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Abstract—Nature-inspired synchronisation protocols have been
widely adopted to achieve consensus within wireless sensor
networks. We assess the power consumption of such protocols,
particularly the energy required to synchronise all nodes across
a network. We use the widely adopted model of bio-inspired,
pulse-coupled oscillators to achieve network-wide synchronisation
and provide an extended formal model of just such a protocol,
enhanced with structures for recording energy usage. Exhaustive
analysis is then carried out through formal verification, utilising
the PRISM model-checker to calculate the resources consumed on
each possible system execution. This allows us to assess a range
of parameter instantiations and to explore trade-offs between
power consumption and time to synchronise. This provides a
principled basis for the formal analysis of a much broader range
of large-scale network protocols.

I. INTRODUCTION

Minimising power consumption is a critical design consid-
eration for wireless sensor networks (WSNs) [[1], [2]. Once
deployed a WSN is generally expected to function indepen-
dently for long periods of time. In particular, regular battery
replacement can be costly and impractical for remote sensing
applications. Hence, it is of the utmost importance to reduce
the power consumption of the individual nodes by choosing
low-power hardware and/or energy efficient protocols. How-
ever, to make informed choices, it is also necessary to have
good estimations of the power consumption for individual
nodes. While the general power consumption of the hardware
can be extracted from data sheets, estimating the overall power
consumption of different protocols is more demanding.

Surveys conducted by Irani and Pruhs [3] and Albers [2]]
investigated algorithmic problems in power management, in
particular power-down mechanisms at the system and device
level. Soua and Minet provided a general taxonomy for the
analysis of wireless network protocols with respect to energy
efficiency [4] by identifying the contributing factors of energy
wastage, for instance packet collisions and unnecessary idling.
These detrimental effects can be overcome by allocating time
slots for communication between nodes. That is, nodes within
a network synchronise their clock values and use different time
slots for communication to avoid packet collisions [6]], [7].

A number of biologically inspired protocols for synchro-
nisation have been proposed [8]], [9], [10], [L1] and have
been shown to be robust with respect to the topology of the
network [12]. They are well-suited for WSNs since centralised

control is not required to achieve synchrony. The protocols
build on the underlying mathematical model of pulse-coupled
oscillators (PCOs); integrate-and-fire oscillators with pulsatile
coupling, such that when an oscillator fires it induces some
phase-shift response determined by a phase response function.
Over time the mutual interactions can lead to all oscillators
firing synchronously. The PCO synchronisation model we em-
ploy was first proposed by Peskin [13] and later extended by
Mirollo and Strogatz [14] who proved that several oscillators
with the same frequency would always synchronise under the
assumption of a fully coupled network. Later work by Lu-
carelli and Wang showed that this assumption could be relaxed,
by proving that oscillators would always achieve synchrony if
the coupling graph of the network was connected [15].

Simulating such a system provides good estimates for its
typical behaviour, but may exclude corner cases where some
unexpected behaviour is exhibited. To mitigate against this,
we analyse the energy-consumption for the synchronisation
of a network of PCOs using formal methods. Instead of
using simulations, we use probabilistic model checking [16]]
to exhaustively examine all possible runs of the system.
Probabilistic model checking can be used to formally specify
performance measures and to analyse trade-offs in Markovian
models [17], [18]. Using this technique we can calculate
expected mean and worst-case energy costs for a network.

In this work we abstract
away from the modelling of
individual oscillators and use
a population model (28], [29],
[30], [25] to encode informa-
tion about groups of oscilla-
tors sharing the same configu-
ration. Furthermore, we intro-
duce broadcast failures where
an oscillator may fail to broad-
cast its message. Since WSNs
operate in stochastic environ-
ments under uncertainty we en-
code these failures within a probabilistic model. Our model
also encapsulates means to associate different current draws
with its states, thus enabling us to measure the energy con-
sumption of the overall network. We employ the probabilistic
model checker PRISM [31] to analyse the average and worst-

Fig. 1. The MICAz wireless mea-
surement system.



case energy consumption for both the synchronisation of arbi-
trarily configured networks, and restabilisation of a network,
where a subset of oscillators desynchronised. To that end, we
instantiate the model to analyse the power consumption of the
MICAz wireless measurement system (see Fig. [I)).

Exact time synchronisation, where all clocks always agree
on their value, is never achieved for real-world deployments
of synchronising devices [10]. Hardware imperfections result
in different clock frequencies, environmental factors influence
radio transmission, and network congestion leads to package
collisions and loss [32]. Consequently, the precision of syn-
chronisation is not required to be exact, and it is sufficient for
all oscillators to fire within some defined time window [10].
The size of this window depends on the application. Some
applications may require a very small window, for instance
distributed sensing of mobile objects, while others may prefer
energy efficiency at the cost of synchronisation precision [7]].
To this end we extend the binary notion of synchronisation
discussed in [25] by defining a metric derived from the
complex order parameter of Kuramoto [33], [34] that captures
the degree of synchrony of a fully connected network of
oscillators as a real value in the interval [0, 1].

The structure of the paper is as follows. In Sect. [ll] we
discuss related work, and in Sect. we introduce the general
PCO model, from which we derive population models in
Sect. Section [V] introduces the derived synchronisation
metric. The construction of the formal model used for the
analysis is presented in Sect. Subsequently, in Sect.
we evaluate the results for certain parameter instantiations and
discuss their trade-offs with respect to power consumption and
time to synchronise. Section concludes the paper.

II. RELATED WORK

While formal methods, in particular model checking, have
been successfully used to model and analyse protocols for
wireless sensor systems, the number of possible configurations
that needs to be considered for larger WSNs impacts their
feasibility. Chen et al. reviewed how different formal methods
may be used to investigate ad-hoc routing protocols [19],
suggesting that model checking is suitable for small networks,
while analytical methods are necessary for larger networks.
Yue and Katoen [21] used probabilistic model checking to
optimise the energy consumption of a leader election protocol
in networks of up to nine nodes. Probabilistic model checking
was also used by Fehnker and Gao [20] to analyse flooding
and gossiping protocols in networks of up to eight nodes,
however it was necessary to use Monte Carlo simulations
for the analysis of larger networks. Hofner and Kamali [?]
used statistical model checking, an approach combining model
checking, Monte Carlo sampling and hypothesis testing, to
analyse a routing protocol for a network of sixteen nodes.
Heidarian et al. used model checking to analyse clock synchro-
nisation for medium access protocols [22]]. They considered
both fully-connected networks and line topologies with up to
four nodes. Model checking of biologically inspired coupled
oscillators has also been investigated by Bartocci et al. [23]].

They present a subclass of timed automata [24] suitable to
model biological oscillators, and an algorithm to detect syn-
chronisation properties. However, their analysis was restricted
to a network of three oscillators.

In [25] we introduced a formal population model for a
network of PCOs, and investigated the expected time to
achieve synchronisation and the probability for an arbitrarily
configured population of oscillators to synchronise. In our
model the oscillators synchronise over a finite set of discrete
clock values, and the oscillation cycle includes a refractory
period at the start of the oscillation cycle where an oscillator
cannot be perturbed by other firing oscillators. This corre-
sponds to a period of time where a WSN node enters a low-
power idling mode. In this work we extend this approach by
introducing a metric for global power consumption and discuss
refinements of the model that allows us to formally reason
about much larger populations of oscillators.

Wang et al. proposed an energy-efficient strategy for the
synchronisation of PCOs [26]. In contrast to our work, they
consider real-valued clocks and delay-advance phase response
functions, where both positive and negative phase shifts can
occur. A result of their choice of phase response function is
that synchronisation time is independent of the length of the
refractory period, in contrast to our model. Furthermore, they
assume that the initial phase difference between oscillators has
an upper bound. They achieve synchrony for refractory periods
larger than half the cycle, while our models do not always
synchronise in these cases, as we do not impose a bound on
the phase difference of the oscillators. We consider all possible
differences in phase since we examine the energy consumption
for the resynchronisation of a subset of oscillators.

Konishi and Kokame conducted an analysis of PCOs where
a perceived pulse immediately resets the oscillators to the start
of their cycle [27]. Their goal was to maximise refractory pe-
riod length, while still achieving synchronisation within some
number of clock cycles. Similarly to our work, they restricted
their analysis to a fully coupled network. They assumed that
the synchronisation protocol was implemented as part of the
physical layer of the network stack by using capacitors to
generate pulses, therefore their clocks were continuous and
had different frequencies. We assume that the synchronisation
protocol resides on a higher layer, where the clock values are
discretised and oscillate with the same frequency.

The energy consumption of the MICAz mote varies with the
mode of its RF transceiver. The node has a receive mode, three
transmission modes, and two low power idling modes. While
Kramer and Geraldy [35] conducted an empirical investigation
into the energy consumption of the MICAz, with respect to
the different modes, Webster et al. [36] used probabilistic
model checking to formally analyse very small numbers (not
populations) of MICAz nodes, particularly the effect of clock
drift on synchronisation.

III. DISCRETE OSCILLATOR DYNAMICS

We consider a fully-coupled network of PCOs with identical
dynamics over discrete time. The phase of an oscillator ¢ at



time ¢ is denoted by ¢;(t). The phase of an oscillator pro-
gresses through a sequence of discrete integer values bounded
by some 7' > 1. The phase progression over time of a single
uncoupled oscillator is determined by the successor function,
where the phase increases over time until it equals 7', at which
point the oscillator will fire in the next moment in time and the
phase will reset to one. The phase progression of an uncoupled
oscillator is therefore cyclic with period 7', and we refer to
one cycle as an oscillation cycle.

When an oscillator fires, its firing may not be perceived
by any of the other oscillators coupled to it. We call this a
broadcast failure and denote its probability by 1 € [0, 1]. Note
that p is a global parameter, hence the chance of broadcast
failure is identical for all oscillators. When an oscillator fires,
and a broadcast failure does not occur, it perturbs the phase of
all oscillators to which it is coupled; we use «;(t) to denote the
number of all other oscillators that are coupled to ¢ and will fire
at time t. The phase response function is a positive increasing
function A : {1,...,T} x N x R* — N that maps the phase
of an oscillator ¢, the number of other oscillators perceived
to be firing by ¢, and a real value defining the strength of the
coupling between oscillators, to an integer value corresponding
to the perturbation to phase induced by the firing of oscillators
where broadcast failures did not occur.

We can introduce a refractory period into the oscillation
cycle of each oscillator. A refractory period is an interval of
discrete values [1, R] C [1,T] where 1 < R < T is the size of
the refractory period, such that if ¢;(t) is inside the interval,
for some oscillator ¢ at time ¢, then ¢ cannot be perturbed by
other oscillators to which it is coupled. If ® = 0 then we
set [1, R] = (), and there is no refractory period at all. The
refractory function ref : {1,...,T} x N — N is defined as
ref(®,0) = 0 if ® € [0, R], or ref(®P,d) = ¢ otherwise, and
takes as parameters ¢, the degree of perturbance to the phase
of an oscillator, and ¢, the phase, and returns zero if ¢ is in
the refractory period defined by R, or d otherwise.

We now introduce the update function and firing predicate,
which respectively denote the updated phase of an oscillator @
at time ¢ in the next moment in time, and the firing of oscillator
7 at time ¢,

update,;(t)= 1+ ref(¢;(t), A(@;(t), a;(t), €)) (1)
fire;(t)= update,(t) > T. (2)

The phase evolution of an oscillator 7 over time is given by

1 if fire,(t)

update,(t) &)

otherwise.

pi(t+1) = {

IV. POPULATION MODEL

Let A be a phase response function for a network of N
identical oscillators, where each oscillator is coupled to all
other oscillators, and where the coupling strength is given by
the constant €. Each oscillator has a phase in 1,...,7, and a
refractory period defined by R. The probability of broadcast
failure in the network is p € [0,1]. We define a population
model of the network as S = (A, N, T, R, ¢, i1). Oscillators

in our model have identical dynamics, and two oscillators are
indistinguishable if they share the same phase. We therefore
encode the global state of the model as a tuple (kq,...,kr)
where each kg is the number of oscillators with phase ®.

A global state of S is a T-tuple o € {0,..., N}, where
o = (ki,...,kr) and Y o_ ks = N. We denote by T'(S)
the set of all global states of S, and will simply use I" when
S is clear from the context. Fig. [2| shows four global states
of a population model of N = 8 oscillators with 7' = 10
discrete values for their phase and a refractory period of
length R = 2. For example oo = (2,1,0,0,5,0,0,0,0,0) is
the global state where two oscillators have a phase of one, one
oscillator has a phase of two, and five oscillators have a phase
of five. The starred node indicates the number of oscillators
with phase ten that will fire in the next moment in time, while
the shaded nodes indicate oscillators with phases that lie within
the refractory period (one and two). If no oscillators have some
phase ® then we omit the O in the corresponding node.

We distinguish between states where one or more oscillators
are about to fire, and states where no oscillators will fire at
all. We refer to these states as firing states and non-firing
states respectively. Given a population model S, a global state
(k1,...,kr) € T is a firing state if, and only if, kr > 0. We
denote by T'F(S) the set of all firing states of S, and denote
by I'NF(S) the set of all non-firing states of S. Again we will
simply use I'F or I'NF when S is clear from the context.

A. Successor States

We now define how the global state of a population model
evolves over time. Since our population model encodes un-
certainty in the form of broadcast failures, firing states may
have more than one possible successor state. We denote the
transition from a firing state o to a possible successor state
o' by o — ¢’. With every firing state 0 € I'F we associate a
non-empty set of failure vectors, where each failure vector is
a tuple of broadcast failures that could occur in o. A failure
vector is a T-tuple where the ®** element denotes the number
of broadcast failures that occur for all oscillators with phase

Fig. 2. Evolution of the global state over four discrete time steps.



®. If the ®*" element is * then no oscillators with a phase of
® fired. We denote the set of all possible failure vectors by
F. Oscillators with phase less than T" may fire due to being
perturbed by the firing of oscillators with a phase of 7'. This
is discussed in detail later in this section[]

a) Non-Firing States: A non-firing state will always have
exactly one successor state, as there is no oscillator that is
about to fire. Therefore, the dynamics of all oscillators in that
state are determined solely by the successor function. That is,
the phase of every oscillator is simply updated by one in the
next time step. This continues until one or more oscillators fire
and perturb the phase of other oscillators. Given a sequence of
global states 0g,01,...,0n,-1,0n where o0g,...0,_1 € NF
and o,, € T'F, we omit transitions between o; and oiy1 for 0 <
i < n, and instead introduce a direct transition o9 — o, from
the first non-firing state to the next firing state in the sequence.
This is a refinement of the model presented in [25], as omitting
these intermediate transitions results in smaller models. While
the state space remains the same the number of transitions
in the model is substantially decreased. Hence the time and
resources required to check desirable properties are reduced.
We denote the transition from a non-firing state o to its single
successor state o’ by o — ¢’. For example, in Fig. [2| state o
is a non-firing state, and its successor sﬁEc(ao) = 01 is a firing
state where all oscillator phases have been increased by 5.

b) Encoding Chain Reactions: For real deployments
of protocols for synchronisation the effect of one or more
oscillators firing may cause other oscillators to which they are
coupled to fire in turn. This may then cause further oscillators
to fire, and so forth, and we refer to this event as a chain
reaction. When a chain reaction occurs it can lead to multiple
groups of oscillators being triggered to fire and being absorbed
by the initial group of firing oscillators.

These chain reactions are usually near-instantaneous events.
Since we model the oscillation cycle as a progression through a
number of discrete states, we choose to encode chain reactions
by updating the phases of all perturbed oscillators in a single
time step. Since we only consider fully-connected topologies,
any oscillators sharing the same phase will always perceive
the same number of other oscillators firing.

For the global state oy of Fig. 2| we can see that five
oscillators will fire in the next moment in time. In the
successive state oy, the single oscillator with a phase of
seven in o perceives the firing of the five oscillators. The
induced perturbation causes the single oscillator to also fire
and therefore be absorbed by the group of five. The remaining
two oscillators with a phase of six in ¢ perceive six oscillators
to be firing, but the induced perturbation is insufficient to cause
them to also fire, and they instead update their phases to ten.

c) Firing States: With every firing state we have by
definition that at least one oscillator is about to fire in the
next time step. Since the firing of this oscillator may, or may
not, result in a broadcast failure we can see that at least two

Due to space limitations we refer the reader to [25] for a detailed
description of how the set of all possible failure vectors for a firing state
can be constructed.

failure vectors will be associated with any firing state, and
that additional failure vectors will be associated with firing
states where more than one oscillator is about to fire. Given
a firing state o and a failure vector F' associated with that
state, we can compute the successor of o. For each phase
® € {1,...,T} we calculate the number of oscillators with
a phase greater than & perceived to be firing by oscillators
with phase ®. We simultaneously calculate update® (o, F), the
updated phase of oscillators with phase ®, and fire® (o, F'), the
predicate indicating whether or not oscillators with phase ®
fired. Details of these constructions are given in [25].

We can then define the function that maps phase values to
their updated values in the next moment in time. Since we
do not distinguish between oscillators with the same phase
we only calculate a single updated value for their phase. The
phase transition function 7 : TF x {1,..., T} x F — N maps
a firing state o, a phase ®, and a failure vector F' for o, to
the updated phase in the next moment in time, with respect to
the broadcast failures defined in F', and is defined as

1 if fire® (o, F)

7(0,®, F) = .
( ) update® (0, F) otherwise.

“4)

Let Ug (0, F') be the set of phase values ¥ where all oscil-
lators with phase ¥ in ¢ will have the updated phase ® in the
next time step, with respect to the broadcast failures defined in
F.Formally, Up(o, F) ={¥ | D € {1,..., T}AT(0, T, F) =
®}. We can now calculate the successor state of a firing
state o and define how the model evolves over time. Observe
that the population model does not encode oscillators leaving
or joining the network, therefore the population N remains
constant. The firing successor function suce : TF x F =T
maps a firing state o and a failure vector F' to a global state
o', and is defined as succ((ki,..., kr), F) = ( Lo k),
where k= Z\Peuq)(a,m ke for 1< <T.

B. Transition Probabilities

We now define the probabilities that will label the transitions
in our model. Given a global state o € I, if o is a non-firing
state then it has exactly one successor state. If o is a firing
state then to construct the set of possible successor states we
must first construct F,, the set of all possible failure vectors
for 0. Given a global state 0 € I" we define nezt(o), the set
of all successor states of o, as

{succ(o,F) | F € F,} ifocelF
{succ(o)} if o € TNF.

For every non-firing state o € I'NF we have |next(o)| = 1,

next(o) =

®)

since there is always exactly one successor state sféc(o),
and we label the transition ¢ — succ(o) with probability
one. We now consider each firing state o = (k1, ..., k,) € ¥,
and for every successor succ(o, F) € next(c), we calculate
the probability that will label o — su_éc(a, F). Recalling that
1 is the probability of a broadcast failure occurring, let
PMF: {1,...,N}? —[0,1] be a probability mass function



Fig. 3. Argand diagram of the phase positions for global state o1 =
(0,0,0,0,0,2,1,0,0,5).

where PMF(k, f) = uf(l—,u)k’f(?) is the probability that f
broadcast failures occur given that k& oscillators fire. Then let
PFV : TF x F — [0, 1] be the function mapping a firing state

o= (ki,...,kr) and a failure vector F = (f1,..., fr) € F
to the probability of the failures in F' occurring in o, given by
PMF(k if
PFV (0, F) = [[-_, (ke Jo) i Jo 7 )
1 otherwise.

We can now describe the evolution of the global state over
time. A run of a population model S is an infinite sequence
09,01,03, - - -, where o is called the initial state, and o, €
next(o;) for all ¢ > 0.

V. SYNCHRONISATION AND METRICS

Given a population model S = (A, N,T, R, ¢, ), and a
global state ¢ € I', we say that o is synchronised if all
oscillators in o share the same phase. We say that a run of the
model og, 01, 09, - - - synchronises if there exists an ¢ > 0 such
that o; is synchronised. Note that if a state o; is synchronised
then any successor state ;1 of o; will also be synchronised.
The population model does not encode oscillators leaving or
joining the network, therefore the population N remains con-
stant. That is, the global state remains synchronised forever.

A. Synchronisation Metric

We can extend this binary notion of synchrony by in-
troducing a metric called phase coherence to quantitatively
measure the level of synchrony of a global state. Our metric
is derived from the order parameter introduced by Kuramoto
[33], [34] as a measure of synchrony for a population of
coupled oscillators. If we consider the phases of the oscillators
as positions on the unit circle in the complex plane then we can
represent the positions as complex numbers with magnitude 1.
The function p® : {1,...,T} — C maps a phase value to its
corresponding position on the unit circle in the complex plane,
and is defined as p®(®) = e’*, where 0 = 2X(® — 1). A
measure of synchrony r can then be obtained by calculating
the magnitude of the complex number corresponding to the

mean of the phase positions. A global state has a maximal
value of » = 1 when all oscillators are synchronised and
share the same phase ®, mapped to the position defined by
pC(®). It then follows that the mean position is also p*(®) and
|p®(@)| = 1. A global state has a minimal value of 7 = 0 when
all of the positions mapped to the phases of the oscillators are
uniformly distributed around the unit circle, or arranged such
that their positions achieve mutual counterpoise. The phase
coherence function PCF : T — [0, 1] maps a global state to a
real value in the interval [0, 1], and is given by

PCF((k1,... kr)) = | & So_y kapS(®)]. (7)

Note that for any global state o where synch(c) we have that
PCF(o) = 1, since all oscillators in ¢ share the same phase.
Figure [3] shows a plot on the complex plane of the positions
of the phases for N = 8, T" = 10, and the global state
o1 = (0,0,0,0,0,2,1,0,0,5). The phase positions are given
by pC(6) = ¢ for 2 oscillators with phase 6, p©(7) = e5"
for 1 oscillator with phase 7, and pC(10) = e5 for 5
oscillators with phase 10. We can then determine the phase
coherence as PCF(0) = |1(2e™ + 5 + 5¢°5)| = 0.4671.
The mean phase position is indicated on the diagram by .

B. Correspondence with Real-Valued Oscillators

Consider a clock synchronisation protocol for a cluster of
N fully-coupled WSN nodes, where the clocks range over
real values in [0,27]. A configuration for N oscillators is
an N-tuple (0y,...,0n) € [0,27]", where 6; is the phase
of oscillator j, for 1 < j < N. Let O~ be the set of
all possible configurations for N oscillators. If the model
for synchronisation can be defined as some phase response
function A, then given values for R, €, and p we can construct
a population model S that is a discrete abstraction of the
continuous system. When selecting a value for 7T there is
a trade off between the size of the resulting model and the
granularity of the abstraction used to represent the oscillation
cycle. Since the population model S is an abstraction of a
system of oscillators with real values for phase, and since the
oscillation cycle is represented as a sequence of 7' discrete
states, then each discrete phase value ® in the abstraction
corresponds to an interval of phase values [&%—1)’ @) in
the continuous system, having length %’T It then follows that
if some global state o = (ki,...,kr) € T' is synchronised,
that is, ks = IV for some 1 < ® < T, then this corresponds to
the set Gg’T of possible configurations for the oscillators in
the continuous system, where 5" = {(01,...,0x) € OV |
9; € [m7 212) for 1 < j < N}. The minimum phase
coherence for all configurations in @g’T is then given by

Tmin :mln{‘% Zjvzl ei9j| | <017"'79N> € @g;T}’ ()

where the maximum phase coherence is one, since all oscilla-
tors may share the same phase. We therefore conclude that for
some N, T, and o, if the phase coherence of the discrete model
PCF (o) = 1, then this corresponds to the phase coherence of
the continuous system being in the interval [rpn, 1].



VI. MODEL CONSTRUCTION

We use the probabilistic model checker PRISM [31] to
formally verify properties of our model. Given a probabilistic
model of a system, PRISM can be used to reason about
temporal and probabilistic properties of the input model,
by checking requirements expressed in a suitable formalism
against all possible runs of the model. We define our input
models as Discrete Time Markov Chains (DTMCs). A DTMC
is a tuple (@, 0o, P) where @ is a set of states, g € @ is the
initial state, and P : Q@ x @ — [0, 1] is the function mapping
pairs of states (g, q’) to the probability with which a transition
from g to ¢" occurs, where ., P(q,¢') =1 forall ¢ € Q.

Given a population model & = (A,N,T,R,e, ) we
construct a DTMC D(S) = (Q, 09, P). We define the set of
states @ to be T'(S) U {oo}, where oy is the initial state of
the DTMC. In the initial state all oscillators are unconfigured.
That is, oscillators have not yet been assigned a value for their
phase. For each 0 = (k1,...,kr) € Q\ {00} we define

1 N
TN(klkT> ©

to be the probability of moving from o to a state where k;
arbitrary oscillators are configured with the phase value @ for
1 <4 < T'. The multinomial coefficient defines the number of
possible assignments of phases to distinct oscillators that result
in the global state o. The fractional coefficient normalises the
multinomial coefficient with respect to the total number of
possible assignments of phases to all oscillators. In general,
given an arbitrary set of initial configurations (global states) for
the oscillators, the total number of possible phase assignments
can be calculated by computing the sum of the multinomial
coefficients for each configuration (global state) in that set.
Since I' is the set of all possible global states, we have that

N
> (W)
ep K1 o

(k1,....kT

P(oo,q) =

(10)

We assign probabilities to the transitions as follows: for
every o € Q\{oo} we consider each ¢’ € Q\{o(} where ¢/ =
suce(a, F) for some F € F,, and set P(0,0”) = PFV(o, F).
For all other o € Q \ {00} and ¢’ € Q, where o # ¢’ and
o' & next(o), we set P(o,0’) = 0.

To facilitate the analysis of parameterwise-different popu-
lation models we provide a Python script that allows the user
to define ranges for parameters. The script then automatically
generates a model for each set of parameter values, checks
given properties in the model using PRISM, and writes user
specified output to a comma separated value file which can be
used by statistical analysis tools

A. Reward Structures

We can annotate DTMCs with information about rewards
(or costs) by assigning values to states and transitions. By

>The scripts to create and analyse the data, along with the verification
results, can be found at https:/github.com/PaulGainer/mc-bio-synch/tree/
master/energy-analysis

calculating the expected value of these rewards we can reason
about quantitative properties of the models. For a network of
WSN nodes we are interested in the time taken to achieve a
synchronised state and the power consumption of the network.
Given a population model S = (A, N,T, R ¢, ), and its
corresponding DTMC D(S) = (Q,00,P), we define the
following reward structures:

a) Synchronisation Time: We are interested in the av-
erage and maximum time taken for a population model to
synchronise. By accumulating the reward along a path until
some synchronised global state is reached we obtain a measure
of the time taken to synchronise. Recall that every global
state is either a firing state or a non-firing state, and for non-
firing states we omit transitions to successor states where no
oscillators fire; instead a transition is taken to the next global
state where one or more oscillators do fire. By assigning a
reward of % to each transition from each firing state, and
assigning a reward of TT_(S to transitions from non-firing
states to successor states, where ¢ is the highest phase of any
oscillator in the non-firing state, and hence T'— ¢ is the number
of omitted transitions where no oscillators fire, we obtain a
measure of synchronisation time for a population model.

b) Power Consumption: Let I, I'r, and I be the current
draw in amperes for the idle, receive, and transmit modes, V' be
the voltage, C be the length of the oscillation cycle in seconds,
and M; be the time taken to transmit a synchronisation
message in seconds. Let W; = ?{é(‘)/OCT and Wgr = éggg? be the
power consumption in Watt-hours of one node for one discrete
step within its oscillation cycle in idle and receive mode, and
let Wpr = 126‘./0%[‘ be the power consumption in Watt-hours to
transmit one synchronisation message.

The function pow : @\ {oo} — R maps a state to the power

consumption of the network in that state, given by

T
> kaWh.

P=R+1

R
pow(0) = Y ke Wi + (11)
d=1

The function pow : Q N TNF — R maps a non-firing state to
the total power consumed by the network to reach the next
firing state. Given a non firing state o = (k1,...,kr) and the
maximal phase § of any oscillator in that state, we define

(T-6)-1 [R—j 5
pOW(O‘): Z Z koW + Z keWg
=0 d=1 d=(R+1)—j

12)
From a non-firing state ¢ € Q N TNF the power consumed
by the network to reach the next firing state is equivalent to
the accumulation of the power consumption of the network in
o and any successive non-firing states that are omitted in the
transition from o to sféc(a). Furthermore, for each firing state
o € QNI'" we assign a reward of k; W to every transition from
o to a successor state ¢’ = (ki,...,kr). This corresponds
to the total power consumption for the transmission of &
synchronisation messages.
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B. Restabilisation

A network of oscillators is restabilising if it has reached
a synchronised state, synchrony has been lost due to the
occurrence of some external event, and the network must
then again achieve synchrony. We could, for instance, imagine
the introduction of additional nodes with arbitrary phases
to an established and synchronised network. We define the
parameter U to be the number of oscillators with arbitrary
phase values that have been introduced into a network of
N — U synchronised oscillators, or to be the number of
oscillators in a network of NN oscillators whose clocks have
reset to an arbitrary value, where U € Nand 1 < U < N.
Destabilising U oscillators in this way results in configurations
where at least N — U oscillators are synchronised, since
the destabilised oscillators may coincidentally be assigned the
phase of the synchronised group. We can restrict the set of ini-
tial configurations by identifying the set 'y = {(k1, ..., k7) |
(k1,...,kr) € Tand k;, > N — U forsome 1 < i < T},
where each o € I'y; is a configuration for the phases such that
at least NV — U oscillators share some phase and the remaining
oscillators have arbitrary phase values.

As we decrease the value of U we also decrease the number
of initial configurations for the phases of the oscillators. Since
our model does not encode the loss or addition of oscillators
we can observe that all global states where there are less than
N — U oscillators sharing the same phase are unreachable by
any run of the system beginning in some state in I'y;.

VII. EVALUATION

In this section, we present the model checking results for
instantiations of the model given in the previous section. To
that end, we instantiate the phase response function presented
in Sect. [III) for a specific synchronisation model, and vary the
length of the refractory period R, coupling constant €, and
the probability p of broadcast failures. All of these param-
eters are global, since we assume a homogeneous network
where all oscillators have identical dynamics and technical
specifications. We use a synchronisation model where the
perturbation induced by the firing of other oscillators is linear
in the phase of the perturbed oscillator and the number of firing
oscillators [13]]. That is, A(®, a, €) = [®-a-€], where [_] de-
notes rounding of a value to the nearest integer. The coupling
constant determines the slope of the linear dependency.

For many experiments we set € = 0.1 and p = 0.2. We
could, of course, have conducted analyses for different values
for these parameters. For a real system, the probability p
of broadcast failure occurrence is highly dependent on the
deployment environment. For deployments in benign environ-
ments we would expect a relatively low rate of failure, for
instance a WSN within city limits under controlled conditions,
whilst a comparably high rate of failure would be expected
in harsh environments such a a network of off-shore sensors
below sea level. The coupling constant e is a parameter of
the system itself. Our results suggest that higher values for e
are always beneficial, however this is because we restrict our
analysis to fully connected networks. High values for ¢ may be
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detrimental when considering different topologies, since firing
nodes may perturb synchronised subcomponents of a network.
However we defer such an analysis to future work.

As an example we analyse the power consumption of the
MICAz moteﬂ The transceiver of the MICAz mote possesses
several modes. It can either transmit, receive, or remain idle.
In transmit mode, it draws 17.4 mA, while in receive mode,
it draws 19.7 mA. If the transceiver is idling it uses 20 /LAH
The MICAz is powered by two AA batteries or an external
power supply with a voltage of 2.7 — 3.3 V. For consistency,
we assume that the voltage of its power supply is 3.0 V.

A. Synchronisation of a whole network

We analyse the power consumption and time to synchronise
for a network of fully connected MICAz nodes. We set the size
of the network to be eight oscillators with a cycle period of
T = 10. Increasing the granularity of the cycle period, or the
size of the network, beyond these values leads to models where
it is infeasible to check properties due to time and memory
constraintﬂ However, compared to our previous work [25],

3The technical datasheet is available at 'www.memsic.com/userfiles/files/
Datasheets/WSN/micaz_datasheet-t.pdf

4The idle and transmit modes are composed of several submodes. The
transmit mode has three submodes for different transmission ranges, each of
which influence the amount of current draw. The current draw of the idle mode
depends on whether the voltage regulator is turned on or off. To account for
the worst-case, we only consider submodes with the maximal current draw.

5While most individual model checking runs finished within a minute, the
cumulative model checking time over all analysed models was very large. The
results shown in Fig. @ already amount to 80 distinct runs.
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we were able to increase the network size.

Figures [ and [5] show both the average and maximal power
consumption per node (in mWh) and time (in cycles) needed to
synchronise, in relation to the phase coherence of the network
with respect to different lengths of the refractory period, where
€ = 0.1 and p = 0.2. That is, they show how much power is
consumed (time is needed, resp.) for a system in an arbitrary
state to reach a state where some degree of phase coherence
has been achieved. The much larger values obtained for R = 1
and phase coherence > (.9 are not shown here, to avoid
distortion of the figures. The energy consumption for these
values is roughly 2.4mW h, while the time needed is around
19 cycles. Observe that we only show values for the refractory
period R with R < % For larger values of R not all runs
synchronise [25], resulting in an infinitely large reward being
accumulated for both the maximal and average cases. We
do not provide results for the minimal power consumption
(or time) as it is always zero. Since we consider all initial
configurations (global states) for oscillator phases there will
always be a run of the system such that the phase coherence
of its initial state equals or exceeds some desired degree of
phase coherence A € [0, 1]. This follows from the observation
that for any A there is always an initial global state o with
phase coherence PCF(o) > )\, namely any state o’ where all
oscillators share the same phase, and hence PCF(¢’) = 1.

As would be expected when starting from an arbitrary state,
the expected time and expected power consumption increases
monotonically with the order of synchrony to be achieved. On
average, networks with a higher refractory period require less
power for synchronisation, and take less time to achieve it. The
only exception is that the average time to achieve synchrony
with a refractory period of four is higher than for two and
three. However, if lower phase coherence is sufficient then
this trend is stable. In contrast to that, the maximal power
consumption of networks with R = 4 is consistently higher
than of networks with R = 3. In addition, the maximal time
needed to achieve synchrony for networks with R = 4 is
generally higher than for lower refractory periods, except when
the phase coherence is greater than or equal to 0.9. We find
that networks with a refractory period of three will need the
smallest amount of time to synchronise, regardless of whether
we consider the maximal or average values. Furthermore, the
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average power consumption for full synchronisation (phase
coherence one) differs only slightly between R = 3 and R = 4
(less than 0.3 mWh). Hence, for the given example, R = 3
gives the best results. These relationships are stable even for
different broadcast failure probabilities w, while the concrete
values increase only slightly. This is illustrated in Fig. [6
which shows the average and maximal power consumption
for different broadcast failure probabilities when € = 0.1.

The general relationship between power consumption and
time needed to synchronise is shown in Figs. [7] and [§] Within
these figures, we do not distinguish between different coupling
constants and broadcast failure probabilities. We omit the two
values for R =1, ¢ = 0.1 and p € {0.1,0.2} in Fig.[8|to avoid
distortion of the graph, since the low coupling strength and low
probability of broadcast failure leads to longer synchronisation
times and hence higher power consumption. While this might
seem surprising it has been shown that uncertainty in discrete
systems often aids convergence [25]], [37].

It is easy to see that the relationship between power
consumption and time to synchronise is linear, and that the
slope of the relation decreases for higher refractory periods.
While the linearity of the relation is almost perfect for the
average values, the maximal values have greater variation.
These relationships again suggest that R = 3 is a sensible
and reliable choice for the length of refractory period, since
it provides the greatest stability of power consumption and
time to synchronise. In particular, if the broadcast failure
probability changes, the variations in power consumption and
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synchronisation time are less severe for R = 3 than for the
other refractory period lengths.

B. Resynchronisation of a small number of nodes

In this section, we present an analysis of the power con-
sumption if the number of redeployed nodes is small com-
pared to the size of the network. The approach presented in
Sect. allows us to significantly increase the network size.
In particular, the smallest network we analyse is already larger
than that in Sect. while the largest is almost five times
as large. This is possible because the model checker only needs
to construct a much smaller number of initial states.

The average power consumption per node for networks of
size 10,15,...,35, where the oscillators are coupled with
strength ¢ = 0.1 and the probability of broadcast failures
is 1 = 0.2 is shown in Fig. [9] The solid lines denote the
results for a single redeployed node, while the dashed lines
represent the results for the redeployment of two and three
nodes, respectively. As expected, the more nodes need to
resynchronise, the more energy is consumed. However, we
can also extract that for higher refractory periods, the amount
of energy needed is more or less stable, in particular, in case
R = 4, which is already invariant for more than ten nodes.
For smaller refractory periods, increasing the network size,
decreases the average energy consumption. This behaviour can
be explained as follows. The linear synchronisation model
implies that oscillators with a higher phase value will be
activated more and thus are more likely to fire. For example,
consider a network of N = 15 oscillators with a cycle length
of T' = 10 and a coupling constant of e = 0.1, where one
oscillator has to resynchronise. Furthermore, assume that the
14 synchronised oscillators have phase ten and that the single
oscillator has just left its refractory period. If R = 1, then
this means the single oscillator has a phase of two, and the
perturbation is [2 - 14 - 0.1] = [2.8] = 3. Hence, it will not
synchronise with the other oscillators in this cycle. However,
if R = 4, then the perturbation is [5-14-0.1] = 7, which is large
enough to let the oscillator fire as well, i.e., it is absorbed by
rest of the oscillators and hence synchronised. This means that
in general a larger network will force the node to resynchronise
faster. The refractory period determines how large the network
has to be for this effect to stabilise.

VIII. CONCLUSION

We presented a formal model to analyse power consumption
in fully connected networks of PCOs. To that end, we extended
an existing model for synchrony convergence with a reward
structure to reflect the energy consumption of wireless sensor
nodes. Furthermore, we showed how to mitigate the state-
space explosion typically encountered when model-checking.
In particular, the state space can be reduced by ignoring
states where there are no interactions between oscillators.
When investigating the restabilisation of a small number of
oscillators in an already synchronised network we can reduce
the state space significantly, since only a small subset of the
initial states needs to be considered. We used these techniques
to analyse the power consumption for synchronisation and
restabilisation of a network of MICAz motes, using the pulse-
coupled oscillator model developed by Mirollo and Strogatz
[14] with a linear phase response function. By using our model
we were able to extend the size of the network compared with
previous work [25] and discuss trade-offs between the time
and power needed to synchronise for different lengths of the
refractory period (or duty cycle).

Results obtained using these techniques can be used by
designers of WSNss to estimate the overall energy efficiency of
a network during its design phase. That is, unnecessary energy
consumption can be identified and rectified before deployment
of the network. Additionally, our results provide guidance for
estimating the battery life expectancy of a network depending
on the anticipated frequency of restabilisations. Of course,
these considerations only hold for the maintenance task of
synchronising the network. The energy consumption of the
functional behaviour has to be examined separately.

Our current approach is restricted to fully connected net-
works of oscillators. While this is sufficient to analyse the
behaviour of strongly connected components within a network,
further investigation is needed to assess the effect of different
topological properties on the network. To that end, we could
use several interconnected population models thus modelling
the interactions of the networks subcomponents. Furthermore,
topologies that change over time are of particular interest.
However, it is not obvious how we could extend our approach
to consider such dynamic networks. The work of Lucarelli and
Wang may serve as a starting point for further investigations
[15]. Stochastic node failure, as well as more subtle models
of energy consumption, present significant opportunities for
future extensions. For example, in some cases, repeatedly
powering nodes on and off over short periods of time might use
considerably more power than leaving them on throughout.
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