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Cooperative localisation using posterior linearisation
belief propagation

Ángel F. García-Fernández, Lennart Svensson, Simo Särkkä

Abstract—This paper presents the posterior linearisation belief
propagation (PLBP) algorithm for cooperative localisation in
wireless sensor networks with nonlinear measurements. PLBP
performs two steps iteratively: linearisation and belief propaga-
tion. At the linearisation step, the nonlinear functions are linear-
ised using statistical linear regression with respect to the current
beliefs. This SLR is performed in practice by using sigma-points
drawn from the beliefs. In the second step, belief propagation is
run on the linearised model. We show by numerical simulations
how PLBP can outperform other algorithms in the literature.

Index Terms—Belief propagation, cooperative localisation,
sigma points, posterior linearisation, Gaussian message passing

I. INTRODUCTION

Cooperative localisation is an important problem with ap-
plications in many different fields, for example, wireless
communications, robotics and vehicular networks [1], [2]. In
cooperative localisation, there is a small number of anchor
nodes, whose positions are known with high accuracy, and
the rest of the nodes aim to infer their own location based on
inter-sensor measurements and wireless messages exchanged
with other nodes. This inference problem can be posed in
the Bayesian framework and represented using a probabilistic
graphical model. Then, the nodes can infer their positions
cooperatively using message passing algorithms [1]. In this
paper, we focus on the message passing algorithm called belief
propagation (BP) [3]. BP calculates approximate marginal
distributions, which are called beliefs, of the nodes in an
efficient way suitable for cooperative networks [1].

In cooperative localisation, the measurement model is usu-
ally nonlinear so BP implementations require certain approx-
imations. A commonly used family of algorithms is non-
parametric belief propagation (NBP), which approximates the
BP messages using particles [4], [5]. For a limited number
of particles, satisfactory performance is not guaranteed [4].
Nevertheless, by increasing the number of particles, messages
are approximated more accurately so NBP works better at the
expense of a rise in the computational burden. Therefore, it is
also of interest to design computationally efficient alternatives
based on parametric BP, which characterises the messages by
some parameters [6].
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In cooperative localisation, beliefs are unimodal when there
is a sufficient number of anchor nodes and/or sufficiently
accurate prior information about node locations. In this case,
we can satisfactorily use Gaussian parametric BP, a common
form of parametric BP which considers Gaussian distributions
[7], [8]. Now, the main difficulty is to deal with nonlinear
measurement models. One approach to do this, is to use Monte
Carlo sampling to calculate the beliefs [8], though this implies
a high computational burden. In order to lower the computa-
tional complexity, one possibility is to linearise the nonlinear
functions before applying BP using analytical linearisation at
the prior mean [9]. Nevertheless, sigma-point methods can deal
with nonlinearities better than analytical linearisation [10] so
it is convenient to use sigma-points, as in sigma-point BP
(SPBP) [11] and in [12]. Sigma-point methods, such as the
unscented transform, are efficient and widely used techniques
to approximate the moments of a Gaussian distribution that
undergoes a nonlinear transformation [10]. This procedure
implicitly linearises the nonlinear functions by an approximate
statistical linear regression (SLR) [13]. Consequently, the al-
gorithms in [11], [12] perform SLR of the nonlinear functions
for each message. Another relevant characteristic of SPBP
is that it performs integration in possibly high-dimensional
spaces that define a node and all its neighbours simultaneously.

In this paper, we propose a different use of sigma-point
methods in BP inspired by the posterior linearisation filter
(PLF) [14] and smoother [15]. In these papers, it is poin-
ted out that the most commonly used Gaussian filters and
smoothers approximate nonlinear functions as affine functions
with additive Gaussian noise. The best approximation of the
nonlinear functions, in the mean square error sense, is then
obtained by SLR with respect to the posterior probability
density function (PDF), which is the PDF of the states given
the measurements. In practice, this idea can be implemented
via an iterated procedure: linearise the model with respect to
the current posterior approximation, obtain a new posterior
approximation based on the linearised model and repeat until
convergence. We extend this framework to BP and refer to
it as posterior linearisation BP (PLBP). Therefore, in PLBP,
we linearise the models with respect to the current beliefs, we
run BP on the linearised model and repeat the procedure. The
most important difference with SPBP is that, PLBP includes
a double loop in which, after each linearisation, we obtain
the new beliefs running BP on the linearised model. Another
important characteristic of PLBP is that sigma-points are
always used in low dimensional spaces that only consider
two nodes simultaneously. The proposed double loop scheme,
with low dimensional integrations, can significantly reduce the



localisation error, as will be demonstrated by simulations.

II. PROBLEM FORMULATION

In cooperative localisation, we have some anchor nodes,
whose positions are known accurately, a number of nodes with
some prior knowledge about their locations, and measurements
that depend on the states of pairs of nodes. The objective is
then to infer the positions of the nodes in a cooperative fashion.
We proceed to pose this problem in the Bayesian framework.

A graph G = (V,E) is formed by a collection of ver-
tices/nodes V = {1, ...,m}, where m is the number of nodes,
and a collection of edges E ⊂ V × V . Each edge consists of
a pair of nodes (i, j) ∈ E. The state of node i is represented
by xi ∈ Rnx and we assume it has a Gaussian prior PDF

pi (xi) = N (xi;xi, Pi) ,

where N (xi;xi, Pi) denotes a Gaussian PDF with mean xi
and covariance matrix Pi evaluated at xi. Vector zi,j ∈ Rnz ,
(i, j) ∈ E, represents the measurement that depends on nodes
i and j. We assume that zi,j is a function of xi, xj with
additive Gaussian noise

zi,j = hi,j (xi, xj) + ηi,j (1)

where ηi,j is zero-mean Gaussian noise with covariance
matrix Ri,j . Thus, the likelihood for measurement zi,j is
li,j (zi,j |xi, xj) = N (zi,j ;hi,j (xi, xj) , Ri,j). This model can
accommodate line-of-sight and non-light-of-sight scenarios
[16]. Without loss of generality, we assume that if (i, j) ∈ E
then (j, i) /∈ E, as (1) is already general enough to model all
measurements between nodes i and j. For describing BP in
Section III-A, we also introduce the set

E = {(i, j) : (i, j) ∈ E or (j, i) ∈ E} .

We denote x =
[
xT1 , ..., x

T
m

]T
, where superscript T denotes

transpose, and z is the vector that contains all zi,j , (i, j) ∈ E
with (i, j) arranged in any established order. In the Bayesian
framework, all information of interest about x after observing
z is given by the posterior PDF

p (x|z) ∝
∏
i∈V

pi (xi)
∏

(i,j)∈E

li,j (zi,j |xi, xj) (2)

where ∝ stands for proportionality. Even though only the
edges (i, j) ∈ E appear in the above likelihood function, we
assume that all functions and variables in this paper take the
same value if we interchange indices i and j, for instance,
zi,j = zj,i, hi,j (xi, xj) = hj,i (xj , xi).

Our objective is to compute/approximate the marginal PDFs
of (2) for all xi, i ∈ V , in a cooperative way. That is, each node
makes part of the processing, transmits and receives messages
from neighbouring nodes. With the marginal PDFs, we can
estimate the node localisations and their estimation errors.
However, there are two difficulties:
• D1: The nonlinear measurement models.
• D2: A cooperative calculation of the beliefs.

We proceed to describe how we tackle both difficulties.

Due to the nonlinear measurements, the beliefs cannot
generally be computed in closed-form, so we need approxim-
ations. As in popular nonlinear Gaussian filters and smoothers
[14], [15], nonlinear functions, see (1), are dealt with by
performing an enabling approximation in which they are
approximated as affine functions with additive Gaussian noise

hi,j (xi, xj) ≈ A1
i,jxi +A2

i,jxj + bi,j + ei,j (3)

where A1
i,j , A

2
i,j ,∈ Rnz×nx , bi,j ∈ Rnz and ei,j ∈ Rnz

is a zero-mean Gaussian distributed random variable with
covariance matrix Ωi,j . Under approximation (3), p (x|z) is
Gaussian, which implies that the marginal PDFs are Gaussian.
As in many Gaussian filters/smoothers, the accuracy of the
marginal PDF approximations only depends on the choice
of (3) so it is of utmost importance to select it properly
[14], [15]. Under approximation (3), calculating the marginal
PDFs directly from p (x|z) is theoretically simple as we can
just integrate out the other states. However, this procedure is
intractable for large networks as the complexity to compute
p (x|z) grows exponentially with the number of variables.

BP is an efficient algorithm suitable for cooperation in
wireless networks to calculate/approximate these marginals. If
the graph has no loops (it is a tree), under approximation (3),
BP calculates the marginal PDFs of p (x|z) in closed-form in a
cooperative way [1]. Usually, the graph has loops but we can
still apply BP to get approximations of the marginal PDFs
[3]. The aim of this paper is to solve the joint problem of
computing the marginal PDFs using BP and selecting the best
possible approximation (3), to address D1 and D2.

III. POSTERIOR LINEARISATION BELIEF PROPAGATION

In this section, we propose the PLBP algorithm. The PLBP
algorithm is iterative and has two phases: selection of the
approximation (3), explained in Section III-B, and use of
BP on an affine model, explained in Section III-A. We also
indicate some properties on its convergence in Section III-C.

A. BP with affine measurement functions

We apply BP to approximate the marginal PDFs under
approximation (3), which implies that we are using BP on
a Gaussian graphical model [17]. In BP, messages are trans-
mitted between neighbouring nodes in the graph. The message
µi→j from node i to j, with (i, j) ∈ E, is [18]

µi→j (xj) ∝
∫
li,j (zi,j |xi, xj)N (xi;xi, Pi)

×
∏

p∈n(i)\{j}

µp→i (xi) dxi (4)

where n (i) ⊆ V denotes the set of neighbouring nodes of
node i according to E.

Proposition 1. Under approximation (3), the message µi→j

from node i to j is

µi→j (xj) ∝ N (αi→j ;Hi→jxj ,Γi→j) (5)

αi→j = zi,j −A1
i,jxi→j − bi,j (6)

Hi→j = A2
i,j (7)



Γi→j = Ri,j + Ωi,j +A1
i,jPi→j

(
A1

i,j

)T
(8)

where xi→j and Pi→j are given by

N (xi;xi→j , Pi→j) ∝
∏

p∈n(i)\{j}

N (αp→i;Hp→ixi,Γp→i)

×N (xi;xi, Pi) . (9)

Messages are characterised by αi→j ∈ Rnz , Hi→j ∈
Rnz×nx and Γi→j ∈ Rnz×nz and represent likelihoods res-
ulting from linear observations with Gaussian noise. We can
calculate xi→j and Pi→j in (9) by performing |n (i) \ {j}|
Kalman filter updates [19] on N (·;xi, Pi). The pseudocode
for calculating a message is given in Alg. 1.

Algorithm 1 Calculation of BP message from node i to j
Input: Incoming messages αp→i, Hp→i,Γp→i for p ∈ n (i) \
{j}, prior moments xi, Pi, measurement zi,j and linearisation
A1

i,j , A
2
i,j , bi,j ,Ωi,j .

Output: Output message αi→j , Hi→j ,Γi→j .
- Set xi→j = xi and Pi→j = Pi. . Kalman filter updates
for p ∈ n (i) \ {j} do

- z = Hp→ixi→j , S = Hp→iPi→jH
T
p→i + Γp→i.

- Ψ = Pi→jH
T
p→i, a = xi→j + ΨS−1 (αp→i − z).

- A = Pi→j −ΨS−1ΨT .
- Set xi→j = a, Pi→j = A.

end for
- Compute αi→j , Hi→j ,Γi→j using (6)-(8).

We consider a BP implementation in which messages are
initiated to 1 (uniform function) and all nodes transmit all their
messages at each iteration. When this iteration converges, the
marginal PDF of node i calculated by BP is

q (xi|z) = N (xi;ui,Wi)

∝ N (xi;xi, Pi)
∏

p∈n(i)

µp→i (xi) (10)

where ui and Wi are the mean and covariance matrix, which
can be calculated by performing |n (i)| Kalman filter updates
on N (xi;xi, Pi). A similar procedure is detailed in Alg. 1 to
compute (9).

Even though our objective is to compute the marginal PDFs,
due to the dependence of the measurement function on two
nodes, see (1), it will be useful to calculate the joint posterior
PDF over two neighbouring nodes. The BP messages can also
be used to calculate the joint posterior PDF of nodes (i, j) ∈ E
as [18, Eq. (4)]

q (xi, xj |z) = N
([
xTi , x

T
j

]T
;ui,j ,Wi,j

)
∝ N (xi;xi, Pi)N (xj ;xj , Pj) li,j (zi,j |xi, xj)

×

 ∏
p∈n(i)\{j}

µp→i (xi)

 ∏
p∈n(j)\{i}

µp→j (xj)


(11)

where ui,j and Wi,j can be computed using Kalman filter
updates as in (9). If the graph is a tree, the BP iteration is
ensured to converge and the BP outputs (10) and (11) are
exact marginals of (2). If the graph is not a tree, the iteration
is not ensured to converge but if it does, the BP outputs (10)
and (11) can be quite accurate approximations.

B. Selection of the linearisation
This section describes the selection of the approximation (3)

using posterior linearisation [14], [15]. The basic idea behind
posterior linearisation is that we want the approximation in
(3) to be accurate in the area of interest, namely, where the
posterior distribution has its mass. More specifically, given
the measurements, the selected A1

i,j , A2
i,j and bi,j are chosen

to minimise the mean square error between the measurement
function hi,j (·) and its approximation, and Ωi,j represents the
mean square error matrix of the approximation [14]:(

A+
i,j , b

+
i,j

)
= arg min

(Ai,j ,bi,j)

E
[
(·)T (h (x)−Ai,jx− bi,j) |z

]
Ω+

i,j = E
[(
h(x)−A+

i,jx− b
+
i,j

)
(·)T |z

]
where x =

[
xTi , x

T
j

]T
, Ai,j =

[
A1

i,j , A
2
i,j

]
, the expected

value is taken with respect to p (xi, xj |z) and (·)T a and
a (·)T represent aTa and aaT , respectively, The solution to
this problem is given by selecting A1

i,j , A2
i,j , bi,j and Ωi,j

using statistical linear regression (SLR) with respect to the
joint posterior over the two nodes [14, Sec. II]. In practice, the
SLR parameters can be efficiently approximated using sigma-
point methods [10], [19], see Alg. 2.

Algorithm 2 SLR of h (·) w.r.t. p (·) using sigma-points
Input: Function h (·) and first two moments x, P of p (·).
Output: SLR parameters (A+, b+,Ω+).

- Select m sigma-points X1, . . . ,Xm and weights
ω1, . . . , ωm according to x and P [19].
- Transform the sigma-points Zj = h (Xj) j = 1, . . . ,m.
- Compute

z =

m∑
j=1

ωjZj , Ψ =

m∑
j=1

ωj (Xj − x) (Zj − z)T

Φ =

m∑
j=1

ωj (Zj − z) (Zj − z)T

- A+ = ΨTP−1, b+ = z −A+x, Ω+ = Φ−A+P (A+)
T .

A challenge with posterior linearisation is that we need the
joint posterior to perform posterior linearisation and vice versa.
The solution proposed in posterior linearisation algorithms
is to solve the problem in an iterated fashion. That is, we
perform SLR of the nonlinear functions with respect to the
best available approximation of the posterior. After applying
BP on the linearised model, we expect to obtain improved
approximations of the joint posterior PDFs, which are used
to obtain an even better SLR that we compute at the next
iteration. The steps of the iteration, which is performed J
times, are provided in Alg. 3. It should be noted that posterior
linearisation iterations only change the linearisations, not the
prior. If the measurement function is already linear, PLBP
corresponds to Gaussian BP [17], [20].

C. Convergence
If the graph is a tree, BP provides the exact joint marginals

under approximation (3) so PLBP can be seen as an efficient



application of the iterated PLF [14] to obtain (2). As a
result, the local convergence theorem of the iterated PLF [14,
Sec. IV.E and App. B], which resembles the Gauss-Newton
algorithm convergence theorem, is also valid for the PLBP
algorithm for trees, but not for general graphs. On the contrary,
for SPBP, there is no available convergence theorem even for
trees in the literature.

For graphs with loops, BP is not ensured to converge though
it does in many practical cases. If it does not, damping helps
improve the convergence of BP [21], and therefore of PLBP.

Algorithm 3 PLBP in cooperative localisation

- Set u0i,j =
[
xTi , x

T
j

]T
, W 0

i,j = diag (Pi, Pj) for (i, j) ∈ E.
for k = 1 to J do

- Obtain A1
i,j , A

2
i,j , bi,j ,Ωi,j for all (i, j) ∈ E:

◦ Run Alg. 2 with hi,j (·) and uk−1i,j ,W k−1
i,j .

- Run BP with linearised model, see Sec. III-A.
- Calculate uki,j , W k

i,j using (11).
end for
- Get uJi , W J

i for i ∈ V from uJi,j , W J
i,j by marginalisation.

IV. SIMULATION RESULTS

We compare PLBP (M BP iterations per linearisation)
with the analytical linearisation BP (ALBP) [9], in which
the nonlinear functions are linearised once using analytical
linearisation at the prior mean and SPBP [11], implemented
using BP, so that simulation results reflect the differences on
nonlinear Gaussian BP algorithms. We have also implemented
NBP, according to Alg. 1 and 2 with k = 1 in [4] (k as defined
in [4]), using 30, 100 and 300 particles. Besides, we have
computed the posterior Crámer-Rao lower bound (PCRLB)
[22], which is a bound on performance on a centralised
solution to the problem, using 40000 samples from the prior.

We evaluate the scenario in Fig. 1, which was used in [1].
The state xi = (px,i, py,i) ∈ R2 of node i consists of its xy-
position. For normal nodes, we use Pi = diag

(
σ2, σ2

)
with

σ = 10 m, and xi is drawn from a Gaussian PDF whose mean
is the true position of node i and covariance Pi. For anchor
nodes, we use the same prior but with Pi = diag

(
σ2
a, σ

2
a

)
,

σa = 0.1 m. Note that we assume some prior knowledge on
the locations of the nodes, represented by Pi, so that beliefs are
mostly unimodal and Gaussian BP can work well. If beliefs
are not unimodal, we should use NBP rather than Gaussian
BP, at the expense of a higher computational burden. We use
range measurements with R = 1 m2 and

hi,j (xi, xj) =

√
(px,i − px,j)2 + (py,i − py,j)2. (12)

SPBP and the SLRs in Alg. 2 have been implemented using
the unscented transform [10] with a weight 1/3 for the sigma-
point at the mean. As (xi, xj) has dimension 4, 9 sigma-points
are used in PLBP. We evaluate the algorithms using Monte
Carlo simulation with 200 runs of random measurements.

The SPBP algorithm does not work properly in this scenario
and the error increases with the BP iterations. The reason
why this happens is mainly due to how SPBP makes use of
sigma-points, which belong to a high-dimensional space that
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Figure 1: Scenario of the simulations. Red crosses indicate the positions
of 13 anchor nodes, blue circles the positions of the other 100 nodes and
blue lines the edges of the graph. Communication radius is 20 m.

considers a node and its neighbours simultaneously. In this
example, the maximum number of neighbours of a node is
20, which yields a space of (20 + 1) × 2 = 42 dimensions.
An important consequence of this, is that the sigma-points
are placed outside the region of interest and the resulting
performance is low.

The RMS error against the linearisation iteration, k in Alg.
3 is shown in Fig. 2. It is important to notice the improvement
of PLBP as M increases, up to a certain point. This implies
that after a linearisation, we obtain a better performance if we
let BP converge so that we obtain the most accurate posterior
approximation that is possible with the current linearisation.
For M > 1, all PLBP algorithms converge after a few
iterations. Therefore, the improvement of PLBP with respect
to SPBP is due to the use of sigma-point integration in a low
dimensional state space and the use of a double loop. NBP
with 300 particles (NBP-300) works very well and achieves
lowest errors. NBP-100 works well but it does not attain the
performance of PLBP with M = 5 or M = 10. However, NBP
has a much higher computational burden than PLBP due to the
need of a much higher number of points for good performance.
ALBP has worse performance than PLBP and NBP. The
running times in seconds of our Matlab implementations with
20 iterations are: 5 (M = 1), 8 (M = 2), 16 (M = 5), 31
(M = 10), 56 (NBP-30), 155 (NBP-100), 513 (NBP-300), 3
(ALBP) and 10 (SPBP).

We also show the RMS error after 20 iterations for different
values of σ in Table I, where we additionally show the results
for a PLBP version that approximates the SLRs using Taylor
linearisation at the mean, which implies Ωi,j = 0, rather than
sigma-points. Note that PLPB Taylor (M=1) corresponds to
the BP algorithm in [7] in this scenario. In this table, the entry
NW means that the method did not converge to a value that
is lower than the initial error so it is not working properly.
On the whole, PLBP performs better than (Taylor) PLBP, as
the SLR approximation is more accurate and Ωi,j is not set to
zero. SPBP does not work well except for σ = 1. In this case,
SPBP is slightly outperformed by PLBP (M = 10). PLBP
methods perform best if M is high enough so that each BP
iteration per linearisation converges. NBP-30 and NBP-100



Table I: Final RMS error (m) for different values of σ (underlined the best Gaussian BP algorithm).

M PLBP (sigma-points) M PLBP (Taylor) NBP (particles) PCRLB
σ 1 2 5 10 1 2 5 10 SPBP ALBP 30 100 300
15 7.53 3.61 2.74 2.57 9.71 6.52 4.60 4.32 NW 15.34 NW 2.47 1.85 0.70
10 4.34 2.00 1.61 1.56 8.03 4.48 2.57 2.77 NW 8.29 3.78 2.00 1.44 0.70
5 2.06 1.17 0.90 0.84 2.22 1.18 0.90 0.84 NW 3.38 3.22 1.61 1.13 0.70
1 0.70 0.64 0.62 0.61 0.70 0.64 0.61 0.61 0.62 0.62 1.57 0.92 0.73 0.61
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Figure 2: RMS error against number of iterations. Performance improves
with M , number of BP iterations per linearisation.

always provide a higher error than PLBP (M = 10), except
for σ = 15. In this case, NBP-30 simulation does not work
well due to the low number of particles and high uncertainty
and NBP-100 outperforms PLBP. NBP-300 provides a higher
error than PLBP (M = 10) except for σ ∈ {10, 15}. One
reason why this happens is that some multimodality starts to
appear for σ ≥ 5, but even in this case, PLBP manages to
significantly lower the error. All distributed solutions are far
from the PCRLB, which is a bound on the performance of
a centralised algorithm, except PLBP, ALBP and SPBP for
σ = 1. In short, PLBP clearly outperforms the other sigma
point implementation of BP in the literature, the SPBP. It also
performs very well compared to NBP for low prior uncertainty,
with a much lower computational burden, and attains the
performance of an optimal centralised solution for σ = 1.

We would finally like to clarify that PLBP can be used for
mobile networks, which contain nodes that can move, using
Gaussian filtering [19]: each node predicts its belief at the next
time step using the dynamic model and PLBP is used on the
predicted beliefs to update them.

V. CONCLUSIONS

We have proposed the PLBP algorithm to address the
cooperative localisation problem. PLBP carries out an iterated
procedure in which the nonlinear functions are linearised using
SLR with respect to the current posterior approximation. Then,
BP is used on the linearised model to obtain a new, more
accurate posterior approximation, which will be used again
to linearise the nonlinear functions. The high performance of
PLBP in comparison to other Gaussian BP algorithms has been
demonstrated via numerical simulations.
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