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Abstract 

Lithium ion battery technology; where energy is stored via the shuttling of Li+ ions 

between two insertion type electrodes; has developed rapidly to become a common-

place feature of modern life. Recently, processes to exfoliate graphite materials at scale 

have been developed, producing novel materials with varying degrees of purity, defect 

concentrations and size distributions. The high aspect ratio and conductivity of these 

materials has attracted interest regarding their application in lithium ion battery 

electrodes, which is investigated in the present study. 

In the first part, the Li insertion behaviour of exfoliated graphite materials is 

investigated for use in in lithium ion battery negative electrodes. In Chapter 3, the 

mechanism of Li intercalation in a microcrystalline graphite sample is followed by in 

situ Raman spectroscopy. Then, in Chapter 4, a material produced by cathodic 

electrochemical exfoliation of the microcrystalline graphite sample is studied. 

Structural characterisation reveals a significant restacking of graphene layers has 

occured upon drying reulting in only subtle changes to the stacking order of the pristine 

graphite. The modified material displays an increased first cycle irreversible capacity 

and decreased reversible capacity, suggesting the process is not advantageous for the 

modification of graphitic negative electrode materials. In situ Raman spectroscopy is 

used to confirm the similarity in lithiation mechanism with the pristine sample, and a 

model is developed in order to estimate strain and doping of graphene layers from the 

Raman spectra of the stage 4L and 3L phases. 

In Chapter 5, in situ Raman spectroscopy is employed to develop a fundamental 

understanding of how the lithium intercalation mechanism in graphitic carbons varies 
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with decreasing number of stacked graphene layers. Mechanical exfolation of highly 

crystalline natural graphite flakes is used to avoid the aforementioned problems of 

layer restacking, allowing investigation of flakes with accurately defined thicknesses. 

A similar mechanism of Li intercalation to that in bulk graphite is observed for flakes 

of ~ 9 layers and  ~ 56 layers. However, an increase in in-plane strain is observed for 

the few layer graphene sample, which may be linked to the accelerated capacity fading 

exhibited by cells using thin graphitic flakes as negative electrode materials. 

Furthermore, the succesful Li intercalation of a trilayer graphene sample was 

accomplished,  whereby Li+ ions were observed to fill both available interlayer spaces 

evenly without the conventional staging effects which occur in thicker flakes. 

 Finally, the use of exfoliated graphite materials as conductive additives for high rate 

lithium ion battery electrodes is evaluated. The performance of materials produced by 

three different exfoliation processes are compared with carbon black and graphite 

additives in both Li4Ti5O12 and LiCoO2 composite electrodes. Variation of the 

conductive additives is shown to have no effect on the performance of the Li4Ti5O12 

due to an electronic conduction mechanism which occurs through the surfaces of 

lithiated active material particles. In contrast, the performance of the LiCoO2 system 

is shown to be strongly additive dependent, whereby the exfoliated graphite additives 

showed inferior performance to the carbon black additive. However, the materials 

produced by electrochemical exfoliation did exhibit improved performance compared 

to the graphite and liquid exfoliated samples. 
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1. Introduction 

This chapter contains an introduction to the fundamental processes and relevant 

literature that shall be built upon in subsequent chapters. 

 

 

 

 

 

 

 

 

 

 

"You thought, as a boy, that a mage is one who can do anything. 

So I thought, once. So did we all. And the truth is that as a man's 

real power grows and his knowledge widens, ever the way he can 

follow grows narrower: until at last he chooses nothing, but does 

only and wholly what he must do ... " ― Ursula K. Le Guin, A 

Wizard of Earthsea 
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1.1. Demand for energy storage technologies 

The global emission of climate changing gasses, particularly carbon dioxide,1 

threatens to plunge the world into unknown environmental and economic crises.2–5 

Addressing the causes and limiting the negative impacts of climate change will play a 

major role in the 21st century. In this context, the development of novel materials for 

energy storage is a worthwhile goal.6,7 Existing energy infrastructure relies 

predominantly on the consumption of unsustainable fossil fuel reserves,8 necessitating 

the release of large quantities of carbon dioxide. On the other hand, alternative 

methods of energy production such as nuclear power and the harnessing of renewable 

energy sources (in particular wind, solar, biomass and hydropower)9  offer the 

possibility of meeting the world’s projected energy consumption, with low to net-zero 

emissions of climate affecting gasses.10–13 However, due to the intermittant nature of 

renewable technologies, improved energy storage capacity alongside improved 

demand side response flexibility is crucially required.12 Significantly, in order to 

reduce carbon emissions related to the global transport sector there is a need for the 

development of cleaner and more efficient vehicles.14 Electrochemical energy storage 

technologies, specifically in the form of batteries, look increasingly likely to play a 

leading role on both of these fronts.15,16  
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1.2. Electrochemical processes 

Electrochemistry is the study of electrochemical reactions, defined as reactions where 

a chemical change either produces or is caused by an electric force.17 The primary 

distinction between an electrochemical reaction and a chemical redox reaction are that 

oxidation (removal of electrons from a species) is spatially separated from reduction 

(gain of electrons by a species). This is achieved in an electrochemical cell whereby 

redox reactions occur at the surfaces of electronic conductors or semiconductors 

known as electrodes. Electrodes are separated by an electrolyte, a substance that 

permits the conduction of ions but not electrons. The circuit is completed via an 

external electronic conductor which contacts both electrodes.   

The spatial separation of electrodes (known as the anode and cathode respectively) 

allows an electrochemical reaction to be described by two half-cell reactions. At the 

anode oxidation occurs: 

Red1→Ox1+ e-  Equation 1.1 

At the cathode reduction occurs: 

Ox2+ e-→Red2  Equation 1.2 

The overall reaction may thus be given as: 

Red1+ Ox2→ Ox1+ Red2  Equation 1.3 
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1.2.1. Thermodynamics of electrochemical cells 

The spontaneous direction of an electrochemical reaction is determined by the 

electrochemical potentials of the species involved. If the half-cells are arbitrarily 

defined as left and right electrodes respectively, the energy change for a reaction is 

given by the change in Gibbs energy for each half-cell reaction: 

𝛥𝐺 = (∑ 𝑠𝑖𝜇𝑖ⅈ )𝑟𝑖𝑔ℎ𝑡 − (∑ 𝑠𝑖𝜇𝑖ⅈ )𝑙𝑒𝑓𝑡  Equation 1.4 

Where G is the Gibbs free energy, µi is the electrochemical potential of species i, and 

si is the stoichiometric coefficient of species i. By convention the sign of si is defined 

by writing half-cell reactions in the form: 

∑ 𝑠𝑖𝑀
𝑧𝑖 ↔

ⅈ
𝑛𝑒−  Equation 1.5 

Where Mi represents the chemical formula of species i and z the charge of any ionic 

species. If ΔG is negative then electrons will flow from left electrode to right electrode 

and vice versa. At equilibrium, when zero current flows between the two electrodes, 

the cell open circuit potential (U) can be measured and is related to the Gibbs free 

energy by: 

∆𝐺 = −nFU   Equation 1.6 

Where n is the number of electrons transferred and F is the Faraday constant (96485 

C mol-1). Furthermore, the Gibbs free energy for each half-cell reaction can be 

expressed in terms of product and reactant activities by: 

∆𝐺 = ∆𝐺° + 𝑅𝑇𝑙𝑛𝑄  Equation 1.7 
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Where ΔG° is the Gibbs energy with all reactant and products in their standard states 

(activities equal to one), R is the gas constant,T is temperature and Q is the reaction 

quotient: 

𝑄 =
actⅈvⅈtⅈes of products

actⅈvⅈtⅈes of reactants
=  ∏ 𝑎𝑖

𝑠𝑖
𝑖   Equation 1.8 

Where ai is the activity and si the stoichiometric coefficient of species i respectively (si 

is positive for products and negative for reactants). Therefore, the open circuit potential 

may also be expressed in terms of the composition of the reaction mixture by the 

Nernst equation: 

𝑈 = 𝑈° −
𝑅𝑇

𝑛𝐹
ln(∏ 𝑎𝑖

𝑠𝑖
𝑖 )

𝑟𝑖𝑔ℎ𝑡
+

𝑅𝑇

𝑛𝐹
ln(∏ 𝑎𝑖

𝑠𝑖
𝑖 )

𝑙𝑒𝑓𝑡
  Equation 1.9 

Where U° is the standard cell potential. The Nernst equation is often given only in 

terms of one electrode, however, it should be noted that electrode potentials are always 

relative to another electrode and the left term only vanishes when electrode potentials 

are given versus a specified electrode. The use of electrodes with well-defined, 

reproducible potentials (known as reference electrodes) may then be used for 

comparison of electrode potentials . For example, electrode potentials are commonly 

quoted versus the standard hydrogen electrode. In the field of lithium ion batteries 

equilibrium electrode potentials are often quoted vs. Li+/Li, which lies at -3.04 V 

versus the standard hydrogen electrode. 

1.2.2. Galvanic and electrolytic cells 

Electrochemical cells may be divided into two categories according to the spontaneity 

of the electrochemical processes that occur: galvanic cells which spontaneously 

produce work (ΔG is negative), and electrolytic cells which require an input of work 
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to drive the reaction (ΔG is positive before work is applied). The theoretical maximum 

work that a galvanic cell may deliver (or alternatively the minimum work required to 

drive an electrolytic cell) is given by the change in Gibbs free energy as defined in 

Equation 1.6. However, the passage of current through a cell causes the potential to 

change from equilibrium which is known in electrochemistry as polarisation. The 

magnitude of this potential drop is known as overpotential which can be separated into 

surface overpotential, Ohmic resistance and concentration overpotential. 

1.2.3. Kinetics of electrochemical cells 

1.2.3.1. Surface overpotential 

At equilibrium the rate of anodic and cathodic processes is equal, hence no net current 

flows. A driving force is required to cause a net anodic or cathodic current which is 

known as the surface overpotential and given the symbol ηs. The rate of reaction in the 

charge transfer limited regime may be given by the Butler-Volmer equation, which has 

the form: 

ⅈ = 𝑖0 [exp (
𝛼𝑎𝐹

𝑅𝑇
𝜂𝑠) − exp (

𝛼𝑐𝐹

𝑅𝑇
𝜂𝑠)]   Equation 1.10 

Where i0 is the exhange current density which determines the reversibility of the 

reaction. αa and αc are apparent transfer coefficients which relate to how application of 

a potential favours one direction of reaction over the other. When ηs is positive an 

anodic current is produced and when ηs is negative a cathodic current is produced. 
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1.2.3.2. Ohmic resistance 

Ohmic resistance describes the resistance to the movement of charged species driven 

by the electric field between two electrodes. The electric field (E) is related to the 

gradient in potential Φ by: 

𝐸 = −∇Φ    Equation 1.11 

The flow of electrons through electronic conductors can be described by Ohm’s law: 

𝐢 = −𝜎∇Φ    Equation 1.12 

Where i is the current density and 𝜎 is the electronic conductivity, equal to the inverse 

of the resistivity. The electric field also causes an ionic current across the electrolyte. 

The ionic current is the net flux of charged species: 

𝐢 = ∑ 𝑧𝑖𝐹𝑁𝑖𝑖     Equation 1.13 

Where Ni is the flux density of species i. However, the flux of charged species through 

a liquid electrolyte is a combination of the movement of ions in response to the electric 

field (known as migration), as well as any concentration gradients (diffusion) and bulk 

fluid motion (convection). In this work convection will be disregarded, therefore the 

flux of ions will be the result of migration and diffusion. In the absence of 

concentration gradients the movement of charged species may also be described by 

Ohm’s law: 

𝐢 = −κ∇Φ    Equation 1.14 

Where κ is the ionic conductivity of the electrolyte. However, the flow of current in 

most electrolytes (without convection) causes the build-up of concentration gradients. 
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This is due to  a property known as the transference number of ions; defined as the 

fraction of current that is carried by that ion in a solution of uniform composition. 

𝑡𝑖 =
𝑧𝑖𝐹𝑁𝑖

∑ 𝑧𝑖𝐹𝑁𝑖𝑖
  Equation 1.15 

If 𝑡𝑖 < 1 for the reacting species then a concentration gradient develops. The presence 

of a gradient in concentration of species i (∇𝑐𝑖) will also cause a flux of ions, which is 

proportional to the diffusion coefficient of species i (𝐷𝑖) by Fick’s first law: 

𝑵𝑖,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = −𝐷𝑖∇𝑐𝑖 Equation 1.16 

hence the migration flux should not be considered independently from diffusion. The 

unified treatment of migration and diffusion is known as concentrated-solution theory, 

however, a thorough explanation of this theory is beyond the scope of this work and 

may be found elsewhere.18  

1.2.3.3. Concentration overpotential 

As the Nernst equation (Equation 1.9) shows the potential of an electrode is shifted by 

changes in concentration, so the presence of concentration gradients in a cell creates 

another source of overpotential. This is best explained through consideration of a 

concentration cell such as that depicted in Figure 1. In this example, a solution of 0.1 

M CuSO4 is connected to a solution of 0.05 M CuSO4 via a porous glass disk which 

prevents rapid mixing but allows the flow of current and slow diffusion between the 

solutions. If identical Cu electrodes are placed into each solution there is a potential 

difference between the electrodes which may be approximated by:  

𝜂𝑐 = (1 − 𝑡+)
𝑅𝑇

𝐹
𝑙𝑛

𝑐𝐼

𝑐𝐼𝐼
   Equation 1.17 
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Where 𝑐𝐼 and 𝑐𝐼𝐼 represent the concentrations in compartments I and II respectively. 

Equation 1.17 may be used to used to calculate the potential difference between any 

two points in a solution with a concentration gradient across it, known as the 

concentration overpotential. 

 

Figure 1: Example of a concentration cell 

1.2.4. Overall cell voltage 

The overall cell voltage (V) during current flow will depend on:  

 the open circuit potential (U) 

 the surface overpotentials at each electrode (𝜂𝑠(cathode) and 𝜂𝑠(anode)) 

 the ohmic potential drop (Δ Φohmic) 

 the concentration overpotential at each electrode (𝜂𝑐(cathode) and 𝜂𝑐(anode)). 

For a galvanic cell: 

𝑉 = 𝑈 − 𝜂𝑠(anode) − 𝜂𝑐(anode) + 𝜂𝑠(cathode) + 𝜂𝑐(cathode) − ΔΦohmic 
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Figure 2 shows that as current is increased the various sources of overpotential cause 

a drop in the operating voltage of a galvanostatic cell. As discussed above, the opposite 

effect will occur within an electrolytic cell. 

 

Figure 2: Effect of increasing current on the operating voltage of a galvanostatic cell 

(from 19). Activation polarization refers to surface overpotential. 

The net work delivered by a galvanic cell or required by an electrolytic cell when a 

current I flows for time t is given by: 

𝑤𝑛𝑒𝑡 = ∫ 𝐼𝑉 𝑑𝑡  Equation 1.18 

Therefore polarisation causes less energy to be delivered by galvanostatic cells and 

means electrolytic cells require more energy to drive the electrochemical reaction. 
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1.2.5. Batteries 

Batteries are made up of two or more cells connected in either parallel or series and 

can be separated into primary and secondary batteries. Primary batteries are non-

rechargeable due to the irreversible nature of the electrochemical reaction that occur 

within them. Secondary batteries make use of reversible electrochemical reactions thus 

allowing multiple charge/ discharge cycles. During charging a secondary battery acts 

as multiple electrolytic cells, converting electricity to chemical energy, and on 

discharge the battery acts as mutiple galvanic cells whereby an electric direct current 

is generated. 

1.2.6. Characteristics of electrochemical cells for energy 

storage 

Charge capacity 

The charge capacity or capacity, Q (Ah), is the the total amount of charge that flows 

through a cell: 

𝑄 = ∫ 𝐼(𝑡)𝑑𝑡
𝑡2

𝑡1
 Equation 1.19 

Theoretical specific capacity 

The theoretical specfic capacity, 𝑞𝑡ℎ (Ah kg-1), defines the charge capacity per kg of 

reactants, 𝑚𝑖, which may be calculated from the stoichiometric cell reaction: 

𝑞𝑡ℎ =
𝑛𝐹

∑ 𝑚𝑖𝑖

  Equation 1.20 
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For energy storage applications it is often desirable to maximise the energy within a 

given mass or volume. Throughout this work the terms specific energy (Wh kg-1) and 

energy density (Wh dm-3) will be collectively described as energy metrics: 

Theoretical specific energy 

𝑤𝑡ℎ =
𝑛𝐹∆𝑈

∑ 𝑚𝑖𝑖

  Equation 1.21 

Theoretical energy density 

𝑤𝑉,𝑡ℎ =
𝑛𝐹∆𝑈

∑ 𝑉𝑖𝑖

  Equation 1.22 

Furthermore, power refers to the rate at which that energy can be released or converted 

(to chemical energy). The terms specific power (W kg-1) and power density (W dm-3) 

will be collectively described as power metrics: 

Specific power 

𝑝 =
𝐼∆𝑈

∑ 𝑚𝑖𝑖

  Equation 1.23 

Power density 

𝑝𝑉 =
𝐼∆𝑈

∑ 𝑉𝑖𝑖

  Equation 1.24 

The charge/discharge current (C rate) 

The term C rate (C/Δt) is commonly used by battery scientists to describe the rate of 

charge/discharge of an electrochemical cell, where C denotes either the theoretical or 

nominal charge capacity (Ah) and Δt is usually in hours. In this work the C rate will 

be used to describe the current rate at which the theoretical charge capacity of a cell 
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(Ah) is fully reached, where 1C is the current required to fully charge/discharge in one 

hour. For example, C/37 means a current theoretically allowing full charge or 

discharge in 37 hours.  

Irreversible capacity 

The irreversible capacity (%) defines how much charge capacity is lost after each 

cycle: 

irreversible capacity = 100% ×
𝑄𝐶ℎ𝑎𝑟𝑔𝑒− 𝑄𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝐶ℎ𝑎𝑟𝑔𝑒
  Equation 1.25 
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1.3. Lithium ion batteries 

Lithium is the lightest (6.94 g mol-1) and most electropositive metal (-3.04 V vs. 

standard hydrogen electrode) and thus represents a highly desirable negative electrode 

material for battery applications. However, the use of lithium metal electrodes in 

rechargeable batteries (with liquid electrolytes) is limited due to serious safety issues 

during cell charging. As lithium is deposited at the negative electrode, the formation 

and growth of dendritic structures can lead to short circuits and associated cell failure, 

thermal runaway and explosion hazards.15  

This has led to the development of the inherently safer lithium ion battery (LIB) 

technology, where lithium is stored in the ionic state in both negative and positive 

electrodes.15,20–23 The first commercial LIB was released by Sony in 1991,24 preceded 

by several separate inventions25 that included the work of Goodenough,26 Yazami27 

and Whittingham.28 Figure 3 shows the operating mechanism of a Li ion battery. On 

charging, electrons flow from the positive electrode to the negative electrode through 

an external circuit, accompanied by the extraction of Li+ ions from the positive 

electrode and insertion into the negative electrode via a lithium ion conducting 

electrolyte. On discharge, the opposite process occurs, releasing stored energy. The 

open circuit potential of such a cell is equal to the difference of electrochemical 

potentials of Li in the two electrodes when in mutual contact with an electrolyte: 

U = −
(𝜇𝐿𝑖

+𝑣𝑒− 𝜇𝐿𝑖
−𝑣𝑒)

𝑛𝐹
 Equation 1.26  

where U is the open circuit potential of the cell, 𝜇𝐿𝑖
+𝑣𝑒 and 𝜇𝐿𝑖

−𝑣𝑒 the electrochemical 

potentials of Li in the positive electrode and negative electrode respectively, n = 1 

(since one e- is transferred per lithium) and F is Faraday’s constant.  
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Using 𝑤𝑡ℎ =
𝑛𝐹∆𝑈

∑ 𝑚𝑖𝑖

  Equation 1.21 1.21 and 𝑤𝑉,𝑡ℎ =
𝑛𝐹∆𝑈

∑ 𝑉𝑖𝑖

 

 Equation 1.22 1.22, the energy metrics of these systems are maximised by 

selection of electrode materials able to reversibly insert lithium ions with a large 

gravimetric capacity and at low and high electrochemical potentials (for the positive 

and negative electrode material respectively). 

 

Figure 3: Schematic of working mechanism of lithium ion batteries. Li+ ions are 

represented by blue spheres.  

LIBs have become the most popular portable energy storage technology accounting 

for over 60% of total portable battery sales.29 LIB costs have been driven down30 by a 

rapid increase in production which has extended the viability of LIBs for various 

applications - for example, they are currently being deployed in various large scale 

grid storage applications.16 Tarascon and Armand showed in 200115 that LIBs 

outcompete all conventional rechargeable battery technologies (excluding Li metal 

batteries) in terms of gravimetric and volumetric energy density.15 Between then and 
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now further progress has been achieved with state of the art commercial cells being 

reported with specific energy ~240 Wh kg-1 and volumetric energy density ~670 Wh 

L-1.31 

 

Figure 4: Comparison of gravimetric and volumetric specific energy of various 

electrochemical energy storage technologies, PLiON represents plastic Li ion 

technology. Adapted from Tarascon et al.15 

1.3.1. Materials for lithium ion batteries 

Figure 5 shows the equilibrium potential vs. Li+/Li and theoretical capacity of common 

materials used in LIBs. Primarily, commercial cells have been based around the use of 

graphite as negative electrode and a high potential metal oxide material as positive 

electrode. The first commercial cells employed a LiCoO2 positive electrode but more 

recently the partial substitution of Co with Mn, Ni and Al has been used to increase 

energy and power metrics, improve cycling and safety measures and reduce 
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costs.20,24,32 The use of lower potential positive electrode materials such as LiFePO4 or 

Li1-xMn2O4 is also prevalent due to lower cost and improved cycling performance.20 

As discussed, the role of the electrolyte in LIBs is to transport Li+ ions between 

electrodes during cycling. An ideal electrolyte will have low Ohmic resistance to 

current flow, alongside a large transference number (ideally 1) to avoid the build-up 

of concentration gradients at large current densities and associated concentration 

polarisation. Most commercial systems use liquid electrolytes for this role, however, 

the large operating voltage of conventional systems poses severe limitations to the 

choice of electrolyte, particularly during charging when the low potential at the 

negative electrode surface causes reductive decomposition of electrolyte species and 

consumption of Li+ ions.33 To ensure reversible electrochemical cycling the formation 

of a stable surface film, known as the solid electrolyte interphase (SEI), must occur. 

The SEI permits conduction of Li+ ions but prevents e- conduction thus limiting 

electrolyte decomposition beyond the first few cycles.33 Conventional electrolytes thus 

consist of a liquid solvent (generally a mixture of carbonates), a lithium salt and 

additives with optimised properties for stable electrochemical cycling.34 Some 

common electrolyte solvents and salts are shown in Table 1.1. Furthermore, the 

development of solid electrolytes and polymer gel systems for both increased safety 

and energy metrics is at an advanced stage.35,36 
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Figure 5: Potential (V) vs. Li+/Li and reversible capacity (mAh g-1) of various electrode 

materials used in LIBs (adapted from 37). The blue region represents the 

electrochemical stability window of common carbonate based electrolytes used in 

LIBs. 

Table 1.1: Conductivity of 1M electrolytes of various solvents and salts (mS cm-1)38–

40 

Solvent LiPF6 LiClO4 LiBF4 LiAsF6 LiTFSI 

PC 5.8 5.6 3.4 5.7 5.1 

DMC 3.0 3.0 1.5 - - 

EC:DMC (1:1) 10.7 8.4 4.9 11.1 9 

EC:PC (1:1) 6.6 14 4.3 - - 
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1.4. Graphite 

The structure of graphite consists of stacked layers of sp2 hybridised carbon, known 

individually as ‘graphene’ layers. Graphene layers are weakly held together by van der 

Waals interactions, allowing easy exfoliation of layers and slipping of sheets over each 

other, making graphite useful as a solid lubricant.41  

The weak inter-sheet bonding in graphite also allows the intercalation of molecules 

and ions between graphene layers, thus forming graphite intercalation compounds 

(GICs). In particular, graphite displays the ability to reversibly intercalate Li at a low 

electrode potential of between 0.005 – 0.2 V versus Li+/Li, via the reaction: 

C6 + Li+ + e- ↔ LiC6   Equation 1.27  

Using Equation 1.20 this affords a theoretical capacity of 372 mAh g-1. The 

combination of relatively large theoretical capacity and low intercalation potential 

makes graphite highly suitable as a negative electrode material. For this reason, 

graphite remains the most commonly used negative electrode material in LIBs. 

1.4.1. Crystalline structure of graphite  

Figure 6Error! Reference source not found.(a) shows the crystalline structure of 

graphite in its most common form, known as hexagonal (2H)  graphite, with ABA 

stacking order of graphene layers and corresponding to the P63/mmc (𝐷6ℎ
4 ) space 

group.42 It displays interlayer spacing of 3.35 Å and in-plane C-C bond distances of ~ 

1.42 Å. The hexagonal unit cell is defined by lattice parameters a1 = a2 = 2.46 Å and c 

= 6.71 Å. There are 4 atoms per unit cell: atoms labelled A and A’ out-of-plane 
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neighbours at 3.35 Å distances, whilst atoms B and B’ have no out-of-plane 

neighbours. Figure 6(b) shows the first Brillouin zone of graphite displaying the 

labelling of high symmetry points and reciprocal lattice vectors in reciprocal space.  

 

Figure 6: (a) Crystalline structure of hexagonal graphite and view perpendicular to 

graphene sheets. (b) First three-dimensional Brillouin zone (BZ) of graphite with 

conventional labelling of high symmetry points, and simplified two-dimensional BZ 

derived from kz = 0 plane of the full BZ. Adapted from 42–44. 
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An alternative though less prevalent ABCABC stacking sequence of graphene layers 

is also possible which results in rhombohedral (3R) graphite.42 Furthermore, stacking 

disorder may exist within graphite structures resulting in either a mixture of 2H and 

3R structures or rotational disorder whereby there is no stacking order between 

layers.45 Graphitic structures which exhibit no stacking order are known as turbostratic 

graphite. 

1.4.2. Limitations of Graphite in LIBs 

1.4.2.1. Solid electrolyte interphase formation 

At potentials below ~ 1.0 V vs. Li+/Li  conventional carbonate electrolytes used in 

LIBs decompose at the negative electrode surface due to irreversible reduction 

reactions.46 As discussed, this produces an SEI layer that is an electronic insulator (thus 

preventing further electrolyte decomposition), yet allowing Li+ ion conduction. 

Therefore, the formation of a stable SEI layer is essential for facilitating the efficient 

electrochemical cycling of graphite electrodes at the potentials required for lithiation.  

Furthermore, due to the low potential of lithiation (approaching 0 V vs. Li+/Li), safety 

precautions must be employed on charging to avoid the plating of lithium metal and 

associated risks described earlier. For example, this inherently limits the charging rate 

that may be used due to the increased polarisation that occurs at high current densities. 

Furthermore, the risk of Li plating in commercial LIBs is commonly reduced by 

intentionally increasing the capacity of graphite electrodes compared to the positive 

electrode during cell assembly in a process known as cell balancing. The use of excess 

graphite mass within negative electrodes reduces the practical energy and power 

metrics for LIBs. Moreover the lithium plating phenomena may be further exacerbated 
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by the inherent inhomogeneity of the SEI layer which causes an inhomogeneous 

current distribution at the electrode surface.33,47,48 

Additionally, although still not fully understood graphite electrodes are likely to be 

responsible for at least part of the capacity fading that occurs during extended cycling 

of LIBs.49 Due to structural changes of materials that occur during electrochemical 

cycling, cracking/degradation of both particles and the SEI layer may occur, exposing 

fresh electrode surfaces to the electrolyte and causing continual reformation of the SEI 

layer. This process gradually reduces the amount of Li+ ions available and leads to a 

reduction in cell capacity.50 

1.4.2.2. Alternative negative electrode materials  

The development of alternative negative electrodes is an ongoing process. The use of 

lithium titanate anodes offer improved rate capability and cyclability due to the zero-

strain lithium insertion which occurs at potentials ~1.55 V vs Li+/Li.51 However, a low 

theoretical capacity (175 mAh g-1) coupled with the higher insertion potential leads to 

cells with lower energy density.51 In contrast, the use of high capacity Si anodes (3572 

mAh g-1)52 is prevented by large volume expansion/contraction of ~300% during 

lithiation/delithiation, which limits cycle life due to repeated SEI breakage and 

reformation. 
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1.5. Graphene: Discovery, Properties and Production 

Graphene is defined by the International Union of Pure and Applied Chemistry 

(IUPAC) as a single carbon layer of the graphite structure‚ whose nature can be 

described by analogy to a polycyclic aromatic hydrocarbon of quasi infinite size. 

Despite prior knowledge of the relative ease of graphite exfoliation53 and the 

observation of single layers of molybdenum sulphide as long ago as 1986,54 the 

isolation and characterisation of crystalline, atomically-thin graphene sheets was first 

reported in 2004 by Novoselov et al.55 This discovery precipitated a surge of research 

activity in the field of two dimensional materials,56–58 and led to the award of the 2010 

Nobel Prize in Physics. Single layer graphene was found to have remarkable physical 

properties including near ballistic electron transport,59 unusual magnetic properties60 

and quasi-relativistic behaviour.61 Furthermore, the excitement surrounding its 

conductivity and optical/mechanical properties have led to investigations into its 

suitability for nanoelectronics, thin-film transistors, (opto)electronics, energy storage 

and photonics applications.58  

Furthermore, the interest in graphene has attracted interest in the properties and 

applications of few layer graphene (defined by Raccichini et al.62 as between 2 to 10 

stacked graphene layers). The electronic structure of 2 and 3 stacked graphene layers, 

known as bilayer and trilayer graphene respectively, have been shown to vary 

considerably from both SLG and bulk graphite.63 Furthermore, bilayer graphene 

studies allow investigation of the effect of rotational stacking order on the electronic 

structure.64 Similar methods have also allowed the isolation of other novel 2D 

materials showing exotic properties.65 

http://goldbook.iupac.org/G02684.html
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1.5.1. Production of graphene and exfoliated graphite materials 

The production of high quality graphene at commercial scales has proved non-trivial.62 

The main methods of graphene production are summarised in Figure 7 with regards to 

the resultant graphene quality, cost aspect, scalability, purity and yield. 

Mechanical exfoliation was the method used to first isolate graphene and produces 

very high quality and purity graphene sheets at low cost. This method involves the 

separation of graphene sheets by purely mechanical forces without the aid of solvents. 

Typical examples involve the application of a normal force with commercial ‘scotch 

tape’ to achieve micromechanical cleavage. However, the yield is low and the 

technique is inherently unscalable so is likely to remain of use for fundamental studies 

only. Similarly, chemical vapour deposition (CVD),66 bottom-up synthesis and 

synthesis on SiC produce high quality graphene, with comparable purity to the 

mechanical route. Although these routes are more scalable than mechanical exfoliation 

(especially CVD which is used in the industrial semiconductor industry to produce thin 

films) the low yield and high cost of graphene production by these methods would 

prevent the use of graphene in many applications. 

In contrast, the chemical exfoliation of graphite using strong oxidizing agents67 and 

sonication or stirring, followed by reduction of graphene oxide,68 yields a large 

quantity of single layer flakes and due to scalability and relatively low cost has allowed 

numerous reduced graphene oxide (rGO) products to reach the market.69 However, 

rGO often displays low purity and a large quantity of defects and oxygen containing 

groups, which increases the chemical reactivity and decreases the conductivity.69–71  
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Meanwhile, in liquid phase exfoliation pristine or expanded graphite is dispersed in a 

solvent (to reduce the strength of Van der Waals attraction between layers), then 

exfoliated by application of an electrochemical or mechanical driving force. 

Mechanical methods include sonication or shear mixing, whilst electrochemical 

exfoliation relies on the application of an electric field. Both methods produce high 

purity and quality graphene with relatively low costs, however, the physical methods 

generally reduce lateral flake size to sub-micron dimensions.72,73 Alternatively, the 

electrochemical exfoliation of graphite represents a scalable approach with the 

possibility of maintaining the high conductivity of low defect concentration single and 

few layer graphene sheets with large lateral flake dimensions.74–77 
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Figure 7: Schematic of the most common methods of graphene production. The overall 

production process of each method has been evaluated in terms of graphene quality 

(G), cost aspect (C), scalaility (S), purity (P) and yield (Y) where 0 = none or not 

applicable, 1 = low, 2 = average and 3 = high. A low value for the cost aspect relates 

to a high cost of production. Adapted from Raccichini et al.62 

1.5.2. Graphenic and exfoliated graphite materials as 

alternative negative electrode materials 

It is known that the dimensions of graphite particles have a strong effect on their 

electrochemical properties for lithium intercalation.78 Therefore, following the success 
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in developing methods for single and few layer graphene production, many research 

groups determined to test these materials as negative electrode materials for LIBs. The 

primary drive for this research was the prediction of SLG’s theoretical lithium storage 

capacity being double that of graphite, i.e. if two layers of Li+ ions adsorbed to each 

sheet Li2C6 could be formed rather than LiC6 and the capacity would increase from 

372 mAh g-1 to 744 mAh g-1. This was suggested after earlier observations of increased 

lithiation capacities for hard carbons which have been described as graphene sheets 

with a randomly oriented, ‘house of cards’ structure.79–81  

A comprehensive review of published electrochemical performances of graphene 

materials as negative electrodes (between 2008 and early 2017)  has been reported 

elsewhere,82 which concluded that such materials have not lived up to their promised 

expectations in the LIB field, with no clear applications apparent. The vast majority of 

initial reports focussed on rGO materials.83–88 Large lithiation capacities for the first 

cycle were observed, however this was found to be highly irreversible and correlated 

directly to the specific surface area and thus assigned to irreversible surface passivation 

reactions. Furthermore, a large proportion of inserted Li capacity occurred above 0.5 

V vs. Li+/Li as observed for hard carbons,23 whilst a large hysteresis was observed on 

delithiation with most capacity between 1 - 3.5 V resembling behaviour in hydrogen 

rich carbons.23,89 The final drawback was rapid capacity fading during cycling.  Similar 

behaviour was observed in graphene synthesised by CVD  and by the unzipping of 

carbon nanotubes.90,91 

In 2010 an important mechanistic study was reported where the Li+ storage mechanism 

of SLG and FLG were investigated.92 The FLG electrode showed intercalation 

behaviour comparable to graphite. Significantly, the SLG electrode displayed radically 
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different behaviour, with a much lower capacity of Li+ storage by adsorption. This was 

supported by several modelling studies that suggested strong coulombic repulsion 

lowers the binding energy for Li+ adsorption on SLG and hence leads to lower surface 

coverage compared to the LiC6 conformation obtainable in graphite.93–95 Low 

reversible capacities were also observed in further experimental studies.96,97 

However, numerous studies have shown that reversible capacities larger than 372 mAh 

g-1 are achievable, in particular by assembly of hierarchical98–100 or ‘holey’ 

structures,101 chemical activation102 or edge functionalisation.103 These increased 

capacities are likely explained by enhanced lithium storage in defects, cavities and 

nanopores and display rapid capacity fading during cycling.81 Additionally, large 

reversible capacities with improved cycling stability have been achieved by the doping 

of graphene sheets with heteroatoms (N, B, S, etc.),104–112 as had been suggested by 

density functional theory simulations.95 However, information required for the 

practical comparison of these systems with state of the art electrodes are often missing, 

such as volumetric capacity values or electrode mass loadings. Notable exceptions are 

the high volumetric capacities reported by Xu et al.100 and Ji et al.,112 using a 

hierarchical, solvated network and a compressed composite-foam electrode 

respectively. Nevertheless, these results still showed large voltage hysteresis on 

delithiation making them impractical for commercial battery applications. Moreover, 

examination of the effect of heteroatom doping is beyond the scope of this work. 

Improved performance in terms of first cycle irreversibility, capacity retention and 

delithiation voltage have also been observed in liquid exfoliated graphene electrodes, 

although with reduced reversible capacities.113–116 This may be linked to reduced 

defect content as described earlier. Furthermore, studies have been conducted in full 



29 

 

cell configuration (vs. lithium iron phosphate) allowing direct comparison of energy 

and power metrics with graphite electrodes.117 Although values are not that impressive, 

it should be highlighted that liquid phase processes generally produce a wide 

distribution of thickness and lateral dimensions of exfoliated flakes. To gain more 

insight into the structure-property relationship a systematic study by Sun et al.118 used 

a sedimentation-based separation to correlate the lithiation behaviour with flake 

dimensions. This study showed conclusively that as the lateral dimensions and 

thickness of flakes decreases the first cycle irreversible capacity and capacity fading 

increases, whilst reversible capacity decreases. Furthermore, increased voltage 

hysteresis on delithiation was linked directly to increased lithium surface adsorption, 

compared to intercalation in thicker flakes. 

However, despite these unattractive properties of FLG for practical electrode 

applications, experimental and modelling studies have suggested there may be subtle 

differences in Li intercalation mechanism depending on layer number.119,120 In fact, 

the conventional staging process during Li intercalation of bulk graphite will be 

inherently limited by the number of available interlayer spaces. Furthermore, as will 

be discussed in Chapter 4 there may be some benefits in terms of reduced solid state 

diffusion limitations for thinner particles. These factors may go some way to 

explaining the improved low temperature performance that has been observed in 

various graphene or exfoliated graphite samples.111,116 For these reasons further study 

of the mechanistic differences during Li intercalation into FLG and thin graphitic 

samples is worthwhile.  
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1.6. Raman spectroscopy  

Raman spectroscopy is a form of vibrational spectroscopy used to investigate 

molecular and crystalline structures by the inelastic scattering of electromagnetic 

radiation. Figure 8 shows the scattering processes of light with matter. Electrons are 

excited by the fast-changing electric field of an incoming photon into a ‘virtual’ 

excited state. The electron relaxes back to the ground electronic state emitting a photon 

which is said to be scattered. Elastic scattering occurs when the photon is scattered 

with the same energy (and frequency) as the incoming photon: 

EL = ESc    Equation 1.28 

Where EL and ESc are the energy of the incoming and scattered photon respectively. 

This process is commonly known as Rayleigh scattering and will produce an intense 

peak on a detector with an appropriate diffraction grating. Inelastic scattering may 

occur, with less probability, when the energy (and frequency) of the scattered light is 

different from that of the incoming laser. This can occur as the stokes process, whereby 

the electron returns to an excited vibrational state so that:   

 ESc
 = EL – hν   Equation 1.29 

Where ν is the frequency of an excited vibrational state and h is planck’s constant. The 

Stokes scattering process may occur if the excited electron was occupying an excited 

vibrational state prior to excitation by the photon. It may then relax to a lower 

vibrational state such that: 

ESc
 = EL + hν   Equation 1.30 
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Raman spectra are usually collected from Stokes Raman processes due to their larger 

intensity compared to anti-Stokes. This is due to a low occupation of vibrational states 

above the ground state making Stokes processes much more likely to occur. 

Furthermore, the intensity of each of these process can be increased if the excitation is 

selected to match a specific energy level or stationary state within the probed 

structure.121 This is known as resonant Raman scattering. 

 

Figure 8: Scattering processes of light (inelastic anti-Stokes Raman, elastic Rayleigh 

and inelastic Stokes Raman) and  positions on the frequency spectrum. 
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1.6.1. Vibrations in crystalline solids (phonons)  

In a molecule with N atoms there are 3N - 6 normal modes of vibration. This arises 

due to the subtraction of 3 modes for translation (which have no restoring force)  and 

3 modes for rotation (which have a very low frequency) from the 3N degreess of 

freedom. In a crystalline solid with NΩ unit cells and N atoms per unit cell there are 

3NΩ N vibrational modes which due to periodicity may be described as a continuum 

of quantised quasiparticles, known as phonons. Phonons may be divided into 3N 

branches where the difference between phonons within a branch is given by the 

associated wavevector (q), where:  

𝑞 =
2𝜋

𝜆
    Equation 1.31 

and  

𝐸 = ℏ𝜔𝑞   Equation 1.32 

ℏ is planck’s constant divided by 2π, 𝜔𝑞 is the angular frequency and 𝜆 is the 

wavelength of the vibration which describes the change in phase from one unit cell to 

the next. A plot of 𝜔𝑞 vs. q is known as the phonon dispersion. 

There are 3 acoustic branches which contain phonons associated with pure translation 

of the unit cell; however, acoustic phonons with q = 0 represent translation of the entire 

crystalline lattice and therefore have zero energy. The remaining 3N - 3 branches have 

non-zero energy at q = 0 and are known as optical branches. Representative vibrations 

of a 1D crystal with two atoms per unit cell can be observed in Figure 9. Since the 

lattice is periodic with lattice constant a, all possible vibrations may be described 

within the first Brillouin zone, i.e. – 
𝜋

𝑎
≤ 𝜆 ≤

𝜋

𝑎
 .  
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Figure 9: (a) equilibrium position of atoms in theoretical 1D crystal with 2 types of 

atoms. Effect on atomic positions of transverse acoustic (b) and optical (c) phonons 

with 𝜆 = 4a. 

1.6.1.1. Selection rules for Raman active modes in crystalline solids 

When scattering of electromagnetic radiation occurs there must be conservation of 

energy and momentum, therefore: 

ωL= ωSc ± ωq   Equation 1.33 

kL= kSC
 ± q  Equation 1.34 

Where ωL, ωSc and ωq  are the angular frequency of the incoming laser, scattered light 

and phonon respectively. kL,  kSC
 and q are the wavevectors of incoming laser, 

scattered light and phonon respectively. 
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Typical Raman experiments are conducted in the (UV to IR) 1064 – 229 nm range 

(corresponding to 1.2 – 5.4 eV).63 The lattice parameter, a, is generally on the order of 

several angstroms (Å) so kL, kSc ≪ π/a. This leads to the the fundamental Raman 

selection rule for first order scattering due to conservation of momentum - only 

phonons near the Γ point (q ≈ 0) are measured. However, optical modes are only 

Raman active if the vibration causes changes to the polarisability of the crystalline 

structure, which is known as the gross Raman selection rule.  
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1.7. Raman spectroscopy of graphitic carbons 

1.7.1. Electronic band structure of graphite  

The electronic band structure of graphite is shown in Figure 10, where the dashed line 

represents the Fermi level (EF): the maximum energy of occupied electronic states at 

absolute zero temperature.  

 

Figure 10: Calculated electronic band structure (left panel) and corresponding density 

of states (DOS) (right panel) of hexagonal graphite adapted from 122. The dashed line 

represents the Fermi Level and zero energy is defined as the bottom of the lowest 

valence band. The units of DOS are states per eV per C atom. 

Figure 10 shows that graphite is a semimetal due to a non zero density of states at the 

Fermi level, caused by a meeting of π and π* bands at the K and H points; thus graphite 
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displays a large concentration of carriers at ambient temperature or with an applied 

voltage. Significantly, the lack of a band gap also means the Raman process in graphite 

may be resonant, hence Raman spectroscopy can be used to changes to the electronic 

structure. 

1.7.2. Vibrational modes and phonon dispersion in graphite 

The optical zone centre modes of graphite are given in Figure 11 and may be 

decomposed into:  

Γ = A2u + 2B2g + E1u + 2E2g    Equation 1.35 

The A2u and E1u modes are IR active, whilst the E2g modes are Raman active. The 

acoustic modes are decomposed into Γ = A2u + E1u. Given the anisotropic nature of 

graphite with strong in-plane bonding and weak Van der Waals' interactions out-of-

plane, the phonon dispersion of graphite closely resembles that of graphene,123 which 

is given in Figure 13. Notably, in graphite the acoustic modes of single layer graphene 

are split into one acoustic and one optical mode close to the Γ point (which is the 

source of the low frequency Raman active E2g1 mode). However, these modes are not 

investigated in the current study, thus the phonon dispersion of graphene is suitable 

for the discussion of Raman active optical modes in graphite.   
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Figure 12: Γ point optical vibrational modes in hexagonal graphite showing atomic 

displacements and symmetries (adapted from 124). 

 

Figure 13: Calculated phonon dispersion of graphene adapted from Beams et al.125, 

where the labels i and o indicate in-plane or out of plane vibrations respectively, T and 

L represent transverse or longitudinal vibrations, A and O indicates acoustic or optical 

vibrations. Positions of the Raman active phonons are indicated. 
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In the phonon dispersion of graphite an anomalous softening of phonons has been 

observed at the Γ and K points,123 which is explained by a behaviour known as Kohn 

anomaly and related to the anomalous screening of particular vibrations by electronic 

states.126 Kohn anomalies may only occur for wavevectors (q) where there are two 

electronic states k1 and k2 lying on the Fermi surface (states where E = EF), such that:  

k2 = k1 + q  Equation 1.36 

Therefore, Kohn anomalies occur at q = Γ and q = K. The Fermi level may be increased 

or decreased by the addition of extra charge carriers (electrons or holes), in a process 

commonly known as doping. Therefore doping of graphene moves the position of the 

Kohn anomaly and affects the frequency of atomic vibrations at the Γ and K points.127    
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1.7.3. Raman spectra of graphite 

Figure 14 shows the most prominent Raman peaks in the region 1200 - 3000 cm-1 using 

a 633 nm excitation laser. At ~ 1580 cm-1 the G band corresponds to the high-

frequency E2g2 phonon at the Γ point (q = 0). The process occurs via resonant (whereby 

the excited electronic state coincides with an unoccupied state in the electronic 

dispersion) and non-resonant pathways as shown in Figure 16(a).  

 

 

Figure 15: Raman spectrum of pristine microcrystalline graphite powder showing 

labelled bands. In set shows expanded 2D band with fitted 2D(1) and 2D(2) peaks. 
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All forms of graphitic carbons (except for low defect concentration single crystal 

graphite), with also produce a second feature at ~ 1330 cm-1 known as the D peak. The 

D peak is produced by the breathing modes of six atom rings as shown in Figure 16(b), 

arising from the in-plane transverse optical phonon close to the K point. It is the 

intervalley process (between K and K’ points in reciprocal space) as shown in Figure 

16(c) and must be activated by the presence of defects to conserve momentum due to 

the non-zero phonon wavevector. Furthermore, it is active by double resonance so is 

strongly dispersive with excitation energy due to the phonon dispersion around the K 

point.128,129 

The 2D band ~ 2600 – 2700 cm-1 (sometimes referred to as the G’ band within the 

literature) is the overtone of the D band. It is always present because momentum is 

conserved by two phonons with opposite wave vectors as shown in Figure 16(d). The 

Raman process may be either doubly or triply resonant and therefore is sensitive to the 

electronic structure, which varies with the number and orientation of layers. For 

example, single layer graphene displays a single Lorentzian peak,130 whilst bilayer 

graphene may be fitted by four peaks corresponding to the four different resonant 

processes that may occur.131 Meanwhile, above ~ 4-5 layers the 2D band is 

indistinguishable from that of bulk graphite where in general the band may be fit by 

two peaks as shown in Figure 15, and labelled 2D(1) and 2D(2) throughout this work. 
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Figure 16: Raman processes responsible for (a) G band, (c) D band and (d) 2D band. 

Solid black lines represent the electron dispersion and occupied states are shaded. 

Photon absorption and emission are blue and red arrows respectively. Dashed black 

arrows represent creation of a phonon is and dashed orange arrows represent scattering 

on a defect. (b) Atomic displacements of the A1g mode at the K point, responsible for 

the D peak.    
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Further bands are observable in the Raman spectrum and have been well explained 

elsewhere.63 A Raman peak at ~ 42 cm-1, commonly known as the C peak, is present 

due to the E2g1 phonon at the Γ point (corresponding to shear motion of rigid graphene 

sheets) and is also highly sensitive to layer number.63 However, this peak is difficult 

to detect as its low frequency is below the filter cut-off of many spectrometers and has 

not been investigated in this work. Furthermore, the doubly resonant, defect activated 

D’ peak and several overtones (D + D’, D + D”, 2D’, etc.) are also present but at 

intensities which are challenging to observe due to low signal to noise ratio during in 

situ experiments. 
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2. Experimental 

2.1. Electrochemical methods 

Electrochemical experiments generally study the process occurring at one electrode 

known as the working electrode. However, an electrochemical cell always contains a 

second electrode known as the counter electrode to complete the circuit. Experiments 

are carried out by controlling the cell potential or the current that passes through the 

cell. Additionally, three electrode experiments may also be performed whereby a 

reference electrode is added to the circuit. No current flows through the reference 

electrode allowing the potential of both the working and counter electrodes to be 

measured (or controlled) with respect to the reference electrode potential. 

Electrochemical methods used in this thesis may be separated into galvanostatic, 

potentiostatic and linear sweep voltammetry techniques. 

2.1.1.1. Galvanostatic and potentiostatic measurements 

In galvanostatic measurements a constant current is applied between the working and 

counter electrodes, and the change in potential is measured. By convention, negative 

and positive currents cause reduction and oxidation of the working electrode 

respectively. The applied current may be set to change after a certain time limit (as 

shown in Figure 17(a)) or when the cell potential reaches set upper and lower limits 

(referred to as cut-off voltages in Chapter 6). This method has the advantage that it 

reproduces practical battery discharge conditions. In potentiostatic measurements a 

constant potential is applied and the resultant change in current is measured. An 
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example of this technique is shown in Figure 17(b), where the potential is changed 

after a set time limit in a step-wise fashion.  

 

Figure 17: (a) Example of galvanostatic measurement, with current changing after set 

time limit, (b) example of potentiostatic step measurement.  

2.1.1.2. Battery cycling procedures  

Battery cycling procedures used herein are summarised in Figure 18. Cycles consist of 

alternate charging and discharging steps which may be either constant-current (CC)) 

type or   constant-current-constant-voltage (CCCV) type. The CC method employs 

galvanostatic conditions described above until a cut-off voltage (Emin or Emax below) 

is reached. The CCCV method employs an additional constant voltage step, usually 

held at the cut-off voltage until the current drops to a minimum level (labelled ICutoff 

below).   



  

55 

 

 

Figure 18: Example of a discharge/charge cycle for a lithium titanate electrode 

employing a CCCV method on the discharge and a CC (galvanostatic) method on the 

charge cycle. 

2.1.1.3. Linear sweep Voltammetry 

In linear sweep voltammetry the potential of the working electrode is changed with a 

constant rate between set potential limits, whilst the change in current is measured. 

The change in potential as a function of time is known as the scan rate (V s-1). An 

extension of this technique is known as cyclic voltammetry whereby a positive scan is 

followed by a negative scan in cyclic fashion; however, this thesis only involves the 

linear technique. 
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Figure 19: Example of linear sweep voltammetry technique where the scan rate may 

be calculated from the gradient indicated (= ΔV/Δt).  
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2.2. Characterisation methods 

2.2.1. Scanning electron microscopy (SEM)  

Scanning electron microscopy (SEM) is used primarily to characterise the surface 

morphology of samples on the nanometre to micrometre scale. The sample is 

bombarded with a scanning beam of electrons generated by an electron gun with 

energy in the range 0.1 - 30 keV. The electron beam interacts with the sample to a 

depth of ~ 1 µm. Images may be produced from the amplified signals of backscattered 

or secondary electrons produced by elastic or inelastic scattering processes with the 

sample respectively. Elastic scattering is highly sensitive to elemental composition, 

whilst the inelastic process occurs via interaction between the energetic electron beam 

and weakly bound electrons in the conduction band of metals or the outer shell valence 

band of semiconductors and insulators. A JEOL 6610 scanning electron microscope 

was used operating at accelerating voltages of 3.0, 10.0 and 20.0 keV. 

2.2.2. Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) operates via transmission of a beam of high 

energy electrons (accelerating voltage in the 100 to 1000 kV range) through an 

ultrathin sample. The interaction between the sample and electrons allows imaging at 

a significantly higher resolution than SEM due to the smaller de-Broglie wavelength 

of electrons. Electrons transmitted through the sample are magnified and focussed by 

objective lens to form an image on the imaging screen. Measurements were conducted 

by Dr. Laura Cabo Fernandez and Dr. Jianyun Cao. 
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2.2.3. Nitrogen adsorption/ desorption isotherms (BET) 

Brunauer–Emmett–Teller (BET) theory is widely used to calculate the surface area of 

solid materials from the physical adsorption of gas molecules onto solid surfaces. The 

theory can be applied to systems with multilayer adsorption and adsorption/ desorption 

isotherms are usually carried out with non-reactive gases, most commonly nitrogen.  

The theory applies through the following assumptions: that gas molecules physically 

adsorb on a solid in layers up to infinite dimensions, there is no interaction between 

the adsorbed layers and that the Langmuir theory (generally applied to monolayer 

adsorption) applies to each individual layer. Adsorption/ desorption isotherms are 

generally measured at the probe gas boiling point e.g. 77K for N2. Measurements were 

conducted by Jet Lee of the University of Liverpool. 

2.2.4. Powder X-ray diffraction (PXRD) 

Powder X-ray diffraction (PXRD) is a non-destructive technique that can be used to 

study the crystallographic structure and chemical composition of materials. The 

technique relies on the constructive interference of monochromatic X-rays with the 

periodic structure of a crystalline lattice. X-rays are produced by the irradiation of an 

anode material (e.g. Cu, Mo, Mg, Al) with high-energy electrons (produced by a hot 

tungsten filament cathode) causing the emission of a continuous spectrum of X-rays. 

A monochromator is used to supress X-rays other than the desired wavelength which 

is characteristic of the anode material used, then the monochromatic X-rays are 

directed onto the sample whereby a diffracted beam is produced only when 

constructive interference occurs, that is when the scattering angle satisfies Bragg’s 

law: 
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nλ = 2dhkl sinθ  Equation 2.1 

where n is any integer, λ is the characteristic wavelength used, θ is the diffraction angle 

and dhkl is the distance between lattice planes as shown in Figure 20 (for reflection 

geometry). (h,k,l) values represent the miller indices used to define planes of atoms, 

whereby (h,k,l) are the reciprocal of the plane’s intercepts on the x-, y-, and z-axes in 

terms of lattice constants a, b, and c.  

In this work powder X-ray diffraction (PXRD) was used whereby an average 

diffraction pattern of powder samples is collected. Data in Chapter 4 was collected on 

a Bruker D8 Advance operating in transmission mode with a Cu source (λ = 1.5418 

Å). Data in Chapter 6 was collected on a Rigaku SmartLab X-ray Diffractometer with 

Cu source in reflection mode   

 

Figure 20: Scattering of X-rays by crystalline lattice planes according to Bragg, where 

d is the distance separating lattice planes and θ the angle of reflection.  

2.2.5. Raman Spectroscopy  

The theory underpinning Raman spectroscopy is outlined in Chapter 1. Raman spectra 

were collected at room temperature (ca. 23 °C) using a Renishaw inVia spectrometer, 

with 632.8 nm (He–Ne laser) or 532 nm (green diode) focused through a microscope 
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via a 50× objective lens (Leica). Suitable filters were used to minimise the laser power 

at the surface to < 0.5 MW cm-2. Higher laser powers should be avoided so as to 

prevent both heating of the sample area and laser degradation of the surrounding 

electrolyte (which produces fluorescing species such as LiF). Peak fitting was 

performed using Lorentzian functions and the Peak analyser on Origin software 

(Chapters 3 and 5) or with a mixed Lorentzian and Gaussian function using WiRE 

Version 4 software (Chapters 4 and 6). 
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2.3. In situ Raman experiments 

The development of suitable electrode configurations and electrochemical testing 

techniques for conducting in situ Raman experiments evolved throughout this work as 

summarised in Figure 21. The preparation and study of free-standing electrodes and 

contacted single flakes is described below.
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Figure 21: Summary/process diagram of in situ Raman method development and suggestions for future studies in this area. 



  

63 

 

2.3.1. Free-standing electrode configuration 

2.3.1.1. Free-standing electrode preparation 

Free-standing electrodes were prepared by solvent extraction method as follows: 

graphite (50 wt%), Poly(vinylidene fluoride-hexafluoropropylene) co-polymeric 

binder (Kynar-flex, Arkema) (20 wt%)  and dibutyl phthalate (Aldrich) (30 wt%) were 

dispersed in acetone. The slurry was cast onto a glass plate and removed as a free-

standing film once dry. The dibutyl phthalate plasticiser was then extracted by soaking 

in diethyl ether, leaving a porous film ~ 50 µm thick. This was cut into 6 mm diameter 

electrodes (Figure 22(a)), which had a porous structure due to the solvent extraction 

method (Figure 22(b). The loadings of the electrodes were ~ 5 mg cm-2, with a typical 

electrode mass being ~ 1.5 mg. Electrodes were dried under vacuum at 90 °C, then 

transferred to an argon filled glovebox (O2, H2O < 1ppm) for Raman cell assembly. 

 

Figure 22: Photograph (a) and SEM image (b) of microcrystalline graphite free 

standing electrode showing porosity created by solvent extraction method. 
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2.3.1.2. In situ Raman cell setup for free-standing electrode 

experiments 

Experiments used an in situ Raman cell (ECC Opto-Std, El-Cell), configured as shown 

in Figure 23(a). The cell is hermetically sealed to atmosphere, enabling air-sensitive 

electrochemical processes to be investigated in situ. The aperture allows a Raman laser 

to be focussed upon the back surface of a free-standing electrode, so that Raman 

spectra may be obtained during electrochemical cycling. The 3 electrode configuration 

was employed whereby a small piece of Li metal was inserted at the tip of the reference 

electrode contact pin. Once sealed, the cell was impregnated with 1 M LiPF6 in EC-

DMC electrolyte (BASF) by application/release of a negative pressure with an 

electrolyte-filled syringe. The Raman cell was then positioned atop the Raman 

microscope stage and connected to a potentiostat (Biologic) as shown in Figure 23(b). 
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Figure 23: (a) In Situ Raman cell setup for free standing electrode experiments and (b) 

positioning of cell during in situ measurement 
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2.3.2. Mechanically-exfoliated single graphite flake 

experiments 

The same cell was adapted for the single flake measurements in Chapter 5. Mechanical 

exfoliation of highly crystalline natural graphite flakes (NGS Naturgraphit GmbH) 

was performed via the ‘scotch tape method’1,2 onto borosilicate glass cover slides. This 

method produced a distribution of flakes on the slide as shown in Figure 24. Flakes 

were carefully screened via Raman spectroscopy and selected according to the 

following requirements: ideal flakes should possess a thin, flat region of several square 

micrometres area to be investigated by Raman spectroscopy; meanwhile the lateral 

dimensions of the flake should be larger than a few hundred micrometres and thick 

enough (> 500 nm) at one edge to facilitate electronic connection using silver epoxy. 

Selected flakes were isolated (still adhered to the glass substrate) using a diamond 

glass cutter and the thickness of the region to be investigated was determined by atomic 

force microscopy (AFM). An electronic connection between the graphitic flake and 

the copper current collector was made with silver epoxy, leaving the area of interest 

pristine. The position of the flake was aligned to coincide with the small aperture (ca. 

1 mm diameter) in the center of the copper current collector (see Figure 24a) to allow 

optical observation and spectroscopy. To minimize electrolyte contamination the 

silver epoxy contact was positioned facing the glass window. The contacted single 

flake electrode was assembled as the working electrode in the in situ Raman cell (ECC 

Opto-Std, El-Cell) (Figure 24b) in 2 electrode configuration, with Li metal counter 

electrode and an electrolyte impregnated glass fibre separator (1 M LiPF6 in EC-DMC 

electrolyte (BASF)).  
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Figure 24: Schematic illustration of the assembly the in situ Raman cell with single 

flake electrodes. a) Graphite flakes were mechanically exfoliated onto a borosilicate 

glass cover slide. One graphite flake was selected and connected to a copper current 

collector using silver epoxy, ensuring that the area of interest was aligned with the 

aperture in the center for direct observation. b) The graphite flake was assembled in 

the in situ Raman cell (ECC Opto-Std, El-Cell). 
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2.4. Coin cell tests 

2.4.1. Production of composite electrodes: slurry formulation 

and electrode casting  

In general, electrodes used in LIBs are composites composed of active materials, 

conductive additives and binder, the roles of which will be discussed in Chapter 6. 

Electrodes were produced for coin cell experiments by a tape-casting method.3 Firstly, 

electrode slurries were prepared by dispersion of electrode materials in N-

methylpyrrolidone (NMP). Dispersion was achieved by a combination of mixing 

techniques (stirrer bars, Vortex-Genie 1 Touch Mixer (Scientific Industries) and 

Intelli-Mixer RM-2 (LTF Labortechnik)).  

 In general, the following order of dispersion was followed: 

1) Poly(vinylidene fluoride-co-hexafluoropropylene) co-polymeric binder 

(PVdF-HFP) (Kynarflex, Arkema) was dissolved in NMP. 

2) Conductive additives were added and dispersed. 

3) Active material was added and dispersed. 

Following dispersion electrode slurries were cast onto metallic current collectors 

(Figure 25) using a doctor blade and paint applicator (K paint applicator with vacuum 

bed, RK PrintCoat Instruments). Cu foil was used for graphite electrodes (Chapter 4) 

and Al foil for lithium titanate and lithium cobalt oxide electrodes (Chapter 6). Casts 

were dried under an IR lamp and then transferred to a vacuum oven (~ 110 °C).  
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Figure 25: Casting procedure for composite electrodes. 

2.4.1.1. Dispersion process for exfoliated graphite conductive 

additives  

When exfoliated graphite samples were used as conductive additives the process was 

altered to encourage exfoliation of partially restacked graphene sheets. The following 

procedure was followed: 

1) Exfoliated graphte conductive additives were added and dispersed in NMP via 

20 minutes ultrasonication (50% power, 37 kHz, Fisherbrand FB11205 

ultrasonic cleaner) 

2) Poly(vinylidene fluoride-co-hexafluoropropylene) co-polymeric binder was 

added and dissolved. 

3) Any additional conductive co-additives were added and dispersed. 

4) Active material was added and dispersed. 
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2.4.1.2. Calendering to desired porosity 

Electrodes in Chapter 6 were calendered at room temperature using a cylinder press 

(MSK-HRP-01, MTI). Porosities were controlled by variation of the calender gap until 

the desired electrode thickness was achieved. The porosity of each electrode tested 

was calculated according to: 

Porosⅈty = 
Vactual‐Vpredⅈcted

Vactual
×100    Equation 2.2 

Where Vactual is the measured electrode volume (area multiplied by thickness) and 

Vpredicted is the predicted volume, calculated according to: 

V𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

ρaverage
 Equation 2.3 

Where melectrode is the electrode mass and ρaverage is the average electrode density, 

calculated according to:  

ρaverage = ∑
𝑊𝑖

100
ρⅈ  Equation 2.4 

Where ρⅈ is the density of each constituent and Wi  the wt. % of constituent i in the 

electrode. 

In general, electrodes were calendered to achieve a porosity of ~ 30 %. However, in 

most cases Vactual was measured with a precision of ± 5 µm due to the limitations of 

the thickness gauge (Mitutoyo Thickness Gauge 547-320S), i.e. thickness was 

measured in 10 µm steps (10 µm, 20 µm, 30 µm and so on). Figure 26 shows the effect 

of the uncertainty associated with the calculated porosity for electrodes with measured 

thickness between 20 - 60 µm, considering this measurement to be the only source of 



  

71 

 

error. As expected, the uncertainty in the calculated porosity increases as electrode 

thickness decreases. This uncertainty should be considered in the context of the 

composite electrode evaluation in Chapter 6, although all measurements in Chapter 6 

investigate trends and therefore the conclusions of the chapter are valid regardless of 

these considerations. However, a more precise thickness gauge (Mitutoyo Thickness 

Gauge 547-401) with a precision of ± 0.5 µm was used for experiments where the 

effect of porosity was specifically investigated.  

 

Figure 26: Calculated porosity, showing associated error bars from the uncertainty in 

the thickness measurement (± 5 µm).   
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2.4.2. Coin cell assembly 

2025 type coin cells were assembled in an Argon filled glove box (O2, H2O < 1ppm) 

in the configuration shown in Figure 27. A Li metal counter electrode (0.75 mm 

thickness x 16 mm diameter, Sigma) was used. The polypropylene O-ring gasket 

ensures hermetic sealing. Separators used were either 2 x borosilicate glass fibre 

(Whatman, Grade GF/C) or 1 x polypropylene membrane (Cellguard 2500 

Microporous Monolayer Membrane). The number of stainless steel spacers (0.5 mm 

thick) used was adjusted depending on the separator: 1 x spacer was used with the 

glass fibre separators and 2 x spacers with the polypropylene membrane. 1M LiPF6 in 

EC-DMC (BASF) was used as electrolyte, and separators were impregnated with 

excess volume. 

 

Figure 27: Schematic of coin cell configuration 
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2.4.3. Coin cell electrochemical testing procedures 

Electrochemical charge/discharge measurements were carried out at 30 °C on a battery 

cycler (Maccor Series 4000). The cycling procedures and currents were varied 

depending on the active material tested and are described in subsequent results 

chapters. Tests were performed with at least three electrodes to confirm reproducibility 

of results. Reported results are either the average of these tests (with standard deviation 

plotted as error bars), or the best performing electrodes, which are plotted for clarity 

of presentation and only when described trends were valid across all measurements.  



  

74 

 

2.5. Cathodic electrochemical exfoliation of graphite 

Materials tested in Chapter 4 and Chapter 6 were produced by a cathodic 

electrochemical exfoliation process, developed by the University of Manchester.4,5 As 

illustrated in Figure 28, a two electrode system is used, whereby a pressed pellet of 

graphitic carbon acts as the cathode and a graphite rod as the anode. The electrolyte is 

composed of dimethyl sulfoxide (DMSO) saturated with lithium chloride (LiCl) and 

triethylammonium hydrochloride (Et3NHCl). A negative voltage of -10 V is applied 

between the two electrodes for 8 hours, which causes exfoliation of the graphitic pellet 

cathode due to the intercalation of solvated Li+ and Et3NH+ ions (exfoliated flakes are 

dispersed in the electrolyte). The exfoliated product is dispersed in water, then 

collected by vacuum filtration and washed repeatedly with water to remove residual 

ions. Finally, the obtained powder is dried at 80 °C for 5 hours.  

 

Figure 28: Cathodic electrochemical exfoliation process developed by the University 

of Manchester.5 
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This method was used to produce materials used in Chapter 4 and Chapter 6, whereby 

the precursor graphite material (for the pressed cathode) in Chapter 4 was SFG 6 

microcrystalline graphite (TIMCAL TIMREX®) and in Chapter 6 was not disclosed. 
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3. In situ Raman spectroscopy of Li intercalation into 

microcrystalline graphite 

3.1. Overview of chapter 

Prior to the investigation of thickness related effects, the behaviour of a 

microcrystalline graphite sample during electrochemical Li intercalation was 

investigated. In general, particles of microcrystalline graphite are composed of 

graphitic crystallites with in-and out-of-plane dimensions in the range of tens to 

hundreds of nanometres. Characterisation of these dimensions will be discussed 

further in Chapter 4. Microcrystalline graphite is commonly used in Li ion batteries 

(LIBs) due to low cost and good electrochemical performance arising due to relatively 

short diffusion distances and low first cycle irreversibility.     

This chapter begins with an introduction to the graphite intercalation compounds 

(GICs) which are formed during the room temperature Li intercalation of graphite. 

This includes a review of the structural data of phases that have been observed in the 

literature. This precedes the discussion of an in situ Raman study of the 

electrochemical lithiation and delithiation of a microcrystalline graphite sample under 

galvanostatic conditions. This experiment revealed a large red-shift in 2D band 

frequency, accompanying the previously reported Raman response of the G band, 

suggesting significant strain and/or doping of the graphene sheets during lithiation. 
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3.2. Insertion mechanisms in lithium ion battery 

materials: solid solution and two-phase reactions 

Li insertion into LIB active materials may occur either by formation of a solid solution 

or via a two-phase reaction, depending on the miscibility of Li between the initial 

phase and the phase with increased Li concentration, following insertion.1 If there is a 

miscibility gap between the two phases, as in the lithium titanate system for example, 

where Li4Ti5O12 undergoes Li insertion to become Li7Ti5O12,
2 then a two-phase 

reaction occurs as Li concentrations between the two phases are thermodynamically 

unstable. Lithiation proceeds by a change in the ratio of Li4Ti5O12:Li7Ti5O12 by 

movement of a distinct phase boundary through particles. A two-phase reaction 

process can be observed under low rate galvanostatic conditions as a plateau in the 

voltage profile (vs. Li+/Li) as indicated in Figure 29(a) for a theoretical insertion 

reaction, MA + Li+ + e- → LiMA. In accordance with Equation 1.26, cell potential is 

proportional to the difference in electrochemical potential between negative and 

positive electrodes. Under open circuit conditions and intermediate Li concentrations 

(0.2 < x < 0.8), the two phases are in equilibrium where there is no change in 

electrochemical potential (∆𝐺 = 0), resulting in a constant potential observable as a 

voltage plateau. 
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Figure 29: Open circuit potential behaviour of theoretical compound MA, undergoing 

lithiation to LiMA via (a) a two-phase reaction mechanism or (b) a solid solution 

mechanism. 

In contrast, in systems where no miscibility gap exists, (for example, during 

delithiation of LiNi1/3Mn1/3Co1/3)
3 a solid solution exists between the Li poor and Li 

rich phase, i.e. all values of x are possible in LixMA, where 0 ≤ x ≤ 1. Under low rate 

galvanostatic conditions such a solid-solution mechanism results in a sloping voltage 

profile (vs. Li+/Li) as shown in Figure 29(b). This is because the electrochemical 

potential of Li in the insertion material increases with increasing Li concentration (x 

in LixMA). Such insertion mechanisms are generally considered useful for high rate 

materials due to avoiding the rate limitations of phase transformations and Li diffusion 

across phase boundaries.4 However, recent studies suggest that by nano-sizing 

electrode materials which thermodynamically operate via two-phase mechanisms, 

such materials may be encouraged to operate via a metastable solid solution 

mechanism at high current rates.4,5        
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3.3. Graphite intercalation compounds 

GICs may be characterised as donor or acceptor types dependent on their interaction 

with the electronic structure of graphite during chemical intercalation. A basic model 

for the electronic structure of graphene and graphite is shown in Figure 30 - the 

difference being graphene has a non-zero density of states at the Fermi level. Upon 

intercalation, the electronic structure of graphite begins to resemble that of single layer 

graphene due to decoupling of the graphene sheets. In donor GICs (such as Li) the 

highest occupied molecular orbital (HOMO) of the intercalant species lies above the 

Fermi level and thus charge transfer occurs whereby electron density is transferred 

from the intercalant HOMO to the π* band of the graphene sheet and the Fermi level 

increases. In acceptor GICs the lowest unoccupied molecular orbital (LUMO) of the 

intercalant species lies below the Fermi level and thus electron density is transferred 

to the intercalant LUMO from the π band of the graphene sheet, decreasing the Fermi 

level. Alternatively, if GICs are formed by electrochemical methods the intercalation 

of ionic species occurs accompanied by the transfer of electrons either to or from the 

external circuit (for acceptor and donor type respectively), however, the resultant 

electronic structure is identical to the chemical process. 
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Figure 30: Schematic of electronic structures of (a) graphene, (b) graphite, (c) donor 

GICs, (d) acceptor GICs, where D(E) is the density of states and EF is the Fermi energy, 

redrawn from 6. 
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3.4. Thermodynamic stage transitions in lithium-

graphite intercalation compounds 

At atmospheric pressure and ~300 K the formation of graphite intercalation 

compounds (GICs) with Li is known to occur by the sequential process shown in 

Figure 31.7 Intercalation proceeds via formation of staged GICs, classified by a stage 

index, n, which represents the number of graphene layers separating layers of 

intercalated ions. 

 

Figure 31: Thermodynamic stage transitions during lithium intercalation into graphite. 

Grey spheres correspond to Li+ ions.  

The structural transformations during electrochemical intercalation ~ 300 K have been 

well studied and are summarised in Figure 32. The voltage profile (plotted in blue, 
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upper window) clearly shows the appearance of phase transitions and solid solution 

regions as plateaus and sloping regions respectively. The letter L next to the stage 

number (n) is used to describe a phase which displays no in-plane ordering of Li+ ions.  

 

Figure 32: Thermodynamic stage transitions during electrochemical lithium 

intercalation. Adapted from 8, originally derived from phase diagrams ~300K.7,9 

Dashed lines indicate solid-solution regimes between pure phases. 

The reported structural parameters during the intercalation process are given in 
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Table 3.1. Graphite commonly exists in the hexagonal P63/mmc (𝐷6ℎ
4 ) space group  

whereby graphite layers are stacked with an ABAB stacking sequence.10 The initial 

intercalation occurs into every gallery (interlayer space) without any in plane ordering 

of Li+ ions, forming a solid solution (1L) commonly referred to as dilute stage 1. This 

is not the formation of a new phase but occurs due to the miscibility of Li in graphite 

at ~ 300 K.9 

The stage 4L GIC is formed ~ 0.2 V whereby the coexistence of the two phases is 

indicated by the plateau in the voltage profile. Below this a sloping voltage profile 

indicates the stage 4L to 3L phase transition, followed by the 3L to 2L phase transition. 

The precise nature of this region (4L to 2L) in terms of phase transitions and the 

stacking order of graphene sheets is still under debate. Numerous studies have 

observed the continuous shift of the c-axis parameter in this region by in situ powder 

X-ray diffraction (PXRD), which has been explained by a solid-solution phase 

transition mechanism.7,11,12 Stacking order of the graphene sheets for stage 2L has been 

determined as [AB|BA],11,13 whilst stage 3L has been estimated as either [ABA|ACA] 

or [ABA|ABA].12 No stacking order has been suggested for stage 4L although c lattice 

parameters have been suggested on oxidation and reduction.14  
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Table 3.1: Summary of crystallographic data for room temperature Li graphite 

intercalation compounds. The subscripts ox and red refer to lattice parameters 

observed on the oxidation and reduction cycle respectively. Adapted from Heß et al.15 

Phase Space 

Group 

Lattice Parameter Reference 

  a (Å) c (Å)  

Graphite 

(2H) 

P63/mmc a = 2.461 ± 

0.0001 

- 
16 

  a = 2.460 c = 6.704 17 

  a = 2.464 ± 

0.002 

c = 6.711 ± 0.004 
18 

Stage 4L   cox = 13.76, cred = 

13.9 
14 

Stage 3L  a = 2.4684 c = 10.408 (c = 2 x 

3.33 + 3.748) 
12 

Stage 3L   cox = 10.401, cred = 

10.473 
14 

Stage 2L  a = 2.4725 c = 7.065  11 

Stage 2L   c = 7.055 ± 0.005 13 

Stage 2 P6/mmm a = 4.2867 c = 7.025  11 

Stage 2   cox = 7.043, cred = 

7.072 
14 

Stage 2 P6/mmm  c = 7.024 ± 0.005 13 

Stage 2 P6/mmm a = 4.288 ± 

0.002 

c = 7.065 ± 0.01 
19 

Stage 2 P6/mmm a = 4.290  c = 7.047  20 

Stage 1  a = 4.316 c = 3.703 14 

Stage 1 P6/mmm a = 4.305 ± 

0.002 

c = 3.706 ± 0.01 
19 

Stage 1 P6/mmm a = 4.305 c = 3.706 11 

Stage 1 P6/mmm a = 4.0307 c = 3.680 20 

Another phase transition to form the dense stage 2 GIC occurs ~ 0.10 V. This phase 

has similar occupation of galleries perpendicular to the graphene sheets as stage 2L, 

however, it displays in-plane ordering of Li+ ions as shown in Figure 33(a). Li+ ions 

occupy one in every three C6 rings with regular 4.3 Å spacing and an [AAα] stacking 

sequence is observed. 
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Finally, ~ 0.08 V the stage 1 phase forms whereby all galleries become filled with 

similar in-plane ordering to the dense stage 2 phase (Figure 33(a)) and an [Aα] stacking 

sequence is observed as in Figure 33(b). 

 

 

Figure 33: (a) In-plane ordering of filled galleries of dense stage 1 and stage 2 phases. 

(b) Stacking order of stages 1, 2 and 2L – order of stages 3L and 4L are not defined. 

3.4.1. Kinetics of stage transitions and Daumas-Hérold 

domains 

To permit the transition from one stage to another without the emptying of entire 

galleries Daumas and Hérold21 suggested the formation of intercalate islands or so 

called Daumas-Hérold domains as shown in Figure 34. This domain structure has been 

supported by several theoretical studies22–24 and even observed experimentally by 

transmission electron microscopy.25 The observed phase transitions must therefore be 

accounted for by the rearrangement of domains and associated redistribution of Li+ 
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ions within galleries. Furthermore, minor shifts of the graphene sheets are required to 

account for the observed changes in stacking order. The existence of such a mechanism 

implies a distortion of graphene sheets at the domain boundaries due to the difference 

in interlayer spacing between filled and non-filled galleries, as can be observed in 

Figure 34. 

 

Figure 34: Example of a stage 2 graphite intercalation compound showing intercalate 

islands known as Daumas-Hérold domains and distortion of graphene layers at domain 

boundaries (adapted from 26). 
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3.5. Previous in situ Raman spectroscopy studies of 

lithium intercalation into graphitic carbons 

The first use of in situ Raman spectroscopy to observe the intercalation of lithium into 

carbon in a typical LIB electrolyte was reported by Inaba et al.27 The use of in situ 

Raman microscopy to study battery materials has since become widespread, as 

discussed in two recent review aticles.28,29 In situ Raman spectroscopy has highlighted 

the inhomogeneous nature of lithium intercalation (even in single graphite 

particles).30,31 Furthermore, the combination of in situ Raman and optical microscopy 

has provided strong experimental evidence for the Daumus-Hérold theory of 

intercalation by allowing direct observation of stage transitions.32 Other studies have 

analysed the use of graphite-exfoliating electrolyte mixtures33 and the intercalation of 

ionic liquid anions at high potentials.34 However, although previous studies have 

reported the 2D band behaviour for chemically intercalated alkali metal GICs,35,36 the 

in situ behaviour during electrochemical Li intercalation in a typical LIB electrolyte 

have not been reported.  
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3.6. In situ Raman spectroscopy of lithium 

intercalation into microcrystalline graphite 

The experiment was performed using a free-standing electrode where the active 

material was a synthetic, microcrystalline graphite (SFG6, TIMCAL, TIMREX®), 

physical properties of which are reported in Table 3.2. The in situ cell had an open 

circuit potential ca. 3.0 V (vs. Li+/Li) and was galvanostatically cycled at 20 mA g-1 

carbon (equivalent to a C-rate, as defined in Chapter 1, of C/19) between 5 mV and 

1.5 V.  

Table 3.2: Physical properties of SFG6 microcrystalline graphite.37 The d90 value 

represents the particle size that 90 % (by mass) of the powder is smaller than. The Lc 

value will be discussed further in Chapter 4.   

Particle size (d90) BET surface area Out-of-plane crystallite 

size (Lc) 

5.5 – 7.5 µm 17 2/g > 100 nm 

Figure 35 shows the load curve for the first lithiation/delithiation cycle. The lithiation 

capacity of the first cycle exceeds the theoretical maximum of 372 mAh g-1 due to the 

partial reduction of electrolyte during the formation of the SEI. Raman spectra were 

collected at each numbered point on Figure 35; the corresponding Raman spectra are 

shown in Figure 36 alongside the potential (V vs. Li+/Li) at which each spectrum was 

collected. All the spectra are base-line corrected and stacked arbitrarily up the y axis 

to allow for clear visualisation. 

Raman spectra were collected from the same region of an individual graphite particle 

(see Chapter 2). At OCP (ca. 3.0 V vs. Li+/Li) the D band (ca. 1330 cm-1) was not 

apparent suggesting the selected region has a low defect density. Regardless, the D 
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band has been previously reported to lose signal intensity during the early stages of 

lithiation.31 For this reason, the study has focussed on the most significant bands of the 

graphite sample, namely the G band at 1580 cm-1 and 2D band at ~2670 cm-1. The 

constituent peak positions of these bands throughout electrochemical cycling are given 

alongside their full width half maximum (FWHM) in Table 3.2. 



  

93 

 

 

Figure 35: Potential vs. Capacity for the first lithiation/delithiation of SFG6 

microcrystalline graphite with Raman spectra acquisition events marked (numbers 

correspond to Figure 36). 
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Figure 36: In situ Raman data showing the G and 2D band as a function of potential 

during the first lithiation/delithiation cycle of SFG6 microcrystalline graphite 

(numbers correspond to Figure 35). 
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Table 3.3: Wavenumber (cm-1) and full-width-half-maxima (FWHM) of G and 2D 

bands recorded during the first lithiation/delithiation cycle of SFG6 microcrystalline 

graphite. 

E(V) 

G  E2g2(i) E2g2(b) 2D(1) 2D(2) 

ω  

(cm-1) 

FWH

M 

(cm-1) 

ω (cm-1) 
FWHM 

(cm-1) 

ω  

(cm-1) 

FWHM 

(cm-1) 

ω  

(cm-1) 

FWHM 

(cm-1) 

ω  

(cm-1) 

FWHM 

(cm-1) 

3.00 1580 12 - - - - 2625 61 2688 53 

0.76 1580 14 - - - - 2625 57 2687 50 

0.53 1581 9 - - - - 2632 68 2687 36 

0.35 1586 7 - - - - 2622 30 2683 35 

0.24 1589 9 - - - - 2615 27 2681 45 

0.20 1590 11 - - - - - - 2656 75 

0.19 - - 1576 12 1599 15 - - 2646 73 

0.18 - - 1575 9 1600 15 - - 2629 59 

0.15 - - 1574 11 1601 15 - - 2611 31 

0.10 - - - - 1550 - - - - - 

0.086 - - - - 1540 - - - - - 

0.069 - - - - - - - - - - 

0.035 - - - - - - - - - - 

0.14 - - - - 1592 57 - - - - 

0.15 - - - - 1598 44 - - - - 

0.17 - - 1573 8 1601 30 - - 2614 51 

0.22 - - 1573 11 1598 22 - - 2636 73 

0.23 - - 1577 16 1597 23 - - 2649 90 

0.31 1586 11 - - - - 2630 48 2682 45 

1.10 1579 15 - - - - 2635 60 2685 39 
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3.6.1. Lithiation cycle 

In brief, the following was observed during lithiation: 

 ca. 0.60 - 0.20 V - blue-shifting of the G band from 1580 cm-1 to 1590 cm-1, 

accompanied by the gradual weakening (and eventual disappearance) of the 

2D(1) band intensity.  

 ca. 0.20 - 0.15 V - the formation of a doublet G band (E2g2(i) and E2g2(b) at 

1575 cm-1 and 1601 cm-1 respectively), alongside a large red-shift of the 2D(2) 

band. 

 ca. 0.10 – 0.07 V - loss of 2D band intensity alongside formation of a broad, 

red-shifted G band (~1550 cm-1) and a weak peak around 1370 cm-1. 

 below 0.07 V - loss of all distinct Raman peak signals. 

The in situ Raman spectra measured are discussed in detail below, with respect to the 

expected thermodynamic phase transitions. 
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3.6.2. Formation of solid electrolyte interphase and dilute stage 

1 (ca. 1.0 – 0.20 V) 

3.6.2.1. Shift and sharpening of G Band 

There is no significant effect on the G band position of the SEI formation, which begins 

blow ca. 1.0 V (Figure 36, spectrum (2)).38 However, ca. 0.6 - 0.2 V an upshift of the 

G band  from 1580 cm-1 to 1590 cm-1 is observed (Figure 36, spectra (3 - 6)), which 

coincides with the beginning of lithium insertion between graphene sheets, which 

occurs ~ 0.55 V.39  This can be observed on the load curve (Figure 35) as a sloping 

potential vs. capacity profile, indicating dilute stage 1 formation. The upshift of the G 

band position can be attributed to electronic doping of the graphene sheets as has been 

well studied in electrostatic doping experiments on single layer graphene.40,41 As 

discussed in Chapter 1, electron doping of graphene sheets raises the Fermi level and 

causes the Kohn anomaly to move away from the Γ point in the phonon dispersion – 

resulting in a stiffening of the E2g2 vibrational mode. The magnitude of this shift has 

been previously explained at low levels of doping by a breakdown of the adiabatic 

Born-Oppenheimer (ABO) approximation.40 The high frequency of the E2g2 mode at 

the Γ point is associated with atomic displacements of period ~ 3 fs,40 which is faster 

than the typical electron-momentum relaxation times in graphite of a few hundred 

femtoseconds.42,43 Therefore, electrons are prevented from relaxing their momenta to 

the instantaneous adiabatic ground state during the atomic displacement and phonon 

renormalisation must be explained by non-adiabatic electron-phonon coupling.40 

The G band was observed to shift linearly with a potential slope of -28 ± 1 cm-1 V-1 as 

shown in Figure 37, which is similar to the value of -29 cm-1 V-1 determined by Shi et 
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al.44 for a microcrystalline graphite material. The full width at half maximum (FWHM) 

initially narrows before broadening over this potential range. The narrowing of the G 

band has also been observed in doping experiments on graphene.40,41,45 As the potential 

falls below ~ 0.24 V the FWHM increases which can be explained by the emerging 

signals of the doublet peaks associated with the stage 4L formation described below. 

 

Figure 37: G band and 2D(2) band positions as a function of potential during first 

lithiation cycle of the SFG6 microcrystalline graphite electrode. The dashed line 

indicates the initiation of stage 4L formation. 

3.6.2.2. 2D band red-shift 

The 2D band position has been fitted by two peaks labelled 2D(1) and 2D(2) as 

described in Chapter 1. No significant change in band position was observed between 



  

99 

 

1.0 - 0.53 V; the region where SEI formation is expected to begin. This is in contrast 

to the behaviour of the D band which has been observed in previous studies to rapidly 

lose intensity over the same potential range.46 However, no defects are required for 

activation of the 2D band and so it may be proposed that the weakening and eventual 

disappearance of the D band is linked to the surface passivation and lithiation of 

defects during the early stages of lithiation. 

During dilute stage 1 formation (0.53 - 0.24 V) there is an apparent change in the shape 

of the 2D band and a gradual red-shift (softening) of the band position. The shape of 

the 2D peak is sensitive to the electronic coupling between graphene layers which is 

disrupted by the increasing concentration of intercalant species.47,48 For peak fitting 

purposes the shape change has been explained by a reduction in 2D(1) peak intensity 

relative to the 2D(2) peak. Softening of both peak positions is observed. The 2D(2) 

peak position is shown in Figure 37 and displays a linear shift of ~ 21 ± 1 cm-1 V-1.   
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3.6.3. Stage 4L and 3L formation (ca. 0.20 - 0.11 V) 

3.6.3.1. G band doublet formation  

The formation of the stage 4L GIC from the dilute stage 1 begins ca. 0.20 V, the 

existence of two distinct phases in equilibrium during the phase transition is indicated 

by the plateau in the voltage profile (Figure 35). This is followed by the formation of 

stage 3L ca. 0.19 - 0.15 V, whereby the extended slope in potential suggests a solid 

solution phase transition mechanism as previously proposed.7,11,12  

It is well known that GICs with stage n > 2 exhibit a doublet G band in their Raman 

spectra. Therefore, the splitting of the singlet G peak into a distinct doublet between 

0.19 - 0.11 V (Figure 38) confirms the presence of stage 4L and/or 3L phases. The 

splitting has been quantitatively explained by the phonon dispersion calculations of 

Al-Jishi and Dresselhaus,49 but can be qualitatively understood by the nearest-layer 

model of Nemanich and Solin.50  
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Figure 38: In situ Raman spectra between 0.19 – 0. 11 V, showing splitting of the G 

band into E2g2(i) and E2g2(b) modes, and red-shift of the 2D.  

The nearest-layer model describes GICs by considering the different nearest-layer 

environments of graphene layers in the structure.  Graphene layers may be defined as 

either bounding or interior layers depending on whether they are adjacent to 

(bounding) or non-adjacent to (interior) an intercalant layer as shown in Figure 39. By 

consideration of the Daumus-Hérold domains discussed earlier it is clear that each 

graphene layer consists of regions of bounding character and interior character. 

However, the size of these domains is large enough to cause distinct G band signals 
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for each environment. Therefore, the peaks are labelled E2g2(i) and E2g2(b) for the 

lower frequency interior and higher frequency bounding layer mode respectively.  

 

Figure 39: Definition of interior and bounding layers in stage 4L and 3L Li GICs. Grey 

spheres correspond to Li+ ions. 

The higher frequency of the E2g2(b) mode corresponds to the increased electronic 

doping of bounding layers relative to interior layers. The inequivalent doping of 

graphene layers in higher stage (n > 2) GICs has been explained by numerous 

electronic band structure calculations and summarised elsewhere.51,52 A simple model 

to describe the electronic structure of the inequivalent graphite layers was presented 

by Holzwarth:51  

 The charge on each layer is assumed to be evenly distributed such that 

bounding and interior layers can be described as uniform sheets with charge 

per unit area of σb and σi respectively. Within this model the intercalant ions 

create no net fields due to symmetry and therefore do not need to be explicitly 

considered. 
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 Charge transfer to the bounding layers is assumed to be larger than to interior 

layers i.e. σb > σi, as predicted by electronic band structure calculations.52,53 

Therefore, a larger electric field will exist between the intercalant layer and the 

bounding graphene layers than the interior layers.  

 The electrostatic potential of the bounding layers will hence be reduced relative 

to the interior layers. This is represented in Figure 40 by a realignment of the 

two-dimensional π bands according to the electrostatic potential of each layer. 

The energy of the bounding layer π bands is effectively reduced. Thus, for any 

given Fermi level there is a higher occupation of bounding layers, 

demonstrating that the assumption σb > σi is self-consistent. Although this 

model ignores the interactions between graphite layers, the electrostatic energy 

shifts discussed are energetically comparable and in qualitative agreement with 

more realistic calculations.52,54,55  
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Figure 40: Schematic of π energy bands near the Fermi level for a stage 3 graphite 

intercalation compound, where ΔE represents the difference in electronic energy 

caused by inequivalent electrostatic potential (redrawn from 51). Shaded regions 

indicate occupied states, EF represents the Fermi level. 

Raman spectroscopy has previously been used to estimate the intercalation stage index, 

n from the relative intensities of the G band doublet, R, using the following equation:50
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 (n > 2)  Equation 3.1 

Where Ii and Ib represent the intensities of the interior E2g2(i) and bounding E2g2(b) 

layer modes respectively, and i / b is a stage independent constant indicating the 

ratio of the Raman cross section for the E2g2(i) and E2g2(b) modes. Previous studies 
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have assumed i / b to be 1, thus using Equation 3.1 at 0.19 V gives an R value of ca. 

1.0 which signifies the presence of stage 4L. 

However, the value of R has been demonstrated to be highly dependent on laser 

wavelength for potassium GICs, suggesting i / b may also vary with wavelength.56 

Furthermore, caution should be taken when comparing intensity ratios across the 

literature – for example, using a 514.5 nm laser for stage 4 values of R ranging from 

ca. 0.827 to ca. 0.156 have been reported for alkali metal GICs, suggesting additional 

deviations due to the use of area or height for peak intensity calculations may be 

widespread. Regardless, the doublet G band is observable down to 0.11 V.  

3.6.3.2. Shift and shape change of the 2D band 

In contrast to the observed splitting of the G band, below 0.24 V the 2D band appears 

to resemble a single Lorentzian peak. This analysis assumes the 2D(1) peak is no 

longer discernible continuing the loss in intensity observed above and the peak position 

has been assigned to the red-shifted 2D(2) peak. The presence of a single peak suggests 

electronic decoupling of layers such as occurs in single layer graphene or turbostratic 

graphite.57 Chacόn-Torres et al.56 have recently suggested that stage 4 donor GICs 

should display a similar electronic structure to bilayer graphene and hence display a 

complex 2D band shape. However, Raman spectra of stage 4  SbCl5-GIC and Rb-GIC 

reported by Eklund et al.36 strongly suggest the presence of a single peak. Furthermore, 

as the 2D band is highly sensitive to electronic structure, the inequivalent electronic 

doping of interior and bounding layers should also lead to a complex 2D band line-

shape. However, the resonant process responsible for the 2D band is known to be 

forbidden due to Pauli blocking in highly charged graphene layers.48 In this case it will 
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occur when the laser energy (EL) < 2(ΔE + EF), as shown in Figure 41 (where ΔE is 

the decrease of the bounding layer energy relative to the interior layers). Therefore, it 

is thought that the 2D band is present only for the interior layers and forbidden for 

bounding layers as previously predicted.56,58  

 

Figure 41: Resonant Raman process for 2D band in (a) interior layer and (b) bounding 

layer. The electronic excitation is forbidden for the bounding layer when laser energy 

(EL) < 2(ΔE + EF) due to occupation of the available excited states (known as Pauli 

blocking). 
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Figure 37 shows that below 0.20 V, accompanying the onset of stage 4L formation, 

the red-shift of the 2D(2) peak significantly increases to a rate of 802 ± 87 cm-1 V-1
. 

Whereas the G band was observed to blue-shift with electron doping, the 2D band is 

known to red-shift.35,56 Li intercalation causes occupation of the  π* anti-bonding band, 

which produces a weakening and elongation of the intra-layer C-C bonds within the 

graphene sheets.16,59,60 Figure 42 shows that with increasing reciprocal stage number 

(1/n), the C-C bond length has been shown to increase by XRD. Significantly, although 

there is a larger electronic doping of the bounding than the interior layers, XRD data 

suggests similar in-plane expansion of all layers suggesting the mismatch of lattice 

parameters in adjacent layers is energetically disfavourable.58 Furthermore, Pietronero 

and Strässler60 have used this behaviour to estimate the charge concentration on 

graphene sheets directly from the measured C-C bond length.  
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Figure 42: C-C bond length (Å) versus inverse stage (1/n) from crystallographic 

data.11,12,14,16,19,20 Trend line is plotted in black, numbers in brackets distinguish lattice 

parameters reported for stage 2L and stage 2 phases.  

Significantly, the continuous nature of the 2D band red-shift between 0.24 - 0.15 V 

suggests there is a continuous increase in electronic doping during the stage 4L to 3L 

phase transition. This provides further evidence for the solid solution phase transition 

mechanism suggested by in situ XRD measurements, where a continuous increase in 

Li+ concentration occurs rather than a separation into two distinct phases.7,11,12  

Finally, as mentioned above, the Daumus-Hérold model of intercalation suggests there 

may be an additional source of strain due to the distortion of graphene sheets at domain 

boundaries. However, this would suggest larger intercalants would produce more 
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structural strain and hence larger 2D band red-shifts, which has not been observed in 

the literature.34,36,56  
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3.6.4. Stage 2 and 1 formation (0.10 – 0.005 V) 

3.6.4.1. G band behaviour 

Between 0.10 V and 0.069 V the doublet G band is no longer clearly discernible (which 

suggests the presence of a stage 2 compound where no interior layers exist. Spectrum 

10 (at 0.10 V) lies within a large plateau in the voltage profile (Figure 35) supporting 

the phase transition of stage 2L to stage 2 by a two phase reaction. A band ca. 1601 

cm-1 has been reported for chemically intercalated stage 2 Li GIC,58 however, in 

contrast Figure 36 displays a broad asymmetric band ca. 1550 cm-1 which is assigned 

to the red-shifted E2g2(b) mode. This broad band is last observed at ca. 1540 cm-1 in 

spectrum 11 (0.086 V) before disappearing into the noise.  

The red-shift of this band may also be explained by the increase in C-C bond lengths 

as discussed above. A similar red-shifted G band position was observed by Zabel et al. 

when graphene sheets were subjected to biaxial strain (C-C bond length expansion) by 

the application of ca. 1 bar of pressure.61 Such an effect has also been observed for the 

intercalation of donor species into less ordered carbon materials.62–64 The asymmetric 

band ca. 1550 cm-1 may therefore be assigned to a stage 2 liquid phase whilst the 

redshifted mode at ca. 1540 cm-1 is assigned to the dense stage 2 phase. It should be 

noted that the appearance of a weak peak ca. 1370 cm-1 has also been observed during 

this region. This peak has previously been observed in low-stage alkali metal GICs 

and assigned to the A1g vibration, corresponding to the D band.65 However, no 

explanation for the unexpected reappearance of this mode has been proposed.  

During the final plateau in the voltage profile ca. 0.08 V, a phase transition from the 

dense stage 2 to stage 1 phases is expected. Raman signals of stage 1 LiC6 compounds 
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are reported in the literature with a distinct asymmetric feature due to electron-phonon 

coupling effects.65    However, Figure 36 (spectra 12 – 13) shows that no Raman bands 

are visible during this region. This may explained by a decrease in Raman scattering 

intensity of the heavily doped stage 1 compounds, due to a reduction in optical skin 

depth,27 which results in an insufficient signal-to-noise ratio in the in situ cell.  

3.6.4.2. 2D band disappearance 

The 2D band is no longer observable below 0.10 V upon the formation of the stage 2 

and stage 1 compounds (Figure 36, spectra 10 – 13). As discussed, there are no interior 

layers in the low stage GICs and therefore the disappearance of the 2D band is linked 

to Pauli blocking of the resonant Raman process in bounding layers as shown in Figure 

41(b). 
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3.6.5. Delithiation cycle  

During the delithiation cycle the reverse processes occur, although at slightly higher 

potential due to polarisation (Figure 35 and Figure 36). At 0.14 V, the reappearance of 

the unassigned peak at 1370 cm-1 occurs, in addition to the E2g2(b) mode of stage 2L 

at 1592 cm-1 (spectrum 14). The E2g2(b) mode upshifts to 1601 cm-1 and increases in 

intensity as the potential is increased to 0.15 V (spectrum 15). The increased frequency 

indicates a shorter C-C bond length and hence a lower in-plane Li+ density, which can 

be inferred from the position of the spectral acquisitions on the voltage profile. 

At 0.17 V, the lower frequency E2g2(i) mode emerges at 1373 cm-1 accompanied by 

the reappearance of the 2D(2) peak at 2614 cm-1, indicating the formation of stage 3L. 

As the potential is increased the phase transition from stage 3L to 4L occurs, inducing 

a change in the value of R (defined by Equation 3.1) and a blue-shift of the 2D(2) peak. 

By 0.31 V (spectrum 19), the doublet G band has returned to the single upshifted E2g2 

mode of the dilute stage 1 compound at 1586 cm-1. This accompanies the reformation 

of the double peak line-shape of the 2D band, suggesting renewal of electronic 

coupling between graphene layers.  

Finally, between 0.31 – 1.1 V both the G and 2D bands shift back to their OCP 

positions (prior to lithiation) with only minor deviations in wavenumber (Figure 9). 

Furthermore, no increase in the intensity of the D band relative to the G band was 

observed, which indicates that there was no significant increase in structural disorder 

of the graphite particle measured.66 
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Figure 43: In situ Raman spectra before and after lithiation, * indicates signal from 

electrolyte bands.  
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3.7. Conclusions 

In summary, in situ Raman spectra were collected throughout the first 

lithiation/delithiation cycle of a microcrystalline graphite electrode in 1M LiPF6 in EC-

DMC electrolyte. Reversible cycling was demonstrated without significant structural 

changes to the particle investigated. Spectral changes of the G band were observed in 

agreement with previous studies, including the characteristic band splitting during the 

stage 4L to 3L region and a broadened, red-shifted G band during the stage 2 region 

(accompanied by a new band ca. 1370 cm-1). However, no Raman bands were observed 

during the stage 1 region, which was linked to a reduced signal-to-noise ratio for this 

compound. Significantly, the 2D band behaviour has also been reported. A large red-

shift of the 2D band was observed during the stage 4L to 3L phase transition which 

has been linked to the increase in C-C bond lengths; whilst the continuous nature of 

the band-shift supports previous empirical evidence for the presence of a solid solution 

mechanism. The disappearance of the 2D band for stage ≤ 2 phases has been linked to 

Pauli blocking of the resonant Raman process.   
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4. The role of re-aggregation on the Li intercalation 

behaviour of electrochemically exfoliated 

microcrystalline graphite 

4.1. Overview of chapter 

This chapter examines the Li intercalation behaviour of an electrochemically 

exfoliated microcrystalline graphite material with a focus on the role of re-aggregation. 

Structural characterisation of a sample modified by a cathodic electrochemical 

exfoliation process is presented, which reveals significant restacking of the exfoliated 

flakes and only subtle differences with the pristine microcrystalline graphite. A 

comparison of the Li intercalation behaviour is then presented through electrochemical 

charge/discharge cycling and in situ Raman spectroscopy. The Raman spectra are 

analysed with respect to the shift and shape change of the 2D band and a preliminary 

model for the estimation of C-C bond lengths and explanation of the E2g2(i) and E2g2(b) 

mode frequencies (for the stage 4L and 3L phases) is presented. 
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4.2. Solid state diffusion limitations in graphitic 

negative electrodes for lithium ion batteries  

Microcrystalline graphite particles are composed of partially oriented crystallites as 

shown in Figure 44(a), defined by average structural parameters La and Lc: the in-plane 

and out of plane crystallite size respectively. The rate of (de)intercalation of Li in 

graphite is limited by solid state diffusion also described by Fick’s first law (Equation 

1.16). Anisometric Li diffusion has been observed in graphite whereby Li diffusion 

parallel to graphene sheets is several orders of magnitude faster (~ 10-7 cm2 s-1) than 

diffusion perpendicular to sheets (along crystallite grain boundaries) (~ 10-11 cm2 s-1), 

as indicated shown in Figure 44(a).1 
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 Figure 44: (a) Schematic of Li+ ion diffusion through microcrystalline graphite 

particles. Individual particles are composed of crystallites defined by parameters La 

and Lc. Possible diffusion pathways of Li+ ions perpendicular (blue) and parallel (red) 

to graphene sheets are indicated.2 (b) Design principle and diffusion times for 

increasing rate performance of graphitic negative electrodes through reducing particle 

thickness. 

It has been proposed that the design of graphite particles with increased aspect ratio 

(length:thickness) may reduce solid state diffusion limitations and lead to increased 

rate capability for LIB negative electrodes.2 Figure 44(b) shows the effect of particle 

dimensions on the Li diffusion time ( 
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 = L2/2DLi  Equation 4.1 

Where DLi is the diffusion coefficient of Li and L is the diffusion length (= particle 

size / 2). Thus, for a particle of length 9 m and thickness 900 nm (aspect ratio 10:1) 

the Li diffusion time along grain boundaries is 100 times slower than between 

graphene sheets. By decreasing the particle thickness, the limitation of grain boundary 

diffusion is reduced; for example, in graphite particles of 90 nm thickness (~ 300 

graphene layers) there is parity of diffusion times, whilst for 10 graphene layers the 

grain boundary diffusion time is ~ 900 times less than for in-plane Li+ diffusion.   

A reductive electrochemical exfoliation process has been developed by the University 

of Manchester and demonstrated to be an effective method for generating single and 

multilayer graphene sheets with diameters greater than one micron.3,4 The reductive 

nature of the method results in flakes with low oxygen content and the scalability of 

the process has attracted interest for LIB electrode applications. Meanwhile, although 

it is acknowledged that graphenic material re-aggregates if allowed to dry out; the 

nature of this re-aggregation process must be understood in order to overcome the 

obstacles this represents to material storage, transportation and processing. 

Furthermore, an understanding of the significance of these structural changes to the 

electrochemical Li intercalation behaviour is desirable to direct the development of 

scalable processes to produce graphitic materials with high rate capability for LIB 

applications. 
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4.2.1. Structural characterisation of modified graphite 

The microcrystalline graphite sample investigated in Chapter 3 (SFG6, TIMCAL, 

TIMREX®),  was modified by collaborators at the University of Manchester using the 

electrochemical exfoliation process developed by Abdeljader et al.2,3 (described in 

Chapter 2). The exfoliated product was collected by vacuum filtration and dried at 80 

°C prior to delivery and structural characterisation – this sample will be referred to as 

the ‘modified graphite’ sample below. Figure 45 shows PXRD patterns for the pristine 

and modified graphite samples. The modified graphite displays highly similar 

structural characteristics to the pristine graphite, indicating that significant restacking 

of exfoliated graphene sheets had occurred. 
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Figure 45: PXRD of pristine and modified microcrystalline graphite, * indicates 

rhombohedral phase.   

The (100) and (002) peaks were analysed using the Scherrer equation: 

L =
Kλ

βcosθ
   Equation 4.2 

where L is the average crystallite size along the analysed plane, λ is the wavelength of 

the X-rays, θ is the Bragg diffraction angle of the analysed plane, β is the full width at 

half-maximum (FWHM) of the analysed peak and K is a constant known as the 

dimensionless shape factor which in this case is equal to 0.9. Results are shown in 

Table 4.1 and indicate a slight decrease in crystallite size of ca. 10 – 15 % in La and Lc 

following the modification process. Furthermore, the rhombohedral fraction (3R 

phase) was determined for each sample by comparison of the intensity ratio of the 
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(101) hexagonal and rhombohedral diffraction peaks. A significant decrease from 41 

% to 14 % was observed indicating that restacking of flakes occurred preferentially to 

the hexagonal (ABAB) stacking order, rather than the rhombohedral (ABCABC) 

arrangement.  

Table 4.1: Structural bulk parameters, surface properties and 1st cycle irreversible 

capacity of pristine and modified graphite samples. 

 
BET 

(m2 g-1) 

La 

(Å) 

Lc 

(Å) 

Rhombohedral 

3R-phase (%) 

First cycle 

irreversible 

capacity 

(%) 

Pristine graphite5 17.1 622 303 37 20 

Pristine graphite (this 

work) 

22 817 797 41 22 

Modified graphite 21 764 685 14 28 

Finally, the structural similarity of the modified material with the pristine graphite was 

confirmed by BET surface area analysis.  The surface area of the modified sample was 

found to be ca. 21 m2 g-1, which is almost identical to the value for the pristine sample 

of ca. 22 m2 g-1 (Table 4.1).  
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4.2.2. Lithium ion battery tests 

The performance of the modified sample was compared to the pristine graphite as a 

negative electrode for LIBs. An assymetric electrochemical cycling procedure was 

developed whereby an initial galvanostatic discharge at 10 mA g-1 (C/37) down to 

0.005 V (vs. Li+/Li) is followed by a potentiostatic step at this potential, until the 

current dropped below 5 mA g-1. This slow rate and potentiostatic step promotes the 

formation of a stable solid electrolyte interphase (SEI) during the first Li insertion 

cycle. On delithiation, the cell was charged up to 1.5 V vs. at C/37. On subsequent 

cycles the galvanostatic current on delithiation was varied to compare rate 

performance. Current rates used and approximate C rate are shown in Table 4.2. 

During lithiation cycles 2 - 32 a constant current rate of C/5 was used to avoid lithium 

plating. 

Table 4.2: Galvanostatic current and approximate C rate for delithiation cycles in 

asymmetric cycling procedure. 

Cycle number 1 2 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 

32 

Current rate 

/mA g-1 

10 74.4 374 1870 3740 5610 7480 74.4 

C Rate C/37 C/5 C 5C 10C 15C 20C C/5 

The voltage profile during the first lithiation/delithiation cycle (at C/37 rate) is shown 

in Figure 46. As discussed in Chapter 1, the delithiation of highly exfoliated few layer 

graphene samples is expected to occur at higher potentials vs. Li+/Li due to a larger 

proportion of surface adsorption compared to intercalation. Therefore, the agreement 

between the electrochemical responses further confirms the structural similarity of the 

materials and hence the restacking of graphene sheets. Both samples display first cycle 

lithiation capacities of ~ 450 mAh g-1, suggesting the surface area and defect 
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concentrations of the samples are comparable in agreement with the BET analysis. 

However, the modified sample shows a reduction delithiation capacity, being ~ 320 

mAh g-1 vs. ~ 360 mAh g-1 for the pristine graphite. Previous reports have suggested 

that the interlayer space between turbostratically stacked graphene sheets are not able 

to reversibly intercalate Li due to locking together by defects.6,7 Therefore, it is 

proposed that the restacking process results in samples with an increased turbostratic 

disorder of ca. 10 %.  

 

Figure 46: Voltage vs. capacity curves for first lithiation/delithiation cycle of SFG6 

microcrystalline graphite and the modified sample. 

Figure 47 shows the results of an asymmetric cycling procedure whereby the rate 

performance of the two materials on delithiation was compared at varying rates up to 

20C. At high rates the modified material appears to display improved capacity 
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retention.  However, the active mass loading of the electrodes was slightly less for the 

modified material (2.3 mg cm-2) compared to the pristine graphite (2.8 mg cm-2). 

Furthermore, the thickness and porosity of these electrodes was not carefully 

controlled. In Chapter 6 the effect of electrode thickness, porosity and mass loading 

will be shown to be critical to the rate performance of composite electrodes, therefore 

further experiments are required before firm conclusions regarding rate capability may 

be drawn. Therefore conducting further experiments with increased electrode loading 

is suggested to minimise the significance of minor deviations in loading, thickness and 

porosity. Furthermore, as discussed later, differences in electrode performance are 

more clearly visualised by testing electrodes at similar current densities rather than C 

rates. This would also enable the influence of electrolyte transport limitations due to 

the separator to be identified if present.  
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Figure 47: Rate performance of pristine graphite (SFG6) and the modified graphite 

sample. The labelled C rates describe the current on delithiation cycle only. The full 

procedure is described in Chapter 2.  
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4.2.3. In situ Raman spectra during the first lithiation cycle 

4.2.3.1. Characterisation of disorder in regions of the electrode 

surface  

In situ Raman spectra of the modified graphite were collected to compare with the 

pristine graphite. Spectra were collected from three regions of the composite electrode 

which displayed varying degrees of structural disorder. Raman spectra of the three 

regions at open circuit potential (OCP) are displayed in Figure 48. The three regions 

exhibit varying ratios of D band intensity (ID) to G band intensity (IG), commonly 

referred to as ID/IG ratio. 

 

Figure 48: Raman spectra at OCP of selected regions on the modified graphite 

electrode with varying ID/IG ratio. 
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The ID/IG ratio was shown  by Tuinstra and Koenig to be proportional to 1/La in 

disordered graphite materials.8 Cançado et al.9 studied this relationship and found the 

proportionality to be highly laser wavelength dependent, suggesting the relationship: 

La(nm)=(2.4 ×10
-10)λlaser

4
(

ID

IG
)
-1

             Equation 4.3 

There is some controversy in the literature over whether the use of peak height or area 

should be used for accurate estimations of disorder from the ID/IG ratio. Several authors 

have argued that for disordered graphite materials, no significant difference is 

produced in the values of La calculated depending on the use of either peak height or 

area.10,11 However, the use of peak height is preferred to reduce deviations due to the 

fitting method.10 Table 4.3 compares La values calculated using Equation 4.3 for the 

three regions of the modified graphite electrode using both peak area and height. In 

addition, the mean average value of ten randomly selected regions is shown. 

Table 4.3: ID/IG ratios and calculated La values using both peak area and peak height 

for the modified graphite sample.   

 
Peak Area Peak Height 

ID/IG 

L
a 

(nm) ID/IG 
L

a 

(nm) 
Spot 1 0.33 117 0.11 350 

Spot 2 0.66 58 0.26 148 
Spot 3 1.17 33 0.45 86 
Average of 10 spots 0.78 50 0.29 134 

A La value of ~ 76 nm was derived by application of the Scherrer formula to PXRD 

data of the modified graphite sample (Table 4.1). This value should be compared with 

the average values in Table 4.3, which suggests the average crystallite size may be 

underestimated by the peak area method and overestimated by peak height method. 

However, since Raman spectroscopy is a surface region analysis technique whilst 
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XRD investigates the bulk, Raman could be expected to produce smaller values of La 

because the concentration of structural defects are likely to be increased at particle 

surfaces. 

4.2.3.2. In situ Raman spectra of lithium insertion into the modified 

graphite sample under potentiostatic conditions 

Potentiostatic conditions were used for the in situ Raman experiment which allowed 

spectra to be collected with longer acquisition times and increased signal-to-noise 

ratio. The cell was held at each potential for 20 minutes or until the current dropped 

by over 95 % from the peak current, before the collection of Raman spectra.  

Results for spot 2 are shown in Figure 49 with peak positions and FWHM given in 

Table 4.4. Potentials below 0.05 V, where stage 1 compounds are expected to occur, 

were not investigated as these spectra were of little interest to the mechanistic study. 

Similar behaviour to the pristine graphite is observed which further confirms the 

structural similarity between the two samples. Significantly, the shape of the 2D peak 

could be clearly distinguished and supports the conclusions of Chapter 3. The 

following band behaviour was observed: 

 At 0.4 V the G peak exhibits blue-shifting and narrowing of the FWHM, 

confirming the formation of dilute stage 1. The D peak loses intensity, whilst 

there is a minor downshift in the 2D peak position.  

 At 0.2 V the G peak begins to broaden accompanying the formation of the 

doublet bands of stage 4L. The 2D band resembles a single broad Lorentzian 

peak. 
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 Between 0.18 V to 0.11 V the G band is clearly split into a doublet band 

representative of the stage 4L and 3L structures. The 2D band shape remains a 

single peak and downshifts with decreasing potential. 

 At 0.08 V the 2D peak is no longer visible. The G band has broadened and 

downshifted to 1571 cm-1 whilst the reappearance of the unassigned peak at 

1371 cm-1 is also observed. 
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Figure 49: Representative in situ Raman spectra of first cycle lithium intercalation into 

modified graphite sample. The potential (V) at which each spectrum was collected is 

displayed. All the spectra are base-line corrected and stacked arbitrarily up the y-axis 

to allow for clear visualisation.  
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Table 4.4: Peak positions and FWHM during first lithiation cycle of the modified 

graphite sample. 

E(V) 

G  E2g2(i) E2g2(b) 2D(1) 2D(2) 

ω  

(cm-

1) 

FWHM 

(cm-1) 

ω 

(cm-

1) 

FWHM 

(cm-1) 

ω 

(cm-

1) 

FWHM 

(cm-1) 

ω 

(cm-

1) 

FWHM 

(cm-1) 

ω  

(cm-

1) 

FWHM 

(cm-1) 

3.0 1581 17 - - - - 2647 62 2688 42 

0.40 1585 10 - - - - 2639 57 2683 48 

0.20 1591 28 - - - - - - 2655 76 

0.18 - - 1576 13 1600 27 - - 2644 66 

0.15 - - 1575 13 1601 28 - - 2626 68 

0.11 - - 1573 12 1601 40 - - 2607 66 

0.08 1571 61 - - - - - - - - 

4.2.3.3. Comparison of spectra for regions of varying disorder 

Spot 1 and 3 showed similar behaviour to that exhibited by spot 2 (Figure 49). In 

particular, the shift in the 2D(2) peak position was compared as shown in Figure 50. 

The similarity of the shift indicates that local graphitic disorder (structural defects and 

crystallite size) does not affect the behaviour of the 2D band during lithium insertion. 

This suggests that the increase in C-C bond length (which causes the red-shift of the 

2D band) is inherently linked to the increasing occupation of the π* band during Li 

intercalation, as suggested  by Pietronero and Strassler.12  
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Figure 50: 2D(2) peak position for the first lithiation of modified graphite within 

potential range 3.0 - 0.1 V vs. Li+/Li, for three spots with varying initial ID/IG ratios. 
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4.3. Using band positions to estimate strain and doping 

on interior and bounding layers 

For comparison of the lithiation mechanism in graphitic materials it would be useful 

to estimate the C-C bond lengths and/or electronic doping of graphene sheets from in 

situ Raman spectra. The effect of bond length changes on the Raman spectra of 

graphene layers has been investigated by various methods.13–16 Expansion of C-C 

bonds equally throughout the structure is referred to as biaxial strain (ε) and may be 

defined as the extension per unit length: 

ε =
∂x

𝑥0
    Equation 4.4   

where ∂x is the change in length and 𝑥0 is the original length. 

The improved signal-to-noise ratio of the spectra in Figure 49 presents an opportunity 

for such an analysis. Recently a method to estimate the concentration of dopants and 

strain of graphene sheets deposited on substrates has been developed.17–19 However, 

such an analysis is only valid up to ~ 1.5 x 1013 electrons cm-2 due to the non-linear 

shift of the G band at high levels of doping.20 Stage 4L formation begins after ~ 20 

mAh g-1 charge capacity,21 corresponding to an electron concentration of ~ 3 x 1013 

electrons cm-2 (see appendix for calculation). Charge carrier concentrations of ~ 4-5 x 

1013 electrons cm-2 for the bounding layers in stage 4 and 3 K-GICs were calculated 

by density functional theory.22 Regardless, an alternative method of strain estimation 

at such high levels of doping is proposed below, which is similar to the method 

proposed by Chacόn-Torres et al.23   
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4.3.1. Model for strain estimation from 2D band position 

Increased electronic doping raises the Fermi level and causes the Kohn anomaly to 

move from the Γ and K points as discussed in Chapter 1. This causes stiffening of the 

G band such that its position may be explained by a combination of bond expansion 

and non-adiabatic effects.24 However, the shift of the 2D band only depends on C-C 

bond expansion because phonons involved in the 2D band process are far enough away 

from the K point that they are unaffected by movement of the Kohn anomaly.25,26 

Therefore, the 2D band position may be used to estimate the strain (and hence C-C 

bond length) using: 

𝜀′ =
𝜔

2𝐷′ − 𝜔
2𝐷0

𝑆2𝐷
=

∆𝜔2𝐷

𝑆2𝐷
  Equation 4.5 

Where 𝜀′ is biaxial strain, 𝜔2𝐷′ is the measured 2D band position, 𝜔2𝐷0 is the 2D band 

position at zero-strain and 𝑆2𝐷 is the shift in the 2D band position per % biaxial strain. 

Reported values for S are shown in Table 4.5. An average value of -164 cm-1 per % 

will be used in subsequent calculations. 

Table 4.5: Literature values of G and 2D band shifts with applied biaxial strain. 

Reference 

2D band shift 

with biaxial 

strain (𝑺𝟐𝑫) 

(cm-1 per %)  

G band shift 

with biaxial 

strain (𝑺𝑮) 

(cm-1 per %) 

Mohiuddin et al.13 -191 -63 

Zabel et al.14 -140 -57 

Ding et al.16 -160 -57 

Lee et al.17 - -69 

Average  -164 -62 

However, assignment of a zero-strain 2D band position for graphite (𝜔0) is 

complicated by the observed shape change. As discussed, whilst the 2D band for 

graphite may be fitted by two peaks, stage 4L and 3L (between 0.2 V to 0.18 V) display 



  

141 

 

a single broad Lorentzian peak. Such a line-shape is indicative of carbon materials 

with electronic decoupling between graphene layers, as occurs in both single layer 

graphene (SLG) and turbostratic graphite.27–29 However, the full width half maximum 

(FWHM) is significantly larger for turbostratic graphite (~ 45-60 cm-1) than SLG (~ 

24 cm-1). In the range 0.18 V to 0.11 V the fitted 2D peak FWHM of the modified 

graphite is ~ 65 cm-1 (Table 4.4), suggesting the electronic structure is similar to 

turbostratic graphite. Observations of the interlayer spacing during the stage 4L to 2L 

range (> 3.4 Å)30 are similar to those of turbostratic graphite (~ 3.41 Å) and may 

correspond to the electronic decoupling of layers.31 

The peak position of turbostratic graphite will hence be used as a zero-strain reference 

position. Using 633 nm laser, the only reported 2D position of turbostratic graphite is 

2652 cm-1  by Tan et al.32 This position agrees with that predicted by Cançado et al.33 

However, it should be highlighted that this model may only be used for the stage 4L 

and 3L phases where a single peak position of the 2D band may be defined. 

4.3.1.1. Application of model  

Values of ∆𝜔2𝐷 were derived as shown in Figure 51 and used to calculate biaxial strain 

and C-C bond lengths between 0.18 V to 0.11 V (Table 4.6), assuming a zero-strain 

bond length of 1.421 Å.34 An increase in C-C bond lengths during lithiation was 

observed which agrees with previous observations of continuous lattice parameter 

increases during this region.30 Interestingly, at 0.11 V the calculated C-C bond length 

of 1.425 Å is in agreement with that found experimentally for stage 3L by Billaud and 

Henry.35 Furthermore, as the increase in C-C bond length is directly linked to the 

concentration of electrons in the graphene layers, the observed bond expansion 

throughout the stage 4L to 2L phase transitions are indicative of increasing in-plane 
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density of Li+ ions in the liquid (4L and 3L) phases, supporting the proposed solid 

solution phase transition mechanism.  

Table 4.6: Shift in 2D band (Δω2D) from 2652 cm-1, calculated biaxial strain, and C-C 

bond length with potential. A zero-strain bond length of 1.421 Å was assumed.34 Errors 

in calculated values are discussed towards the end of this Chapter. 

E (V) Δω2D (cm-1) 

Calculated 

strain (%) 

Calculated C-C 

bond length (Å) 

0.18 -8 0.049 1.422 

0.15 -26 0.16 1.423 

0.11 -45 0.27 1.425 

 

Figure 51: Peak positions of 2D band, E2g2(i) and E2g2(b) modes. 𝜔2𝐷0 , 𝜔𝐺0 and 

𝜔𝐺𝑒𝑥
′ are indicated alongside Δω2D. Blue and red dashed arrows represent upshift of the 

G band explained by doping for bounding and interior layers respectively. 
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4.3.1.2. G band position explanation 

The G band has also been observed to shift with biaxial strain (𝑆𝐺) with an average 

value of - 62 cm-1 per % (Table 4.5). Therefore, an ‘expected’ G band position (𝜔𝐺𝑒𝑥
′ ) 

can be defined: 

𝜔𝐺𝑒𝑥
′ = 𝜔𝐺0 + 𝑆𝐺𝜀′  Equation 4.6 

Where 𝜔𝐺0 is the G band position at zero-strain, and may be estimated from the open 

circuit potential (OCP) G band position to be 1581 cm-1, in close agreement with 

previously reported zero-strain samples.17,18,36 Figure 51 shows the ‘expected’ and 

measured position of the G band for both interior and bounding layers using the 

calculated values of biaxial strain given in Table 4.6. The difference between the 

measured G band position and the ‘expected’ position (indicated by dashed arrows in 

Figure 51) may be interpreted as the upshift caused by electronic doping, calculated 

values of which are shown in Figure 52. The small downshift of the E2g(i) mode 

relative to the ‘expected’ position at low strain suggests the model is not quantitatively 

accurate, as electronic doping is understood to cause an upshift of the G band.20 

However, the model successfully predicts that the doping of the bounding layers is 

significantly larger than the interior layers in qualitative agreement with previous 

studies. Furthermore, as lithiation progresses there is an increase in doping of both the 

bounding and interior layers which may be explained by increasing in-plane density 

of Li+ ions during the phase transition. 
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Figure 52: Calculated values for the upshift of the G band for interior and bounding 

layers from the expected position (𝜔𝐺𝑒𝑥
′ ) of each according to the model descirbed 

above.  
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4.3.2. Discussion of errors and sensitivity analysis  

The proposed model should not be considered quantitative due to the use of average 

values for various parameters, therefore the sensitivity of the model to the values of 𝑆𝐺, 

𝑆2𝐷 and 𝜔2𝐷0 will be investigated.  

Firstly, the sensitivity of the model to the shift of the G band (𝑆𝐺) and 2D band (𝑆2𝐷) 

is shown in Figure 53, by applying the model with the minimum and maximum 

reported values from Table 4.5. Clearly, the effect of uncertainty in the 𝑆𝐺 and 𝑆2𝐷 

values is more pronounced at increased values of strain, however, in all cases there is 

qualitative agreement with the behaviour observed using average values. 
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Figure 53: Sensitivity analysis of the calculated strain and G band upshift when 

maximum or minimum values of 𝑆𝐺 and 𝑆2𝐷 are used, where (𝑀𝐴𝑋) and (𝑀𝐼𝑁) 

indicate the use of maximum and minimum absolute values of the parameters in Table 

4.5. For example, 𝑆𝐺(𝑀𝐴𝑋) indicated the use of 𝑆𝐺 = -69 cm-1. 

Secondly, the sensitivity to the value of 𝜔2𝐷0 used is analysed. It should be noted that 

values for the 2D band position of turbostratic graphite31,37 which correspond to ~ 2663 

cm-1 have been reported in studies using  different wavelength lasers (after 

normalisation of band positions due to dispersion of 95 cm-1 per eV).27 Figure 54 

shows the values of strain and doping upshift predicted by the model are highly 

sensitive to the value of 𝜔2𝐷0 used. Mafra et al.37 have shown experimentally that the 

2D band position of turbostratic graphite is higher than that of zero-strain graphene 
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layers due to an increased phonon velocity. Therefore, to increase the validity of this 

model, more work is required to define the value of 𝜔2𝐷0 using a 633 nm laser. 

Nevertheless, a similar qualitative behaviour is observed, thus the model may be 

applied to compare the qualitative mechanism of intercalation into various graphitic 

carbons.  

 

Figure 54: Sensitivity analysis of G band doping upshift and calculated strain to the 

value of 𝜔2𝐷0 used. Grey dashed arrows indicate the change in values of the doping  

associated G band upshift upon changing the value of 𝜔2𝐷0 from 2652 cm-1 to 2663 

cm-1. 
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4.4. Conclusions  

Structural characterisation of a microcrystalline graphite sample, which had been 

modified by a cathodic electrochemical exfoliation process, revealed that significant 

restacking of the exfoliated material had occurred during drying. The crystallite size 

of the material decreased only slightly in comparison to the pristine graphite material, 

whilst BET measurements suggested negligible change to the surface area. However, 

a reduction in the rhombohedral fraction of the material was observed, suggested 

restacking occurred preferentially to the hexagonal stacking order. Furthermore, 

electrochemical charge/discharge tests showed a small increase in first cycle 

irreversible capacity and a reduction in lithium storage capacity, which may be linked 

to an increase in turbostratic disorder.  

Additionally, a similar intercalation mechanism was observed by in situ Raman 

spectroscopy during lithiation of the modified graphite sample, confirming the 

structural similarity with the pristine graphite. Moreover, an increased signal-to-noise 

ratio was achieved by the use of potentiostatic conditions, which allowed clear 

observation of the change in 2D band shape during the stage 4L to 3L region; the 

observation of a single Lorentzian peak suggests electronic decoupling of the graphene 

layers. The red-shift of the 2D band was observed to be independent of low levels of 

structural disorder. 

Finally, a model has been proposed to estimate the doping and strain on interior and 

bounding layers from the G and 2D band positions during the stage 4L to 3L region. 

This model supports the observations of a solid solution mechanism, and the predicted 

doping of bounding over interior layers. The errors associated with the choice of model 

parameters were observed to be substantial, thus preventing quantitative use. However, 
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the model may be used to qualitatively compare the mechanism of lithiation in 

different samples, which will be the focus of Chapter 5.          
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5. In situ Raman spectroscopy of Li intercalation in 

highly crystalline graphitic flakes of varying 

thicknesses 

5.1. Overview of chapter 

This chapter describes an in situ Raman spectroscopy study of lithium intercalation 

into graphitic flakes of varying thicknesses.1 Natural graphite flakes were 

mechanically exfoliated using the scotch tape method to produce low defect 

concentration flakes of varying dimensions. The chapter will begin with a description 

of how the flakes were selected and characterised. Next, optical microscopy 

observations during lithium intercalation are briefly discussed to better understand the 

Raman study. Finally, in situ Raman spectra of the various samples are analysed and 

the implications for LIB technology are discussed. 
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5.1.1. Mechanistic studies of lithium intercalation in few layer 

graphene and thin graphitic samples 

As discussed in Chapter 3, the Li intercalation mechanism in bulk graphite is well 

studied and occurs via a series of staged compounds (4L, 3L, 2L, 2 and 1), 

characterised by a regular number of graphene layers separating intercalated ions.2–4 

However, the formation of stage 4L and 3L phases is clearly not feasible in few layer 

graphene structures of < 5 graphene layers. Furthermore, it remains unclear how the 

lithiation mechanism proceeds in structures of between 5 to 20 graphene layers, where 

the number of interlayer spaces is limited. The rate of Li diffusion has been observed 

to differ between the various staged GICs,5,6 which has recently been directly linked 

to the improved rate capability of graphite electrodes during delithiation compared to 

lithiation cycles.3 Therefore, any changes to the conventional (de)lithiation mechanism 

are of interest with regards to battery rate performance and an understanding of how 

the Li intercalation mechanism changes as the thickness of graphitic flakes decreases 

is desirable. Moreover, a recent study reported Li diffusion within bilayer graphene to 

be faster than in bulk graphite,7  suggesting similar rate enhancements may be observed 

in few layer graphene samples of different thicknesses.  

In that regard, the first significant mechanistic study was reported by Pollak et al.,8 

whereby Raman spectroscopy was used to show the lithiation mechanism in few layer 

graphene closely resembled that of bulk graphite. However, later studies have 

suggested there may be subtle differences in the mechanism depending on the number 

of graphene layers.9,10 Raman spectroscopy has been used to study the doping and 

strain in few layer graphene structures  during intercalation of various species.11–13 
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Therefore, it will be used here, in combination with the model developed in Chapter 

4, to investigate the intercalation mechanism in graphitic flakes of varying thicknesses. 

5.1.2. Flake selection and characterisation 

Figure 55 shows atomic force microscopy (AFM) images, height profile and Raman 

spectra of three representative regions of graphite flakes investigated in this study. The 

measured thicknesses are 1.7 nm (Figure 55a), 3.8 nm (Figure 55b), and 20 nm (Figure 

55c), corresponding to 3 graphene layers, 9 graphene layers and ~56 graphene layers 

respectively. These flakes represent three categories in which it is interesting to 

compare the Li intercalation mechanism: 1) a few layer graphene (FLG) sample where 

the conventional staging process of bulk graphite intercalation is not feasible, 2) a thin 

graphitic sample (< 10 layers) where the conventional staging process is feasible, but 

may be affected by the limited number of interlayer spaces and 3) an exfoliated sample 

with thickness comparable to bulk graphite. For further comparison a 61 nm thick flake 

(ca. 178 layers) and a free standing microcrystalline graphite electrode were also 

investigated.  

The Raman spectrum of all three graphite flakes exhibit the characteristic G band 

(~1580 cm-1) and 2D band (~2710 cm-1) as expected (Figure 55d-f). Notably, whilst 

the 2D band for the thicker flakes may be fit by only two peaks,14 the 3 layer sample 

shows a more complex line-shape as explained by Malard et al.15 and is downshifted 

to ~2700 cm-1. Nonetheless, the shape of the 2D band of the samples suggests a lack 

of rotational disorder which would produce a single, broadened 2D peak.14 The 

absence of a D band at ~ 1350 cm-1 is attributed to the low defect density in our 

mechanically exfoliated natural graphite samples.  
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It should be highlighted that the regions shown in Figure 55 are only representative of 

a fraction of the total flake area following mechanical exfoliation. Flakes were 

specifically selected to have thicker regions (> 500 nm) at one end, to facilitate better 

electronic contact with the silver epoxy and Cu current collector (described in chapter 

2). However, this technique means recorded current data from the in situ experiments 

are representative of the whole flake and not just the regions shown in Figure 55, 

effectively preventing analysis of the electrochemistry beyond the control of electrode 

potential.  

Finally, the absolute Raman signal intensity of the 20 nm, 3.8 nm and 1.7 nm thickness 

flakes at OCP is shown in Figure 56, alongside the microcrystalline graphite sample 

for comparison. Significantly, there is a reduction in the signal to noise ratio as the 

thickness of the flakes decreases from 20 nm to 1.7 nm, which is caused by the reduced 

volume of graphitic sample in the Raman spot. This will be discussed later with 

reference to band position analysis of the thinnest flakes. Interestingly, the 20 nm flake 

shows a larger signal to noise ratio for the G band than the microcrystalline graphite, 

which may be explained by the increased crystallinity of the natural flake samples.  
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Figure 55: Characterisation of graphite flakes by AFM and Raman spectroscopy. (a-c) 

AFM images and height profiles of three graphite flakes with thicknesses 1.7 nm (3 

graphene layers), 3.8 nm (9 graphene layers), and 20 nm (ca. 56 graphene layers).  (d-

f) Raman spectra of the corresponding graphite flakes. AFM images were collected by 

Dr. Jianli Zou. 
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Figure 56: Raman spectra with absolute intensity of microcrystalline graphite, and 

graphite flakes with 20 nm, 3.8 nm and 1.7 nm thickness at OCP (2.9 V vs. Li+/Li). 
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5.1.3. Observation of intercalation dynamics by optical 

microscopy 

Lithium intercalation was induced by linear sweep voltammetry at room temperature 

(ca. 23 °C). The cell was discharged at 0.02 mV s-1 from open circuit potential (OCP) 

to 1.2 V (vs. Li+/Li), then at a slower rate of 0.005 mV s-1 between 1.2 V to 0.005 V 

whilst Raman spectra were collected.  

Initial experiments were performed to verify the successful electronic connection to 

the flakes. For example, Figure 57(a-c) shows representative time-lapse optical 

microscopy images from an edge of a contacted bulk graphite flake (> 50 nm thick) 

during lithiation. The colour changes have been previously observed during lithiation 

studies of single particles16 and bulk electrodes,17–19 and have been assigned as yellow-

gold for stage 1 (LiC6), red for stage 2 (LiC12) and blue-grey for the liquid phases that 

appear at the beginning of lithiation (stage 4L, 3L and 2L). Due to the large lateral 

flake dimensions (> 1 mm) the lithiation process is limited by the diffusion of Li+ 

ions,20 and thus the optical microscope images can be used to observe the intercalation 

dynamics from the flake edge inwards. For example, at 0.05 V (Figure 57(b and d)) 

three regions with varying Raman signal can be observed along the length of the flake. 

Closest to the flake edge a signal characteristic of stage 2, with a broadened G band 

and no visible 2D band is observed; whilst around 100 nm from the flake edge a signal 

characteristic of the stage 4L or 3L phases is observed whereby the G band is split and 

the 2D band resembles a single, broad peak. At intermediate distance from the edge, 

the G band contains contributions from both phases suggesting they may coexist within 

the collected Raman spot volume. The spot closest to the edge also highlights the 

limitations of optical microscopy in determining the stage of the surface region: the 
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gold colour suggests the presence of stage 1 whilst the Raman spectra suggest stage 2. 

The presence of several stages along the length of the flake supports the Daumas-

Hérold model of sliding intercalant domains.21 Finally, after being held at 0.005 V for 

10 hours, Figure 57(c) shows that the whole flake has completely turned to the 

characteristic gold colour of stage 1. 

These observations validate our experimental setup and suggest the possibility of 

optical experiments to estimate the diffusion coefficients of Li+ in the various stages. 

However, the high transparency13 of flakes thinner than 20 nm make colour changes 

during lithiationdifficult to observe by optical microscopy, thus Raman spectroscopy 

was used as the primary characterisation tool for the remainder of the study.  

 

Figure 57: Intercalation dynamics during lithiation process in the bulk graphite flake. 

a-c) Microscopy images show the change of the colour from the graphite flake during 

lithiation at different voltage and d) the corresponding Raman spectra from three 

selected area in b) further confirm the staging process (scale bar is 100 µm). 
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5.2. In situ Raman spectra 

Figure 58 shows the in situ Raman spectra during lithiation of 20 nm, 3.8 nm and 1.7 

nm exfoliated flake samples, alongside that of a porous microcrystalline graphite 

electrode. The single flake Raman measurements were taken in a spot a few 

micrometres from the flake edge. During Li insertion for all samples, the 2D band was 

observed to shift to lower wavenumbers, accompanied by a decrease in intensity, as 

has previously been discussed.22 The intercalation behaviour of the 20 nm and 3.8 nm 

thick flakes displayed similar characteristics to that of the microcrystalline graphite. 

An initial upshift in the G band frequency was followed by a clear splitting of the G 

band to E2g2(i) and E2g2(b) modes at around 0.22 V as previously observed.23,24 As 

discussed, the splitting of the G band signifies the formation of stage 4L and 3L phases 

according to the nearest-layer model of Nemanich and Solin.25  

It should be noted that the observation of G band splitting in the single flake samples 

are ~ 50 mV lower than those observed for the free-standing microcrystalline graphite 

electrode. This is likely due to increased Ohmic contact resistance in the single flake 

electrodes, thus an increased overpotential is required to achieve the same level of 

intercalation.       
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Figure 58: Raman spectra during lithiation of a) microcrystalline flake graphite with 

ca. 60-100 nm thickness, and graphite flakes of b) 20 nm (ca. 56 graphene layers), c) 

3.8 nm (9 graphene layers) and d) 1.7 nm (3 graphene layers) thickness. OCP was ca. 

2.9 V, all potentials quoted measured vs. Li+/Li. 

In contrast, the 1.7 nm (3 layer) flake showed rather different behavior whereby a 

definitive splitting of the G band was not observed throughout Li insertion. It should 

be noted that the peak broadens and is difficult to fully resolve due to the low initial 

signal intensity at OCP (Figure 56). Nonetheless, the absence of a split G band suggests 
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an alternative lithiation mechanism is followed, which agrees with the fact that stage 

4L and 3L formation is not possible within trilayer graphene. Our results may be 

compared to a previous study whereby trilayer graphene was chemically doped by NO2 

adsorption.26 In this case, G band splitting did occur as only the surface layers were 

doped, leaving the interior layers effectively non-doped. The lack of obvious splitting 

in Figure 58(d) therefore suggests equivalent doping of all graphene layers, implying 

Li+ ions are distributed in both available interlayer spaces. Splitting of the G band 

would also be expected if the formation of stage 2-like structures (with either liquid or 

dense in-plane Li+ ordering) were to occur during lithiation i.e. domains where one 

interlayer space is filled and one is empty as shown in Figure 59. For this reason our 

results support a mechanism of dilute stage 1 formation with increasing Li+ density 

throughout lithiation. 

 

Figure 59: Possible structures during Li+ intercalation into trilayer graphene: a) stage 

2-like structure with domain formation and regions of highly and less highly charged 

graphene layers, b) dilute stage 1 structure with evenly charged graphene sheets.   
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5.2.1. G and 2D band wavenumber analysis 

To gain a deeper understanding of the intercalation mechanism within the various 

samples the peak position of the G and 2D band versus potential was plotted. Figure 

60 shows results for all but the trilayer graphene sample, and clearly illustrates the 

initial upshift followed by G band splitting as described above. The initial upshift in 

the G band can be understood as the result of dilute stage 1 formation where the 

electronic doping is evenly spread through the graphene sheets. The stiffening of the 

E2g2 phonon is the result of the movement of the nonadiabatic Kohn anomaly, which 

has been closely investigated in doping studies of graphene.27,28 Interestingly, the 

microcrystalline graphite electrode showed a similar upshift to previous studies on 

microcrystalline samples (~ 10 cm-1),22,29 whilst all the exfoliated flake samples 

showed less prominent blue-shifts (~ 5 cm-1). Dilute stage 1 formation has been 

observed to be responsible for between 4 - 7 % of the theoretical capacity of graphite 

in microcrystalline samples (~ 20 mAh g-1 vs. 372 mAh g-1).2 Therefore, the 

diminished G band shift in our exfoliated flake samples suggests there is less doping 

during this stage, and hence that the proportion of capacity involved in dilute stage 1 

formation may be effected by the thickness and/or lateral dimensions of graphite 

particles. 
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Figure 60: G and 2D band peak positions during intercalation of a) microcrystalline 

graphite, b) 20 nm flake and c) 3.8 nm graphite flake. The dashed line indicates the 

beginning of G band splitting. d) Comparison of the shift per Volt of the 2D band and 

G band (average of E2g2(i) and E2g2(b) modes) for graphite flakes of different thickness.  

The G band then splits into the E2g2(i) and E2g2(b) modes at lower and higher 

wavenumbers respectively, as indicated by the dashed line in Figure 60. At this point 

the 2D peak has been fitted as a single Lorentzian and its position has been added to 
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Figure 60. Significantly, as the intercalation progressed, both the 2D band and the 

E2g2(i) and E2g2(b) modes downshifted for all samples. However, as the potential was 

decreased the thinnest flakes showed an increased rate of band downshift per Volt as 

shown in Figure 60(d). In our previous analysis,1 we assumed the G band shift could 

be explained purely by the effect of biaxial strain and used the parameters of 

Mohiuddin et al.30 to estimate the increase in biaxial strain for each of our samples 

during this phase transition. Using a value of -63 cm-1 per % of biaxial strain the 

increase in strain during the stage 4L to 3L phase transition was estimated as 0.17 % 

for the 9 layer sample compared to only 0.04 % for the microcrystalline graphite. 

However, as the G band position is known to depend on the combination of both strain 

and doping effects, this assumption implies the interior and bounding layers of stage 

4L and 3L compounds display a constant level of doping. The results described in 

Chapters 3 and 4 strongly suggest the G and 2D peak positions are representative of 

the increasing in-plane Li+ density during this region, which agrees with the solid-

solution mechanism of the 4L to 2L phase transitions observed by in situ structural 

studies.2,31–33 Furthermore, in Chapter 4 an analysis method was developed to 

qualitatively follow this mechanism. This method will be employed here to gain deeper 

insight into the cause of the observed flake thickness dependence of the rate of G and 

2D band softening. 
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5.2.1.1. Strain and doping estimation (9 layer to 61 nm flake) 

As in Chapter 4 the biaxial strain at each potential has been estimated from the 2D 

band position using an average30,34,35 2D shift of -164 cm-1 per %, assuming the peak 

position of turbostratic graphite represents a zero strain sample. However, these 

experiments were completed using 532 nm laser wavelength where no value of the 2D 

band position was found in the literature for turbostratic graphite. Instead the values 

Tan et al.36 and Cançado et al.37 were adjusted by application of the measured 

dispersion of 95 cm-1 per eV,15 giving an average value of 2690 cm-1. It should be noted 

that this calculation introduces increased uncertainty to the estimated strain in 

comparison to using 633 nm laser, due to the larger range of estimated turbostratic 

graphite 2D band positions (ranging from 2686 cm-1 to 2696 cm-1). However, as 

discussed in Chapter 4, the sensitivity of the model to this parameter does not effect 

the qualitative trends observed. Finally, the difference between the G band position 

and the calculated position after application of an (average)30,34,35,38 -62 cm-1 per % 

biaxial strain was calculated.  

Figure 61 shows the calulated upshift of the E2g2 modes (associated with doping) 

versus the derived biaxial strain for all the samples. Values for the 20 nm, 61 nm and 

microcrystalline graphite samples  all lie along a similar trend line, suggesting similar 

doping of the graphene sheets per % of strain. This trend suggests in-plane Li+ density 

is increasing as the voltage is decreased and that the expansion of the C-C bonds is 

directly related to the increasing charge on the bounding layer graphene sheets. The 

close agreement between results for the thicker flakes with microcrystalline graphite 

suggests a similar level of strain on the graphene sheets occurs during Li insertion for 

graphitic flakes above a certain thickness. 
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Figure 61: Upshift of G band vs. calculated strain for microcrystalline graphite and 

flake samples.   

In contrast, frequency of the E2g2 modes for the 9 layer flake do not shift in agreement 

with the microcrystalline graphite sample. In comparison with the other samples, the 

Raman peak positions for the 9 layer flake shows increasing biaxial strain with a lower 

degree of E2g2 mode stiffening associated with doping. This suggests there is increased 

strain during intercalation that cannot be explained by the C-C bond expansion due to 

increased occupation of the π* orbital. The electronic structure of 9 layer graphene 

should be similar to that of bulk graphite, meaning that increasing occupation of the 
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π* orbital during lithiation is expected. Therefore, it is proposed that an additional 

source of strain is apparent. 

The additional strain is caused by the reduced number of interlayer spaces in the 9 

layer sample, which suggests it is relatively more difficult for the Li+ ions to rearrange 

to form stage 4L and 3L structures, resulting in increased structural strain during 

lithiation. One way to visualise the increase in strain is by consideration of staged 

domains according to the Daumus-Hérold model. If the in-plane size of domains were 

reduced (due to a hindering of Li+ ion rearrangement), this would result in an increased 

number of domain boundaries where structural distortion is concentrated, and thus an 

increase in the average strain measured by Raman.  

Previous long term cycling studies have shown that repeated lithium 

intercalation/deintercalation cycles into graphite electrodes result in increased 

structural disorder, observable by an increased ID/IG ratio in the Raman spectrum.39–41 

Structural degradation exposes extra graphitic surface to the electrolyte, resulting in 

consumption of cycleable Li by increased SEI growth, and is a significant cause of 

capacity fading in LIBs. Therefore, the increased structural strain observed during 

intercalation of the 9 layer flake suggests that reducing the thickness of flakes in 

graphitic electrodes may result in accelerated structural disorder with cycling. This 

result agrees with the findings of Sun et al.,42 which showed that as graphite flake 

dimensions decreased, the rate of capacity fading increased, suggesting that FLG 

materials are unsuitable for use in LIB negative electrodes due to their poor long-term 

cycling performance.  
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5.2.2. Trilayer graphene sample 

Analysis of the G band position of the trilayer graphene sample provides further 

evidence that the G band position is a sum of doping induced upshift and strain induced 

downshift. The initial upshift of the G band position is again observed (Figure 62a), 

concurrent with dilute stage 1 formation, which continues until ~ 0.15 V. It then begins 

downshifting and losing intensity, until it becomes unobservable ~ 0.13 V. In Figure 

62, the G band position of the trilayer graphene sample is compared to the arithmetic 

mean of the E2g2(i) and E2g2(b) mode frequencies in the 9 layer flake sample. A similar 

trend of initial upshift followed by downshift is observed, suggesting a comparable 

interplay between lithiation induced doping and strain. 

However, estimation of strain from the 2D band position is not possible with the 

trilayer sample results because the 2D band disappears before downshifing to below 

the estimated zero strain position (2690 cm-1). The band is no longer discernible by 

0.19 V, which is a higher potential than for all other samples tested. The 2D band has 

been shown to rapidly lose intensity for graphene layers with high levels of doping,26,43 

and is predicted to be present only for the interior graphene layers of stage > 2 GICs.44 

Therefore, disappearance of the 2D band could be interpreted as further evidence of a 

continued dilute stage 1 structure, whereby each graphene layer is equivalently 

charged. However, given the low initial signal to noise ratio and the decrease in 

intensity with doping, further work is required to confirm this result. 
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Figure 62: The comparison of a) G peak position of 1.7 nm graphite flake and b) 3.8 

nm graphite flake during lithiation. The blue and red cycles in b) are the real data for 

E2g2(i) and E2g2(b) modes and the solid squares (after the dashed line) represent the 

arithmetic mean value of both E2g2 mode frequencies. The dashed line in a) indicates 

where the G band splits in b). 
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5.3. Conclusions  

In summary, the lithiation mechanism of graphite flakes of 1.7 nm (trilayer graphene), 

3.8 nm (9 layers), 20 nm (~ 56 layers) and 61 nm (~ 178 layers) thickness has been 

investigated and compared to commercial microcrystalline graphite. During the early 

stages of intercalation all but the trilayer graphene sample showed splitting of the G 

band suggesting a similar staging mechanism occurs from graphite flakes of 9 layer 

thickness and above. However, an accelerated red-shift of the (E2g2(i)) and (E2g2(b)) 

modes was observed for the 9 layer sample. Analysis of these peak shifts suggests the 

accelerated softening is caused by increased in-plane strain in the graphene sheets, 

beyond that which is conventionally induced by charge transfer during lithiation. 

Additional strain during lithiation may increase the rate of electrode degradation and 

associated capacity fading in lithium ion batteries, suggesting few layer graphene may 

be a poor choice as a long cycle life negative electrode material. Moreover, the in situ 

Raman spectra of the trilayer graphene sample suggests successful lithiation was 

achieved, whereby Li+ ions occupied both available interlayer spaces without the 

conventional staging effects of thicker intercalation compounds. 
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5.4. Future work  

Results from this chapter highlight the changes in fundamental lithiation mechanism 

that must occur as the thickness of graphitic materials approaches the limit of single 

layer graphene. Future studies should seek to address the following issues: 

Firstly, our setup prevented analysis of the thickness dependence of lithium storage 

capacity alongside other electrochemical signatures of the flakes studied. Future work 

should attempt to count electrons whilst observing mechanistic details. This would 

also allow long-term cycling tests of the samples, to confirm the conclusions regarding 

strain and capacity fading.  It should be noted that the study by Sun et al.42 observed 

the reversible Li storage capacity to decrease with flakes thinner than 5 nm, however, 

the variation of lateral dimensions between flakes may have also contributed to this 

observed differences in intercalation behaviour.    

Secondly, the structural information gained from in situ measurements in this study is 

significantly limited by the quality of spectra obtained at low potentials for the thinnest 

flakes. The quality of in situ Raman spectra is limited in part by the relatively low laser 

power that is used in order to prevent damage or laser heating effects. Besides the use 

of methods to enhance the Raman signal,45,46 such as the use of shell-isolated 

nanoparticle-enhanced Raman spectroscopy,47 alternative in situ structural 

characterisation techniques could be employed. However, in situ neutron or XRD 

studies require large sample volumes, whereby having similar thickness and stacking 

of flakes is not feasible given current exfoliation methods. In situ TEM with selected 

area electron diffraction may offer a practical route to overcome these limitations.  
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Finally, it should be emphasised that the configuration developed holds promise for 

the investigation of diffusion coefficients in bulk graphite samples. The large lateral 

dimensions of the natural flakes used allow direct observation of phase transformations 

throughout (de)lithiation, and at convenient timescales for implementing mapping 

techniques (such as Raman spectroscopy). Although few layer graphene flakes may 

not be appropriate for use in lithium ion battery anodes, the techniques developed for 

graphenic materials may be employed in the study of alternative energy storage 

materials.  
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6. Evaluation of exfoliated graphite materials as 

conductive additives for high rate performance 

lithium ion battery composite electrodes 

6.1. Overview of chapter 

This chapter describes an investigation into the performance of exfoliated graphite 

materials as conductive additives in LIB composite electrodes. It begins with an 

introduction to the role of conductive additives within composite electrodes, followed 

by structural characterisation of the materials selected for evaluation. Results are 

presented from electrochemical cycling tests of both lithium titanate negative electrode 

and lithium cobalt oxide positive electrode systems. Finally, the challenges 

encountered during the investigation are discussed, and suggestions are presented to 

improve the outcomes of future composite electrode optimisation studies.    
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6.2. Composite electrodes in lithium ion batteries 

In general, lithium ion batteries electrodes (LIBs) consist of porous composites which 

have been coated onto metallic current collectors; the purpose of which is to carry 

electronic current to the external circuit. These composites are conventionally 

composed of three material subsets with complementary functions: 

 Active material (AM) particles where Li+ ions are either stored or released as 

described in Chapter 1. 

 Polymeric binders which provide mechanical stability by maintaining 

interparticle contact and adhesion to the current collector.  

 Conductive additives (CA) which provide low impedance electronic pathways 

to AM particles throughout the electrode, thus facilitating the redox processes 

which occur at their surfaces. Alternatively, the same effect can be achieved 

by a conductive coating layer on the AM particles’ surface. 

 

Figure 63: Schematic of composite electrode composition, t = electrode thickness. 

The term loading will be used throughout to describe increasing active mass per area 

(mg cm-2), which may be increased by either increasing electrode thickness or 

decreasing porosity.   
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6.2.1. Electronic Conductivity in Composite Electrodes  

The variation of electronic conductivity with conductive additive content in composite 

electrodes has been mathematically described with some success by percolation 

theory.1 In effect, percolation theory predicts that above a certain volume % of 

conductive additive (known as the percolation threshold) a sharp drop in specific 

resistivity of the electrode is observed, as shown in Figure 64.2 At this critical volume, 

conductive additive particles are close enough to ensure electrical contact by either 

electronic tunnelling or direct contact, such that a conductive path spans the entire 

electrode. 

 

Figure 64: Schematic representation of an ideal percolation curve describing the effect 

of increasing conductive carbon additive volume % on electrode electronic resistivity. 

Adapted from Spahr.2 

However, work by Dominko et al.3,4 and others5 has concluded that electrode 

performance is determined not only by the volume fraction of conductive additives, 

but also their distribution within the composite, which is generally referred to as 

electronic wiring. Therefore, the number of contact points between additive network 
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and active material plays a critical role. Furthermore, recent simulations considering 

binary mixtures of CA and AM suggest a strong dependence of electronic percolation 

and wiring on relative particle sizes as well as volume fractions of additives.6  

Furthermore, the interaction between binder and CA is also considered to be important 

for electrode performance because the two components are understood to form a 

conductive coating layer on the surface of active material particles. This has been 

investigated by Battaglia and coworkers7–9 through variation of the CA to binder ratio, 

suggesting that the best electrode performance does not necessarily occur with the 

highest electronic conductivity of either the coating layer or the overall composite. 

Their results suggest the optimum ratio for electrochemical performance depends 

strongly on mechanical properties, suggesting that the ability to maintain inter-particle 

contact throughout cycling is critical. In contrast, other groups ascribe an ion-blocking 

effect to the coating layer, whereupon increased volume fraction of binder limits 

electrode performance.5,10,11 
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6.2.2. Motivations for use of graphene, few layer graphene and 

exfoliated graphite materials as conductive additives 

The development of scalable processes for the production of graphene, FLG and 

exfoliated graphite materials opens up the possibility of their use as additives in 

composite materials. Recent studies predict that the due to high aspect ratio and 

conductivity, well dispersed  graphene sheets will display an extremely low 

percolation threshold in composites.12–14 Moreover, significant enhancements to the 

mechanical properties of composites have been observed after the addition of 

graphenic materials at very low wt. %.15 The combination of these properties suggests 

exfoliated graphite materials may be beneficial as conductive additives in LIB 

electrodes. Furthermore, a large number of studies have previously reported beneficial 

properties of graphenic and exfoliated graphite additives in LIB electrodes, which have 

been reviewed elsewhere. However, due to the lack of systematic testing procedures, 

weak reporting of important parameters (electrode loading, porosity, thickness) and a 

large variation in electrode formulation/testing methods, the bulk of this literature 

lacks significance for assesing additive performance, and can be misleading. This work 

addresses this gap by critically analysing the testing methodology for high rate 

performance LIB electrodes, and highlights best practice for future studies.         
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6.2.3. Rate limitations in composite electrodes 

The development of models to quantitatively describe the rate capability of lithium ion 

cells generally ascribes a bulk electronic conductivity to composite electrodes.16–18 

Through analysis of these porous electrode models Doyle et al.19 derived analytical 

solutions which describe three performance-limiting-phenomena, namely: solution-

phase diffusion, solid-phase diffusion and cell Ohmic resistance. Significantly, since 

the effective electronic conductivity of commercial composite electrodes (~ 1 S cm-

1)16 is generally orders of magnitude larger than that of ionic charge transport in the 

electrolyte (~10-2 S cm-1),20,21 the electrode conductivity is generally disregarded with 

respect to high rate performance.22 However, porous electrode theory effectively 

ignores interparticle interactions between active material, binder and carbon additive, 

thus neglecting the importance of electronic wiring effects discussed above. Therefore, 

empirical optimisation of high rate performance through composite electrode design 

is still required and will support the advancement of models to describe the effects of 

electrode structure on cell performance.10 
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6.3. Scope of conductive additive investigation 

As highlighted above the primary role of carbon additives is to increase the electronic 

conductivity of composite electrodes to allow lithium insertion and removal from 

active material particles throughout the electrode. However, due to the interconnected 

nature of factors which affect composite electrode performance there are several other 

characteristics which are likely to be affected by modification of the electrode 

composition, for example: 

 mechanical properties 

 tortuosity of electrode microstructure  

 heat dissipation during electrochemical cycling 

 long term cycling performance 

 cost 

These factors will not be the focus of this work, although they should be investigated 

in similar studies. Moreover, although attempts have been made to use industrially 

relevant electrode formulations, this is not an exhaustive study in cell optimisation for 

the maximisation of energy or power metrics.   

Within this Chapter the effect of exfoliated graphite additives upon the achievable 

capacity during high rate electrochemical cycling will be investigated; with a view to 

increasing power performance of industrially applicable LIB systems. Additives will 

be tested in comparison to a carbon black sample, as commonly used in commercial 

systems. In addition, a pristine graphite sample will be tested to observe any beneficial 

effects of exfoliation processes. A fixed 1:1 ratio of CA:binder is used throughout. 

Marks et al.11 have suggested this composition maintains a relatively constant 
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thickness of binder on the surface of AM particles; thus preventing an increase in ion 

blocking and electronic isolation of particles as has been observed previously when 

the proportion of binder is increased relative to the CA.5,11,23  

Furthermore, it should be highlighted that results will focus on electrochemical cycling 

data rather than characterisation of electrode conductivity. As will be critically 

discussed later, there remains a lack of consensus on the best method to measure 

additive dispersion, conductivity and electronic wiring in composite electrodes. 

Therefore, this work focuses on the practical performance of electrodes during 

electrochemical cycling as the most direct method to compare the effect of 

composition variation.     
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6.4. Conductive additive materials 

Figure 65(a) shows the carbon black (CB) material (Super C65, TIMCAL), which was 

selected to be representative of a typical carbon black additive. It consists of spherical 

nanoparticles of 30 - 50 nm diameter, which are known to form conductive chains of 

aggregates throughout composites.24,25 This arrangement permits electronic 

percolation at low volume % and helps to form many contact points with active 

material particles. 

Figure 65(b) shows the microcrystalline graphite sample (SFG6, TIMCAL, 

TIMREX®), the structure of which has been discussed in previous chapters. Briefly, 

it shows average lateral flake dimensions of ~ 6 µm and out-of-plane crystallite 

dimensions > 100 nm.26  

Figure 65(c, d) shows a liquid exfoliate graphene (LEG) material (Elicarb® Premium 

Grade Graphene Powder, Thomas Swan Advanced Materials). The suppliers report 

average lateral flake dimensions ~ 1 µm and average flake thickness of between 5 - 7 

graphene layers.27  

Figure 65(e, f) shows a material produced by collaborators at the University of 

Manchester according to the electrochemical exfoliation process developed by 

Abdeljader et al.28,29 (described in Chapter 2). This sample will be referred to as 

cathodic electrochemically exfoliated graphene (cEEG). The presence of few layer 

graphene sheets was confirmed by TEM (Figure 65(e)), although the results of Chapter 

4 suggest significant restacking may have occurred prior to testing. A distribution of 

lateral flake dimensions in the range (100 nm to 1 µm) can be observed by SEM 

(Figure 65(f)). 
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Figure 65(g, h) shows a material produced by collaborators at the University of 

Manchester according to the oxidative electrochemical exfoliation process of Parvez 

et al.30 This material will be referred to as anodic electrochemically exfoliated 

graphene (aEEG). TEM images suggest the presence of few layer graphene (Figure 

65(g). SEM images show a large distribution of lateral flake dimensions (Figure 

65(h)); the majority of which by wt. % are in the 3 - 10 µm range, however, smaller 

flakes (< 1 µm) are also observed.   
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Figure 65: TEM and SEM images of (a) carbon black, (b) microcrystalline graphite (c, 

d) LEG, (e, f) cathodic EEG and (g, h) anodic EEG. TEM images collected by Dr 

Laura Cabo Fernandez (a, c) and Dr Jianyun Cao (e, g). SEM images (f) and (h) were 

collected by Jianyun Cao.   
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Figure 66 shows Raman spectra of the conductive additive materials. All spectra show 

the characteristic D, G and 2D bands of disordered graphitic materials. The level of 

disorder increases moving from the microcrystalline graphite to LEG, cEEG and aEEG 

as indicated by an increasing ID/IG ratio (Table 6.1). This is explained by a reduction 

in the average size of crystallites and/or an increasing frequency of defects.31,32  

 

Figure 66: Raman Spectroscopy data of conductive additives, 532nm laser. 
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Furthermore, the 2D band for microcrystalline graphite, LEG and cEEG shows a 

doublet shape, indicating the presence of more than 4 stacked graphene layers.33 In 

contrast, the level of disorder in the aEEG material is similar to that of carbon black, 

as indicated by a large ID/IG ratio, as well as a similar bandshape in the overtone region 

(2400 – 3200 cm-1). In particular, the loss of the doublet 2D band-shape, suggests a 

loss in three dimensional ordering of graphene sheets.31,33 This suggests the disorder 

induced by the anodic electrochemical exfoliation process, prevents the restacking of 

sheets as occurred for the cathodic process, discussed in Chapter 4.  

Table 6.1: I
D
/I

G
 ratio, 2D band positions and FWHM (of constituent peaks) for the 

conductive additives investigated.  

Material 
I

D
/I

G
 

ratio 

2D(1) 2D(2) 

ω  

(cm
-1

) 

FWHM 

(cm
-1

) 

ω  

(cm
-1

) 

FWHM 

(cm
-1

) 

Microcrystalline 

Graphite 
0.11 2677 69 2711 43 

LEG 0.24 2677 77 2711 42 

cEEG 0.29 2684 64 2719 42 

aEEG 1.1 - - 2696 156 

Carbon Black 1.0 - - 2679 282 
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6.5. Lithium Titanate as a model negative electrode 

system 

Lithium titanate, Li4Ti5O12, was selected as a model system to investigate the 

performance of the selected carbon materials as conductive additives in LIB negative 

electrodes. The reversible intercalation of Li+ ions proceeds via a two-phase reaction:34  

Li4Ti5O12 + 3Li+ + 3e- ↔ Li7Ti5O12  Equation 6.1        

The two phase reaction gives a plateau around 1.55 V vs. Li+/Li at low rates as shown 

in Figure 67 producing a theoretical capacity of 175 mAh g-1. The insertion reaction is 

highly reversible as indicated by the small hysteresis between charge and discharge 

plateaus. 

 

Figure 67: Representative voltage profile (vs. Li+/Li) for the first charge/discharge 

cycle of Li4Ti5O12 at C/5 rate. Elimit 1 and Elimit 2 show cut-off voltages. 
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Li4Ti5O12 has received particular attention as an anode material due to its impressive 

high rate performance, safety and cyclability.35,36 The impressive cycling 

characteristics have been attributed to the nearly zero volume change between lithiated 

phases37,38 which prevents mechanical degradation of electrodes during cycling. This 

makes Li4Ti5O12 electrodes appropriate for applications with high current rates - 

enabling conductive additive evaluation without the complexity arising from rapid 

capacity fading during cycling. In addition, the intercalation potential is above where 

Li intercalation into graphitic carbons39,40 and electrolyte reduction reactions readily 

occur,41 thus avoiding significant complication of the analysis by competing 

electrochemical processes. However, it should be noted that evidence for the formation 

of a surface layer at the Li4Ti5O12 particle surface have been reported.42,43 Furthermore, 

commercial utilisation of Li4Ti5O12 electrodes has been limited due to problems 

associated with gas formation during cycling,44 low energy metrics and cost.45  

Figure 68(a) shows SEM images of  the selected Li4Ti5O12 powder (HOMBITEC 

LTO5), with average particle size of around 250 nm as reported by Carvalho et al.46 

PXRD data is shown in Figure 68(b) and shows the cubic Fd3̅m structure. Reported 

electronic conductivity of lithium titanate spinel falls in the range 10-6 –10-13 S cm-1.47 

This low conductivity suggests the addition of significant volume fractions of 

conductive additives is required to achieve electronic percolation. 
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Figure 68: (a) Scanning electron microscopy image and (b) PXRD pattern of 

Li4Ti5O12. 



  

195 

 

6.5.1. Effect of electrode loading and thickness 

Initial tests were performed with carbon black (CB), however, it was found challenging 

to produce electrodes with similar thickness, loading and porosity at the lab scale. 

Adjusting the additive ratio strongly affected the volume of NMP required to 

effectively disperse and cast electrodes. This caused different additive compositions 

to dry at different thicknesses compared to the wet casting, which makes it challenging 

to prepare electrodes of varying composition with similar thickness and loading. 

Therefore in order to facilitate comparison of additives it was important to investigate 

how significant the effect of thickness and loading were on rate performance. 

Electrodes with weight fractions of 96:2:2 (Li4Ti5O12:CB:binder) were prepared and 

calendered to a porosity of ~ 30 % as described in Chapter 2. A symmetric cycling 

procedure was used whereby cells were discharged to 1.0 V then charged to 2.5 V at 

the current rates shown in Table 6.2. 

Table 6.2: Galvanostatic current and approximate C rate for lithiation/delithiation 

cycles of Li4Ti5O12 electrodes 

Cycle Number 1 2 - 6 7 - 11 12 - 16 17 - 21 22 - 26 27 - 31 

Current Rate 

/mA g-1 

35 87.5 175 350 875 1750 35 

C Rate C/5 C/2 C 2C 5C 10C C/5 

Figure 69(a) shows how the specific capacity (on delithiation) of the electrodes 

decreases with increased C rate for all loadings. However, the effect of increased C 

rate is far more significant for the electrodes with higher loading. For example the 30 

µm electrodes decrease from ~ 170 mAh g-1 at C/5 to ~ 130 mAh g-1 at 10C, whilst the 

60 µm electrodes decreases rapidly from ~ 170 mAh g-1 to ~ 25 mAh g-1. Moreover, 

whilst comparison of rate performance based on C rate is widespread in the literature 
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it should be highlighted that it is an unfair metric for comparing electrodes of different 

active mass loading. For example at the 10C rate the current density for the 30 µm 

electrode is ~ 11.1 mA cm-2 whilst for the 60 µm electrode is ~ 23.4 mA cm-2.  As 

discussed in Chapter 1 (Equation 1.12 and Equation 1.14), the current density relates 

directly to electrolyte and electronic Ohmic resistance, in addition to the build-up of 

concentration gradients (Equation 1.15) and associated concentration overpotential. 

Therefore, when cycled at identical C rates, cells with increased electrode loading 

reach the cut-off voltage at shorter discharge times due to increased cell overpotentials, 

and hence achieve lower delithiation capacities. 

 

Figure 69: Effect of thickness on  (a) Specific capacity vs. C rate and (b) % capacity 

retention vs. current density, for Li4Ti5O12 electrodes with 96:2:2 

(Li4Ti5O12:CB:binder) composition by wt. %. (a) Data is average of 3 – 4 cells. (b)  

Capacity retention has been calculated assuming 100 % capacity on the first 

delithiation cycle (C/5). Curves were drawn manually for visualisation purposes. 
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A more useful comparison is shown in Figure 69(b), where capacity retention (defined 

as a percentage of the first delithiation cycle capacity) is plotted versus current density, 

for the best performing electrodes. Below ~ 7 mA cm-2, as current density increases 

there is a similar drop in capacity retention for all loadings. It has been observed that 

at low current densities capacity retention is governed solely by solid-state diffusion 

limitations and both electrolyte and electronic transport limitations may be 

neglected.48,49 Therefore, capacity retention is limited by the same intrinsic property 

of the Li4Ti5O12 active material and is loading independent in this range. However, as 

the current density increases above 7 mA cm-2, a divergence in performance is 

observed, whereby the capacity retention of thicker electrodes (increased loading) 

decreases faster than those of thinner electrodes (decreased loading). At high current 

densities electrolyte transport limitations are likely to become significant.16,19,22,48 

However, the glass fibre separators used for these measurements have a combined 

thickness of > 200 µm, which suggests that an additional 10 µm of the electrode 

thickness may not contribute significantly to the observed electrolyte transport 

limitation. Therefore, it is suggested that the reduction in rate performance with 

increased electrode thickness (and loading) can be linked to an increase in Ohmic 

resistance from electronic transport through the electrode.  
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6.5.2. Effect of increased carbon black and binder content 

Figure 70 shows the effect of increasing the CB and binder wt. % on the rate 

performance, with fixed thickness (40 µm) and porosity ~ 30 %. Surprisingly, the 

increase in additive content appears to result in a reduction in rate performance. 

However, as both of the electrodes with increased additive content also displayed 

larger porosities, this the reduction in rate performance may also be also linked to 

increasing porosity. This emphasises the importance in keeping porosity constant 

between electrodes in order to compare the effect of composition variation fairly. 

 

Figure 70: Effect of increasing carbon black and binder content in Li4Ti5O12 electrodes 

(40 µm), the calculated porosity of electrodes is indicated. 

Furthermore, there appeared to be a reduction in mechanical properties of the casts 

with larger additive content; for example, no casts above 40 µm in thickness (after 

calendering to ~ 30 % porosity) could be produced with the 5 wt. % CB and binder 



  

199 

 

composition, due to cracking and mechanical failure. Later it will be shown that a 

similar composition works well with the micron sized LiCoO2 active material. This 

suggests mechanical failure of these electrodes is linked to the small particle size of 

the Li4Ti5O12 active material, suggesting an increased binder fraction is required to 

produce thick electrodes with ≥ 5 wt. % CB. However, increasing the binder content 

may also impede Li+ transport to the active material surface as previously 

observed.5,10,11Moreover, as discussed, previous work has shown the mechanical 

properties of composite electrodes to be significant to the rate performance due to the 

importance of interparticle contact. This suggests variation of mechanical properties 

between electrodes may be significant to the rate performance observed in this 

system.23
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6.5.3. Effect of conductive additive variation  

Different additives were tested in a 1:1 ratio with CB at this 2 wt. % total conductive 

additive composition, i.e. 96:1:1:2 wt. % (Li4Ti5O12:X:CB:binder) where X = the 

conductive additive. All casts were calendered to 50 µm except for the aEEG cast 

which was 60 µm thick. The porosity was set around 30 % for all casts. Figure 71 

shows that the electrodes containing graphenic additives exhibit no enhancement in 

rate performance. Electrodes containing LEG exhibited very similar performance to 

the CB electrodes. Meanwhile, electrodes with aEEG additive exhibited a decreased 

performance at high current density; however, this electrode was the thickest and had 

the highest porosity. The reduction in capacity retention was more significant than that 

observed for the 60 µm cast with 2 wt. % CB shown in Figure 69(b), therefore this 

suggested that the porosity was again playing a significant role in the rate performance. 

 

Figure 71: Capacity retention of Li4Ti5O12 electrodes with composition 96:1:1:2 

(Li4Ti5O12:X:CB:binder) by wt. %, where X is indicated in the graph. 
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6.5.4. Effect of porosity in casts with fixed composition and 

thickness  

To investigate the effect of porosity more closely, casts were produced using the 

optimised composition (96:2:2 wt. % (Li4Ti5O12:CB:binder)), with varying porosity 

and 50 µm thickness. A different electrochemical cycling procedure (based on the ‘rate 

test’ procedure described below) was used for these experiments, details of which are 

given in the appendix. Figure 72 clearly shows that as the porosity is decreased the 

rate performance improves. In contrast, previous electrode optimisation studies have 

shown that increasing the porosity improved the rate performance, by reducing the 

effective resistance of electrolyte transport.50–52 Therefore, this finding suggests the 

limiting factor for capacity retention at high current density is Ohmic resistance to 

electron transport rather than electrolyte transport limitations. 

  

Figure 72: Effect of porosity on rate performance of Li4Ti5O12 electrodes (50 µm, 

96:2:2 (Li4Ti5O12:CB:binder) by wt. %) using accelerated ‘rate test’ procedure, 

discussed later. 
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6.5.5. Discussion - explaining electrode optimisation results for 

the Li4Ti5O12 system 

The rate performance of the studied Li4Ti5O12 electrodes appears to be optimised at 

low additive content and with low porosity. Previous studies have observed a rapid 

increase in electronic conductivity (σ) of Li4Ti5O12 during lithiation whereby σ 

increased from < 10-7 S cm-1 in Li4Ti5O12, to ~ 2.5 S cm-1 in Li7Ti5O12 .
47 This explains 

why Kim et al.53 have been able to achieve close to the theoretical capacity using 

Li4Ti5O12 electrodes of similar thickness to this study, without any carbon additives. 

Similar results were also reported by Wang et al.54 The mechanism of electronic 

percolation during lithiation is illustrated in Figure 73. At high potentials (> 1.5 V vs. 

Li+/Li) particles in the electrode are present as Li4Ti5O12 with low conductivity. 

Lithiation begins at particles close to the current collector where charge transfer may 

occur; the lithiated surface of these particles is then able to carry electrons to particles 

further from the current collector, eventually allowing full lithiation of the electrode.  

Kim et al.53 also highlighted a strong sensitivity to electrode porosity, whereby large 

capacities were only achieved at low porosity, when interparticle contact was 

optimised. Thus, a similar mechanism is proposed to explain the results of the present 

study. The substitution of conductive additives causes no significant changes in 

performance because electronic transport is occurring primarily through the lithiated 

surfaces of Li4Ti5O12 particles. Therefore, another system is required to observe the 

influence of conductive additive materials.   
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Figure 73: Explanatory diagram showing how lithiation may occur in a carbon free 

Li4Ti5O12 electrode by initial lithiation of particle surfaces adjacent to the current 

collector (adapted from 53). 
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6.6. Lithium Cobalt Oxide as a model positive 

electrode system 

Lithium cobalt oxide (LiCoO2) was selected as a suitable positive electrode material 

due to its widespread use and in-depth literature. LiCoO2 is able to reversibly 

(de)intercalate lithium according to the reaction:  

LiCoO2 ↔ LixCoO2 + (1-x)Li+ + (1-x)e-  

as first demonstrated in 1980 by Goodenough and coworkers.55 The structural changes 

during deintercalation have been well studied by in situ XRD.56,57 Morcrette et al.57 

observed a two-phase region occurring between x = 0.99 - 0.73 composition range (in 

LixCoO2), which is responsible for the first plateau around 3.93 V. A single phase range 

then exists between x = 0.73 - 0.55, followed by two further phase transformations at 

4.05 V and 4.18 V. Figure 74 shows the potential vs. capacity for the first cycle charge-

discharge cycle with a cut-off voltage of 4.2 V, corresponding to x around 0.4558 and 

giving a capacity of 140 - 150 mAh g-1.  

 

Figure 74: Representative voltage profile (vs. Li+/Li) of LiCoO2 first charge/discharge 

cycle at C/5 rate. Elimit 1 and Elimit 2 show cut-off voltages. 
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Figure 75 shows SEM images of the LiCoO2 particles used in the present study, 

exhibiting primary particles of ellipsoidal shapes, with diameters between 3 - 10 µm. 

LiCoO2 is in the rhombohedral system (space group R3̅M) with the layered α-NaFeO2 

type structure, as confirmed by the PXRD pattern shown in Figure 76.58 

 

Figure 75: SEM images of LiCoO2 powder 

 

Figure 76: PXRD pattern for LiCoO2  
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In contrast to Li4Ti5O12, studies of LiCoO2 sintered pellets have shown that the 

conductivity increases as lithium is removed.58,59 Ménétrier et al.58 have reported a 

transition from semiconducting to metallic behaviour between Li1CoO2 and Li0.7CoO2 

with a respective increase in conductivity from ~ 7 x 10-3 S cm-1 to ~ 5 x 101 S cm-1 (at 

~ 273K). This explains why successful electrochemical cycling of porous, sintered 

electrodes has been achieved without the addition of carbon additives.60 However, 

such sintered electrodes are likely to have high tortuosity and hence be strongly limited 

by electrolyte transport at high current rates. Furthermore, attempts to cycle carbon-

free LiCoO2 electrodes composed of micron sized particles and binder (similar to that 

achieved with Li4Ti5O12) failed to reach full capacity and suffered from rapid capacity 

fading.53 Poor performance was explained by the anisotropic volume change of ~ 2 % 

during the first phase transition of delithiation,57 which causes loss of interparticle 

contact and electronic percolation in electrodes without sufficient conductive 

additives.53   
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6.6.1. Effect of additive content and loading 

Initially, tests to optimise composition and investigate electrode loading effects were 

performed with CB. The performance of a 96:2:2 (LiCoO2:CB:binder) composition 

was compared to a 90:5:5 composition (by wt. %). A symmetric cycling procedure 

was used whereby cells were charged to 4.2 V then discharged to 3.0 V at the current 

rates shown in Table 6.3.  

Table 6.3: Galvanostatic current and approximate C rate for delithiation and lithiation 

cycles of LiCoO2 electrodes.  

Cycle number 1 2 - 6 7 - 11 12 - 16 17 - 21 22 - 26 27 - 31 

Current rate 

/mA g-1 

27.5 68.75 137.5 275 687.5 1375 27.5 

C Rate C/5 C/2 C 2C 5C 10C C/5 

When increasing electrode loading, a similar trend to the Li4Ti5O12 system was 

expected, whereby at low current densities there is no difference in capacity retention 

between cells, whilst at higher current densities the performance deviates as the cells 

with lowest loading perform best. However, as shown in Figure 77(a), the 96:2:2 

composition did not show the expected decrease in rate performance with increased 

loading. Furthermore, electrodes prepared from the same cast showed a large 

discrepancy in rate performance making analysis challenging. Upon closer inspection, 

it was again observed that electrodes with lower porosity showed improved rate 

performance to those with higher porosity; suggesting a similar mechanism of 

electronic percolation through surfaces of active material particles. The variation in 

porosity of electrodes from the same cast occurs due to inhomogeneity in the casting 

procedure, which is challenging to avoid on the lab-scale. 
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In contrast, the 90:5:5 composition (Figure 77(b)) showed improved reproducibility of 

performance and similar behaviour at all loadings. The improved reproducibility 

implies porosity variations have less significance, suggesting an alternative conduction 

mechanism may be prevalent. Furthermore, the similarity in rate performance across 

loadings suggests that electrolyte transport limitations may be the limiting factor, as 

expected at high current densities.16,19,22,48 As discussed, due to the large separator 

thickness (> 200 µm), the small increments of ~ 10 µm thickness between cells causes 

negligible changes to the electrolyte transport limitation, hence all electrodes show 

similar rate performance. 

 

Figure 77: Capacity retention data for symmetric cycling of electrodes with of various 

loadings with composition by wt. % (LiCoO2:CB:binder) of (a) 96:2:2 and (b) 90:5:5. 

Labelled percentage values on graphs indicate calculated porosity. 50 µm* represents 

a second electrode from the same cast. 
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6.6.2. Effect of porosity 

The effect of porosity was investigated to confirm the suggested electrolyte transport 

limitation observed in the 90:5:5 (LiCoO2:CB:binder) composition tests. The rate 

performance of electrodes (thickness of ~ 50 µm) with varying porosity is shown in 

Figure 78. The electrode with lowest porosity (21 %) showed significantly worse rate 

performance than all other cells. At low porosities the effective tortuosity of electrolyte 

transport paths through the electrode is increased thus increasing the resistance to 

electrolyte transport,52 thus this suggests electrolyte transport is limiting in these cells.  

  

Figure 78: Effect of porosity on rate performance of LiCoO2 electrodes of 90:5:5 by 

wt. % (LiCoO2:CB:binder) using two glass fibre separators and rate test procedure (see 

below). 

Moreover, the rate performance of electrodes with porosities > 30 % is similar; 

especially in comparison to the drastic effect of increasing porosity in the Li4Ti5O12 
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system discussed above. This suggests low impedance paths for electronic percolation 

exist, even in electrodes with high porosities, indicating interparticle contact between 

active material particles is not as significant to the conduction mechanism. This 

behaviour coincides with an increased wt. % of CB, thus it may be concluded that 

electronic conduction is occurring primarily through the conductive additive network. 

Therefore, this composition was deemed suitable for the comparison of conductive 

additives. 
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6.6.3. Optimisation of testing procedure 

To facilitate the observation of changes in the rate performance due to the conductive 

additive, the limitations due to other experimental factors were analysed using 

electrodes with the optimised composition of 90:5:5 (LiCoO2:CB:binder) (porosity ~ 

35 %, thickness ~ 50 µm). Firstly, an alternative electrochemical testing procedure,61 

labelled throughout as ‘rate test’, was compared to the symmetric cycling procedure 

used above. The ‘rate test’ procedure is based upon the method developed by Doyle et 

al.61,62 The method involves initial symmetric cycling to stabilise the cell performance, 

followed by  a constant current – constant voltage (CCCV) type step, where the cell is 

either lithiated (negative electrode material) or delithiated (positive electrode material) 

by a galvanostatic step followed by a potentiostatic step; in order to achieve maximum 

utilisation of available capacity. Finally, the cells are either delithiated or lithiated at 

progressively slower rates, with a 5 minutes rest period at OCV separating each current 

rate. The capacity retention at each current rate is estimated by assuming the 

cumulative charge of all the delithiation (negative electrode material) or lithiation 

(positive electrode material) steps (excluding the symmetric cycles) corresponds to 

100 % discharge capacity. The cumulative capacity at each rate has been shown to be 

similar to the conventionally measured capacity at each discharge rate (starting from a 

fully charged electrode).61 The ‘rate test’ procedure used to test LiCoO2 cells is 

summarised into 5 steps in Table 6.4. 
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Table 6.4: Rate test procedure for LiCoO2 electrodes 

Step  Description 

1 Symmetric galvanostatic cycling between 4.2 V – 3.0 V at C/5 for 1 cycle 

2 Symmetric galvanostatic cycling between 4.2 V – 3.0 V for 2 cycles at C/2  

3 Charge at C/5 until 4.2 V  

4 Hold at 4.2 V until current drops below C/20 (< 6.875 mA g-1) 

5 Charge at 10C, 5C, 2C, C, C/2, C/5, C/20 down to 3.0 V cut-off, with 5 

minute OCV period in between charges. 

 

During the symmetric cyling procedure the rate of charge and discharge cycles is 

increased equally, in comparison to the ‘rate test’ described above. Therefore, at high 

C rates the LiCoO2 electrode is not fully delithiated prior to the lithiation step, which 

limits the discharge capacity achievable. Figure 79 shows the discharge capacity at 

high rates is increased by using the ‘rate test’ procedure. The ‘rate test’ procedure also 

represents a faster alternative to asymmetric methods, often used in the literature,50,63 

where each charge step is performed at low rate.  

 

 

  

 



  

213 

 

 

Figure 79: Comparison of symmetric cycling and ‘rate test’ methods for 90:5:5 

(LiCoO2:CB:binder) electrodes, using two glass fibre separators, and ‘rate test CG’ 

with one Celguard 2500 separator. 

The procedure was further optimised by replacement of the two glass fibre separators 

(combined thickness > 200 µm) with one Celguard 2500 polyolefin separator 

(thickness = 25 µm). Figure 79 shows that the capacity retention increased 

significantly at the highest current density (~ 19 mA cm-2), from ~ 49 % to ~ 78 %. 

This confirmed that electrolyte transport limitations play a key role at high current 

densities. Interestingly, at the second highest rate (~ 10 mA cm-2) there was no 

variation in capacity retention, which indicates the distance for electrolyte transport 

only limits capacity above this current density. 

  



  

214 

 

6.6.5. Effect of Carbon Additive 

The optimised testing procedure (‘rate test’ with Celguard separator) was used to 

compare the various conductive additives at composition 90:5:5 (LiCoO2:X:binder), 

where X = the tested carbon additive. Figure 80(a) shows data for the first 

charge/discharge cycle. The cells with LEG and graphite additives showed increased 

resistance, observable by the increased voltage hysteresis between charge and 

discharge, and thus reached the cut-off voltage before delivering full capacity (~ 150 

mAh g-1). Furthermore, a spike in voltage is observable during the initial delithiation 

of these cells, suggesting the pristine electrode is not conductive and an activation 

process occurs during the initial delithiation process; presumably linked to the 

formation of conductive Li0.7CoO2 at the surface of LiCoO2 particles. These results 

suggest that 5 wt. % is below the critical volume fraction required for electronic 

percolation of LEG and graphite additives, and furthermore the electronic wiring is 

insufficient to achieve full capacity. 
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Figure 80(a): First galvanostatic charge/discharge cycle at C/5 for electrodes with 

composition 90:5:5 (LiCoO2:X:binder) where X is given above, (b) Rate test data for 

X = carbon black, aEEG and cEEG where measured electrode thickness is given in 

graph and calculated porosities are 34%, 33% and 37% respectively. One Celguard 

separator was used in all tests. 

In contrast, the voltage hysteresis of cells with electrochemically exfoliated graphenes 

(cEEG and aEEG) exhibit a similar cell resistance to CB (Figure 80(a)). These cells 

all achieved full capacity, demonstrating they are able to form an effective conductive 

network and make sufficient contact with the active material particles. However, 

Figure 80(b) shows that at higher rates the performance of cEEG and aEEG containing 

electrodes is worse than with CB. Differences in the performance of these electrodes 

begin at current densities above ~ 1 mA cm-2, whilst electrolyte transport limitations 

are only expected to become significant above ~ 10 mA cm-2 (Figure 79). Thus it is 

concluded that increased electronic Ohmic resistance limits the performance of the 

EEG containing electrodes relative to those with CB. However, the effect of increasing 
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tortuosity for electrolyte transport (particularly for electrodes with the larger aEEG 

flakes) should not be discounted, and should be investigated in future studies.  

Previous studies have suggested that the use of mixtures of carbon additives with 

different shapes and aspect ratios is advantageous for creating percolating 

networks.64,65 50 µm thick electrodes were prepared with composition by wt. % 

90:2.5:2.5:5 (LiCoO2:CB:X:binder), to observe whether the addition of CB 

nanoparticles to promote contact with AM particles throughout the electrode improved 

the rate performance. All cells reached full capacity (~ 150 mAh g-1) during the slow 

rate first cycle, as could be expected given this had been already achieved with only 2 

wt. % CB (Figure 77).  

At the highest current density tested (19 - 20 mA cm-2) no significant variation in the 

performance of the electrodes was observed except for with the cEEG containing cell. 

On closer analysis it was revealed this cell may have been over calendered as the 

calculated porosity was ~ 25 %. Such a low porosity may have led to electrolyte 

transport limitations causing the poor rate performance as observed earlier in Figure 

78. Excluding this result, all the carbon additives performed better as a hybrid mixture 

with the carbon black, and comparable performance to the 5 wt. % CB electrode at 

high rate was demonstrated. However, no significant advantage of using these 

additives was observed. Furthermore, the trend of all data sets above 10 mA cm-2, 

suggests similar capacity limitations will be encountered at higher current densities. 
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Figure 81: Rate test data for electrodes with composition 90:2.5:2.5:5 

(LiCoO2:X:binder) where X is given in graph. The results for 5 wt. % CB are plotted 

for comparison and calculated porosities are given in brackets. 
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6.7. Conclusions 

Exfoliated graphite additives showed no significant benefit to the rate performance of 

either Li4Ti5O12 or LiCoO2 electrodes. In the Li4Ti5O12 system rate performance was 

more sensitive to porosity than to carbon additive content or type of additive. 

Electrodes with low porosity and additive content exhibited the best rate performance, 

which indicated that electronic conduction was occurring primarily through the active 

material where contacts could be maintained throughout cycling due to the practically 

zero volume change between lithiated phases. In comparison, the LiCoO2 electrodes 

showed less sensitivity to porosity with 5 wt. % carbon black compared to 2 wt. %, 

suggesting electronic conduction occurred through a percolating network of carbon 

black particles in the former. However, the graphite and liquid exfoliated graphene 

samples were unable to form a percolating network at the 5 wt. % composition. 

Meanwhile, the electrochemically exfoliated graphenes did manage to form a 

sufficient network to achieve full capacity at low rates, but were inferior to the carbon 

black additive at higher current densities. In electrodes with a binary mixture of 2.5 

wt. % additive and 2.5 wt. % carbon black, similar performance at low and high rates 

was observed compared to 5 wt. % carbon black. 

Furthermore, the improvements in testing procedure developed during the work should 

be highlighted; firstly, the applied ‘rate test’ procedure allows a faster comparison of 

electrode rate performance compared to symmetric cycling methods; secondly, the 

separator thickness was found to be highly significant  to half cell rate performance 

and should be minimised whenever possible. Finally, the effects of electrode loading, 

thickness and porosity must be carefully controlled in future work.
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6.8. Discussion of research challenges and suggestions 

for future electrode optimisation studies 

Significant challenges were encountered during additive testing which if addressed 

would facilitate progress in future lab-scale composite electrode optimisation studies, 

and lead to improved research outcomes.  

Firstly, although electrode casting techniques used herein aimed to emulate industrial 

practice, the slurry formulation process involved the addition of significantly increased 

NMP solvent wt. % whilst and less intensive dispersion than in more industrially led 

work.66,67 For example, in this work slurries were formulated with around 1 – 2 g 

(NMP) per g solids, in contrast to the work of Peterson et al.66 where values ~ 0.5 – 

0.7 g (NMP) per g solids were reported. The slurry formulation and drying process 

effects how carbon additive, binder and active material particles are dispersed 

throughout the electrode,66–69 suggesting results could vary if industry techniques were 

followed. Also, the NMP volume was varied depending on the slurry composition 

which led to difficulty in achieving constant loading, porosity and thickness of 

electrodes with different compositions; adding an additional layer of complexity to 

additive comparison. Furthermore, other groups23 have highlighted the detrimental 

effect on electrochemical performance of atmospheric moisture during slurry 

formulation and electrode casting, suggesting conditions comparable to a dry room 

environment may be required to achieve state of the art performance. Further work 

should aim to close the gap between industrial and lab-scale testing to ensure 

meaningful results are achievable given practical and financial limitations.  
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Secondly, methods for characterisation of composite electrodes require renewed focus 

to advance the fundamental understanding of the role of composition on performance. 

Direct electronic conductivity measurements on as-prepared or calendered electrodes 

are hindered by the current collector, which introduces significant contact resistance 

or thickness dependent variation, depending on the measurement orientation. This has 

often been avoided through the use of four point probe style measurements on free 

standing68 or delaminated electrodes,23,66,70 alongside dry impedance measurements on 

compressed pellets5 or powders.25 However, whether these measurements provide true 

values for electrodes’ properties within cells is unclear. The recent development of a 

‘micro-four-line-probe’, with the ability to measure film conductivity without current 

collector delamination should be beneficial in this regard, but requires complex setup 

and was not accessible for this study.71 Furthermore, enhanced techniques to 

investigate additive and binder dispersion within electrode structures beyond the limits 

of 2D microscopy techniques and Raman mapping measurements would be 

advantageous. The characterisation of 3D microstructures (e.g. by X-Ray tomography) 

and nanoscale resolution electrical/mechanical mapping,72  alongside improved 

modelling of the electrochemical impact of electrode microstructure is likely to bring 

enhanced understanding for electronic wiring and ion transport optimisation.10,73  

Thirdly, more stringent electrochemical testing should be required in order to claim 

improved rate performance in LIB literature. For example, the comparison of capacity 

retention by C rate is widespread in the literature, yet as observed above, this is only a 

fair comparison for electrodes with very similar loading. Instead, testing electrodes at 

the same current density is a fairer comparison to ensure differences in loading are 

taken into account. To avoid limitations that arise from the Li metal electrode, the use 

of full cell configuration could be employed or ideally a three electrode setup. This 
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would allow in situ measurements, particularly of electrochemical impedance 

spectroscopy, which would enable better understanding of changes in the conduction 

mechanism at different stages of lithiation. To conduct these measurements at high 

rates would require a setup with a thin separator and carefully designed positioning of 

the reference electrode to avoid the confusion of artefacts during results analysis.74 

Recently, such cells have been commercially developed by EL-Cell with a ring-shaped 

reference electrode geometry although no analysis of their use has thus far been 

reported.75 Additionally, the use of pulse power tests76 should be considered, as this is 

a likely application of high power LIB cells. 

Regarding the use of graphenic materials as conductive additives, a more productive 

approach may be to compare their percolation threshold with conventional carbon 

additives in composites. As discussed, previous reports suggest they may display 

extremely low percolation thresholds12–14,77 (similar to those observed in carbon 

nanotubes78 and carbon fibres79). This would allow production of electrodes with lower 

additive wt. % hence increasing energy metrics. Furthermore, effects of the conductive 

additive are likely to be clearer in systems where electronic conductivity is a rate 

limiting factor, for example LiFePO4 (intrinsic conductivity ~ 10-9 S cm-1)80 which has 

shown significant improvements with carbon coating.81 

Moreover, the production, characterisation, storage and dispersion of graphene 

materials needs further development. A larger wt. % of thicker graphitic material (due 

to restacking or low yield exfoliation processes) will reduce the effectiveness of 

electronic wiring and increase the percolation threshold dramatically. However, it 

remains challenging to accurately quantify the degree of restacking within an electrode 

composite, whilst techniques capable of this characterisation are lacking. Such 
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techniques would be required to optimise the dispersion of exfoliated graphite 

additives. In this context a thorough review by Raccichini et al.82 concluded that 

electrochemical properties are likely to be enhanced by non-conventional electrode 

preparation (i.e. “one-pot synthesis, decoration and/or anchoring”) compared to 

mechanical mixing, although the complication this would cause to industrial 

processing is likely to be prohibitive. Moreover, the effect on ionic transport properties 

and cell energy density of exploiting such non-conventional electrode architectures 

has not been fully assessed.  
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7. Conclusions  

In Chapter 3, in situ Raman spectroscopy was used to study the mechanism of 

electrochemical Li intercalation into microcrystalline graphite in a typical LIB 

electrolyte. The behaviour of the G band showed the characteristic splitting and 

wavenumber shifts indicative of the formation of the expected staged graphite 

intercalation compounds. Furthermore, observation of a large red-shift in the 2D band 

position during lithiation was explained by the expansion of C-C bond lengths. The 

continual shift of 2D band position during the stage 4L to 3L phase transition thus 

supported previous reports of a solid solution mechanism.  

In Chapter 4, the effects of an electrochemical exfoliation process and subsequent re-

agglomeration on the Li insertion behaviour of the microcrystalline graphite sample 

were investigated. Structural characterisation revealed that upon drying significant 

restacking of graphene sheets had occurred, producing graphitic particles with only 

minor deviations in stacking order compared to the pristine material. Moreover, 

electrochemical cycling experiments revealed the modified sample showed an increase 

in first cycle irreversibility and reduction in total reversible capacity. In effect, this 

suggested the process was not advantageous to the performance of graphite materials 

in LIB negative electrodes. Finally, in situ Raman spectroscopy was used to confirm 

the similarity in Li intercalation mechanism. The improved signal-to-noise ratio of 

these spectra allowed a model to be developed for the estimation of strain and doping 

of graphene layers from the G and 2D band positions during the stage 4L to 3L regions 

of lithiation. 
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In Chapter 5, mechanical exfoliation of highly crystalline, natural graphite flakes was 

employed to produce flakes with large areas of clearly defined thickness. This avoided 

the restacking problem and facilitated investigation of changes to the Li intercalation 

mechanism as a function of flake thickness, by in situ Raman spectroscopy. A similar 

intercalation mechanism was observed during intercalation of flakes with thicknesses 

of 9 graphene layers, ~ 56 layers and ~ 178 layers. However, application of the model 

developed in Chapter 4 suggested an increase in lithiation induced in-plane, biaxial 

strain for the thinnest flake. Increased strain may be linked to accelerated electrode 

degradation and capacity fading, suggesting few layer graphene materials (< 10 layers) 

may be inferior to bulk graphite as insertion electrode materials for long cycle-life 

applications. Furthermore, lithiation of a trilayer graphene sample was observed, 

whereby Li+ ions occupied both available interlayer spaces and demonstrated an 

alternative lithiation mechanism compared to the conventional staging process; 

suggesting the dynamics of intercalation must vary for extremely thin graphitic 

structures.  

In Chapter 6, the potential application of exfoliated graphite materials as conductive 

additives in LIB composite electrodes was investigated. Initially, additives were 

compared in the Li4Ti5O12 system, however; by analysis of porosity, thickness and 

additive content effects; it was concluded that electronic conduction occurred 

primarily through the active material surfaces, preventing meaningful evaluation of 

additive performance. In contrast, performance of the LiCoO2 system was shown to be 

highly sensitive to variation of the conductive additive used, with reproducible 

electronic percolation/wiring only achieved with the carbon black additive or the 

electrochemically exfoliated graphene additives (at 5 wt. %). In contrast, 

microcrystalline graphite and liquid exfoliated graphene materials tested at the same 
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wt. % displayed inferior performance. However, at high rates the performance of 

electrodes with only the electrochemically exfoliated graphenes was inferior to those 

with carbon black, or any of the additives in combination with carbon black in a 1:1 

ratio (5 wt. % total additive). 
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8. Outlook for the application of few layer graphene 

and exfoliated graphite materials in lithium ion 

batteries 

This work investigated the application of few layer graphene and exfoliated graphite 

materials in lithium ion batteries: both as the negative electrode active material and as 

a conductive additive within both positive and negative composite electrodes. 

Regarding the prospects for use as an alternative negative electrode insertion material, 

no advantages were observed to suggest these materials should remain under strong 

consideration for commercial applications in the future. Whilst previous studies have 

reported large irreversible capacities and voltage hysteresis which are detrimental to 

cell energy metrics, mechanistic in situ Raman studies herein suggest an increase in 

structural strain during the intercalation of few layered graphene samples, which may 

explain the accelerated capacity fading observed during long-term cycling.  

Furthermore, regarding the prospects for increased rate performance through the nano-

sizing of graphite particle thickness, it remains unlikely that any improvements in solid 

state diffusion kinetics can be converted to enhancements in practical battery 

performance. Increased lithium diffusion rates have been reported in bilayer 

graphene,1 which suggests the    observation herein, of an alternative lithiation 

mechanism in trilayer graphene could be indicative of a similarly interesting 

phenomenon. However, although diffusion coefficients in few layer graphene samples 

should be investigated from a fundamental perspective, it has been observed in Chapter 

6 that composite electrode rate performance is often limited by electrolyte transport 

rather than by the intrinsic active material properties. A more productive approach may 
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be to design composite graphite electrodes with reduced tortuosity of electrolyte 

pathways, such as in the work by Billaud et al.,2 where magnetic alignment of graphite 

particles was used to produce electrodes with high loading and increased rate 

capability. Moreover, the restacking behaviour observed in Chapter 4 must be 

prevented in order to maintain few layer graphene structures within composite 

electrodes, which appears to be incompatible with current methods of industrial 

electrode preparation. 

Finally, regarding the prospects for application as conductive additives, the studies in 

Chapter 5 suggest that significant improvements in rate capability of lithium ion 

batteries are not likely to be achieved by simple substitution of conventional additives 

with exfoliated graphite materials. However, as discussed, this work has not closely 

investigated the minimum percolation threshold of these additives, which could be 

significantly lower for few layer graphene materials, leading to improvements in 

energy metrics of composite electrodes. Furthermore, the use of high aspect ratio 

additives may be advantageous for other reasons (e.g. mechanical properties, localised 

heat dissipation, etc.), as discussed in Chapter 6. Further studies are required to 

confirm the practical advantages of use of these materials as additives, although 

commercialisation will depend on an economic assessment of whether additional costs 

are worthwhile for the desired energy storage application.  
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9. Appendix 

9.1. Charge carrier concentration at the start of stage 

4L formation 

Summary: 

The charge concentration (electrons cm-2) at the start of stage 4L formation (or the end 

of dilute stage 1 formation) corresponds to ~ 20 mAh g-1.  

𝑒−

𝑐𝑚2 =
𝑒−

𝑔
×

𝑔

𝑐𝑚2
 Equation 9.1 

=
𝑒−

𝑔
×

𝑀𝑎𝑠𝑠

𝐴𝑟𝑒𝑎
  Equation 9.2 

Mass and area calculation: 

For dilute stage 1, C-C bond ~ 1.424 Å.  

Mass of carbon atom = 1.994 x 10-23 g 

Unit cell contains 2 carbon atoms, therefore: 

𝑀𝑎𝑠𝑠 = 2 × 1.994 × 10−23 𝑔  Equation 9.3 

𝐴𝑟𝑒𝑎 =
3√3

2
(1.424 × 10−8 𝑐𝑚)2   Equation 9.4 

Therefore, 

𝑀𝑎𝑠𝑠

𝐴𝑟𝑒𝑎
= 7.57 × 10−8𝑔 𝑐𝑚−2    Equation 9.5 

Conversion of mAh g-1 to electrons g-1: 
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1 Ah = 3600 C  

1mAh = 3.6 Coulombs 

Charge on 1 e-1 = -1.6 x 10-19 C 

No. of electrons in in 1 C = 6.25 x 1018 e- 

Therefore,  

𝑒−

𝑔
= 20 × 3.6 × 6.25 × 1018 = 4.5 × 1020  Equation 9.6 

Finally; 

𝑒−

𝑐𝑚2
=

𝑒−

𝑔
×

𝑔

𝑐𝑚2
     Equation 9.7 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 3.41 × 1013 𝑒−

𝑐𝑚2
  Equation 9.8 
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9.2. Rate test procedure for lithium titanate electrodes 

Table 9.1: Rate test procedure for lithium titanate electrodes, where 1C = 175 mA g-1. 

Step number Description 

1 Symmetric galvanostatic cycling between 1.0 V – 2.5 V at C/5 

for 1 cycle 

2 Symmetric galvanostatic cycling between 1.0 V – 2.5 V for 2 

cycles at C/2  

3 Discharge at C/5 until 1.0 V  

4 Hold at 1.0V until current drops below C/20 (< 8.75 mA g-1) 

5 Charge at 10C, 5C, 2C, C, C/2, C/5, C/20 up to 2.5 V cut-off, 

with 5 minute OCV period in between charges. 
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