 = 1,2,… , 𝐺. The multi-nomial variable 𝑧 contains 𝑁 possible distinct values 

representing value-combinations of the nominal feature 𝑍. The maximum likelihood estimate of 

𝑝(𝑧𝑖) is the ratio of the frequency of sample associated with the value-combination 𝑧𝑖, (denoted as 

𝑛𝑖), to the number of samples. 

𝑝(𝑧𝑖) =
𝑛𝑖

𝑛
     (2.5.3) 

In order to calculate the conditional error probability 𝑃𝑒(𝑋|𝑧𝑖) it is necessary to decompose the 

variable space into a set of mutually exclusive feature subspaces based on the multi-nomial variable 

𝑧. Following decomposition of the variable space the conditional error is estimated using k-nearest 

neighbours.  

�̂�𝑒
𝐾𝑁𝑁(𝑋|𝑧𝑖) = 1 −

1

𝑛𝑖
∑

𝑘𝑔𝑙

𝑘

𝑛𝑖
𝑙=1     (2.5.4) 

𝑘𝑔𝑙 is defined as the number of subjects that belong to the class 𝑔 and 𝑘 is the number of nearest 

neighbours. The best variable between the optimal continuous and ordinal variables identified in the 

first step is now identified using the estimated error probability. 

The mixed feature selection algorithm was assessed using simulated and real datasets. One 

simulated scenario comprised a single continuous variable and a single nominal variable both of 

which were relevant to discrimination. Of the remaining 2 scenarios in one the nominal variable was 

irrelevant to discrimination and in the other the continuous variable was irrelevant to discrimination.  

The mixed feature selection algorithm was compared to the Relief algorithm (Kononenko, 1994), the 

correlation based feature selection (CFS) method (Hall, 1999) and a method using the generalised 

Mahalanobis Distance of Bar-Hen and Daudin (1995). Each method was applied to the task of 

variable selection from each of 4 real datasets. The Cleveland heart disease dataset consists of 
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observations on 303 subjects of 7 nominal variables and 6 continuous variables. The Australian credit 

screening dataset consists of observations on 690 subjects of 9 nominal variables and 6 continuous 

variables. The Horse colic dataset consists of observations on 368 subjects of 15 nominal variables 

and 7 continuous variables. The Pittsburgh bridges dataset consists of observations on 108 subjects 

of 8 nominal variables and 3 continuous variables. 

For each of the simulation scenarios the values of the estimated error probability (Tang and Mao, 

2006), Mahalanobis distance, generalised Mahalanobis distance and the SU were calculated. Within 

each scenario the sample size and number of levels for the nominal variable were varied to assess 

the sensitivity of each metric. The estimated error probability exhibited similar performance to the 

Mahalanobis distance in terms of its response to changes in sample size and number of levels. The 

generalised Mahalanobis distance out-performed both the estimated error probability and the 

Mahalanobis distance. However the best performance was achieved by the SU metric which showed 

the greatest difference between the differing sample sizes and number of levels within each 

scenario. 

For the Cleveland heart disease, Australian credit screen and Pittsburgh bridges datasets the mixed 

feature selection algorithm was out-performed by each of the competing methods used in the study. 

In particular Relief-F and the CFS method had larger estimated classification performance. I can only 

assume that the Relief-F and CFS methods were better able to evaluate the discriminatory potential 

of the variables in these datasets and so the resulting selections performed better than those made 

using the mixed feature selection algorithm. For the horse colic dataset all 4 methods achieved 

similar performance in terms of number of variables selected and classification performance 

estimates.  

The most obvious issue with the work presented by Tang and Mao is that their method is out-

performed by other methods applied to 3 out of 4 real datasets and only achieves equivalent 

performance to these same methods in the fourth dataset. However, even when analysing results 

for simulated datasets the method of Tang and Mao appears to be more responsive to relevant 

continuous variables. When the number of nominal levels is increased there is a clear increase in the 

value of the estimated error probability when paired with a relevant continuous variable. When 

paired with an irrelevant continuous variable this increase almost disappears. The error bars for each 

metric are also overlapping in all scenarios with the exception of the SU estimates which are clearly 

separated in all scenarios. The effort required to implement the method of Tang and Mao does not 

seem to justify the resultant performance. 



34 
 

The method of Doquire and Verleysen (2011) uses MI to carry out variable selection from datasets 

containing mixtures of continuous and nominal variables. They refer to this as the hybrid-MI 

method. Continuous and nominal variables are first identified and separated. Sets of continuous 

variables and sets of nominal variables are then ranked independently using estimated MI. The 

performance of the first ranked variable in each list is then estimated and the variable which 

performs better using a specific classifier is added to the list of selected variables and removed from 

the relevant continuous or nominal variable list. The algorithm compares the top-ranked variables 

from each list at each step selecting the best performing variables until the lists have been 

exhausted (i.e. all variables have been selected). In this way the algorithm uses a filter approach (to 

produce the ranked lists of continuous and nominal variables) and an embedded approach (to assess 

subsets of the ranked variables using a specific classifier).  

For continuous variables the MI is estimated using the principle of nearest neighbour methods. The 

MI is calculated according to 

�̂�(𝑋) = −𝛹(𝑘) + 𝛹(𝑁) + 𝑙𝑜𝑔(𝑐𝑑) +
𝑑

𝑛
∑ 𝑙𝑜𝑔(휀𝑥(𝑛, 𝑘))𝑁

𝑛=1   (2.5.5) 

In this formula 𝑘 is the number of nearest neighbours, 𝑋 is a random variable and 𝑁 is the number 

of observations of the variable 𝑋. 𝑐𝑑  is the volume of a unitary ball of dimension 𝑑. 휀𝑥(𝑛, 𝑘) is twice 

the distance from the nth observation 𝑥 to its kth nearest neighbour. 𝛹 is the digamma function. 

For nominal variables the MI is estimated using the minimal-Redundancy maximal-Relevance 

criterion (mRmR). Denoting 𝑆 as the set of indices of variables which have already been selected the 

mRmR criterion for a variable 𝑖 which has not yet been selected is calculated using the formula 

𝑚𝑅𝑚𝑅(ƒ𝑖) = 𝐼(ƒ𝑖; 𝑌) −
1

|𝑆|
∑ 𝐼(ƒ𝑖; ƒ𝑗)𝑗𝜖𝑆   (2.5.6) 

It should be noted that all estimates of mRmR are bivariate. The terms ƒ𝑖 and ƒ𝑗 are the probability 

distributions of the predictor variables and the response variable respectively. 

Doquire and Verleysen compare their method to the method of Hu et al. (2008) using both 

simulated and real datasets. In brief the method of Hu et al. operates by selecting those variables 

which share their class label with a sufficient number of neighbours. Neighbours in this method are 

defined as two points whose nominal attributes are identical when one is amongst the k-nearest 

neighbours of the other. Alternatively two points may be considered neighbours if the values of their 

continuous variables are within a sufficient distance of each other. As Doquire and Verleyson 
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observe the effectiveness of the method has the potential to vary depending on how “neighbours” 

are defined.  

The simulated dataset contained two nominal variables each possessing two levels with equal prior 

probability of a point belonging to one level or the other. The dataset also contained two continuous 

variables uniformly distributed over the range [0; 1]. The only relevant variable in this dataset was 

𝑋3 and this was ranked first in only 28 out of 50 repetitions using the method of Hu et al. and 50 out 

of 50 repetitions using the method of Doquire and Verleyson. 

The real datasets analysed were titled Heart, Hepatitis, Australian credit and Contraception. The 

Heart dataset contained 6 continuous and 7 nominal variables measured on 270 samples across 2 

groups. The Hepatitis dataset contained 6 continuous and 13 nominal variables measured on 80 

samples across 2 groups. The Australian credit dataset contained 6 continuous variables and 8 

nominal variables measured on 690 samples across 2 groups. The Contraception dataset contained 2 

continuous and 7 nominal variables measured on 1,473 samples across 3 groups. Two different 

classifiers were used, a naïve Bayes classifier and a 5-nearest neighbours classifier. 

The performance of each classifier was estimated using selections made based on the methods of 

Hu et al. and Doquire and Verleyson. Performance was assessed by estimating the error rate 

associated with the trained classifiers. Lower error rates were observed using each classifier with 

selections made by the Hybrid-MI method from the Hepatitis and Contraception datasets. For the 

Heart and Australian credit datasets the differences in error rate were not as great. 

There are several issues with the work of Doquire and Verleyson. First a point of clarification; 

Doquire and Verleyson refer to their method as using a wrapper approach to select variables from 

the ranked lists of continuous and nominal variables. This is not accurate. This part of their method 

uses a specific classifier to select variables in the process of training the classifier which satisfies the 

definition of an embedded (not wrapper) method. The primary difference being that every possible 

variable subset is not evaluated in the Hybrid-MI method. The second problem is that the Hybrid-MI 

method does not select a subset of variables. Instead it first ranks all variables then trains a classifier 

in a specific order based on the performance of the ranked variables. Ultimately what is produced is 

a classifier which uses all of the variables in a set order. There is no stopping criterion by which the 

user may determine that the optimal subset has been selected. The third issue relates to the results 

of the comparison of the Hybrid-MI method with the method of Hu et al. There is a clear disparity in 

the performance difference between the two methods based on the proportion of nominal variables 

comprising the test datasets. The hepatitis and contraception datasets have the largest proportion 
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of nominal variables (13 nominal to 6 continuous and 7 nominal to 2 continuous respectively) and 

the best performance of the Hybrid-MI method is observed for these datasets. The performance of 

the Hybrid-MI method appears to be skewed in favour of datasets containing a large proportion of 

nominal variables. Finally the calculation of mRmR for nominal variables is bivariate. While this is not 

as limiting as a univariate context it is also not as comprehensive as a multivariate context. 

Guyon et al. (2002) describe a method of carrying out variable selection which utilises a support 

vector machine (SVM) classifier. The main operating principle of SVMs is that they project data into 

higher-dimensional spaces. Once a suitable higher dimensional space has been identified which is 

capable of separating the groups comprising the dataset the optimal hyperplane can be calculated 

(this is the hyperplane which separates the data with the maximal margin (Cortes and Vapnik, 

1995)). The optimal hyperplane is defined by the weight vector 𝑤 which is a linear combination of 

the variables used to train the classifier (Guyon et al., 2002). 

𝑤 = ∑ 𝛼𝑘𝑦𝑘𝑥𝑘𝑘      (2.5.7) 

In this equation 𝑦𝑘  is the group label (either -1 or +1 in the 2-group scenario), 𝑥𝑘 is an n-dimensional 

vector used to train the classifier and 𝛼𝑘 is the weight associated with this vector. When a SVM is 

being trained it only uses a subset of the training examples. The vectors comprising this subset are 

those which are closest to the decision boundary and which lie on the margin (these are called 

support vectors). As such the weights associated with most vectors are zero (Guyon et al. 2002). Any 

vector which has a non-zero weight is a support vector.  

The method of Guyon et al. is a recursive feature elimination (RFE) method. A SVM is first trained 

using the available data. The weight vector 𝑤 is then computed. In order to rank each of the 

candidate variables the weight calculated for each is squared to produce the ranking criterion c. 

𝑐𝑖 = (𝑤𝑖)
2     (2.5.8) 

Here the subscript 𝑖 indicates that we are considering a single variable (i.e. we are no longer 

considering the vector of all variables). Each time the SVM classifier is trained in this way the variable 

which has the smallest ranking criterion is removed from the set of candidate variables.  

The method of Guyon et al. (2002) was assessed using two datasets composed of gene expression 

vectors collected from DNA micro-arrays. The first dataset consisted of 72 bone marrow samples 

from individuals with acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). 

Altogether there were 47 ALL samples and 25 AML samples. The expression levels of 7,129 genes 

were measured on each sample. The second dataset consisted of 22 samples of healthy colon tissue 
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and 40 samples of colon cancer. The expression levels of 2,000 genes were measured on each 

sample. 

Guyon et al. compared their SVM-RFE method to a method developed by Golub et al. (1999) which 

used correlations between variables and groups to rank variables and make selections. In the 

method of Golub et al. (1999) a classifier was trained using weights based on the correlation 

coefficients. Both classifiers gave identical results for a particular set of genes. However the SVM-RFE 

method selected smaller numbers of genes which also achieved better performance than selections 

made using the method of Golub et al. (1999).  

The comparison of SVM-RFE and the method of Golub et al. indicated that a linear SVM classifier and 

the classifier of Golub et al. exhibited equivalent performance for a given set of genes. Conversely 

the identity of the particular genes selected had a significant impact on the performance of the two 

classifiers. In this respect the smaller number of genes (8, 16) selected by the SVM-RFE method 

exhibited equivalent performance to those selected by the method of Golub et al. when using both 

classifiers and the leukemia dataset. Equivalent performance was also observed using both 

classifiers with genes selected using the method of Golub et al. which selected 64 genes. For the 

colon cancer dataset the overall performance of the SVM classifier on selections made using SVM-

RFE (8 genes) and the method of Golub et al. (8 genes) was better than that observed using the 

classifier of Golub et al. (32 genes for SVM-RFE, 16 genes using the method of Golub et al.). 

There are a number of shortcomings with the work presented by Guyon et al. the first of which is 

that pre-processing of datasets appears to be essential to the effective application of their method 

however, only very general details on this pre-processing are provided. The SVM-RFE method also 

requires the specification of at least two parameters (referred to as “soft margin parameters) but 

the details of how the optimal parameters values were determined in this work are not presented. In 

respect of the comparison of SVM-RFE to the method of Golub et al. the comparison of the two 

methods was achieved by analysing the performance of two different classifiers (linear SVM and the 

classifier of Golub et al.) using the gene selections made by the SVM-RFE method and the method of 

Golub et al.. The SVM classifier used in the comparison is linear as is the classifier used as part of the 

SVM-RFE method. It seems prudent to question whether the results presented are subject to some 

form of over-fitting. Would the same performance have been observed had a different form of 

classifier been used? Finally it must be noted that while the SVM-RFE method achieved similar 

performance to the method of Golub et al. using smaller numbers of genes this was most likely at a 

considerable additional cost in terms of the time and computational resources required (relative to 

the method of Golub et al.). 
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In summary the main advantage of embedded methods is that they are multivariate in nature. In 

addition, relative to wrapper methods the computational workload is greatly reduced when using 

embedded methods. A disadvantage is that depending on the classifier being used embedded 

methods can be quite complex and require considerable tuning of parameters to achieve optimal 

performance. In this thesis I use the varselRF method employing random forests as part of the 

comparison study presented in Chapter 4. 

2.6 Information evaluation in signal-processing theory and SNR measures 

A relevant concept for classification is the concept of the signal-to-noise (SNR) ratio, because we 

want to find variables that carry the largest amount of information about the groups of interest (e.g. 

why one patient is in group 0 and another is in group 1). The SNR concept is old and is defined as the 

amount of signal divided by the amount of noise within a given system (Bérubé and Wu, 2000; Kaiser 

et al., 1998; Czanner et al., 2015). Using this definition there are multiple versions of the SNR in 

existence based on the particular types of signal and the type of noise. 

Examples of the application of the SNR include its use in researching how background noise affects 

speech understanding (Maamor & Billings, 2016). Jiang et al. (2016) describe identifying the minimal 

SNR which facilitates stabilization of single-input single-output linear time-invariant systems. 

Another example of application of SNR is the comparison of magnetic resonance imaging (MRI) 

images obtained using different hardware and protocols (Welvaert & Rosseel , 2013).  

The work of Bérubé and Wu (2000) shows how the concept of the SNR is applied to statistical 

process control. The signal is the output of the production process and the noise is anything which 

introduces variation into the production process. The basic premise in statistical process control is 

that by quantifying and segmenting different sources of variation in the production process it is 

possible to reduce the level of variation between production runs. In this way a larger proportion of 

final products will be within the acceptable margins of deviation when compared to the desired 

product specification. In the design of the production process control factors are sources of variation 

which the experimenter can control while noise factors are those sources of variation which cannot 

be controlled. The signal-to-noise ratio used in this paper was originally described by Taguchi (1991), 

𝑆𝑁𝑅 = 𝑙𝑜𝑔
𝜇2

𝜎2     (2.6.1) 

In this formula 𝜇 is the value of some production characteristic 𝑌 and 𝜎 is the variation in the 

production process associated with noise factors. These parameters are estimated using the 

measured values of 𝑌 and the associated variances. The calculation of the SNR facilitates segregation 



39 
 

of control factors into adjustment and non-adjustment factors. Adjustment factors are those which 

affect neither the mean values of 𝑦 nor the SNR value. Non-adjustment factors are those which 

affect the variability measured by the SNR. Successful identification of adjustment and non-

adjustment factors allows the experimenter to identify the optimal levels of the control factors.  

Bérubé and Wu (2000) compare the SNR to alternative methods which use the standard deviation. 

Additive and multiplicative models of the behaviour of noise factors within the system were used. 

Comparisons were carried out across a range of case studies favouring different variables in each 

case. Each of the scenarios was implemented by tweaking the ratios between the variable regression 

coefficients and non-adjustment factor functions measuring dispersion effects. The authors conclude 

that using this SNR where the standard deviation of the response 𝑌 is linearly proportional to the 

mean the correct identification of the control factors and their optimal values is possible. However, 

any deviation from this condition means that identification of the control factors and their optimal 

values can no longer be assured 

Welvaert and Rosseel (2013) present a definition of the SNR which is designed for use with 

functional magnetic resonance imaging (fMRI) images. Normal somatic activity within the subject 

(e.g., vascular and respiratory activity) is recorded as noise in the fMRI image. Activity within the 

fMRI system itself may also contribute to noise levels. A special form of temporal SNR (tSNR) is 

calculated utilising knowledge of the mean signal over time. This SNR is calculated according to the 

formula; 

𝑡𝑆𝑁𝑅 =
�̅�

𝜎𝑁
      (2.6.2) 

In this formula 𝑆̅ is the magnitude of the activation signal and 𝜎𝑁 is the standard deviation of the 

noise signal. The activation signal measured in the course of an fMRI is the energy released by nuclei 

in the organic structures being scanned (Brown et al., 2007). More specifically in the presence of a 

magnetic field oscillating at the appropriate resonance frequency these nuclei are capable of 

absorbing energy from the field. As electrons in the nuclei return to their ground, unexcited state 

(i.e. release the energy they had previously absorbed) the associated energy release can be detected 

by a detector coil in the fMRI apparatus. The resonance frequency is proportional to the magnetic 

field of the nucleus. This fact is exploited to produce a signal that is a mixture of multiple different 

frequencies all peculiar to the specific region from which they originated, essentially a topographical 

map of the structure of interest. A limitation of this SNR definition is that the baseline 

measurements are highly dependent on the specific scanning parameters which are used to collect 

the fMRI data. Consequently this SNR is not ideally suited to the analysis of stimulus-response fMRI 
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data. This is because the SNR calculated may not allow for fluctuations in the activation signal which 

arise due to the task being carried out.  

Recently a SNR extension to generalised linear models for general point processes of individual 

neuronal electrical discharges was proposed (Czanner et al., 2015).  The signal is the stimulus that 

makes neurons to emit electrical discharges. The noise is the thermal noise in neurons and the 

network activity of the neighbouring neurons. The work of Czanner et al (2015) extends the SNR into 

systems where the noise can be described by a Poisson distribution. This is achieved by replacing the 

sums-of-squares by deviances. The deviance is the difference in log-likelihood between the 

considered model and a saturated model. A random variable with Poisson distribution has the mean 

equal to the standard deviation. Hence the SNR of Czanner et al. (2015) implicitly allows the variance 

of the noise to vary with the mean of the signal. 

To develop their SNR Czanner et al (2015) first demonstrate that standard SNR computations are 

valid estimates of the ratio of expected prediction errors (EPEs). In turn the ratio of EPEs may be 

estimated using the ratio of sum of squares of residuals for linear Gaussian models with covariates. 

To extend the SNR to generalized linear models (GLMs) the sum of squares in the EPEs are replaced 

by the residual deviances. The final SNR developed for neuronal systems is calculated for a single 

neuron according to; 

�̂�̅𝑁𝑅𝑆 =
𝐷𝑒𝑣(𝑛,�̂�0,�̂�𝐻)−𝐷𝑒𝑣(𝑛,�̂�)−𝑑𝑖𝑚(�̂�0)−𝑑𝑖𝑚(�̂�𝐻)+𝑑𝑖𝑚(�̂�)

𝐷𝑒𝑣(𝑛,�̂�)+𝑑𝑖𝑚(�̂�)
    (2.6.3) 

where the term 𝐷𝑒𝑣 is the residual deviance (Nelder & McCullagh, 1989). In this equation �̂�𝐻 is the 

parameter vector describing the history of neural activity, �̂�0 is the intercept term taken 

from the GLM, (i.e. its’ value relates to the resting potential of the neuron), and 𝑑𝑖𝑚 is the 

number of parameters associated with each 𝛽 term. The relationship between the SNR and the 

coefficient of determination 𝑅2 is also demonstrated in this work (Czanner et al., 2015). It is also 

shown that because Cohen’s effect size (Cohen, 1992) is calculated using the coefficient of 

determination there is a link between Cohen’s effect size and the SNR. The Cohen’s effect size is 

calculated according to the formula  

ƒ2 =
𝑅2

1−𝑅2     (2.6.4) 

Here 𝑅2 is the explained variance. 
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To our knowledge there is no literature using the SNR in a scenario where the signal is defined as 

membership of one of two groups (i.e. healthy vs. disease) and the system measurements are the 

measured values of the potential predictor variables.  

2.7 Discussion 

In this chapter I have provided an overview of several existing methods of variable selection from 

amongst the categories of filter, wrapper and embedded methods. I have also provided an 

explanation of the method of PCA and an introduction to the concept of a signal-to-noise ratio. 

The goal of variable selection is to identify a set of those variables with the strongest ability to 

discriminate between groups. In this way a parsimonious approach to model-building and prediction 

can be achieved. PCA is an alternative method which attempts to capture the information accounted 

for by variables and produce new variables based on the original variables. The information is 

measured by variance. However PCA is limited by ignoring the group membership, i.e. the group 

membership is not utilised in the process of finding the set of discriminatory variables. 

I have reviewed several different filter methods of variable selection in this chapter. A large variety 

of metrics exist which are employed in filter methods. Most popular are metrics based on 

information gain, distance correlations and t-scores. While there is considerable potential for 

information capture with these different metrics a drawback is that many of them do not consider 

relationships between variables. In this way many filter methods are univariate in nature. 

I also provided an overview of wrapper and embedded methods. Both wrapper and embedded 

methods are multivariate methods in the sense that they do consider relationships between 

variables, which is an advantage compared to filter methods. However what makes embedded and 

wrapper methods effective is that they evaluate a large number of possible variable subsets in order 

to identify the optimal subset. Unfortunately the higher the dimensionality of a dataset becomes the 

less practical wrapper or embedded methods become. 

Finally, since I was concerned about the selection of a set of variables that contain the most 

information about the groups, I introduced the general concept of measuring the information and in 

particular I focused on the signal-to-noise ratio (SNR).  SNR has been applied with a variety of 

purposes including as a means of regulating production by controlling sources of variation.  

In the light of these points the specific objectives of this thesis are; 
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Objective 1: Propose improvements to the existing variable selection methods and create a novel 

algorithm for multivariate normal data. 

i. Evaluate the properties of the new algorithm in simulated data. 

ii. Compare the novel algorithm with the existing variable selection methods. 

iii. Evaluate the ability of the novel algorithm to handle non-normal data. 

iv. Evaluate the ability of the novel algorithm to deal with data missingness and 

determine the most suitable means of imputation for use with the algorithm. 

v. Evaluate imputation techniques for missing data: using mean values, multiple 

imputation and alternative methods. 

Objective 2: Extend the novel algorithm to imaging data by incorporating the spatial correlations 

Objective 3: Application of the novel algorithm to real datasets for the purpose of variable selection. 

Four datasets are considered: 

i. The Diabetic REtinopathy: FUnctional and Structural study, (DREFUS) dataset: 

Section 6.2, 27 variables, 2 groups; early diabetic retinopathy and no diabetic 

retinopathy, imbalanced groups, missingness. 

ii. The Individual Risk-based Screening for Diabetic Retinopathy (ISDR) dataset: Section 

6.3, 28 variables, 2 groups; Referable DR and Non-referable DR, imbalanced groups, 

missingness. 

iii. The MRet dataset: Section 6.4, 81 variables, 2 groups; Survival and Death, 

imbalanced groups, missingness. 

iv. The Keratoconus dataset: Section 6.5, 17 variables, 2 groups; Healthy and 

Keratoconus, balanced groups, no missingness.   

 

2.7.1 DREFUS 

The ultimate clinical goal of DREFUS (Harding et al., 2010) was to elucidate the relationships 

between functional and structural variables, if the relationship depends on the level of DR, and 

which variables (or set of variables) can best discriminate between the DR stages. This is important 

in clinical settings because it can help to identify the measurements that should be used to find eyes 

that are at risk of having DR. The current gold standard is fluorescein angiography (FA) which is used 

to determine the 4 stages, but this is an expensive and invasive technique. Therefore the clinical 

importance of DREFUS was to evaluate less invasive and less expensive measurements that could 

differentiate between the 4 stages of DR. Measurements that are particular to the DREFUS dataset 
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include microperimetry (MP), multifocal electroretinogram (mfERG), oscillatory potential (OP), 

cholesterol and HbA1c.  

Perimetry is a technique used to quantify the visual field. Perimetry measurement can be 

complicated in individuals with visual impairment which compromises their visual fixation ability. MP 

uses infrared light to illuminate the fundus. By utilising infrared light projection MP addresses the 

issue of impaired fixation as light projection is independent of fixation. Thus MP facilitates an 

examination of the fundus topography which has a high correlation between fundus details and light 

sensitivity (Rohrschneider et al., 2008). Electroretinography uses an electrode placed on the surface 

of the eye to monitor electrical responses of the retina to light stimulation. Full-field 

electroretinography assesses the response of the entire retina. Multi-focal electroretinography 

assesses the response of the retina at multiple different locations which allows a topographical 

mapping of the functionality in the central 40o – 50o of the retina (Lai et al., 2007). Oscillatory 

potentials (OP) are High-frequency, low-amplitude wavelets occurring on the ascending limb of the 

b-wave (associated with photopic and scotopic responses) with frequencies between 100 and 160 

Hz. Diminished OPs are associated with conditions such as familial exudative vitreoretinopthy 

(Ohkubo and Tanino, 1987) and diabetic retinopathy (Kizawa et al., 2006).  

2.7.2 ISDR 

Another ophthalmic application where variable selection is needed is for discriminating between 

referable sight threatening diabetic retinopathy and non-referable sight threatening retinopathy in 

subjects with diabetes.  DR is a progressive disease of the retina which causes blindness. Early and 

late stage DR is asymptomatic however, late stage DR can result in blindness if not treated. Digital 

photography is effective at screening for sight-threatening diabetic retinopathy (STDR). In England it 

is recommended that individuals with diabetes over the age of 12 are screened annually. While 

screening is integral to the early detection of STDR the costs of annual screening to the NHS are 

considerable. The ISDR dataset came from a study called “Introducing personalised risk based 

intervals in screening for diabetic retinopathy: development, implementation and assessment of 

safety, cost-effectiveness and patient experience” (Harding et al, 2011) which is referred to as the 

ISDR study. The motivation behind the ISDR study was to develop individual risk-based screening 

protocols thereby eliminating the need for annual screening for those with lower risk and increasing 

the frequency for those with high risk. Variables measured as part of this study included glycated 

haemoglobin (HbA1c), cholesterol, systolic and diastolic blood pressure. 

Glycated haemoglobin (HbA1c) is associated with the β-N-1-deoxy fructosyl component of 

haemoglobin. HbA1c is taken as being representative of the average levels of blood glucose over a 
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period of 120 days. Dysregulation of blood glucose levels is associated with diabetes and diabetic 

retinopathy (Long et al., 2017). Cholesterol is a form of lipid found in the buman body. It is 

partitioned into high density lipoprotein (HDL) and low density lipoprotein (LDL), tests often 

measure total cholesterol which is taken as being equivalent to LDL level. LDL is typically considered 

to be harmful and therefore the lower the level of LDL (i.e. Cholesterol) the better the health 

outcome for the individual. Individuals suffering from diabetes are at increased risk of dyslipidemia, 

(abnormal levels of lipid in the blood), and it is has been demonstrated that LDL levels are associated 

with the presence of hard exudates found in patients with DR (Chang and Wu, 2013). Blood pressure 

is the pressure exerted by blood flowing through veins and arteries on the walls of the vessels. Blood 

pressure is measured as a combination of systolic (associated with contraction of the cardiac muscle 

pumping blood from the chambers of the heart to the rest of the body) and diastolic (pressure when 

the cardiac muscle is relaxed i.e. between contractions) pressure. Elevated blood pressure 

(hypertension) and reduced blood pressure (hypotension) are associated with many pathologies as 

they can indicate problems with the cardiovascular system, blockages or other problems. In relation 

to diabetic retinopathy hypertension has been shown to damage the retinal capillary endothelial 

cells of individuals with diabetes as well as a slowing of the rate of progression of DR in a study 

assessing the impact of blood pressure on DR (Klein and Klein, 2002). 

2.7.3 MRet 

The MRet dataset comes from two work packages in a Wellcome Trust funded Programme Grant 

entitled, “The retinal microvasculature in cerebral malaria in African children (MRet).” SP Harding, RS 

Heyderman, AG Craig, PS Hiscott, ME Molyneux, TE Taylor, S Kampondeni, NAV Beare, P Knox, M 

Mallewa, Y Zheng. (092668/Z/10/Z). Plasmodium falciparum, a unicellular protozoan species, is the 

causative agent of malaria in humans. The plasmodium pathogen is spread by mosquitoes with the 

disease being widespread in sub-saharan Africa (Hoffman et al., 2015). The parasite matures inside 

the host in two phases; the exoerythrocytic phase (within infected liver cells) and the erythrocytic 

phase (infected red blood cells) (Bledsoe, 2005). In order to avoid destruction by the immune system 

the parasite expresses adhesive proteins on the surface of infected red blood cells which cause them 

to adhere to blood vessel walls. The sequestration of red blood cells in this way can lead to blockage 

of microvasculature and cerebral malaria if the blood-brain barrier is breached (Renia et al., 2012). 

The retina is a portion of the central nervous system (CNS) which may be analysed without the need 

for invasive techniques. This allows for the possibility of assessing the retina for the presence of 

features such as vessel abnormality or haemorrhaging which are known to be associated with 

paediatric cerebral malarial (MacCormick, 2014). Impaired perfusion in retinal microvasculature has 

been observed in children with celebral malaria (Beare et al., 2009). Hence imaging in this dataset 
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was focused on regions considered likely to exhibit capillary non-perfusion. Additional clinical 

variable measured include age, sex, weight, serum lactate and respiratory data. 

2.7.4 Keratoconus 

Keratoconus is a disorder of the eye leading to progressive thinning of the cornea. Progressive 

thinning can lead to the cornea assuming an atypical morphology, often a cone-shape which leads to 

visual impairment (Tur et al., 2017). The keratoconus dataset that I studied contains measurements 

taken on the eyes of healthy individuals and individuals with keratoconus in St. Paul’s Eye Unit, 

corneal clinics. Each measurement was taken in triplicate for each subject. The dataset consists of 

measurements of 17 variables from 60 patients. The eye is the unit of analysis and from each 

patient, only one eye from each patient was used. The variables collected in this study relate to 

keratometry (the curvature of the cornea) and pachymetry (the thickness of the cornea). 

Keratometric measurements are provided for the corneal front and back. Taken together 

keratometry and pachometry measurements give the dimensions of the corneal structure and allow 

clinicians to determine the presence or absence and extent of keratoconus. Comparison of the 

corneal dimensions for healthy eyes and keratoconic eyes can help determine which measurements 

are most effective at identifying individuals with keratoconic eyes. 

Chapter 3 presents theoretical details of the relevant existing statistical methods and will also give 

details of the developed statistical methods. 
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Chapter 3. Methodology: a multivariate SNR metric for variable 

selection in classification 

3.1 Introduction 

In my literature review (Chapter 2) I identified Hotelling T2 as an important multivariate 

discriminatory metric that has an intuitive interpretability and that has been used previously in a 

filter method for variable selection for classification. However, a disadvantage of T2 is that it assumes 

equality of covariance matrices across the groups, which is often not satisfied in clinical datasets 

(Table 3.1.1). In the signal processing literature there is no satisfactory SNR metric that allows 

different covariances across groups. Hence there is a need to propose a generalisation of Hotelling 

T2.  The goal of this chapter is to propose an extension of T2 into a new metric that may be better 

suited for a scenario where covariance matrices differ across groups, and to investigate ways to use 

the new metric in a variable search algorithm.  

Table 3.1.1: Summary of the known and developed novel concepts explained in Chapter 3.  

Legend: The text in italic represents the two of the three contributions of this thesis. 

 

Method 

Assumption 

Equal variance-covariance 

matrices 

Unequal variance-covariance matrices 

Discriminant 

analysis 

Linear discriminant analysis (LDA) 

[Section 3.2.1 and 3.3] 

Quadratic discriminant analysis (QDA) 

[Section 3.2.2 and 3.3] 

Discriminatory 

metric 

T2 [Section 3.4] Develop a novel metric [Section 3.5] 

[Section 3.6 on how T2 and SNR relate] 

Variable selection 

algorithm (filter 

method) 

MFS-T2 by Lu et al (2005), 

stopping criteria based on p-

value 

[Section 3.7] 

Develop a novel algorithm, propose 

suitable stopping criteria 

[Section 3.8, 3.9] 

 

The structure of Chapter 3 follows the structure of Table 3.1 above. First, I present the details of 

linear discriminant analysis (Section 3.2) and quadratic discriminant analysis (Section 3.3). Then I will 

present an overview of Hotelling’s T2 statistic (Section 3.4) and explain how it relates to linear 

discriminant analysis. I then describe the proposed novel extension of the T2 metric, which will be 

called the signal-to-noise ratio (SNR) (Section 3.5) and which allows for heterogeneous variance-
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covariance matrices across groups. I will also show how Hotelling’s T2 statistic and the SNR are 

related (Section 3.6) and how I propose to employ SNR in a novel variable selection method called 

the MFS-SNR algorithm (Section 3.8). Finally, I will explain the structure and principles of the MFS-

SNR algorithm as well as the stopping criterion used by the algorithm, the validation of selection 

results and how the number of simulations was chosen for my simulation studies (Section 3.8). In 

Section 3.9 I will discuss the computational challenges of the work presented in my thesis. Finally I 

summarise Chapter 3 in Section 3.10.  

3.2 Discrimination methods 

3.2.1 Linear discriminant analysis  

Linear discriminant analysis (LDA) was originally developed by Ronald A. Fisher (Fisher, 1936). The 

goal of LDA is to discriminate between groups. It does this by finding the most accurate data 

representation in a lower dimensional space. It finds a projection to a line such that samples from 

different groups are well separated. 

LDA implicitly assumes that the variance-covariance matrices are identical across the populations of 

interest. LDA also implicitly assumes that data are normally distributed. 

In many situations we will not have knowledge of the population means and covariance matrices. In 

the absence of this information we can estimate the means and covariance matrices using our 

sample. The variance-covariance matrices of the sample groups of interest are combined to produce 

a single pooled variance-covariance matrix. The classification rule is then to allocate a subject 𝒙𝟎 to 

group 1 if; 

  (�̅�1 − �̅�2)′𝑆𝑝𝑜𝑜𝑙𝑒𝑑
−1 𝑥0 −

1

2
(�̅�1 − �̅�2)′𝑆𝑝𝑜𝑜𝑙𝑒𝑑

−1 (�̅�1 + �̅�2) ≥ 𝑙𝑛 [(
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)]       (3.2.1.1) 

otherwise 𝑥0 is assigned to group 2. If we assume that the product of the ratios of misclassification 

costs and prior probabilities is equal to 1 then the natural logarithm of this term will be 0. The 

classification rule then reduces to a comparison between the scalar variable 

   �̂� = (�̅�1 − �̅�2)
′𝑆𝑝𝑜𝑜𝑙𝑒𝑑

−1 𝒙 = �̂�′     (3.2.1.2) 

which is evaluated at 𝑥0, and the number 

   �̂� =
1

2
(�̅�1 − �̅�2)′𝑺𝑝𝑜𝑜𝑙𝑒𝑑

−1 (�̅�1 + �̅�2)    (3.2.1.3) 

    =
1

2
(�̅�1 + �̅�2) 
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where 

   �̅�1 = (�̅�1 − �̅�2)
′𝑺𝑝𝑜𝑜𝑙𝑒𝑑

−1 𝒙1 = �̂�′�̅�𝟏          (3.2.1.4) 

and 

    �̅�2 = (�̅�1 − �̅�2)
′𝑺𝑝𝑜𝑜𝑙𝑒𝑑

−1 𝒙2 = �̂�′�̅�2.         (3.2.1.5) 

As this classification rule is based on sample data it is an estimate of the expected cost of 

misclassification (ECM). New observations can then be assigned to populations 1 or 2. This 

determination is made based on whether the new observation falls to the left or the right of the 

midpoint between the two means �̅�1 and �̅�2. 

As with any classification method there may be subjects that are incorrectly classified. Two 

misclassifications scenarios can occur. A patient from group 2 can be incorrectly classified as being 

from group 1, and a patient from group 1 can be incorrectly classified as from group 2. Incorrect 

classification of new patients to groups is a problem. In clinical settings the need to assign patients 

to either a disease or non-disease group is clear, however the same need exists in other non-clinical 

settings For example we may be trying to assign a customer to a group that will or will not buy a 

product, assigning organisms to one species group or another, determining whether properties are 

solvent or distressed etc. The need to correctly assign subjects to the correct class is obvious in 

clinical settings where incorrect classification may have undesirable consequences.   

The costs of misclassification may be the same across groups, but they can also differ. While the 

costs of misclassification may not be as severe in non-clinical settings there is still a need to ensure 

correct classification of new cases. The lack of accuracy of a classification method when classifying a 

particular subject may be a result of incomplete understanding of the relationships, which may exist 

between measured variables, it can also be due to unmeasured variables or due to noise or 

measurement error. A further complication is that where the causal mechanism for certain 

conditions is not fully understood the variables selected as being informative may not be the optimal 

choice for discriminating between groups.  

To account for costs of misclassification, the classification of subjects into groups can be achieved 

using a method which seeks to minimise the expected cost of misclassification (ECM). For this 

explanation S1, S2 and �̅�1, �̅�2 are the sample variance-covariance matrices and vectors of sample 

means associated with populations 𝜋1 and 𝜋2 respectively. In this method two regions 𝑅1 and 𝑅2 

which minimise the ECM are defined as, 
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    𝑅1: (
𝑓1(𝑥)

𝑓2(𝑥)
) ≥  (

𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)    (3.2.1.6) 

    𝑅2: (
𝑓1(𝑥)

𝑓2(𝑥)
) <  (

𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)    (3.2.1.7) 

where 𝑓1(𝑥) and 𝑓2(𝑥) are the multivariate probability density functions for populations in groups 1 

and 2 respectively (Johnson & Wichern,2008). Figure 3.2.1.1 shows how the two regions 𝑅1 and 𝑅2  

might appear. Similarly 𝑐(1|2) is a cost of misclassifying a subject from group 2 into group 1, and 

𝑐(2|1) is the cost of misclassification of a patient from group 1 into group 2. The probabilities 𝑝1 and 

𝑝2 are the prior probabilities of a patient being in group 1 and 2, respectively. If one assumes that 

the population mean vectors 𝜇1, 𝜇2 and covariance 𝛴 are known for two populations 1 and 2 (i.e. 

assume equal variance-covariance matrices.), then the discriminant analysis creates the regions 𝑅1 

and 𝑅2 as two sets of values for the vector 𝑥. If a subject with vector 𝑥 belongs to region 𝑅1 then 

that patient will be classified as belonging to population 1, alternatively a subject with vector 𝑥 that 

belongs to region 𝑅2 will be classified as belonging to population 2. The multivariate normal 

densities for populations 1 and  2 may be expressed as, 

𝑓𝑖(𝒙) =
1

(2𝜋)
𝑝
2|𝛴|

1
2

𝑒𝑥𝑝 [−
1

2
(𝒙 − 𝝁𝑖)𝜮

−1(𝒙 − 𝝁𝑖)]   (3.2.1.8) 

In this equation 𝑖 takes the values 1 or 2 for populations 1 or 2. The regions 𝑅1 and 𝑅2 are then 

expressed as 

𝑅1: 𝑒𝑥𝑝 {−
1

2
(𝒙 − 𝝁1)𝜮

−1(𝒙 − 𝝁1) +
1

2
(𝒙 − 𝝁𝟐)𝛴

−1(𝒙 − 𝝁𝟐)} ≥  (
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)        (3.2.1.9) 

𝑅2: 𝑒𝑥𝑝 {−
1

2
(𝒙 − 𝝁1)𝜮

−1(𝒙 − 𝝁1) +
1

2
(𝒙 − 𝝁𝟐)𝛴

−1(𝒙 − 𝝁𝟐)} <  (
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)      (3.2.1.10) 
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Figure 3.2.1.1 Regions 𝑹𝟏 and 𝑹𝟐 for two populations defined by variables X1 and X2 

 

Source: Johnson & Wichern, Applied multivariate statistical analysis, 2008 

 

Taking the natural logarithm of all of the terms in equations 3.2.1.9 and 3.2.1.10 we get the 

classification regions;  

 𝑅1: (𝒙 − 𝝁1)𝜮
−1(𝒙 − 𝝁1) +

1

2
(𝒙 − 𝝁𝟐)𝛴

−1(𝒙 − 𝝁𝟐) ≥ 𝑙𝑛 {(
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)}  (3.2.1.11) 

 𝑅2: (𝒙 − 𝝁1)𝜮
−1(𝒙 − 𝝁1) +

1

2
(𝒙 − 𝝁𝟐)𝛴

−1(𝒙 − 𝝁𝟐) < 𝑙𝑛 {(
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)}  (3.2.1.12) 

where 𝑥 is the vector of the subject’s measurements. This rule is based on the population 

parameters which will not be known in most cases. Thus sample estimates of the population 

parameters are used instead. This rule constitutes the linear discriminant method. 

LDA does assume implicitly that data are normally distributed. When testing hypotheses a violation 

of the normality assumption can invalidate the results of the hypothesis test. In my work LDA is not 

used to test hypotheses (e.g. Fischer, 1936). It is used to obtain estimates of the expected 

performance of variable selections (as measured by the PCC). The assumption of normality is not 

necessary when using LDA in this manner. However, it should be noted that because LDA does 

assume normality it may not be sufficiently robust to deviations from normality when used to 

estimate PCC. 



51 
 

The same LDA solution can be obtained via a so-called Mahalanobis approach (Lattin et al, 2003). 

The Mahalanobis approach identifies those points which are equidistant from the group means. 

These points then serve as a discriminant boundary between the two groups. A covariance-adjusted 

distance is calculated between each point and the mean of each of the groups. The covariance-

adjusted squared distance between any point x’ and group 1 is calculated according to 

   𝐷1
2 = (𝑥 − 𝒙1)′𝑺𝑝

−1(𝑥 − 𝒙1).    (3.2.1.11) 

Here 𝑺𝑝 is the pooled within-group variance-covariance matrix of the random vector 𝒙.The 

covariance-adjusted squared distance between any point 𝒙′ and group 2 is calculated according to 

   𝐷2
2 = (𝑥 − 𝒙2)′𝑺𝑝

−1(𝑥 − 𝒙2).    (3.2.1.12) 

The locus of equidistant points is identified by equating Equations 3.3.11 and 3.3.12 and solving for 

𝒙. This gives us the discriminant boundary between our two groups. 

3.2.2 Quadratic Discriminant Analysis  

A natural extension of LDA (Section 3.2.1) is quadratic discriminant analysis (QDA). QDA is designed 

to accommodate scenarios where the variance-covariance matrices are heterogeneous. When the 

variance-covariance matrices are heterogeneous across groups it is not possible to simplify the 

multivariate probability densities as was done for LDA (Johnson & Wichern, 2008).  

For a scenario where the variance-covariance matrices across the groups are not homogeneous the 

quadratic discriminant rule is to allocate 𝑥0 to group 1 if 

  −
1

2
𝒙𝟎

′ (𝑺1
−1 − 𝑺2

−1)𝒙0 + (�̅�1
′ 𝑺1

−1 − �̅�2
′ 𝑺2

−1)𝒙0 − 𝑘 ≥ 𝑙𝑛 [(
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)]       (3.2.2.1) 

otherwise 𝑥0 is assigned to group 2. The term 𝑘 is;  

   𝑘 =
1

2
𝑙𝑛 (

|𝜮1|

|𝜮2|
) +

1

2
(𝝁1

′ 𝜮1
−1�̅�1 − �̅�2

′ 𝜮2
−1�̅�2)   (3.2.2.2) 

 

Figure 3.2.2.1 shows the rejection regions for two normally distributed samples when equal costs of 

misclassification and prior probabilities have been assumed. Using a quadratic classification rule 

results in a region 𝑅1, which exists as two disjoint sets of points. 
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Figure 3.2.2.1 Regions R1 and R2 for tow normally distributed groups with heterogeneous 

variance-covariance matrices 

 

Source: Johnson & Wichern, Applied multivariate statistical analysis, 2008 

 

In the event that the data are not normally distributed it may be necessary to apply a normalising 

transformation to the data. A quadratic classification rule may be applied without transforming the 

data. However the greater the departure of the data from a normal distribution the less reliable the 

performance of a quadratic classification rule. 

When different variance-covariance matrices are substituted into the multivariate probability 

densities (Section 3.2.1) the classification regions 𝑅1 and 𝑅2 are expressed as; 

𝑅1 : −
1

2
𝜇′(𝛴1

−1 − 𝛴2
−1)𝜇 + (𝜇1

′ 𝛴1
−1 − 𝜇2

′ 𝛴2
−1)𝜇 − 𝑘 ≥ 𝑙𝑛 [(

𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)]  (3.2.2.3) 

𝑅2 : −
1

2
𝜇′(𝛴1

−1 − 𝛴2
−1)𝜇 + (𝜇1

′ 𝛴1
−1 − 𝜇2

′ 𝛴2
−1)𝜇 − 𝑘 < 𝑙𝑛 [(

𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)]  (3.2.2.4) 

 

where 𝜮1 is the variance-covariance matrix of group 1, 𝜮2 is the variance-covariance matrix of group 

2, �̅�1 and 𝜇2 are the mean values associated with populations 1 and 2 respectively. 

Equations 3.2.2.2 and 3.2.2.2 defining regions 𝑅1 and 𝑅2 when the variance-covariance matrices are 

non-homogeneous are very different to equations 3.2.1.9 and 3.2.1.10 defining the same regions 

when the variance-covariance matrices are homogeneous. The reason for this is that the 

classification regions are defined by the quadratic term −
1

2
𝒙′(𝜮1

−1 − 𝜮2
−1)𝒙 and when the variance-
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covariance regions are non-homogeneous this term cannot be cancelled out. This leaves us with 

more complex equations for the classification regions. 

The quadratic classification rule assigns a new case with measurements 𝑥0 to population 1 if 

 −
1

2
𝒙0

′ (𝑺1
−1 − 𝑺2

−1)𝒙0 + (�̅�1
′ 𝑺1

−1 − �̅�2
′ 𝑺2

−1)𝒙0 − 𝑘 ≥ 𝑙𝑛 [(
𝑐(1|2)

𝑐(2|1)
) (

𝑝2

𝑝1
)]  (3.2.2.5) 

otherwise the new patient with measurements 𝒙0 is assigned to population. In this equation the 

population variance-covariance matrices 𝜮1 and 𝜮2 and mean values 𝝁1 and 𝝁2 are replaced with 

the sample population variance-covariance matrices 𝑆1 and 𝑺2 and mean values 𝒙1 and 𝒙2. 

3.3 Discriminatory performance of a classifier  

Whether LDA or QDA are used the performance of the trained classifier can be assessed using 

metrics such as the probability of correct classification (PCC), the area under the ROC curve (AUROC), 

positive predictive value (PPV) and negative predictive value (NPV). 

 The general formulae for PCC is  

𝑃𝐶𝐶 =  𝑃𝑟𝑜𝑏( 𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝐺𝑟𝑜𝑢𝑝 1 | 𝑥𝑖 𝑖𝑠 𝑓𝑟𝑜𝑚 𝐺𝑟𝑜𝑢𝑝 2) 𝑥 𝑃𝑟𝑜𝑏( 𝑖𝑠 𝑓𝑟𝑜𝑚 𝐺𝑟𝑜𝑢𝑝 2) 

+ 𝑃𝑟𝑜𝑏(𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝐺𝑟𝑜𝑢𝑝 2 | 𝑥𝑖 𝑖𝑠 𝑓𝑟𝑜𝑚 𝐺𝑟𝑜𝑢𝑝 1) 𝑥 𝑃𝑟𝑜𝑏( 𝑖𝑠 𝑓𝑟𝑜𝑚 𝐺𝑟𝑜𝑢𝑝 1)  (3.3.1) 

LDA achieves the highest PCC when prior probabilities are equal to the proportions of the two 

samples i.e. 𝑃(𝐺𝑟𝑜𝑢𝑝 1) = 𝑛1/𝑛 𝑎𝑛𝑑 𝑃(𝐺𝑟𝑜𝑢𝑝 2) = 𝑛2/𝑛. This assumes that costs of 

misclassification are the same (Cox, 2005). 

Furthermore, when using LDA and assuming equal costs of misclassification and normality of the 

data, the actual PCC for classification of patients to one of two groups has been shown to be equal 

to the formula 

𝑃𝐶𝐶 = 𝜙 (
∆

2
)      (3.3.2) 

where 𝜙 is the cumulative distribution function (CDF) of the standard univariate normal distribution 

and ∆ is the square root of the Mahalanobis distance (Section 3.2.1) between the two groups (Dunn 

& Varady, 1966). Equation 3.3.2 is very important, as it gives the connection between the PCC, LDA 

and Hotelling’s T2 statistic. 
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In the work presented in this thesis the PCC is estimated by summing the number of correctly 

classified cases and dividing this by the total number of cases to be classified. If we have a 

contingency table such as 

Table 3.3.1 Outline of a contingency table 

  Truth 

  Group 1  

(e.g. disease) 

Group 2  

(e.g. no disease) 

Assignment 

(results of 

classification) 

Group 1 True Positive 

(TP) 

False Positive 

(FP) 

Group 2 False Negative 

(FN) 

 True Negative 

(TN) 

    

The PCC can be calculated according to: 

   𝑃𝐶𝐶 = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (3.3.3) 

Knowledge of the true group assignments and those made by some classifier can be used to plot a 

receiver’s operating characteristic curve (ROC). Using data presented as in Table 3.3.1 above the 

sensitivity and specificity may be calculated. Sensitivity (also known as the true positive rate) is 

calculated according to 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
 .    (3.3.4) 

Here P stands for number of positives. Similarly the specificity (also known as the true negative rate) 

is calculated according to 

   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁+𝐹𝑃
    (3.3.5) 

Here N stands for number of negatives.  

The sensitivity and specificity values tell us how likely a given classifier is to correctly identify positive 

or negative cases, respectively. The ROC curve can be constructed by plotting sensitivity on the y-

axis against (1 – specificity) which is also known as the false positive rate on the x-axis, i.e., the true 

positive rate is plotted against the false positive rate for a range of thresholds. Figure 3.3.1 shows an 

example of an ROC curve.  When discriminating between two groups a threshold is selected to 

determine membership of one group or the other. This threshold is what separates the two regions 
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𝑅1 and 𝑅2 when using LDA or QDA. If we vary the threshold separating the two groups the sensitivity 

and specificity will change accordingly. It is this change in sensitivity and specificity values that gives 

each ROC curve its particular shape. The closer the curve is to the upper left corner the larger the 

area under the curve. 

Figure 3.3.1 An example of an ROC curve 

 

Source: Hosmer & Lemeshow, Applied logistic regression, 2001 

 

PPV and NPV are measures of the proportion of positive and negative results that are actually true 

positives and true negatives, respectively. PPV is calculated according to the formula 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (3.3.6) 

While NPV is calculated according to 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
    (3.3.7) 

True positive (negative) occurs when a patient is identified as positive (negative) for some condition 

and they are truly positive (negative) for this condition (where the ‘true’ status is determined using a 

suitable test or gold standard accepted for the condition in question). False positive (negative) 

occurs when a patient is identified as positive (negative) for some condition but they are not positive 

(negative) for this condition. The total number of positives or negatives includes both true and false 

positive or true and false negative test results. 
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LDA and QDA both assume that data are normally distributed. LDA assumes homogeneity of 

variance-covariance matrices across groups which makes it unsuitable for situations where 

homogeneity does not apply. QDA does not assume homogeneity of variance-covariance matrices 

which means it can accommodate heterogeneous variance-covariance matrices across groups. 

However QDA is less robust to deviations from normality than LDA (Johnson and Wichern, 2008). In 

a scenario where variance-covariance matrices are heterogeneous across groups and data are 

known to be normally distributed QDA is the best choice for carrying out discriminant analysis. 

However if data deviate considerably from a normal distribution LDA may be the better option 

(Johnson and Wichern, 2008). 

3.4 Hotelling’s T2 statistic 

Linear discriminant analysis (Section 3.2.1) is linked with a statistic called Hotelling’s T2 (Hotelling, 

1931) which is a multivariate extension of the Student’s t-statistic.  In this section I will introduce 

Hotelling’s T2 statistic and explain the link to the Student’s t-statistic. 

Let us start with a univariate scenario and assume 𝑋 is a random variable with mean µ and variance 

𝜎2. Also assume we have a random sample of values of 𝑋 summarised in the sample mean �̅� and let 

𝑛 and 𝑠 be the sample size and standard deviation respectively. Then the univariate t-statistic; 

     𝑡 =
�̅�−𝜇0

𝑠/√𝑛
     (3.4.1) 

can be used to compare the mean value µ of a variable to some hypothetical mean 𝜇0. This statistic 

can then be squared giving us 

𝑡2 =
(�̅�−𝜇0)2

𝑠2/𝑛
.     (3.4.2) 

This equation can be re−written as 

     𝑡2 = 𝑛(�̅� − 𝜇0)(𝑠
2)−1(�̅� − 𝜇0)   (3.4.3) 

Next, let us assume a multivariate scenario. Assume that 𝑿 is a random vector, with mean vector µ, 

covariance matrix 𝜮 and dimension 𝑝. We then replace the difference between the sample mean �̅� 

and our hypothetical mean 𝜇0 in the equation above with the sample mean and hypothetical mean 

vectors �̅� and 𝝁𝟎. We also replace the inverse of the sample variance 𝑠2 with the variance-

covariance matrix 𝑺 to produce Hotelling’s T2 statistic. 

𝑇2 = 𝑛(�̅� − 𝝁𝟎)
′𝑺−1(�̅� − 𝝁𝟎)   (3.4.4) 



57 
 

For a sufficiently large 𝑛 Hotelling’s T2 statistic is approximately chi-square distributed with 𝑝 

degrees of freedom (Hotelling, 1931). If the sample variance-covariance matrix 𝑺 is replaced with the 

population variance-covariance matrix 𝜮 then Hotelling’s T2 statistic is chi-square distributed with 𝑝 

degrees of freedom for any sample size (Hotelling, 1931).  

The Hotelling T2 statistic (Eq 3.4.1) is applicable to scenarios where we have just one sample or one 

group. Obviously in many cases we have at least 2 groups and we are interested in testing 

hypotheses which compare the samples that comprise both of these groups. To that end the statistic 

presented above is modified by replacing the hypothetical mean with the mean of the second group 

(Hotelling, 1931). One of the assumptions we make at this stage is that the two groups have the 

same variance-covariance matrices which we estimate using the pooled variance-covariance matrix. 

This pooled variance-covariance matrix 𝑺𝒑 is calculated according to 

   𝑺𝒑 =
(𝑛1−1)𝑺𝟏+(𝑛2−1)𝑺𝟐

𝑛1+𝑛2−2
     (3.4.5) 

where 𝑺𝟏and 𝑺𝟐are the variance-covariance matrices of the two groups of interest and 𝑛1, 𝑛2 are 

the sample sizes of groups 1 and 2 respectively. The two-sample Hotelling’s T2 statistic is: 

   𝑇2 =
𝑛1𝑛2

𝑛1+𝑛2
(�̅�𝟏 − �̅�𝟐)

′𝑺𝑝
−1(�̅�𝟏 − �̅�𝟐).    (3.4.6) 

When using Hotelling’s T2 statistic for statistical inference we assume that the two groups of interest 

are normally distributed, that the subjects from each population of interest were sampled 

independently and that the two groups of interest have the same variance-covariance matrix. 

There is a direct relationship between Hotelling’s T2 statistic and the linear discrimination method of 

Fisher (1936) that we described in Section 3.2.1. In linear discriminant analysis, under the 

assumption of priors being equal to the proportions of the sample, that data are normally 

distributed, and equal costs of misclassification the PCC for classification of patients can be proven 

(Anderson, 1951) to be equal to  

𝑃𝐶𝐶 = 𝜙 (
∆

2
),      (3.4.7) 

where 𝜙 is the CDF of the standard univariate normal distribution and ∆ is the square root of the 

Mahalanobis distance between the two groups (Dunn & Varady, 1966)  

   𝐷 = (�̅�1 − �̅�2)
′𝑺𝑝

−1(�̅�1 − �̅�2).      (3.4.8) 
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From equations 3.4.3 and 3.4.5 we see that Hotelling’s T2 statistic is equal to the Mahalanobis 

distance up to a constant 

 𝑇2 =
𝑛1𝑛2

𝑛1+𝑛2
𝐷 .      (3.4.9) 

Moreover, from Eq. 3.4.4 it follows 

𝑃𝐶𝐶 = 𝜙 ((
𝑛1+𝑛2

𝑛1𝑛2
)
1/2 𝑇

2
)     (3.4.10) 

which is an important identity showing the connection of Hotelling’s T2 statistic with the PCC in 

linear discriminant analysis for a multivariate case, i.e. when 𝑋 is a random vector. Equality 3.4.5. 

holds only if data are normally distributed. It means that as the value of Hotelling’s T2 statistic 

increases we should also observe an increase in the associated PCC value, and vice-versa 

3.5 Proposed SNR statistic 

In this section, I develop an extension of the Hotelling’s T2 statistic from Equation 3.2.3. This 

extension is inspired by the concept of signal-to-noise ratio (SNR) from information theory. The SNR 

concept is old and is defined as the amount of signal divided by the amount of noise within a given 

system (Berube & Wu 2000; Kaiser et al, 1998). As I described in Section 2.6 there are multiple 

versions of the signal-to-noise ratio, each uses a different definition of how to measure the amount 

of signal and noise. Examples of the application of the SNR include its use in researching how 

background noise effects speech understanding (Maamor & Billings, 2016), identifying the minimal 

SNR which facilitates stabilization of single-input, single-output, linear time-invariant systems (Jiang 

et al, 2016), the comparison of magnetic resonance imaging (MRI) images obtained using different 

hardware and protocols (Welvaert & Rosseel, 2013), and extension to generalised linear models for 

general point processes in neuroscience (Czanner et al, 2015).  In this work I present an extension of 

the SNR concept which can be used to evaluate the discriminatory potential of random variables to 

discriminate between groups. 

The SNR is typically defined as 

𝑆𝑁𝑅 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
, 

where signal and noise are usually estimated via the minimisation such as via least-squares principle. 

In our scenario of discrimination between two groups, the signal is the group membership and the 

goal is to find how much information about this signal is contained in the realisations of the random 
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vectors  𝑿1 and 𝑿2  i.e. in 𝒙1 and 𝒙2. This can be estimated via mean differences such a �̅�1 − �̿�  and 

�̅�2 − �̿�, where �̿� is a vector of sample means across both groups, �̅�1 is a vector of sample means in 

group 1 and �̅�𝟐 is a vector of sample means in group 2.  

In a univariate scenario, the SNR can be defined as follows 

𝑆𝑁𝑅 =
∑ (�̅�1−�̿�)2𝐺𝑟𝑜𝑢𝑝 1 +∑ (�̅�2−�̿�)2𝐺𝑟𝑜𝑢𝑝 2 

∑ (�̅�1−𝑥𝑖)
2

𝐺𝑟𝑜𝑢𝑝 1 +∑ (�̅�2−𝑥𝑖)
2

𝐺𝑟𝑜𝑢𝑝 2 
          (3.5.1) 

where the denominator is essentially the pooled sample variance 

𝑠𝑝
2 =

∑ (�̅�1−𝑥𝑖)
2

𝐺𝑟𝑜𝑢𝑝 1 +∑ (�̅�2−𝑥𝑖)
2

𝐺𝑟𝑜𝑢𝑝 2 

𝑛1+𝑛2−2
   (3.5.2) 

     

This last equation assumes same variances in both groups and a univariate scenario.  

This motivates the following proposed extension of the SNR for a multivariate heteroscedastic 

scenario which will be used in the work presented in later chapters: 

𝑆𝑁𝑅 = (�̅�1 − �̿�)′𝑺1
−1(�̅�1 − �̿�)𝑛1 + (�̅�2 − �̿�)′𝑺2

−1(�̅�2 − �̿�)𝑛2    (3.5.3) 

where 1 and 2 refer to two hypothetical groups 1 and 2, �̅�1 and �̅�2 are the sample mean vectors for 

groups 1 and 2 respectively, 𝑺1 and 𝑺2 are estimates of the variance-covariance matrices of groups 1 

and 2 respectively, the terms 𝑛1 and 𝑛2  are the sample sizes of the groups 1 and 2, and �̿� represents 

the overall sample mean vector across groups for all the random variables:  

    �̿� =
𝑛1𝒙1+𝑛2𝒙2

𝑛1+𝑛2

.     (3.5.4) 

The interpretation of the SNR (Equation 3.5.1) ratio is intuitive in that the larger the mean 

differences from the overall mean vector and the smaller the spread of the observations in each of 

the two groups, the larger the SNR and therefore the better the discriminatory performance we can 

expect from the given variable or set of variables. Conversely the smaller the SNR the poorer the 

discriminatory performance we can expect from the given variable or set of variables.  

In general a higher spread around the group mean vector the less well is the group defined. Where 

this leads to overlap between two groups there will be a loss in discriminatory performance. This will 

be reflected in a lower SNR. However if a sufficiently large separation exists between two groups this 

is represented by high mean difference standardised with the covariance matrix. It is the 
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combination of the variances, co-variances and mean difference values that determines the SNR for 

a particular set of variables. 

Each term in the SNR is multiplied by the size of the relevant group. This corrects the SNR for any 

imbalances between group sizes by giving the smaller group a lower weight and giving the larger 

group a larger weight. 

Under the condition of homogeneous variance-covariance matrices (hence the common variance-

covariance matrix is estimated by a pooled variance-covariance matrix across groups) it will be 

demonstrated in Section 3.6 that the SNR is equivalent to Hotelling’s T2 statistic. 

3.6 Proof of equivalency of Hotelling’s T2 statistic and SNR when variance-

covariance matrices are homogeneous 

Here I demonstrate analytically how SNR and T2 are related. Assume we have 2 groups 1 and 2 of 

unequal sizes such that 𝑛1 ≠ 𝑛2 and 𝑛1 + 𝑛2 = 𝑛𝑇, 𝑛𝑇 being the total sample size.  

First, let us assume a univariate homoscedastic scenario i.e. let X be a univariate random variable 

with equal variances in both groups. The SNR from Equation 3.5.1 can be written as  

 𝑆𝑁𝑅 =
(�̅�1−�̿�)2

𝑠1
2 𝑛1 +

(�̅�2−�̿�)2

 𝑠2
2 𝑛2      (3.6.1) 

where  �̅�1 is the sample mean for group 1, �̅�2 is the sample mean for group 2 and �̿� is the overall 

average calculated across both groups according to 

  �̿� =
1

𝑛𝑇
(𝑛1�̅�1 + 𝑛2�̅�2)      (3.6.2) 

The terms 𝑠1
2  and 𝑠2

2 are sample variances. In the assumed scenario of equal variances they can be 

replaced by 𝑠𝑃
2 the pooled or common sample variance: 

𝑠𝑃
2 =

∑ (𝑛𝑖−1)𝑠𝑖
2𝑘

𝑖=1

∑ (𝑛𝑖−1)𝑘
𝑖=1

,     (3.6.3) 

where k is the total number of groups. Then SNR (Eq. 3.6.1) now becomes 

   𝑆𝑁𝑅 =
(�̅�1−�̿�)2

𝑠𝑃
2 𝑛1 +

(�̅�2−�̿�)2

𝑠𝑃
2 𝑛2 .    (3.6.4) 

Substituting in the formula the overall mean �̿� with �̅�1 and �̅�2 as appropriate we have: 
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  𝑆𝑁𝑅 =
(�̅�1−

𝑛1
𝑛𝑇

�̅�1−
𝑛2
𝑛𝑇

�̅�2)
2

𝑠𝑝
2 𝑛1 +

(�̅�2−
𝑛1
𝑛𝑇

�̅�1−
𝑛2
𝑛𝑇

�̅�2)
2

𝑠𝑝
2 𝑛2     (3.6.5) 

which expands to 

𝑆𝑁𝑅 =
𝑛1

𝑠𝑝
2 (

𝑛2

𝑛𝑇
�̅�1 −

𝑛2

𝑛𝑇
�̅�2)

2

+
𝑛2

𝑠𝑝
2 (

𝑛1

𝑛𝑇
�̅�2 −

𝑛1

𝑛𝑇
�̅�1)

2

    (3.6.6) 

𝑆𝑁𝑅 =
𝑛1𝑛2

2

𝑠𝑝
2𝑛𝑇

2
(�̅�1 − �̅�2)

2 +
𝑛2𝑛1

2

𝑠𝑝
2𝑛𝑇

2
(�̅�1 − �̅�2)

2 

After simplifying we are left with  

   𝑆𝑁𝑅 =
(�̅�1−�̅�2)

2

𝑠𝑃
2

(𝑛1+𝑛2)𝑛1𝑛2

(𝑛𝑇)2
.    (3.6.7) 

On the other hand, the Mahalanobis distance D is calculated as 

     𝐷 =
(�̅�1−�̅�2)2

𝑆𝑝
2          (3.6.8) 

hence from Eq 3.6.7, 3.6.8, 3.4.3 the SNR can be expressed as follows 

   𝑆𝑁𝑅 = 𝐷
𝑛1𝑛2

𝑛𝑇
= 𝑇2.    (3.6.9) 

Therefore we can conclude that in a univariate case and under the condition of equal variances 

across groups the SNR is equivalent to the Hotelling’s T2 statistic.  

 

Now, let us assume a multivariate homoscedastic scenario i.e. let X be a multivariate vector of 

dimension px1 and let the variance-covariance matrices differ across groups. The SNR (Equation 

3.5.1) is defined as 

𝑆𝑁𝑅 = (�̅�1 − �̿�)′𝑺1
−1(�̅�1 − �̿�)𝑛1 + (�̅�2 − �̿�)′𝑺2

−1(�̅�2 − �̿�)𝑛2  (3.6.10) 

where  �̅�1 is the vector of sample means for group 1, �̅�2 is the vector of sample means for group 2 

and �̿� is the vector of overall means calculated across both groups according to 

  �̿� =
1

𝑛𝑇
(𝑛1�̅�1 + 𝑛2�̅�2).      (3.6.11) 

The matrices 𝑺1
2 and 𝑺1

2 are estimates of the population variance-covariance matrices (based on 

samples taken from the population) for groups 1 and 2. Let 𝑺𝑝
2  be the pooled covariance matrix: 
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𝑺𝑃 =
𝑛1𝑺1+𝑛2𝑺2

𝑛𝑇−2
      (3.6.12) 

Then the SNR (Eq. 3.6.11) now becomes 

   𝑆𝑁𝑅 = (�̅�1 − �̿�)′𝑆𝑃
−1(�̅�1 − �̿�)𝑛1 + (�̅�2 − �̿�)′𝑆𝑃

−1(�̅�2 − �̿�)𝑛2           (3.6.13)

  

Substituting in the formula the overall mean �̅�2 − �̿� with �̅�1 and �̅�2 as appropriate we have: 

𝑆𝑁𝑅 = [�̅�1 − (
𝑛1�̅�1 + 𝑛2�̅�2

𝑛𝑇
)]

′

𝑆𝑃
−1 [�̅�1 − (

𝑛1�̅�1 + 𝑛2�̅�2

𝑛𝑇
)] 𝑛1 

+[�̅�2 − (
𝑛1�̅�1+𝑛2�̅�2

𝑛𝑇
)]

′
𝑆𝑃

−1 [�̅�2 − (
𝑛1�̅�1+𝑛2�̅�2

𝑛𝑇
)] 𝑛2         (3.6.14) 

which expands to 

 

𝑆𝑁𝑅 = [(
𝑛2�̅�1−𝑛2�̅�2

𝑛𝑇
)]

′
𝑆𝑃

−1 [(
𝑛2�̅�1−𝑛2�̅�2

𝑛𝑇
)] 𝑛1 + [(

𝑛1�̅�2−𝑛1�̅�1

𝑛𝑇
)]

′
𝑆𝑃

−1 [(
𝑛1�̅�2−𝑛1�̅�1

𝑛𝑇
)] 𝑛2     (3.6.15) 

We can simplify this to get 

  𝑆𝑁𝑅 =
𝑛2

2𝑛1

𝑛𝑇
2 (�̅�1 − �̅�2)′𝑺𝑝

−1(�̅�1 − �̅�2) +
𝑛1

2𝑛2

𝑛𝑇
2 (�̅�1 − �̅�2)′𝑺𝑝

−1(�̅�2 − �̅�1)       (3.6.16) 

which becomes 

  𝑆𝑁𝑅 =
𝑛1𝑛2

𝑛𝑇
[
𝑛2

𝑛𝑇
(�̅�1 − �̅�2)′𝑺𝑃

−1(�̅�1 − �̅�2) +
𝑛1

𝑛𝑇
(�̅�1 − �̅�2)′𝑺𝑃

−1(�̅�1 − �̅�2)]      (3.6.17) 

Comparing this to the formula for Hotelling’s T2 statistic (Eqn. 3.4.3) it is evident that the two are 

identical. Thus the equivalency of the SNR and Hotelling’s T2 statistic is proven in both univariate and 

multivariate contexts when the variance-covariance matrices are homogeneous across the outcome 

groups. 

It should be noted that while we do not assume equality of group variances this does allow for a 

scenario where the variances are equal. In a scenario where the variances are equal (i.e. common) 

the SNR calculated is the actual SNR. However in a scenario where the variances are not equal (so 

that we are using the pooled estimate) then the SNR calculated is also an estimate of the true value. 

To give further intuition into how Hotelling’s T2 statistic and the SNR work I simulated several 

scenarios. Figure 3.6.1 below presents bivariate plots for two groups where the correlations and 

variances between the two variables are different across the groups. Table 3.6.1 shows the SNR 
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values and Hotelling’s T2 statistics associated with the set containing variables 𝑋1 and 𝑋2 under each 

of the correlation and variance scenarios. From the bivariate plots in Figure 3.6.1 we see that 

changes in the correlation and variance parameters have an effect on the dispersion of the data 

points. From Table 3.6.1 it is also evident that the SNR values and Hotelling’s T2 statistics change in 

response to the correlation and variance parameters. Note that the SNR values are larger than the 

Hotelling’s T2 statistics in the scenarios with different variances or correlations. Conversely when the 

variance and correlation properties are homogeneous across groups both metrics are very similar 

(the difference between them is less than 1 %). This is expected given the theoretical equivalence of 

the two metrics under the condition of variance-covariance matrix homogeneity across groups. 

Hotelling’s T2 statistic appears relatively unresponsive (when compared to SNR) to changes in the 

correlation parameter while both metrics are affected by changes in the variance parameter.    

Figure 3.6.1 Bivariate plots of X1 vs. X2 across simulated groups under three different scenarios 

 

Legend: (left) same variances and different correlations, (middle) different variances and same correlation; 

and (right) same variances and same correlations. 

 

Table 3.6.1 SNR values, Hotelling’s T2 statistics, means, variances and correlations for the variable 

set containing X1 and X2 for each of the variance and correlation scenarios. 

Scenario Hotelling’s 
T

2
 statistic 

SNR Mean 
(x1A,X1D) 

Mean 
(x2A,X2D) 

Variance 
(x1A,X1D) 

Variance 
(x2A,X2D) 

Correlation 
(X1A-X2A, 
X1D-X2D) 

Same variance 
different 
correlations 

23,271.4 33,320.8 4.5, 4.3 5, 10 0.5, 0.5 0.75, 0.75 0.2, 0.8 

Same 
correlations 
different 
variances 

8,196.9 12,538.9 4.5, 4.3 5, 10 0.5, 2 0.75, 3 0.4, 0.4 

Same variances 
and correlations 

20,359.8 20,370.3 4.5, 4.3 5, 10 0.5, 0.5 0.75, 0.75 0.4, 0.4 



64 
 

 

3.7 A variable selection algorithm that is based on Hotelling’s T2 

Here I describe how Hotelling’s T2 has been used previously for variable selection in the context of 

classification. In the paper entitled “Hotelling’s T2 multivariate profiling for detecting differential 

expression in microarrays” Lu et al (2005) outline a method for identifying groups of differentially 

expressed genes (DEGs) from microarray data. The method outlined in this paper utilises Hotelling’s 

T2 statistic as a multivariate discrimination index implemented as part of a multiple forward selection 

algorithm. This algorithm serves as the inspiration for the MFS algorithm that I will propose and 

describe in Section 3.8. 

Lu’s method assumes a classification for two groups. They utilise Hotelling’s T2 statistic as an index of 

the discriminatory potential of a given gene or set of genes. They use Hotelling T2 statistic in an 

algorithmic procedure starting with an empty set of discriminatory variables and all genes in the set 

of potential selection candidates. First Hotelling’s T2 statistic is calculated for each of the genes in 

the dataset, individually. The gene which is associated with the largest Hotelling’s T2 statistic is then 

identified and added to the discriminatory set. The same calculations are then carried out using the 

selected gene(s) and each of the genes which are still selection candidates. The gene which elicits 

the largest increase in the Hotelling’s T2 statistic when analysed as part of a subset including the 

previously selected genes is added to the selection in each case. The algorithm continues selecting 

genes in this way until one of the stopping criteria are satisfied.  

The algorithm works as follows (Lu et al., 2005): 

Step 1. T2 statistics are calculated for each of the genes in the dataset and the gene j1 with 

the largest T2 statistic is identified. This T2 statistic is denoted 𝑇𝑗1. 𝑗1 is added to the set 𝑆. 

Step 2. The p-value associated with 𝑇𝑗1 is compared to the predefined significance level 𝛼. If 

this p-value is less than 𝛼, the T2 statistic is calculated for 2 genes; 𝑗1 and one of the 

remaining unselected genes. The largest T2 statistic 𝑇𝑗1,𝑗2 is identified and the gene 𝑗2added 

to the set 𝑆. 

Step 3. The p-values associated with 𝑇𝑗1 and 𝑇𝑗1,𝑗2 are compared. If the p-value for 𝑇𝑗1,𝑗2 is 

less than the p-value for 𝑇𝑗1 step 2 is repeated for 𝑇𝑗1,𝑗2 and 𝑇𝑗1.𝑗2,𝑗3. 
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Step 4. Repeat step 3 until the p-value for 𝑇j1,…,jn−1,jn is larger than the p-value for 𝑇j1,…,jn−1 

or until the number of genes in 𝑆 is larger than 𝑛1 + 𝑛2 − 2 (𝑛1and 𝑛2 being the sizes of 

groups 1 and 2). 

Step 5. Remove genes j1,…,jn-1 from the set of candidate genes and repeat steps 1-4.. 

Two stopping criteria are employed by Lu et al. One criterion considers the number of genes that 

have been selected and terminates the algorithm if this number is larger than 𝑛1 + 𝑛2 − 2 (here 𝑛1 

and 𝑛2 are the sample sizes of the two groups of interest). The second criterion assesses the 

significance of each set of DEGs using p-value. During each round of selection the p-value associated 

with Hotelling’s T2 statistic of the current set of variables is calculated. Before the next round of 

selection begins, this p-value is compared to the predefined significance level 𝛼. If the p-value is less 

than this significance level the algorithm continues and another round of selection takes place. 

However if the p-value is larger than this significance level the algorithm terminates. In subsequent 

rounds of selection the p-values are compared to those calculated in previous rounds of selection 

i.e. selection only continues if the p-value shrinks or remains the same. In this way the authors are 

essentially reasoning that the selection is “more” significant as variables are added and the p-value 

decreases. Any genes which have been selected up to the point of termination are designated as a 

group of DEGs. 

Their method is validated using the spike-in HGU95 dataset produced by Affymetrix and gene 

expression data from the work of Chen et al. (2002) who analysed gene expression patterns in 

human liver cancers. From the analysis of the Affymetrix datasets Lu et al. demonstrated that their 

Hotelling’s T2 method produced fewer false positives when compared to selections made using a 

method based on t-tests to identify DEGs. For selections made from the data of Chen et al. the 

Hotelling’s T2 method identified more DEGs in pathways related to hepatocellular carcinoma (HCC) 

and more DEGs with second-degree associations to HCC (i.e. found in the same pathway(s) as genes 

directly linked to HCC). In addition, the Hotelling’s T2 method identified several novel cancer-

associated genes that were highly expressed in the HCC tumours analysed by Chen et al. 

The Hotelling’s T2 statistic described in the work of Lu et al. assumes homogeneity of variance-

covariance matrices across groups. This assumption is not a valid assumption particularly in a study 

analysing gene expression. In any effort to identify genes which can differentiate between two 

groups the objective is to identify genes which have different expression levels in the groups of 

interest. Thus we are actively seeking to identify genes which have different expression levels and 

therefore different variance-covariance properties across the groups of interest. This point can be 
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extended to other kinds of data. The article of Lu et al. states that a pooled variance-covariance 

matrix is used in the calculation of Hotelling’s T2 statistic. The assumption of homogeneity of the 

variance-covariance matrices across groups is integral to the calculation of the pooled variance-

covariance matrix. As the authors have not addressed this in their article I must conclude that the 

assumption is implicitly maintained. This raises a question as to the suitability of Hotelling’s T2 

statistic as a metric of discriminatory potential both in a general sense and in the specific context of 

the work presented in this article. I have identified this as a problem which I will address in my 

thesis. 

3.8 Proposed variable selection algorithm that is based on SNR  

Here I describe how I propose to use the SNR metric for variable selection in classification. In order 

to apply the SNR to the task of variable selection a suitable algorithmic framework is required. The 

idea is that the algorithm can use the SNR to assess the potential of different subsets of variables for 

discriminating between groups and ultimately identify the optimal subset for this task. For this 

purpose I proposed and implemented a multiple forward selection (MFS) algorithm as an extension 

on the work of Lu et al (2005) by utilising the SNR (Section 3.5).  

The proposed algorithm works as follows:  

Step 1. The algorithm starts with an empty set of selected discriminatory variables. 

Step 2. The SNR is calculated for every variable in the dataset using Eq. 3.5.1. The variable 

with the highest SNR is found and it is added to the set of discriminatory variables provided 

its PCC (calculated using QDA with cross-validation – equation 3.3.3) is above the minimum 

specified threshold. This dataset is then called 𝑆1 and its PCC is called 𝑃𝐶𝐶1. We assume we 

have selected 𝑗 variables in the set, 𝑆𝑗, of selected discriminatory variables via comparison of 

SNR values. Let 𝑃𝐶𝐶𝑗 be the overall PCC of the set 𝑆𝑗. 

Step 3. We consider each non-selected variable X and we calculate the SNR of the following 

set: {𝑆𝑗, 𝑋}.  

Step 4. We find the variable 𝑋∗ that gives the largest SNR in Step 3. Then we calculate the 

PCC for the {𝑆𝑗, 𝑋
∗} and call it 𝑃𝐶𝐶𝑗+1. If the difference between 𝑃𝐶𝐶𝑗+1 and 𝑃𝐶𝐶𝑗 is greater 

than or equal to the specified threshold then we update the set of selected discriminatory 

variables by including the variable 𝑋∗ in it and call it 𝑆𝑗+1 and its PCC as 𝑃𝐶𝐶𝑗+1, otherwise 

we stop the algorithm. If the difference between 𝑃𝐶𝐶𝑗+1 and 𝑃𝐶𝐶𝑗 is greater than the 

specified threshold we go back to Step 3 and Step 4 (where j becomes j+1). 



67 
 

I implemented this algorithm in the R program. The full details are in the Appendix. 

3.9 Computational challenges 

In order to ensure that a variable selection algorithm is effective at carrying out the task of variable 

selection several computational challenges had to be addressed: a suitable stopping criterion as well 

as an appropriate method for estimating the discriminatory performance of selected variables are 

required. It was also necessary to identify the optimal number of simulations to run when assessing 

the performance of the algorithm and comparing it to other methods. These issues are addressed in 

Sections 3.9.1, 3.9.2 and 3.9.3 below.  

3.9.1 Stopping criteria 

The stopping criterion is an important element of each variable selection algorithm. In the original 

formulation of the MFS algorithm (Lu et al., 2005) each time a variable (say 𝑋) is considered for 

discrimination a p-value is calculated to compare the current subset of discriminatory variables (say 

𝑆) with the new subset of discriminatory variables containing the new variable {𝑆, 𝑋} (Lu et al., 

2005). In the context of this method a p-value greater than the chosen significance level is 

considered relevant to discriminating between the outcome groups. If the selection of variable 𝑋 is 

no longer considered significant at a significance level of 0.05 (i.e. p-value of 𝑆 is < p-value of {𝑆, 𝑋}) 

then the algorithm terminates and returns the subset of selected variables chosen up to that point 

(i.e. 𝑆).  

I have studied the use of p-value as a stopping criterion in my MFS-T2 algorithm. I observed, at fixed 

values of mean vectors and covariance matrices, that as more variables capable of discriminating 

between the groups of interest are selected the p-value tends to become smaller. When a variable 

with no discriminatory potential is selected there will be no change in the p-value associated with 

this selection (when compared to the p-value from the previous round of selection) and so the 

algorithm terminates. The assumption is that all discriminating variables have been selected at this 

point and it is appropriate for the algorithm to terminate and output the identities of the selected 

variables. However, analysis of the Hotelling’s T2 statistics calculated reveal that this termination is 

premature and further rounds of variable selection are necessary (Table 3.9.3.3). 

In an effort to evaluate the use of the p-value as a stopping criterion a dataset of 20 variables was 

simulated. The variables were assumed to be normally distributed and no correlations were 

specified between any variables. The dataset had the following discrimination structure: 
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 𝑋1 …𝑋10 are all discriminating variables with decreasing discriminatory potential going from 

𝑋1 to 𝑋10, 

 𝑋11 …𝑋20 are all non-discriminating variables. 

The p-values, Hotelling T2 statistics and PCC estimates were then calculated for expanding subsets of 

variables. The results for a subset of the variables are presented in table 3.7.3.3 below. From the 

table we can see that a p-value <10-6 is calculated for the first variable. As more variables are added 

to the selection the p-values, Hotelling T2 statistics and PCC estimates were re-calculated. While the 

Hotelling T2 statistics and PCC estimates continued to increase with each variable addition the p-

value remained at <10-6. These results indicate that the p-value may not be a suitable stopping 

criterion when carrying out variable selection as it may fail to capture the discriminatory potential of 

the variables being analysed.  

Table 3.9.1.1 Hotelling T2 statistics, PCC estimates and p-values for subsets of normally 

distributed, uncorrelated variables 

Variable subset Hotelling T
2
 statistic PCC p-value 

X1 8,251 97.6 <10-6
 

X1, X2 12,235 99.2 <10-6
 

X1, X2, X3 15,144 99.7 <10-6
 

X1, X2, X3, X4 16,826 99.9 <10-6
 

X1, X2, X3, X4, X5 18,176 99.9 <10-6
 

 

Therefore I propose a new stopping criteria based on the change in the PCC value between each 

round of variable selection which is used in the current version of the algorithm. It is based PCC 

values of sets of 𝑆 and {𝑆, 𝑋}. The difference between the two PCC values is calculated and then 

compared to a prespecified PCC change threshold.  

3.9.2 Estimation of the probability of correct classification 

It is important to evaluate the performance of the set of selected variables. This is referred to as 

validation and several methods of validation exist. These can be split into two general categories; 

internal and external validation. Internal validation uses the same dataset to train and validate a 

classifier by splitting the dataset into two portions one of which is used for training a classifier and 

the other for evaluating that classifier. Splitting the data in this way ensures that training and 

evaluation are not carried out using the same data. This helps to minimise over-fitting. External 

validation uses separate training and validation datasets. Unlike internal validation these datasets 

are collected separately and therefore may have different properties in terms of their variances and 

correlations. As such external validation can give researchers information regarding the 
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generalisability of a classifier’s performance when using a particular set of variables. The choice of 

what kind of validation to use will be heavily influenced by the availability of data. If at least two 

datasets are available it may be possible to carry out external validation. Failing that if the existing 

dataset is sufficiently large it may be possible to split this dataset into training and validation 

portions and carry out internal validation. 

The algorithm that I propose estimates PCC during each round of variable selection for a subset of 

variables comprising the current variable under consideration and all of the variables selected in 

previous rounds. In this thesis PCC is calculated using LDA (Section 3.2.1) for the MFS-T2 algorithm 

and QDA (Section 3.2.2) for the MFS-SNR algorithm. For each algorithm the PCC is calculated using 

internal leave-one-out cross-validation (LOOCV).  

Once all subjects have been classified a contingency table showing the true/false positive/negative 

prediction frequencies is constructed and the PCC can be calculated from this table (see Section 3.3). 

Using the classification results presented in Table 3.9.2.1 PCC is calculated as; 

    𝑃𝐶𝐶 = 
33+44

100
=

77

100
= 0.77     (3.9.2.1) 

Table 3.9.2.1 Contingency table showing hypothetical classification results 

  Truth 

  Group 1 Group 2 

Assignment 

(results of 

classification) 

Group 1 True Positive (TP) 

33 

False Positive (FP) 

17 

Group 2 False Negative 

(FN) 

6 

True Negative 

(TN) 

44 

 

LOOCV facilitates the validation of variable selections when a second dataset is not available. The 

estimation of PCC using LOOCV is also relatively quick compared to other hold-out methods (such as 

k-fold cross validation) where the computations can quickly become intractable. One potential 

disadvantage of LOOCV relates to the underlying quality of the dataset (Breiman & Spector, 1992, 

Kohavi, 1995, Efron & Tibshirani 1997). For example if there are duplicate observations (eg. if 

multiple subjects have the same age, or height) in the dataset then LOOCV will be less effective. This 

is because the presence of duplicate measurements the classifier will be asked to classify 

observations it has already seen. In other words the presence of duplicate mesaurements can 
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introduce an element of overfitting to LOOCV. There is also a risk that LOOCV is not sufficiently 

robust to small changes in the dataset which may cause large changes in the estimates obtained. 

3.9.3 Deciding on the size of simulations  

Simulated data are used extensively in this thesis. The reason for this is that it is important to find 

out the statistical properties of the developed methods, i.e. of SNR and MFS-SNR. It is difficult to 

derive their properties analytically, hence I use computer simulations (Burton et al., 2006, Crowther 

and Lambert, 2012). Computationally it is possible to generate any number of simulated datasets 

with the properties we require. Since we also have prior knowledge of the optimal variable 

selections from these datasets we can better evaluate the performance of the MFS-SNR algorithm. 

However an important question is what is the appropriate number of simulations? 

Where simulations are being used to obtain estimates of some statistical parameters, it is 

sometimes possible to calculate associated statistical parameters which reflect the precision of the 

estimate obtained through simulation (Ritter et al., 2011). Ritter et al. describe an example using a 

cognitive appraisal and subtraction task where subjects are given a random number and asked to 

repeatedly subtract another number from this while speaking aloud the result each time. Mistakes 

are recorded and the subject is asked to correct them. Subjects assess the task beforehand with the 

objective of the test being to link the type of appraisal with the subject’s physiological response. A 

cognitive model was created designed to simulate the number of subtractions made. Using this 

model Ritter et al. demonstrate that as the number of simulation runs is increased the true average 

is approached. Using such an estimate it is possible to determine the optimal number of simulations 

to be run. One possibility for determining the optimal number of simulations is to use the standard 

error of the mean (SEM) (Ritter et al., 2011). This can be calculated according to; 

   𝑆𝐸𝑀 = √
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑁
.    (3.9.3.1) 

where the term Variance refers to the variance of the parameter being estimated in the simulations. 

In my simulations this is the frequency with which each of the relevant variables (i.e. of those that 

are relevant for the discrimination) is selected. If we have an estimate of the standard deviation, (or 

if we have some prior knowledge about what this value should be for example from previous 

simulations), we can substitute this into equation 3.9.3.1. We can then solve the equation for N 

which is the number of simulations we will need to run to achieve the desired standard deviation. 

Alternatively power calculations may be used to estimate the optimal number of simulations. 

Statistical power (𝛿) may be calculated according to (Ritter et al., 2011); 
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   𝛿 = 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 ∗ √
𝑁

2
.    (3.9.3.2) 

We can use the standard deviation as the effect size with this equation. We can then set the power 

to an appropriate value and determine the number of simulations required to achieve this by solving 

Eq. (3.9.3.2) for N (Ritter et al, 2011). 

In determining the optimal number of simulations it is also necessary to consider whether the 

process being studied is deterministic or stochastic. If it is deterministic then the outcome is known 

and so it may not be necessary to run the simulation more than once. However where the process 

being studied is stochastic a single simulation will be insufficient to effectively assess the process.  

For the work presented in this thesis it would not have been appropriate to use the mean value or 

any other statistic to determine the optimal number of simulations as this would risk simulations 

being too similar. The SNR could not be used for the same reason. The only alternative was to 

determine the optimal number of simulations by analysing the convergence of the selection 

frequencies for the variables that are known to be discriminating as the number of simulations 

increases and identifying a number of simulations above which frequencies remained static. 

In simulating data for the purpose of assessing the MFS-SNR algorithm I extracted the mean and 

variance/co-variance parameters of the discriminating variables from the real variables Cholesterol, 

HbA1c and mfERG Central Amplitude of the DREFUS dataset. I chose to simulate the following 

discrimination structure:  

 𝑋1 and 𝑋2 are 2 discriminating variables i.e. they each have some discriminatory strength 

when used alone,  

 𝑋3 is a non-discriminating variable which is however relevant to discrimination when added 

to the 2 discriminating variables i.e. this variable does not carry any information about the 

two assumed disease groups but is highly correlated with variables 𝑋1 and 𝑋2 and hence can 

explain some uncertainty around 𝑋1 and 𝑋2 and so may improve the discrimination, 

 𝑋4 …𝑋10 are non-discriminating and irrelevant variables i.e. they do not carry any 

information that discriminates between the two disease groups when used alone or when 

used with other discriminating variables.  

Knowing that the simulated variables 𝑋1, 𝑋2 and 𝑋3 were the optimal variables for discriminating in 

this dataset it was possible to assess the performance of the MFS-SNR algorithm. 
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To determine the upper limit of how many simulations were needed to accurately assess the 

performance of the MFS-SNR algorithm I initially ran 10,000 simulations at varying group sizes. I 

observed that at group sizes of 𝑛1 = 𝑛2 = 1,000 the variables 𝑋1, 𝑋2 and 𝑋3 were selected in 100 % 

of simulations by the MFS-SNR algorithm. At group sizes of 𝑛1 = 𝑛2 = 100 i observed a negligible 

drop in the selection frequencies of 𝑋1 and 𝑋2 while the selection frequencies of 𝑋3 dropped by 9 %. 

At group sizes of and 𝑛1 = 𝑛2 = 20 the selection frequencies dropped to 84 %, 69 % and 38 % for 

𝑋1, 𝑋2 and 𝑋3 respectively.  I then dropped the number of simulations to 1,000 and repeated the 

same scenarios to investigate what impact a lower number of simulations would have on the 

selection frequencies at each of the group sizes. I observed that the profile of changes in selection 

frequencies remained unaltered at 1,000 simulations with the frequencies at each group size 

showing almost identical changes to those observed for 10,000 simulations. These results are 

presented in Tables 3.9.3.1 and 3.9.3.2 below. On the basis of these results subsequent simulations 

were capped at 1,000. 

Table 3.9.3.1 Selection frequencies and PCC ranges (maximum-minimum) for all variables 

simulated 10,000 times for group sizes of 20, 100 and 1,000. 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Range 

Frequency 

(n=20) 

84 69 38 10 10 9 10 10 10 10 75 

Frequency 

(n=100) 

100 99 91 10 10 10 9 10 11 11 91 

Frequency 

(n=1,000) 

100 100 100 11 11 11 11 12 11 11 89 

 

Table 3.9.3.2 Selection frequencies (in %) and PCC ranges (maximum-minimum) for all variables 

simulated 1,000 times for group sizes of 20, 100 and 1,000. 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Range 

Frequency 

(n=20) 

84 68 40 12 10 10 9 10 11 9 75 

Frequency 

(n=100) 

100 99 91 10 10 11 9 9 12 11 90 

Frequency 

(n=1,000) 

100 100 100 12 13 10 11 11 11 11 89 

 

Considering the ranges of the selection frequencies for 1,000 and 10,000 simulations there is a 

difference of just 1 % at group sizes of 𝑛1 = 𝑛2 = 100 while the ranges are identical at group sizes 
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of 𝑛1 = 𝑛2 = 20 and 𝑛1 = 𝑛2 = 1,000. Therefore 1,000 simulations is deemed sufficient to 

comprehensively assess the performance of the MFS-SNR algorithm.  

3.10 Discussion 

In this chapter I described the main statistical methods used in this thesis: the existing methods and 

the methods that I derived. The existing methods were: Hotelling T2, LDA, QDA and methods of 

evaluating the quality of classification (AUROC and PCC). Then I described the methodological 

developments of this thesis: the proposed SNR and the proposed algorithm for the variable 

selection. I also prosed a more suitable stopping criteria for the variable selection algorithm. 

In this chapter I have demonstrated that the existing T2 statistic and the new SNR statistic are 

equivalent under the condition of homogeneity of variance-covariance matrices across groups. The 

SNR (Section 3.3) is a metric of the discriminatory potential of a given variable or set of variables. 

This means the SNR statistic is a suitable candidate for use as part of a variable selection algorithm.  

In this chapter, I have also presented a summary of the variable-selection work by Lu et al. (2005). 

They used Hotelling’s T2 statistic to identify groups of differentially expressed genes. The variable 

selection algorithm presented in that work served as an inspiration for early versions of the MFS 

algorithm I developed in the course of the work presented in this thesis. Having appraised the work 

of Lu et al. I then presented an outline of my proposed MFS algorithm utilising the SNR. 

As part of the variable selection process it is necessary for the MFS algorithm (as for any forward 

selection algorithm) to estimate performance of variable subsets. I have described how PCC 

estimates are calculated for each variable subset by the MFS algorithm using the method of internal 

validation, LOOCV. I also described the stopping criterion of the MFS-SNR algorithm. It is based on 

the relationship between the change in estimated PCC after each round of selection and the 

minimum change specified when calling the algorithm. Without an appropriate stopping criterion 

the algorithm will produce a list where the variables are ranked from best to worst in terms of their 

ability to classify cases to the correct group. The inclusion of a stopping criterion based on a 

minimum increase in performance specified by the user ensures that a set of variables is selected 

which will meet the user’s requirements. This criterion will be used in future chapters. 

In this chapter I also looked into how many simulated datasets I will need for my simulation studies. 

The results presented in tables 3.9.3.1 and 3.9.3.2 show that the difference in selection frequencies 

is negligible between 10,000 simulations and 1,000 simulations. The ranges for the selection 

frequencies are almost identical for all group sizes simulated for both 10,000 and 1,000 simulations. 
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Based on these results the performance of the MFS-SNR algorithm appears to be consistent when 

simulations are run 1,000 times. Hence in Chapters 4 and 5 I will simulate data 1,000 times to 

evaluate how my algorithm works on simulated data. 

In the next chapter I will apply SNR to the task of variable selection for discrimination using 

computer simulated data in a multivariate normal scenario. I will present the results of a comparison 

of the MFS-SNR algorithm to several existing methods of variable selection. These include univariate 

and multivariate filter methods and embedded methods.  
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CHAPTER 4. A comparison of the variable selection performance of 

the MFS-SNR algorithm with existing alternative methods using 

simulated normal data  

4.1 Introduction 

In Chapter 2 I reviewed existing methods of variable selection for classification, then I proposed the 

novel SNR metric (Section 3.5). I also demonstrated that the SNR is better suited to summarizing the 

discriminatory strength of a set of variables in scenarios where the variance-covariance matrices are 

different across groups compared to Hotelling’s T2 statistic which assumes homogeneity of variance-

covariance matrices across groups. Then I introduced the MFS-SNR algorithm (Section 3.8), which 

employs the SNR to find the best set of discriminatory variables and I discussed its computational 

details (Section 3.9). As a next step it is necessary to see how the MFS-SNR algorithm performs 

relative to the MFS-T2 algorithm and other variable selection algorithms. It is not possible to do such 

a comparison analytically and hence, in this chapter, I did it via computer simulations.  

In order to compare the MFS-SNR algorithm to existing variable selection methods I carried out a 

comparison study using simulated data. It was envisaged that my algorithm could be used for clinical 

data, hence in the simulations I set up the parameters to be inspired by real clinical datasets. The 

simulations were inspired by the values of means and covariance’s of real clinical datasets from the 

area of ophthalmology.  

The aim of this chapter is to evaluate the performance of the MFS-SNR algorithm in multivariate 

normal computer-simulated scenarios; and to compare it to several existing variable selection 

methods. 

The structure of this chapter follows the standard structure recommended for simulation studies 

(Burton at al., 2006). Section 4.2 describes the data-generating mechanisms, Section 4.3 lists the 

chosen methods for comparison, Section 4.4 presents the performance criteria, Section 4.5 gives 

results of simulations where I applied the existing variable selection methods as well as the MFS-SNR 

methods; and finally Section 4.5 outlines the conclusions based on this simulation study. 

4.2 Data-generating mechanisms 

This section describes how I chose the data-generating mechanisms i.e. how the data were 

simulated. First, for the purpose of this simulation study, I assumed a discriminatory problem with 

two groups and a multivariate normal distribution for the potential discriminatory variables.  
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Next, I decided that in the simulations the effect of the following components should be 

investigated: 

 Sample size 

o equal vs. unequal sample size 

o small, medium vs. large sample size 

 Covariance structures 

o unequal covariance across groups 

o Small and large differences in correlation between variables across groups. 

Next, a decision had to be made on the number of variables. If a large number of variables was 

chosen then it might be challenging to make conclusions from simulations due to the complexity of 

correlations, on the other hand if a very small number of variables it might not be possible to make 

conclusions due to the correlations being too simple. In the existing literature there is a high level of 

diversity in the composition of simulated datasets with respect to the number of variables they 

contain. For example Bolòn-Canedo et al. (2013) describe 11 datasets containing anywhere from 6 to 

more than 4,000 variables. Therefore I chose to simulate a dataset consisting of ten variables, which 

are referred to as 𝑋1,…,𝑋10. 

Next, I decided on the discrimination structure i.e. on the relationship between the grouping 

variable (with two levels or groups) and the 10 continuous variables. This choice was motivated by 

the discrimination structures common in clinical studies: there can be a variable that is non-

discriminatory when used alone and which is highly correlated with the discriminatory variables 

(Guyon & Elisseeff, 2003). Therefore I chose to simulate the following discrimination structure:  

 𝑋1and 𝑋2 are 2 discriminating variables i.e. they each have some discriminatory strength 

when used alone,  

 𝑋3 is a non-discriminating variable (when used alone) which is however relevant to 

discrimination when added to the 2 discriminating variables i.e. this variable does not carry 

any information about the two assumed disease groups but this variable is highly correlated 

with the variables 𝑋1 and 𝑋2 and hence can explain some uncertainty around 𝑋1 and 𝑋2 and 

may improve the discrimination, 

 𝑋4 … 𝑋10 are non-discriminating and irrelevant variables i.e. they do not carry any 

information about the two assumed disease groups when used alone and they do not carry 

any information about the two assumed disease groups when added to the two 

discriminating variables.  
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Next, the means, variances and correlations for the multivariate normal distribution of the 10 

continuous variables were chosen. In deciding about these values, it was important that the 

simulated data have properties similar to an existing clinical dataset. So the simulations were based 

on the values of means and covariance’s from a real clinical dataset from the area of ophthalmology. 

Specifically, the first two discriminating variables 𝑋1 and 𝑋2 were based on the parameters of the 

variables HbA1c and mfERG Central density from the DREFUS study (Chapter 6). The non-

discriminating variable 𝑋3 was based on the variable Cholesterol from the DREFUS study (Chapter 6). 

Then the variables 𝑋4 to 𝑋10 were simulated to be independent of each other, and independent of 

the first three variables, thus representing noise or redundant information. For the purpose of the 

simulations we assumed groups 0 and 1 had mean vectors  

𝜇0 = (8.6, 57.1, 4.5, 1, 1, 1, 1, 1, 1, 1) 

and    

𝜇1 = (7.2, 77.1, 4.3, 1, 1, 1, 1, 1, 1, 1). 

with the 10x10 variance-covariance matrices  

Σ0 = [
Σ0,1:3,1:3 Σ0,1:3,4:10

Σ0,4:10,1:3 Σ0,4:10,4:10
] 

and 

Σ1 = [
Σ1,1:3,1:3 Σ1,1:3,4:10

Σ1,4:10,1:3 Σ1,4:10,4:10
] 

where Σ0,1:3,1:3  is a 3x3 variance-covariance matrix of the random vector (𝑋1, 𝑋2, 𝑋3), Σ0,1:3,4:10 is a 

3x7 variance-covariances matrix between the random vectors (𝑋1, 𝑋2, 𝑋3),  and (𝑋4, … , 𝑋10), 

Σ0,4:10,4:10 is a 7x7 variance-covariance matrix of the random vector (𝑋4, … , 𝑋10), and Σ1,4:10,1:3 is a 

7x3 transpose of the matrix Σ𝐴,1:3,4:10, in group 0.  The variance-covariance matrix of group 1 is 

defined analogously.  

The estimated variance-covariance matrices from the DREFUS dataset (Chapter 6) for HbA1c, mfERG 

Central Density and Cholesterol, are 

Σ̂0,1:3,1:3 = [
2.4 11.2 0.9
11.2 340.8 6.9
0.9 11.2 1.25

] 

and     
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Σ̂1,1:3,1:3 = [
1.7 15.0 0.5
15.0 1250.6 −3.2
0.5 −3.2 0.8

]. 

The corresponding estimated correlation matrices were 

Ĉorr0,1:3,1:3 = [
1.00 0.39 0.53
0.39 1.0 0.33
0.53 0.33 1.0

] 

     

Ĉorr1,1:3,1:3 = [
1.0 0.33 0.42
0.33 1.0 −0.1
0.42 −0.1 1.0

] 

Furthermore in setting up the variance-covariance matrices of Σ1,4:10,1:3, Σ1,4:10,1:3 and Σ1,4:10,1:3 we 

used the following specifications, which are same in all our simulations 

Σ1,1:3,4:10 = [
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

] 

 

Σ1,4:10,4:10 =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

 

Σ1,4:10,1:3 = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (Σ,1:3,4:10). 

 

All the above considerations led to 12 data-generating scenarios. In each scenario the means are as 

defined above (see 𝜇0 and 𝜇1), correlation for group 0 is as defined above (Ĉorr0,1:3,1:3); and 

correlation matrices Σ1,4:10,4:10, Σ1,1:3,4:10 are as defined above. The variances were kept the same as 

above for each of two groups. The other parameters that were modified in simulations are the 

sample sizes and the correlations. The parameters of the 12 scenarios are presented in Table 4.2.1. 
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Table 4.2.1 Group sizes and variance-covariance matrices for each of 12 simulation scenarios 

 𝑛0 = 𝑛1 = 40 𝑛0 = 𝑛1 = 400 𝑛0 = 𝑛1

= 1,000 

𝑛0 = 50,  

𝑛1 = 150 

𝐶𝑜𝑟𝑟1,1:3,1:3

= [
1.0 0.33 0.42
0.33 1.0 0.1
0.42 0.1 1.0

] 

Scenario 1 Scenario 4 Scenario 7 Scenario 10 

𝐶𝑜𝑟𝑟1,1:3,1:3

= [
1.0 0.33 0.42
0.33 1.0 0.1
0.42 0.1 1.0

] 

Scenario 2 Scenario 5 Scenario 8 Scenario 11 

𝐶𝑜𝑟𝑟1,1:3,1:3

= [
1.0 0.33 0.9
0.33 1.0 0.1
0.9 0.1 1.0

] 

Scenario 3 Scenario 6 Scenario 9 Scenario 12 

 

Next, I wanted to see how the simulations visualised on scatter plots i.e. if scatterplots would reveal 

the discrimination structure. However it is impossible to visualise the simulated data from a 10-

dimensional distribution on a single scatter plot. So to get an idea of how the groups 0 and 1 were 

separated I created several 2-D scatter plots of the first three variables.  Plots of the simulated data 

are presented in Figure 4.2.1.1 below. Each dot represents one simulated patient. There is some 

overlap between the two groups in the plots but there is also some degree of discrimination 

between the two groups, which is typical for clinical datasets as seen in Chapter 6. 
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Figure 4.2.1 Bivariate plots of 𝑿𝟏, 𝑿𝟐, 𝑿𝟑, for 𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎𝟎 using Cor(𝑿𝟏/𝑿𝟑)=0.42  in Group 1 and 

Cor(𝑿𝟏/𝑿𝟑)=0.11 in Group 1 (Scenario 4) 

 

 

4.3 Comparators 

Next I had to decide which existing variable selection methods should be compared to my MFS-SNR 

algorithm. As mentioned in sections 2.3-2.5 there are many variable selection methods categorised 

as filter, wrapper and embedded. Guyon and Elisseeff (2003) have written a comprehensive 

introduction to variable selection methods. Additional reviews are available which provide examples 

of each of these types of variable selection methods e.g. in Pacheco et al. (2006), Saeys et al. (2007), 

Chandrashekar & Sahin (2014) and Karper (2014). The MFS-SNR algorithm is a multivariate filter 

method of variable selection. Filter methods function by calculating an index (i.e. summary statistic) 

for each variable which is designed to reflect that variables’ discrimination ability. Filter methods are 

often (though not always) univariate which means they do not consider correlations or 

dependencies which may exist between variables. While this is generally considered to be a 
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limitation of these types of methods it can also prove advantageous as it means the computational 

overhead is considerably lower than that of competing methods. Filter methods are also 

independent of the classifier algorithm however, whether this is advantageous or not must be 

ascertained on a case-by-case basis.  

In this comparison study I compared the MFS-SNR algorithm with 6 existing methods of variable 

selection.  I chose to compare MFS-SNR with the following methods: 

 MFS algorithm based on Hotelling’s T2 statistic, (MFS-T2) which is a type of multivariate filter 

variable selection method. Including this version of the MFS algorithm in the simulation 

study facilitated assessment of the difference in classification performance arising from the 

ability of the SNR to accommodate heterogeneous variance-covariance matrices.  

 Three univariate filter methods using chi-square statistics (Chi-squared), information gain 

(Info. Gain) and the Relief-F algorithm are also included in the simulation study. The MFS-

SNR algorithm is a multivariate filter method, the purpose of including several univariate 

filter methods was to assess the performance of the MFS-SNR algorithm relative to existing 

univariate filter methods.  

 A multivariate filter method using a SVM classifier is also included in the study (using the R 

package e1071). The SVM classifier is used to evaluate each of the variables. This is 

different to the MFS-SNR algorithm in that the SNR assesses variables without the need to 

train a classifier. Including the SVM-driven method facilitated assessment of the performance 

of the SNR relative to a SVM classifier.  

 The method varselRF is an embedded method using RFs. It is the final method included in 

this study. Embedded methods operate by evaluating a large number of the potential 

variable subsets to identify the optimal subset. The purpose of including this method in the 

study was to assess the performance of the MFS-SNR relative to an embedded method of 

variable selection. 

As a multivariate filter method the MFS-SNR algorithm evaluates individual variables before making 

variable selections.  

The variable selections using filter methods based on chi-squared statistics, information gain and the 

relief-F algorithm are implemented in the FSelector package in R (Romanski & Kotthoff, 2014) 

that were downloaded from R Project website (R  Core Team, 2015). For each method weights are 

calculated for each variable in a given simulated dataset. These weights reflect the importance of 
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each variable to the task of discriminating between the groups of interest. Variables with values 

greater than zero are selected. 

I implemented a multivariate filter method employing a SVM in this work in R. The SVM classifier 

was taken from the e1071 package in R. I wrote a script in R which utilised the SVM classifier to 

carry out variable selection. It is based on the following idea; for each simulated dataset a classifier is 

first constructed using the svm function with the full set of variables and a PCC value is calculated. 

Each variable is then removed in turn and the classifier re-trained using the partial set of 9 remaining 

variables. A PCC value is calculated for each of these classifiers. The difference between the “full” 

PCC value and the “partial” PCC values for each variable is taken as a measure of that variables’ 

importance to discrimination. The least important variable is removed (i.e. the variable with the 

smallest contribution to discrimination as measured by its effect on PCC). This process is repeated 

until a list ranking the variables by their performance from best to worst is produced. The 3 best 

performing variables are chosen for each simulated dataset i.e. the algorithm assumes a priori that 3 

variables are to be chosen. 

I implemented an embedded method of variable selection employing RFs using the varSelRF and 

randomForest packages in R. The varSelRF function uses the randomForest function to 

grow a random forest containing 5,000 trees. The idea of this variable selection algorithm is the 

following; at each branching point a number of variables are chosen randomly and the data is split 

(or branches) at that point using whichever of these randomly chosen variables produces the most 

homogeneous groups. The number of variables to be randomly selected at each branch point is 

determined based on the total number of variables. Multiple random forests are grown starting with 

the full set of variables and removing a proportion (0.2) of the variables at each iteration before 

growing a new forest. The final set of variables chosen are those associated with the forest that has 

the smallest number of variables as well as an error rate that is within 𝑢 standard errors of the 

minimum error rate of all of the forests. The algorithm assumes priory priori that 3 variables are to 

be chosen. 

4.4 Performance measures 

Next it was important to choose suitable performance measures for MFS-SNR and other variable 

selection methods. The aim of the simulation study was to see if the variable selection methods 

select the correct variables for classifications. Hence I used the following performance measures: 

 For each variable (out of 𝑋1, … , 𝑋10) the probability of being selected by a particular variable 

selection method was recorded, in %. 
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 For each variable selection method I evaluated the selection performance across all 1,000 

simulations. The chosen criteria of performance are the probability of correct classification 

(PCC) and area under the receiver-operating curve (AUC) calculated using linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA). Each selection was validated 

externally using the validation dataset produced during each round of simulation. 

 Computational speed. To compare the time taken for each method to carry out variable 

selection the time (in minutes and seconds) was measured for each method. This 

measurement was only made for 𝑛0 = 𝑛1 = 40 and correlations between 𝑋1and 𝑋3 set to 

0.9 (Scenario 2). 

In order to ensure that the estimates of the performance measures were unbiased, in each 

simulated scenario I simulated the multivariate normal data 1,000 times i.e. 1,000 datasets were 

simulated for each scenario. Then I split each simulated data using in a 50:50 ratio to produce a 

training dataset and a validation dataset. Next I applied each of the considered variable selection 

methods (see Section 4.3) to each of the simulated training datasets and I evaluated the 

performance measures. Further, computational details are described in Chapter 3 (Section 3.9).  

4.5 Results of comparison of the MFS-SNR algorithm to existing variable 

selection methods in simulated data 

The main goal of this comparison was to see how well MFS-SNR performed at the task of selecting 

the correct variables in 12 simulated scenarios (Section 4.2) relative to the alternative variable 

selection methods used in this study (Section 4.3) with respect to the performance measures 

(Section 4.4).  

The scenarios that were selected are challenging in the sense that they assume complex correlation 

structure among the first three variables. This is significant because when two variables are highly 

correlated it is possible to use the value of one variable to predict the value of the other. These 

correlations were chosen to mimic real datasets, but also to see how current variables selection 

methods work in complex structures. One complexity is in the fact that there are variables 𝑋1 and 𝑋3 

that are highly correlated, but variable 𝑋3 has no discriminatory potential. This means that each of 

the two highly correlated variables reduces uncertainty about the other variable. When the 

correlation between two variables is sufficiently high this reduction in uncertainty can enhance the 

discriminatory potential of both variables. In a scenario where one of the variables has limited ability 

to discriminate between two groups on its’ own a sufficiently high correlation with the other 

variable (which has a greater ability to discriminate between the groups of interest) will increase its’ 
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utility as it can enhance the discriminatory potential of the variable to which it is correlated. This is 

why variable 𝑋3 in the simulated dataset is important to discriminating between the groups and 

therefore should be part of any variable selection. I therefore expected that by construction, 

variables 𝑋1, 𝑋2 and 𝑋3 should be selected by variable selection methods. 

The results presented below relate to 12 different scenarios with varying assumed correlations and 

group sizes. For each of the altered correlations a parallel change in the selection frequencies for the 

variables 𝑋1, 𝑋2 and 𝑋3 reflecting the changing correlations is expected.  

4.5.1 Variable selection in the presence of a small difference between the correlation 

matrices of the groups. 

In this subsection I present the results of variable selection when the difference in correlation 

matrices between groups is small, specifically when 𝐶𝑜𝑟𝑟(𝑋1, 𝑋3) = 0.42. This corresponds to 

scenarios 1, 4, 7 and 10 in Tables 4.5.1.1, 4.5.1.2, 4.5.1.3 and 4.5.1.4 below for 𝑛0 = 𝑛1 = 40, 

𝑛0 = 𝑛1 = 400, 𝑛0 = 𝑛1 = 1,000 and 𝑛0 = 50, 𝑛1 = 150 respectively. In each of these scenarios 

the correlations between 𝑋1 and 𝑋3, and between 𝑋2 and 𝑋3 were 0.42 and 0.1 respectively for 

group 1. These correlations were inspired by the parameters from the DREFUS dataset (e.g. HbA1c, 

mfERG central amplitude and cholesterol in Chapter 6) and hence may be viewed as a baseline 

against which the other correlation scenarios may be compared. 

In scenario 1 with low sample size (𝑛0 = 𝑛1 = 40) the algorithms MFS-SNR and Relief-F selected the 

correct variables 𝑋1 , 𝑋2 and 𝑋3 with the highest frequencies (Table 4.5.1.1) among all considered 

algorithms. While the frequency of choosing the correct variable 𝑋3 was higher for Relief-F than for 

MFS-SNR, Relief-F also incorrectly selected non-discriminating variables with higher probabilities 

approaching 50 %. Random Forest selected non-discriminating variables with a lower frequency than 

MFS-SNR, the same is not true for MFS-T2 and SVM both of which selected non-discriminating 

variables with higher frequency than MFS-SNR. The SVM achieved the highest AUC and PCC values 

(Table 4.5.1.1), however this is at the cost of a higher frequency of non-discriminating variable 

selection. Furthermore SVM also failed to identify the importance of 𝑋3 in a majority of simulations 

(75%). RF also achieved higher PCC and AUC values than MFS-SNR but failed to identify the 

importance of 𝑋3 in a majority of simulations (77 %). The remaining filter methods (based on 

information gain and chi-squared statistics), failed to identify the importance of 𝑋3 and had lower 

performance estimates. However these methods did select the non-discriminating variables with the 

lowest frequencies. 
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In scenario 4 with medium sample size (𝑛0 = 𝑛1 = 400) the algorithms Relief-F, MFS-SNR, SVM and 

RF selected the correct variables 𝑋1, 𝑋2 and 𝑋3 with the highest frequencies (Table 4.5.1.2). Relief-F 

however also selected the non-discriminating variables with higher frequencies than MFS-SNR, SVM 

and RF. MFS-T2 as well as the filter methods using information gain and chi-square statistics selected 

all 3 discriminating variables in less than 50 % of cases. PCC and AUC estimates of selection 

performance were similar for all methods. Relative to MFS-SNR the computationally expensive SVM 

and RF methods have selected non-discriminating variables with lower frequencies. 

In scenario 7 with large sample size (𝑛0 = 𝑛1 = 1,000) all algorithms except MFS-T2 selected the 

correct variables 𝑋1, 𝑋2 and 𝑋3 with the highest frequencies (Table 4.5.1.3) of greater than 80 %. The 

Relief-F algorithm selected the non-discriminating variables with the highest frequencies of any 

method while RF and MFS-SNR selected the non-discriminating variables with similar frequencies. 

PCC and AUC estimates of selection performance were similar for all methods.  

In scenario 10 with imbalanced sample sizes, (𝑛0 = 50, 𝑛1 = 150) univariate filter methods using 

chi-square statistics and information gain failed to select 𝑋3 in a majority of simulations. Relief-F 

selected 𝑋1, 𝑋2 and 𝑋3 with frequencies over 80 % however it also selected non-discriminating 

variables with frequencies approaching 70 %. The MFS-T2 and MFS-SNR algorithms, SVM and 

Random Forest-based methods all selected 𝑋1 and 𝑋2with frequencies above 80 %. The MFS-T2 

algorithm selected 𝑋3 with a frequency of 29 % while the MFS-SNR algorithm, SVM and Random 

Forest-based methods selected 𝑋3 with frequencies approaching 50 %. 

Table 4.5.1.1 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎 

(Scenario 1). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

57 57 5 2 2 2 2 2 2 2 64 66 68 71 

Info. 
Gain 

57 57 5 2 2 2 2 2 2 2 64 66 68 71 

Relief F 87 86 65 46 44 47 48 46 46 46 64 66 67 70 

MFS-T2 83 63 14 13 12 13 15 14 13 14 66 65 68 70 

MFS-SNR 83 70 39 10 9 11 12 9 11 9 67 66 68 71 

SVM 86 75 25 12 14 13 15 19 19 22 67 69 72 76 

RF 92 82 23 8 7 8 9 8 8 9 65 68 69 73 
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Table 4.5.1.2 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎𝟎 

(Scenario 4). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 100 41 0 0 0 0 0 0 0 66 69 73 79 

Info. 
Gain 

100 100 41 0 0 0 0 0 0 0 66 69 73 79 

Relief F 93 93 79 54 54 52 56 56 53 57 65 69 72 78 

MFS-T2 100 99 18 12 13 13 11 12 12 12 65 69 73 78 

MFS-SNR 100 99 97 9 10 11 11 10 11 11 65 70 73 80 

SVM 100 100 89 1 1 1 2 1 2 2 66 70 73 81 

RF 100 100 95 6 7 7 8 8 8 8 65 70 73 81 
 

Table 4.5.1.3 Selection frequencies (in %) and AUC/PCC estimates (in %) for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝒏𝟏 =

𝟏, 𝟎𝟎𝟎 (Scenario 7). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 100 94 0 0 0 0 0 0 0 65 70 73 81 

Info. 
Gain 

100 100 94 0 0 0 0 0 0 0 65 70 73 81 

Relief F 94 92 81 58 56 58 59 58 58 54 65 69 72 79 

MFS-T2 100 100 20 10 10 9 10 9 11 9 65 69 73 78 

MFS-SNR 100 100 100 14 12 10 12 11 11 8 65 70 73 81 

SVM 100 100 100 0 0 0 0 0 0 0 65 70 73 81 

RF 100 100 100 12 13 10 12 10 11 11 65 70 73 81 
 

Table 4.5.1.4 Selection frequencies (in %) and AUC/PCC estimates (in %) for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝟓𝟎, 

𝒏𝟏 = 𝟏𝟓𝟎 (Scenario 10). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

82 80 8 0 0 0 1 0 0 0 58 59 80 82 

Info. 
Gain 

82 80 8 0 0 0 1 0 0 0 58 59 80 82 

Relief F 96 90 82 69 70 71 69 70 69 70 58 59 80 81 

MFS-T2 100 85 29 12 12 13 14 13 13 12 58 60 81 83 

MFS-SNR 91 84 53 10 8 9 9 8 9 8 58 60 81 82 

SVM 100 80 49 5 7 8 9 12 13 17 58 60 82 84 

RF 100 94 45 5 5 5 5 5 5 4 58 60 82 84 
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4.5.2 Variable selection in the presence of a large difference between the correlation 

matrices of the groups. A case of high correlation between the variables 𝑋1 and 𝑋3. 

In this subsection I present the results of variable selection when the difference in correlation 

matrices between groups is large, specifically when 𝐶𝑜𝑟𝑟(𝑋1, 𝑋3) = 0.9. This corresponds to 

scenarios 2, 5, 8 and 11 in Tables 4.5.2.5, 4.5.2.6, 4.5.2.7 and 4.5.2.8 below for 𝑛0 = 𝑛1 = 40, 

𝑛0 = 𝑛1 = 400, 𝑛0 = 𝑛1 = 1,000 and 𝑛0 = 50, 𝑛1 = 150 respectively. In each of these scenarios the 

correlations between 𝑋1 and 𝑋3  and between 𝑋2 and 𝑋3  were 0.9 and 0.1, respectively, in group 1. 

Relative to Section 4.3.1 the correlation between 𝑋1 and 𝑋3 has more than doubled while the 

correlation between 𝑋2 and 𝑋3 stays the same.  

When comparing variable selections in high 𝑋1and 𝑋3 correlation (Scenarios 2, 5, 8 and 11) to 

medium 𝑋1 and 𝑋3 correlation (Scenarios 1, 4, 7 and 10) I found differences.  In scenario 2 with low 

sample size (𝑛0 = 𝑛1 = 40) Relief-F and MFS-SNR selected 𝑋1, 𝑋2 and 𝑋3 with high frequencies 

(Table 4.5.2.1). Both of these methods had similar PCC/AUC values whether calculated using LDA or 

QDA. However MFS-SNR selected non-discriminating variables with a lower frequency than Relief-F. 

Selections made using SVM included 𝑋3 with a much lower frequency than MFS-SNR but had similar 

PCC values to MFS-SNR. This was likely a result of the higher frequency of non-discriminating 

variable selection by this method relative to MFS-SNR. MFS-SNR selections achieved similar 

performance with a more parsimonious selection while selecting the discriminating variables with 

high probability. The remaining filter methods (based on information gain and chi-squared statistics), 

failed to identify the importance of 𝑋3 and had lower performance estimates. The same is also true 

for MFS-T2. RF Achieves higher PCC/AUC value than MFS-T2 but it also selects 𝑋3 with a much lower 

frequency than MFS-SNR. 

In scenario 5 with medium sample size (𝑛0 = 𝑛1 = 400) 𝑋1, 𝑋2 and 𝑋3 were selected with the 

highest frequencies by the Relief-F algorithm, MFS-SNR, SVM and RF (Table 4.5.2.2). The selection of 

non-discriminating variables was highest for the Relief-F algorithm and lowest for SVM and RF. MFS-

T2 as well as the filter methods using information gain and chi-square statistics selected all 3 

discriminating variables in less than 50 % of cases. PCC and AUC estimates of selection performance 

were similar for MFS-SNR, SVM and RF which is expected as their selection frequencies are so 

similar.  

In scenario 8 with large sample size (𝑛0 = 𝑛1 = 1,000) 𝑋1, 𝑋2 and 𝑋3 were selected with a 

frequency of greater than 90 % by all methods except MFS-T2. The Relief-F algorithm selected the 

non-discriminating variables with the highest frequencies followed by MFS-SNR and MFS-T2 which 

both selected the non-discriminating variables at similar frequencies and RF which selected them 
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with lower frequencies. The selection of non-discriminating variables by SVM was negligible at this 

group size. PCC and AUC estimates of selection performance were similar for all methods except 

MFS-T2. This can be attributed to the similar selection frequencies of the variables 𝑋1, 𝑋2 and 𝑋3 

and the lack of any discriminatory ability in the non-discriminating variables (i.e. because variables 

𝑋4 to 𝑋10 were non-discriminating their contribution to the overall performance is negligible and 

therefore even at high frequencies of selection they have negligible impact on classification 

performance). 

In scenario 11 with imbalanced sample sizes (𝑛0 = 50, 𝑛1 = 150), the univariate filter methods using 

chi-square statistics and information gain failed to select 𝑋3 in a majority of simulations (Table 

4.5.2.1). The selection frequencies for 𝑋1 and 𝑋2 also fell for both of these methods relative to the 

correlations in Section 4.5.1.  Relief-F selected 𝑋1, 𝑋2 and 𝑋3 with frequencies over 80 % however it 

also selected non-discriminating variables with frequencies approaching 70 %. The MFS-T2 and MFS-

SNR algorithms selected 𝑋1 and 𝑋2 with frequencies above 80 %. The selection frequency for 𝑋3 by 

the MFS-T2 algorithm more than doubled in this correlation scenario.  The SVM and Random Forest-

based methods selected 𝑋2 with a reduced frequency, with drops of 23 and 40 %, respectively. 

Conversely the selection frequency for 𝑋3correctly increased (almost doubled) for MFS-SNR, SVM 

and Random Forest in this correlation scenario. 

Table 4.5.2.1 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods for a correlation of 0.9 between 𝑿𝟏 and 𝑿𝟐 in group 1 and 

𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎 (Scenario 2). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

61 59 5 2 2 2 2 2 2 2 64 65 69 71 

Info. 
Gain 

61 59 5 2 2 2 2 2 2 2 64 65 69 71 

Relief F 93 86 79 43 43 45 45 45 43 42 64 71 70 80 

MFS-T2 84 60 16 12 11 13 14 14 13 13 64 66 69 72 

MFS-SNR 84 79 81 11 12 12 13 10 11 10 64 72 70 82 

SVM 92 63 51 10 11 9 15 14 17 19 67 72 72 81 

RF 94 78 45 7 6 6 8 7 8 7 66 71 70 78 
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Table 4.5.2.2 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods for a correlation of 0.9 between 𝑿𝟏 and 𝑿𝟐 in group 1 and 

𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎𝟎 (Scenario 5). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 100 42 1 0 0 0 0 0 0 65 70 74 82 

Info. 
Gain 

100 100 42 1 0 0 0 0 0 0 65 70 74 82 

Relief F 98 91 96 51 51 48 51 52 51 53 65 72 73 87 

MFS-T2 100 99 32 12 13 12 13 15 12 14 65 70 73 81 

MFS-SNR 100 100 100 12 13 12 12 12 11 14 65 73 74 89 

SVM 100 96 100 3 6 2 3 5 4 1 66 73 74 89 

RF 100 94 100 3 3 2  3 3 2 65 73 73 89 

 

Table 4.5.2.3 Selection frequencies (in %) and AUC and PCC (in %) estimates for MFS-SNR, MFS-T2 

and selected filter and embedded methods for a correlation of 0.9 between 𝑿𝟏 and 𝑿𝟐 in group 1 

and 𝒏𝟎 = 𝒏𝟏 = 𝟏, 𝟎𝟎𝟎 (Scenario 8). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 100 94 0 0 0 0 0 0 0 65 73 74 88 

Info. 
Gain 

100 100 94 0 0 0 0 0 0 0 65 73 74 88 

Relief F 99 91 96 52 48 51 54 55 54 52 65 73 74 88 

MFS-T2 100 100 50 12 14 11 13 12 12 13 65 71 74 83 

MFS-SNR 100 100 100 13 14 12 12 13 13 13 65 73 74 89 

SVM 100 100 100 0 0 0 0 0 0 0 65 73 74 89 

RF 100 100 100 1 2 3 3 2 3 3 65 73 74 89 
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Table 4.5.2.4 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝟓𝟎, 

𝒏𝟏 = 𝟏𝟓𝟎 (Scenario 11). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

83 81 8 0 0 0 1 0 0 0 58 59 80 82 

Info. 
Gain 

83 81 8 0 0 0 1 0 0 0 58 59 80 82 

Relief F 99 89 96 68 68 68 68 67 67 68 58 61 84 90 

MFS-T2 100 85 73 14 15 15 15 14 16 16 58 61 84 89 

MFS-SNR 92 94 92 17 14 17 16 14 16 16 58 62 84 91 

SVM 100 57 92 2 3 4 6 8 12 16 58 62 85 91 

RF 100 54 87 1 1 1 1 1 1 1 58 62 85 91 

 

At the larger group sizes of 400 and 1,000 differences in selection frequencies are negligible. 

However when the group sizes are 40 I observed an increase in the selection frequency for 𝑋3 for 

MFS-SNR, SVM and RF. The largest increase is seen for MFS-SNR. For each of these methods an 

increase in the performance estimates is also observed with the largest increase for MFS-SNR. The 

change in selection frequency of 𝑋3 for the MFS-T2 algorithm is negligible. The changes in the 

performance estimates for MFS-T2 are also negligible. For the univariate filter methods any changes 

in the selection frequencies and performance estimates are negligible. At the imbalanced group sizes 

of 𝑛0 = 50, 𝑛1 = 150 the frequency of 𝑋3 selection by the Relief-F algorithm increases by 16 %. For 

the univariate filter methods minor changes are noticed under these altered correlation conditions. 

For MFS-SNR the frequency of selection for 𝑋3 almost doubles while the frequency for 𝑋2 increases 

by 10 %. Changes in the selection frequency of 𝑋1 are minor. For MFS-T2 the selection frequency of 

𝑋2 more than doubles while the frequencies for 𝑋1 and 𝑋3 are unchanged. SVM and Random Forest 

both exhibit a drop in the selection frequency of 𝑋2. At the same time the selection frequency for 𝑋3 

almost doubles for both methods. 
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4.5.3 Variable selection in the presence of a large difference between the correlation 

matrices of the groups. A case of high correlation between the variables 𝑿𝟐 and 𝑿𝟑. 

In this subsection I present the results of variable selection when the difference in correlation 

matrices between groups is large, specifically when Corr(𝑋2, 𝑋3)=0.9. This corresponds to scenarios 

3, 6, 9 and 12 in Tables 4.5.3.1, 4.5.3.2, 4.5.3.3 and 4.3.3.4 below for 𝑛0 = 𝑛1 = 40, 𝑛0 = 𝑛1 = 400, 

𝑛0 = 𝑛1 = 1,000 and 𝑛0 = 50, 𝑛1 = 150 respectively. In each of these scenarios the correlations 

between 𝑋1and 𝑋3 and 𝑋2 and 𝑋3 were 0.42 and 0.9, respectively, in group 1.  Relative to section 

4.5.1 the correlation between 𝑋1 and 𝑋3 was unchanged while the correlation between 𝑋2 and 𝑋3 

was increased by a factor of 9.  

When comparing the variable selection in low 𝑋2 and 𝑋3 correlation (Scenarios 2, 5, 8 and 11) to 

medium high 𝑋2 and 𝑋3 correlation (Scenarios 3, 6, 9 and 12) we found differences. In scenario 3 

with low sample size (𝑛0 = 𝑛1 = 40) the discriminating variables 𝑋1, 𝑋2 and 𝑋3 were selected with 

the highest frequencies by the Relief-F algorithm (Table 4.3.3.1). However the Relief-F algorithm also 

selected the non-discriminating variables with frequencies approaching 50 %. All of the other 

methods selected 𝑋1, 𝑋2 and 𝑋3 together with frequencies of less than 50 %. The selection 

frequencies for non-discriminating variables were similar for MFS-T2, MFS-SNR and SVM but lower 

for RF. There were differences in the performance estimates AUC and PCC calculated for MFS-T2, 

MFS-SNR, SVM and RF. These differences can be explained by the differences in selection 

frequencies of the discriminating variables for each of these methods.  

In scenario 6 with medium sample size (𝑛0 = 𝑛1 = 400). The discriminating variables 𝑋1, 𝑋2 and 𝑋3 

were selected with the highest frequencies by the Relief-F algorithm, MFS-T2, MFS-SNR, SVM and RF 

(Table 4.5.3.2). The highest selection frequency for the non-discriminating variables was for the 

Relief-F algorithm followed by MFS-T2, MFS-SNR and RF. Performance estimates were similar for 

MFS-T2 and MFS-SNR which can be explained by the similar selection frequencies for variables 𝑋1, 

𝑋2 and 𝑋3. Performance estimates for SVM and RF are higher due to the higher frequency of 

selection of the variables 𝑋1, 𝑋2 and 𝑋3. 

In scenario 9 with large sample size (𝑛0 = 𝑛1 = 1,000) selection frequencies for the discriminating 

variables are very similar for all methods (Table 4.5.3.3). The selection frequencies for the non-

discriminating variables were largest for the Relief-F algorithm, followed by random forests and then 

MFS-T2 and MFS-SNR which had very similar selection frequencies for the non-discriminating 

variables. AUC and PCC performance estimates were very similar for all methods at this group size 

due to the similar selection frequencies for 𝑋1, 𝑋2 and 𝑋3 by each method. 
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In scenario 12 with imbalanced sample sizes (𝑛0 = 50, 𝑛1 = 150) the univariate filter methods using 

chi-square statistics and information gain failed to select 𝑋3 in a majority of simulations. The 

selection frequencies for 𝑋1 and 𝑋2 also fell for both of these methods relative to the scenarios with 

medium and low correlations between 𝑋1 and 𝑋3 and 𝑋2 and 𝑋3 respectively.  Relief-F selected 𝑋1, 

𝑋2 and 𝑋3 with frequencies over 80 % however it also selected non-discriminating variables with 

frequencies approaching 70 %. MFS-T2, MFS-SNR, SVM and Random Forest selected 𝑋1 and 𝑋2with 

frequencies above 80 %. For MFS-SNR the selection frequency for 𝑋3 increased by 3 % relative to 

section 4.5.1. MFS-T2, SVM and Random Forest all selected 𝑋2 with increased frequency in this 

correlation scenario. Differences in performance estimates for all methods arise out of differences in 

the frequencies of selection for 𝑋3. 

Table 4.5.3.1 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods for a correlation of 0.9 between 𝑿𝟏 and 𝑿𝟑 in group 1 and 

𝒏𝟎 = 𝒏𝟏 = 𝟒𝟎 (Scenario 3). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

57 54 5 2 2 2 2 2 2 2 64 66 68 71 

Info. 
Gain 

57 54 5 2 2 2 2 2 2 2 64 66 68 71 

Relief F 87 86 75 46 44 49 46 46 44 46 65 69 68 74 

MFS-T2 84 61 26 12 12 13 15 13 12 13 65 67 68 71 

MFS-SNR 81 67 40 12 11 14 13 12 13 12 65 67 68 73 

SVM 87 84 45 92 8 10 12 13 14 17 67 71 73 79 

RF 90 85 36 9 8 8 9 7 7 9 66 69 70 75 

 

 Table 4.5.3.2 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 

and selected filter and embedded methods for a correlation of 0.9 between 𝑋1 and 𝑋3 in group 1 

and 𝑛0 = 𝑛1 = 400 (Scenario 6). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 
 

100 42 0 0 0 0 0 0 0 66 70 74 81 

Info. 
Gain 

100 100 42 0 0 0 0 0 0 0 66 70 74 81 

Relief F 93 95 91 52 52 51 56 55 54 54 66 71 74 83 

MFS-T2 100 99 86 11 10 12 11 11 11 14 66 72 74 85 

MFS-SNR 100 100 95 11 12 14 12 12 13 15 66 72 75 86 

SVM 100 100 100 0 0 0 0 0 0 0 67 72 75 86 

RF 100 100 100 3 3 4 3 3 2 4 67 72 75 86 
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Table 4.5.3.3 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods for a correlation of 0.9 between 𝑿𝟏 and 𝑿𝟑 in group 1 and 

𝒏𝟎 = 𝒏𝟏 = 𝟏, 𝟎𝟎𝟎 (Scenario 9). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

100 100 94 0 0 0 3 0 0 0 66 72 75 86 

Info. 
Gain 

100 100 94 0 0 0 3 0 0 0 66 72 75 86 

Relief F 93 94 93 56 55 58 58 58 57 54 66 71 74 84 

MFS-T2 100 100 96 14 16 13 14 14 13 12 66 72 75 86 

MFS-SNR 100 100 100 14 14 13 12 13 13 13 66 72 75 86 

SVM 100 100 100 0 0 0 0 0 0 0 66 72 75 86 

RF 100 100 100 46 47 46 47 43 47 48 66 72 75 86 
  

Table 4.5.3.4 Selection frequencies (in %) and AUC/PCC (in %) estimates for MFS-SNR, MFS-T2 and 

selected filter and embedded methods with unadjusted correlations in group 1 and 𝒏𝟎 = 𝟓𝟎, 

𝒏𝟏 = 𝟏𝟓𝟎 (Scenario 12). 

 Selection frequencies of variables 

Selection 
method 

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Chi-
squared 

82 80 8 0 0 0 0 0 0 0 58 59 80 82 

Info. 
Gain 

82 80 8 0 0 0 0 0 0 0 58 59 80 82 

Relief F 95 94 95 70 70 69 70 70 70 71 58 60 80 85 

MFS-T2 99 86 32 11 10 13 10 11 9 8 58 60 81 84 

MFS-SNR 90 85 56 12 12 10 12 12 12 11 58 60 80 85 

SVM 99 87 66 4 4 5 8 8 8 10 59 61 82 87 

RF 95 97 75 2 3 1 1 2 3 2 59 61 82 88 

At the larger group sizes of 400 and 1,000 differences in selection frequencies were negligible. At 

group sizes of 40 the change in selection frequency of 𝑋3 was negligible for MFS-SNR while the 

selection frequency almost doubled for MFS-T2, SVM and RF. There was a parallel increase in the 

performance estimates for MFS-T2, SVM and RF though the increases were smaller than those 

observed when the correlation between 𝑋1 and 𝑋3 was doubled. For the univariate filter methods 

any changes in the selection frequencies and performance estimates were negligible. At the 

imbalanced sample sizes (𝑛0 = 50, 𝑛1 = 150) changes in selection frequencies for the univariate filter 

methods were negligible relative to section 4.3.1. MFS-SNR, MFS-T2, SVM and Random Forest all 

selected 𝑋1 and 𝑋2 with frequencies of over 80 %. The selection frequencies for 𝑋3 also increased for 

MFS-SNR, MFS-T2, SVM and Random forest by 3 %, 3, %, 17 % and 30 % respectively. Minor changes 
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to the selection frequencies for the non-discriminating variables were observed for MFS-SNR, MFS-

T2, SVM and Random Forest. 

4.6 Discussion 

The MFS-SNR algorithm is a multivariate filter method which I implemented (in Chapter 3) as a 

paradigm to select the best set of variables for classification. In this chapter I compared it with six 

common variable selection methods in simulated datasets.  I considered various group sizes and 

various correlation structures as both of these aspects can impact the performance of the variable 

selection methods. It is also important to consider the time and computational space required by 

each method when analysing the results. For example filter methods of variable selection generally 

(see Chapter 2) have lower computational requirements as they do not analyse a large number of 

variables (relative to embedded and wrapper methods) in the process of variable selection. This is in 

contrast to embedded and wrapper methods of variable selection which analyse large numbers of 

variable subsets (or all the variables) in the course of variable selection.  

4.6.1 Effect of sample size 

When I used medium and large group sizes of 400 and 1,000 subjects per group all the variable 

selection methods gave comparable results. The selection frequencies of variables 𝑋1, 𝑋2 and 𝑋3 for 

all of the methods correctly increased. At group sizes of 1,000 all methods (with the exception of 

MFS-T2) selected variables 𝑋1, 𝑋2 and 𝑋3 with frequencies of over 90 %. This improved performance 

is not surprising as larger groups will be more robust to the presence of outlying values and any 

metrics calculated using these larger groups will more accurately reflect the discriminatory potential 

of variables. The MFS-T2 algorithm is the exception to this observation and this is due to the 

underlying assumption of variance-covariance matrix homogeneity across groups. This assumption is 

not valid in these simulations which accounts for the poorer performance of the MFS-T2 algorithm at 

larger group sizes. 

The MFS-SNR algorithm has out-performed or worked at least as well as the competing filter 

methods in all 12 simulation scenarios. For the Relief-F algorithm, information gain and chi-square 

statistic-based methods this is in part due to the univariate nature of these methods compared to 

the multivariate nature of the SNR and the MFS-SNR algorithm. While the MFS-T2 algorithm shares 

the mechanism of the MFS-SNR algorithm Hotelling’s T2 statistic assumes homogeneity of variance-

covariance matrices which is an invalid assumption in these simulations. Hence the MFS-T2 

algorithm fails to perform as well as the MFS-SNR algorithm. 
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The MFS-SNR algorithm and the SVM and RF-based methods exhibit similar performance in all 

scenarios though the non-discriminating variable selection frequency is generally lower for the SVM 

method. In part this is due to the way in which selections were made using SVM. This method 

requires the user to specify the number of variables to be chosen, which was set to three. In 

comparison the MFS-SNR algorithm continues to select variables until its’ stopping criteria is reached 

which is based on the change in PCC (see Section 3.9.1). Also RF requires the user to specify the 

number of variables to be chosen and it selects the variables associated with the best-performing 

forest (i.e. neither the RF method nor the MFS-SNR algorithm have a cap on the number of variables 

selected). If the SVM-based method did not have its’ selections capped in this way the selection 

frequencies for the non-discriminating variables would be higher than those presented in this work. 

4.6.2 Computing time considerations 

It is important to note that the final variable subset is not the only consideration when looking at the 

relative performance of each of the methods, for example, while the performance of the MFS-SNR 

algorithm and the methods based on SVM and RF are comparable (assuming Normality of data) the 

computational requirements and the time required to make the selections are not.  

A comparison of the time involved in carrying out variable selection was also undertaken. The length 

of time taken to run a script simulating 1,000 datasets and carrying out variable selection from each 

of them was recorded. Group sizes were 𝑛0 = 𝑛1 = 40 and correlations between 𝑋1 and 𝑋3 were 

set to 0.9 (Scenario 2). All methods were run using the same script for simulating data and for 

evaluating the performance of the selected variables. The only difference in each case was the 

specific variable selection method being used. Therefore the difference in the time taken can be 

attributed to differences in the methods being used. Shortest computation time is for selections 

made using chi-square statistics. This took 38 seconds to run. The longest computation time is for 

selections made using random forests as part of an embedded method. This took 8 minutes and 50 

seconds to run. The MFS-SNR algorithm took 2 minutes 36 seconds, to run all 1000 simulations.  

Comparing MFS-SNR, SVM and Random Forest methods the overall results and performance were 

similar however the computational time required was greater for SVM and Random Forest-based 

methods (4:48 and 8:50, min:sec, respectively). The time required for the MFS-T2 algorithm was less 

than that for the MFS-SNR algorithm (2:07 compared to 2:36, min:sec, respectively). However the 

MFS-T2 method failed to select the variable 𝑋3 in a majority of simulations. While the univariate 

filter methods using chi-square statistics and information gain were considerably faster than MFS-

SNR (each of the univariate methods required less than 1 minute) they also failed to select the 

variable 𝑋2 in a majority of simulations. The Relief-F method not only took longer than MFS-SNR and 
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the alternative univariate filter methods it also selected the non-discriminatory variables with higher 

frequencies than any other method. In a real-world scenario the number of variables is likely to be 

much higher with a parallel increase in the computation time required for methods based on SVM 

and RF. While the MFS-SNR algorithm would also experience an increase in computational overhead 

this would still be less than that of the methods using SVM and RF. 

Embedded methods (such as the RF method used in this study) and wrapper methods analyse large 

numbers of variable subsets to identify the optimal subset for discriminating between groups. This 

analysis involves training a classifier and estimating the performance of that classifier for each 

variable subset to identify the optimal. This is an NP-hard problem (a non-deterministic problem 

whose solution time is upper bounded by a polynomial expression) the solution of which rapidly 

becomes impractical. In contrast the MFS-SNR algorithm identifies the optimal subset by selecting 

the variables which cause the largest increase in the SNR. While a QDA classifier is trained for each 

subset the total number of subsets is smaller than for embedded or wrapper methods and so this is 

not an NP-hard problem.   

Table 4.6.2.1 Run-time  (mins:secs) for each variable selection method applied to 1,000 simulated 

datasets under the conditions of scenario 2 

Selection 
method 

Chi-
squared 

Info. 
Gain 

Relief 
F 

MFS-
T2 

MFS-
SNR 

SVM RF 

Run-
time 

0:38 0:42 7:02 2:07 2:35 4:48 8:50 

4.6.3 Effect of correlation differences across groups 

In the simulation study I intentionally added the following complexity of correlations: the variable 𝑋3 

was simulated to be non-discriminating but also have high correlation with the discriminating 

variables 𝑋1 and 𝑋2. This caused 𝑋3 to have a role in enhancing overall discrimination when used 

with 𝑋1 and 𝑋2. The purpose of including variable 𝑋3 in this simulation study was to determine 

whether or not each of the variable selection methods being compared could also identify that role 

for 𝑋3. I found that all considered the variable selection methods were able to identify this role for 

𝑋3 in larger sample sizes but at the smallest group size of 40 the MFS-SNR algorithm clearly out-

performs the competing variable selection methods. 

Where correlations are increased between 𝑋3 and 𝑋1 or 𝑋2 i.e. where a large difference in 

correlation between two groups is introduced, it is expected that 𝑋3 is chosen more often as it 

explains better the uncertainty of of 𝑋1 and 𝑋2. In these simulations I observed that the largest 

changes in selection frequency occur for 𝑋3 (changes do occur for selection frequency of 𝑋1 and 𝑋2 

however these changes are negligible). For an increase in the correlation between 𝑋1 and 𝑋3 from 
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0.42 to 0.9 the largest change in selection frequency of 𝑋3 is observed for MFS-SNR and this is 

matched by the largest increase in performance estimates. For an increase in correlation between 

𝑋2 and 𝑋3 from 0.1 to 0.9 the change in selection frequency of 𝑋3 is smaller for MFS-SNR than either 

SVM or RF. The change in performance estimates is also smaller for MFS-SNR than for SVM and RF. 

However it must be noted that while the proportional change in selection frequencies are larger for 

SVM and RF the actual selection frequency for 𝑋3 is very similar to that for MFS-SNR. 

In summary, these simulation results demonstrate that having very different correlation matrices 

across groups impacts on the frequency of variable selection in all considered variable selection 

algorithms. In that context when the correlations between 𝑋1, 𝑋2 and 𝑋3 are increased the selection 

frequency of 𝑋3 also increases as was expected. The variable 𝑋3 was chosen not to be discriminatory 

when used alone, but it was constructed to improve the discrimination of 𝑋1 (or 𝑋3) if there is strong 

enough correlation. The increased frequency of 𝑋3 selection is matched by increased performance 

estimates. However the SVM and RF methods only begin to select 𝑋3 with appreciably high 

frequencies when the correlations are increased whereas the MFS-SNR algorithm correctly selects 

𝑋3 even with small differences in correlations. Thus the MFS-SNR algorithm is better able to identify 

the role of 𝑋3 in enhancing the discriminatory potential of other variables, in the considered 

simulation scenarios. 

4.7 Conclusion 

In conclusion, in the considered scenarios, the MFS-SNR algorithm performs at least as well as the 

best competing considered methods which are SVM and RF across a range of correlations 

relationships and group sizes. The MFS-SNR algorithm is also more effective at identifying the role of 

the non-discriminating variable 𝑋3 in enhancing the overall classification performance when used 

with other variables 𝑋1 and 𝑋2. While the SVM and RF methods offer better performance (than MFS-

SNR) in some cases this is at the cost of increased computational complexity and also at the cost of 

needing to specify the number of variables to be chosen. The MFS-SNR algorithm took 2 minutes 36 

seconds while the SVM and RF methods took 4 minutes 48 seconds and 8 minutes 50 seconds, 

respectively, to run all 1000 simulations for scenario 2.  

One of the drawbacks of these simulations is that a multivariate normal distribution was assumed. 

Chapter 5 investigates the properties of the MFS-SNR algorithm when selecting from amongst a set 

of variables whose distribution deviates from normality. 
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Chapter 5. Performance of the MFS-SNR algorithm for non-normal 

data 

Chapter 4 investigated the properties of the MFS-SNR variable selection algorithm on simulated 

normal data. Normality is implicitly assumed by the MFS-SNR algorithm, however the assumption of 

normality is often not valid for real data. The aim of this chapter is to examine whether the MFS-SNR 

algorithm is robust to deviations from normality, i.e. if it would still choose the correct variables for 

discrimination.  

This chapter is organised as follows. First I introduce the problem (Section 5.1), then I describe the 

methods of simulating the data (Section 5.2). Finally I evaluate the MFS-SNR algorithm using 

simulated non-normal data (Section 5.3). 

5.1 Aim of simulation 

The aim is to examine if the MFS-SNR algorithm is robust to deviations from normality. The problem 

of variable selection from data that are not normally distributed is an active area of research.  

In Chapter 2 I summarised variable selection methods and discussed their suitability for data that are 

not normally distributed. Therefore here I just mention the main points. Filter variable selection 

methods that are based on mutual information are suitable for use with data that are not normally 

distributed (e.g. Doquire & Verleyson, 2011; Todorov & Setchi, 2014) as the definition does not make 

any assumption on the joint probability density function. Another variable selection method is the 

Method of Tang and Mao (2007) who use factor level combinations for ordinal and nominal 

variables. Finally, filter variable selection methods based on importance scores are suitable for 

variable selection from non-normal distributed variables (e.g. Tang et al., 2007). The importance 

score measures the strength of the association between the outcome of interest and the variable in 

question. Only those variables with an importance score above a certain threshold are retained 

during the variable selection procedure. Pavlidis et al. (2001) address the issue on datasets 

containing quantitative gene expression data and qualitative phylogenetic data. They train a 

heterogeneous kernel based on both quantitative and qualitative data, (intermediate integration). 

Alternatively they train two kernels on the quantitative and qualitative data respectively then 

amalgamate the discriminant values of these two kernels to produce the final discriminants (late 

integration). Bar-hen and Daudin (1995) generalize the Mahalanobis distance so that it may be 

calculated for mixtures of quantitative and qualitative data. This generalised Mahalanobis distance is 

a summation of the distance contributions of both the quantitative and qualitative variables. Wilson 

and Martinez (1997) describe an extension to the value difference metric (VDM) to produce the 



99 
 

heterogeneous value difference metric (HVDM). The VDM is designed to estimate distance values 

between the levels of nominal variables. This estimation is based on the correlation between 

nominal levels and outcomes. The HVDM adds the ability to calculate the normalized Euclidean 

distance for quantitative variables.     

The approach here is to investigate the potential of the MFS-SNR algorithm (Section 3.8) for variable 

selection where data are not normally distributed. It is not possible to study the robustness of the 

MFS-SNR algorithm analytically, hence it was studied in computer simulations. I explored three 

scenarios representing deviation from normality: an ordinal variable with 2 categories, an ordinal 

variable with three categories and a log-normal distributed variable. Then I ran the MFS-SNR 

algorithm to see if it could identify the correct set of discriminating variables.  

5.2 Data generating mechanism  

In this section I describe the data-generating mechanism for the simulations, i.e. the methods used 

to simulate the datasets.  

To make the simulation problem tractable, I considered 10 variables:  

 variable 𝑋1 was discriminatory but not normally distributed, 

 variable 𝑋2 was discriminatory and normally distributed, 

 variable 𝑋3 is not discriminatory but improves the discrimination when added to 𝑋1 and was 

normally distributed 

 variables 𝑋4, … , 𝑋10 were not discriminatory but assumed to follow a multivariate normal 

distribution.  

I considered three schemes of non-normality for the variable X1 

 ordinal with two categories, 

 ordinal with three categories 

 log-normally distributed. 

I used the following simulation strategy. I simulated ten continuous variables from a multivariate 

normal distribution (Section 5.2.1) and then transformed the first variable to make it either 

dichotomous, trichotomous or log-normal (Section 5.2.2).  

I needed to decide how to simulate ordinal data. The challenge was that the absolute difference 

between the levels of the ordinal variable does not have a direct interpretation. For example the 

American Joint Committee on Cancer (AJCC) developed a colorectal cancer staging system which 
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assigns cancers to the appropriate stage based on the prognostic severity of the disease (Hu et al., 

2015). This means that when comparing stage 2 and stage 1 cancers the stage 2 cancers will have a 

greater prognostic severity than the stage 1 cancers. Thus as we progress up through the stages the 

prognostic severity of the cancer increases. However it does not increase at a constant rate and so 

the difference between stages 1 and 2 may not be the same as the difference between stages 2 and 

3. However the algorithm MFS-SNR assumes that these differences between cancer stages have 

equal clinical difference i.e. the difference between stages 1 and 2 is the same as the difference 

between stages 2 and 3. The MFS-SNR algorithm treats the levels as a realisation of a continuous 

variable and calculates means and variances for each group. To avoid the assumption of equality of 

clinical difference between the levels of the ordinal variable, the values of the ordinal variables can 

be recoded. The difficulty with this approach is that we generally do not have sufficient knowledge 

to apply values to the levels which accurately reflect any differences between the levels. While this is 

obviously a more important consideration with ordinal data where there is some intrinsic order to 

the levels of the variable, it is also important for nominal data especially when attempting to use 

nominal data with the MFS-SNR algorithm. 

Several recoding schemes exist which can be applied to ordinal or nominal data levels (Bishop et al., 

1975). Three of the most commonly applied methods are dummy coding, effects coding and contrast 

coding. If we assume c levels of an ordinal or nominal variable, then the general protocol is to 

encode the ordinal variable into c-1 dummy variables. Dummy coding involves assigning one level to 

be the reference or control level which is assigned a zero value for each of the dummy variables. 

Each of the remaining levels is then encoded relative to the reference level using either dichotomous 

or polychotomous variables as appropriate. For example assuming we have a factor with 3 levels X, Y 

and Z we could assign level Z as our reference level with a value of 0.  There are 3 levels in total so 

we will create two dummy variables one for each of the levels X and Y which we call Dx and Dy. The 

coding scheme for these variables is presented in Table 5.2.1.  

Table 5.2.1 Dummy variable coding for a factor with 3 levels; X, Y and Z. Level Z used as the 

reference level. 

Level Dx Dy 

X 1 0 

Y 0 1 

Z 0 0 

 



101 
 

Effects coding is similar to dummy coding in that c-1 dummy variables will be created (assuming c 

levels of an ordinal or nominal variable). A value of -1 is assigned to the reference level when using 

effects coding. For example assuming we have a factor with 3 levels X, Y and Z we could assign level 

Z as our reference level with a value of -1 and create two variables Dx and Dy for the levels X and Y. 

The coding scheme for these variables is presented in Table 5.2.2. 

Table 5.2.2 Effect variable coding for a factor with 3 levels; X, Y and Z. Level Z used as the reference 

level. 

Level Dx Dy 

X 1 0 

Y 0 1 

Z -1 -1 

 

In contrast coding the scheme allows the researcher to test specific hypotheses. To test these 

hypotheses the contrast coding scheme assigns coefficient values to variables which are orthogonal. 

The sum of the contrast coefficients must also equal zero. For example assuming we have a factor 

with 3 levels X, Y and Z we could assign level Z as our reference level with a value of -2 and create 

two variables Dx and Dy for the levels X and Y. The coding scheme for these variables is presented in 

Table 5.2.3. Note that by assigning the codes in this manner we are sequestering data according to 

the comparisons we wish to carry out.  

Table 5.2.3 Contrast variable coding for a factor with 3 levels; X, Y and Z. Level Z used as the 

reference level. 

Level Dx Dy 

X 1 0 

Y 0 1 

Z -2 -2 

 

5.2.1 Simulated data 

I simulated a dataset consisting of ten variables. The first three variables are motivated by the 

variables HbA1c, mfERG Central Amplitude and Cholesterol from the DREFUS dataset (Chapter 6). I 

assumed two groups for discrimination, 0 and 1.  The mean vectors considered for the 10 variables 

for each group were  

𝜇0 = (8.6, 57.1, 4.5, 1, 1, 1, 1, 1, 1, 1) 
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𝜇1 = (7.2, 77.1, 4.3, 1, 1, 1, 1, 1, 1, 1) 

 and the variance-covariance matrices 

Σ0,1:3 = [
2.4 11.2 0.9
11.2 340.8 6.9
0.9 11.2 1.25

] 

     

Σ1,1:3 = [
1.7 15.0 0.5
15.0 1250.6 −3.2
0.5 3.2 0.8

]. 

The correlation matrices for the variables Cholesterol, HbA1c and mfERG Central density in both 

groups were assumed to be as presented below; 

Corr0,1:3 = [
1.00 0.39 0.53
0.39 1.0 0.33
0.53 0.33 1.0

] 

     

Corr1,1:3 = [
1.0 0.33 0.42
0.33 1.0 0.1
0.42 −0.1 1.0

] 

The rest of the components of the variance-covariance matrices Σ0 and Σ1 were set to be as follows 

Σ1,1:3,4:10 = [
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

] 

 

Σ1,4:10,4:10 =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

 

Σ1,4:10,1:3 = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (Σ1,1:3,4:10). 

I assumed the following simulation scenarios 

 Scenario 1: 𝑛0 = 𝑛1 = 100, no transformation of 𝑋1 
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 Scenario 2: 𝑛0 = 𝑛1 = 500, no transformation of 𝑋1 

 Scenario 3: 𝑛0 = 𝑛1 = 100, dichotomisation of 𝑋1 

 Scenario 4: 𝑛0 = 𝑛1 = 500, dichotomisation of 𝑋1 

 Scenario 5: 𝑛0 = 𝑛1 = 100, trichotomisation of 𝑋1 

 Scenario 6: 𝑛0 = 𝑛1 = 500, trichotomisation of 𝑋1 

 Scenario 7: 𝑛0 = 𝑛1 = 100, log-normal transformation of 𝑋1 

 Scenario 8: 𝑛0 = 𝑛1 = 500, log-normal transformation of 𝑋1 

where 𝑛0 and 𝑛1 are the group sizes. 

For each simulation scenario I recorded the frequency of each variables selection as well as 

estimates of the selection performance across 1,000 simulations. The measures of accuracy 

considered were PCC and AUC both of which were calculated using LDA and QDA. During each round 

of data simulation the data was split into two portions. The first portion was the training portion and 

was used to carry out variable selection and the training of classifiers. The second portion of data 

was the validation portion. Following training of the classifiers the variable selections were validated 

using the validation portion of the simulated data. In this way each set of results was validated 

externally using the validation portion of the data. 

5.2.2 The simulation of dichotomised, trichotomised and log-normal transformed data 

I assumed three data generation schemes where data were not multivariate normal. In order to 

simulate the data, in each scheme I first simulated datasets from a multivariate Normal distribution. 

Then I subjected the values for variable 𝑋1 to a transformation producing a non-normal distribution. 

In scenarios 3 and 4 I dichotomised the variable 𝑋1. To dichotomise 𝑋1 the median (7.9) across 

groups 0 and 1 was used to assign values to level 0 or 1. All subjects with values of 𝑋1 less than or 

equal to 7.9 were assigned to level 0 and their 𝑋1 value was set to 0. All subjects with values of 𝑋1 

greater than or equal to 7.9 were assigned to level 1 and their 𝑋1 values were set to 1. Hence in 

summary this transformation can be written as 

𝑋1,𝑑𝑖𝑐ℎ = {
0 𝑖𝑓 𝑋1 < 7.9
1 𝑖𝑓 𝑋1 ≥ 7.9

 

In scenarios 5 and 6 we trichotomised 𝑋1. To trichotomise 𝑋1 the 33rd and 66th percentiles were 

calculated. All subjects with values of 𝑋1 less than or equal to the 33rd percentile were assigned to 

level 1 and their 𝑋1 value was set to 1. All subjects with values of 𝑋1 greater than or equal to the 66th 

percentile were assigned to level 2 and their 𝑋1 value was set to 2. Finally all subjects with values of 
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𝑋1 between the 33rd and 66th percentiles were assigned to level 3 and their 𝑋1 value was set to 3. 

Hence in summary this can be written as 

𝑋1,𝑡𝑟𝑖𝑐ℎ = {

1 𝑖𝑓 𝑋1 ≤ 33𝑟𝑑

2 𝑖𝑓 𝑋1 ≥ 66𝑡ℎ

3 𝑖𝑓 33𝑟𝑑 < 𝑋1 < 66𝑡ℎ

 

In scenarios 7 and 8 I subjected the variable 𝑋1to a logarithmic transformation i.e.  

𝑋1,𝑙𝑜𝑔 = 𝑙𝑜𝑔(𝑋1) 

5.3 Evaluation of MFS-SNR algorithm and of variable selection in simulated 

non-Normal data 

For each simulated scenario I aimed to evaluate the robustness of MFS-SNR via two sets of 

performance measures:  

 the frequency with which MFS-SNR selected correctly the discriminatory variables (𝑋1, 𝑋2 

and 𝑋3) and selected incorrectly the non-discriminatory variables (𝑋4, … , 𝑋10),  

 PCC and AUC.  

The results for all of the scenarios are presented in Table 5.3.1. 

 

 

 

Table 5.3.1 Variable selection frequencies and performance estimates for dichotomised and 

trichotomised variables for groups sizes of 𝒏𝟎 = 𝒏𝟏 = 𝟏𝟎𝟎 and 𝒏𝟎 = 𝒏𝟏 = 𝟓𝟎𝟎 from scenarios 1, 2, 

3, 4, 5, 6, 7, and 8 

 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 AUC 
(LDA) 

AUC 
(QDA) 

PCC 
(LDA) 

PCC 
(QDA) 

Scenario 
1 (n=100) 

98 93 98 11 11 11 12 11 10 11 65 73 73 87 

Scenario 
2 (n=500) 

100 100 100 12 13 11 13 14 14 12 65 73 74 89 

Scenario 
3 (n=100) 

89 93 56 9 8 7 8 9 10 9 63 68 69 75 

Scenario 
4 (n= 
500) 

100 100 100 12 10 11 12 12 13 11 64 69 70 79 

Scenario 
5 (n= 
100) 

48 98 26 8 9 9 8 8 9 8 60 64 65 71 

Scenario 
6 (n-500) 

97 100 85 7 5 7 6 7 8 8 61 67 67 77 
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Scenario 
7 (n=100) 

92 91 71 18 19 17 21 18 20 17 62 66 65 69 

Scenario 
8 (n=500) 

97 100 96 22 21 24 22 22 22 20 61 67 66 67 

 

First I looked at the effect of dichotomisation and trichotomisation at smaller and larger sample sizes 

i.e. scenarios 3, 4, 5 and 6. There are several findings from this. The variables 𝑋3 and 𝑋1 were more 

frequently selected when 𝑋1 was dichotomised than when 𝑋1 was trichotomised. The selection 

frequency for 𝑋2 at group sizes of 100 was slightly better (higher) when 𝑋1 was trichotomised. 

Selection frequencies for the non-discriminating variables (𝑋4, … , 𝑋10) were similar for both 

scenarios (when 𝑋1 is dichotomised or trichotomised) at group sizes of 100. AUC and PCC 

performance estimates were higher for the dichotomised data at this group size. When the group 

size was increased to 500 the selection frequencies for 𝑋1 and 𝑋2 were similar for both scenarios 

however the selection frequency for 𝑋3 was higher when 𝑋1 is dichotomised. AUC and PCC 

performance estimates were also higher when 𝑋1 was dichotomised at the larger group size of 500. 

Worth noting is that for group sizes of 500 the selection frequency for non-discriminating variables  

Next, I evaluated the MFS-SNR algorithm across sample sizes 100 and 500 when 𝑋1 was log-normal-

transformed. This corresponds to scenarios 7 and 8. There are several findings. The AUC and PCC 

estimates at the smaller group size of 100 were similar to those of the dataset containing the 

trichotomised variable. However the selection frequencies for the non-discriminating variables were 

larger for the dataset containing the log-normal variable than either dataset containing the 

dichotomised or trichotomised variable. At the larger group size of 500 the selection frequencies of 

the discriminating variables 𝑋1, 𝑋2 and 𝑋3 were close to those of the dataset containing the 

dichotomised variable however the selection frequencies for the non-discriminating variables were 

larger than those for either the dichotomised or trichotomised data. The PCC and AUC estimates 

were lower at the larger sample size than for the datasets containing the dichotomised or 

trichotomised variable. 

Next, I investigated the performance of the MFS-SNR algorithm for multivariate normal data i.e. for 

scenarios 1 and 2. At the smaller group size the selection frequencies of the discriminating variables 

𝑋1 and 𝑋3 for the untransformed data were lower than those for the dataset containing the 

dichotomised variable but higher than the dataset containing the log-normal transformed variable. 

The selection frequencies of 𝑋3 and 𝑋1 for the dataset containing the log-normal transformed data 

were higher than for the dataset containing the trichotomised variable. However, the selection 

frequency for 𝑋1 was slightly lower for the dataset containing the log-normal transformed variable. 
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The AUC and PCC estimates for the untransformed data were larger than for any of the datasets 

containing transformed variables at both group sizes. Selection frequencies for both discriminating 

and non-discriminating variables increased slightly at the larger group size of 500. 

5.4 Discussion 

In this chapter, the aim was to evaluate the ability of the MFS-SNR algorithm to choose the correct 

discriminating variables when data are non-normally distributed. To make this problem 

computationally tractable and comparable to the multivariate normal case (Chapter 4) I made 

similar assumptions to the previous chapter (Chapter 4), but i recoded the variable 𝑋1 into a variable 

that is not normally distributed using three transformations (one transformation at a time): 

dichotomisation, trichotomisation and log-normal transformation. The conclusions can be 

summarised into three points below. 

My first conclusion is that at the smaller sample size of 𝑛0 = 𝑛1 = 100 for the data with 𝑋1 being 

categorical (with two or three categories) or log-normal the MFS-SNR algorithm chose discriminating 

and non-discriminating variables less frequently compared to when the data are multivariate 

normal. This was expected as the transformation may have caused a loss of information. 

Consequently for the classification performance estimates were also lower relative to the scenario of 

multivariate normal data. PCC-QDA was lower by 12 % for the dataset containing the dichotomised 

variable, 16 % for the dataset containing the trichotomised variable and 18 % for the dataset 

containing the log-normal-transformed variable. PCC-LDA dropped by 3.7 % for the dataset 

containing the dichotomised variable, 7.8 % for the dataset containing the trichotomised variable 

and 7.7 % for the dataset containing the Log-Normal transformed variable. AUC-QDA estimates were 

lower by 0.05 for the dataset containing the dichotomised variable, 0.09 for the dataset containing 

the trichotomised variable and 0.07 for the dataset containing the Log-Normal transformed variable, 

AUC-LDA dropped by 0.02 for the dataset containing the dichotomised variable, 0.05 for the dataset 

containing the trichotomised variable and 0.03 for the dataset containing the Log-Normal 

transformed variable at the smaller group sizes. This loss of precision of variable selection and 

reduction in PCC and AUC was expected at the smaller sample size of 𝑛0 = 𝑛1 = 100, because as 

indicated above dichotomisation and trichotomisation can lead to loss of information. 

The second conclusion is that at larger group sizes of 𝑛0 = 𝑛1 = 500 and for datasets containing a 

variable which has been subjected to dichotomising, trichotomising and log-normal transformations 

the performance of the MFS-SNR algorithm was approaching the same performance as when using 

the original multivariate normal data –in terms of variable selections and PCC and AUC. In data with 
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𝑋1 being an ordinal variable with three categories the MFS-SNR algorithm exhibited an improvement 

(drop) in non-discriminating variable selection frequencies. In data with 𝑋1 being log-normal the 

MFS-SNR algorithm showed an improvement (increase) in the frequency of discriminating variable 

selection at larger sample size but also showed a worsening (increase) in the frequency of non-

discriminating variable selection.    

The third conclusion relates to performance of the MFS-SNR algorithm across sample sizes, i.e. 

between 𝑛 = 100 vs 𝑛 = 500. When data were multivariate normal (Chapter 4) the difference in 

selection frequencies and performance of MFS-SNR across different group sizes was relatively small 

across the sample sizes. In non-normally distributed data there was a difference in selection 

frequencies and performance of MFS-SNR. The largest increase in performance estimates as group 

sizes increase from n=100 to n=500 was seen when the datasets included a trichotomised variable, 

followed by the dataset containing the dichotomised variable, and then by the dataset containing 

the log-Normal-transformed variable. The MFS-SNR algorithm gave the worst-performance for the 

dataset containing the trichotomised variable. This may be due, at least in part, to the larger 

variance likely associated with the trichotomised variable as a result of the larger number of levels 

compared to the dichotomised data. The log-normal transformation causes the smallest decrease in 

discriminating variable selection frequency however it almost doubles the selection frequencies of 

the non-discriminating variables. 

In summary, the results indicate that, in the considered scenarios with ordinal data (dichotomous 

and trichotomous), the MFS-SNR algorithm was able to make the correct variable selections. I  have 

also demonstrated that re-coding of variables was a viable approach with the MFS-SNR algorithm. 

There was a loss of information after each of the transformations resulting in loss of selection 

performance relative to the untransformed data, which was expected. However this is in part a 

result of using the values for a continuous variable to assign subjects to levels (i.e. an alternative 

means of assigning subjects to levels might produce a distribution of levels across groups better 

reflecting the underlying information content of the variable - this would be expected with a well-

defined ordinal variable).  

In the next chapter I present a comprehensive analysis of the performance of the MFS-SNR 

algorithm when selecting variables from four real ophthalmic datasets.  
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Chapter 6. Application to real data 

6.1 Introduction 

In Chapters 4 and 5 computer simulations were used to investigate the performance of the MFS-SNR 

variable selection algorithm and to compare it to a set of existing variable selection algorithms. The 

advantage of computer simulations is that we can make assumptions about the relationship 

between the variables and groups, hence we know which variables are discriminatory and should be 

selected by the variable selection algorithm in the simulation. A disadvantage of computer 

simulations is that while simulated data are based on real data in as much as is possible they 

represent a particular assumed scenario and hence their generalisability to real data is questionable. 

Therefore in order to further characterise the performance of the selection algorithm it is necessary 

to apply it to real datasets, which is the aim in this chapter. 

In real datasets there are several challenges in selecting the best set of variables for discrimination. 

Some of these challenges can be difficult to mimic in simulated data. One challenge is that the true 

underlying multivariate probability distribution is unknown. Hence in simulated data we make 

assumptions about the distribution. Missingness in real data is also a problem especially if data are 

not missing at random. Real data can have imbalanced groups i.e. unequal number of subjects across 

groups. A large number of variables are measured in many clinical studies in an attempt to identify 

variables relevant to the underlying disease groups. However, not all of the measured variables may 

be useful for assigning new observations to the appropriate groups and the presence of confounding 

relationships between relevant and irrelevant variables can further complicate the task of variable 

selection. Another challenge of real data is the complexity of multivariate correlations because 

correlations and variances may vary across groups.  These last two challenges are the main 

challenges tackled in this thesis and also in this chapter.  

In order to obtain a comprehensive assessment of how the new variable selection algorithm 

(Chapter 3, Section 3.8) works it is necessary to apply it to the task of variable selection from real 

datasets. Therefore this chapter will study the performance of the new algorithm in four real 

datasets. The four datasets were chosen to represent a spectrum of challenges in ophthalmology. 

Each of the datasets is unique in terms of whether there is a significant proportion of missingness, 

how balanced the data are between the groups of interest and the composition and type of data 

present i.e. if data normally distributed or not, if data are longitudinal, if data continuous or ordinal 

or nominal.  
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This chapter is structured as follows.  I present the application of the novel MFS-SNR algorithm to 

the task of variable selection from diabetic maculopathy data (Section 6.2), diabetic retinopathy data 

(Section 6.3), malarial retinopathy data (Section 6.4) and keratoconus data (Section 6.4). Each of the 

sections 6.2-6.4 first describes the dataset, the clinical significance, relevant information on data 

collection, specific data challenges faced, the description of how the variable selection algorithms 

MFS-SNR and MFS-T2 were used, the resulting best set of variables that give the best discrimination 

and the evaluation of the discrimination of the selected variables. Then Section 6.5 discusses the 

statistical methodological and clinical findings. 

6.2 Application of methods to discriminate between disease stages in 

diabetic retinopathy [DREFUS dataset] 

6.2.1 Introduction 

Here I applied the MFS-SNR algorithm (Section 3.8) to data from diabetic retinopathy (DR). DR can 

be split into 4 categories: diabetes and no DR, early DR, late DR and ischaemic maculopathy. This 

thesis used data from a clinical study where clinicians collected 27 variables on healthy patients with 

no DR and on patients with 4 levels of DR. The study is called Diabetic REtinopathy: FUnctional and 

Structural study, (DREFUS) (Harding et al., 2010). The ultimate clinical goal of DREFUS was to 

elucidate the relationships between functional and structural variables, if the relationship depends 

on the level of DR, and which variables (or set of variables) can best discriminate between the DR 

stages. This is important in clinical settings because it can help to identify the measurements that 

should be used to find eyes that are at risk of having DR. The current gold standard is fluorescein 

angiography (FA) which is used to determine the 4 stages, but this is an expensive and invasive 

technique. Therefore the clinical importance of DREFUS was to evaluate less invasive and less 

expensive measurements that could differentiate between the 4 stages of DR. This chapter will look 

at all the measurements and use the MFS-SNR and MFS-T2 algorithms to find the variables that best 

discriminate between two stages: diabetes with no DR and early DR.  

6.2.2 Methods 

The data that I use here come from the DREFUS study with 27 continuous variables measured on 36 

patients. They are  

- Functional variables (measuring function of the eye, retina or patient):  
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o Multifocal electroretinogram (mfERG) measurements: mfERG Central density, mfERG 

Ring 2 density, mfERG Ring 3 density, mfERG Central Latency, mfERG Ring 2 latency, 

mfERG Ring 3 Latency 

o Oscilatory potential (OP) measurements: OP Sum amplitude, OP1 amplitude, OP2 

amplitude, OP3 amplitude, OP4 amplitude, OP1 implicit, OP2 implicit, OP3 implicit, 

OP4 implicit, OP5 implicit, OP6 implicit, OP7 implicit, OP8 implicit and Oct CFD 

o Microperimetry (MP) measurements: MP1 Central Total, MP1 Ring 2 Total, MP1 Ring 

3 Total 

- Clinical variables: Cholesterol, HbA1c (glycated haemoblobin measured by venepuncture), 

Blood Pressure (BP) systolic, BP diastolic 

First, univariate analyses were carried out on all the variables for each of the two groups. For each 

variable I calculated Hotelling’s T2 statistic, the associated p-value and the SNR. PCC estimates were 

calculated for each variable using both QDA and LDA with LOOCV. Mean values for each variable in 

the early and no DR groups were also calculated as well as standard errors associated with these 

mean values. The Shapiro-Wilks test was applied to each variable to test for normality. On the basis 

of the results of the Shapiro-Wilks test the parametric 2-sample t-test or the non-parametric 

Wilcoxon signed rank test was applied to each variable to study the differences in the measurements 

between the two groups. The results of the Shapiro-Wilks test were also used to determine whether 

the parametric Bartlett test or the non-parametric Fligner test (Conover et al, 1981) was applied to 

each variable to test the null hypothesis of variance-covariance matrix homogeneity across the 

groups. This analysis identified which variables had the strongest potential to discriminate between 

the two groups in a univariate context. 

Then I performed multivariate variable selection using the MFS-T2 and MFS-SNR algorithm (Chapter 

3) and discussed the variables selected to discriminate across the groups of no DR vs early DR. 

6.2.3 Results 

The results of the univariate analysis of the variables in the DREFUS dataset are presented in Table 

6.2.3.1 below. Univariate analysis of the variables in the DREFUS dataset showed that the largest T2 

statistics and SNR values were associated with HbA1c, then mfERG Central density and then mfERG 

Ring 3 latency (T2=7.6, 4.8 and 2.0, SNR=8.7, 4.9 and 1.8, respectively) indicating that they were the 

strongest discriminating variables, when considered univariately. The PCC estimates for HbA1c, 

mfERG central density and mfERG Ring 3 latency are all approximately 70 % (PCC-LDA=69.0, 72.2 and 

69.4, PCC-QDA = 69.4, 72.2 and 69.4%, respectively). Results of Fligner or Bartlett tests on these 

three variables indicate that the variances are not significantly different across the two groups 
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(p=0.5, 0.1 and 0.7). This explains why the T2 statistics and SNR values have similar values for these 

three variables as well as multiple other variables in the DREFUS dataset. The variables mfERG Ring 2 

density and mfERG Ring 3 density are the exceptions. The results of the Fligner test indicate that the 

variances of mfERG Ring 2 density and mfERG Ring 3 density are different across the two groups 

(p=3x10-2 and 6x10-2). However the T2 statistics and SNR values of mfERG Ring 2 density and mfERG 

Ring 3 density are less than one and the PCC estimates are 61.1 and 61.1%. These values are lower 

than those for HbA1c, mfERG Central density and mfERG Ring 3 latency. The results of the Wilcoxon 

signed rank test and the 2-sample t-test indicate that the only variables which are not significantly 

different across the groups are Cholesterol, BP systolic, BP diastolic, OP2 amplitude and OP3 

amplitude. Excepting HbA1c, mfERG Central density and mfERG Ring 3 latency the PCC estimates for 

the remaining variables are all below 64% while the T2 statistics and SNR values are all less than 2.0. 

Therefore using a univariate approach (and threshold of PCC≥64% and SNR≥2) the variables HbA1c, 

mfERG Central density and mfERG Ring 3 latency appear to the optimal selections for discrimination. 
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Table 6.2.3.1. Univariate analysis of all 27 variables in the early DR and no DR groups 

Variable 
(units of 
measurement) 

Group no 
DR 

Group with 
early DR 

Test of 
normality 

Test of 
associatio
n with 
group 

Test 
of 
covari
ance 
homo
geneit
y 

Discrimination 

Mean, 
standard 
deviation 

Mean, 
standard 
deviation 

Shapiro-
Wilks test, 
p-value  

Wilcoxon 
signed 
rank test 
or 2-
sample t-
test, p-
value 

Fligne
r or 
Bartle
tt test, 
p-
value  

T2 
statisti
c 

PCC 
(LDA
-CV) 

SNR  PCC 
(QD
A-
CV) 

Cholesterol 
(mmol/dl) 

4.5 ± 1.1 4.3 ± 0.9 0.1 0.7 0.3 0.2 64 0.2 63.9 

HbA1c 
(mmol/mol) 

8.6 ± 1.6 7.2 ± 1.3 0.1 7x10
-4

 0.5 7.6 69 8.7 69.4 

BP systolic 
(mm/Hg) 

134.8 ± 17.1 132.1 ± 16.8 0.3 0.7 1 0.2 64 0.2 61.1 

BP diastolic 
(mm/Hg) 

77.4 ± 8.6 75.2 ± 7.7 0.5 0.4 0.7 0.6 61 0.6 61.1 

MP1 Central total 75.8 ± 16.8 80.3 ± 15.4 0.02 1.7x10
-7

 0.6 0.6 63.9 0.7 63.9 

MP1 Ring 2 total 317.7 ± 35 325.5 ± 27.2 1.2x10
-5

 1.7x10
-7

 0.2 0.5 63.9 0.6 63.9 

MP1 Ring 3 total 358.6 ± 71.8 360.6 ± 46.3 3.3x10
-6

 1.8x10
-7

 0.5 0.009 61.1 0.01 61.1 

mfERG Central 
density (nV/o2) 

57.7 ± 18.5 77.1 ± 35.4 0.01 1.8x10
-7

 0.1 4.8 72.2 4.9 72.2 

mfERG Ring 2 
density (nV/o2) 

30.5 ± 10.6 33.4 ± 11.5 2x10
-3

 1.8x10
-7

 0.03 0.6 61.1 0.6 58.3 

mfERG Ring 3 
density (nV/o2) 

19.2 ± 7.3 19.2 ± 6.9 7.4x10
-5

 1.8x10
-7

 0.06 5x10
-4

 61.1 5x10
-4

 61.1 

mfERG Central 
latency (ms) 

38.8 ± 2.4 38.4 ± 2.7 4x10
-4

 1.6x10
-7

 0.7 0.2 63.9 0.2 58.3 

mfERG Ring 2 
latency (ms) 

33.5 ± 1.9 33.9 ± 2.0 8x10
-4

 1.5x10
-7

 0.4 0.5 61.1 0.5 61.1 

mfERG Ring 3 
latency (ms) 

32.3 ± 1.5 33.1 ± 2.0 0.001 1.5x10
-7

 0.7 2.0 69.4 1.8 69.4 

OP Sum of 
amplitude 

74.2 ± 31.8 76.4 ± 34.8 0.5 8.9x10
-16

 0.7 0.04 63.9 0.03 61.1 

OP1 amplitude 13 ± 5.1 15.5 ± 8.2 0.02 1.8x10
-7

 0.5 1.3 61.1 1.2 63.9 

OP2 amplitude 31.8 ± 19.7 31.4 ± 17.9 0.3 0.9 0.7 0.005 63.9 0.005 63.9 

OP3 amplitude 19.2 ± 9.1 17 ± 10 0.6 0.5 0.7 0.5 63.9 0.4 61.1 

OP4 amplitude 13.4 ± 16.5 12.5 ± 11.7 8.2x10-9 1.8x10
-7

 1.0 0.03 61.1 0.04 61.1 

OP1 Implicit time 13.6 ± 4.6 12.5 ± 3.5 1.1x10
-5

 1.6x10
-7

 0.7 0.6 63.9 0.8 61.1 

OP2 Implicit time 18.7 ± 3.4 18.2 ± 1.6 1.2x10
-10

 1.1x10
-7

 1 0.2 61.1 0.5 25 

OP3 Implicit time 22.7 ± 3.3 22.5 ± 1.5 1x10
-9

 1.2x10
-7

 0.9 0.06 61.1 0.2 38.9 

OP4 Implicit time 26.6 ± 3.3 26.5 ± 1.7 3.4x10
-7

 1.5x10
-7

 0.9 0.01 61.1 0.02 44.4 

OP5 Implicit time 31.4 ± 3.8 31.2 ± 2.8 5.4x10
-4

 1.6x10
-7

 0.8 0.02 61.1 0.02 61.1 

OP6 Implicit time 36.4 ± 4.9 35.8 ± 4.3 0.02 1.7x10
-7

 1 0.2 63.9 0.2 63.9 

OP7 Implicit time 41.8 ± 5.6 41.6 ± 5.1 0.01 1.7x10
-7

 0.9 0.01 63.9 0.01 63.9 

OP8 Implicit time 46.1 ± 5.3 46.9 ± 5.4 0.07 1.7x10
-7

 0.7 0.2 63.9 0.2 61.1 

Oct CFT 275.1 ± 27.9 269.4 ± 25.2 0.1 2.2x10
-16

 0.7 0.4 61.1 0.4 61.1 

 

Then I carried out multivariate variable selection of the  variables for discrimination between no DR 

and early DR using the MFS-T2 and MFS-SNR algorithms. The results are presented in tables 6.2.3.2 

and 6.2.3.3 below. The MFS-T2 algorithm selected HbA1c and mfERG Central density with a 
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combined PCC estimate of 75.0%.  The MFS-SNR version of the selection algorithm (Table 6.2.3.3) 

selected both of these variables however it also selected Cholesterol from the remaining variables 

with a combined PCC estimate of 83.3%. The maximum PCC for the SNR-based selection was 

therefore 83.3 %. In summary, to discriminate between the diabetes and no DR group and the early 

DR group the MFS-SNR algorithm selected three variables (HbA1c and mfERG Central density and 

Cholesterol) achieving 83.3% PCC while MFS-T2 algorithm chose only two variables (HbA1c and 

mfERG Central density) achieving 75.0% PCC.  

Table 6.2.3.2 Multivariate selections using the MFS-T2 algorithm for discrimination between the 

early DR and no DR groups 

Variable selected T2 statistic PCC (LDA-CV) 

HbA1c 7.6 69.4 

mfERG Central density 11.8 75.0 

Legend: LDA-CV = PCC values calculated using LDA and with leave-one-out cross-validation. PCC estimates in 

each row are calculated for the variable in that row and all previous rows. 

 

Table 6.2.3.3 Multivariate selections using the MFS-SNR algorithm for discrimination between the 

early DR and no DR groups 

Variable selected SNR PCC (QDA-CV) 

HbA1c 8.7 69.4 

mfERG Central density 15.4 75.0 

Cholesterol 19.0 83.3 

Legend: QDA-CV = PCC values calculated using LDA and with leave-one-out cross-validation. PCC estimates 

in each row are calculated for the variable in that row and all previous rows. 

In an effort to get further insight into the selected variables and the group separation achieved using 

these variables I created a series of bivariate plots. Bivariate plots of the variables identified by the 

selection algorithms as having the best discriminating ability between the early and no DR groups 

are presented in Figure 6.2.3.1 below. When HbA1c is plotted against mfERG central density or 

Cholesterol there is some separation of the early and no DR groups, with some degree of 

overlapping patients between the two groups. When mfERG central density is plotted against 

Cholesterol there is no clear separation of the early and no DR groups. It is evident that the MFS-SNR 

algorithm has successfully identified this performance-enhancing role of Cholesterol whereas the 

MFS-T2 algorithm has failed to do so. From the plots alone it is hard to understand why Cholesterol 

improves the discrimination so much (from 75.0 to 83.3%) hence next we looked into further 

analyses. 
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Figure 6.2.3.1 Pairwise bivariate plots of Cholesterol, mfERG Central density and HbA1c across the 

early DR and no DR groups  

  

Legend: Correlation of HbA1c with Cholesterol in the early and no DR groups is 0.5 and -0.4, respectively, and 

these correlations are different across the groups (p=0.02, Bartlett test). mfERG CD is mfERG Central Density 

 

What follows is an explanation of the selection of Cholesterol by the MFS-SNR algorithm despite 

Cholesterol having no discriminatory potential if used alone.  The plot of mfERG Central density 

against Cholesterol shows poor separation between the group with early DR and the group with no 

DR. Looking at the univariate data for Cholesterol in Table 6.2.3.1 it is evident from the p-value of 

the 2-sample t-test (p=0.7) that there is no significant difference in the values of Cholesterol across 

the two groups. The p-value for the Bartlett test indicates that the variances of Cholesterol are 

homogeneous across the two groups (p=0.3). When considering HbA1c and Cholesterol together the 

p-value of the Bartlett test indicates that the variances are heterogeneous across the two groups 

(p=0.01). It should be noted that the Hotelling’s T2 statistic and SNR values for Cholesterol are 

amongst the lowest for the subset of 27 continuous variables (T2=0.2, SNR=0.2). Looking at the 

univariate data for HbA1c it has the largest values for either Hotelling’s T2 statistic or the SNR. From 

the plots of HbA1c against Cholesterol there is some separation between the two groups. What also 

is also apparent is that Cholesterol is highly negatively correlated with HbA1c in the Group with 

Diabetes and no DR, (R=-0.4, p=0.2) and highly positively correlated with the Early DR Group (R=0.5, 

p=0.01), i.e. the covariance matrices differ across groups (p=2x10-2, Bartlett test). What we are 

seeing is that Cholesterol is not associated with either of the two groups but is highly correlated with 

one of the discriminators HbA1c and it can enhance the discrimination achieved by HbA1c because 

of this correlation. This is why the final PCC estimate of the MFS-SNR selections was 83.3 % while for 

the MFS-T2 selections it was only 75 %. However, the correlations of Cholesterol with HbA1c differ 
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across the groups hence the MFS-T2 algorithm did not recognise the potential of Cholesterol. This is 

because the calculation of Hotelling’s T2 statistics uses pooled covariance matrices.   

6.2.4 Discussion 

I have applied the MFS-T2 and MFS-SNR algorithms to find the set of discriminatory variables for 

discrimination between the group with diabetes and no DR and the group with early DR. The MFS-T2 

algorithm chose 2 variables (HbA1c and mfERG central density) achieving PCC of 75.0% while the 

MFS-SNR algorithm chose 3 variables (HbA1c, mfERG Central density and Cholesterol) achieving 

better discrimination with an estimated PCC of 83.3%. The selection of HbA1c and mfERG Central 

density is in agreement with the univariate analysis of the variables. The additional variable chosen 

by MFS-SNR is Cholesterol. Cholesterol was chosen despite having limited discriminatory potential 

by itself. It was chosen by MFS-SNR because it has a strong negative correlation with HbA1c in the 

group with diabetes and no DR, and it has strong positive correlation with HbA1c in the group with 

early DR. Hence addition of Cholesterol increases the discriminatory strength of HbA1c. MFS-T2 did 

not select Cholesterol, because Cholesterol’s correlation varies across the groups and MFS-T2 pools 

the covariances. This demonstrates the advantage of MFS-SNR over MFS-T2 in this dataset. 

In this study I encountered several challenges posed by the real DREFUS dataset. Real data are often 

not normally distributed, imbalanced in terms of group sizes and have different variances across the 

two disease groups. The variable selection results for the MFS-T2 and MFS-SNR algorithms show that 

the MFS-SNR algorithm is better able to handle data with these properties than the MFS-T2 

algorithm. Looking at the variable selections for discriminating between the early DR vs no DR 

groups (Table 6.2.3.3) it is evident that the SNR is a superior measure of the discrimination ability of 

a variable than Hotelling’s T2 statistic under these conditions. In conclusion the MFS-SNR algorithm is 

better suited to choosing the optimal selection of variables with which to achieve discrimination 

between two groups in this dataset. This is also supported by considering the bivariate plots which 

show the group separation achieved using different pairwise combinations of variables (see Figure 

6.2.3.1).  

The bivariate plots and the correlation analyses in both disease groups support the selections made 

by the MFS-SNR algorithm but they also show that different levels of separation can be achieved 

using different subsets of variables. Due to MFS-SNR's superior ability to handle conditions of 

differing group variances the MFS-SNR algorithm is better able to identify the best discriminating 

variable subset from the complete set of variables. From the DREFUS data the MFS-SNR algorithm 

has also identified the ability of cholesterol to enhance the discriminatory ability of other variables 

which represents a novel clinical finding. 
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6.3 Application of methods to predict conversion to sight threatening 

diabetic retinopathy [ISDR] 

6.3.1 Introduction 

Another ophthalmic application where variable selection is needed is for discriminating between 

referable sight threatening diabetic retinopathy and non-referable sight threatening retinopathy in 

subjects with diabetes.  DR is a progressive disease of the retina which causes blindness. Early and 

late stage DR is asymptomatic however, late stage DR can result in blindness if not treated. Digital 

photography is effective at screening for sight-threatening diabetic retinopathy (STDR). In England it 

is recommended that individuals with diabetes over the age of 12 are screened annually. While 

screening is integral to the early detection of STDR the costs of annual screening to the NHS are 

considerable.  

I used data from a study called “Introducing personalised risk based intervals in screening for 

diabetic retinopathy: development, implementation and assessment of safety, cost-effectiveness 

and patient experience” (Harding et al, 2011) which is referred to as the ISDR study. The motivation 

behind the ISDR study was to develop individual risk-based screening protocols thereby eliminating 

the need for annual screening for those with lower risk and increasing the frequency for those with 

high risk.  

The objective in this section was to use the variable selection algorithms MFS-T2 and MFS-SNR to 

identify those variables which could discriminate between referable STDR and non-referable STDR. 

Therefore I applied the new variable selection algorithms MFS-SNR (Section 3.8) and MFS-T2 to the 

task of discriminating between STDR and no STDR. 

6.3.2 Methods 

I used data from the observational longitudinal study performed in Liverpool called “Introducing 

personalised risk based intervals in screening for diabetic retinopathy (ISDR): development, 

implementation and assessment of safety, cost effectiveness and patient experience“ ( RP-DG-1210-

12016) In this study patients with diabetes were invited to annual visits to the screening programme. 

At each visit several variables were collected. Colour fundus digital images of both retinas were 

taken and then graded. This grading of retinal structures was used to assign patients to a risk 

category. Additional data are collected from general practitioners (GPs): Cholesterol, HbA1c levels, 

systolic and diastolic blood pressure. Each patient was assigned a risk grade based on the 

progression of their diabetic retinopathy as seen from the images. The risk values associated with 

each stage are presented in Table 6.3.2.1 below. Patients with a risk of 2 were assigned to the 
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referable STDR group. All other patients, (risk scores of 0, 1 or 1.5), were assigned to the non-

referable STDR group. 

Table 6.3.2.1 Definition of risk scores assigned to each patient and definition of the two groups 

used in our analyses 

Risk score Explanation Group 

0 No DR in either eye  
Non-referable STDR 1 Background DR in one eye  

1.5 Background DR in both eyes 

2 Pre-proliferative DR, proliferative 
DR or maculopathy present 

Referable STDR 

 

The ISDR dataset available for the work in my thesis contains observations for 28 variables on 16,228 

patients. Efforts were made by the ISDR research team to match information from GPs to the dates 

of patients’ visits to the clinic. Unfortunately due to the nature of data collected in primary care 

there was considerable missingness within this dataset. It was assumed that only data from the last 

3 years of each patients’ history were needed for discrimination. Those patients (10,956) who did 

not have data on at least 3 years were excluded. These steps produced a dataset containing 5,198 

individuals in the non-referable STDR group and 74 individuals in the referable STDR group.  

Of the 5,272 patients in the dataset only 74 were in the referable STDR group. This is a large 

imbalance between the group sizes and would have an impact on variable selections. In order to 

carry out variable selection I sampled 370 patients without replacement from the non-referable 

STDR group using R’s sample function (R core team). The referable STDR group contained 74 

patients, 370 patients were sampled from the non-referable STDR group to ensure that the ratio of 

disease group patients to non-disease group patients was maintained at 5:1. I then created a data 

frame composed of STDR patients and non-STDR patients and passed it to the MFS-T2 and MFS-SNR 

algorithms for variable selection. This resampling selection procedure was carried out for 10 

repeated random selections, 100 repetitions and 1,000 repetitions using the MFS-SNR and MFS-T2 

algorithms. The selection frequencies for each variable in the ISDR set as well as the final PCC 

estimates are reported. 

 

The final analysable dataset considered for variable selection and discrimination contains the 

variables: 

My_LD, My_Sex, t0Age, T1risk, t2score, t0HbA1c, t1HbA1c, t1HbA1c, t0Chol, t1Chol, t1Chol, t0SP, 

t1SP, t2SP, t0DP, t1DP, t2DP 
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Table 6.3.2.2 Definition of variables in dataset for discrimination between referable and non-

referable STDR 

Variable name Definition 

my_Sex Gender 

t0Age Age at diagnosis of diabetes 

my_LD Diabetes type (I or II) 

t1risk Risk score assigned at previous visit (1 year ago) 

t2risk Risk score assigned prior to last visit (2 years ago) 

t0HbA1c HbA1c at the last visit (at time 0) 

t1HbA1c HbA1c at the previous visit (1 year ago) 

t2HbA1c HbA1c at 2 years prior to last visit (2 years ago) 

t0Chol – chol at visit 0 Cholesterol at the last visit (at time 0) 

t1Chol – chol at visit “-1” Cholesterol at the previous visit (1 year ago) 

t2Chol – chol at visit “-2” Cholesterol at 2 years prior to last visit (2 years ago) 

t0SP – Systolic BP, at visit 0 Systolic pressure at the last visit (at time 0) 

t1SP – Systolic BP, at visit “-1” Systolic pressure at the previous visit (1 year ago) 

t2SP – Systolic BP, at visit “-2” Systolic pressure at 2 years prior to last visit (2 years ago) 

t0DP – Diastolic BP, at visit 0 Diastolic pressure at the last visit (at time 0) 

t1DP – Diastolic BP, at visit “-1” Diastolic pressure at the previous visit (1 year ago) 

t2DP – Diastolic BP, at visit “-2” Diastolic pressure at 2 years prior to last visit (2 years ago) 

 

The discrimination results depend on the prior probabilities. First I calculated sensitivity and 

specificity for all pairs of prior probabilities from (0.01, 0.99) to (0.99, 0.01). Then for each pair of 

sensitivity and specificity the value of d was calculated using the equation below. The optimal prior 

probabilities were then identified as those that yield the smallest value of d 

(Kumar & Indrayan, 2011). Optimal priors were identified in this way for the full set of variables 

using a resampled non-disease group. LDA was used for calculation of optimal priors for use with the 

MFS-T2 algorithm. QDA was used in calculation of optimal priors for use with the MFS-SNR 

algorithm. The equation for the optimal priors is the following: 

 𝑑 = √(1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)2 + (1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)2   (6.3.2.1) 

I then carried out all further calculations and classifications using these optimal prior probability 

values. For the MFS-T2 algorithm all estimates use LDA. The optimal prior probabilities identified for 

use with the MFS-T2 algorithm were (0.64, 0.36). For the MFS-SNR algorithm all estimates use QDA. 

The optimal prior probabilities identified for use with the MFS-SNR algorithm are (0.65, 0.35). 
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The variables t1risk and t2score are ordinal variables whereas the other variables analysed in this 

chapter (and this dataset) are continuous. It was necessary to further investigate the role of t1risk 

and t2score in discriminating between STDR and no STDR. Two dummy variables where created for 

each of t1risk and t2score based on the risk scores 0, 1 and 1.5. The dummy variables were assigned 

based on the table below. t1risk was replaced with the dummy variables 𝑋1 and 𝑋2. t2score was 

replaced by the dummy variables 𝑋3 and 𝑋4. The dummy variables were assigned using the coding 

scheme presented in table 6.3.2.3 below. 

Table 6.3.2.3 Coding scheme for dummy variables X1, X2, X3 and X4 

 t1risk t2score 

Risk 
score 

𝑋1  𝑋2  𝑋3 𝑋4 

0 0 0 0 0 

1 1 0 1 0 

1.5 0 1 0 1 

 

Then an exploratory analysis was carried out on all the variables univariately i.e. one variable at a 

time. For each variable Hotelling’s T2 statistic and the associated p-values were calculated as well as 

the SNR. PCC estimates were calculated for each variable using both QDA and LDA with LOOCV. 

Mean values for each variable in the referable and non-referable ISDR groups were also calculated as 

well as standard errors associated with these mean values. The Shapiro-Wilks test was applied to 

each variable to test for normality. On the basis of the results of the Shapiro-Wilks test the 

parametric 2-sample t-test or the non-parametric Wilcoxon signed rank test was applied to each 

variable to study the differences in the measurements between the two groups. The results of the 

Shapiro-Wilks test were also used to determine whether the parametric Bartlett test or the non-

parametric Fligner test (Conover et al, 1982) was applied to each variable to test the null hypothesis 

of variance-covariance matrix homogeneity across the groups. This analysis identified which 

variables had the strongest potential to discriminate between the two groups in a univariate 

context. 

6.3.3 Results 

Exploratory analysis of the ISDR data was carried out. The results are presented in Tables 6.3.3.1 and 

6.3.3.2 below. 
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Table 6.3.3.1 Univariate analysis of all variables in the background DR and proliferative DR groups 

Variable 
(units of 
measure
ment) 

Group with 
Non-
referable 
STDR 

Group with 
Referable 
STDR 

Test of 
normality 

Test of 
associatio
n with 
group 

Test of 
covarianc
e 
homogen
eity 

Discrimination 

Mean, 
standard 
deviation 

Mean, 
standard 
deviation 

Shapiro-
Wilks test, 
p-value  

Wilcoxon 
signed 
rank test 
or 2-
sample t-
test, p-
value 

Fligner or 
Bartlett 
test, p-
value  

T2 
statistic 

PCC 
(LD
A-
CV) 

SNR  PCC 
(QD
A-
CV) 

my_LD 2.0 ± 0.2 1.8 ± 0.4 2.2x10
-16

 1.9x10
-8

 1.8x10
-8

 34 84.2 18.9 84.2 

my_Sex 1.6 ± 0.5 1.7 ± 0.5 2.2x10
-16

 0.3 0.3 1.2 83.3 1.2 83.3 

t0Age 66.3 ± 11.2 60.6 ± 15.1 1.0x10
-6

 0.007 0.007 14 83.8 10 83.6 

t1risk 0.3 ± 0.5 0.9 ± 0.6 2.2x10
-16

 2.2x10
-16

 2x10
-4

 86.4 85.1 65 85.1 

t2risk 0.3 ± 0.5 0.9 ± 0.7 2.2x10
-16

 1.5x10
-15

 3.3x10
-6

 75.7 82.4 57 82.4 

t0HbA1c 53.6 ± 14.5 63.3 ± 19.8 2.2x10
-16

 1.9x10
-5

 2.3x10
-4

 24.5 82.2 17 82.4 

t1HbA1c 54.5 ± 14.5 65.7 ± 22.7 2.2x10
-16

 2.5x10
-6

 0.001 30 83.1 18.6 81.1 

t2HbA1c 53.8 ± 14.3 62.9 ± 20.2 2.2x10
-16

 2x10
-4

 3.1x10
-5

 21.4 83.1 14.6 81.5 

t0Chol 4.1 ± 1.0 4.1 ± 1.0 9.9x10
-11

 0.7 0.6 7.3x10
-4

 83.3 7x10
-4

 83.3 

t1Chol 4.1 ± 1.0 4.2 ± 1.0 2.9x10
-13

 0.2 0.1 1.6 83.3 1.5 82.4 

t2Chol 4.2 ± 1.1 4.2 ± 1.1 3.6x10
-14

 0.8 0.8 0.06 83.3 0.05 83.3 

t0SP 130.6 ± 14.4 133.8 ± 15.6 2.7x10
-9

 0.1 0.2 3.1 83.3 2.8 82.7 

t1SP 130.7 ± 13.7 132.7 ± 12.8 1.4x10
-6

 0.3 0.4 1.3 83.3 1.4 83.3 

t2SP 132.2 ± 13.2 131.2 ± 14.9 8.0x10
-4

 0.6 0.1 0.4 83.3 3.4 83.3 

t0DP 73.2 ± 9.6 72.9 ± 9.8 5.0x10
-4

 0.9 1 0.04 83.3 4.2 83.3 

t1DP 73.7 ± 9.2 74.7 ± 9.0 9.1x10
-5

 0.4 0.4 0.8 83.3 7.8 83.3 

tt2DP 74.7 ± 8.8 73.7 ± 9.6 4.0x10
-5

 0.3 0.7 0.8 83.3 7.3 83.3 

 

The results of the Wilcoxon signed rank test for the variables measuring Cholesterol, Systolic and 

Diastolic pressure indicated that there were no significant differences in these variables across the 

two groups. Similarly the results of the Fligner test for these variables indicated that their variances 

were not significantly different across the two groups. The means and standard deviations were also 

very similar across both groups for these variables. PCC estimates for the variables measuring 

Cholesterol, Systolic and Diastolic pressure were all approximately 83 %. The T2 statistic and SNR 

values were also lower for these variables compared to my_LD, t0Age, t1risk, t2risk, t0HbA1c, 

t1HbA1c and t2HbA1c.  

Considering the variables my_LD, my_Sex, t0Age, t1risk, t2risk, t0HbA1c, t1HbA1c and t2HbA1c the 

variable “my_Sex” had the lowest T2 statistic and SNR values of 1.2. The variable t1risk had the 

largest T2 statistic and SNR values of 86.4 and 65 respectively. The results of the Fligner test 

indicated that the variances were different across the two groups for my_LD, t0Age, t1risk, t2risk, 

t0HbA1c, t1HbA1c and t2HbA1c (p=1.8x10-8, 0.007, 2x10-4, 3.3x10-6, 2.3x10-4, 0.001, 3.1x10-5) . 

my_Sex is the exception with the results of the Fligner test indicating that variances were the same 

for this variable across the two groups (p=0.3). The Wilcoxon test results also indicated that the 
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variables my_LD, t0Age, t1risk, t2risk, t0HbA1c, t1HbA1c and t2HbA1c were significantly different 

across the two groups (p=1.9x10-8, 0.007, 2.2x10-16, 1.5x10-15, 1.9x10-5, 2.5x10-6 and 2x10-4). Again, 

my_Sex is the exception with the result of the Wilcoxon signed rank test indicating that there was no 

significant difference in this variable across the two groups (p=0.3). The largest PCC estimates were 

also associated with t1risk (85.1 %). 

Table 6.3.3.2 and Figure 6.3.3.1 below present the results for variable selections from the ISDR data 

carried out using the MFS-T2 algorithm for 1,000 samples taken without replacement. The optimal 

priors used with these selections were (0.64, 0.36). The MFS-T2 algorithm selected only one variable 

which is t1risk. The PCC estimates calculated for 10, 100 and 1,000 samplings were 76.5, 76.6 and 

76.3 respectively. t1risk was identified as the most important variable for predicting a patient’s 

progression to a risk score of 2. At all three sampling frequencies t1risk was chosen in almost 100 % 

of samplings. Though the selection frequencies for variables other than t1risk were higher than 

those for the MFS-SNR algorithm these frequencies were still negligible relative to those for t1risk. 

Similar patterns to the sensitivity, specificity, PPV and NPV values were observed. Again these results 

were suspected to be caused by the larger proportion of non-disease patients present in the data. 
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Table 6.3.3.2 Selection frequencies for variable selections using MFS-T2 made from each of 1,000 

samples taken without replacement, frequencies are only shown for selected variables 

my_LD t1risk t2risk t1HbA1c 

22 977 24 2 

 

Figure 6.3.3.1 Average diagnostic estimate values for variable selections using MFS-T2 made from 

each of 1,000 samples taken without replacement, estimates were calculated for selections made 

after each sampling of the full dataset  

 

Next, I used the multivariate MFS-SNR algorithm to find out what variables offer the best 

discrimination between the non-referable STDR group and the referable STDR group. Table 6.3.3.3 

and Figure 6.3.3.2 below present the results for 1,000 samples taken without replacement. The 

optimal priors used with these selections were (0.65, 0.35). The PCC estimates calculated for 10, 100 

and 1,000 samplings were 76.5, 75.9 and 76.4 respectively. It is clear from the selection frequencies 

that t1risk is the most important variable for predicting a patients’ progression to a risk score of 2. At 

all three sampling frequencies t1risk was chosen in almost 100 % of samplings. Other variables were 

chosen with marginally increasing frequencies as the number of sampling repetitions increased but 

these frequencies were negligible relative to those of t1risk. While the sensitivity, specificity and 

NPV values were all above 70 % the PPV values were all less than 40 %. This was in large part due to 

the larger proportion of non-disease patients present in the data. 
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Table 6.3.3.3 Selection frequencies for variable selections using MFS-SNR made from each of 1,000 

samples taken without replacement, frequencies are only shown for selected variables 

my_LD t1risk t2risk t1HbA1c t0SP 

13 1000 8 3 1 

 

Figure 6.3.3.2 Average diagnostic estimate values for variable selections using MFS-SNR made 

from each of 1,000 samples taken without replacement, estimates were calculated for selections 

made after each sampling of the full dataset 

 

The variables t1risk and t2risk were then replaced with the dummy variables 𝑋1, 𝑋2 and 𝑋3, 𝑋4 

respectively. Table 6.3.3.4 and Figure 6.3.3.3 below present the variable selections using the MFS-T2 

algorithm on the dataset altered to include dummy variables 𝑋1, 𝑋2, 𝑋3 and 𝑋4 for 1,000 samples 

taken without replacement. The dummy variable 𝑋2 was chosen in almost 100 % of resamplings. 

While the selection frequencies for other variables were slightly higher than those of the MFS-SNR 

algorithm they were still negligible compared to the frequencies for 𝑋2. PCC estimates for 10, 100 

and 1,000 resamplings were 84.8, 85.1 and 85.1 respectively.  

Table 6.3.3.4 Selection frequencies for variable selections using MFS-T2 made from each of 1,000 

samples taken without replacement, frequencies are only shown for selected variables 

my_LD 𝑋1 𝑋2 𝑋4 

112 1 977 23 
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Figure 6.3.3.3 Average diagnostic estimate values for variable selections using MFS-T2 made from 

each of 1,000 samples taken without replacement, estimates were calculated for selections made 

after each sampling of the full dataset 

  

Table 6.3.3.5 and Figure 6.3.3.4 below present the variable selections using the MFS-SNR algorithm 

on the dataset altered to include dummy variables 𝑋1, 𝑋2 and 𝑋3, 𝑋4 for 1,000 samples taken 

without replacement. In terms of selection frequencies similar results were observed with 𝑋2 being 

chosen in almost 100 % of samplings. Given the coding scheme used a value of 1 for 𝑋2 is what 

differentiates risk scores of 0 and 1 from 1.5. While it is possible for a patient with a risk score of 1.5 

to devolve to a lower risk score, the probability that they will progress to a risk score of 2 is higher 

than for individuals with risk scores of 0 or 1. As such 𝑋2 contains similar information to T1risk which 

explains its’ higher frequency of selection. PCC estimates for 10, 100 and 1,000 resamplings were 

85.3, 84.9 and 85 respectively.  

Table 6.3.3.5 Selection frequencies for variable selections using MFS-SNR made from each of 1.000 

samples taken without replacement, frequencies are only shown for selected variables 

My_LD 𝑋1 𝑋2 𝑋3 𝑋4 

14 12 983 2 17 
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Figure 6.3.3.4 Average diagnostic estimate values for variable selections using MFS-SNR made 

from each of 1,000 samples taken without replacement, estimates were calculated for selections 

made after each sampling of the full dataset 

 

In order to understand why none of the HbA1c variables were selected by the MFS-SNR or MFS-T2 

algorithms pairwise plots of HbA1c against cholesterol, systolic and diastolic blood pressure were 

prepared for each time point. These plots are presented in figures 6.3.2.1, 6.3.2.2 and 6.3.2.3 below. 

 

Figure 6.3.3.1 Pairwise plots of HbA1c against Cholesterol, Systolic BP and diastolic BP for the 

background and proliferative groups at t0.  

 

Legend: t0 is the time of each patient’s last visit. Refer is the group with referable STDR, non-refer is the 

group with non-referable STDR. 
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Figure 6.3.3.2 Pairwise plots of HbA1c against Cholesterol, Systolic BP and diastolic BP for the 

background and proliferative groups at t1 

 

Legend: t1 is 1 year prior to t0. Refer is the group with referable STDR, non-refer is the group with non-

referable STDR. 

 

 

Figure 6.3.3.3 Pairwise plots of HbA1c against Cholesterol, Systolic BP and diastolic BP for the 

background and proliferative groups at t2 

 

Legend: t2 is 2 years prior to t0. Refer is the group with referable STDR, non-refer is the group with non-

referable STDR. 

 

It is evident from these plots (Figures 6.3.3.1, 6.3.3.2 and 6.3.3.3) that there is no clear separation 

between the background and proliferative groups in any of the plots or at any of the time points. 

This is in agreement with the results presented in Tables 6.3.3.2 to 6.3.3.5 in that the plots indicate 

the absence of a statistically significant difference for any of these variables across the two groups. 

6.3.4 Discussion 

I applied the MFS-T2 and MFS-SNR algorithms to the task of finding the optimal set of variables for 

differentiating between groups with non-referrable STDR and referrable STDR. Both the MFS-T2 and 
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MFS-SNR algorithms identified t1risk as the most important variable for discriminating between the 

two groups. This is in agreement with the results of the univariate analysis of the variables. In the 

univariate analysis the largest T2 statistic and SNR are calculated for t1risk. 

The imbalance between the disease and non-disease groups in the ISDR dataset complicated 

variable selection from this dataset. Sampling of non-disease patients in a ratio of 5:1 non-disease: 

disease addressed this problem to some extent facilitating the generation of a more balanced 

dataset from which variable selection could be carried out. I performed repeated sampling which 

produced bootstrapped variable selections. Unfortunately the estimates of sensitivity, specificity, 

NPV and PPV calculated have been influenced heavily by the imbalance in the two groups. In 

particular the sensitivity and PPV values fell below 50 % for the analysis of data with and without 

dummy variables replacing t1risk and t2risk respectively. Due to the fact that there are many times 

more patients in the non-referrable STDR group any incorrect classifications of patients with 

referable STDR have a larger impact on the calculated sensitivity and PPV values. The selection of 

t1risk as being the optimal variable for discriminating between the disease and non-disease groups is 

supported by univariate analysis of all the variables present in the dataset and the differences in 

these variables across the groups. Differences in the performance of the MFS-SNR and MFS-T2 

algorithms are negligible for this dataset (PCC difference is 0 %). 

6.4 Application of methods to discriminate between survival outcome 

groups in malarial retinopathy  

6.4.1 Introduction 

I applied the variable selection algorithms MFS-T2 and MFS-SNR to the task of discriminating 

between children who died after contracting cerebral malaria and children who survived with full 

recovery or survived with sequelae using data from two work packages in a Wellcome Trust funded 

Programme Grant entitled, “The retinal microvasculature in cerebral malaria in African children 

(MRet).” SP Harding, RS Heyderman, AG Craig, PS Hiscott, ME Molyneux, TE Taylor, S Kampondeni, 

NAV Beare, P Knox, M Mallewa, Y Zheng. (092668/Z/10/Z).  

There are two outcome groups in this dataset : 

- patients who survived with full recovery or with neurological sequelae. These are referred to 

as “survived”, 

- patients who died. 
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I attempted to use the MFS-T2 and MFS-SNR algorithms to find the best set of variables for 

discriminating between the two outcome groups.  

6.4.2 Methods 

The MRet imaging dataset comprises measurements on 79 variables for 154 patients. The variables 

are 

- 72 imaging variables of capillary non-perfusion (CNP). Each image was divided into 48 sectors 

and information contained in each sector was extracted. This produced the variables: 

o 𝐶𝑁𝑃1. . 𝐶𝑁𝑃24 variables give CNP in 24 sectors of macula, 

o 𝐶𝑁𝑃25. . 𝐶𝑁𝑃48 variables give CNP in 24 sectors of early periphery, 

o 𝐶𝑁𝑃49. . 𝐶𝑁𝑃72 variables were created as a sum of macula and periphery. So for 

example 𝐶𝑁𝑃1 + 𝐶𝑁𝑃25 = 𝐶𝑁𝑃49. 

- Clinical variables: In addition to the imaging sector variables 7 clinical variables were 

measured in each patient:  

o Age   

o Sex 

o Weight 

o Serum lactate 

o Respiratory data 

One challenge of the dataset is that there are missing values.  The missingness is particularly large in 

imaging data due to missing part of the image. This was due to the challenges in imaging comatose 

children with roving eye movements. Only 10 (out of 154) children had complete data on all imaging 

and clinical variables. 

This missingness complicated the calculation of the optimal prior probabilities for the MRet dataset. 

In the presence of missingness it was not possible to train a classifier using LDA or QDA, because of 

the implicit assumption that each patient has complete data which is how they are implemented in 

R. The only alternative offered by the LDA or QDA functions was to limit the analysis to complete 

data i.e. omit any patient with at least one missing value. Unfortunately using only the complete 

cases to train the classifier was not a viable option as this left us with data on only 10 children which 

was insufficient.  

To obtain the optimal prior probabilities, another option was to carry out imputation of missing 

values. Any imputation is based on assumptions drawn from the non-missing data. If the optimal 
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priors are calculated based on a subset of the variables found in the dataset those priors will favour 

that variable subset during the variable selection process.  

With this limitation in mind, to obtain the prior probabilities, I carried out the imputation of the full 

dataset using the norm and norm.predict functions from the mice package in an attempt to 

identify the optimal priors. Attempts to identify the optimal priors using QDA failed due to an 

insufficient number of patients in the death group. Optimal priors were identified using LDA 

however these priors are limited in applicability to the MFS-T2 algorithm (which uses LDA to 

estimate PCC values). The optimal priors identified using LDA were applied to the task of variable 

selection using the MFS-T2 algorithm. Variable selections from the imputed dataset were also 

carried out using the MFS-T2 and MFS-SNR algorithms. 

Additional statistics were extracted from the imaging data as potential discriminators. From the 

available data on sectors 1 to 24 the averages, variances, maximum values, minimum values and 

ranges were extracted. Variable selection from these statistics was carried out using the MFS-T2 and 

MFS-SNR algorithms. Variable selection was also carried out from datasets containing combinations 

of these statistics, the clinical variables and sectors 1 to 24 using the MFS-T2 and MFS-SNR 

algorithms. 

First, univariate analyses were carried out on all the variables for each of the two groups. For each 

variable I calculated Hotelling’s T2 statistic the associated p-value and the SNR. PCC estimates were 

calculated for each variable using both QDA and LDA with LOOCV. Mean values for each variable in 

the survival and death groups were also calculated as well as standard errors associated with these 

mean values. The Shapiro-Wilks test was applied to each variable to test for normality. On the basis 

of the results of the Shapiro-Wilks test the parametric 2-sample t-test or the non-parametric 

Wilcoxon signed rank test was applied to each variable to study the differences in the measurements 

between the two groups. The results of the Shapiro-Wilks test were also used to determine whether 

the parametric Bartlett test or the non-parametric Fligner test (Conover et al, 1982) was applied to 

each variable to test the null hypothesis of variance-covariance matrix homogeneity across the 

groups. This analysis identified which variables had the strongest potential to discriminate between 

the two groups in a univariate context. 

6.4.3 Results 

Exploratory analysis of the MRet data was carried out. The differences between the variables across 

the survival and death groups were analysed. The results of this analysis are presented in Table 

6.4.3.1 below.  
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Table 6.4.3.1 Univariate analysis of all variables in the survival and death groups. 

Variable 
(units of 
measureme
nt) 

Survival group  Death group Test of 
normality 

Test of 
associati
on with 
group 

Test 
of 
covari
ance 
homo
geneit
y 

Discrimination 

Mean, 
standard 
deviation 

Mean, 
standard 
deviation 

Shapiro-
Wilks test, 
p-value  

Wilcoxo
n signed 
rank test 
or 2-
sample 
t-test, p-
value 

Fligne
r or 
Bartle
tt test, 
p-
value  

T2 
statistic 

PCC 
(LDA
-CV) 

SNR PCC 
(QDA-
CV) 

Age 41.2 ± 22.2 50.8 ± 30.2 5x10
-7

 0.2 0.2 3.4 84.4 2.3 81.8 

Sex 1.5 ± 0.5 1.4 ± 0.5 2.2x10
-16

 0.4 0.5 0.8 84.4 0.8 84.4 

Resp 46.2 ± 11.7 46.9 ± 11.8 3.2x10
-6

 0.7 0.7 0.1 84.4 0.1 83.8 

Wt 12.6 ± 3.9 13.5 ± 4.3 6.1x10
-5

 0.3 0.8 1.1 84.4 0.9 84.4 

Comasc 1.5 ± 0.6 1.1 ± 0.7 4.3x10
-15

 0.007 0.3 8.2 84.4 7.3 79.9 

Ahct 19.2 ± 5.9 19.4 ± 5.9 0.03 0.9 0.4 0.03 84.4 0.03 84.4 

Admlact 7.0 ± 4.6 9.9 ± 3.5 1.2x10
-6

 0.002 0.2 8.9 84.4 13.5 84.4 

𝐶𝑁𝑃1 0.1 ± 0.07 0.1 ± 0.05 2.9x10
-5

 0.7 0.3 1.1x10
-4

 85.2 2x10
-4

 85.2 

𝐶𝑁𝑃2 0.1 ± 0.06 0.1 ± 0.05 4x10
-4

 0.4 0.1 0.6 84.5 0.9 84.5 

𝐶𝑁𝑃3 0.1 ± 0.06 0.1 ± 0.04 2x10
-4

 0.2 0.06 1.3 84.9 2.1 84.9 

𝐶𝑁𝑃4 0.1 ± 0.06 0.1 ± 0.04 0.03 0.4 0.02 0.8 85.4 1.6 85.4 

𝐶𝑁𝑃5 0.2 ± 0.07 0.2 ± 0.05 0.007 0.7 0.03 1.6x10
-5

 84.6 2.5x10
-5

 84.6 

𝐶𝑁𝑃6 0.2 ± 0.08 0.2 ± 0.06 2x10
-4

 1.0 0.7 0.07 84.6 0.09 84.6 

𝐶𝑁𝑃7 0.2 ± 0.09 0.2 ± 0.06 2x10
-9

 0.8 0.4 0.3 85.1 0.5 85.1 

𝐶𝑁𝑃8 0.2 ± 0.08 0.2 ± 0.06 0.001 0.8 0.3 0.1 86.7 0.2 86.7 

𝐶𝑁𝑃9 0.2 ± 0.09 0.2 ± 0.06 1.9x10
-5

 0.5 0.3 0.5 85.7 0.9 85.7 

𝐶𝑁𝑃10 0.2 ± 0.1 0.3 ± 0.1 4x10
-5

 0.3 0.7 1.5 84.6 1.2 83.8 

𝐶𝑁𝑃11 0.2 ± 0.1 0.3 ± 0.1 9x10
-4

 0.05 0.6 3.0 83.3 2.9 83.3 

𝐶𝑁𝑃12 0.2 ± 0.1 0.3 ± 0.1 2x10
-4

 0.4 0.2 0.2 85.7 0.4 85.7 

𝐶𝑁𝑃13 0.2 ± 0.1 0.2 ± 0.1 2x10
-5

 0.2 0.2 0.4 83.6 0.8 83.6 

𝐶𝑁𝑃14 0.2 ± 0.1 0.2 ± 0.1 7x10
-4

 0.6 0.6 0.2 83.6 0.2 83.6 

𝐶𝑁𝑃15 0.2 ± 0.1 0.2 ± 0.1 0.001 0.06 0.8 2.5 83.5 2.9 83.5 

𝐶𝑁𝑃16 0.2 ± 0.1 0.2 ± 0.1 1.1x10
-7

 0.1 1.0 1.4 84.1 1.6 84.1 

𝐶𝑁𝑃17 0.2 ± 0.1 0.2 ± 0.1 1x10
-7

 0.8 0.7 0.1 83.8 0.1 83.8 

𝐶𝑁𝑃18 0.2 ± 0.1 0.2 ± 0.1 1.2x10
-7

 0.6 0.5 0.3 84.4 0.3 83.7 

𝐶𝑁𝑃19 0.2 ± 0.1 0.2 ± 0.1 3.6x10
-6

 0.6 0.4 0.2 84.6 0.2 84.6 

𝐶𝑁𝑃20 0.2 ± 0.1 0.1 ± 0.06 1.4x10
-7

 0.5 0.06 0.5 84.1 0.8 84.1 

𝐶𝑁𝑃21 0.2 ± 0.1 0.2 ± 0.1 5.9x10
-5

 0.7 0.09 0.7 84.5 1.0 84.5 

𝐶𝑁𝑃22 0.2 ± 0.1 0.2 ± 0.1 2.8x10
-7

 0.5 0.03 1.3 84.6 2.6 84.6 

𝐶𝑁𝑃23 0.2 ± 0.1 0.1 ± 0.06 0.05 0.8 0.4 0.2 84.6 0.2 84.6 

𝐶𝑁𝑃24 0.1 ± 0.05 0.1 ± 0.04 3x10
-4

 0.8 0.7 0.4 84.1 0.6 84.1 

𝐶𝑁𝑃25 0.06 ± 0.04 0.06 ± 0.04 2.5x10
-5

 0.8 0.7 0.04 80.8 0.04 80.8 

𝐶𝑁𝑃26 0.06 ± 0.04 0.07 ± 0.05 5.3x10
-8

 0.3 1.0 1.3 82.8 1.0 80.6 

𝐶𝑁𝑃27 0.05 ± 0.05 0.05 ± 0.03 2.8x10
-11

 0.3 0.4 0.2 82.6 0.2 82.6 

𝐶𝑁𝑃28 0.04 ± 0.04 0.06 ± 0.04 5.5x10
-7

 0.1 0.9 1.7 82.3 1.7 80.6 

𝐶𝑁𝑃29 0.08 ± 0.07 0.06 ± 0.04 2.8x10
-9

 0.5 0.5 1.2 84.6 2.4 84.6 

𝐶𝑁𝑃30 0.09 ± 0.08 0.09 ± 0.07 9.8x10
-11

 0.7 0.9 0.06 84.7 0.06 84.7 

𝐶𝑁𝑃31 0.1 ± 0.08 0.1 ± 0.1 1.3x10
-9

 0.2 0.6 0.5 84.1 0.4 83.2 

𝐶𝑁𝑃32 0.1 ± 0.08 0.1 ± 0.08 4.1x10
-9

 0.9 1.0 0.02 84.8 0.02 84.9 

𝐶𝑁𝑃33 0.1 ± 0.08 0.1 ± 0.05 1x10
-6

 0.3 0.2 0.06 86.9 0.2 86.9 

𝐶𝑁𝑃34 0.1 ± 0.08 0.1 ± 0.05 2.x10
-4

 0.7 0.1 0.002 86.6 0.004 86.6 

𝐶𝑁𝑃35 0.1 ± 0.09 0.2 ± 0.1 1x10
-4

 0.006 0.9 8.0 85.0 7.8 83.3 

𝐶𝑁𝑃36 0.1 ± 0.08 0.2 ± 0.1 0.002 0.05 0.4 4.3 87.7 3.3 87.7 

𝐶𝑁𝑃37 0.1 ± 0.07 0.2 ± 0.1 0.001 0.02 0.1 9.0 82.9 6.0 84.2 

𝐶𝑁𝑃38 0.1 ± 0.08 0.1 ± 0.07 5.9x10
-5

 0.03 0.8 3.1 83.0 3.9 84.0 
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𝐶𝑁𝑃39 0.1 ± 0.08 0.1 ± 0.06 1.9x10
-9

 0.3 0.6 0.2 83.7 0.3 83.7 

𝐶𝑁𝑃40 0.1 ± 0.06 0.1 ± 0.08 2.8x10
-6

 0.2 0.4 3.4 80.7 2.4 82.6 

𝐶𝑁𝑃41 0.1 ± 0.07 0.1 ± 0.09 1.6x10
-10

 0.4 0.2 1.6 80.8 11.1 80.0 

𝐶𝑁𝑃42 0.08 ± 0.06 0.07 ± 0.05 9.6x10
-10

 1.0 0.5 0.2 81.9 0.3 81.9 

𝐶𝑁𝑃43 0.06 ± 0.05 0.07 ± 0.05 7.9x10
-6

 0.4 0.8 0.5 81.5 0.5 80.8 

𝐶𝑁𝑃44 0.05 ± 0.05 0.07 ± 0.06 7.4x10
-12

 0.07 0.3 2.1 81.2 1.9 80.5 

𝐶𝑁𝑃45 0.06 ± 0.05 0.07 ± 0.05 4.8x10
-7

 0.4 0.7 0.1 81.3 0.2 81.3 

𝐶𝑁𝑃46 0.06 ± 0.05 0.08 ± 0.05 3x10
-6

 0.1 0.6 1.5 79.0 1.5 77.1 

𝐶𝑁𝑃47 0.004 ± 0.006 0.003 ± 0.005 1.3x10
-12

 1.0 0.3 0.2 78.4 0.2 78.4 

𝐶𝑁𝑃48 0.004 ± 0.007 0.006 ± 0.008 2.2x10
-12

 0.4 0.05 0.9 77.1 0.8 74.0 

𝐶𝑁𝑃49 0.09 ± 0.05 0.1 ± 0.04 1.3x10
-5

 0.3 0.9 0.6 80.9 0.8 81.7 

𝐶𝑁𝑃50 0.1 ± 0.04 0.1 ± 0.04 0.008 0.9 0.3 0.005 83.1 0.005 83.1 

𝐶𝑁𝑃51 0.1 ± 0.04 0.1 ± 0.04 5x10
-4

 0.9 0.3 0.09 83.5 0.1 83.5 

𝐶𝑁𝑃52 0.1 ± 0.04 0.1 ± 0.03 0.06 1.0 0.06 0.02 83.3 0.03 83.3 

𝐶𝑁𝑃53 0.1 ± 0.06 0.1 ± 0.03 5.9x10
-6

 0.5 0.06 0.1 84.0 0.3 84.0 

𝐶𝑁𝑃54 0.1 ± 0.07 0.1 ± 0.06 9.2x10
-6

 0.6 0.7 0.007 84.5 0.009 84.4 

𝐶𝑁𝑃55 0.1 ± 0.07 0.1 ± 0.06 1.1x10
-5

 0.7 0.5 0.3 83.8 0.3 83.8 

𝐶𝑁𝑃56 0.1 ± 0.06 0.1 ± 0.06 2.5x10
-5

 0.7 1.0 0.07 84.7 0.08 84.7 

𝐶𝑁𝑃57 0.1 ± 0.06 0.1 ± 0.04 0.2 0.8 0.2 0.02 86.6 0.04 86.6 

𝐶𝑁𝑃58 0.2 ± 0.07 0.2 ± 0.05 0.5 0.2 0.2 1.1 86.4 2.0 86.4 

𝐶𝑁𝑃59 0.2 ± 0.08 0.3 ± 0.1 0.006 0.02 0.2 7.6 84.5 5.0 82.8 

𝐶𝑁𝑃60 0.2 ± 0.1 0.2 ± 0.1 0.4 0.06 0.9 5.2 87.7 4.7 86.2 

𝐶𝑁𝑃61 0.2 ± 0.1 0.2 ± 0.1 2.0 0.03 0.5 5.2 82.7 4.9 80.0 

𝐶𝑁𝑃62 0.2 ± 0.1 0.2 ± 0.04 9x10
-4

 0.3 0.2 0.4 84.0 0.8 84.0 

𝐶𝑁𝑃63 0.1 ± 0.07 0.2 ± 0.1 3.5x10
-5

 0.07 0.9 1.7 82.4 2.3 83.3 

𝐶𝑁𝑃64 0.1 ± 0.06 0.2 ± 0.1 4.8x10
-5

 0.03 0.2 6.5 81.5 4.9 81.5 

𝐶𝑁𝑃65 0.1 ± 0.07 0.2 ± 0.1 1.6x10
-9

 0.4 0.7 0.5 82.3 0.4 80.5 

𝐶𝑁𝑃66 0.1 ± 0.06 0.1 ± 0.06 4x10
-9

 0.7 0.2 0.08 82.8 0.08 82.0 

𝐶𝑁𝑃67 0.1 ± 0.05 0.1 ± 0.05 3.1x10
-6

 0.7 1.0 0.2 82.4 0.2 81.6 

𝐶𝑁𝑃68 0.1 ± 0.05 0.1 ± 0.05 5.9x10
-5

 0.6 0.5 0.4 81.9 0.4 81.1 

𝐶𝑁𝑃69 0.1 ± 0.05 0.1 ± 0.05 0.002 0.3 0.6 0.4 81.4 0.4 81.4 

𝐶𝑁𝑃70 0.1 ± 0.05 0.1 ± 0.05 0.5 0.4 0.8 0.9 79.2 0.9 79.2 

𝐶𝑁𝑃71 0.08 ± 0.03 0.08 ± 0.04 0.5 0.6 0.3 0.4 78.6 0.4 78.6 

𝐶𝑁𝑃72 0.06 ± 0.02 0.06 ± 0.03 0.4 0.4 0.4 0.8 76.8 0.7 74.7 

 

The majority of the variables had homogeneous variances (Flinger test, p>0.05), except 𝐶𝑁𝑃3, 𝐶𝑁𝑃4, 

𝐶𝑁𝑃5, 𝐶𝑁𝑃20, 𝐶𝑁𝑃21, 𝐶𝑁𝑃22, 𝐶𝑁𝑃48, 𝐶𝑁𝑃52 and 𝐶𝑁𝑃53. The majority of the variables were not 

associated with outcome (Wilcoxon rank sum test, p>0.05) except Comasc, Admlact, 𝐶𝑁𝑃11, 𝐶𝑁𝑃15, 

𝐶𝑁𝑃35, 𝐶𝑁𝑃36, 𝐶𝑁𝑃37, 𝐶𝑁𝑃38, 𝐶𝑁𝑃44, 𝐶𝑁𝑃59, 𝐶𝑁𝑃50, 𝐶𝑁𝑃61, 𝐶𝑁𝑃63 and 𝐶𝑁𝑃64.  

In univariate analysis the discriminatory strength of all variables was between 76 and 86 %, i.e. for 

each variable separately. Considering the SNR values the largest value was associated with Admlact 

followed by (in descending order), 𝐶𝑁𝑃41, 𝐶𝑁𝑃35 and Comasc (SNR=13.5, 11.1, 7.8 and 7.3). 

Considering the T2 statistics the largest value was associated with 𝐶𝑁𝑃37 followed by (in descending 

order) Admlact, Comasc and CNP35 (T2=9.0, 8.9, 8.2, 8.0).   

Next I attempted a multivariate analytical approach to variable selection. The aim was to find the 

selection of variables that best discriminates between death and survival of retinal malaria patients. 

Tables 6.4.3.2 and 6.4.3.3 below present the results for variable selections made from the complete 

malarial retinopathy imaging dataset using the MFS-T2 and MFS-SNR algorithms respectively. The 
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selections made by the MFS-T2 algorithm had an associated PCC estimate of 89.5% compared to a 

PCC estimate of 84.4% for the selections made using the MFS-SNR algorithm. However the MFS-T2 

algorithm selected the sector variable 𝐶𝑁𝑃37, admlact and resp to achieve this PCC. In contrast the 

MFS-SNR algorithm selected only Admlact. 

Table 6.4.3.2 Multivariate selections by the MFS-T2 algorithm for discriminating between the 

death and survival groups.  

Variable T2 statistic PCC (LDA-CV) 

𝐶𝑁𝑃37 9.0 82.9 

Admlact 22.7 85.5 

Resp 31.3 89.5 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. All 154 

patients were used, 24 from the death group and 130 from the survival group. 

 

Table 6.4.3.3 Multivariate selections by the MFS-SNR algorithm for discriminating between the 

death and survival groups 

Variable SNR PCC (QDA-CV) 

Admlact 13.5 84.4 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. All 154 

patients were used, 24 from the death group and 130 from the survival group. 

 

Next I imputed the missing data and then carried out variable selection. The idea was to see how 

sensitive the variable selection was to missing data. Following imputation of the missing entries 

using the norm and norm.predict functions from the mice package. Missing values were 

imputed 5 times which is the default number for the mice function. Variable selection was repeated 

using the MFS-T2 and MFS-SNR algorithms with the imputed datasets. The results of variable 

selection from these datasets using the MFS-T2 and MFS-SNR algorithms are presented in Tables 

6.4.3.4 and 6.4.3.5 respectively. What is interesting about the results is that following imputation 

both the MFS-T2 and MFS-SNR algorithms both selected Admlact only from the full imputed dataset.  

 

Table 6.4.3.4 Multivariate selections by the MFS-T2 algorithm for discriminating between the dead 

and survivor groups following imputation of the malarial retinopathy dataset  

Variable T2 statistic PCC (LDA-CV) 

Admlact 8.8 84.4 

Legend: The imputation was done using the norm and norm.predict functions from the mice package. PCC 

estimates in each row are calculated for the variable in that row and all previous rows. All 154 patients were 

used, 24 from the death group and 130 from the survival group. 
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Table 6.4.3.5 Multivariate selections by the MFS-SNR algorithm for discriminating between the 

death and survival groups following imputation of the malarial retinopathy dataset  

Variable SNR PCC (QDA-CV) 

Admlact 13.5 84.4 

Legend: The imputation was done using the norm and norm.predict functions form the mice package. PCC 

estimates in each row are calculated for the variable in that row and all previous rows. All 154 patients were 

used, 24 from the death group and 130 from the survival group. 

 

The imputed datasets were then used to identify the optimal priors. Optimal priors could only be 

identified for use with the MFS-T2 algorithm and the variable selections made using these priors are 

presented in Tables 6.4.3.6 and 6.4.3.7 below. While the variable selections were different for each 

of the datasets produced using the norm and norm.predict functions from the mice package 

Admlact is the first variable selected in each case. Also noteworthy is the fact that the changes in 

PCC estimates following the selection of additional variables were negligible demonstrating that the 

largest proportion of the discriminatory potential of the selections lies with the Admlact variable.  

Table 6.4.3.6 Multivariate selections by the MFS-T2 algorithm for discriminating between the 

death and survival groups using optimal priors identified for the dataset produced following 

imputation of the malarial retinopathy dataset  

Variable T2 statistic PCC (QDA-CV) 

Admlact 8.8 84.4 

Comasc 16.2 84.4 

Age 20.2 84.4 

𝐶𝑁𝑃40 25.2 84.4 

Legend: The imputation was done using the norm function from the mice package. PCC estimates in each 

row are calculated for the variable in that row and all previous rows. All 154 patients were used, 24 from the 

death group and 130 from the survival group. 

 

Table 6.4.3.7 Multivariate selections by the MFS-T2 algorithm for discriminating between the 

death and survival groups using optimal priors identified for the dataset produced following 

imputation of the malarial retinopathy dataset. 

Variable T2 statistic PCC (LDA-CV) 

Admlact 8.8 84.4 

Comasc 16.2 84.4 

𝐶𝑁𝑃38 24.2 85.7 

Legend: The imputation was done using the norm.predict function from the mice package. PCC estimates in 

each row are calculated for the variable in that row and all previous rows. All 154 patients were used, 24 

from the death group and 130 from the survival group. 
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To investigate the information content of the retinal image sectors a separate analysis of 𝐶𝑁𝑃1 to 

𝐶𝑁𝑃24 was carried out. The analysis was limited to 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 as the region covered by these 

sectors was expected to contain a relatively larger proportion of capillary non-perfusion. Averages, 

variances, minimum values, maximum values and ranges were extracted for 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24. 

Variable selection was then carried out from datasets composed of from combinations of these 

statistics, the clinical variables and 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24. These results are presented below. 𝐶𝑁𝑃11 was 

selected by both the MFS-T2 and MFS-SNR algorithms from a dataset containing just 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 

and a dataset consisting of 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 and the statistics for 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24. From a dataset 

containing just the clinical variables Admlact was selected. Similarly Admlact alone was selected 

from datasets consisting of the clinical variables and statistics for 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24, a dataset 

containing the clinical variables and 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 and a dataset containing the clinical variables, 

the statistics for 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 and 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24. Lastly from a dataset containing the statistics 

of 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 only the variances were selected. Variable selection from amongst the statistics 

for 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 using the MFS-T2 algorithm was not possible due to the occurrence of a 

singularity error. These results are presented in Tables 6.3.3.8 and 6.3.3.9 below. 

Table 6.4.3.8 Variable selected by MFS-T2, T2 statistics and PCC estimates for selections made from 

combinations of image sectors 1-24, statistics extracted from sector variables and clinical 

variables.  

Variable(s) 
selected 

T2 statistic PCC (LDA-
CV) 

Candidate variables considered in the 
variable selection 

𝐶𝑁𝑃11 3 83.3 Sectors 1-24 

Admlact 8.8 84.4 Sector statistics + clinical variables 

Admlact 8.8 84.4 Sectors 1-24 + clinical variables 

𝐶𝑁𝑃11 3 83.3 Sectors 1-24 + sector statistics 

Admlact 8.8 84.4 Sectors 1-24+sector statistics+clinical 
variables 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. 

 

Table 6.4.3.9 Variable selected by MFS-SNR, SNR values and PCC estimates for selections made 

from combinations of image sectors 1-24, statistics extracted from sector variables and clinical 

variables.  

Variable(s) 
selected 

SNR PCC (QDA-
CV) 

Candidate variables considered in the 
variable selection 

𝐶𝑁𝑃11 2.9 83.3 Sectors 1-24 

Admlact 13.5 84.4 Sector statistics + clinical variables 

Admlact 13.5 84.4 Sectors 1-24 + clinical variables 

𝐶𝑁𝑃11 2.9 83.3 Sectors 1-24 + sector statistics 

Admlact 13.5 84.4 Sectors 1-24+sector statistics+clinical 
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variables 

Sector variances 0.7 84.4 Sector statistics 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. 

 

6.4.4 Discussion 

I applied the MFS-T2 and MFS-SNR algorithms (Section 3.8) to find the variables for discriminating 

between groups of children who died after contracting cerebral malaria and children who survived 

with full recovery or survived with neurological sequelae. The MFS-SNR algorithm consistently 

identified Admlact as important for discriminating between the two groups. This result was repeated 

following imputation of missing values, analysis of different subsets of variables and variable 

selection from a dataset including statistics extracted from the original image variables 𝐶𝑁𝑃1 to 

𝐶𝑁𝑃24. Conversely the MFS-T2 algorithm only identified the importance of Admlact following 

imputation of missing values.  

The large proportion of missingness in the malarial retinopathy imaging data complicated efforts to 

carry out variable selection. After considerable work attempting to address the missingness issue 

with imputation as well as optimal prior identification and attempting to create new variables using 

the available data on 𝐶𝑁𝑃1 to 𝐶𝑁𝑃24 two things became clear. Firstly, admlact is the most important 

variable for achieving optimal discrimination between the groups survival vs death in this dataset. 

Secondly the MFS-SNR algorithm identified the importance of Admlact alone without any additional 

editing of the dataset. In contrast the MFS-T2 algorithm selected Admlact alone only after 

imputation of the dataset to address the high proportion of missingness. When using the optimal 

prior probabilities the MFS-T2 algorithm selected several variables in addition to Admlact but the 

PCC did not increase by much. This is evidence of the superior ability of the SNR to assess the 

discriminatory potential of variables even in cases of significant missingness as the MFS-SNR 

algorithm made the correct selections without any additional editing or imputation of the dataset. 

The univariate analysis of the malarial retinopathy dataset identified additional variables (𝐶𝑁𝑃35, 

𝐶𝑁𝑃37, 𝐶𝑁𝑃41 and Comasc) as potential candidates for the optimale subset of variables. The MFS-

SNR algorithm selects Comasc only after imputation of missing values and does not select any of the 

other variables 𝐶𝑁𝑃35, 𝐶𝑁𝑃37 or 𝐶𝑁𝑃41. The MFS-T2 algorithm selects 𝐶𝑁𝑃37 prior to imputations. 

After imputation of missing values the MFS-T2 algorithm selects Comasc. These results indicate that 

the SNR is more robust to missingness than the T2 statistic. 
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6.5 Application of methods to discriminate between disease stages in 

keratoconus 

6.5.1 Introduction 

This section applies the proposed MFS-SNR variable selection algorithm (Section 3.8) to the task of 

discriminating between healthy eyes and eyes with keratoconus.  

The keratoconus dataset that I studied contains measurements taken on the eyes of healthy 

individuals and individuals with keratoconus in St. Paul’s Eye Unit, corneal clinics. Each measurement 

was taken in triplicate for each subject. The dataset consists of measurements of 17 variables from 

60 patients. The eye is the unit of analysis and from each patient, only one eye from each patient 

was used. 

6.5.2 Methods 

I created two distinct analysable datasets from the keratoconus data. The first dataset contained the 

first measurement taken for each variable on each individual. The second dataset contained the 

average of all 3 measurements of each variable for each individual. This was done to see how the 

precision of measurement will affect the variable selection. Both these datasets were then passed to 

the MFS-T2 and MFS-SNR algorithms and variable selection was carried out.  

I carried out exploratory analysis on all the variables univariately i.e. one variable at a time. For each 

variable the Hotelling’s T2 statistic and associated p-value were calculated as well as SNR values. PCC 

estimates were calculated for each variable using both QDA and LDA with LOOCV. The mean values 

for each variable in healthy and keratoconic eye groups were also calculated as well as standard 

errors associated with these mean values. The Shapiro-Wilks test was applied to each variable to test 

for normality. On the basis of the results of the Shapiro-Wilks test the parametric 2-sample t-test or 

the non-parametric Wilcoxon signed rank test was applied to each variable. On the basis of the 

results of the Shapiro-Wilks test the parametric Bartlett test or the non-parametric Fligner test was 

applied to each variable to test the null hypothesis of variance-covariance matrix homogeneity 

across the groups. 

6.5.3 Results 

Exploratory analysis of the keratoconus datasets was carried out. The results of these analyses are 

presented in Tables 6.5.3.1 and 6.5.3.2  below. 
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Table 6.5.3.1 Univariate analysis of all variables in the healthy and keratoconus groups for a 

dataset using the averages of each variable 

Variable 
(units of 
measurement) 

Healthy 
group  

Keratoconus 
group 

Test of 
normalit
y 

Test of 
associati
on with 
group 

Test of 
covarian
ce 
homoge
neity 

Discrimination 

Mean, 
standard 
deviation 

Mean, 
standard 
deviation 

Shapiro-
Wilks 
test, p-
value  

Wilcoxo
n signed 
rank 
test or 
2-
sample 
t-test, p-
value 

Fligner 
or 
Bartlett 
test, p-
value  

T2 
statistic 

PCC 
(LDA-
CV) 

SNR PCC 
(QDA-
CV) 

K1 flat corneal 
front 

42.6 ± 1.1 45.9 ± 4.7 1.4x10
-6

 0.02 1.5x10
-5

 14.2 77.0 72.4 80.0 

K2 steep 
corneal front 

43.4 ± 1.1 49.6 ± 5.5 2.5x10
-7

 4.1x10
-8

 3.1x10
-5

 37.5 82.0 207.2 82.0 

K mean corneal 
front 

43 ± 1.1 47.7 ± 5 2.4x10
-7

 1.4x10
-5

 2.2x10
-5

 25.4 82.0 136.8 78.0 

Flat axis 
corneal front 

116.2 ± 
67.5 

78.2 ± 58.6 1.5x10
-6

 0.01 0.8 5.4 67.0 5.5 63.0 

Steep axis 
corneal front 

82.6 ± 
21.8 

105.1 ± 38.2 0.03 0.06 2x10
-3

 7.8 65.0 10.5 65.0 

Astigm corneal 
front 

0.8 ± 0.5 3.8 ± 1.8 1.5x10
-5

 5.4x10
-9

 3.2x10
-6

 77.7 90.0 282.4 88.0 

K1 flat corneal 
back 

-6.1 ± 0.2 -6.6 ± 1.3 1.1x10
-7

 0.003 7x10
-7

 4.9 78.0 61.4 83.0 

K2 steep 
corneal back 

-6.4 ± 0.2 -7.5 ± 1.0 9.6x10
-7

 1.4x10
-7

 9.8x10
-5

 39.7 83.0 194.7 88.0 

K mean corneal 
back 

-0.2 ± 1.6 0.3 ±1.9 2.6x10
-

13
 

8.3x10
-6

 6x10
-4

 1.0 53.0 1 63.0 

Flat axis 
corneal back 

105.3 ± 
68.0 

72.4 ± 64.0 1.5x10
-6

 0.08 0.3 3.7 65.0 3.8 65.0 

Steep axis 
corneal back 

86.9 ± 
13.0 

102.3 ± 30.1 4.2x10
-5

 0.04 0.008 6.6 62.0 12.5 63.0 

Astigm corneal 
back 

0.3 ± 0.1 0.8 ± 0.4 2.6x10
-6

 2.3x10
-7

 5x10
-5

 40.2 87.0 140.6 85.0 

Pachymetry 
Apex (um) 

545.4 ± 
26.7 

462.4 ± 47.0 0.02 9.2x10
-9

 0.006 70.7 83.0 95.8 85.0 

Pachymetry 
Thinnest (um) 

539 ± 28.0 450.3 ± 45.8 0.03 2.1x10
-9

 0.04 82.0 83.0 103.4 87.0 

Pachymetry X -0.03 ±0.7 -0.1 ± 0.6 1x10
-4

 1.0 0.4 0.1 53.0 0.1 48.0 

Pachymetry Y -0.5 ± 0.3 -0.5 ± 0.2 0.8 0.5 0.07 0.08 57.0 0.09 55.0 

 

Note that for the keratoconus dataset there is no missingness and the groups are balanced in terms 

of their sizes. According to the results of the Fligner tests the variances were different across the two 

groups for all variables except Flat axis corneal front, Flat axis corneal back and Pachymetry X (p=0.8, 

0.3 and 0.4). The Wilcoxon signed rank test results indicated that the groups were significantly 

different for all variables except Steep axis corneal front, Flat axis corneal back, Pachymetry X and 

Pachymetry Y (p=0.06, 0.08, 1.0, 0.5). While the mean values for Flat axis corneal front, Flat axis 

corneal back and Pachymetry X appeared to be different across the groups the standard deviations 
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are more than 50 % of the means. The largest SNR (282.4) was associated with the variable Astigm 

corneal front. The largest PCC estimate (88 %) was also associated with Astigm corneal front. The 

mean and standard deviation values indicate that there should be minimal overlap across the two 

groups for the variable Astigm corneal front.  

Looking at the SNR values and PCC estimates the largest values were (in descending order) 

associated with Astigm corneal front, k2 steep corneal front, K2 steep corneal back, Astigm corneal 

back and K mean corneal front (SNR=282.4, 207.2, 194.7, 140.6 and 136.8, PCC=88.0, 82.0, 88.0, 85.0 

and 78.0). Looking at the T2 statistics and PCC estimates the largest values were (in descending 

order) associated with Pachymetry thinnest, Astigm corneal front, Pachymetry apex, Astigm corneal 

back and K2 steep corneal back (T2=82.0 77.7, 70.7, 40.2 and 39.7, PCC=83.0, 90.0, 83.0, 87.0 and 

83.0).  

It is worth noting that the SNR values were all larger than the corresponding Hotelling T2 statistic 

values for most of the variables in this dataset. This is in keeping with expectations as the variances 

appeared to be significantly different across the two groups. The SNR can accommodate this 

heterogeneity of variances across groups whereas the Hotelling T2 statistic cannot. 

  



139 
 

Table 6.5.3.2 Univariate analysis of all variables in the healthy and keratoconus eyes groups for a 

dataset using the first measurement of each variable 

Variable 
(units of 
measurement) 

Healthy 
group  

Keratoconus 
group 

Test of 
normalit
y 

Test of 
associati
on with 
group 

Test of 
covarian
ce 
homoge
neity 

Discrimination 

Mean, 
standard 
deviation 

Mean, 
standard 
deviation 

Shapiro-
Wilks 
test, p-
value  

Wilcoxo
n signed 
rank 
test or 
2-
sample 
t-test, p-
value 

Fligner 
or 
Bartlett 
test, p-
value  

T2 
statistic 

PCC 
(LDA-
CV) 

SNR PCC 
(QDA-
CV) 

K1 flat corneal 
front 

52.6 ± 1.1 45.9 ±4.7 1.1x10
-6

 1.5x10
-3

 2x10
-5

 12.1 73.0 57.0 77.0 

K2 steep 
corneal front 

43.4 ± 1.2 49.6 ± 5.5 2.6x10
-7

 4.1x10
-8

 8.2x10
-5

 35.5 82.0 174.2 83.0 

K mean corneal 
front 

43.0 ± 1,1 47.7 ± 5.0 2.1x10
-7

 1.4x10
-5

 8.3x10
-5

 23.2 82.0 113.4 80.0 

Flat axis 
corneal front 

116.2 ± 
67.5 

78.2 ± 58.6 1x10
-6

 0.01 0.9 4.8 65.0 4.8 63.0 

Steep axis 
corneal front 

82.6 ± 
21.8 

105 ± 38.2 0.03 0.06 0.03 6.7 68.0 7.5 65.0 

Astigm corneal 
front 

0.8 ± 0.5 3.8 ± 1.8 1.1x10
-5

 5.4x10
-9

 1.3x10
-6

 71.5 90.0 258.4 88.0 

K1 flat corneal 
back 

-6.1 ± 0.2 -6.6 ± 1.3 1.3x10
-5

 0.003 4.6x10
-7

 11.0 75.0 62.8 80.0 

K2 steep 
corneal back 

-6.4 ± 0.2 -7.5 ± 1.0 1.3x10
-6

 1.5x10
-7

 3x10
-4

 35.7 83.0 148.4 83.0 

K mean corneal 
back 

-0.2 ± 1.6 0.3 ± 1.9 4x10
-13

 8.3x10
-6

 0.002 1.0 53.0 1.0 62.0 

Flat axis 
corneal back 

105.3 ± 68 72.4 ± 64.0 4.5x10
-8

 0.08 0.6 2.5 63.0 2.6 63.0 

Steep axis 
corneal back 

86.9 ± 13 102.3 ± 30.1 5x10
-4

 0.04 0.02 5.6 63.0 8.2 63.0 

Astigm corneal 
back 

0.3 ± 0.1 0.8 ± 0.4 4.2x10
-6

 2.3x10
-7

 1x10
-4

 35.8 85.0 129.4 88.0 

Pachymetry 
Apex (um) 

545.4 ± 
26.7 

462.4 ± 47.0 0.05 9.2x10
-9

 0.02 65.9 85.0 85.8 85.0 

Pachymetry 
Thinnest (um) 

539 ± 28 450.3 ± 45.8 0.1 5.9x10
-

12
 

0.03 80.9 87.0 97.8 87.0 

Pachymetry X 0.03 ±0.7 -0.1 ± 0.6 1.6x10
-4

 1.0 0.5 0.2 53.0 0.2 50.0 

Pachymetry Y -0.5 ± 0.2 -0.5 ± 0.3 0.2 0.5 0.04 0.3 47.0 0.3 48.0 

 

According to the results of the Fligner tests the variances were different across the two groups for all 

variables except flat axis corneal front, flat axis corneal back and Pachymetry X (p=0.9, 0.6 and 0.5. 

Similarly the Wilcoxon signed rank test results indicated that the groups were significantly different 

for all variables except Steep axis corneal front, Pachymetry X and Pachymetry Y (p=0.06, 0.08, 1.0 

and 0.5). While the mean values for Flat axis corneal front, Flat axis corneal back and Pachymetry X 

appeared to be different across the groups the standard deviations were more than 50 % of the 

means. The largest SNR ratio (282.4) was associated with the variable Astigm corneal front. The 
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largest PCC estimate (88 %) was also associated with Astigm corneal front. The mean and standard 

deviation values indicated that there should be no overlap across the two groups for the variable 

Astigm corneal front.  

Looking at the SNR values and PCC estimates the largest values were (in descending order) 

associated with Astigm corneal front, k2 steep corneal front, K2 steep corneal back, Astigm corneal 

back and K mean corneal front (SNR=258.4, 174.2, 148.4, 129.4 and 113.4, PCC=88.0, 83.0, 83.0, 88.0 

and 80.0). Looking at the T2 statistics and PCC estimates the largest values were (in descending 

order) associated with Pachymetry thinnest, Astigm corneal front, Pachymetry apex, Astigm corneal 

back and K2 steep corneal back (t2=80.9, 71.5, 65.9, 35.8 and 35.7, PCC= 87.0, 90.0, 85.0, 85.0 and 

83.0).  

As was observed for the dataset using the averages of each variable the SNR values are larger than 

the Hotelling’s T2 statistics for each variable. This is expected as the variances are significantly 

different across the two groups and only the SNR is capable of accommodating this heterogeneity 

leading to larger SNR values. 

The MFS-SNR and MFS-T2 algorithms were used to carry out variable selection from a dataset 

comprised of the average values of each of the variables in the Keratoconus dataset. Tables 6.5.3.3 

and 6.5.3.4 present the selection results for both the MFS-T2 and MFS-SNR algorithm from a dataset 

containing the average values of each of the variables in the Keratoconus dataset. At first glance it 

appeared that the MFS-T2 algorithm had made more parsimonious selections however, using all of 

the variables selected by the MFS-T2 algorithm a maximum PCC estimate of just 95 %. Using just the 

first 4 variables chosen by the MFS-SNR algorithm a PCC of 100 % is calculated. This is expected given 

that the results of the univariate analysis indicate that the variance-covariance matrices are not 

homogeneous across the two groups. 

Table 6.5.3.3 Variable selection by the MFS-T2 algorithm from a dataset composed of the variable 

averages from the Keratoconus data 

Variable T2 statistics PCC (LDA-CV) 

Pachymetry thinnest  82 83.3 

Astigma corneal front 128 93.3 

Steep axis corneal front 169.1 93.3 

PachymetryY 175.8 93.3 

Pachymetry X 180.4 95 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. 
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Table 6.5.3.4 Variable selection by the MFS-SNR algorithm from a dataset composed of the variable 

averages from the Keratoconus data 

Variable SNR PCC (QDA-CV) 

Astigma corneal front 282.4 88.3 

Pachymetry Apex  357.5 91.7 

K2 steep corneal back 419.6 96.7 

Steep axis corneal front 516.3 100 

Flat axis corneal front 566.6 100 

Pachymetry Thinnest 605.1 100 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. 

The MFS-SNR and MFS-T2 algorithms were used to carry out variable selection from a dataset 

comprised of the first measurements for each of the variables in the Keratoconus dataset. Tables 

6.5.3.5 and 6.5.3.6 below present the selection results for both the MFS-T2 and MFS-SNR algorithm 

from a dataset containing the first measurements for each of the variables in the Keratoconus 

dataset. It appeared that the MFS-T2 algorithm had made more parsimonious selections however 

using just the first 3 variables selected by the MFS-SNR algorithm the PCC estimate is 95 %. Using 6 

of the 7 variables selected by the MFS-T2 algorithm the PCC estimate reaches 93.3 % which is still 

lower than the corresponding MFS-SNR estimate. This is not unexpected as the results of the 

univariate analysis indicate that the variance-covariance matrices are not homogeneous across the 

two groups which favours the use of the MFS-SNR algorithm.  

Table 6.5.3.5 Variable selection by the MFS-T2 algorithm from a dataset composed of the first 

measurement for each variable from the Keratoconus data. PCC estimates in each row are 

calculated for the variable in that row and all previous rows. 

Variable T2 statistics PCC (LDA-CV) 

Pachymetry thinnest  
[𝜇𝑚] 

80.9 86.7 

Astigma corneal front 124.4 91.7 

Steep axis corneal front 157.6 93.3 

Flat axis corneal back 161 93.,3 

K1 flat corneal back 164.2 93.3 

K2 steep corneal back 174.2 93.3 

K mean corneal front 218.4 96.7 
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Table 6.5.3.6 Variable selection by the MFS-SNR algorithm from a dataset composed of the first 

measurement for each variable from the Keratoconus data 

Variable SNR PCC (QDA-CV) 

Astigma corneal front 2587.4 88.3 

Pachymetry thinnest 325.6 91.7 

Steep axis corneal front 382.8 95 

Flat axis corneal front 475.2 95 

Flat axis corneal back 508.8 95 

K1 flat corneal back 527.9 96.7 

Pachymetry X 547.7 96.7 

Legend: PCC estimates in each row are calculated for the variable in that row and all previous rows. 

 

6.5.4 Discussion 

The MFS-T2 and MFS-SNR algorithms were applied to the task of identifying the optimal subset of 

variables for discriminating between groups of healthy eyes and keratoconic eyes. 

The search for the best discriminatory variables using both the MFS-T2 and MFS-SNR algorithms 

indicated that the average values of 3 measurements of each of the variables contained a larger 

amount of information for discriminating between the two groups than the first measurements of 

each variable. This is not surprising because by averaging we are removing noise or uncertainty due 

to measurement error. This was further demonstrated by the fact that both the MFS-T2 and MFS-

SNR algorithms achieved higher estimates of PCC with fewer variables when making selections using 

the mean values of the 3 measurements. Fewer variables were selected from the dataset using the 

average values than those made using the first values of each variable.   

Next, it was found that the measurements of Astigma corneal front, Pachymetry thinnest and Steep 

axis corneal front were identified as being most discriminatory by both versions of the algorithm 

when selecting from either the first measurements or the average of three measurements. While 

the MFS-SNR algorithm selected more variables or the same number of variables as the MFS-T2 

algorithm larger PCC estimates were achieved with smaller numbers of variables by the MFS-SNR 

algorithm (see Tables 6.5.3.3-6.5.3.6).  

The MFS-SNR algorithm selected a smaller set of variables than the MFS-T2 algorithm. The selections 

made by the MFS-SNR algorithm also had a higher PCC estimate. The results of the univariate 

analyses indicate that the variance-covariance matrices are not homogeneous for either the dataset 

based on variable averages or the dataset based on the first measurements of each variable. On this 

basis the results for the MFS-SNR selections were expected to be more accurate in terms of 
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optimality for discriminating between groups. This is because the SNR is designed to accommodate 

heterogeneous variance-covariance matrices whereas Hotelling’s T2 statistic is not. Similarly the PCC 

estimates calculated using QDA by the MFS-SNR algorithm are expected to be more accurate as QDA 

is suited to heterogeneous variance-covariance matrices whereas LDA is not. 

6.6 Conclusions 

In this chapter the aim was to assess the performance of the MFS-T2 and MFS-SNR algorithms when 

applied to the task of variable selection from four real clinical datasets. 

In the first dataset, the univariate analysis of the variables in the DREFUS dataset indicated that 

HbA1c and mfERG central density were important to discriminating between the group with DR and 

the group without DR. Both the MFS-T2 and the MFS-SNR algorithms selected HbA1c and mfERG 

central density. However the MFS-SNR algorithm also selected cholesterol and achieved a larger 

estimated PCC. Bivariate plots of the selected variables indicated that when cholesterol was paired 

with HbA1c better separation of groups was achieved than when cholesterol was paired with mfERG 

central density. These results indicate that the MFS-T2 algorithm failed to recognise the ability of 

cholesterol to improve the discrimination when added to HbA1c and mfERG central density. In 

contrast the SNR - as used by the MFS-SNR algorithm - did respond to the improved discriminatory 

potential arising as a result of the inclusion of the variable cholesterol. This dataset therefore 

highlighted the importance of the MFS-SNR algorithm over the MFS-T2 algorithm in scenarios where 

two phenomena occur: first, covariances differ across groups and second, there is a variable that 

cannot discriminate when used alone, but is highly correlated with other variables and hence can 

increase the discriminatory strength of those variables. The key statistical methodological finding is 

that the MFS-T2 algorithm failed to recognise important variable(s) that can improve classification. 

The key clinical finding is that cholesterol, HbA1c and mfERG central intensity is the set of variables 

that has the strongest discriminatory strength to differentiate between diabetic eye with no DR and 

diabetic eye with early DR. 

The second dataset was the ISDR dataset. The results of a univariate analysis of the ISDR data 

indicated that the variables t1risk and t2risk were important to discriminating between the non-

referrable STDR and referrable STDR groups. Both multivariate MFS-T2 and MFS-SNR algorithms 

selected t1risk from the ISDR dataset but did not choose t2risk due to high correlation with t1risk. 

The inclusion of t2risk would not provide any new information about the groups. The large 

imbalance between the non-referable STDR and referable STDR groups made calculating 

performance estimates difficult. This was the reason why all of the variables appeared to have 
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similar performance when considering the PCC estimates from the univariate analyses. Despite this, 

both the MFS-T2 and MFS-SNR algorithms identified t1risk as the optimal variable for differentiating 

between the non-referable STDR and referable STDR groups. 

The third dataset was MRet. Univariate analysis of the variables in the MRet dataset suggested 

variables Admlact, Comasc, 𝐶𝑁𝑃35, 𝐶𝑁𝑃37 and 𝐶𝑁𝑃41 as potential candidates for discriminating 

between groups of individuals who died and individuals for survived in those diagnosed with malarial 

retinopathy. The MFS-SNR algorithm identified the variable Admlact as the most important variable 

for discriminating between the two groups. In contrast the MFS-T2 algorithm selected 𝐶𝑁𝑃37 and 

Admlact to achieve similar performance in terms of PCC. Following imputation of missing values, 

both the MFS-SNR and MFS-T2 algorithms selected Admlact only. The key statistical methodological 

finding in this work is that the SNR is more robust to the effects of missing data than Hotelling’s T2 

statistic. The key clinical finding is that Admlact has the most discriminatory strength to 

didderentiate between patients who died and survived. 

The fourth dataset was keratoconus. Univariate analysis of the variables in the keratoconus dataset 

suggested Astigm corneal front, Pachymetry thinnest, K2 steep corneal front, K2 steep corneal back, 

Astigm corneal back and K mean corneal front as potential candidates for discriminating between 

groups of individuals with healthy eyes and individuals with keratoconus. Also worth noting is that 

the variances were not homogeneous across the two groups for most of the variables. The MFS-T2 

and MFS-SNR algorithms selected multiple variables from each of the keratoconus datasets. 

However the MFS-SNR selections were more parsimonious achieving higher performance estimates. 

The first selection by the MFS-T2 algorithm from both datasets was Thinnest um. The first selection 

by the MFS-SNR algorithm from both datasets was Astigm corneal front. Astigm corneal front had 

larger PCC estimates in the univariate analysis so it was reasonable to expect it to be the variable 

with the largest discriminatory potential. The fact that only the MFS-SNR algorithm selected Astigm 

corneal front first is a result of the SNR’s ability to accommodate heterogeneous variance properties 

across the groups of interest. 

All four datasets analysed in this chapter were selected purposefully as they cover a wide spectrum 

of properties. These include imbalanced group sizes, missingness and mixtures of both normal and 

non-normal data. Sometimes the MFS-SNR algorithm outperformed the MFS-T2 algorithm, such as in 

DREFUS dataset. The MFS-SNR algorithm selected Admlact from the MRet dataset. This indicates 

that the SNR ratio is robust to the presence of missingness in the MRet dataset. The SNR had larger 

values than Hotelling’s T2 statistic when analysing variables from the keratoconus dataset. This 

reflects the ability of the SNR to accommodate heterogeneous variance and co-variance properties 
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across groups. This leads to a variable selection by the MFS-SNR algorithm which achieves higher 

PCC estimates than the corresponding MFS-T2 algorithm selections.    

Chapter 7 will present a discussion of all of the results outlined in this thesis and discuss advantages 

and disadvantages of the proposed approach as well as highlighting possible future work. 

 

 

 

  



146 
 

Chapter 7. Conclusions and further work 

7.1 Introduction 

In classification it is of the utmost importance that new subjects are assigned to the correct groups. 

The reason for this is obvious in clinical settings where misclassification may result in a patient not 

receiving important treatment. However the correct classification of subjects is also important in 

non-clinical settings. The challenge is that in order to achieve accurate classification it is necessary to 

identify those variables which have the greatest potential for discriminating between the groups of 

interest. This challenge is an important and unsolved statistical problem. 

Where datasets have high dimensionality the large number of variables can make traditional 

discriminant analysis methods impractical. The existence of high correlations between explanatory 

variables is also important as these correlations can enhance the discriminatory performance of 

variables (by including variables not directly relevant to discrimination). On the other hand the 

existence of high correlations between two explanatory variables and the outcome variable can 

make one of the explanatory variables redundant in the presence of the other. The difficulty in 

identifying the optimal variable subsets is also compounded by the fact that methods such as LDA 

make invalid assumptions about data such as whether or not it is normally distributed or whether 

variance-covariance matrices are homogeneous across groups.  

My aim in this thesis was to review existing variable selection methods then to propose and explore 

a new method for variable selection in simulations and in real datasets. The MFS-SNR algorithm I 

have presented in this thesis is multivariate in nature, makes no assumptions about the underlying 

data and can accommodate high dimensional datasets without the need to exhaustively analyse 

every single variable or subset. A summary of the work I have completed is provided below. 

7.2 Summary of findings  

7.2.1 Summary of findings from literature review 

As is clear from my literature review there exist a large number of variable selection methods 

developed for identifying those variables best suited to differentiating between groups of interest. I 

presented my literature review at the 10th Tartu Conference on Multivariate Statistics, June/July 

2016, “Recent advances in multivariate filter methods of variable selection for discrimination”. 

The existing variable selection methods are split into three general categories; filter methods, 

embedded methods and wrapper methods. Filter methods (Section 2.3) utilise a data summary 
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metric which attempts to estimate the discriminatory potential of a variable or set of variables. The 

estimated values are then used to rank variables and this ranking may be used to carry out variable 

selection. The principal advantage of filter methods is that they are fast because they are not 

evaluating large numbers of variable subsets (relative to wrapper and embedded methods). Another 

advantage is that the variable selections are not classifier-dependent meaning that they may be 

generalised for use with multiple different classifiers. The main disadvantages of some of the filter 

methods are that they are univariate, failing to take account of correlations between variables and 

they are not guaranteed to identify the optimal subset of variables for discriminating between the 

groups of interest (Guyon and Elisseef, 2003; Chandrashekar and Sahin, 2014; Saeys et al., 2005)  

I have also reviewed wrapper methods (Section 2.4) and embedded methods (Section 2.5) for 

variable selection in classification. Wrapper methods operate by evaluating every possible subset of 

variables that may be drawn from a particular dataset. Embedded methods embed the variable 

selection process into the training of the classifier. Both wrapper and embedded methods have high 

computational requirements, considerably higher than for filter methods and they both assume a 

particular classifier.  

From my review it became clear that the filter methods are popular for their independence of 

classifier and low computational need. A disadvantage of some existing filter methods is that they 

often do not take into account possible heterogeneity of variance-covariance matrices across the 

groups. The novelty in my review is that it highlighted a very important connection of filter methods 

to the signal processing literature, namely to signal-to-noise ratio. This then led to the proposal of a 

novel version of signal-to-noise ratio filter metric and to the novel version of the SNR-based forward 

search algorithm, which I investigated in subsequent chapters. 

7.2.2 Summary of findings on the SNR metric 

The proposed SNR metric is a generalisation of Hotelling’s T2 for a multivariate discriminatory 

scenario where variance-covariance metrics are heterogeneous. I gave a theoretical proof that SNR 

reduces to Hotelling’s T2 when variance-covariance matrices are homogeneous. In simulations I saw 

that SNR was always bigger or equal to Hotelling’s T2 except when variance-covariance matrices are 

homogeneous across groups, as expected. In real data, relative to Hotelling’s T2 statistic the SNR 

metric was more robust to issues such as missingness, imbalanced groups sizes and mixtures of data 

types. 
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The SNR assumes multivariate normality only implicitly. In other words, just like Hotelling’s T2 

statistic, the SNR metric can be calculated for data that are not multivariate normal, but is expected 

to perform most optimally for multivariate normal data.  

7.2.3 Summary of findings on implementation of the MFS-SNR algorithm 

In this thesis I also studied and proposed a new stopping criterion for the MFS algorithm. The MFS-

SNR algorithm operates by identifying the variable with the largest SNR value in the first round of 

variable selection. This variable is then added to the set of selected variables and the PCC value 

associated with this selection is estimated. In subsequent rounds of selection the SNR value 

associated with previously selected variables is calculated with each of the remaining candidate 

variables. The candidate variable which elicits the largest change in the SNR is then added to the set 

of selected variables and the PCC value associated with the new subset is estimated. The original 

MFS algorithm was created by Lu et al. (2005) and it uses p-value as the stopping criterion. However, 

my MFS algorithm (Section 3.8) does not use the p-value associated with a particular variable or set 

of variables as the stopping criterion. Instead I use the change in estimated PCC between each round 

of selection as the stopping criterion (Section 3.9.1). In simulations I observed that the stopping 

criteria based on p-value leads to premature termination of the selection algorithm resulting in a 

smaller number of selected variables. In particular, the number of selected variables depends on the 

sample size of the groups. This problem was rectified by using PCC as the stopping criteria. 

7.2.4 Summary of findings from simulated data 

I have proposed and implemented a novel SNR-based multivariate filter method of variable selection 

called the MFS algorithm (Section 3.8) and compared it to several existing variable selection 

methods. I have used simulated normal data (Chapter 4) and non-normal data (Chapter 5), as well as 

4 real ophthalmological datasets (Chapter 6). These included three univariate filter methods using 

chi-square statistics, information gain and the Relief-F algorithm, a multivariate filter method 

utilising a SVM classifier and an embedded method using random forests.  

 The MFS-SNR method (a multivariate filter method) was better at the variable selection task than 

univariate filter methods, as expected, in multivariate normal simulations. All simulated datasets 

were composed of ten variables (Sections 4.2 & 5.2) with two variables that can discriminate when 

used alone, one non-discriminating variable that can enhance the performance of the discriminating 

variables. In simulations of normal data I found that the MFS-SNR algorithm outperformed the 

univariate filter methods in all 12 scenarios. For the filter methods using chi-square statistics, 

information gain and the Relief-F algorithm this difference in performance is attributed to the 
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univariate nature of each of these methods. Essentially each of these methods failed to take 

sufficient account of correlations between the variables 𝑋1, 𝑋2and 𝑋3.  

The multivariate MFS-SNR filter method was also found to be better than the multivariate MFS-T2 

filter method, in all simulated multivariate normal scenarios i.e. when variance-covariance matrices 

are heterogeneous. The poor performance of the MFS-T2 algorithm (relative to the MFS-SNR 

algorithm) can be attributed to the inability of Hotelling’s T2 statistic to accommodate 

heterogeneous variance-covariance matrices. The MFS-SNR algorithm is a multivariate method and 

so it took proper account of the correlations between the variables 𝑋1, 𝑋2 and 𝑋3 and unlike 

Hotelling’s T2 statistic the SNR metric can accommodate heterogeneous variance-covariance 

matrices. Thus the superior performance of the MFS-SNR algorithm was not surprising. 

I also found that MFS-SNR performed at least as well as computationally intensive methods like SVM 

and RF in the simulated multivariate normal scenarios. In other words MFS-SNR was comparable in 

terms of variable selection frequencies and performance estimates across all 12 scenarios. Though 

non-discriminating variable selection frequencies were generally lower for the multivariate filter 

SVM method I attribute this, at least in part, to the existence of a cap on the number of variables 

selected by this method. However, the embedded RF method and the multivariate filter SVM 

method took longer than the MFS-SNR method to return selections (2:36, 4:48 and 8:50, min:sec, 

respectively) and had greater computational requirements. All 3 methods identified the importance 

of 𝑋3 in enhancing the discriminatory performance of 𝑋1 and 𝑋2. 

A very important property of MFS-SNR is that it does not require the user to specify the number of 

variables to be chosen i.e. it does not require number of selected variables a priori. The number of 

variables was not required a priori by any of the filter methods. However this was required by SVM 

and RF methods. 

In scenarios where the assumption of multivariate normality was violated the MFS-SNR algorithm 

still selected all 3 discriminating variables (although the selection frequencies fell). In the three 

simulated scenarios of non-normal data the MFS-SNR algorithm (Chapter 5) showed worse variable 

selection performance than in scenarios with normally distributed data. At group sizes of 𝑛 = 500 

the performance of the MFS-SNR algorithm was similar to when using normally distributed data. The 

best performance was observed for log-normal transformed data followed by dichotomised and 

then trichotomised data. The MFS-SNR algorithm still proved capable of identifying the importance 

of 𝑋3 in addition to 𝑋1 and 𝑋2 following transformation of the variable 𝑋1. I attribute the loss in 
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performance (at least in part), observed when compared to normally distributed data, to loss of 

information caused by the transformation of the data. 

In summary, the analysis of the performance of the MFS-SNR algorithm in each of the simulated 

scenarios described demonstrated that the MFS-SNR algorithm is capable of selecting those 

variables with the greatest discriminatory potential: 

 whether data are normally distributed or not 

 over a range of group sizes  

 when groups are imbalanced. 

The MFS-SNR algorithm achieves similar performance to the RF method without the need to analyse 

5,000 variable subsets, selecting the optimal subset of variables in a quarter of the time if took the 

RF method. The multivariate filter SVM method had a smaller workload than the RF method 

however it still took nearly twice as long as the MFS-SNR algorithm to identify the optimal subset of 

variables. The MFS-SNR algorithm achieved similar performance to the SVM method without this 

computational burden as the SNR metric is capable of quantifying the discriminatory potential of a 

variable without training and evaluating a classifier. It is also not necessary to have separate training 

and validation data when using the MFS-SNR algorithm. The MFS-SNR algorithm also functions 

without any tuning parameters, and without a priori knowledge of the number of the selected 

variables. The SNR metric is multivariate so correlations between variables are considered by the 

MFS-SNR algorithm.  

As part of the stopping criterion the user must specify the minimum PCC change they wish to see 

after each variable selection. However, this is part of the stopping criterion and has nothing to do 

with the variable selection process (i.e. the order of variable selection is not changed by altering the 

minimum PCC change).  

In the simulated scenarios I studied it is evident that whether data are normally or not normally 

distributed the MFS-SNR algorithm is still capable of identifying the variables with the greatest 

discriminatory potential. Similarly for the real datasets that were analysed the MFS-SNR algorithm 

identified the optimal subset of variables from each dataset regardless of whether variables were 

normally distributed or not. Based on these results the SNR metric does not appear to make any 

assumptions about the distribution of the data (however it must be noted that this may not be 

generalisable to every dataset). 
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Lastly, the MFS-SNR algorithm does not exhaustively analyse every possible variable subset in the 

course of identifying the optimal subset. In the simulated scenarios the MFS-SNR algorithm achieves 

similar performance to the RF method despite the fact that the RF method is an embedded method 

which takes a brute force approach to variable selection. 

7.2.5 Summary of findings from real data 

Simulated data is useful for analysis in research principally because the parameters of the data can 

be arranged to suit the needs of the researcher. However simulated data can never fully replicate 

the complexity of real data. Therefore it was necessary to assess the performance of the MFS-SNR 

and MFS-T2 algorithms when carrying out variable selection from real datasets. Four 

ophthalmological datasets were used in this work, each with different types of data and missingness:  

 the DREFUS dataset: Section 6.2, 27 variables, 2 groups; discrimination of early DR and no 

DR; data challenges of imbalanced groups and missingness, 

 the ISDR dataset: Section 6.3, 28 variables, 2 groups; discrimination of referable STDR and 

non-referable STDR; data challenges of imbalanced groups and missingness, 

 the MRet dataset: Section 6.4, 81 variables, 2 groups; discrimination of subjects with respect 

to outcome survival and death; data challenges of imbalanced groups and missingness, 

 the Keratoconus dataset: Section 6.5, 17 variables, 2 groups; discrimination of corneas 

healthy and keratoconus; data had balanced groups and there was no missingness.  

Each dataset was first analysed univariately to identify the optimal variables for discriminating 

between each group. This was then compared with the variable selection by multivariate methods. 

These 4 datasets covered a broad spectrum of data quality with imbalanced group sizes, varying 

levels of missingness and mixtures of normal and non-normal data. 

First I looked into finding the best set of variables to discriminate between no and early diabetic 

retinopathy in subjects with diabetes, using the DREFUS dataset. Both the MFS-SNR and MFS-T2 

algorithms identified HbA1c and mfERG central density as being important for discriminating 

between the early DR and no DR groups. However, only the MFS-SNR algorithm identified a role for 

cholesterol in enhancing the discriminatory performance of HbA1c and mfERG central density. The 

selection of cholesterol also represents a novel clinical finding. The selection of HbA1c and mfERG 

central density was consistent with the findings from the univariate analysis of the dataset. The 

identification of cholesterol by the MFS-SNR algorithm and not by the MFS-T2 algorithm was 

expected. The correlation between cholesterol and HbA1c differed across the groups and Hotelling’s 
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T2 statistic assumes homogeneity of variance-covariance matrices. This is the reason cholesterol was 

not selected by the MFS-T2 algorithm. 

Next, I investigated what is the best set of variables for discrimination between non-referable STDR 

and referable STDR using the ISDR dataset. Both the MFS-SNR and MFS-T2 algorithms identified 

t1risk, (risk score assigned at previous visit), as being important for discriminating between the 

Referable STDR and Non-referable STDR groups.  The two groups were especially imbalanced in this 

dataset (74 patients in the Referable STDR group and 5,198 patients in the Non-referable STDR 

group) which made it difficult to obtain accurate performance estimates. However the univariate 

analysis corroborated the selection of t1risk as the optimal variable for discriminating between the 

Referable STDR and Non-referable STDR groups. Furthermore the variances and covariances were 

homogeneous across groups which is also consistent with the fact that MFS-SNR and MFS-T2 

selected the same discriminatory variable. 

I then investigated what is the best set of variables to discriminate between death and survival 

outcomes in subjects with malarial retinopathy, using retinal capillary non-perfusion imaging data in 

the MRet dataset. The MFS-SNR algorithm identified the variable Admlact (serum lactate) as being 

important for discriminating between the groups of individuals who died and individuals for survived 

in those diagnosed with malarial retinopathy. The MFS-T2 algorithm only selected Admlact following 

imputation of missing values in the dataset. This demonstrated that the SNR is more robust to the 

effects of missing data than the MFS-T2 algorithm. The selection of Admlact was consistent with the 

findings from the univariate analysis of the dataset. 

Lastly, I studied what is the set of the best discriminatory variables to differentiate between the 

normal and eyes with keratoconus, using the keratoconus dataset. This dataset was unique amongst 

those analysed in this thesis because both groups were balanced and there was no missing data. It 

should also be noted that the variance-covariance matrices were heterogeneous across the two 

groups. The original dataset was used to produce two datasets. The first was based on the average 

measurement of each variable and the second using just the first measurement of each variable (all 

variable measurements had been taken in triplicate). The MFS-SNR and MFS-T2 algorithms selected 

different variables from each dataset. However the MFS-SNR selections achieved better 

performance estimates with fewer variables than the MFS-T2 selections, and Astigm corneal front 

was the first variable selected by the MFS-SNR algorithm from both datasets. I attribute the better 

performance of the MFS-SNR algorithm with the keratoconus dataset to the ability of the SNR metric 

to accommodate heterogeneous variance-covariance matrices across the 2 groups, something which 

Hotelling’s T2 statistic is not capable of. 
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7.4 Recommendations for practice 

In this thesis methods for variable selection have been considered and their extensions have been 

proposed and studied. On the basis of these analyses and the results presented these methods may 

be recommended for research. 

7.4.1 Discriminatory metric 

When researchers want to summarise the discriminatory strength of a collection of variables they 

need to think carefully about the choice of appropriate discrimination metric. It is recommended to 

first do a set of univariate exploratory analyses, check of normality and check of equality of variance-

covariance matrices across groups. Then in scenarios of unequal variance –covariance matrices I 

have demonstrated that the SNR is better able to assess the discriminatory potential of variables 

(univariately or multivariately) than Hotelling’s T2 statistic. 

7.4.2 Variable selection for classification 

When researchers want to do variable selection for classification then it is recommended to think 

carefully and strategically about the type of variable selection method. There are several points to 

consider, which I describe below: 

First it is important to think what type of classifier will be used with the dataset being studied. If only 

one classifier is to be used then it may be appropriate to use the relevant wrapper or embedded 

method as it may be the most optimal. Conversely if the objective is to identify the optimal subset of 

variables for discrimination regardless of the classifier used then a filter method may be a better 

choice because filters are independent of classifier. 

Another criterion is to look into the size of data (in terms of number of variables) and computational 

resources. If the number of variables is very large and computing resources limited then a filter 

method may be more appropriate.  

Another criterion is the distribution of the data, especially, if it is normal and if variance-covariance 

matrices are the same across the groups. If the distribution of the data is normal and variance-

covariances are homogeneous then the MFS-SNR and MFS-T2 algorithms give the same results. But 

since the MFS-T2 algorithm estimates fewer parameters this method is preferred over the MFS-SNR 

algorithm in scenarios of equal covariance matrices or scenarios when the difference is small. 
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7.5 Recommendations for future research 

In this thesis I have proposed and implemented a novel multivariate filter method of variable 

selection; the MFS-SNR algorithm, which utilises the novel SNR metric, an extension of Hotelling’s T2 

statistic. I have demonstrated the ability of the MFS-SNR algorithm to effectively carry out variable 

selection from data which are normally distributed and non-normally distributed as well as from 

datasets of varying quality in terms of group sizes, missing data and containing mixtures of variables. 

I have also demonstrated that the novel MFS-SNR algorithm performs at least as well as several 

existing methods of variable selection.  

The proposed SNR metric and the MFS-SNR algorithm are simple and ready to be used. This thesis 

has highlighted areas where further research is recommended particularly with regards to the 

discriminatory metric and variable search algorithms. 

7.5.1 Future research on the discriminatory SNR metric  

As the SNR calculated in my work is based on a sample it is an estimate of the true SNR value. This 

means that its statistical properties need to be investigated. The SNR estimate is obtained by using 

the data twice: once to estimate means and covariances and a second time to evaluate SNR. This 

means there is a possible bias in the estimates calculated using sample data when compared to the 

actual (population) value. One possible means of addressing this problem is through regularisation 

of the SNR metric as has been done for Hotelling’s T2 statistic (Chen et al., 2011) or introducing a bias 

correction (Czanner et al., 2015). 

Future work could be done on estimating the variance-covariance matrix for the SNR metric. For 

example in imaging data the fact that the data are spatially correlated may be exploited by imposing 

a specific suitable correlation structure e.g. an autocorrelated structure.  

7.5.2 Future research on MFS-algorithms for variable selection in classification 

The MFS-SNR (and MFS-T2) algorithm(s) use a forward selection paradigm. It would be constructive 

to investigate how extending the algorithm to use backward selection or stepwise selection might 

impact the performance of the algorithm. The forward selection mechanism is a valid and common 

approach but adding backward or stepwise selection would make the MFS algorithm more versatile 

and permit the assessment of alternative variable subsets that may not be identified using forward 

selection. 

If the MFS-SNR algorithm was used to carry out variable selection from datasets for which the 

optimal variable subset was already identified (i.e. had been determined by another researcher) and 
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the findings of both analyses were in agreement it would enhance the characterisation of the MFS-

SNR algorithm that I have presented in this thesis. In particular datasets with properties not already 

addressed in my work would extend the use of the MFS-SNR algorithm (for example a dataset 

containing a significant proportion of ordinal and nominal variables). 

The discriminating variables I simulated to assess the MFS-SNR algorithm and compare it to other 

methods of variable selection were based on the parameters of variables from the DREFUS dataset 

and specified to be normally distributed. Since these variables were based on the properties of 

variables from the DREFUS dataset I had an informed expectation as to the performance I would 

observe for the MFS-SNR algorithm. It would be productive to simulate a dataset containing 

variables not based on any data which the MFS-SNR algorithm has previously been exposed to 

(essentially a “blind” analysis from the point of view of the MFS-SNR algorithm).  Simulations could 

also be expanded to include larger numbers of variables, different types of variables and mixtures of 

both normal and non-normally distributed data. 

The change in PCC estimates was proposed and used here as the stopping criterion of the MFS-SNR 

and MFS-T2 algorithms. While the relationship between Hotelling’s T2 statistic and LDA has been 

established the same relationship between the SNR metric and QDA has not been demonstrated. I 

have used QDA in the MFS-SNR algorithm because both the SNR metric and QDA can accommodate 

heterogeneity of the variance-covariance matrices. However, as no relationship between the SNR 

metric and QDA has been proven it is possible there is a difference in the discriminatory potential (as 

measured by the SNR metric) and the expected performance (as estimated using QDA). Altering the 

MFS-SNR algorithm to use a hybrid of the SNR metric and QDA estimates may capture this 

discrepancy and improve the overall performance of the MFS-SNR algorithm. 

7.6 Conclusions  

In this thesis I have proposed an extension of Hotelling’s T2 statistic which does not assume that 

variance-covariance matrices are homogeneous across groups; the novel SNR. I then applied the SNR 

to the task of variable selection as part of a forward selection algorithm; the MFS-SNR algorithm.  

Using simulated datasets I have demonstrated that the MFS-SNR algorithm is capable of selecting 

the relevant discriminatory variables whether data are normally distributed or not. In the simulated 

scenarios the MFS-SNR algorithm performed at least as well as competing methods. 

When used to carry out variable selection from 4 real clinical datasets encompassing a range of 

common quality issues the MFS-SNR algorithm successfully identified the optimal variable sets for 
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discrimination from each of the datasets. These selections were consistent with the results of 

conventional statistical analysis of each of the datasets. 

In conclusion the MFS-SNR algorithm utilising the SNR is a novel multivariate filter method of 

variable selection. It addresses the limitations of existing filter methods by being multivariate and 

accommodating heterogeneity of variance-covariance matrices. It has been shown to perform at 

least as well as alternative methods in simulated scenarios and this performance has been achieved 

without the large computational requirements associated with embedded and wrapper methods.  
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Appendix – R code 

 

To run either the MFS-T2 or MFS-SNR algorithms the mfs and stat scripts for the relevant function 

must be loaded into the R workspace. 

Once the two scripts have been loaded the algorithm may be called by entering: 

mfs(input,groupfeature,labels,deltapcc) 

The user must specify the values of the parameters input, groupfeature, labels and 

deltapcc. These are described below. 

 input: this is the title of the query dataset which has already been loaded into the R 

workspace 

 groupfeature: this is the identity of the grouping variable in the query dataset, it must 

be entered as a character string 

 labels: this contains the identifiers for the groups of interest, must be entered as a vector 

of character strings 

 deltapcc: this is the minimum PCC increase the user wishes to achieve each time a 

variable is added to the set of selected variables 
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MFS-T2 algorithm 

 

mfs function: 

 

mfs<-function(input, groupfeature, labels, deltapcc)  

 

require(MASS) 

 

t2<-0 

 

indexi<-NULL 

t2i<-NULL 

pcci<-NULL 

pccvals<-NULL 

t2vals<-NULL 

fi<-NULL 

vm<-NULL 

 

pcc<-0 

improved<-1 

 

groups<-input[groupfeature] 

 

vars <- names(input) %in% names(groups) 

input <- input[!vars] 

 

vr<-seq(1,dim(input)[2],1) 
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while ((improved == 1) & (length(vr) >= 1)){ 

 

for (e in vr) {      

 

results<-stat(input,groups,labels,vm,e) 

 

indexi[e]<-e 

t2i[e]<-results[1] 

pcci[e]<-results[2] 

  

   }    

 

inter<-data.frame(indexi,t2i,pcci)  

interorder<-inter[order(t2i,decreasing = TRUE),] 

 

 if (interorder$t2i[1] > t2) {  

  t2 <- interorder$t2i[1] 

  vm<-c(vm,interorder$indexi[1]) 

  vr<-subset(vr,vr!=interorder$indexi[1]) 

     } 

 

if (interorder$pcci[1]-pcc < deltapcc) { 

improved<-0 

     } 

 

pcc <- interorder$pcci[1] 

 pccvals<-c(pccvals,interorder$pcci[1]) 
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t2vals<-c(t2vals,interorder$t2i[1]) 

 

     } 

 

lvm<-length(vm)-1  

vm<-vm[1:lvm] 

t2vals<-t2vals[1:lvm] 

pccvals<-pccvals[1:lvm] 

selection<-input[vm] 

selectionnames<-colnames(selection) 

selectionpcc<-data.frame(selectionnames,t2vals,pccvals) 

 

return(selectionpcc) 

 

} 
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stat function: 

 

stat<-function(input, groups, labels, vm, e) { 

   

mdm<-NULL 

  

scm<-data.frame(groups,input[vm[1:length(vm)]],input[e]) 

scm<-subset(scm,scm[1]==labels[1] | scm[1]==labels[2]) 

 

for (i in 2:length(scm)) {  

scm<-subset(scm,scm[i]!="NA") 

       } 

   

g1m<-subset(scm,scm[1]==labels[1]) 

g2m<-subset(scm,scm[1]==labels[2])   

  

n1m<-dim(g1m)[1] 

n2m<-dim(g2m)[1] 

   

nm<-n1m+n2m        

pm<-(dim(scm)[2]-1) 

            

varg1m<-data.frame(g1m[2:dim(scm)[2]]) 

varg2m<-data.frame(g2m[2:dim(scm)[2]]) 

 

cov1m<-cov(varg1m) 

cov2m<-cov(varg2m) 
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Sm<-((n1m-1)*cov1m+(n2m-1)*cov2m)/(n1m+n2m-2) 

 

  for (i in 1:length(varg1m)) {    

    mdm<-c(mdm,sum(varg2m[i])/n2m - sum(varg1m[i])/n1m) 

  } 

 

  meandiffm<-matrix(mdm,nrow=(pm),ncol=1) 

  mahalm<-t(meandiffm) %*% solve(Sm) %*% meandiffm  

   

  T2m<-(n1m*n2m/(n1m+n2m))*mahalm 

  fm<-(n1m+n2m-pm-1)*T2m/((n1m+n2m-2)*pm) 

  pvm<-1-pf(fm, pm, n1m+n2m-pm-1) 

   

  sc2<-scm[2:length(scm)] 

 

  testlda<-lda(sc2, scm$Study.Group,CV=TRUE) 

  ct <- table(testlda$class, scm$Study.Group) 

  diag(prop.table(ct, 1)) 

  pcc<-sum(diag(prop.table(ct))) 

 

   

 

  results<-c(T2m,pcc) 

   

return(results) 

   

} 



175 
 

MFS-SNR algorithm 

mfs function: 

 

mfs<-function(input, groupfeature, labels, deltapcc) { 

 

require(MASS) 

 

indexi<-NULL 

snri<-NULL 

pcci<-NULL 

pccvals<-NULL 

snrvals<-NULL 

fi<-NULL 

vm<-NULL 

 

snr<-0 

pcc<-0 

improved<-1 

 

groups<-input[groupfeature] 

 

vars <- names(input) %in% names(groups) 

input <- input[!vars] 

 

vr<-seq(1,dim(input)[2],1) 

 

while ((improved == 1) & (length(vr) >= 1)){ 
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for (e in vr) { 

results<-stat(input,groups,labels,vm,e) 

indexi[e]<-e 

snri[e]<-results[1] 

pcci[e]<-results[2]      

}    

 

inter<-data.frame(indexi,snri,pcci) 

interorder<-inter[order(snri,decreasing = TRUE),] 

  

if (interorder$snri[1] > snr) {  

  snr <- interorder$snri[1] 

  vm<-c(vm,interorder$indexi[1]) 

  vr<-subset(vr,vr!=interorder$indexi[1]) 

} 

 

if (interorder$pcci[1]-pcc < deltapcc) { 

improved<-0 

     } 

 

pcc <- interorder$pcci[1] 

 

pccvals<-c(pccvals,interorder$pcci[1]) 

snrvals<-c(snrvals,interorder$snri[1]) 

} 

 

lvm<-length(vm)-1 
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vm<-vm[1:lvm] 

snrvals<-snrvals[1:lvm] 

pccvals<-pccvals[1:lvm] 

selection<-input[vm] 

selectionnames<-colnames(selection) 

selectionpcc<-data.frame(selectionnames,snrvals,pccvals) 

 

return(selectionpcc) 

 

} 
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stat function: 

 

stat<-function(input, groups, labels, vm, e) { 

   

md1<-NULL 

md2<-NULL  

VarMeans<-NULL 

OverMean<-NULL 

 

sc<-data.frame(groups,input[vm[1:length(vm)]],input[e]) 

sc<-subset(sc,sc[1]==labels[1] | sc[1]==labels[2]) 

   

for (i in 2:length(sc)) { 

sc<-subset(sc,sc[i]!="NA") 

} 

   

g1<-subset(sc,sc[1]==labels[1]) 

g2<-subset(sc,sc[1]==labels[2]) 

 

n1<-dim(g1)[1] 

n2<-dim(g2)[1] 

   

n<-n1+n2        

p<-(dim(sc)[2]-1) 

 

varg1<-data.frame(g1[2:dim(sc)[2]]) 

varg2<-data.frame(g2[2:dim(sc)[2]]) 
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for (i in 1:length(varg1)) { 

OverMean[i]=(sum(varg1[i])+sum(varg2[i]))/n 

}    

 

cov1<-cov(varg1) 

cov2<-cov(varg2) 

 

for (i in 1:length(varg1)) { 

md1<-c(md1,(sum(varg1[i])/n1 - OverMean[i])) 

} 

 

for (i in 1:length(varg2)) {        

md2<-c(md2,(sum(varg2[i])/n2 - OverMean[i])) 

} 

 

meandiff1<-matrix(md1,nrow=(p),ncol=1) 

meandiff2<-matrix(md2,nrow=(p),ncol=1) 

 

SNR<-

t(meandiff1)%*%solve(cov1)%*%(meandiff1)*n1+t(meandiff2)%*%solve(cov2)%*%(meandiff2

)*n2 

   

sc2<-sc[2:length(sc)] 

fit <- qda(sc2, sc$Study.Group,CV=TRUE) 

ct <- table(sc$Study.Group, fit$class) 

diag(prop.table(ct, 1)) 

pcc<-sum(diag(prop.table(ct))) 
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results<-c(SNR,pcc) 

   

return(results) 

   

} 

 

 


