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Abstract

High accuracy forecasts are essential to �nancial risk management, where

machine learning algorithms are frequently employed. We derive a new the-

oretical bound on the sample complexity for PAC learning in the presence

of noise, and does not require speci�cation of the hypothesis set |H|. Con-

sequently, we demonstrate that for realistic �nancial applications (where |H|
is typically in�nite) that big data is necessary, contrary to prior theoretical

conclusions. Secondly, we show that noise (which is a non-trivial compo-

nent of big data) has a dominating impact on the data size required for PAC

learning. Consequently, contrary to current big data trends, we argue that

high quality data is more important than large volumes of data. Thirdly,

we demonstrate that the level of algorithmic sophistication (speci�cally the

Vapnik�Chervonenkis dimension) needs to be traded-o� against data require-

ments to ensure optimal algorithmic performance. Finally, our new Theorem

can be applied to a wider range of machine learning algorithms, as it does not

impose �nite |H| requirements. This paper will be of interest to researchers

and industry specialists who are interested in machine learning in �nancial

applications.
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1 Introduction

In �nancial risk management, forecasting plays a fundamental role in the ability to
e�ectively manage risk. Financial risk management is most crucially concerned with
forecasting risks (which by de�nition are unknown and random events) because they
can have substantial impacts upon a �rm. Examples of �nancial risks include stock
market crashes [11], the Global Financial Crisis (which has led to prolonged years of
�nancial di�culties), and exchange rate risks that can result from political factors
(such as a political election).

Machine learning algorithms are being increasingly used to improve forecasts
in �nancial risk management [12, 15]. This is because machine leaning provides a
method of modelling (and therefore predicting) data that may exhibit non-trivial
properties which other modelling methods would not be able to su�ciently model
[20]. The ability of machine learning algorithms to create hypotheses from data,
rather than from a �xed set of instructions, o�ers high �exibility to computational
modelling. A particularly advantageous aspect of machine learning is that it can
engage in iterative learning, that is learning and modelling can be adapted as new
data is introduced [4, 14]. In fact, this property alone has led to a wide range of
important applications being developed [3, 6], such as sophisticated fraud detection,
automated automobile driving, and applications for learning human behaviour (eg
consumer purchasing decisions).

PAC (probably approximately correct) [17, 18] learning provides a mathematical
framework for machine learning. PAC learning determines if a potential hypothesis
(arising from a classi�er or oracle) is deemed to have learnt the correct function
that maps inputs to their associated outputs. Additionally, Valiant [16] proved
that a minimum bound exists for the (training) data's length required to obtain
a hypothesis within quanti�ed bounds of accuracy. Consequently, PAC learning is
important to �nancial risk management as poor learning can impact the accuracy of
forecasts. This has become a particularly important issue since the Global Financial
Crisis because models have been cited as a key cause for the crisis.

A fundamental issue in machine learning (and PAC learning) is the issue of sam-
ple complexity. This is concerned with the total number of training samples m
required to achieve su�cient learning accuracy, under the PAC learning framework
(and under its respective assumptions). The sample complexity or m is of funda-
mental importance because PAC learning theory implies that the probability and
amount of accuracy possible for a learning function is limited by m. In other words,
if we wish to obtain better learning then this requires more training data m.

In addition to training data impact the quality of learning, the training data
size m in itself is important due to its impact on algorithmic implementation and
analysis. Firstly, a large training data m may be practically infeasible if insu�cient
data availability. This can occur in �nancial applications, particularly if a new
�nancial product is created and has limited data available. Hence m tells us the
feasibility of implementing some algorithms. Secondly, a large m value could lead to
large computational complexity, that is requiring powerful computer hardware and
other computational resources to enable enough data can be processed in a feasible
timescale. Such issues are particularly important in many real world applications,
where computational resources and timescales are limited.

Whilst the standard PAC framework o�ers a useful analytical concept for ma-
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chine learning, current theory makes a number of restrictive assumptions that negate
its usefulness to �nancial risk management applications. Firstly, some theorems
typically require the hypothesis set |H| to be �nite in order to obtain informative
bounds on m. However, most machine learning algorithms typically have |H| =∞.
This would be particularly the case in �nancial risk management where a wide and
sophisticated range of machine learning algorithms are employed to forecast future
events. Consequently bounds on sample complexity for �nancial risk management
applications are not realistic.

Secondly, a signi�cant amount of literature on learning theory assumes that little
or no noise exists. In other words we assume that the input data that a classi�er
receives data is not corrupted by any noise [7]. In �nancial applications this would be
an unrealistic assumption because many �nancial variables are frequently modelled
with noisy components. In fact stock market prices are typically modelled with
Brownian motion to incorporate noise in their prices. A natural consequence of the
presence of noise is that it can impact the learning ability of any algorithm, since it
will be necessarily harder to learn any relationship between input and output data.
A simple analogy would be �tting a line of best �t is more challenging with noisy
data than compared to noiseless data.

Given that we are likely to encounter noise in �nancial applications, it is im-
portant to understand the impact of noise upon sample complexity for the reasons
previously outlined (such as feasibility of algorithm and impact on computational
resources). Moreover, to what extent are the learning algorithm's learning ability
a�ected by noise. Additionally, as �nancial applications typically employ machine
learning algorithms with in�nite hypotheses sets, we would like to understand m for
such algorithms.

In this paper we investigate PAC learning in the presence of noise. Speci�cally
we investigate PAC learning when a noisy oracle or classi�er exists, which assigns
an incorrect output to an associated input, based on some noise level. Although the
issue of PAC learning in the presence of noise has been addressed in a number of pa-
pers (due to the relevance of noise in real world applications), our paper makes a new
contribution. In particular, Angluin and Laird's seminal paper [1] introduces new
results in PAC learning in the presence of (classi�cation) noise. However, Angluin
and Laird necesssarily require �nite |H| for their Theorem to be informative, hence
the Theorem is not particularly applicable �nancial risk management applications.

In this paper, we make a number of contributions. Firstly, we derive a new
bound on the sample complexity for PAC learning, speci�cally the minimum sample
length m for a given level of learning accuracy, in the presence of noise classi�cation.
Moreover, we extend and generalise further upon the results of Angluin and Laird's
classic Theorem [1] by not requiring |H| to determine m in our bound on the sample
size. Consequently, our bound on the required sample size is more applicable to
�nancial applications.

Secondly, using our bound we show that, contrary to Angluin and Laird's The-
orem [1] which assumes �nite |H|, machine learning algorithms require very large
values in m. We show that even for very low noise data that we require data of the
order of big data sizes, in order to produce su�ciently accurate forecasts that would
be applicable in �nancial risk maangement applications. Thirdly, we show that the
noise term signi�cantly impacts the amount of data required for forecasting and that
the size of big data required can increase substantially with noise. Consequently,
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we argue that data cleaning techniques, or conversely high quality (or low noise)
data, is more important greater volumes of big data. This conclusion is contrary to
the current 'direction of travel' in big data research trends, which emphasise greater
volume of data rather than higher quality (or data cleaning techniques).

The paper is organised as follows: in the next section we introduce the pre-
liminaries and notation of the paper, providing the background review and related
literature to our work. In the next section we provide main results and contribu-
tions, showing our new derivations in the presence of classi�cation noise and PAC
learning. We then analyse and demonstrate the implications of our Theorem for
�nancial risk management applications. Finally we end with a conclusion and give
suggestions for further areas of work.

2 Preliminaries

In this section we introduce the introductory theory and notation of the paper,
provide a background review and related literature to our work.

2.1 Introduction To Big Data and Machine Learning

Big data has recently received signi�cant attention in academic literature as well
as in the general media. This is because it has posited that big data will lead to
a paradigm shift in data analysis and forecasting. The term 'big data' currently
has no consensus de�nition but typically refers to data sizes that traditional data
processing software normally cannot manage. Therefore big data is typically of the
order of sizes of at least 1TB or higher [10]. Consequently, big data involves new
challenges in research, and these are frequently related to storage and analysis issues.

The emergence of big data has occurred due to the proliferation of data in the
modern world. Firstly, large amounts of data can be collected at relatively little
or no cost, in volumes that were previously not economically feasible. Hence the
amount of data that is available has grown. Secondly, there has been a signi�cant
development in technological products in recent years that enable high volumes of
data to be captured. For example, internet and internet related software, mobile
devices, digital and other internet related products means that products exist that
can capture large amounts of data.

Machine learning is concerned with learning algorithms designed to learn some
mapping function between pairs of data [9]. Typically the pair represent some input
data and its associated output data, and the aim of the algorithm is to determine
the function relating the inputs and outputs for all possible values. To achieve this,
the algorithm is supplied with some training data of length m. We also assume the
data is supplied with the correct output (also called classi�cation or labels) for each
input data point.

Let there exist some sample data which consists of a pair (xi, yi), where xi is
some input, i is an index, xi ∈ X, X is called the instance space. We also have
yi ∈ Y where yi is the associated output, label or classi�cation of xi in (xi, yi), and
Y is called the output set. Typically the classi�cation is Boolean, that is yi ∈ {0, 1}
∀i, although it is also possible for the classi�cation to be speci�ed to take values in
R ( that is yi ∈ R ∀i ). For the remainder of this paper we assume the output set
Y is always Boolean, unless stated otherwise.
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The true relation between input and output data points can be expressed by the
target function (or target concept), denoted t(.). Therefore we have the relation

yi = t(xi), ∀i.

The target function is some unknown function that we aim to discover, or "learn"
by employing our learning algorithm. We also have t(.) ∈ C, where C is a set of
possible target functions and C is known as the concept class. Now let there exist
a learning algorithm L, which produces a function or hypothesis h(.), and h(.) ∈ H
where H is the hypothesis set (set of all hypotheses that can be computed by the
learning algorithm L). The ultimate aim of the learning algorithm L is to produce
a hypothesis h(.) that is as close to t(.) as possible.

Let Z = X × Y , zi = (xi, yi) and zi ∈ Z, then the learning algorithm L receives
a sequence of training data z of length m:

z = (z1, z2, . . . , zm) = ((x1, y1), (x2, y2), . . . , (xm, ym)),

where z ∈ Zm. The sample (x1, x2, . . . , xm) is drawn from Xm, and we de�ne X to
have an associated probability P (.) and Xm to have a probability Pm(.) (see [2] for
more detail). After observing a su�ciently high number of training datapoints, the
learning algorithm L must output a hypothesis h estimating the target hypothesis
t. Therefore the learning algorithm can be considered as a function that maps the
set of all training samples Zm, for all m, onto the hypothesis set H:

L : ∪∞m=1Z
m → H.

An error in our hypothesis h(.) is de�ned as a misclassi�cation, that is

h(xi) 6= t(xi), xi ∈ X.

We can consider an error in our hypothesis h(.) as a measure of the performance
of hypothesis h. In other words errors tell us how accurate h(.) will be in correctly
determining the outputs. We de�ne erP (h) as the error function for h(.), under the
probability measure P , using the equation

erP (h) = P{h(xi) 6= t(xi)}, xi ∈ X.

Also, the sample error of hypothesis h, denoted by erz(h), is de�ned as follows:

erz(h) =
1

m

i=m∑
i=1

1{h(xi)6=yi},

where 1{.} is the indicator function. The sample error is also a measure of perfor-
mance of the hypothesis h(.) in terms of error. The function erz(h) is simple to
determine and can be used as an approximate estimate of erP (h), which is akin to
the the 'true' error. We note that erz(h) is an error measure over the (training)
data z of length m. Consequently, erz(h) as a measure of performance or error is
dependent upon m, and so does not measure the full error in the sense that it does
not measure the error over the entire data.
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2.2 PAC Learning And Noise

In order to determine whether a potential hypothesis has learnt a function well
enough to a su�cient standard, we require some criterion. Valiant in his seminal
paper introduced the concept of PAC (probably approximate correct) learning [16],
and de�nes a good hypothesis as one that has a speci�cally low classi�cation error,
for a speci�ed level of probability. A key contribution that was obtained from PAC
learning theory was the relation between machine learning and the computational
complexity, essentially the intensiveness of the computational resources required to
implement a learning algorithm. Valiant proved that a good hypothesis can exist,
provided that the training data of length m is su�ciently large. Hence m and sample
complexity become critical aspects in PAC learning. PAC (probably approximate
correct) learning is a standard criterion for supervised learning and has been a major
area of research in the past 30 years.

In PAC learning, we de�ne a good hypothesis if there exists some chosen (and
small) constant ε > 0, a constant 0 < δ < 1 relating to probability, and that

P (erP (h) ≤ ε) > 1− δ.

Essentially a good hypothesis must have a low error or erP (h). Moreover, Valiant
proved that the minimum training sample length m required to obtain a good hy-
pothesis is given by

m ≥ 1

ε
log

(
|H|
δ

)
.

We notice that the minimum sample length value is a function of ε and δ, hence the
level and probability of accuracy required in our hypothesis is directly related to the
training data used.

Our learning algorithm L can produce hypotheses from the hypothesis set H. We
would therefore be interested in some measure of the capability of the set of functions
inH, where we intuitively de�ne capability as meaning the complexity, �exibility and
general richness of functions. The VC (Vapnik -Chervonenkis) dimension provides
such a method of measuring capability; we denote this as V C(H) for H. The VC
dimension is also important because a larger VC dimension number implies it is
harder to learn all the correct functions possible, and so more data samples will be
needed to determine the correct function.

So far we have assumed that we receive perfect labelling from the target function
t(.), that is the training data (provided to L) is uncorrupted. However, in many real
world applications the training data is corrupted, that is we have yi 6= t(xi) for
some i values. This is known as classi�cation noise. To make this principle clear,
we say we have either a normal oracle EX or a corrupted oracle EXη. The normal
oracle means that the training data is not corrupted, that is yi = t(xi), ∀i. However
for a corrupted oracle yi 6= t(xi) for some i values. The noise parameter η, where
0 < η < 1

2
, determines the level of corruption. Speci�cally, we have the binomial

probability: P (yi = t(xi)) = 1− η, and P (yi 6= t(xi)) = η.
The noise η can be used to model any generic noise in the data or our system.

Given that training data has yi 6= t(xi) for some i, we de�ne the disagreement number
as the number of labelled instances (xi, yi) in the training sample which are such
that yi 6= t(xi). By de�nition a corrupted Oracle must have some outputs where
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yi 6= t(xi) , for some i, hence the disagreement number will never be 0 for corrupted
oracles.

In order for classi�cation methods to be e�ective, it is essential that data is
correctly labelled. In fact Zhu and Wu [21], as well as many other authors, have
demonstrated that noise can adversely a�ects the performance of classi�ers. However
in �nancial risk management applications, data or measurement systems may be cor-
rupted by noise, hence the learning algorithms receive corrupted labels. Moreover,
it is typically impractical, too time consuming or uneconomical to obtain training
data without noise. Hence it is therefore of great practical importance to develop
learning algorithms in the presence of noise, and this has been of signi�cant interest
to the machine learning community.

A number of approaches have been proposed to deal with machine learning in
the presence of noise. One method is based on designing learning algorithms that
are naturally robust to noise, so that the noise itself cannot a�ect the learning.
In other words, the learning algorithm would not be sensitive to noise. In fact
there exist many practical algorithms that are resistant to noise and so do not
a�ect performance, however such algorithms cannot always be used for �nancial
risk management applications. Moreover, if we have the situation where Pr(yi 6=
t(xi)) = η, then the algorithm cannot simply be made insensitive to the noise.

A second approach to dealing with noise is that one can provide better quality
training data (that is less noisy data) to improve learning. This is e�ectively achieved
by applying a �lter to the data to remove or attenuate noise. Essentially, noisy data
is either eliminated from the training data, or assigned a di�erent (and more correct)
value. For �nancial risk management applications, �lters are cheap and simple to
implement, however a major disadvantage is that �lters typically remove too much
data prior to training. Consequently, the reduction in data (in terms of quantity)
can then impair the learning algorithm's performance.

A more �exible approach is to understand learning algorithms and assume that
some data will be noisy (due to corruptly labelled data). In such a situation it is
important to understand the sample complexity and related issues for reasons pre-
viously outlined (such as the impact on computational resources, data requirements
and feasible computation times). The seminal paper in PAC learning under classi-
�cation noise is the following result of Angluin and Laird [1] that relates the noise
parameter η to the disagreement number, where the output labels are Boolean.

Theorem 1 (Angluin and Laird) Let ηb be a known upper bound on η, where
η ≤ ηb, and ηb <

1
2
. If we draw a sample of size m from EXη(t, P ) , where t ∈ H,

m is given by

m ≥ 2

ε2(1− 2ηb)2
ln

(
2|H|
δ

)
,

and �nd any hypothesis h ∈ H with a minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ.

Essentially, Angluin and Laird's (hearafter, we use AL instead of Angluin and Laird)
theorem answers the fundamental question (under its given assumptions) about the
sample complexity (that is size m), for a given ε and δ, in the presence of a corrupted
oracle EXη(t, P ). It is also worth pointing out that more than one h can exist with
a minimal disagreement number.

7



3 Main Results

The Angluin and Laird Theorem is an important equation for understanding learn-
ing under noise. However, we notice that it requires |H| and so the Angluin and
Laird Theorem requires �nite |H| for the bound to be informative. For �nancial
applications this is a signi�cant disadvantage since we can have |H| = ∞. In our
paper, we develop an alternative derivation that provides a bound on m and does
not require |H|. We now state our main Theorem and new contribution:

Theorem 2 Let d be the VC dimension of the hypothesis set H. Let us also assume
that the output set Y is Boolean valued, that is Y ∈ {0, 1}. For an oracle EXη(t, P ),
where η < 1

2
, if we draw a sample of size m, where

m ≥ 64

(1− 2η)2ε2

[
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

)]
,

and we �nd any hypothesis h ∈ H with minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ. �

Theorem 2 provides a useful result, which gives us the minimum sample lengthm,
for a given level of error, hence we have quanti�ed the sample complexity. Moreover
our Theorem involves the VC dimension d, rather than |H| and so is therefore
more widely applicable to �nancial risk management applications. In the proceeding
sections we will now discuss our Theorem by elaborating on the derivation at each
step.

3.1 Error Function Probability Bounds In The Presence of
Noise

In this section we derive the PAC bound in the presence of noise. This will also
help with deriving our main Theorem in the subsequent section. We begin by �rstly
deriving a relation between erQ(h) in terms of erP (h), that is the error term for the
noisy (or corrupt) oracle in terms of the noiseless oracle.

Lemma 1 Let Q in erQ(h) be the probability measure equivalent to the probabilities
obtained when the inputs in X are corrupted by noise. From the construction of the
probability measure Q, it is clear that ∀ h ∈ H that

erQ(h) = η + (1− 2η)erP (h).

Proof:
Under a noiseless oracle EX, we have ∀xi ∈ X , erP (h) = P{h(xi) 6= t(xi)}. Under
a noisy oracle we receive noisy data, so that t(xi) :7→ t′(xi). Similarly, we can write
the error function for EXη as

erQ(h) = Q{h(xi) 6= t(xi)}.
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Alternatively this can be written as erQ(h) = P{h(xi) 6= t′(xi)}. We can rewrite
this equation:

erQ(h) = P{h(xi) 6= t(xi)}(1− η) + P{h(xi) = t(xi)}η

The equation can be explained as follows. Now erQ(h) can have errors (that is
h(xi) 6= t′(xi)) due to 2 sources. Firstly, t(xi) = t′(xi) when the corrupt oracle
EXη does not alter the output compared to EX, however the hypothesis h itself is
wrong. Hence h(xi) 6= t(xi) and this occurs with probability 1− η. Secondly, when
the corrupt oracle EXη alters the output compared to EX, this is when t′(xi) 6= t(xi)
(or alternatively when h(xi) = t(xi)) and this occurs with probability η. (We note
in passing that by observing the �rst and third de�nition of erQ(h) it can be seen
that

Q(.) = P (.)(1− η) + (1− P (.))η).

We can now re-express the previous equation using

P{h(xi) 6= t(xi)} = erP (h) =⇒ P{h(xi) = t(xi)} = 1− erP (h),

so that,

erQ(h) = (1− η)erP (h) + η(1− erP (h)).

We then rearrange the equation so that we obtain the �nal solution

erQ(h) = erP (h)− ηerP (h) + η − ηerP (h),
= η + (1− 2η)erP (h). �

Let us now assume that erP (h) ≥ ε, where ε is some arbitrarily chosen small con-
stant. Using our previous Lemma, we can now write

erQ(h) = η + (1− 2η)erP (h),

erQ(h) ≥ η + (1− 2η)ε,

≥ η + s,

where we denote s = (1− 2η)ε for convenience. Hence we can also write

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
= Pm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

where P (a, b) denotes the joint probability of events a and b, under P . Now given
that we have Q(.) = η+(1−2η)P (.), then Q(.) is linear in η, given that 0 < η < 0.5.
Therefore, with respect to η, Q(.) is a minimum at η = 0 and Q(.) = P (.), and Q(.)
is a maximum at η = 0.5 where Q(.) = 0.5, ∀ P (.). In PAC learning, we assume
P (.) ≤ υ, where 0 < υ < 0.5, to ensure we have a good learning algorithm. Therefore
Q(.) ≥ P (.). We can therefore write

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
≤ Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.
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Using a result in Angluin and Laird [1], we can express an upper bound on
Pm(erP (h) > ε)

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+ Pm

(
erP (h) ≥ ε, erz(h) < η +

s

2

)
.

The upper bound on Pm(erP (h) > ε) can be explained as follows. The probability
Pm(erP (h) > ε) must be bounded above by (i) �rstly the probability of the sample

error of t′ for erz(t
′) ≥ η+

s

2
, plus also (ii) the probability that the hypothesis h has

error function erP (h) ≥ ε, when the sample error of h is erz(h) ≤ η +
s

2
. With this

upper bound, the right hand term can now be expressed in terms of Qm using our
previous expression; substituting this into the equation now gives us

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

We can re-express the second term on the right hand side. As we have the condition

erz(h) < η +
s

2
, or alternatively,

η > erz(h)−
s

2
,

therefore

erQ(h) ≥ η + s,

erQ(h) ≥ erz(h)−
s

2
+ s,

≥ erz(h) +
s

2
.

Therefore we now have

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
erQ(h) ≥ erz(h) +

s

2

)
,

≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
|erQ(h)− erz(h)| ≥

s

2

)
.

We now have a bound on the probability for Pm(erP (h) > ε). Therefore the proba-
bility that the error function will exceed ε for a hypothesis h, is bounded above by
the two probabilities on the right hand side. This is a useful inequality because it
gives us a means to quantify the accuracy or error of our hypothesis h and with a
degree of statistical con�dence. Such calculations are particularly important in �-
nancial forecasting applications, where one must understand statistical calculations
with a degree of con�dence.

The equation is also a useful relationship because it demonstrates that the prob-
ability of the error function exceeding ε is not only dependent on the sample error
erz(h) (for reasons mentioned before) but also on the level of noise itself. As we can
see that η and η related terms (such as s) are present in the equation, the impact of
noise will a�ect the probability of the error function increasing or decreasing. This
is a reassuring result as we would expect noise to a�ect the algorithm's accuracy
but also demonstrates the importance of noise in algorithmic performance.
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3.2 Application Of The Vapnik-Chervonenkis Inequality

Although we derived a bound on the probability of the error function, and this
provides a useful quantity in terms of the accuracy of our learning algorithm, it
does not tell us about the sample complexity or the training data length (m) re-
quired for PAC learning. The sample complexity is fundamental to machine learning
(and therefore �nancial forecasting applications involving machine learning) and has
signi�cant implications on various aspects of algorithms.

The Vapnik and Chervonenkis Inequality [19, 17] is an important Theorem in
machine learning (also see Theorem 4.3 from [2] for more information). The VC
(Vapnik and Chervonenkis) Inequality is frequently applied and utilised in machine
learning theory, and as it relates the last term in our equation to m, it can provide
useful information on m using our equation. The VC inequality as given in [2] is:

Lemma 2 (Vapnik and Chervonenkis Inequality) Suppose that H is a set of
{0, 1} - valued functions de�ned on a set X and that P is a probability on Z =
X×{0, 1}. For 0 < ε < 1, m a positive integer, with VC dimension d, then we have
for every h ∈ H

Pm{|erP (h)− erz(h)| ≥ ε} ≤ 4

(
2κm

d

)d
e

−ε2m
8 ,

where κ = e (that is the exponential constant (we use a di�erent letter for this rather
than e for clarity of derivation)), and d denotes the VC dimension of the hypothesis
set H (as de�ned earlier).

The VC inequality is important because it shows that provided our training
sample is large enough, then with a su�ciently high enough probability we can
conclude that for any h ∈ H, the sample error of h and the "true" error of h are
extremely close. Additionally, the inequality is bounded by a negative exponential
in m, implying that the boundary will rapidly approach 0 as m increases (assuming
the bracketed expression grows less quickly). Hence training data m is important
to reducing error in any learning algorithm. Such a result is important in ensuring
that one is able to obtain good estimations in forecasting applications such as in
�nancial risk management.

The VC Inequality is a particularly relevant Theorem to apply for �nancial fore-
casting applications because the VC inequality is independent of any probability
distribution. Hence the inequality is widely applicable to a wide range of forecast-
ing applications in �nance, where a diverse range of distributions exist. Hence we
would like our learning algorithms to be distribution independent, otherwise this
would impose a signi�cant constraint on forecasting applications.

We now apply the famous VC inequality to our derivation. Since s = (1−2η)ε⇒
ε > s⇒ e−ε < e−s. Therefore, using the VC inequality Lemma 2, then

Pm (|erP (h)− erz(h)| ≥ ε) ≤ 4

(
2κm

d

)d
e

−ε2m
8 ⇒

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

(s/2)2m
8 .
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If we now rewrite this inequality then our result becomes that ∃ h ∈ H

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

s2m
32 .

Now, let us assume that δ is bounded below by

4

(
2κm

d

)d
e−

s2m
32 ≤ δ

2
. (1)

If we rearrange this then we have

s2

4
≥ 8

m
ln

(
8

(
2κm
d

)d
δ

)
,

or alternatively rearranging we have

m ≥ 32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

))
. (2)

Using the VC inequality we have therefore now derived a bound on m. A bound on
m is typically more useful than our (previous) probability bound asm has signi�cant
implications on computation and forecasting.

The application of the VC inequality provides some interesting insights. Firstly,
our equation shows that the bound on m is dependent on the VC dimension d,
implying that the VC dimension is important to forecasting regardless of any dis-
tributions. Secondly, the inequality contains s and therefore we can see that as
noise increases the training data length required (m) will also increase. Hence algo-
rithms obtain PAC learning in the presence of noise only if the training data size m
increases.

3.3 Sample Complexity Bound In The Presence Of Noise

Our equation (2) provides an inequality on m, however it does not provide a par-
ticularly tractable or useful boundary on m. Firstly, the equation (2) contains m
on both sides of the inequality, hence we cannot easily understand how m behaves
in the equation. Secondly, whilst the inequality could be rearranged so that the m
terms are all grouped on one side of the inequality, we would also have to include
other terms on the side of the equation. In other words we cannot separate out
terms, and have m's boundary expressed in terms of other variables. Therefore we
cannot easily understand the boundary on m, particularly if we wish to understand
the impact on �nancial forecasting applications in risk management.

To obtain a more useful and tractable bound on m, particularly for the purposes
of �nancial risk management applications and prove our main Theorem, we can im-
prove further upon our sample length m bound. To achieve this we �rst prove our
proceeding Lemma.

Lemma 3 (Logarithmic Bound On m) The following logarithmic bound on m
exists:

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1.
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Proof: First let us consider the equation

f(y) = ey − y.

If we di�erentiate this we have

f ′(y) = ey − 1 =⇒ f ′(0) = 0.

We therefore have a minimum value at y = 0, with value f(0) = 1. Therefore

f(y) ≥ 1,

and therefore by substitution,

ey − y ≥ 1,

and so by rearrangement we have ∀y ∈ R

1 + y ≤ ey.

Let us now make the substitution y = αx−1, ∀x where x > 0, α is a constant where
α > 0. Therefore

1 + (αx− 1) ≤ eαx−1,

αx ≤ eαx−1.

We now take logarithms on both sides of the expression and rearrange:

ln(αx) ≤ αx− 1,

ln(α) + ln(x) ≤ αx− 1,

lnx ≤ αx− lnα− 1.

Let us now make the substitution x = m, and α =
s2

64d
. Therefore substituting into

our previous equation we now have

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1.

The logarithmic inequality in m can be applied to equation (2), so that we have

32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

) )
≤ m

2
+

32d

s2
ln

(
64d

s2

)
− 32d

s2

+
32d

s2
ln

(
2κ

d

)
+

32

s2
ln

(
8

δ

)
.

If we now simplify further and rearrange the right hand side, we have

32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

) )
≤ m

2
+

32d

s2
ln

(
128

s2

)
+

32

s2
ln

(
8

δ

)
. (3)
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Our previous inequality on m (equation (2)) now becomes using equation (3):

m ≥ m

2
+

32d

s2
ln

(
128

s2

)
+

32

s2
ln

(
8

δ

)
,

m

2
≥ 32

s2

(
d ln

(
128

s2

)
+ ln

(
8

δ

))
,

m ≥ 64

s2

(
d ln

(
128

s2

)
+ ln

(
8

δ

))
.

Therefore we �nally have
m ≥ m0,

where (recalling s = (1− 2η)ε), we have

m0 =
64

(1− 2η)2ε2

(
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

))
. �

This proves our main Theorem. This is a useful result as it tells us the minimum
sample length (m), in other words the sample complexity, that is required to achieve
learning within the framework of PAC learning. This is because it is well known that
the sample length signi�cantly impacts the practicability of any computation. In
particular a large m may mean large computation times, signi�cant computational
resources (that may render a method unworkable), and the data requirements. In
some cases the data required (due to m) may be too large.

4 Implications For Financial Risk Management

In this section we analyse the implications of our Theorem in terms of �nancial risk
management applications. In order to examine PAC learning for algorithms used
in �nancial risk management applications, we must �rst understand the ε and δ
speci�cations required. As ε denotes the error in our algorithm, ideally we want ε to
be as small as possible. Similarly, since δ denotes the percentage of bad hypotheses,
we want δ to be as small as possible. Consequently ε and δ represent a source of
model risk in our algorithms. In the �nancial sector risk is measured in terms of
VaR (Value at Risk) and this is typically set at the 99th percentile. Although there
is no fundamental theory for choosing the 99th percentile, we apply this percentile
choice to our model for ε and δ. Hence we set ε < 0.01 and δ < 0.01.

For δ, we notice both in AL and our Theorem that δ will have relatively little
impact on m, for the purposes of our study. In AL we have the term

ln

(
2|H|
δ

)
,

which can be written as
ln(2|H| − δ).
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Given that in PAC learning we have the condition that 0 < δ < 1, and for �nancial
risk management applications the type of algorithms we will typically employ will
have |H| >> 1, therefore |H| >> δ and the impact of δ can be ignored. Similarly,
in our Theorem in equation (2), we have the term

ln

(
8

δ

)
,

which can be written as
ln(8− δ).

Given that in PAC learning we have the condition that 0 < δ < 1, the previous term
can vary between 1.94 and 2.08 and so has relatively little impact on m. Although
we have reasoned (for our studies) that δ will have a relatively insigni�cant impact,
for the purposes of investigation we must assign a value to it.

4.1 PAC Learning: Big Data Implications

A key advantage of Theorem 2 is that it does not require |H|. Angluin and Laird's
Theorem requires |H|, hence their Theorem is only informative for �nite |H|. How-
ever for machine learning algorithms we typically have |H| = ∞ (see for example
[13]. Consequently, the requirement for �nite |H| is a highly restrictive assumption.
Moreover, in �nancial applications where there exist high complex and non-trivial
patterns and data sources, we would typically expect non-trivial algorithms to be
employed [6, 4]. Hence an assumption of �nite |H| in �nancial risk maangement
applications would be unrealistic.

On the other hand, Theorem 2 does not require |H|, hence we can determine
m or data bounds for a wider range of algorithms in �nance. Whilst Theorem 2
requires d (and d is related is to |H|), if |H| = ∞, this does not imply d = ∞.
Moreover for a wider class of algorithms it is more likely that |H| =∞ than d =∞,
hence our Theorem is more applicable to a wider range of algorithms than AL's
Theorem. A consequence of relaxing the �nite |H| assumption (using our Theorem)
is that we can calculate the data or m required for training.

Using our Theorem, we now calculate m (or the number of datapoints required)
for PAC learning. For the bene�t of clarity we set η = 0.00001 and d=2 and do
not vary them. We will investigate d and η later on, and note that varying either
parameters would not signi�cantly a�ect our results in this table in any case. We
calculate m for di�erent values of ε and δ, noting that their typical values for �nan-
cial risk management applications would be set to ε = 0.01 and δ = 0.01. We also
note that our method of choice of ε and δ is similar to the approach taken by AL in
their original paper.

Table 1 provides m according to our Theorem (mT ) for di�erent ε and δ values.
As we can see from the results from our Theorem, a key consequence is that m is
in the order of millions. We observe that we only require m to be in the order of
100, 000 if ε is of the order of 0.1 or above. However, as mentioned before, in �nancial
applications we require high accuracy and we would expect ε ≤ 0.01, therefore it is
unlikely we would require data of the order of 100, 000 datapoints.
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Table 1: Sample Size mT by Theorem 2 for di�erent δ and ε Values

ε δ mT

0.01 0.01 22,278,928
0.01 0.1 20,805,215
0.01 0.3 20,102,075
0.01 0.5 19,775,133
0.01 0.7 19,559,783
0.01 0.9 19,398,935
0.02 0.01 5,126,100
0.04 0.01 1,170,617
0.05 0.01 726,344
0.08 0.01 264,927
0.1 0.01 163,841

Figure 1: Graph of mT (y − axis) Against δ (x− axis) for ε = 0.01

The fact that m is of the order of millions has important implications. For
�nancial data, given that one stock price quote will typically consist of its price to
4-6 signi�cant �gures, we would therefore require approximately 1TB of data for
our learning algorithms [5, 8]. As mentioned before, there is currently no strict
de�nition of big data but 1TB has been a proposed de�nition. Consequently, our
Theorem implies that learning algorithms in the presence of noise require big data,
for the purposes of �nancial risk management applications.

The fact that we require big data is a revealing conclusion since this would not
be necessarily revealed using AL Theorem. If we calculate m for di�erent |H| values
we obtain the following results. We set ε = 0.01, δ = 0.01, and η = 0.1 to give more
realistic values.
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Figure 2: Graph of mT (y − axis) Against ε (x− axis) for δ = 0.01

Table 2 provides m according to Angluin and Laird's Theorem (mA) for di�erent
ε and δ values. As one can see from the results, m is in the range of 10, 000 - 100, 000
and so for �nancial applications AL does not imply big data is required. We expect
|H| to be large for �nancial applications, due to the sophisticated algorithms required
to analyse complex data in �nance. However, we can see that even as |H| increases
exponentially, its impact on datapoints required (m) does not increase signi�cantly
and hardly reaches above 1 million. We can understand this from the AL equation
whereby there is a logarithmic dependence on |H| in ln(2|H|/δ). Hence an increase
in |H| has little impact on m as we take its logarithmic value.

If we calculated the equivalent values for m using our Theorem (noting that
our Theorem does not depend on |H|) ), for all the di�erent values above we have
m = 35, 701, 927. In this calculation we set d = 2 so that our m value gives a lower
limit value. This is because we would expect d > 2 in real world applications and
this would increase m (this can be understood by examining the equation). Hence
we can see that while AL does not imply big data, our equation does conclude big
data is required.

A reason for the di�erence in data requirements between AL and our Theorem
is that AL assume �nite |H|, consequently this will limit the data required for PAC
learning. On the other hand, our equation does not impose this assumption and so
a larger set of datapoints is required for PAC learning.

The implication that we require big data for �nancial risk management applica-
tions is signi�cant. Firstly, given that risk management needs to be done frequently
(for example it is common to calculate VaR at least on a daily basis and on a short
time basis) implies that we not only require good learning algorithms but also fast
algorithms. Big data can require signi�cant time to process and if we do not have
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Table 2: Sample Size mA by Angluin and Laird's Theorem

|H| mA

5 215,867
10 237,528
100 309,484
1000 381,440
104 453,396
105 525,351
106 597,307
107 669,263
108 741,219
1010 885,130
1012 1,029,042

fast learning algorithms then the algorithms may take too long for �nancial risk
management applications.

Secondly, fast computation time for �nancial risk management applications deal-
ing with big data may imply that we would require higher end hardware to cope
with learning algorithms for �nancial applications. For instance we may require
computers with faster processors, we would also need to consider data storage issues
and data curation (organisation and collation) since 1TB is required just for learning
purposes in 1 round. If we had used AL equation then we would not be concerned
with the computational hardware requirements as they are quite modest, essentially
possible to run on a standard laptop.

Thirdly, from a �nancial data point of view, the fact that m is of the order of
millions means that �nancial forecasting may not be possible with learning algo-
rithms. This is because some �nancial assets and derivatives have limited history,
for instance they may have been trading for only a few years. On a daily basis,
this equates to approximately 750 datapoints, and so this would be far too low for
learning purposes.

4.2 Impact Of Big Data Quality (Noise)

In many real world applications noise, or corruption of data, can occur for a number
of reasons. In [21], they discuss that noise is unavoidable in a�ecting data. For ex-
ample, noise can occur from noise existing in any measurement or recording system,
distorting the original data. Sometimes data can be transformed (eg discretising
data to convert it into a binary form), which can lead to noise in the data in various
ways [22].

To understand the impact of noise on data requirements, we calculate m for
di�erent values of η, where we recall that 0 < η < 0.5. As before we set ε = 0.01,
δ = 0.01, and we set d = 2 to give a conservative value for m using our Theorem.
For comparison, we also calculate m using AL's Theorem and set |H| = 1012 to give
an optimistic calculation of m.

Table 3 gives m values under AL (mA) and our Theorem (mT ). In the �nal
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Table 3: Sample Size mA and mT By Noise

η mT mA Percentage increase (%)

10−5 22,278,928 658,613 3283
10−4 22,287,412 658,850 3283
0.01 23,250,422 685,742 3291
0.1 35,701,927 1,029,042 3369
0.15 47,328,722 1,344,055 3421
0.2 65,515,832 1,829,408 3481
0.25 96,209,771 2,634,347 3552
0.3 153,898,064 4,116,167 3639
0.35 281,779,514 7,317,631 3751
0.4 659,953,674 16,464,669 3908
0.45 2,817,260,376 65,858,677 4178
0.49 80,731,912,034 1,646,466,924 4803

Figure 3: Graph of Percentage Di�erence Between mT and mA (y − axis) Against
Noise (x− axis)

column we calculate the percentage increase between mT and mA. As we can see
from our results, the impact of noise is signi�cant. As we approach η = 0.4 − 0.45
the data required reaches the the billion datapoint range, hence the demands for big
data processing become even more important in for noisy data. However, we should
note that it in reality, it is unlikely that �nancial data will approach a level where
50% of data would be noise.

A key insight from our Theorem is that the impact of noise is far more signi�cant
than what we may have assumed under AL. Under AL, whilst we have a requirement
for data in the order of millions as η approaches 0.1, it still gives a bound for m
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in the millions range until η = 0.49 (and such a �gure is unrealistic with �nancial
data). We also note that this is an optimistic estimate from AL as we have set |H|
at a high value. However AL assume �nite |H|, which is unrealistic for �nancial
applications.

Our Theorem on the other hand does not assume �nite |H| and we have provided
a conservative estimate (given that d has been set to 2). The impact of noise increases
the data requirements from multi-millions to billions. Additionally, we see that the
incremental increase in m is far higher than what would see under AL's equation.
Given that noise is practically always present in real world applications, our Theorem
therefore provides an important insight into impact of noise.

We can understand the di�erence on noise dependence by examining the equa-
tions. In our Theorem we observe that m has a logarithmic dependence on the
reciprocal of 1 − 2η, consequently m can increase signi�cantly with small changes
in noise. In AL's Theorem on the other hand, m depends only on the reciprocal of
1− 2η. Consequently, the big data required in our Theorem will be more signi�cant
as η changes, compared to AL's Theorem.

The fact that noise has an impact on m is signi�cant in itself because we are
dealing with big data volumes. This is because noise is typically far more complex in
big data than in conventional data sizes. This occurs by the very nature of the fact
that a larger data set is more likely to contain more complex noise processes than in
shorter data sets, since larger datasets give more opportunity for more complex noise
processes to occur. Additionally, the quality of data captured in big data can vary
far more than in traditional data, with more gaps in data and potential distortions
in the data.

Consequently, the amount and type of noise that exists in big data tends to be
more complex, hence eliminating noise from big data is typically harder to achieve
than in smaller datasets. Moreover, it is well known that noise is �nancial data
is highly non-trivial, in fact many commentators have stated it is the noisiness of
�nancial data which prevents investors from pro�ting from stock patterns.

Another revealing insight from our Theorem is that noise (or equivalently data
quality) has a far more signi�cant impact on computational productivity than we
may have assumed. In other words, for �nancial applications, if we have high quality
data (with low noise η = 0.1) rather than low quality data (with high noise η =
0.4) then this can lead to a reduction of data by a factor of approximately 300.
Consequently (with all other factors equal) this would lead a processing speed of
300 times faster, which is a very signi�cant productivity gain.

This is an unexpected conclusion as the current 'trend' in big data analysis is
that more volume is generally better, however our analysis shows that it is data
quality that can be signi�cantly more e�ective in providing better learning out-
comes. Consequently, we suggest that big data applications should focus more on
data cleaning applications, to produce high quality data, rather than focussing on
higher volume data (which may be very noisy). The additional advantage of fo-
cussing on data cleaning methods is that such methods are normally cheap and easy
to implement, unlike other big data techniques e.g. some require expensive high
performance computers.
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Table 4: VC Dimension d and Sample Size mT

d mT

1 21,193,269
2 35,701,927
5 79,227,900
7 108,245,216
10 151,771,189
12 180,788,505
15 224,314,478
20 296,857,766
25 369,401,055
30 441,944,344

4.3 Impact of Algorithmic Capability

A new insight from our Theorem is the dependence of training data upon the VC
dimension d. The VC dimension d captures the capabilities of the algorithms used
for learning (in terms of general sophistication and �exibility). Given that �nancial
data is highly non-trivial and that incorrect modelling can lead to signi�cant losses to
�rms, we typically require highly sophisticated algorithms to ensure better �nancial
risk management.

In AL's Theorem, the VC dimension is not included in the equation. Hence AL's
Theorem does not tell us how d impacts data requirements. This in itself could be
more harmful to �nancial risk management than using more simplistic algorithmics,
since a sophisticated but badly trained (or calibrated) model can perform worse than
a simple but well calibrated model. In fact such issues have been cited as a major
cause of poor risk management. Moreover, it is well known in the �nancial sector
that sometimes many parsimonious models are preferred than more sophisticated
models due to the data requirements imposed by them.

To investigate the impact of d on the data requirements, we calculate m using
our Theorem. For the bene�t of clarity we set η = 0.1, ε = 0.01, δ = 0.01. We vary d
from 1 to 30 to see the impact of VC dimension upon data requirements. We chose
the upper limit at 30 similar to the range used in the analysis of VC dimension of
neural networks in [14]. Given that neural networks are used in �nancial applications
and represent the more sophisticated algorithms that can be employed in �nance,
the upper limit of 30 is a suitable value for our study.

For the bene�t of comparison we also calculate m using AL's Theorem for the
equivalent parameter values. To provide optimistic calculations under AL we set
|H| = 1012. For all the calculations above, AL data requirements would be 1,029,042
(for all values of d). Therefore,even for large |H| AL does not provide an adequate
estimate of data requirements.

An important insight from our Theorem is that the data required is signi�cantly
dependent on d. In AL, as AL assumes a �nite |H| (and a logarithmic relationship
with |H|) the impact of d upon |H| is not fully re�ected in the equation, even though
|H| and d are (non-trivially) related. However, with our results and Theorem we
can see that the data required grows proportionately with d, and d is important to
(big) data requirements.
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In fact, from our Theorem we can see that d directly impacts m, in that the
bound on m increases linearly with d. Hence d provides a direct "proxy" on the
data requirements. This is important to understand in �nancial risk management
applications because we typically require complex learning algorithms as �nancial
data has non-trivial relationships. However, if the more complex algorithms lead to
larger data requirements (through increasing d) then such algorithms may not be
preferable. Hence our Theorem tells that the linear relation betweenm and d implies
there is a direct trade-o� between algorithmic complexity and sample complexity.

5 Conclusion

In this paper we investigate PAC learning in the presence of noise. We derive a new
Theorem on the theoretical bound on the training data required for PAC learning,
in the presence of noise. We therefore extend the classic Theorem of Angluin and
Laird by including algorithms that do not require �nite |H|. Hence our Theorem is
more widely applicable.

This paper makes a number of contributions. Firstly, contrary to prior theoret-
ical analyses, we show that big data is necessary for training algorithms used for
realistic �nancial applications (where |H| = ∞). Secondly, we demonstrate that
noise has a substantial impact on the data size required for PAC learning. Con-
sequently, contrary to current big data trends, we demonstrate that high quality
data is more important than large volumes of data. Thirdly, we show that the level
of algorithmic sophistication (speci�cally the Vapnik�Chervonenkis dimension) is
not necessarily advantageous to learning algorithms, as it can impose high training
data requirements. Hence a trade-o� is required between the Vapnik�Chervonenkis
dimension and the data required for training.

In terms of future areas of work, we would like to develop our model for speci�c
computational applications eg. fraud detection, marketing applications, transport
applications etc.. Another area we would like to investigate is data cleaning meth-
ods to reduce noise, to improve learning performance for PAC learning algorithms.
Finally, we would like to develop our results further for the purposes of �nancial risk
management theory, such as tail risk theory. Our paper provides a more realistic
learning model, taking into account non-�nite |H| and noise. Therefore our paper
will be of interest to commercial industry, where PAC based machine learning and
noisy data have important applications.
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