
Convex Constrained Meshes for superpixel segmentations of images

Jeremy Forsythea,*, Vitaliy Kurlinb

aVienna University of Technology, Favoritenstr. 9-11 / E186, A-1040 Vienna, Austria
bDepartment of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

Abstract. We consider the problem of splitting a pixel-based image into convex polygons with vertices at subpixel
resolution. Edges of resulting polygonal superpixels can have any direction and should adhere well to object bound-
aries. We introduce a Convex Constrained Mesh that accepts any straight line segments and outputs a complete mesh
of convex polygons without small angles and with approximation guarantees for the given lines. Experiments on the
Berkeley Segmentation Dataset BSD500 show that the resulting meshes of polygonal superpixels outperform other
polygonal meshes on boundary recall and pixel-based SLIC and SEEDS superpixels on undersegmentation errors.

Keywords: superpixel over-segmentation, line segment detection, convex polygonal mesh, constrained triangulation.

*Corresponding author jforsythe@cg.tuwien.ac.at

1 Introduction: Motivation, Problem Statement and Applications to Superpixels

This extended version of the conference paper1 proves approximation guarantees for Convex Con-

strained Meshes (CCM) in Theorem 8 and affine invariance of optimal meshes in Theorem 10.

1.1 Motivation for Splitting Images into Convex Polygons at Subpixel Resolution

The traditional statement of the image over-segmentation problem is to group square-based pixels

into superpixels that adhere well to object boundaries in the image. The boundaries of these pixel-

based superpixels consist of short horizontal and vertical edges restricted to a given grid.

Since images represent a spatially continuous world, we argue that the segmentation problem

should be solved in terms of functions defined over a continuous image domain, not over a dis-

cretization such as a regular grid. Due to anti-aliasing filtering, grayscale values across a real image

edge rarely drop from 255 (white) to 0 (black), but change gradually over 2-3 pixels [2, Fig. 1].

Hence a real edge between objects is often not along pixel boundaries and should be considered in

the infinite family of line segments that can have any slope and endpoints with real coordinates.

1

This is a modified version of paper published in Journal of Electronic Imaging 26(6), 061609 (Nov∕Dec 2017)

Fig 1 Left: image 106 from the Oxford Buildings Dataset3 with 600K pixels. Right: 2159 CCM superpixels.

The next harder task is to extend line segments to a complete mesh whose polygons can be

considered as superpixels at subpixel resolution. The brute-force approaches based on constrained

triangulations often lead to polygons with small angles, because detected line segments can be

almost parallel in real-life images containing long thin structures, which motivates the following.

Over-segmentation problem for polygonal superpixels at subpixel resolution.

Split a given pixel-based image into convex polygons such that

(1.1a) all internal angles of the polygons are larger than a reasonable lower bound and

(1.1b) the edges of the polygons well approximate all boundaries of objects in the image.

(1.1c) a reconstruction with colored polygons is similar to the original image as in Fig. 1.

The convexity requirement is motivated by the fact that many pixel-based superpixels have

irregular shapes and zigzag boundaries that follow horizontal and vertical lines of a pixel grid.

2

1.2 Refining the Line Segment Detector and Building a Convex Constrained Mesh (CCM)

To build a mesh satisfying conditions (1.1a)–(1.1c) above, we have chosen the Line Segment De-

tector4 (LSD), which outputs edges in grayscale images at subpixel resolution with theoretical

guarantees. Since LSD edges are allowed to have intersections, we need to convert the LSD output

into a properly embedded planar graph consisting of non-intersecting straight edges in the plane.

The CCM algorithm takes as input any grayscale image, consists of the following big stages

below and outputs a mesh of convex polygons satisfying conditions (1.1a)–(1.1c) in the over-

segmentation problem by Theorem 8, which was announced in Ref. 1 without proof.

Section 4: refinement of the Line Segment Detector (LSD) output with approximation guarantees.

Section 5: extension of the line segments to a mesh of convex polygons with no small angles.

The above stages of the CCM algorithm require the following parameters.

•Min Distance (default 3 pixels) is an approximation tolerance of LSD edges by CCM edges.

•Min Angle (default 20 degrees) is the minimum angle between adjacent edges in a final mesh.

1.3 Contributions and Applications to Superpixel Segmentations at Subpixel Resolution

The Convex Constrained Meshes are applied to segmenting images into polygonal superpixels.

Traditional superpixel algorithms associate every square-based pixel to one of superpixels. This

discrete output often contains superpixels with holes or several connected components.

A Convex Constrained Mesh outputs connected convex polygonal superpixels by construction.

We introduce optimal constant colors for any polygonal mesh over a given pixel-based image in

Definition 9. The resulting colored mesh can be rendered at any higher resolution, see Fig. 2.

3

Fig 2 Left: input. Middle: 275 Voronoi cells,5 nRMS ⇡ 10.2%. Right: 246 CCM superpixels, nRMS ⇡ 4.48%.

The resulting colored mesh well approximates an original image by using much fewer convex

polygons instead of square-based pixels. Fig. 2 shows that only 246 convex polygons approximate

the original 512⇥ 512 image with a small reconstruction error nRMS introduced in Definition 9.

Here is a summary of the contributions to the state-of-the-art for image over-segmentation.

• The over-segmentation problem is studied at subpixel resolution with the extra restrictions on

convexity, small angles and approximations, see conditions (1.1a)–(1.1c) in subsection 1.1.

• The LSD refinement in section 4 can be applied to any collection of potentially intersecting

segments and outputs a planar straight line graph with approximation guarantees by Theorem 5.

• The Convex Constrained Meshes can be built without angles smaller than Min Angle 20.7�

so that the original line segments are within the Min Distance-offset of the mesh by Theorem 8.

• The CCMs outperform other polygonal superpixels on the Reconstruction Error (justified by

Theorem 10) and Boundary Recall from the Berkeley Segmentation Database,6 see section 6.

Section 2 discusses the related past work on superpixels. Section 3 introduces key concepts

necessary for proofs of main Theorems 5 and 8. Section 4 resolves intersections and small angles of

any line segments. Section 5 extends any straight line planar graph to a mesh of convex polygons.

Section 6 evaluates CCM superpixels on 500 images from the Berkeley Segmentation Database.

4

2 Related Work on Superpixels, Line Segment Detection and Polygonal Meshes

2.1 Traditional Superpixels consisting of Square-based Pixels restricted to a Pixel Grid

A pixel-based image is represented by a lattice L whose nodes are in a 1–1 correspondence with

all pixels, while all edges of L represent adjacency relations between pixels. Usually each pixel

is connected to its closest 4 or 8 neighbors. The seminal Normalized Cuts algorithm by Shi and

Malik7 finds an optimal partition of L into connected components, which minimizes an energy

taking into account all nodes of L. The Entropy Rate Superpixels (ERS) of Lie et al.8 minimize

the entropy rate of a random walk.

The Simple Linear Iterative Clustering (SLIC) algorithm by Achanta et al.9 forms superpixels

by k-means clustering in a 5-dimensional space using 3 colors and 2 coordinates per pixel. The

search is restricted to a neighborhood of a given size, so the complexity is O(kmn), where n and

m are the numbers of pixels and iterations. The clustering approach was further developed by Li

and Chen,10 by Giraud et al.11 in SCALP superpixels, by Buyssens et al.12 in Eikonal superpixels.

SEEDS (Superpixels Extracted via Energy-Driven Sampling) by Van den Bergh et al.13 seems

the first superpixel algorithm to use a coarse-to-fine optimization. The colors of all pixels within

each fixed superpixel are put in bins, usually 5 bins for each color channel. Each superpixel has

the associated sum of deviations of all bins from an average bin within the superpixel. This sum

is maximal for a superpixel whose pixels have colors in one bin. SEEDS iteratively maximizes

the sum of deviations by shrinking or expanding superpixels. Another energy function is similarly

optimized from coarse to finer levels by Yao et al.14 in Coarse-to-Fine superpixels.

Royer et al.15 introduced convexity constraints in a dicrete setting for superpixels consisting of

square-based pixels. Waterpixels by Machairas et al.16 used a spatially regularized gradient for a

5

tradeoff between the superpixel regularity and the adherence to object boundaries.

The key limitation of pixel-based superpixels is their restriction to a given pixel grid. Any di-

agonally oriented object will have a zigzag superpixel boundary consisting of only short horizontal

or vertical edges, because other directions are not allowed. Hence measuring lengths of diagonal

objects using pixel-based superpixels can have a multiplicative error up to
p
2. The only way to

measure lengths more accurately is to allow superpixels whose edges may have any direction. Ac-

curate measurements of boundaries are needed in many applications from satellites to medicince.

Fig 3 Left: input. Right: 259 LSD red middle segments in blue rectangles before the refinement in Section 4.

2.2 The Line Segment Detector (LSD) and Shewchuk Triangulations without Small Angles

The Line Segment Detector by Grompone von Gioi et al.44 finds edges at subpixel resolution in

grayscale images. The output consists of thin blue rectangles whose long middle red lines are

detected line segments, see Fig. 3. Adjacent pixels with similar gradients are clustered and every

resulting cluster is approximated by a rectangle which might have any position on the plane. The

main LSD parameter is a tolerance ⌧ for angles between gradients of adjacent pixels.

6

Fig 4 Top: 589 Voronoi superpixels (boundary mesh and reconstructed image) have nRMS ⇡ 9.22%. Bottom: 416
CCM superpixels (boundary mesh and reconstructed image) have the smaller error nRMS ⇡ 6.32 from Definition 9.

We use the state-of-the-art Triangle C++ software,17 which outputs Shewchuk triangulations

satisfying a large lower bound for all angles. A Convex Constrained Mesh extends Shewchuks

triangulation to a general mesh of convex polygons for the same Min Angle = 20

� as in Ref. 17.

7

2.3 Polygonal superpixels based on Voronoi meshes

Duan and Lafarge5 used Voronoi meshes to make a step change by introducing the first polygonal

superpixels at subpixel resolution. These Voronoi superpixels are obtained by splitting an image

into Voronoi cells whose centers are chosen along LSD edges. If there are several LSD edges that

are near parallel and close to each other, only one of them is included into a final Voronoi mesh.

Fig. 4 shows that the resulting Voronoi mesh misses long thin structures such as legs of a camera

tripod. So the LSD edges were considered as soft constraints without proven guarantees yet.

3 Key Definitions: Planar Graphs and Polygonal Meshes

This section defines concepts that are necessary for the later algorithms and theorems. Definition 1

introduces a PL complex that formally covers all the essential cases including

• the input for the CCM algorithm (a set of points and constrained line segments);

• any PSLG (a planar straight line graph) as defined in Ref. 17;

• Steiner Delaunay18 triangulations and Shewchuk triangulations;17

• the final output of the CCM algorithm (a Convex Constrained Mesh CCM).

Definition 1. [18, Def 2.8] A (PL) complex C is a finite set of vertices, edges and polygons (faces) such that

• if C contains an edge e, then C contains both endpoints of e;

• the boundary of any face is a union of edges from C;

• edges from C can meet only at their common endpoint;

• faces from C can share only common edges and vertices.

The domain |C| ⇢ R2 of the PL complex C is the area covered by all vertices, edges and faces of C. If the

complex C has no faces, we call C a Planar Straight Line Graph (PSLG)17 or (briefly) a graph.

8

A PL complex C can consist of disconnected line segments. Definition 2 extends C using extra

vertices (called Steiner points) to a full triangulation T . All edges of C (possibly subdivided in T)

will be called constrained, all other edges of T are unconstrained.

Definition 2. [18, 2.15] A Steiner constrained triangulation of a PL complex C is a PL complex SDT(C) such that

(2a) SDT(C) has only triangular faces and covers |C| ⇢ R2,

(2b) if all edges of the given complex C are opaque, then for any triangle T the open circumdisk of T covers no

vertices of C visible from the interior of the triangle T .

Condition (2a) means that all faces of C are subdivided into triangles. An edge of C can be

subdivided into shorter edges and the domain of SDT(C) may not be convex. Condition (2b)

guarantees that SDT(C) contains only nice triangles, e.g. a quadrilateral in Fig. 5 should be split

by a shorter diagonal rather than a longer one.

If a PL complex C is a finite set of points, then SDT(C) is a classical Delaunay triangulation,

which is dual to the Voronoi mesh in Definition 3 below. Let d be the Euclidean distance. For a set

S ⇢ R2, let d(p, S) = inf{ d(p, q) : q 2 C } be the distance from a point p to S.

Fig 5 Left: the yellow circumdisk of T contains a vertex v. Middle: the circumdisk of T contains no vertices, both
triangles belong to SDT(C). Right: the top and bottom Voronoi cells are adjacent, so their centers are connected by
e.

9

Definition 3. For a set of points C = {p1, . . . , pn}, the Voronoi cell V (pi) = {q 2 R2
: d(q, pi) d(q, C � pi)} is

the closed neighborhood of pi consisting of points q 2 R2 that are non-strictly closer to the site pi than to other points

of C � pi. The splitting of the plane into Voronoi cells V (p1) [· · · [V (pn) is called the Voronoi mesh, see Fig. 5.

Then a Delaunay triangulation DT(C) on the vertex set C has

• an edge between pi, pj if the faces V (pi) \ V (pj) 6= ;,

• a triangle on pi, pj , pk if V (pi), V (pj), V (pk) share a point.

Definition 4 formally introduces the main concept of a Convex Constrained Mesh (CCM).

Definition 4. Let G be a planar straight line graph with all angles between adjacent edges at least ' 60

�. A

Convex Constrained Mesh CCM(G) is a piecewise linear complex such that

(4a) CCM(G) has convex polygons with angles � Min Angle = arcsin

✓
1p
2

sin

'

2

◆
;

(4b) the graph G is covered by the edges of the Convex Constrained Mesh CCM(G).

Any Shewchuk triangulation is an example of a Convex Constrained Mesh. However, Defi-

nition 4 allows general meshes of any convex polygons without intersections and with no small

angles. We build CCM by converting the LSD output into a planar graph G (Section 4) without

self-intersections and then by extending G into a polygonal mesh without small angles.

4 Refinement of the Line Segment Detector to Resolve Intersections and Small Angles

The input for the LSD algorithm4 is a grayscale image. The output is an unordered set of thin

rectangles in the plane. We consider only the long middle lines of these rectangles as the red

constrained edges and also add the boundary edges of the whole image, see Fig. 3.

The resulting red segments may intersect each other, go outside the boundary of the image or

form small angles. Subsections 4.1–4.3 describe how to refine the LSD output and get a graph G

without angles smaller than a given bound '. We define the strength of a line segment S as +1

10

if S is on the boundary of the image, else the strength is the length of S. We apply each of the

refinements to line segments ordered by their strength. So the order of refinements is not random

and depends only on line segments that were detected by LSD. In each of subsections 4.1–4.3

below all the listed steps are performed for every pair of line segments from the LSD output.

4.1 Extending Segments to Line-Segment Intersections

If an endpoint v of one segment is very close to another segment, then a Shewchuk triangulation

will have many tiny triangles at the vertex v to avoid small angles. The steps below resolve this

singular case by inserting a proper intersection, see Algorithm 1.

Algorithm 1 Extending segments to line-segment intersections in Steps (4.1a)–(4.1d)
Input: Line segments S

i

2 S
Output: Refined line segments S

R

for all S1 2 S do
Take the infinite line L(S1)

Find all intersection points p on segments S2 2 S intersecting the two rays L(S1)� S1

Take S2 whose p is closest to S1

if d(p, S1) < Min Distance then
Find acute angle ✓ between L(S1) and S2.
if ✓ � ' then

Extend S1 to p
end if
if ✓ < ' then

Find a point q such that d(q, S2) = Min Distance

if q exists then
Shorten S1 to q

else
Remove S1

end if
end if

end if
end for
S
R

 S

Step (4.1a) For any straight segment S1, we take the infinite line L(S1) through S1, see Fig. 6. We

11

find all segments S2 intersecting the two rays L(S1)� S1 (the line L(S1) with S1 removed).

Step (4.1b) Among all intersection points of the two rays L(S1) � S1, we find the segment S2

whose intersection p with L(S1)�S1 is closest to S1. This choice of p guarantees that if we extend

S1 to p, then no new intersections with other segments are created. Steps (4.1c) and (4.1d) below

work similarly for the intersection point closest to another endpoint of S1.

Fig 6 Left: extend S1 to the point p = L(S1)\S2. Right: extend segments S1 and S2 to the point p = L(S1)\L(S2).

Step (4.1c) If d(p, S1) > Min Distance, we stop considering p. Otherwise we find the acute angle

✓ between L(S1) and S2. If ✓ � ', we extend S1 to the new vertex p, which splits S2 into two new

segments, see the left hand side picture of Fig. 6. If any of these new segments within S2 is shorter

than Min Distance, we remove this segment together with its endpoint different from p.

Fig 7 Left: shorten a segment S1 to the new endpoint q at the distance d(q, S2) = Min Distance. Right: shorten a
segment S1 by pulling its endpoint away from S2 to avoid a small angle ✓ < ' between the segments S1, S2.

Step (4.1d) If ✓ < ', we find a point q 2 S1 with d(q, S2) = Min Distance. If q exists, we shorten

S1 to the new endpoint q, see Fig. 7. Otherwise we remove the whole segment S1, because S1 is

covered by the Min Distance-offset of S2.

4.2 Extending Segments to Line-Line Intersections

If two segments don’t intersect as in subsection 4.1, but have very close endpoints, we again avoid

tiny triangles later inserting a proper intersection. Similarly to Step (4.1), we find intersection

12

points within Min Distance. Now we take the intersection of the infinite lines L(S1) and L(S2)

outside S1, S2. These steps are described in Algorithm 2 below.

Algorithm 2 Extending segments to line-line intersections in Steps (4.2a)–(4.2c)
Input: Line segments S

i

2 S
Output: Refined line segments S

R

for all S1 2 S do
Take the infinite line L(S1) and L(S2) for all other segments S2 2 S
Take all S2 such that either of the rays L(S1)� S1 meets one of the rays L(S2)� S2

for all Intersections of L(S1)� S1 and L(S2)� S2 choose p closest to an endpoint of S1 do
if d(p, S1) < Min Distance and d(p, S2) < Min Distance then

Find the acute angle ✓ between L(S1) and L(S2).
if ✓ � ' then

Extend S1 and S2 to the new vertex p
end if
if ✓ < ' then

Move endpoint of the weaker segment to a point q such that d(q, S2) =

Min Distance

end if
end if

end for
end for
S
R

 S

Step (4.2a) For a segment S1, we consider the infinite line L(S1) through S1, and the lines L(S2)

through all the other segments. Then we find all segments S2 such that either of the rays L(S1)�S1

meets one of the rays L(S2)� S2.

Step (4.2b) Among all intersections of L(S1)� S1, L(S2)� S2, we choose a point p closest to an

endpoint of S1, then do Step (4.2c) for both endpoints of S1.

Step (4.2c) If d(p, S1) < Min Distance and d(p, S2) < Min Distance, we find the acute angle

✓ between L(S1) and L(S2). If the angle ✓ � ', we extend S1 and S2 to the new vertex p, see

Fig. 6. If the angle ✓ < ', we move the endpoint of the weaker segment to a point q such that

d(q, S2) = Min Distance, see Fig. 7.

13

4.3 Splitting Line Segments at Intersection Points

Many segments in the LSD output may actually intersect, so the steps below insert this intersection

point to get a planar graph without self-intersections, see Algorithm 3.

Algorithm 3 Splitting line segments at intersection points in Steps (4.3a)–(4.3d)
Input: Line segments S

i

2 S
Output: Refined line segments S

R

for all S1, S2 2 S do
if S1, S2 intersect at a point p internal to both S1,S2 then

Split the segments into four smaller segments
Remove new segments shorter than Min Distance

Calculate ✓, the smallest angle between remaining segments
if ✓ < ' then

Shorten the weaker segment S1 such that d(S1, S2) = Min Distance

end if
end if

end for
S
R

 S

Step (4.3a) For each pair of segments S1, S2, we check if S1, S2 intersect at a point p that is

internal to both S1, S2. If a new segment is shorter than Min Distance, we remove it together with

its endpoint different from p, see Fig. 8.

Fig 8 Removing new segments and collapsing segments shorter than Min Distance.

Step (4.3b) Let ✓ be the smallest angle between the remaining segments (also denoted by S1, S2)

with the common endpoint p. If ✓ � ', we stop considering the point p. The steps below similarly

work for the symmetric angle ✓ at p.

Step (4.3c) If ✓ < ', we shorten the weaker segment S1 to make the distance d(S1, S2) =

Min Distance as in (4.1d), see the right hand side picture of Fig. 7.

14

Step (4.3d) We collapse any isolated edge shorter than Min Distance to its mid-point and remove

all non-isolated edges shorter than Min Distance, see Fig. 8.

4.4 Approximation Guarantees for the LSD refinement

We further justify all the steps in subsections 4.1–4.3 by the following result which shows that the

graph produced has no small angles between its edges and is close to the original line segments.

Theorem 5. Let line segments S1, . . . , Sk have m intersections. The LSD refinement described in subsections 4.1–4.3

outputs a planar straight line graph G with O(k +m) edges in time O((k +m) log k) such that

(5a) any angle in the graph G between adjacent edges is not smaller than ';

(5b) the union [iSi of segments is covered by the Min Distance-offset of G.

Proof. Due to subsection 4.3, all final segments meet only at their endpoints. A line segment may

intersect any other segment only once. Any new intersection may generate two extra segments, so

G has at most O(k + m) edges. There are m = O(k2
) intersections of k segments in the worst

case. In practice, any segment S detected by LSD meets at most two segments, only one near

each endpoint of S, so m = O(k). The output-sensitive swipe line algorithm [19, chapter 2] finds

all intersections between segments in time O((k +m) log k) and can be extended to line-segment

intersections in Step (4.1a). Steps (4.1d), (4.3c) guarantee that all angles are not smaller than the

given lower bound '. A segment S1 can become longer by at most Min Distance in Step (4.1c) and

shorter in Steps (4.1d), (4.2c), (4.3c), (4.3d). The removed part of S1 is in the Min Distance-offset

of a stronger segment S2, which can’t be shortened later.

15

5 A Convex Constrained Mesh Without Small Angles

5.1 Fast Shewchuk Triangulations Without Small Angles

Any planar straight line graph G ⇢ R2 can be the input for Shewchuk’s Triangle code.17 The

output is a Steiner constrained Delaunay Triangulation T (G) without small angles.

Theorem 6. [17, Theorem 12] For a planar straight line graph G having n vertices and no angles smaller

than ' 60

�, in time O(n log n) one can build a triangulation T (G) without angles smaller than Min Angle =

arcsin

✓
1p
2

sin

'

2

◆
.

If ' = 60

�, then Min Angle = arcsin

✓
1p
2

sin

'

2

◆
⇡ 20.7�. If a graph G has angles smaller

than Min Angle, they are preserved in a Shewchuk triangulation. So the LSD refinement in sec-

tion 4 is needed to prove the main results in Theorem 8 later in subsection 5.4.

We use OpenMesh to store T (G) and merge triangles into convex faces as described below.

5.2 Simple and Advanced Merge Operations to Get Convex Faces

Here we process unconstrained edges in decreasing order of length. The steps below are motivated

by the aim to simplify the mesh and get a smaller number of superpixels keeping them convex.

Hereafter, we will use different colors to characterize the edges: red, blue and black. These

colors are used to highlight constrained, unconstrained and unknown type edges, respectively.

Fig 9 Left: a simple merge by removing an unconstrained edge e between two faces if the new larger face is convex.
Right: an advanced merge by removing an unconstrained edge e between two faces if each of its endpoints can be
resolved by Step (5.2b) or (5.2c) so that the new larger face is convex.

16

Algorithm 4 Simple and advance merge operations in Steps (5.2a)-(5.2d)
Input: Mesh M with edges e 2M
Output: Simplified mesh M

S

for all Unconstrained edges e 2M do
Sort by decreasing order of length
Find the four internal angles ✓1, ✓2, ✓3, ✓4 at the endpoints
if ✓1 + ✓2 180

� AND ✓3 + ✓4 180

� then
Remove edge e

end if
if ✓1 + ✓2 > 180

� then
if The edges adjacent to the two angles are unconstrained AND no small angles would

be created then
Remove these edges and replace with a single edge

end if
end if
if ✓3 + ✓4 > 180

� then
if The edges adjacent to the two angles are unconstrained AND no small angles would

be created then
Remove these edges and replace with a single edge

end if
end if

end for
M

S

 M

Step (5.2a) For each unconstrained edge e, we find 4 angles ✓1, ✓2, ✓3, ✓4 at its endpoints in Fig. 9.

Step (5.2b) If ✓1 + ✓2 180

� and ✓3 + ✓4 180

�, the convexity is preserved at both endpoints of

e, so we remove e and the new larger face is convex.

If one of the angles ✓1 + ✓2, ✓3 + ✓4 in Step (5.2b) is greater than 180

�, the simple merge

operation along the edge e leads to a non-convex face. Then we try to make the triangular cut in

Step (5.2c) without disturbing constrained edges.

Step (5.2c) Assume that ✓1 + ✓2 > 180

� at the vertex v in Fig. 9, and both edges e1, e2 are

unconstrained. Then we try replacing e1 [e2 by the new unconstrained edge connecting v1, v2 in

the last picture of Fig. 9. If no angle becomes smaller than Min Angle or larger than 180

�, then

this triangular cut is successful.

17

Step (5.2d) If all angles are in [Min Angle, 180�] after removing the edge e in Fig. 9, we finish

Step (5.2c), else we reverse Step (5.2c) to avoid small angles.

After Step (5.2d) we check if any new edges can be removed by simple merge operations,

which further simplifies the mesh. Finally, at any degree 2 vertex with a 180

� angle, we replace

two adjacent edges by one longer straight edge.

5.3 Collapsing unconstrained edges for a further simplification

We process unconstrained edges of the mesh in the increasing order of length. Both endpoints

of any constrained edge are called fixed vertices. We will perturb only non-fixed vertices whose

incident edges are all unconstrained. The steps are set out in Algorithm 5.

Algorithm 5 Collapse unconstrained edges in Steps (5.3a)–(5.3b) below
Input: Mesh M with edges e 2M
Output: Simplified mesh M

S

for all Unconstrained edges e 2M do
Sort by decreasing order of length
if e has an endpoint v which is not fixed then

Collapse the edge e towards the opposite endpoint w
if A non-convex face around w OR an angle ✓ < Min Angle has been created then

Cancel the collapse, consider the collapse in the opposite direction from w to v
end if

end if
end for
M

S

 M

Step (5.3a) If an endpoint v of an unconstrained edge e is not fixed, we try to collapse the edge e

from the endpoint v towards the opposite endpoint w.

Step (5.3b) If any of the faces around the vertex w is non-convex or has an angle smaller than

Min Angle, we cancel this collapse and consider the opposite edge directed from w to v, or the

next edge from the ordered list above.

18

If the edge e belongs to a triangle, this triangle also collapses, which reduces the number of

faces without affecting constrained edges. The average decrease of the number of faces due to

collapses above is 10% across BSD500 images.

5.4 Theoretical Guarantees for a Convex Constrained Mesh (CCM)

The following result justifies all the steps in subsections 5.2–5.3.

Lemma 7. For any planar straight line graph G with n vertices and without angles smaller than ' 60

�, the

algorithm in subsections 5.2–5.3 build in time O(n log n) a Convex Constrained Mesh CCM(G) such that

(7a) CCM(G) has no angles ✓ < Min Angle = arcsin

✓
1p
2

sin

'

2

◆
;

(7b) the graph G is fully covered by the edges of CCM(G).

Proof. Theorem 6 guarantees no small angles in T (G) built in time O(n log n). All steps in sec-

tion 5 check that CCM(G) has no angles ✓ < Min Angle. All edges of G are kept by the merge

operations and can become longer only in Step (5.3c), so the edges of CCM cover G.

Theorem 8. Let line segments S1, . . . , Sk have m intersections. Then the algorithms in sections 4 and 5 build a

Convex Constrained Mesh in time O((k +m) log(k +m)) such that

(8a) any internal angle in any CCM polygon is not smaller than Min Angle;

(8b) the union [iSi is covered by the Min Distance-offset of the CCM’s edges.

Proof. Theorem 5 in time O((k+m) log k) builds a planar straight line graph G with O(m) vertices

and angles not smaller than ' = 2arcsin(

p
2 sinMin Angle). Lemma 7 in time O(n log n) for

n = O(k + m) builds CCM(G) without angles smaller than arcsin

✓
1p
2

sin

'

2

◆
= Min Angle.

Finally, conditions (5b) and (5b) of earlier Theorem 5 imply condition (8b).

19

6 Experiments on 500 BSD Images, Conclusions and Further Problems

Subsections 6.1 and 6.2 compare the sizes and reconstruction errors of the CCM and Voronoi

superpixels. Subsection 6.3 also includes two more superpixel algorithms SLIC9 and SEEDS13 for

the benchmarks based on human drawings in the Berkeley Segmentation Database6 (BSD).

6.1 Sizes of CCMs, Shewchuk’s Triangulations and Voronoi meshes

The first picture in Fig. 10 is the original LSD output. The second picture shows the LSD refine-

ment in Section 4. The refined LSD output has more edges than the original LSD, because we

include boundary edges of images and also intersection points, which become vertices of graphs.

Fig 10 Top left: 259 LSD red middle segments in blue rectangles before the refinement. Bottom left: the refined
LSD output (a graph G) with 294 edges. Top middle: Shewchuk triangulation T (G) with 2260 triangles. Bottom
middle: the Convex Constrained Mesh CCM(G) with 416 superpixels. Top right: zoomed in green box with tiny
triangles. Bottom right: zoomed in green box, all tiny triangles are merged into convex polygonal superpixels.

20

Table 1 Ratios of superpixels for CCM and Voronoi meshes on the same LSD edges, averaged across 500 BSD
images.6 Eps Radius (approximate size of Voronoi superpixels) of the Duan and Lafarge algorithm5 is in pixels.

Eps Radius of Voronoi superpixels 3 4 5 6 7 8 9 10 11 12

Mean
number of Voronoi superpixels5

number of CCM superpixels
14.09 8.91 6.21 4.86 4.03 3.96 3.43 3.27 3.27 3.26

We use ' = 30

� for the LSD refinement, which leads to Min Angle ⇡ 10.5� in Shewchuk’s

Triangle.17 We compare Shewchuk triangulations on the original LSD output and CCM on the

refined LSD output in Fig. 10, where the 3rd picture shows a zoomed-in green box with many tiny

triangles. The final picture in Fig. 10 contains relatively fewer faces after the merging operations

in Section 5. The ratio of Shewchuk triangles to the number of CCM polygons across BSD is 7.6.

The first step for Voronoi superpixels5 is to post-process the LSD output when close and near

parallel lines are removed, because the target application was satellite images of urban scenes with

many straight edges of buildings. Then long thin structures such as legs of a camera tripod in

Fig. 10 are represented only by one edge and may not be recognized in any further processing.

Fig 11 Left: normalized Root Mean Square in percents for Voronoi and CCM superpixels. Right: Boundary Recall.

That is why the LSD refinement in section 4 follows another approach leading to Theorem 8.

21

Table 1 displays the average ratios of numbers of superpixels over BSD images. Even when the

parameter Eps Radius is increased to 12, these ratios converge to a factor of about 3.25.

6.2 Approximation Quality and Affine Invariance of the CCM and Past Superpixels

The key advantage of polygonal superpixels at subpixel resolution is the possibility to render such a

polygonal mesh at any higher resolution, because vertices have real coordinates and straight edges

are not restricted to a given pixel grid. Definition 9 introduces optimal colors for this rendering.

Definition 9. Let an image I consist of n pixels and let each pixel be the 1⇥ 1 square Bp with Intensity(p) 2 [0, 255].

Let I split into superpixels Fj (convex polygons) for some unknown constant Color(Fj) 2 [0, 255], j = 1, . . . , s.

The Reconstruction Error is RE = min

X

pixels p

⇣
Intensity(p)�

sX

j=1

Area(Bp \ Fj)Color(Fj)

⌘2
, (9a)

where the minimum is over all Color(Fj), j = 1, . . . , s. The internal sum in RE is small, because each square Bp

non-trivially intersects only few superpixels Fj , so the intersection Area(Bp \ Fj) is almost always 0 (when Bp is

outside Fj) or 1 (when Fj covers Bp). For a fixed splitting I = [sj=1Fj , the function RE quadratically depends

on Color(Fj), which are found from a linear system. The reconstructed image is the superpixel mesh with optimal

Color(Fj) minimizing nRMS below. This colored mesh can be rendered at any resolution, see Fig. 4.

The normalized Root Mean Square of the approximation by superpixels is nRMS =

r
RE

n
· 100%

255

. (9b)

The Reconstruction Error in (9a) makes sense not only for images consisting of square pix-

els B
p

, but for any colored meshes. Indeed, the regions B
p

can be any polygons, e.g. obtained

from square pixels by an affine transformation. Neubert and Protzel20 proposed to study stability

of superpixels with respect to affine transformations, which motivated us to prove Theorem 10

justifying the Reconstruction Error as the objective quality measure for polygonal superpixels.

22

Theorem 10. Let M(I) be a polygonal mesh (globally) minimizing the Reconstruction Error in (9a)

for an image I . Let T be an affine transformation so that the new image is T (I) ⇢ I . Assuming

that the complement I � T (I) is black, the optimal mesh minimizing the Reconstruction Error for

T (I) is T (M(I)) obtained from the optimal mesh M(I) by the same affine transformation T .

Proof. The Reconstruction Error for the transformed image T (I) is defined by formula (9a), where

the sum is over the transformed pixels T (B
p

) instead of original square pixels B
p

. Under any affine

transformation T , the area of a polygon is multiplied by | det(T)|. The coefficients Area(B
p

\F
j

)

of the unknown variables Color(F
j

) are multiplied by the same constant factor | det(T)|.

The condition that the complement I � T (I) has only zero colors guarantees that any polygon

outside T (I) in a mesh minimizing the Reconstruction Error should also have zero colors. Since

Intensity(p) is interpreted as the original color for a pixel p and its transformation T (B
p

), the

sum in (9a) is (globally) minimized by Color(F
j

)/| det(T)| for transformed mesh T (M(I)).

Since the aim of superpixels is to approximate a large image by a reconstructed image based on

a smaller superpixel mesh, the standard statistical error nRMS is the important quality measure.

Definition 9 makes sense for RGB images if we replace the pixel intensity by a vector of colors.

We consider only grayscale images only because the LSD algorithm works for grayscale images.

Fig. 11 shows that the colored CCM meshes better approximate original images than the col-

ored Voronoi meshes. Some convex polygons of CCMs are much larger than Voronoi superpixels,

simply because the corresponding regions in images indeed have almost the same intensity, e.g.

the sky. Hence taking the best constant color over each superpixel is reasonable.

Despite CCMs being obtained from only LSD edges without using colors, the reconstructions

have smaller errors in comparison with Voronoi meshes that take colors into account, see Fig. 12.

23

Fig 12 Top: 791 Voronoi superpixels (boundary mesh and reconstructed image) with nRMS ⇡8.45%. Bottom: 791
CCM superpixels (boundary mesh and reconstructed image) with nRMS ⇡7.22%.

Fig. 11 confirms smaller approximation errors of CCM superpixels across all BSD500 images,

where we used the same LSD parameters for CCM and Voronoi superpixels. We computed all

optimal colors minimizing nRMS, which is measured in percents percentage as in Definition 9.

Each BSD experiment outputs 500 pairs (number of superpixels, nRMS). We average each co-

ordinate of these pairs and output a single dot per experiment. The first red dot at (377.1, 9.626%)

24

in Fig. 11 means that CCMs have 377 superpixels and the average nRMS ⇡ 9.6%. For a fixed

image, the LSD algorithm outputs roughly the same number of edges for all its parameters.

So smaller CCMs seem impossible, because all LSD edges are hard constraints, while all su-

perpixels should be convex. To get larger CCMs, we stop merging faces in Section 5 after getting a

certain number of convex faces. The five experiments on Voronoi superpixels with Eps Radius =

7, 8, 9, 10, 11 produced 5 dots along a decreasing curve. Fig. 11 implies that Voronoi meshes re-

quire more superpixels (507.3 on average) to achieve the similar nRMS ⇡ 9.696%.

6.3 Standard BSD Benchmarks for Pixel-based and Polygonal Superpixels

The Berkeley Segmentation Database BSD5006 contains 500 images widely used for evaluating

segmentation algorithms due to human-sketched ground truth boundaries. For an image I , let

I = [G
j

be a segmentation into ground truth regions and I = [k
i=1Si

be an oversegmentation into

superpixels produced by an algorithm. Each quality measure below compares a set of superpixels

S1, . . . , Sk

with the best suitable ground truth for every image from BSD500.

Let G(I) = [G
j

be the union of ground truth boundary pixels and B(I) be the set of boundary

pixels produced by a superpixel algorithm. The Boundary Recall BR is the ratio of ground truth

boundary pixels p 2 G(I) that are within 2 pixels from the superpixel boundary B(I).

The Undersegmentation Error UE =

1

n

P
j

P
Si\Gj 6=;

|S
i

�G
j

| was often used in the past, where

|S
i

� G
j

| is the number of pixels that are in S
i

, but not in G
j

. However a superpixel is fully

penalized when S
i

\G
j

is 1 pixel. Corrections of UE required ad hoc tweaks, e.g. the 5% threshold

|S
i

�G
j

| � 0.05|S
i

| by Achanta et al.9 or ignoring boundary pixels of S
i

by Liu et al.8

Let G
max

(S
i

) be the ground truth region having the largest overlap with S
i

. Van den Bergh et

25

al.13 suggested the Corrected Undersegmentation Error CUE =

1

n

P
i

|S
i

�G
max

(S
i

)|.

The Undersegmentation Symmetric Error20 is USE =

1

n

P
j

P
Si\Gj 6=;

min{in(S
i

), out(S
i

)},

where in(S
i

) is the area of S
i

inside G
j

, while out(S
i

) is the area of S
i

outside G
j

.

The BSD benchmarks BR, CUE and USE are designed for pixel-based superpixels, not for

polygonal superpixels. That is why we had to discretize CCM and Voronoi superpixels by drawing

polygonal meshes in OpenCV to get only boundary pixels. We put all square pixels into the same

discretized superpixel if their centers belong to the original polygonal superpixel.

CCM superpixels achieve smaller undersegmentation errors than SEEDS and SLIC and most

importantly beat Voronoi superpixels on the objective measure nRMS as well as on BR.

Fig 13 Left: Corrected Undersegmentation Error (CUE). Right: Undersegmentation Symmetric Error (USE).

Pixel-based superpixels SLIC and SEEDS achieve better results on the Boundary Recall in

Fig. 11, because their superpixels can have zigzag boundaries of horizontal and vertical edges.

However, humans are likely to sketch straight edges than boundaries consisting of short zigzags.

Traditional pixel-based superpixels are often split by straight ground truth boundaries. Polyg-

onal superpixels at subpixel resolution can have straight edges of any direction and better approx-

26

imate human drawings as confirmed by the undersegmentation errors in Fig. 13.

The simplest compactness measure for superpixels from21 is based on the isoperimetric quo-

tient Q(S) =
4⇡ area(S)

perimeter

2
(S)

, which has the maximum value 1 for a round disk S. The Compact-

ness is the average Comp =

P

superpixels S

Q(S)

#superpixels
.

Fig 14 Left: Compactness. Right: Times for BSD images on a laptop with 8G RAM 2.6 GHz Intel Core i5.

Since only a Windows demo is available for Voronoi superpixels5 and we worked on a different

platform, we couldn’t directly compare the times of polygonal superpixels. The times are similar

for Min Angle 2 {10, 12, 14, 16, 18, 20} and Min Distance around the default value of 3 pixels.

6.4 Conclusions and Open Problems for Superpixels at Subpixel Resolution

The key contribution is the new concept of a Convex Constrained Mesh (CCM), which extends

any given straight line segments (possibly with intersections) to a full mesh of convex polygons

without small angles. This paper proves theoretical guarantees of the LSD refinement and CCM

approximations in Theorems 5 and 8, which were announced in the shorter conference version.1

27

• Theorem 8 guarantees the approximation quality and no small angles in CCMs, which also have

smaller sizes in comparison with Shewchuk triangulations 17 and Voronoi superpixels 5.

• The Reconstruction Error is introduced in Definition 9 as the objective quality measure for polyg-

onal superpixels and is justified by Theorem 10 on affine invariance for optimal superpixels.

• The CCM outperforms the only past algorithm5 for polygonal superpixels on BR and nRMS in

Fig. 11, and even outperforms pixel-based superpixels on the CUE and USE in Fig. 13.

The C++ code can be available by request. The next step in improving superpixel meshes can

be a replacement LSD by a stable under noise straight line skeleton obtained form a noisy cloud

of edgels, e.g. by extending a Homologically Persistent Skeleton for a noisy cloud of edgels.22–24

Usually this skeletonization problem is solved by using manual thresholds.25 However the method

of persistent homology can offer scale-free solutions that are provably stable under noise.26

Acknowledgments. The first author was supported by the Austrian Science Fund (FWF)

project P24600-N23 at TU Wien. We thank all the reviewers for their helpful suggestions.

References

1 J. Forsythe, V. Kurlin, and A. Fitzgibbon, “Resolution-independent superpixels based on

convex constrained meshes without small angles,” in Proc. of ISVC, 223–233 (2016).

2 F. Viola, A. Fitzgibbon, and R. Cipolla, “A unifying resolution-independent formulation for

early vision,” in Proceedings of Computer Vision and Pattern Recognition, 494–501 (2012).

3 J. Philbin, O. Chum, M. Isard, et al., “Object retrieval with large vocabularies and fast spatial

matching,” in Proceedings of Computer Vision and Pattern Recognition, (2007).

4 R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, et al., “Lsd: a line segment detector,”

Image Processing On Line 2, 35–55 (2012).

28

5 L. Duan and F. Lafarge, “Image partitioning into convex polygons,” in Proceedings of CVPR

(Computer Vision and Pattern Recognition), 3119–3127 (2015).

6 P. Arbelaez, M. Maire, C. Fowlkes, et al., “Contour detection and hierarchical image seg-

mentation,” Transactions PAMI 33, 898–916 (2011).

7 J. Shi and J. Malik, “Normalized cuts and image segmentation,” T-PAMI 22, 888–905 (2000).

8 M.-Y. Liu, O. Tuzel, S. Ramalingam, et al., “Entropy rate superpixel segmentation,” in Pro-

ceedings of CVPR, 2097 – 2104 (2011).

9 R. Achanta, A. Shaji, K. Smith, et al., “Slic superpixels compared to state-of-the-art super-

pixel methods,” Transactions PAMI 34, 2274–2282 (2012).

10 Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in Proceedings

of CVPR (Computer Vision and Pattern Recognition), 1356–1363 (2015).

11 R. Giraud, V.-T. Ta, and N. Papadakis, “Scalp: Superpixels with contour adherence using

linear path,” in International Conference on Pattern Recognition (ICPR), 2374–2379 (2016).

12 P. Buyssens, M. Toutain, A. Elmoataz, et al., “Eikonal-based vertices growing and iterative

seeding for efficient graph-based segmentation,” in Proc. of ICIP, 4368–4372 (2014).

13 M. Van de Bergh, X. Boix, G. Roig, et al., “Seeds: superpixels extracted via energy-driven

sampling,” Int J Computer Vision 111, 298–314 (2015).

14 J. Yao, M. Boben, S. Fidler, et al., “Real-time coarse-to-fine topologically preserving seg-

mentation,” in Proceedings of Computer Vision and Pattern Recognition, 2947–2955 (2015).

15 L. A. Royer, D. L. Richmond, C. Rother, et al., “Convexity shape constraints for image

segmentation,” in Computer Vision and Pattern Recognition (CVPR), 402–410, IEEE (2016).

29

16 V. Machairas, M. Faessel, D. Cárdenas-Peña, et al., “Waterpixels,” IEEE Transactions on

Image Processing 24(11), 3707–3716 (2015).

17 J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh generation,” Compu-

tational Geometry: Theory and Applications 22, 21–74 (2002).

18 S.-W. Cheng, T. K. Dey, and J. R. Shewchuk, Delaunay Mesh Generation, CRC Press (2012).

19 M. de Berg, O. Cheong, M. van Kreveld, et al., Computational Geometry : Algorithms and

Applications, Springer (2010).

20 P. Neubert and P. Protzel, “Superpixel benchmark and comparison,” in Proc. Forum Bildver-

arbeitung, 1–12 (2012).

21 P. Neubert, “Superpixels and their application for visual place recognition in changing envi-

ronments (phd thesis at tu chemnitz),” (2015).

22 V. Kurlin, “Auto-completion of contours in sketches, maps and sparse 2d images based on

topological persistence,” in Proceedings of CTIC, 594–601 (2014).

23 V. Kurlin, “A one-dimensional homologically persistent skeleton of a point cloud in any met-

ric space,” Computer Graphics Forum 34, 253–262 (2015).

24 V. Kurlin, “A fast persistence-based segmentation of noisy 2d clouds with provable guaran-

tees,” Pattern Recognition Letters 83, 3–12 (2016).

25 A. Chernov and V. Kurlin, “Reconstructing persistent graph structures from noisy images,”

Image-A 3, 19–22 (2013).

26 V. Kurlin, “A fast and robust algorithm to count topologically persistent holes in noisy

clouds,” in Proceedings of CVPR, 1458–1463 (2014).

30

	Introduction: Motivation, Problem Statement and Applications to Superpixels
	Motivation for Splitting Images into Convex Polygons at Subpixel Resolution
	Refining the Line Segment Detector and Building a Convex Constrained Mesh (CCM)
	Contributions and Applications to Superpixel Segmentations at Subpixel Resolution

	Related Work on Superpixels, Line Segment Detection and Polygonal Meshes
	Traditional Superpixels consisting of Square-based Pixels restricted to a Pixel Grid
	The Line Segment Detector (LSD) and Shewchuk Triangulations without Small Angles
	Polygonal superpixels based on Voronoi meshes

	Key Definitions: Planar Graphs and Polygonal Meshes
	Refinement of the Line Segment Detector to Resolve Intersections and Small Angles
	Extending Segments to Line-Segment Intersections
	Extending Segments to Line-Line Intersections
	Splitting Line Segments at Intersection Points
	Approximation Guarantees for the LSD refinement

	A Convex Constrained Mesh Without Small Angles
	Fast Shewchuk Triangulations Without Small Angles
	Simple and Advanced Merge Operations to Get Convex Faces
	Collapsing unconstrained edges for a further simplification
	Theoretical Guarantees for a Convex Constrained Mesh (CCM)

	Experiments on 500 BSD Images, Conclusions and Further Problems
	Sizes of CCMs, Shewchuk's Triangulations and Voronoi meshes
	Approximation Quality and Affine Invariance of the CCM and Past Superpixels
	Standard BSD Benchmarks for Pixel-based and Polygonal Superpixels
	Conclusions and Open Problems for Superpixels at Subpixel Resolution

