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SUMMARY 

This paper presents the study on non-deterministic problems of structures with a mixture of 

random field and interval material properties under uncertain-but-bounded forces. 

Probabilistic framework is extended to handle the mixed uncertainties from structural 

parameters and loads by incorporating interval algorithms into spectral stochastic finite 

element method. Random interval formulations are developed based on K-L expansion and 

polynomial chaos accommodating the random field Young’s modulus, interval Poisson’s 

ratios and bounded applied forces. Numerical characteristics including mean value and 

standard deviation of the interval random structural responses are consequently obtained as 

intervals rather than deterministic values. The randomised low-discrepancy sequences 

initialized particles and high-order nonlinear inertia weight with multi-dimensional 

parameters is employed to determine the change ranges of statistical moments of the random 

interval structural responses. The bounded probability density and cumulative distribution of 

the interval random response are then visualised. The feasibility, efficiency and usefulness of 

the proposed interval spectral stochastic finite element method are illustrated by three 

numerical examples.  

Keywords: interval spectral stochastic finite element method; random field; hybrid 

uncertainty; interval random response; bounding probabilistic distribution functions. 

 

1. INTRODUCTION 

The considerable influences of inevitable uncertainties in engineering problems have 

stimulated more and more studies on stochastic analysis to investigate possible predictions of 

engineering systems responses [1-5]. The framework of stochastic assessment implemented 



by deterministic operators considering random inputs has been well-developed with 

applications in engineering mechanics and other research areas. The analysis becomes much 

more complicated when random operators are adopted to handle uncertainties as their 

performance relates to the degree of complexity of mathematical tools for modelling 

engineering systems. Moreover, the degree of complexity is considerably augmented for 

large scale engineering problems with intrinsic interaction among different elements of 

systems as well as with the interaction of the systems and their surrounding environments. 

These issues create major challenges for our numerical algorithms to be reliable, close to 

reality and efficient when mathematical and mechanical models are established for real 

engineering systems [6]. A current powerful tool in computational stochastic mechanics 

satisfying the  requirements  to a large extent is the spectral stochastic finite element method 

(SSFEM) introduced by Ghanem and Spanos [7]. The SSFEM is a seminal improvement of 

the standard deterministic finite element method with its feature to capture random physics in 

a comprehensive and natural manner in a stochastic framework efficiently. Its efficiency is 

proved by many studies and has been constantly improved to attain more accurate results [8-

18]. Compared with other probabilistic methods based on finite element analysis such as 

sampling and perturbation methods [6, 19, 20], the SSFEM solves stochastic problems in 

structural engineering in an integrated manner. Further developments in this direction are 

pursued extensively [18].  

A challenging aspect of this general approach for analysing stochastic engineering structures 

is the modelling of the uncertain structural parameters comprising material property, 

geometry and loading regime. The awareness of this aspect has emerged from the discussion 

that structural responses are sensitive to uncertainties in structural parameters and in applied 

forces. This issue requires putting particular attention to the modelling of the input 

uncertainty in the SSFEM using random fields of structural parameters. Commonly, uncertain 

material properties are described with random fields in the SSFEM. The challenge of a large 

number of random structural parameters and multiple random material properties has been 

addressed, and extensions to capture random geometric properties as well have been 

presented [21-24]. On this basis, a large variety of random parameters can be captured in the 

SSFEM with a mathematical modelling suitable for solving large industrial problems. 

This modelling, however, requires substantial information about the uncertainties.  In 

practical cases, in particular in civil engineering, available information about parameters and 

their uncertainties is often limited [25]. Those cases have motivated an exploration of further 

uncertainty models, such as intervals and imprecise probabilities, for engineering analyses 

[26]. These models are compatible with the stochastic framework, specifically in view of the 

subsequent development, with the SSFEM. 

In order to choose an appropriate uncertainty model, the analyst is required to explore the 

sources of the uncertainty, the information content of the uncertain information and also the 



suitability of the models for the purpose of the analysis. A detailed discussion on these issues 

is provided in [26]. Once the uncertainty model is selected, an efficient numerical algorithm 

is required for processing to calculate the uncertainty of the structural or system response and 

related quantities such as the failure probability. Both modelling and numerical processing 

are well-addressed in the stochastic framework [27, 28]. Probabilistic modelling captures 

both frequentist quantification based on data and subjectivist quantification with subjective 

probabilities in form of a belief. As a powerful combination of both, Bayesian approaches 

have attracted extensive attention and have been developed to a sophisticated level with 

applicability to large-scale problems [29-33]. The entire framework of stochastic techniques 

is readily available for the processing of uncertainty modelled in this manner. 

On the side of non-probabilistic models developments have been considerably achieved and 

are applicable in a sophisticated stage for modelling. Key attention is paid to the development 

of numerically efficient algorithms to enable the analysis of large frequentist problems [34, 

35]. In the present paper we contribute to the development of numerically efficient algorithms 

in the case of combined random and interval-valued structural parameters. 

We address the class of problems, where only lower and upper bounds are known for some 

structural parameters [36] rather than a statistical data base or a subjective belief in form of a 

distribution function. For a detailed reasoning in this regard, see [26]. In those cases, interval 

modelling, firstly developed by Moore [37], is typically proposed  to represent the uncertain 

variables . Interval approaches alone, however, have only limited applicability because most 

of the practical cases involve uncertainty with both random nature and interval nature. Hence, 

hybrid models, such as interval probabilities, and associated techniques have been developed  

and applied in  structural engineering [38-46]. In this manner, random and interval variables 

are considered simultaneously and maintain their characteristics throughout the entire 

analysis. This concept is adopted herein to combine the powerful model of random fields 

with interval variables for those parameters for which only bounded information is available. 

The focus of the development is on the numerical side, providing an efficient algorithm for 

the processing of the mixed interval probabilistic uncertainty. 

Specifically, in this paper, random fields are combined with interval analysis addressing 

bounded uncertainty parameters in the context of the SSFEM. This combination poses 

challenges as the mixed stochastic interval problems needs to be solved at mathematical level 

and at physically practical level for real engineering applications [47]. Random structural 

responses in the SSFEM can be characterised by statistical moments, e.g. the first two 

moments, mean value and standard deviation. Interval analysis can provide interval values for 

the responses. A combination of the SSFEM and interval analysis as interval spectral 

stochastic finite element method (ISSFEM) is, consequently, able to produce intervals that 

represent the moments of interval random responses. That is, an interval mean and an interval 

standard deviation will be obtained. More generally, an entire set of probabilistic responses is 



obtained instead of a single probabilistic response, whereby intervals work as set-theoretical 

descriptors in probabilistic models. The cardinality of this set of probabilistic responses, or 

simply the size of the intervals for the moments, reflects the entire combined bounded 

uncertainty in form of intervals from the input. The assessment of the output of ISSFEM can 

still utilize the complete probabilistic information, but now with the additional feature of 

knowing bounds on these probabilities. Also, the numerical processing of the probabilistic 

information can still be performed with powerful stochastic technologies, such as Monte 

Carlo simulation, and be combined with interval analysis to process the intervals. However, 

Monte Carlo simulation requires a considerable numerical effort, which can easily make an 

interval probabilistic analysis infeasible when a repeated simulation is necessary as it is the 

case in non-intrusive approaches such as global optimization  [48]. This problem is 

specifically critical in the case of large structures with a large number of interval parameters 

– unless specific topological properties can be exploited in the search domain [49]. On the 

other hand, intrusive methods, implementing interval arithmetic directly into the numerical 

algorithms, are always limited to small problem classes and require a tremendous effort of 

implementation [50, 51]. Moreover, the ordinary algebra suffers from the so-called 

dependency. To limit the catastrophic effects of the dependency phenomenon, Muscolino and 

Sofi [42] presented an improvement of the interval arithmetic by introducing a particular 

unitary interval and the presented procedure has substantially improved the accuracy as 

interval amplitude of the uncertain parameters increases. Recently, a new uncertain analysis 

method based on Chebyshev inclusion functions is proposed to effectively achieve bounds for 

meaningful solutions of interval functions for multibody dynamics of mechanical systems 

and vehicle dynamics [46, 52] even sometimes the numerical simulation may still experience 

small overestimation. It is worth mentioning that scanning methods [53] and combinatorial 

approach [54] may be able to produce accurate bounds, but they are only applicable for the 

problems with small number of interval variables. Non-intrusive methods such as global 

optimization are much more general and easier to establish. Furthermore, it can 

commendably control overestimation of the interval computation and the dependency 

phenomenon does not exist when it is adopted to solve interval analysis. Thus, we implement 

interval analysis to find the set of probabilistic system outputs in terms of bounds on 

probabilistic parameters and probabilities in the form of a global optimization. In order to 

cope with the numerical cost of the optimization involved, we propose an efficient 

optimization strategy that does not compromise the accuracy of the results. Among the 

algorithms  available  to solve the involved optimization, the particle swarm optimization 

(PSO) proposed by Kennedy and Eberhart [55] shows particularly attractive  efficiency 

features [56, 57]. This method requires only a small number of iterations to attain high-

quality results. We adopt the basic concept of this algorithm and propose an improvement 

based on randomised low-discrepancy sequences initialized particles and high-order 

nonlinear inertia weight, denoted as RLHNPSO. This algorithm is employed with multi-

dimensional parameters to investigate the interval random structural response through the 



combination with the SSFEM, denoted as ISSFEM. The results are obtained as sets of 

probability distributions described by interval parameters and intervals for probabilities. 

The paper is organized as follows. In Section 2, the concept of ISSFEM is built up by 

introducing interval uncertainty into the spectral stochastic finite element method. Section 3 

presents the incorporation of the randomised low-discrepancy sequences initialized high-

order nonlinear particle swarm optimization algorithm into ISSFEM with respect to 

investigation of the possible ranges of statistical moments for the interval random outputs. 

Section 4 illustrates the performance of the proposed ISSFEM by three numerical examples. 

Finally, a discussion and concluding remarks are provided in Section 5. 

 

2. CONCEPT OF INTERVAL SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 

In real engineering applications, the uncertainty models of different parameters can be 

different when the mathematical presentation for each uncertainty parameter is modelled by 

using the available sufficient and/or insufficient data. The challenge problem posed here is to 

aggregate the disparate representation of different types of uncertain parameters into a single 

uncertainty model of system, leading to a hybrid mathematical form. This section presents the 

general mathematical expressions for the interval spectral stochastic finite element method 

developed from the framework of spectral stochastic finite element analysis. The random 

field simulation is combined with interval arithmetic to describe the uncertainty parameters. 

This work is motivated by the awareness of the uncertainty modelling for different 

parameters in the SSFEM [21-24] as well as by the considerations of the mixture of 

mathematical models for addressing different types of uncertainty parameters including 

random and interval variables [39-41, 43].  

For a general deterministic two-dimensional problem, the constitutive matrix D is given by:

   

 D E Q( )       (1)   

where matrix Q( )  is the function of Poisson’s ratio  . 

For material property characterized as uncertainty feature, constitutive matrix is examined 

into the case of incorporation among different models of uncertainty. In this study, it not only 

considers the spatial variation of the elastic modulus, but also the uncertainty of Poisson’s 

ratio. These uncertainty variables are assumed to be independent to each other [23]. The 

uncertainty of the elastic modulus is described by a random field while the uncertainty of the 

Poisson’s ratio is assumed to be represented by intervals. For plane stress problems, the 

interval random constitutive matrix can be expressed as: 
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For plane strain problems, we have: 
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where 0E  is the mean value of elastic modulus;
I  is the interval Poisson’s ratio and its 

change range is denoted as  ,  with lower bound value   and upper bound value  . 
I  can 

be dissimilar from each other for different elements.  R x,  is a homogeneous Gaussian 

field of unit mean and can be represented by using K-L expansion: 
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Then, the random field of elastic modulus can be expressed as: 
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where   i i 1,2,    are mutually uncorrelated random variables, i  and  i x  are 

correspondingly the eigenvalues and eigenfunctions of  1 2C x , x  which  is the 

autocovariance function of the random field  R x,  defined on the domain  . Following 

Mercer’s Theorem,  1 2C x , x  has the following spectral or eigen-decomposition: 

        1 2 i i 1 i 2

i 1

C x , x x x




                                                (6) 



and its eigenvalues and eigenfunctions can be obtained by means of the homogeneous 

Fredholm integral equation: 

     1 2 i 1 1 i i 2C x ,x x dx x


                       (7) 

By virtue of combination between random field and interval uncertainty for the constitutive 

matrix, based on the standard potential energy of finite element method [15], the potential 

energy in a linearly elastic body under consideration of unit thickness is represented in a 

hybrid mathematical model as: 

   

            

            

           

e e

e e

e e

e e

e e

A A
T T

I I I e I I e

p e e e e
S

e=1 e=1

A A
T T

I T I I e I I e

e e e e
S

e=1 e=1

A A
T T

I I I I I

e e e e e

e=1 e=1

1
= ε θ D E x,θ ,ν ε θ d u x,θ q dS

2

1
= U θ B D E x,θ ,ν BU θ d u x,θ q dS

2

1
= U θ k θ U θ U θ F

2





  

 



  

  

 

       (8)                                    

where  I

eu θ,x ,  I

eU θ ,  IU θ ,  I

eε θ , and   Ieq  are accordingly the interval random 

displacement field of elements, interval random nodal displacements of elements, interval 

random nodal displacements of structure in global coordinate system, interval random strain 

field, and interval surface tractions; Ae, 
e , S

e
 are the number of elements associated with 

the discretization, domain of the element, surface area of interval surface tractions exerted on 

the element in that order; the interval nodal forces of elements, approximated by the interval 

surface tractions are symbolized as:  

     
TI I

e e
S

F N q dS
e

e           (9) 

where  N  is the shape function matrix. The stiffness matrix of the e
th

 element is an interval 

random matrix and can be expressed as:  
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where  I

0 0D E ,  is the interval constitutive matrix corresponding to 0E ; 

e

I T I e

e0 0k B E Q( )B d


     is the interval mean stiffness matrix corresponding to the mean 

value of elastic modulus;  
e

I T I e

ei i 0k x B E Q( )B d


      are the interval stiffness matrices.  

By assembling element stiffness matrix, the interval random global stiffness matrix can be 

expressed as: 

            
e e eA A A

I I I I I I

e e0 ei i ei i i i

e 1 e 1 i 1 e 1 i 0 i 0

K k k k k K
  

     

 
             

 
                    (11) 

where I

iK  is the assembling of interval stiffness matrix I

eik  and  0   is assigned to be equal 

to 1. Eq. (8) takes the form: 
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where            
eA

I I

e

e=1

F F                           (13) 

The governing equation of finite element analysis can be obtained by employing the principle 

of stationary potential energy for Eq. (12): 

   I I IK U F                     (14) 

where  
T

I I I

1 rF F , ,F ,  is the multiple interval vector of applied loads in which I

rF  is the 

interval variables fixed within the range of 
r rF , F   . rF  and rF  are the lower and upper bounds 

of I

rF , respectively.  IU   is the multiple interval random vector of nodal displacement due 

to the interval randomness of  IK   and interval uncertainty of IF . By expanding the 

concept of SSFEM,  IU  can be represented by using stochastic expansion called 

Polynomial Chaos Expansion (PCE) and interval coefficients: 
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where   
1ki k




   is a set of Gaussian random variables;  

1 1 2 1 2 3 1 2 3 40 , , , , ,I I I I I

i i i i i i i i i ia a a a a  are interval 

coefficients in the spirit of proposed framework due to the incorporated interval uncertainty; 

    
1

, ,
pp i i       is a multidimensional Hermite polynomials of order p of the 

multidimensional standard Gaussian random variables  described as: 
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Eq. (15) can be rewritten for convenience in terms of notations as: 
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where   j i 1




   denotes the series of Hermite polynomials comprising a set of random 

variables     i i 1




     .     I I I

j j ji 1 i 1
U U , U



 
     are interval vectors indicating uncertain-

but-bounded coefficients corresponding to   j i 1




   due to the interval uncertainty 

accommodated in the hybrid model of uncertainty.   j i 1




   is the orthogonal polynomials 

satisfying: 

        2

j k k jk,                                (18) 

where jk  is the Kronecker delta and .  denotes the mathematical expression of the inner 

product in the Hilbert space:  

                f ,g f g W d                                                (19) 

where   W   is the weight function corresponding to the PCE: 
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Substituting Eqs. (11) and (17) into Eq. (14) yields:  
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Truncating the K-L expansion after M terms and PCE after P terms and minimizing the 

residual in the mean square sense to attain the optimal approximation of space spanned by the 

polynomials   
P

j i 1
   for Eq. (21) yields: 

       
M P

I I I
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i 0 j 0
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                             (22) 

where k = 0,…, P; 
ijkc  and I

kF  are given by: 

             ijk i j kc                                   (23) 

     I I
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By reorganizing terms, Eq. (22) becomes: 
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Values of ijkc  are available in the tabulated form provided by reference [7] or evaluated 

methodically in [10]. The number of terms P of PCE is a function evaluated by the number of 

terms M and the polynomial order p: 
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As discussed previously, ISSFEM will yield interval values for the statistics of system 

responses. Once the 
I

jU  in Eq. (22) is addressed, the interval statistic values of random 

interval responses, namely, interval mean value and interval covariance matrix of 

displacements can be obtained as:  
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where   is outer (tensor) product. The interval random strain and stress at a location x 

within the element of structure under consideration are given by means of PCE: 
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where    
e

I T I

j jx B U   is the interval strain vector at a location x inside the considered 

element derived from the vector comprising interval nodal displacement of that element. 

     I I

i i i 0 0D x x D E ,     is the interval constitutive matrix with notation 

   I I

0 0 0D x D E ,  . Defining      I I I

ij i jx D x x   ,the interval mean value and interval 

covariance matrix of stress can be derived as [17]: 
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where        iljk i l j kc           can be solved analogously as [17] 

Following that, the interval standard deviation of displacements and stresses, symbolized as 

 IStd U    and  IStd x,    , can be attained straightforwardly evaluated based on their 

covariance matrices. 

The general evaluation of change ranges for these responses can be solved by means of 

interval analysis incorporated in spectral stochastic finite element analysis. Thus, the 

response variability is correspondingly addressed by the bounds of mean and standard 

deviation of the output variable followed by extending the procedure of SSFEM in the spirit 

of interval analysis. Even, in general, a dual approach is possible where the uncertain 

response is expressed by the mean and standard deviation of the interval bounds for mixed 

interval probabilistic model, it is quite difficult to consider comparative study between two 

approaches. Admittedly, the range evaluated by bound of mean of the stochastic output can 

be identical as that determined by mean of interval bounds as mentioned in [58]. However, 



the comparative study relating to the bound of the output variable from two approaches are 

questionable for variance values  when computing variance for interval data is NP-Hard 

variance [59] and the solution procedure of the responses is more intricate for problems in the 

presence of random field parameters. In the future, the comparative study for these 

approaches will be investigated to clarify this consideration.  

In general, the aim of interval analysis is similar to that of the optimization problem as its 

objective is to find the potential enclosure for the output corresponding to input parameters 

changing within fixed ranges restricted by upper and lower confines. Therefore, interval 

analysis can be transformed into optimization problems. In this paper, the randomized low-

discrepancy sequences initialized particles and high-order nonlinear inertia weight, denoted 

as RLHNPSO [45] is adopted to handle the interval analysis embedded into ISSFEM. This 

implementation is presented in the next section.  

As aforementioned, the statistical moments of the interval random responses produced by 

ISSFEM are intervals. Therefore, the probability density function (PDF) and cumulative 

distribution function (CDF) of the random interval response (θ)I

resR (displacements or 

stresses) are formed in bounding functions, respectively. These statistical functions can be 

appropriately visualized by means of random sampling generator based on the polynomial 

chaos expansion (PCE) in terms of the random interval response (θ)I

resR , denoted as the PCE-

R (see Eq. 17 for displacements or Eq. 30 for stresses), whose uncertain-but-bounded 

coefficients are influenced by the interval input parameters. For any arbitrary collection 

within prescribed constraints of input parameters, corresponding statistical moments of the 

interval random responses (θ)I

resR  and equivalent coefficients of the PCE-R and are 

accessibly specified. In the scope of this paper, due to advantages in expressing probability 

theory in terms of expectations, bounds of  PDF  IE
(θ)I

resf R  and CDF  IE
(θ)I

resF R  are 

produced by PCE-R.  The coefficients of PCE-R are determined based on the expectation of 

the interval random response (θ)I

resR  wherein the lower and upper bounds are respectively 

symbolized as  E (θ)I

resR and  E (θ)I

resR .  

Suppose that the interval random response (θ)I

resR  is defined on a sample-space  and its 

information is represented via the interval-valued expectation. The interval-valued 

expectation can be denoted as function G( (θ)I

resR ) in which G( ) is the mapping expectation 

function regarding uncertainty parameters of the input and interval random response (θ)I

resR . 

Thus, the bounds of the interval-valued expectation  IE (θ)I

resR can be generally expressed as 

the following:  

                                                 E (θ) min (θ)I I

res resR G R                                              (33) 



                                                                  E (θ) max (θ)I I

res resR G R                                                      (34) 

These interval-valued expectations can be effectively specified by proposed framework, to be 

more detailed, see Eq. 27 for displacement or Eq. 31 for stress. Bounding functions of PDF 

and CDF of the random interval responses (θ)I

resR are straightforwardly denoted for the 

convenience as the following 

             I E EE
(θ) (θ) , (θ)I I I

res res resf R f R f R 
 

                                          (35) 

                           I E EE
(θ) (θ) , (θ)I I I

res res resF R F R F R 
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where  E (θ)I

resf R  and  E
(θ)I

resf R  indicating the PDFs of the random interval responses 

(θ)I

resR  are consistent with the case in which  IE (θ)I

resR  attain its lower bound  E (θ)I

resR

and upper bound  E (θ)I

resR .  E (θ)I

resF R  and  E
(θ)I

resF R  indicating the CDFs of the 

random interval responses (θ)I

resR  are consistent with the case in which  IE (θ)I

resR  attain its 

lower bound  E (θ)I

resR and upper bound  E (θ)I

resR . 

 

3. SOLVING STRATEGY OF ISSFEM 

The investigation of structural responses for a complex structure under consideration of 

uncertainty attracts widespread interests due to its complexity [60]. Predicting output 

response is to examine how the solutions move among their possible ranges. Identifying and 

displaying the uncertainties on the outputs using the Monte Carlo Simulation is widely 

recognised in structural analysis [61].  However, this sampling method cannot lead to optimal 

solutions with respect to using random pseudo generator as it may provide the change ranges 

for the output with error [62]. Additionally, the computational expense is much more required 

corresponding to the increasing number of iterations to search the appropriate solutions for 

the output. Therefore, the endeavour to mitigate these issues by searching any alternatives for 

uncertainty analysis is considered. The problem investigated herein, interval quantification is 

incorporated in stochastic mathematics in the context of ISSFEM to address uncertainty 

problems with respect to different model of uncertainty based on available information of 

system. The statistical characteristics of responses such as mean and variance in ISSFEM are 

intervals. Aforementioned, these intervals can be determined by using optimizations:  
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where the upper and lower bounds of I

ix  are designated by ix and ix , respectively. (θ)resR

and (θ)resR are correspondingly the upper and lower bounds of the interval random response 

variable (θ)I

resR  (displacements or stresses) in the ISSFEM. Ld is the dimension of multiple 

interval vector X. In this paper, an improved particle swarm optimization, namely, 

RLHNPSO is adopted to address the interval stochastic problem in ISSFEM. 

The traditional particle swarm optimization algorithm was proposed by Kennedy and 

Eberhart [55]. This algorithm is initialized with a set including population of random 

solutions called particles. Each particle flies with time in a multidimensional design space 

with respect to fitness problem to search its optimal position via adjusting its position and 

velocity simultaneously. The velocity vector is updated based on its own experience as well 

as experience of other particles. Thus, each particle takes advantages of the social behaviour 

of population in which promising areas of search space is gained to target better positions as 

time passes. The effectiveness of PSO has been recently proved on structural optimization 

problems and its improvements have been studies by many researchers to strengthen the 

performance for the output [63-66]. Recently, initialization of particle swarms with regard to 

the application of low-discrepancy sequences have been considering to improve the 

performance of PSO in the mathematical view [67, 68]. These works showed the efficiency 

of PSO concerning initial swarms generated by randomised low-discrepancy sequences, 

namely randomised Sobol sequence. Liu et al. [69] adopted an improved novel PSO 

algorithm, namely low-discrepancy sequences initialized high-order nonlinear particle swarm 

optimization (LHNPSO) in the interval problem, but the structure was modelled as a simple 

beam. Inspired by above studies, in this paper, a variation of LHNPSO with particles 

initialized by randomised Sobol sequence, denoted as RLHNPSO [45], is employed to 

implement the interval stochastic analysis in ISSFEM. 

A set of initial population in RLHNPSO is defined as 

   

1

2
1,...,

 
 
 

   
 
 
 

T

ip

np

x

x
X x ip np

x

                                            (38) 



where 
ipx  is any particle of the population X generated from the multiple interval vector 

Ix of 

ISSFEM problem and np is the number of particles considered in RLHNPSO. 

The interval applied loads and Poisson’s ratio considered in this study are described by a 

multiple interval vector 
Ix in the context of ISSFEM as:  

       1 1, , , , , , , , ,   I I I I I I I

r R s Sx F F F                               (39) 

where  
R

I

r r 1
F


and  

S
I

s s 1
 are sets including interval variables of applied loads and Poisson’s 

ratio, correspondingly. 
Ix  can be generally defined as  1 , , , ,

d

I I I I

d Lx x x x  where Ld is the 

dimension of 
Ix  and any particle ipx  is described as  1 , , , ,

dip d Lx x x x  generated from  

Ix . 

Each particle is adjusted via its position and velocity. The velocity and position updating rule 

is given as: 

                           1 1 2 21 1      Pb Gb

ip ip ip ipv t w t v t c r x t x t c r x t x t                (40) 

        1 1   ip ip ipx t x t v t                   (41) 

where  dv t ,  dx t , 
Pb

ipx  and 
Gb

ipx  denote correspondingly the velocity, position, local best 

ever position and the global best ever position of particle ip
th

 in iteration t
th

. 1c  and 2c ,  

named as cognitive parameter and social parameter, respectively. They are the acceleration 

coefficients indicating the degree of directing to the better positions of particles. Constraint of 

1c and 2c is specified as 1 20 4c c   , regularly 1 2 2c c   [64]. 1r and 2r indicate random 

numbers ranging between 0 and 1. w termed as time varying inertial weight controls the 

search capacities of the swarm. A high-order nonlinear time-varying inertia weight has been 

recently employed to attain the faster convergence [69]: 

   
2

1

max max min1
t

t
w t w w w

T

 
     

 
                             (42) 

where max 0.95w , min 0.5w  and Tt is the number of iterations for RLHNPSO. The fitness 

functions of RLHNPSO in the context of ISSFEM are, for instance, the interval mean value 

or interval standard deviation of responses and the lower and upper bounds of these functions 

are respectively the minimum and maximum values of the problems under consideration. The 

general solving strategy of ISSFEM with the incorporation of the algorithm RLHNPSO is 

stated in Figure 1:  



 

Figure 1.  The incorporation of the algorithm RLHNPSO in ISSFEM 

 

4. NUMERICAL EXAMPLES 

In this section three numerical tests in consideration of plane stress analysis for plates with 

unit thickness are performed using the algorithm RLHNPSO presented in the previous section 

to capture the bounds for the numerical characteristics of the interval random responses of 

ISSFEM. Different cases from two-dimensional solid structures are examined into the 

increasing level of uncertainty to show the efficiency of the approach developed in this paper. 

The accuracy of the results obtained by the presented method is verified by the randomised 

Quasi-Monte Carlo simulation method (RQMCSM).  
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The sources of uncertainty comprise the elastic modulus, Poisson’s ratio and applied forces. 

The elastic modulus is modelled as a Gaussian random field while Poisson’s ratio and applied 

forces are considered as interval variables. The mean value for elastic modulus is set as 21e4 

MPA. A commonly exponential function is employed to describe the covariance function for 

spatially varying random field of elastic modulus: 

         1 2 1 22

E 1 2

cx cy

x x y y
C x , x exp

L L

  
     

 

                            (43) 

where  , cxL  and cyL  are the standard deviation, correlation length in x-direction and 

correlation length in y-direction, respectively. A closed-form representation of the 

eigenvalues and eigenfunctions of this covariance function is given in [7, 70].  Four terms in 

KL expansion and 3
rd

 order in PCE are considered for the test cases. 

In this study, 10 particles are initialized and 40 iterations are carried out to attain the solutions 

of the considered problems, that is, the bounds of mean value and standard deviation of 

interval random displacements. The number of iterations is considered to avoid the premature 

convergence for numerical problems. Solutions derived from RLHNPSO are verified by the 

randomized Quasi-Monte Carlo Simulation (RQMCS) using 10000 iterations. 

 

4.1. Test case 1 

Geometry of the L-shape plate subjected to interval forces and its meshing are shown in 

Figure 2. The domain of plate is discretised over a mesh with 156 nodes and 266 triangular 

elements.  The elements 1, 2 and 3 are noted to be considered for stress evaluation. The 

covariance function for elastic modulus of this plate is given in Eq. (43) with cxL = cyL  = 1 

(m) and the coefficient of variation of 0.1. A sample realization showing the spatial variations 

of random field is given in Figure 3. The Poisson’s ratio for the whole plate is considered as 

an interval variable with change range defined as  I  = [0.27, 0.3]. The interval vector under 

consideration for this test case is  1 2, , I I I Ix q q . Deterministic values of 1

Iq and 2

Iq  are 80 

N/mm
2
 and 60 N/mm

2
 while their interval change ratios are accordingly 0.1 and 0.2, 

respectively. The comparison between RLHNPSO and RQMCS for the mean value and 

standard deviation of displacements at node A, B and C are carried out to test the 

performance of RLHNPSO, as shown in Table I while consideration for stresses at some 

elements is mentioned in Table II. The convergence history of RLHNPSO for the 

displacements at point A in X direction and at point B in Y direction are illustrated in Figures 

4 and 5, respectively and that for y  of element 3 is Figure 6. The deformed shape of the plate 

using the system parameters corresponding to the lower and upper mean value of 



displacement at point A in X direction and at point C in Y direction are accordingly plotted in 

Figures 7 and 8. The convergence history of stress in terms of design variables over iterations 

is expressed by evaluation of upper bound of mean value of x  (MPa) of element 3 as 

depicted in Figure 9 and mentioned in Table III with truncated iterations. Clearly, this target 

value starts to converge at iteration 6.  

 

  

a)                                           b) 

Figure 2. L-shape Plate: (a) geometry of structure; (b) discretization of structure. 

 

Figure 3. A sample realization of the random field. 

   From Figures 4 and 5, it can be easily observed that less than 20 iterations of RLHNPSO, in 

which 10 particles is carried out for each iteration, can produce the convergent solutions 

which are positively better than the results produced by 10000 Randomized Quasi-Monte 

Carlo Simulations. Solutions including means and standard deviations from 200 (that is, 10 

particles multiplied by 20 iterations) RLHNPSO calculations contain the bounds provided by 
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10000 RQMCS as shown in Table I. This test case was carried out on a computer equipped 

with a 3.30 GHz i5-2500 CPU. The time consuming for RLHNPSO including the lower and 

upper bounds for mean value of displacement in Y direction of node C is 1723.42 seconds 

while that for RQMCS is 20996.19 seconds which is approximately 12 times in comparison 

with the former. If the number of iterations of RQMCS or MCS is increased to get better 

results, more time is required. Figures 7 and 8 show that mean values of interval random 

responses are intervals, which is different from traditional spectral stochastic finite element 

analysis. 

   Table I. Displacements derived from RLHNPSO and QMCS (unit: mm). 

Target solutions Point C (Y direction) Point A (X direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper 0.40632 0.42584 -1.83280 -1.81652 

Lower -0.92045 -0.93998 -3.13529 -3.14357 

Std 
Upper 0.06363 0.06468 0.19620 0.19677 

Lower 0.02645 0.02639 0.11767 0.11663 

Target solutions Point B (X direction) Point B (Y direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper -0.80083 -0.80009 -0.21318  -0.20511  

Lower -1.14165 -1.14315  -0.53878 -0.54333  

Std 
Upper 0.08417 0.08444  0.04215 0.04231 

Lower 0.06314 0.06302 0.03004  0.02990 

 

Table II. Stresses derived from RLHNPSO and QMCS (unit: MPa). 

Target solutions x (Element 1) x (Element 2) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper -4.87819 -4.01157 91.7659 92.05941 

Lower -27.6791 -28.28372 48.4949 47.88137 

Std 
Upper 5.64447 5.74310 19.316 19.35001 

Lower 1.87041 1.75153 12.5187 12.50989 

Target solutions x (Element 3) y (Element 3) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper 209.336 210.56733 76.4324 77.09375 

Lower 159.95 158.47376 29.1282 28.13896 

Std 
Upper 42.4623 42.68208 14.8646 14.97038 

Lower 32.8782 32.58080 7.02065 6.85682 



 

 

Figure 4. Convergence history of displacement at point A in X direction by means of RLHNPSO. 

Unit (mm). 

   

Figure 5. Convergence history of displacement at point B in Y direction by means of RLHNPSO. Unit 

(mm). 

 

 

        

Figure 6. Convergence history of y  of element 3 by means of RLHNPSO. Unit (MPa). 
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a)                                               b) 

Figure 7. Deformed shape (mm): (a) lower mean value of displacement at A in X direction; (b) upper 

mean value of displacement at A in X direction. 

 

   

a)                                             b) 

Figure 8. Deformed shape (mm): (a) lower mean value of displacement at C in Y direction; (b) upper 

mean value of displacement at C in Y direction. 

Table III. Upper bound of mean value of x (MPa) of element 3 derived from RLHNPSO 

based on change range of interval variables, namely 1

Iq  (N/mm
2
), 2

Iq (N/mm
2
) and 

Iν . 

Iteration x  1

Iq  2

Iq  
I  

  201.93056 -85.52831 -69.59874 0.28544 

1 201.93056 -77.75112 -59.85499 0.28858 

2 207.63836 -80.95112 -64.65499 0.29458 

3 208.91468 -84.15112 -69.45499 0.29275 

4 209.84094 -87.35112 -72 0.29468 

5 210.56733 -88 -72 0.29772 

6 210.56733 -88 -72 0.3 

7 210.56733 -88 -72 0.3 

8 210.56733 -88 -72 0.3 

9 210.56733 -88 -72 0.3 

10 210.56733 -88 -72 0.3 

 



 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 9. Convergence history of upper bound of mean value of x (MPa) of element 3 by 

RLHNPSO. Note: 1

Iq  (N/mm
2
), 2

Iq (N/mm
2
) and x  (MPa). 
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Considering the statistic distribution of the displacement at point A in X direction, let 

 EF1 (θ)I

resF R ,  E
F2 (θ)I

resF R ,  Ef1 (θ)I

resf R  and  E
f2 (θ)I

resf R . The interval 

coefficients of PCE-R are derived from the implementation of RLHNPSO to investigate the 

lower and upper bounds of interval-valued expectation of the displacement at point A in X 

direction. In this work, these bounds are specified by random sampling generator of RQMCS 

for displacement field presented by polynomial chaos expansion (PCE), known as PCE-R 

(see section 2). For the purpose of demonstration only, the  IE
(θ)I

resf R  and  IE
F R  

corresponding to 100,000 samples achieved by using RQMCS for the displacement at point A 

in X direction are shown in  Figures 10 and 11.   

 

Figure 10. Lower and upper bounds of PDF of displacement at A in X direction (unit: mm). 

 

 

Figure 11. Lower and upper bound of CDF of displacement at A in X direction (unit: mm). 

 

To further test the performance of the RLHNPSO based ISSFEM, the parametric study for 
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implemented.  The interval change ratios of 
1

Iq and 
2

Iq  are changing simultaneously for each 

case while the change range of Poisson’s ratio constantly keeps  I  = [0.27, 0.3]. The 

performance of RLHNPSO is demonstrated in Figures 12 and 13 while some interval mean 

values and interval standard deviations are collected in Table IV and Table V. Similarly, the 

performance of RLHNPSO for stresses is shown in Figures 14 and 15. These figures show 

the wider enclosure of the responses when the interval change ratio is increased. The 

solutions convergent in the first several iterations even the interval change ratio is 0.3. Tables 

IV - VII show that the results derived from the RLHNPSO are better those from RQMCS 

considering the same interval change ratio, that is, solutions obtained from RLHNPSO 

contain the bounds provided by RQMCS.     

 

Table IV. Intervals of mean value of displacement at C in Y direction (unit: mm). 

Interval 

change ratio 

RLHNPSO RQMCS 

Lower Upper Lower Upper 

0.10 -0.70768 0.19330 -0.69852 0.18134 

0.15 -0.92648 0.41349 -0.90486 0.39171 

0.20 -1.14527 0.63368 -1.12666 0.62031 

0.25 -1.36406 0.85387 -1.34629 0.82933 

0.30 -1.58286 1.07406 -1.56859 1.04335 

  

Table V. Intervals of standard deviation of displacement at A in X direction (unit: mm). 

Interval 

change ratio 

RLHNPSO RQMCS 

Lower Upper Lower Upper 

0.1 0.12465 0.18863 0.12512 0.18822 

0.15 0.10882 0.20461 0.10975 0.20392 

0.2 0.09318 0.22059  0.09386  0.22006 

0.25 0.07736 0.23658  0.07840  0.23571 

0.3 0.06183 0.25257  0.06317  0.25136 

 

 

 

 

 

 



 

Figure 12. Convergence history of mean of displacement at C in Y direction (unit: mm). 

 

Figure 13. Convergence history of standard deviation of displacement at A in X direction (unit: mm). 

Table VI. Intervals of mean value of x  of element 80 (unit: MPa). 

Interval 

change ratio 

RLHNPSO RQMCS 

Lower Upper Lower Upper 

0.10 163.871 204.750 164.457 203.804 

0.15 154.767 214.057 155.647 213.236 

0.20 145.663 223.364 146.847 221.615 

0.25 136.559 232.671 138.547 230.918 

0.30 127.455 241.978 128.161 240.498 
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Table VII. Intervals of standard deviation of x  of element 80 (unit: MPa). 

Interval 

change ratio 

RLHNPSO RQMCS 

Lower Upper Lower Upper 

0.10 33.4326 41.7567 33.5432 41.5798 

0.15 31.5752 43.6547 31.7384 43.5007 

0.20 29.7178 45.5528 29.9286 45.2019 

0.25 27.8605 47.4508 28.2686 47.0952 

0.30 26.0031 49.3488 26.1468 49.0577 

 

 

Figure 14. Convergence history of mean of x  of element 80 (unit: MPa). 

 

Figure 15. Convergence history of standard deviation of x  of element 80 (unit: MPa). 
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4.2. Test case 2 

Dimensions and mesh generation of the plate under interval loads are depicted in Figure 16. 

The plate is discretised into 198 nodes and 168 four-node quadrilateral elements. The 

covariance function for elastic modulus of plate is given in Eq. (43) with cxL = cyL  = 0.5 (m) 

and the coefficient of variation of 0.15. A sample realization showing the spatial variations of 

random field is described in Figure 17. The Poisson’s ratio of plate is represented by an 

interval vector consists of three independent interval variables corresponding to the three 

areas. All the interval Poisson’s ratios have the same change range defined as [0.27, 0.3. The 

multidimensional vector of interval variables under consideration for this test case is 

 1 2 1 2 3, , , ,   I I I I I Ix q q . Deterministic values of 
1

Iq and 
2

Iq  are respectively 40 N/mm
2
 and 35 

N/mm
2
, while their interval change ratios are accordingly 0.2 and 0.3. The comparison 

between RLHNPSO and RQMCS for the mean value and standard deviation of displacements 

at node B, C, D and E are carried out to verify the faster convergence of RLHNPSO, as 

shown in Table VIII. The convergence history of RLHNPSO for the displacements at point B 

in Y direction and at point E in X direction is described in Figures 18 and 19, respectively.  

Admittedly, less than 20 iterations of RLHNPSO, in which 10 particles are considered for 

each iteration, can produce the convergent solutions which are certainly better than the results 

produced by 10000 Randomized Quasi-Monte Carlo Simulations. The intervals determined 

by RLHNPSO contain the bounds produced by 10000 RQMC simulations. The time 

consuming for RLHNPSO including the lower and upper bounds for mean value of 

displacement at point C in Y-direction is 2753.21 seconds while RQMCS requires 34045.36 

seconds. This test case was carried out on a computer equipped with a 3.30 GHz i5-2500 

CPU. The performance of RLHNPSO combined with SSFEM within the framework of 

ISSFEM is reliable.  

  

a)                                           b) 

Figure 16. 2D Plate: (a) geometry (unit: m); (b) discretization 
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Figure 17. A sample realization of the random field. 

  Table VIII.  Displacements derived from RLHNPSO and QMCS (Unit: mm). 

Target solutions Point B (Y direction) Point C (Y direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper 0.31344 0.31535 0.25851  0.25962 

Lower 0.18099 0.17973 0.14962  0.14929 

Std 
Upper 0.03761  0.03790  0.03169   0.03182 

Lower 0.02172 0.02157   0.01829  0.01825 

Target solutions Point D (X direction) Point E (X direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper -0.14846  -0.14781  -0.24430   -0.24232  

Lower -0.23518 -0.23741 -0.38406   -0.38733 

Std 
Upper  0.02939  0.02963 0.04044  0.04080 

Lower  0.01849 0.01843   0.02562   0.02540  

 

    

Figure 18. Convergence history of displacement at point B in Y direction (unit: mm). 

0 10 20 30 40

0.2

0.25

0.3

0.32

RLHNPSO Iterations

M
ea

n
 v

al
u

e 
o

f 
d

is
p

la
ce

m
en

t

 

 

 Lower bound

 Upper bound

0 10 20 30 40
0.02

0.025

0.03

0.035

0.04

RLHNPSO Iterations

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 o
f 

d
is

p
la

ce
m

en
t 

 

 

 Lower bound

 Upper bound



         

Figure 19. Convergence history of displacement at point E in X direction (unit: mm). 

 

The visualization for bounded mean values of displacement at target point is also shown in 

this section. The target point considered herein for this issue is the point B. Figure 20 

describes the bounded mean values of displacement at point B in Y direction through the two 

response surfaces of undeformed shape, namely S1 and S2. S1 illustrates the responses of 

whole plate calculated by using the input parameters which are in accordance with the case of 

the lower bound mean value of displacement at point B in Y direction determined by means 

of RLHNPSO. S2 presents the responses surface corresponding to the upper bound mean 

value of displacement at point B in Y direction by RLHNPSO. It can be seen that the change 

range of the mean value of the interval random plate response is notable. 

 

 

Figure 20. Bounded mean value of displacement at point B in Y direction (unit: mm). 
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Another issue presented in this test case is the consideration for the distribution of 

displacement at B in Y direction. The bounding PDF and CDF can be specified using random 

sampling generator of RQMCS for displacement field presented by polynomial chaos 

expansion (PCE), known as PCE-R. The interval coefficients of PCE-R are determined by 

RQMCS or RLHNPSO, as implemented before with regards to investigation for bounds of 

(θ)I

resR  and thus produce different bounds for CDF and PDF. Once these coefficients are 

determined, the bounds for the PDF or CDF of the displacements under consideration can be 

achieved by using RQMCS with 100,000 samples for each function. Let  EF1 (θ)I

resF R , 

 E
F2 (θ)I

resF R ,  Ef1 (θ)I

resf R  and  E
f2 (θ)I

resf R . These bounds are straightforwardly 

labelled for the convenience as F1 from RLHNPSO, F2 from RLHNPSO, F1 from RQMCS, 

F2 from RQMCS, f1 from RLHNPSO, f2 from RLHNPSO, f1 from RQMCS, and f2 from 

RQMCS . Figure 21 shows the comparison between the bounds of probability density derived 

from RQMCS and those from RLHNPSO while 22 presents the bounds for cumulative 

distribution. In general, the shape of the probability density and cumulative distributions 

generated by these two methods are in good agreement in which f1 and f2 from RLHNPSO 

provide slightly better bounds compared to bounds produced by f1 and f2 from RQMCS. 

Note in Figure 21 and 22, that the F1, F2, f1 and f2 from RLHNPSO are specified by PCE-R 

with the case of attaining lower bound of 0.17973 and upper bound of 0.31535 while those 

from RQMCS produced according to the case of attaining lower bound of 0.18099 and upper 

bound of 0.31344.  

 

 

 

Figure 21. Bounds of probability density of displacement at point B in Y direction (unit: mm). 
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Figure 22. Bonds of cumulative distribution of displacement at point B in Y direction (unit: mm). 

Another interest in this section is to do study on variability of mean value and standard 

deviation of interval random displacement at point E in X direction using RLHNPSO with 

different interval change ratios. 1

Iq and 2

Iq  have the same interval change ratio for each case 

while the change range of Poisson’s ratio is still specified by  I  = [0.27, 0.3]. The results 

shown in Table IX and visualizations depicted in Figures 23 and 24 indicate that the intervals 

of the statistical moments of interval random response is widening along with the increasing 

number of interval change ratio.  

 

Figure 23. Variability of interval mean of displacement at point E in X direction by RLHNPSO (unit: 

mm). 
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Figure 24. Variability of interval standard deviation of displacement at point E in X direction by 

RLHNPSO (unit: mm). 

 

Table IX. Interval statistical moments of displacements at point E in X direction (unit: mm). 

Interval 

change 

ratio 

Mean value Standard deviation 

Lower Upper Lower Upper 

0.10 -0.34827 -0.28038 0.029471 0.036629 

0.11 -0.35143 -0.27726 0.029144 0.036961 

0.12 -0.3546 -0.27415 0.028816 0.037294 

0.13 -0.35777 -0.27103 0.028489 0.037627 

0.14 -0.36093 -0.26792 0.028161 0.03796 

0.15 -0.3641 -0.2648 0.027834 0.038293 

0.16 -0.36726 -0.26168 0.027507 0.038626 

0.17 -0.37043 -0.25857 0.027179 0.038959 

0.18 -0.3736 -0.25545 0.026852 0.039292 

0.19 -0.37676 -0.25234 0.026524 0.039625 

0.20 -0.37993 -0.24922 0.026197 0.039958 

0.21 -0.38309 -0.24611 0.025869 0.040291 

0.22 -0.38626 -0.24299 0.025542 0.040624 

0.23 -0.38943 -0.23988 0.025214 0.040957 

0.24 -0.39259 -0.23676 0.024887 0.04129 

0.25 -0.39576 -0.23365 0.024559 0.041623 

0.26 -0.39892 -0.23053 0.024232 0.041956 

0.27 -0.40209 -0.22742 0.023904 0.042289 

0.28 -0.40526 -0.2243 0.023577 0.042622 

0.29 -0.40842 -0.22119 0.02325 0.042955 

0.30 -0.41159 -0.21807 0.022922 0.043288 
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4.3. Test case 3 

A square plate with one circle hole subjected to interval loads shown in Figure 26 is under 

consideration. The domain of the plate is discretised into 192 four-node quadrilateral 

elements and 224 nodes. The covariance function for elastic modulus of plate given in Eq. 

(43) with assumption of cxL = cyL  = 0.5 (m) and the coefficient of variation of 0.2. A sample 

realization showing the spatial variations of random field is presented in Figure 26.The 

Poisson’s ratio for whole plate is represented by eight independent interval variables

 
8

I

ipos ipos 1
  corresponding to eight areas of the domain 

8

ipos ipos 1
A


. All of I

ipos have the same 

change range defined as [0.27, 0.3]. The interval vector under consideration for this test case 

is   
8

1 2 1
, ,


 I I I I

ipos ipos
x q q . Deterministic values of 

1

Iq and 
2

Iq  are 80 N/mm
2
 and 60 N/mm

2
, 

respectively. Their interval change ratios are 0.2 and 0.15, respectively. The comparison 

between RLHNPSO and RQMCS for the mean value and standard deviation of interval 

random displacements at nodes B, C, D and E are shown in Table X. The convergence 

history of RLHNPSO for determining the intervals of the mean value of displacement at point 

C in X direction and at point E in X direction are illustrated in Figures 27 and 28, 

respectively. The deformed shape of the plate produced by the system parameters 

corresponding to the lower and upper mean value of displacement at point E in X direction 

and at point B in Y direction is respectively presented in Figures 29 and 30. 

  

a)                                           b) 

Figure 25. 2D Plate with one hole: (a) geometry; (b) discretization. 
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Figure 26. A sample realization of the random field. 

It can be observed that RLHNPSO has better performance with respect to faster convergence 

compared to RQMCS. This method can produce a wider range of target solutions than that of 

RQMCS, that is, the results obtained by RLHNPSO is more conservative. In other words, 

RLHNPSO can provide convergence results by less than 10   40 = 400 calculations, while 

other simulation methods cannot produce reliable results with a similar number of iterations. 

The time consuming for RLHNPSO to find the lower and upper bounds of mean value of 

displacement at node D in Y-direction is 3564.21 seconds while that for RQMCS is 42920.88 

seconds which is approximately 12 times in comparison with the former. Again, it takes even 

longer if the number of iterations of RQMCS or MCS is increased to obtain better results. 

This test case was carried out on a computer equipped with a 3.30 GHz i5-2500 CPU. 

         Table X. Displacements derived from RLHNPSO and QMCS (unit: mm). 

Target solutions Point B (Y-direction) Point D (Y-direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper -0.60349   -0.59846 -0.53966   -0.53566 

Lower  -0.84317  -0.85148 -0.75290  -0.75927 

Std 
Upper  0.10290   0.10389  0.09257  0.09333 

Lower  0.07370  0.07309 0.06638  0.06590 

Target solutions Point C (X-direction) Point E (X-direction) 

Methods RQMCS RLHNPSO RQMCS RLHNPSO 

Mean 
Upper 0.98329  0.98874  0.88318  0.88712  

Lower  0.67038 0.66596   0.60152 0.59792 

Std 
Upper  0.12045 0.12112  0.10838  0.10885 

Lower  0.08208  0.08155  0.07377  0.07334 

 



  

Figure 27. Convergence history of displacement at point C in X direction by RLHNPSO (unit: mm). 

 

 

   

Figure 28. Convergence history of displacement at point E in X direction by RLHNPSO (unit: mm). 

 

        

Figure 29. Deformed shape of mean of displacement at E in X-direction (unit: mm): (a) lower bound; 

(b) upper bound. 
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Figure 30. Deformed shape of mean of displacement at B in Y-direction (unit: mm): (a) lower bound; 

(b) upper bound. 

The bounds of mean value of interval random displacement at point C in X direction are 

illustrated in Figure 31 by two response surfaces of undeformed shape S1 and S2. The former 

presents the responses of whole plate based on the input parameters are specified by the case 

of evaluating the lower bound for mean value of displacement at point C in X direction by 

means of RLHNPSO. The latter is the responses surface consistent with the attainment of the 

upper bound for mean value of displacement at point C in X direction by means of 

RLHNPSO. The mean value of the random interval displacement is not deterministic but 

interval as shown in Figure 31. 

 

 

Figure 31. Bounded mean value of displacement at point C in X direction (unit: mm). 

 

Another consideration in this test case is the parametric study on variability of results 

produced by RQMCS. The number of iterations for this method is varied to evaluate its 

performance. Results are given in Figures 32-35. Some detailed results are listed in Tables 



VII and VIII. It appears that RQMCS is not capable of providing reliable results as with 

fluctuations of the responses produced by different number of iterations can be observed 

easily 

 

Table XI. Statistical values of displacement at point D in Y direction derived by RQMCS 

with different number of iterations. Unit (mm). 

Number of 

Iterations 

Mean value Standard deviation 

Lower 

bound 
Upper bound Lower bound Upper bound 

2000 -0.75135 -0.54053 0.06649 0.09235 

4000 -0.75380 -0.54106 0.06656 0.09266 

6000 -0.75403 -0.54137 0.06659 0.09270 

8000 -0.75210 -0.53981 0.06640 0.09246 

10000 -0.75290 -0.53966 0.06638 0.09257 

12000 -0.75424 -0.54170 0.06663 0.09272 

14000 -0.75426 -0.54130 0.06659 0.09273 

16000 -0.75442 -0.53983 0.06641 0.09275 

18000 -0.75352 -0.53938 0.06634 0.09262 

20000 -0.75425 -0.53916 0.06633 0.09273 

 

Table XII. Statistical values of displacement at point C in X direction derived by RQMCS 

with different number of iterations. Unit (mm). 

Number of 

Iterations 

Mean value Standard deviation 

Lower 

bound Upper bound Lower bound Upper bound 

2000 0.67438 0.97921 0.08256 0.11998 

4000 0.67245 0.98058 0.08234 0.12010 

6000 0.67130 0.98242 0.08219 0.12036 

8000 0.67098 0.98066 0.08215 0.12016 

10000 0.67038 0.98329 0.08208 0.12045 

12000 0.67095 0.98444 0.08216 0.12060 

14000 0.67073 0.98242 0.08212 0.12038 

16000 0.67099 0.98128 0.08215 0.12021 

18000 0.67069 0.98250 0.08213 0.12035 

20000 0.67163 0.98138 0.08225 0.12024 

 

  



 

Figure 32. Mean value of displacement at point D in Y direction by RQMCS (unit: mm). 

 

 

Figure 33. Standard deviation of displacement at point D in Y direction by RQMCS (unit: mm). 
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Figure 34. Mean value of displacement at point C in X direction by RQMCS (unit: mm). 

 

 

Figure 35. Standard deviation of displacement at point C in X direction by RQMCS (unit: mm). 

 

5. CONCLUSION 

Hybrid interval probabilistic analysis of structures with a combination of random fields and 

uncertain-but-bounded parameters is implemented in this study. The interval spectral 

stochastic finite element method (ISSFEM) is developed by incorporating the interval 

algorithm into the spectral stochastic finite element method (SSFEM). The proposed 

framework of ISSFEM has the ability to assess the effects of the random interval uncertainty 

of structures. Based on the K-L expansion and Polynomial Chaos, the random interval 

governing finite element equations are established, and the interval random structural 

responses are derived. Expressions for calculating the intervals for the mean value and the 

standard deviation of the interval random responses are obtained using the definition of 

statistical moments. An advanced evolutionary intelligence method, namely randomised low-
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discrepancy sequences initialized high-order nonlinear particle swarm optimization algorithm 

(RLHNPSO), is adopted to determine the lower and upper bounds on the set of probabilistic 

models that characterize the interval random responses. The efficiency and accuracy of the 

proposed ISSFEM are validated through numerical examples. Compared with improved 

sampling in the form of randomized Quasi-Monte Carlo Simulation (RQMCS), which is used 

to handle interval uncertainty within the framework of ISSFEM, the RLHNPSO based hybrid 

interval stochastic method is capable of providing better solutions. 

The presented methodology is applicable to pure random fields and interval problems as 

special cases. Hence, the proposed hybrid interval probabilistic analysis is an extension of 

established approaches and provides a technology for generalized uncertainty quantification 

and analysis. Further work is advisable to expand the applicability to very large structure and 

dynamic problems. This includes the further increase of numerical efficiency, but also an 

expansion to higher dimensionality to account for multi-random fields and high order multi-

interval parameters. Also, extensions to accommodate non-linear behaviour would be 

meaningful.  
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