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Abstract 7 

Lightweight cores, based on an egg-box core design, have been manufactured using a simple compression-8 

moulding technique. Two types of composite prepreg were used to manufacture the core materials, these being a 9 

woven carbon fibre reinforced epoxy and a woven glass fibre reinforced epoxy. The resulting cores were of a 10 

high quality, exhibiting little or no wrinkling following the manufacturing procedure. Subsequent compression 11 

tests at quasi-static rates of loading showed that the compression strength of the core depended strongly on the 12 

level of constraint applied during testing, with sandwich panels based on composite skins bonded to an egg-box 13 

core offering a load-bearing capability that was more than double that of its unconstrained counterpart. The 14 

quasi-static compression strength of the carbon-based cores has been shown to be slightly higher than the glass 15 

fibre systems, particularly at higher core densities. Local splitting damage at cell joining regions and crushing of 16 

the cell of the egg-box structure was identified as the primary failure mechanism in the sandwich panels.  17 

Impact tests, conducted using a drop-weight impact tower, have shown that the compression strength of the egg-18 

box cores is higher at dynamic rates of loading than at quasi-static rates. Here again, the local splitting and 19 

crushing was the primary mode of failure in the sandwich structures. Finally, the finite element technique has 20 

been used to model the mechanical response of these core designs under both quasi-static and impact loading 21 

testing conditions. Here, agreement between the predicted and observed responses was found to be good for 22 

both extremes of loading-rate. 23 

Keywords: A. Carbon-fibre; A. Glass fibre; B. Impact behaviour; C. finite element analysis (FEA) ; composite 24 

egg-box  25 
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1. Introduction  28 

Sandwich structures consisting of a low density core material bonded to strong, stiff outer skins are finding 29 

increasing deployment across a broad range of engineering applications [1,2]. Such structures offer many 30 

unique advantages, most particularly when subjected to out-of-plane loading, such as that associated with the 31 

application of bending or flexural loads. Although sandwich technology is now well-established, there have 32 

been many attempts in recent years to develop new and novel core designs that can greatly expand the design 33 

envelope. Examples include the development of advanced lattice designs that seek to exploit the tensile 34 

deformation modes when loaded in compression as well as corrugated structures that offer increased levels 35 

of ventilation in humid environments [3-8]. Kazemahvazi et al. [9] investigated the compression behaviour 36 

of a corrugated system based on a carbon fibre reinforced epoxy resin. The resulting panels exhibited a 37 

number of different failure modes as the geometry of the structure was varied. More recently, corrugated 38 

core materials, based on both glass and carbon fibre reinforced epoxy composites, have been developed and 39 

tested [10]. Here, the compression moulding technique, employing a steel mould with a triangular profile, 40 

was used to produce a range of systems with differing wall thicknesses. The mechanical response of the 41 

composite sandwich structures were compared to that offered by an all-aluminium system, where it was 42 

shown that the specific compression strength of a carbon fibre-based core exceeded that of its metallic 43 

counterpart [10]. 44 

Found et al. [11] performed quasi-static compression  tests to investigate the energy absorption properties of 45 

a polyurethane foam sandwich panel with four fibre-reinforced plastic tubular inserts incorporated within the 46 

core. They reported that by ensuring progressive brittle failure of the structure, higher specific energy 47 

absorption values were obtained. As a result of variations in the fibre distribution within the inserts, the 48 

sandwich tended to collapse in a catastrophic failure mode, leading to lower specific energy values. The 49 

energy-absorbing characteristics of hierarchical woven lattice composites were evaluated by Zheng et al. 50 

[12]. The square interlocking structures were composed of a woven lattice to form the sandwich cell walls. 51 

They concluded that these novel cell walls successfully restricted rib buckling. As a result, the structure had 52 

a high compressive strength and a stable plateau region, thereby enhancing the specific energy absorption of 53 

the cellular material. 54 
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A potential new class of energy-absorbing structure based on aluminium egg box was introduced by Zupan 55 

et al. [13]. Experiments suggested that egg-box structures deform by either the rotation of a stationary plastic 56 

hinge or by a travelling plastic knuckle, depending upon the in-plane kinematic constraints imposed upon the 57 

egg-box. Chung et al. [14] fabricated composite egg-box structures and stated that its density, boundary 58 

conditions and geometry affected the energy absorption capability of the structure. Fibre reinforced 59 

composite structures were manufactured using vacuum bagging and autoclave curing techniques. The 60 

production of foam-filled egg-box sandwiches, via autoclave curing, was investigated by Yoo et al. [15]. It 61 

was found that such structures offered an impressive energy absorption capacity, involving a stable collapse 62 

response, resembling that of an ideal energy-absorbing material. 63 

Although extensive work has been carried out to understand the effect of various sandwich geometries on 64 

energy absorption, there is limited work relating to the mechanical properties of contoured core sandwich 65 

panels (or the egg-box structure) based on composite materials. The present study investigates the properties 66 

of contoured core sandwich panels based on both carbon and glass fibre composites. The study initially 67 

focuses on the quasi-static and impact response of these panels as a function of the cell wall thicknesses and 68 

core density. Following this, a series of finite element models are developed to predict the mechanical 69 

response of these structures under compression loading. 70 

  71 
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       2. Experimental procedure  72 

The egg-box composite cores investigated in this study were manufactured using either a woven glass 73 

fibre reinforced epoxy (GFRP) or a woven carbon fibre reinforced epoxy (CFRP). The nominal 74 

thicknesses of the GFRP and CFRP prepregs were 0.10 and 0.25 mm respectively. Details of physical 75 

properties of these two prepreg materials are given in Table 1. Prepreg sheets were cut to the required 76 

dimensions and placed between the two contoured aluminium moulds shown in Figure 1a. Geometrical 77 

details of the mould design are given in Figure 1b. The GFRP cores were manufactured by stacking 5, 78 

10 and 15 prepreg sheets in the mould, and the thicknesses of the resulting cores were 0.5, 1.0 and 1.5 79 

mm respectively. CFRP cores having similar thicknesses were produced by stacking 2, 4 and 6 prepreg 80 

sheets in the mould. A release agent (CIL Release 1711E, from Cilchem) was sprayed on both sides of 81 

the mould to ensure easy demoulding at the end of the cure cycle. The aluminium moulds were then 82 

placed in a hot press and the structure cured according to the processing parameters given in Table 1. 83 

Here, the panels were heated to 125 oC at a heating rate of 1.5 oC/minute. This temperature was then 84 

maintained for 90 minutes, before switching off the press and allowing the samples to cool to room 85 

temperature. The panels were then removed from the press and cut into 100 x 100 mm test samples, as 86 

shown in Figure 2(a). 87 

To manufacture the bonded samples, skins were bonded to the core using a two-part epoxy resin 88 

(Araldite 420 A/B) in the ratio 10:4. All of the cores were bonded to 0.50 mm thick skins based on 89 

either CFRP or GFRP. The adhesive was applied to the core using a syringe. After bonding, the panels 90 

were cured in an oven at 120 oC for one hour. The manufactured sandwich panels are shown in Figure 91 

2(b). An examination of the panels showed that they were free of defects, such as wrinkling or warping, 92 

suggesting that the weaves offered sufficient drapability to cope with the relatively complex mould 93 

design. 94 

In the initial part of this investigation, unbonded plain core specimens (i.e. without skins) were subjected 95 

to quasi-static compression using an Instron 4505 universal test machine. Tests were conducted on two 96 

by two (100x100 mm) egg-box panels. Following this, a series of compression tests were performed on 97 

sandwich panels with similarly-sized cores and corresponding skins. In a number of tests, the lateral 98 

movement of the base of the cores was restricted to investigate the influence of boundary conditions on 99 

the compression response. All of the quasi-static compression tests were undertaken at a crosshead 100 
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displacement rate of 1 mm/minute. The crosshead movement was interrupted when the panel was fully 101 

crushed between the loading platens. The load-displacements response was converted to nominal stress-102 

strain curves by normalising the applied load by the planar area of the specimen and dividing the 103 

crosshead displacement by the original specimen height, respectively. Table 2 summaries the sandwich 104 

structures investigated under quasi-static compression loading, which includes ply number, sample 105 

dimensions and core density. Here, in specimen ID ‘GF’ represents glass fibre and ‘CF’ represents 106 

carbon fibre. 107 

The compression tests were repeated at dynamic rates of loading using a drop-weight impact tower. A 108 

flat square impacter (100 mm x 100 mm) with a mass up to 15 kg was dropped onto panels supported 109 

on a steel base. The resulting impact force was recorded using a 10 kN piezo-electric load cell (Kistler 110 

9321A) positioned under the steel base. The cell was connected to a charge amplifier (Kistler 5011) 111 

using an insulated coaxial cable in order to amplify the resulting voltage signal. The recorded signal 112 

was then converted from an analogue to a digital format using a DAQ device (Measurement 113 

Computing, USB 1208HS) and then converted to a force. A high speed camera (MotionPro X4, model 114 

X4CU-U-4) was used to capture the displacement and velocity of the impactor. The camera was placed 115 

in the front of the impact rig to track the impactor and record displacement during the dynamic event, 116 

as shown in Figure 3. Table 3 summarises the key parameters used in this part of the study, which 117 

include number of ply, cell wall thickness, sample dimensions, core density, drop height and impactor 118 

mass. 119 

 120 

3. Numerical procedure 121 

Numerical models were developed to simulate the compression response of the sandwich structures 122 

under quasi-static and dynamic loading. The composite was modelled using user-defined Hashin’s 3D 123 

failure criteria for an anisotropic composite material. Figure 4 shows the finite element mesh of an egg-124 

box core with the top skin removed. Here, the core was meshed using six-noded triangular solid 125 

elements, while the composite skins were modelled using eight-noded brick elements, with an interface 126 

defined between the former and the latter. The loading platens above and below the panel were meshed 127 

using discrete rigid elements. The size of the core corresponds to that used in the experimental study (i.e. 128 

100 x100 mm). Mesh sensitivity was investigated by varying the mesh density within the plane and 129 
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through-thickness directions of the composite sheet. Following this study, a mesh size based on element 130 

with a size of 1 mm within the plane and two elements through-the-thickness of the composite layer was 131 

used. A number of interfaces were considered in the model, including those between the face sheets and 132 

the loading platen, those between the composite core and the face sheets, as well as possible self-contact 133 

between the inclined faces of the egg-box core. A modified 3D failure criteria [16, 17] was used to 134 

simulate the response of sandwich panels in a Cartesian coordinate system. The failure criteria, together 135 

with the related constitutive model, were then implemented in ABAQUS/Explicit using a subroutine [18, 136 

19]. The failure criteria can be expressed as follows: 137 
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 148 

where X1t, X1c, X2t, X2c, S12, S13 and S23 are the various strength components and dft, dfc, dmt and dmc are the 149 

damage variables associated with the four failure modes. A series of numerical studies, with different 150 

durations, was conducted in order to identify the appropriate time-step that gave negligible dynamic 151 

effects. This time-step was found to be 0.1 seconds. The response of the material after damage initiation, 152 

which describes the rate of degradation of the material stiffness once the initiation criterion is satisfied, is 153 

defined by the equation:      154 

ijijij dC εσ ⋅= )(                                                                           (5)   155 
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where ( )ijC d   is the degradation matrix. The instant damage criteria are used here, i.e. the damage 156 

variables are either taken as zero (virgin state) or unity (damaged state). Therefore, the degradation 157 

matrix components are computed in terms of undamaged elastic constants, o
ijC  , and the damage 158 

variables as follows: 159 

    ( ) (1 ) o
ij ij ijC d d C= −        (6) 160 

Here, the damage variable ‘dij’ is related to fibre and matrix damage in tension and compression, as well 161 

as shear failure in matrix caused by tension and compression, which can have various forms. 162 

The response of the sandwich structures under dynamic loading was modelled using the same elements 163 

that were employed in the quasi-static models. The impactor was modelled as a flat plate using a discrete 164 

rigid surface. A point mass, equal to that of the experimental impactor, was assigned to a reference point 165 

located at the centre of the flat plate. The reference point was also used to record the displacement from 166 

this model. An initial velocity was prescribed to the rigid plate, which was set equal to the impact velocity 167 

used in the experiments. A surface-to-surface contact condition was used to define contact between the 168 

impactor and the skin (so as the core if the skin is damaged).  169 

The input data for the elastic properties and for progressive damage development in this model were based 170 

on the properties given in Table 4. A numbers of studies have shown that increased strain-rates, can result 171 

in enhanced mechanical properties of composite materials [20-23]. It is generally accepted that the 172 

sensitivity of mechanical properties at high-strain rate is dependent on the composite type and polymer 173 

matrix. 174 

  175 

4. Results and discussion  176 

4.1 The effect of local constraint on the compression response of the cores 177 

The mechanical properties of composite cores similar to those under investigation in this study clearly 178 

depend on the level of constraint applied to their boundaries, including the upper and lower surfaces as 179 

well as at their edges. Figure 5 shows typical stress-strain plots following compression tests on egg-box 180 

cores subjected to three different boundary conditions. Here, the stress and strain are nominal ones, which 181 

are defined in Section 2 Experimental Procedure. As expected, the plain unbonded core exhibits a 182 
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relatively low compressive modulus, as well as a modest compressive strength. Following the initial peak 183 

in the curve, the stress drops before rising slowly and dropping on a number of subsequent occasions. An 184 

examination of the samples during failure highlighted local splitting at cell joining regions and crushing of 185 

the cell, general flattening of the core, delamination between the layers of the composite and finally 186 

fracture across the fibres had high levels of compressive strain. Constraining the lateral movement of the 187 

edges of the samples yielded a 40% increase in the average peak stress from the unbonded sample. The 188 

ensuing collapse and crushing processes resulted in a much higher value of average stress and greater 189 

energy absorption, defined by the area under the stress-strain curve, than in the unbonded (unconstrained) 190 

sample. Here, mid-way through the crushing process, the nominal stress reached a value similar to that of 191 

the initial peak. The failure mechanisms in the constrained samples again involved local splitting at cell 192 

joining regions and crushing of the cell prior to complete collapse. Finally, the sandwich panel with 193 

composite skins bonded to the composite core offered the highest compression strength of the three 194 

conditions investigated here, with the peak value being approximately 2.3 times of that measured on the 195 

plain, unconstrained core. Following the peak value, the stress dropped rapidly to values that were 196 

significantly lower than those associated with the constrained (bonded) core. The failure modes observed 197 

during the damage process in the sandwich panels included local crushing of the core, fibre fracture, 198 

delamination between the plies in the core material and debonding at the skin-core interface. 199 

4.2 Compression properties of the sandwich panels 200 

Figures 6(a) and 6(b) show typical stress-strain traces for the GFRP and CFRP sandwich panels 201 

respectively. In Figure 6(a), all three traces exhibit an initial linear response up to the peak stress. The peak 202 

stress increases with web thickness, ranging from 0.44 MPa for the 0.5 mm web to 1.60 MPa for the 1.5 203 

mm thick web. Following the peak in the trace, a crack initiated in core cell wall, which propagated under 204 

continued loading, resulting in steady load drops as the cells collapsed and subsequently crushed. 205 

Following this, the core cell wall started to buckle, leading to a sudden drop in stress at strains between 0.1 206 

and 0.2 mm/mm. Beyond a strain of approximately 0.2 mm/mm, the curves plateaued, as the cell walls 207 

debonded from the skin, core flattened between the platens. Finally, the stress begins to increase at high 208 

strains as the core begins to densify between the platens.  209 

In Figure 6(b), there is again a linear increase over the initial portion of the stress-strain trace of CFRP 210 

panels. The maximum stress increases from 0.46 MPa for the 0.5 mm thick web, to 1.61 MPa for its 1.5 211 
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mm thick counterpart. A comparison with Fig 6(a) indicates that the strength of the CFRP core is slightly 212 

higher than that measured on the GFRP core. Following the peak in trace, the drop in stress is smoother 213 

than for the GFRP core. The drop in stress for the 1.0 and 1.5 mm thick systems is continuous until the 214 

densification threshold is reached.  215 

Figure 7 summarises the variation of the quasi-static compression stress with core density for the glass and 216 

carbon-based sandwich structures, where it is clear that the stress of both materials increases in a roughly 217 

linear manner. Here, the core density is defined as the mass of the core divided by the core volume 218 

(including cavities). For the lowest density, the strengths are similar, however as density is increased, the 219 

superior properties of the CFRP core become apparent. 220 

Figures 8(a) and 8(b) compare the results of the finite element predictions with the data from the 221 

experimental traces. Agreement between the two sets of curves is generally good for the GFRP panels, 222 

with the model accurately predicting the trends in the experimental results. The model accurately predicts 223 

the initial slope, i.e. the elastic modulus of the core, but slightly over-predicts the subsequent softening 224 

phase following the peak stress. The oscillations in the predicted traces are due to the unstable response 225 

during local collapse in the FE models. Figure 9 presents a comparison of the predictions of the finite 226 

element model with the experimentally-measured compression strengths for the CFRP panels. Agreement 227 

between the two sets of data is good, suggesting that the numerical model can be used to predict the 228 

compression response of structures similar to those tested here. Similar levels of agreement were observed 229 

following comparisons between the predicted and measured properties for the GFRP system. 230 

Figure 10 compares the failure mechanisms in the GFRP samples with the predictions offered by the FE 231 

model. Agreement between the predictions and experimental data is generally good, with the model 232 

predicting local crushing in the core as well as flattening of the core against the upper and lower skins. The 233 

model also predicts the final increase in stress due to densification. Agreement between the FE predictions 234 

and the experimental curves is also very good for the CFRP panels. Once again, the model accurately 235 

captures the initial elastic response, as well as the post-peak softening response of the core. Here, the 236 

softening portion of the stress-strain trace is somewhat smoother than observed for the GFRP core. 237 

Figure 11 compares the quasi-static compressive strengths of the CFRP or GFRP egg-box cores with 238 

corresponding data for a number of plain foams. From the figure it is evident that the properties of the egg-239 

box cores lie between those associated with linear PVC foams and crosslinked PVC foams. This overall 240 
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performance is somewhat disappointing given that the current systems are based on composite materials 241 

rather than foamed polymers. This relatively modest performance can be attributed to the fact that the 242 

composite systems fail at relatively low load levels, due to local crushing in the composite cores. 243 

 244 

4.3 The Impact response of the core materials  245 

Figures 12(a) and 12(b) show typical impact traces for the GFRP and CFRP sandwich panels respectively. 246 

The GFRP curves exhibit oscillations, due to ringing effects in the load-cell. The curves are similar in form 247 

to those following quasi-static testing. As expected, the maximum stress increases with web thickness, 248 

passing from approximately 0.44 MPa for the thinnest web to 1.94 MPa for the 1.5 mm thick system. 249 

There is evidence to suggest that the onset of densification occurs at lower strains under impact than at 250 

quasi-static rates. The dynamic response of the CFRP sandwich structures is similar to the quasi-static 251 

traces. Once again, the stress in the thickest sample drops steadily from the peak value. Here, the peak 252 

stress for the 1.5mm thick CFRP panel is 2.20 MPa, compared to 0.77 MPa for the 0.5 mm thick CFRP 253 

panel. 254 

Figure 13 compares the dynamic and quasi-static compression strengths of the GFRP sandwich structures. 255 

It is interesting to note that for the two thinner webs, the compression strength of the dynamically-loaded 256 

samples is similar to those of their quasi-static counterparts. In contrast, loading-rate effects are evident in 257 

the thickest system, with the dynamic value being 35% higher than the quasi-static system. Figure 13(b) 258 

presents the dynamic and quasi-static properties of the CFRP sandwich panels. Here, there is evidence of 259 

loading-rate sensitivity, with the impact strength of both the thinnest and thickest webs being up to 25% 260 

higher than at quasi-static rates.  261 

Figure 14 compares the stress-strain responses predicted by the FE models with the experimental traces for 262 

the CFRP panels. As before, the FE model exhibits a highly oscillatory response for all web thicknesses. A 263 

comparison of the numerical and experimental traces indicates that the finite element model captures the 264 

fundamental features of the experimental stress-strain traces. However, following the initial peak in the 265 

stress-strain traces the FE model tends to over-predict the softening phase of the curves. 266 

 Figure 15 compares the FE predictions of the compression strength of the GFRP sandwich panels with the 267 

experimental data where good agreement between the two sets of data is apparent. Similar trends were 268 
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observed when the predictions and experimental data for the CFRP samples are compared, although the 269 

model tended to slightly over-estimate the measured values. This evidence further supports the argument 270 

that the finite element model is suitable for predicting the dynamic behaviour of these relatively complex 271 

sandwich structures.  272 

 273 

5. Conclusions 274 

A range of egg-box composite cores have been manufactured via a compression moulding process in a hot 275 

press. Compression tests at quasi-static and dynamic loading-rates have identified a range of failure modes, 276 

including flattening of the core webs, local crushing of the cell and delamination within the cell walls, 277 

followed by the debonding between core and skins. The influence of edge constraint has been studied, 278 

where it was noted that sandwich structures based on composite skins bonded to an egg-box core offered 279 

the highest compression strength. Increasing the thickness of the web in the egg-box core served to 280 

increase the compression strength, although failure always occurred as a result of delamination and local 281 

crushing in the relatively thin inclined faces of the inclined core members. The compression properties of 282 

both materials exhibit a degree of loading-rate sensitivity, with GFRP being slightly more loading-rate 283 

sensitive than its carbon-based counterpart. Finite element models, developed to predict the quasi-static 284 

and dynamic compression behaviour of the egg-box cores, have shown a reasonably good agreement with 285 

the experimental data.  286 
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Table 1. Details of the glass fibre and carbon fibre reinforced epoxy composites 

Prepreg GFRP CFRP 

Fibre type E-Glass 3k HTA 

Weave style Satin Plain 

Resin content (% wt) 40 ± 3 53 ± 3 

Curing temperature (oC) 125 125 

Dwell time (minutes) 90 90 

Laminate density (kg/m3) 1780 1300 

Nominal thickness of ply (mm) 0.10 0.25 
 

 

Table 2. Summary of the dimensions of the sandwich structures investigated at quasi-static rates of strain. 

Specimen ID No. 
of 
plies 

Thickness 
‘t’ (mm) 

Specimen 
Length 
(mm) 

Specimen 
Width 
(mm) 

Specimen 
Height 
(mm) 

Core 
density 
(kg/m3) 

GF1 5 0.5 100 100 20.5 54.5 

GF2 10 1.0 100 100 21.0 104.3 

GF3  15 1.5 100 100 21.5 141.3 

CF1  2 0.5 100 100 20.5 50.1 

CF2  4 1.0 100 100 21.0 97.4 

CF3  6 1.5 100 100 21.5 130.3 
 

 

Table 3. Summary of the dimensions of the sandwich structures and test parameters for low velocity impact 

testing. 

Specimen ID No. 
of 
plies 

Thickness 
‘t’ (mm) 

Specimen 
Length 
(mm) 

Specimen 
Width 
(mm) 

Specimen 
Height 
(mm) 

Core 
density 
(kg/m3) 

Drop 
height 
(m) 

Impactor 
mass 
(kg) 

GF4 5 0.5 100 100 20.5 54.5 0.40 8.43 

GF5 10 1.0 100 100 21.0 104.3 0.85 8.43 

GF6 15 1.5 100 100 21.5 141.3 1.40 8.43 

CF4  2 0.5 100 100 20.5 50.1 0.50 15.70 

CF5  4 1.0 100 100 21.0 97.4 1.10 15.70 

CF6  6 1.5 100 100 21.5 130.3 1.45 15.70 
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Table 4. Summary of material properties of two composites used in this study.  

Properties  Symbol (GFRP) (CFRP) 

Young’s modulus in longitudinal direction E11  23 GPa  48 GPa  

Young’s modulus in transverse direction E22 23 GPa  48 GPa  

Young’s modulus in thickness E33  5 GPa   1 GPa  

In-plane shear modulus  G12 5 GPa  9 GPa  

Through-thickness shear modulus G13, G23  5 GPa  9 GPa  

In-plane Poisson’s ratio v12  0.15 0.10 

Through-thickness Poisson’s ratio v13, v23 0.15 0.10 

Longitudinal tensile strength TL 320 MPa  550 MPa  

Longitudinal compressive strength CL 260 MPa  150 MPa  

Transverse tensile strength TT 320 MPa  550 MPa  

Transverse compressive strength CT 260 MPa  350 MPa  

Transverse shear strength ST  100 MPa  120 MPa  

Longitudinal shear strength SL  100 MPa  120 MPa  
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                              (a)                                                                                           (b) 

Figure 1. Photographs of the mould and profile of the mould showing the egg-box design. 

   

 

 

 

 

 

 
 

 

Figure 2. Photograph of (a) a GFRP core after manufacture and (b) the resulting CFRP and GFRP sandwich 

structures based on composite skins bonded to the core. 
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Figure 3. Schematic and image of the drop-weight impact tower. 
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Figure 4. Finite element mesh of the egg-box model. 
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Figure 5. The effect of edge constraint and skins (bonded) on the compression response of the GFRP system. 
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 (a) 

 

 

 (b) 

Figure 6. Typical stress-strain traces following quasi-static compression tests on (a) the GFRP sandwich panels 

and (b) the CFRP sandwich panels. 
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Figure 7. Variation of compression strength with core density for the GFRP and CFRP panels.  
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(a) GFRP 

 

 

(b) CFRP 

Figure 8. Comparison of the numerical and experimental stress-strain traces for the GFRP and CFRP cores. 
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Figure 9. Quasi-static compression strength versus core densities for the CFRP sandwich structures. The solid 

line correspond to the FE predictions. 
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Figure 10. Photographs showing the compression process in the flat roof GFRP structures (a) experimental 

observation and (b) finite element predictions. 
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Figure 11. Comparison of the compression strength of the egg box cores with other core types as a function of 

core density. 
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 (a) 

 

 

 (b) 

Figure 12. Typical stress-strain traces following impact compressions tests on (a) the GFRP sandwich panels 

and (b) the CFRP sandwich panels. 
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(a) GFRP 

 

(b) CFRP 

Figure 13. Comparison of the impact and quasi-static compression strengths of the (a) GFRP and (b) CFRP 

panels. 
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Figure 14. Comparison of the dynamic numerical and experimental stress-strain traces for the CFRP cores. 
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Figure 15. Impact compression strength versus core densities for GFRP samples. The solid line correspond to 

the FE predictions. 
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