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Summary

When designing a clinical study, a fundamental aspect is the sample size. In this article, we describe the rationale for sample size calcula-
tions, when it should be calculated and describe the components necessary to calculate it. For simple studies, standard formulae can be
used; however, for more advanced studies, it is generally necessary to use specialized statistical software programs and consult a biostatisti-
cian. Sample size calculations for non-randomized studies are also discussed and two clinical examples are used for illustration.
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INTRODUCTION

It is essential that clinical studies are well-designed. One key as-
pect of study design is the sample size, which is the number of
patients (or experiment subjects/samples) required to detect a
clinically relevant treatment effect. Even for simple studies, there
are several things to consider when calculating the required sam-
ple size. These include the type of study, type of outcome, vari-
ance of the outcome, the significance level and power of the test
and the minimal clinically relevant difference. For more complex
studies, there might be additional considerations that make the
calculation more complex. As sample size calculations are fre-
quently included in medical studies and are crucial to the inter-
pretation of the study, a thorough understanding of the process
underlying the calculation is necessary. In this article, we provide
an overview of the rationale, methodology, implementation and
reporting of sample size calculations specifically for cardiothor-
acic surgeons.

METHODOLOGY

Why and when?

The sample size calculation is generally required at the study de-
sign stage, before patient enrolment has begun [1]. There are sev-
eral reasons for this [2]. Firstly, from a scientific perspective, testing

too few might lead to failure to detect an important effect, where-
as testing too many might lead to detecting a statistically signifi-
cant yet clinically insignificant effect. Secondly, from an ethical
viewpoint, testing too many subjects can lead to unnecessary
harm or potentially unnecessary sacrifice in the case of animal
studies. Conversely, testing too few is also unethical, as an under-
powered study might not contribute to the evidence-based field
of medicine. Thirdly, from an economical perspective, testing too
many will lead to unnecessary costs and testing too few will be po-
tentially wasteful if the trial is unable to address the scientific ques-
tion of interest. For this reason, many funders and institutional
review boards require an a priori sample size calculation, which is
included in the study protocol. Adaptive trial designs, whereby
prespecified modifications can be made to the trial after its incep-
tion, can potentially improve flexibility and efficiency [3].

Components

There are four principal components required to calculate the
sample size (Table 1). These components are specified via param-
eters. Working under a hypothesis testing framework, we assume
a null hypothesis (H0) and an alternative hypothesis (H1). In prac-
tice, we do not know the ‘truth’, so we base our inferences on a
statistical test applied to a random sample from the population.
Two types of error can occur. The first is a Type I error, where
the null hypothesis is true, but we incorrectly reject it. The se-
cond is a Type II error, where the null hypothesis is false, but we
incorrectly fail to reject it. Specification of the Type I (denoted
as a) and Type II (denoted as b but more commonly reported as
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the complement: the power = 1� b) error rate parameters are
required for the sample size calculation. Conventional choices
are a = 0.05 and 0.01 (corresponding to a significance level of 5%
and 1%, respectively) and b = 0.2 and 0.1 (corresponding to 80%
and 90% power, respectively). However, there are situations in
which these parameters might be increased or decreased, de-
pending on the clinical context of the study [1].

The minimal clinically relevant difference is the smallest differ-
ence in outcome between the study groups, or effect size, that is
of scientific interest to the investigator. For example, patients
treated with a drug that lowers the mean systolic blood pressure
by 7 mmHg compared to untreated hypertensive patients might
be considered as clinically relevant (see Example 1). The statisti-
cian cannot decide this; it derives from clinical consideration. It is
recognized that eliciting this minimal clinically relevant difference
is difficult. A starting point is to ask: What results do you expect
(or hope) to see? Typically, this question would be answered in
terms of absolute effects, but relative effects can also be used.
From the given response, the statistician and clinician can ex-
plore different scenarios about that choice. It is also useful to
consider the individual benefit to the patient weighted against
the potential inconvenience and adverse effects they might ex-
perience. The variance of the outcome is also required. This can
generally be obtained from clinical knowledge; for example, if
the clinician has historical similar data or if data have previously
been published on the subject. In some cases, it is necessary to
conduct a pilot study to gauge the variability of the outcome. Of
course, in all cases, it must be considered whether the data used
to determine the variance are reflective of the study sample in
the planned study. If there are different eligibility criteria or out-
come definitions, then this may not be the case.

Calculations

A simple example of a sample size calculation is that of comparing
two means for a continuous outcome. Assume that the null hypoth-
esis is H0 : l1 = l2 with an alternative hypothesis H1 : l1 6¼ l2,
where l1 is the true population mean in the control population, and
l2 the mean in the treated population. After collection of the data, a
standard statistical test used to evaluate the hypothesis is the 2-tailed
independent samples t-test. If the study investigators planned to
have two groups of equal sample size n, then the following formula
can be used, which is based on a normal approximation:

n =
2r2 z1�a=2 þ z1�b

� �2

l1 � l2ð Þ2
; (1)

where r2 is the common population variance for both popula-
tions, and z1�a=2 and z1�b are the 100ð1� a=2Þ and 100 1� bð Þ
percentiles of the standard normal distribution, respectively.
These values can be readily obtained using z-tables (Table 2) or
statistical software with an example of this provided later in this
article. Although other approximate formulae are sometimes
used, a straightforward approximate formula [4] for comparing 2
proportions, p1 and p2, between groups is

n =
z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1� pð Þ

p
þ z1�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 1� p1ð Þ þ p2 1� p2ð Þ

p� �2

p1 � p2ð Þ2
;

(2)

where p = ðp1 þ p2Þ=2.
Based on these formulae, some immediate deductions can be

made. First, the sample size is inversely proportional to square of
the absolute effect size; hence, halving the effect size would re-
quire quadrupling the sample size. Second, reducing a or
increasing the power (equivalent to reducing b) also increases
the sample size required. Third, an increased variance leads to a
larger necessary sample size. In the simple formula presented,
the variance in each population was assumed to be identical. In
practice, this may not hold, but adjustments are straightforward.
It is clear, therefore, that slight changes in the factors that make
up the sample size calculation (Table 1) can substantially alter the
sample size. When there is doubt, it is generally advisable to err
on the side of caution and choose the largest sample size of from
the ensemble of scenarios. Although sample size formulae are
frequently presented assuming 1:1 allocation between treatment
and control groups, other allocation ratios can be accommo-
dated using statistical software packages.

Table 1: Primary components required for a sample size calculation

What is it? Specification

Type I error rate (a) The probability of falsely rejecting H0 (false-positive rate) Conventional choices are a = 0.05 and 0.01
Power (1�b) The probability of correctly rejecting H0 (true-positive

rate), equivalent to 1� the Type II error rate (b)
Conventional choices are b = 0.20 and 0.10

Minimal clinically
relevant difference

The smallest (biologically plausible) difference in the
outcome that is clinically relevant

Input from the researcher(s) responsible for the study
for the effect of scientific interest

Variance Variability in the outcome (e.g. standard deviation for
continuous outcomes)

Use existing clinical knowledge (e.g. other published
articles) or a pilot study

Table 2: Conventional z-values for sample size calculations
to use in Equations 1 and 2

a z1�a=2

0.01 2.576
0.05 1.960
0.10 1.645

b z1�b

0.01 2.326
0.05 1.645
0.10 1.282
0.20 0.842
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Dropouts, missing data and other study deviations

Patient dropouts, non-adherence (or non-compliance) and miss-
ing data are, unfortunately, a common occurrence in clinical
studies. It is, therefore, essential to consider the potential impact
of this at the study design phase, as deviations may lead to a fail-
ure to achieve the intended aims of the trial. If missing data are
anticipated completely at random, then the determined sample
size can simply be inflated. That is, if the sample size required is n
subjects per arm, and it is expected that up to x% patients will
drop out, then the final sample size (n�) can be inflated as
n� = n= 1� x

100

� �
. Attention must always be given to the reasons

and mechanisms for missing data. Moreover, designing trials to
minimize missing data is always the best approach [5]. Non-
compliance, for example, due to patients crossing over to other
treatment arms can also affect the power of a trial if not appro-
priately considered during the study design. The Arterial
Revascularization Trial (ART) is an example of this (see
Example 2). When different deviations can affect a study, all to
varying degrees, simulation is the best approach to assess the po-
tential impacts. In practice, these can be coded using standard
programming languages (e.g. R), or specialist software can be uti-
lized (Table 3).

Estimation

When interest lies in estimation of a quantity, rather than hypoth-
esis testing, then sample size calculations can be reframed to con-
trol the expected width of the confidence interval. For example, a

surgeon might want to estimate—with a certain accuracy—the
proportion, p, of patients undergoing cardiac surgery who would
fail a preoperative cardiopulmonary exercise stress test. As car-
diopulmonary exercise stress testing is expensive and time con-
suming to perform, the surgeon wants to estimate this
proportion with a margin of error <5%. The estimated
proportion will be bp = number of patients that failedg=nf ,
where n is the number of patients required to be tested.
Standard mathematical approximations give a 95% confidence
interval as

bp±z0:975

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
:

The term after the plus–minus sign is the margin of error, with
the square root term denoting the standard error (SE). The sur-
geon does not know the value of bp yet and, therefore, does not
know the SE, but a ‘worst case’ scenario can be mathematically
determined based on bp = 0:5. The margin of error is then ap-
proximately 1=�n, which the surgeon in the example above
specified must be <5%; hence, it is required that n is >_400. If the
surgeon has an estimate of the prevalence, then this sample size
can potentially be reduced by refining the SE estimate.

Software

There are a large number of software programmes available for
performing sample size calculations (see Table 3 for a non-
exhaustive list of available programmes) including stand-alone

Table 3: Software for sample size calculations

Software Platform URLa Freely
available?

Stand-alone programs
G*Power Windows and macOS http://www.gpower.hhu.de Yes
PS Windows http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize Yes
PASS Windows https://www.ncss.com/software/pass No
nQuery Windows https://www.statsols.com/nquery-sample-size-and-power-calcula

tion-for-successful-clinical-trials
No

Rb packages
pwr Windows, macOS and Linux https://cran.r-project.org/web/packages/pwr Yes
TrialSize Windows, macOS and Linux https://cran.r-project.org/web/packages/TrialSize Yes
PowerUpRc Windows, macOS and Linux https://cran.r-project.org/web/packages/PowerUpR Yes
powerSurvEpi Windows, macOS and Linux https://CRAN.R-project.org/package=powerSurvEpi Yes

SAS
PROC POWER Windows and Linux https://support.sas.com/documentation/cdl/en/statug/63033/

HTML/default/viewer.htm#power_toc.htm
No

SPSS
SamplePower Windows https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/web/

en_US/trialprograms/U741655I36057W80.html
No

Stata
power Windows, macOS and Linux https://www.stata.com/features/power-and-sample-size/ No

Microsoft Excel
PowerUpc http://www.causalevaluation.org/power-analysis.html Yesd

Specialist simulation software
IcebergSim Windows http://icebergsim.software.informer.com/versions/ Yes
FACTS Windows https://www.berryconsultants.com/software/ No
Clinical trial simulation Windows and Linux http://www.biopharmnet.com/innovation/trial_simulation/cts1.php Yese

aURLs are correct as of 11 April 2018.
bR also has several base functions that enable power calculations to be made; e.g. power.t.test(), power.prop.test() and power.anova.test().
cSpecialized package for the case of cluster (multilevel) trials.
dRequires Microsoft Excel to be installed.
eRequires SAS to be installed.
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programmes, which might be preferable for those unfamiliar
with general statistical software programmes. The capabilities of
each vary from basic to complex calculations, but common trial
designs are integrated into most. There are many online sample
calculators and even some smartphone apps that can perform
sample size calculations. Although such calculators can be useful,
it should be noted that they are unlikely to have been validated,
and it is generally advisable to use a validated software pro-
gramme. Some potentially useful calculators can be found at
http://homepage.stat.uiowa.edu/�rlenth/Power/, ‘Power and
Sample Size’ (http://powerandsamplesize.com) and OpenEpi
(http://www.openepi.com) [all accessed 11 April 2018]. There are
also several specialist programs available to conduct simulation
analyses to explore deviations (e.g. non-compliance, dropouts
and adaptive designs).

Reporting

It is essential that the details of the sample size calculation are
reported in full. This demonstrates that the study has been well
designed and establishes what the primary outcome is on which
the calculation is based. It also enables reproducibility of the
study. Reporting the calculation requires reporting of all parame-
ters and assumptions used. In some cases, sample size formulae
depend only on the standardized difference. However, it is pref-
erable to report the individual components (expected effect size
in each treatment group and variability). Details of inflation fac-
tors (e.g. due to expected dropouts) should also be reported. It is
worthwhile noting that reporting of sample sizes is a requirement
of the CONSORT Statement checklist [6]. The STROBE Statement
checklist also asks for details on how the sample size was arrived
at to be provided [7].

Non-randomized studies

Sample size formulae are generally presented for randomized clin-
ical trials. In some cases, randomization is not feasible due to
physical constraints, ethical issues or resource limitations. This
leads to observational studies, whereby due to the presence of
confounding variables, it is not appropriate to apply univariable
comparison tests due to potential bias. In addition, there is poten-
tially increased measurement error and unknown enrolment pro-
tocols. Consequently, sample size calculations in such studies are
more complex. In some cases, analyses are based on large clinical
(or administrative) registries. These can be very large, meaning that
there is little concern about power. However, it is then important
to consider whether the adjusted effect size is ‘clinically’ significant,
regardless of ‘statistical’ significance. Another issue frequently
encountered with non-randomized studies, particularly observa-
tional data studies, is the presence of missing data. In some cases,
this can be substantial. Complete case analysis (i.e. excluding
patients with any missing data) would likely lead to bias and larger
SEs, whereas imputation techniques would need to account for
the additional uncertainty from the imputed data [8].

A standard approach for adjusting for confounding is multi-
variable regression. In such models, we are typically interested in
a single covariate (e.g. a binary treatment effect) and will include
other covariates (i.e. the confounders) in the regression model.
For multivariable linear regression, one approach is to apply a
correction factor to the approximate formula (cf. Equation 1) [9].
Formulae for other regression models are also available, e.g. the

Cox proportional hazards model [10] and the logistic [11] regres-
sion model. In the case of the former, it is a sample size formula
for the number of ‘events’ required rather than the number of
‘subjects’. An alternative approach frequently used in non-
randomized cardiothoracic surgery research studies is propensity
score analysis using matching, covariance adjustment, inverse
probability treatment weights or stratification [12]. Sample size
calculations need to take account of the method used. For ex-
ample, if 1-to-1 propensity score matching is used, then a sample
size calculated assuming randomization must be inflated to ac-
count for patients who will not be matched based on the ratio of
controls to treated patients and the degree of overlap of propen-
sity score distributions [13]. In either case, the precision of the
estimated treatment effect following adequate adjustment should
be appropriately reported and interpreted.

When the sample size is not achievable

In some cases, achieving the determined sample size will not be
feasible due to external factors; for example, time or resource limi-
tations. This frequently happens in rare diseases, e.g. in congenital
cardiac surgery. The immediate question is how to proceed in
such a circumstance. One option is to inverse the problem and
calculate the power that can be attained from the maximum per-
missible sample size. This power can then be evaluated against the
study objectives. If the power is insufficient, then it might be used
to gain additional funding to recruit further subjects.

If recruiting more subjects is not feasible, then other options
include changing the primary outcome (e.g. using a composite
outcome that increases the number of events) [14], pooling
resources and sample populations with other centres and explor-
ing means of reducing the variability (e.g. by limiting the scope
of the patient population). Perhaps, the least desirable option is
to simply not proceed with completing the study. In this case,
data from the study might still be published, as there is a body of
methodologists that consider underpowered trials to be accept-
able [1, 15]. The rationale for considering underpowered studies
is that they can potentially be combined with other small studies
in a meta-analysis framework. There is also a notion that some
knowledge is better than no knowledge. Caveats exist in pursuing
such an approach, which include the requirement of absolute
transparency, and the rigorous minimization of potential sources
of bias (e.g. due to inadequate randomization, blinding or reten-
tion) [1].

EXAMPLES

Example 1: watermelon treatment for hypertension

Following a pilot study by Figueroa et al. [16], a fictitious team of
investigators want to design a study to test the effect of water-
melon extract on systolic blood pressure among hypertensive
patients. The investigators hypothesized that the L-citrulline pre-
sent in watermelon, which naturally converts to L-arginine, will in-
crease the production of endothelial nitric oxide and thus have a
vasodilatory effect. Conventional choices of the Type I error rate
(a = 0:05) and power (1� b = 0:80) are proposed, yielding z-values
of 1.96 and 0.84 (see Table 2), respectively, in Equation 1. The
investigators plan to compare the systolic blood pressure at 6
weeks between placebo and daily watermelon treatment groups
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using an independent t-test. Based on previous knowledge, it was
assumed that mean baseline systolic blood pressure would be
140 mmHg in the control group, and the researchers believed that
a biologically plausible reduction of 5% systolic blood pressure
(7 mmHg) in the treatment group would be of scientific interest.
Assuming a common standard deviation of 10 mmHg in both
treatment arms, the necessary sample size (Equation 1) would be
33 subjects per treatment arm. Using a more accurate method
(e.g. using a software package such as G*Power 3.1; Table 3), we
would be able to determine that a sample size of 34 subjects per
group would be required, confirming the approximate formula
(Equation 1) as being sufficiently accurate for practical application.

Example 2: Arterial Revascularization Trial (ART)

The ART is a randomized controlled clinical trial initiated in 2004
with the primary objective to compare 10-year survival associated
with using bilateral internal thoracic arteries versus the use of a
single internal thoracic artery graft for coronary artery bypass sur-
gery [17]. Following a systematic review, the investigators expected
mortality of 25% in the single internal thoracic artery arm and 20%
in the bilateral internal thoracic artery arm, conferring an absolute
effect size of 5%. After specifying a = 0:05 and b = 0:10 (for 90%
power), the authors estimated that a total sample size of 2928
patients (n = 1464 per treatment arm) would be required. This can
be calculated by the sample size formula proposed by Freedman
for comparing survival curves using the log-rank test [18]. Here, we
used the ‘ssizeCT.default’ function in the R package powerSurvEpi
(Table 3; in this case, the sample size calculated was n = 1463 per
arm). The authors subsequently rounded this up to 3000 patients
(n = 1500 per treatment arm), with 3102 patients actually random-
ized. A limitation of the ART study is that there was substantial
non-compliance (16.4% randomized to the bilateral internal thor-
acic artery did not receive this treatment, versus 3.9% randomized
to single internal thoracic artery group who were non-compliant
with treatment allocation). In addition, several patients were lost
to follow-up, which will affect the overall power achieved [19].

DISCUSSION

The sample size calculation is a crucial element of study design.
However, it is only one element of a well-designed protocol. For
basic study designs and outcomes, several sample size formulae
exist in medical statistics textbooks. For more advanced study
designs or situations, there exist specialized textbooks [20] and
accessible software programs (Table 3). In addition, for the most
complex cases, experienced statisticians can use simulation meth-
ods to determine the sample size [21]. Nonetheless, we would
generally advise the involvement of a statistician in all but the
most basic trial designs. A fundamental requirement after the
sample size calculation has been performed is the clear and
transparent reporting of it [6]. A review of 6 high-impact journals
found that 5% did not report any details and 43% did not report
all the parameters necessary to reproduce the calculations [22].

There has been a perception that sample sizes of randomized
controlled trials (RCT) in specialty fields such as cardiovascular
medicine have increased over the years. The median sample size
used in Circulation and the European Heart Journal in 1990 was 99
and 90, which rose to 630 and 935 in 2010, respectively [23]. One
proposed explanation is that larger treatment effects have already

been identified in historical studies, leaving only small effects to be
discovered through more contemporary studies. Commensurate
with increasing sample sizes are increased costs, study periods and
resources. It is, therefore, necessary to not only consider sample
size but also alternative study designs that can reduce these bur-
dens. For example, (Bayesian) adaptive trials are one approach,
whereby parameters specified in the trial protocol can be modi-
fied as observations are accumulated [24]. These adaptations must
be specified in advance according to predefined rules and might
include interim analyses with the aim of possibly stopping the trial
early (e.g. due to success or futility), sample size re-estimation or
changes to the randomization procedure.

Sample size calculations are sensitive to parameter choices
and, hence, errors. Exploring a range of scenarios with regard to
the sample size calculation can provide insight into the potential
practical consequences. Sample size calculations should always
be performed a priori since ‘post hoc power calculations’ have no
value once the study has concluded [1]. If the sample size was
not calculated a priori, then this should be acknowledged, and
the uncertainty in the treatment effect demonstrated should be
represented via a confidence interval.
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