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Abstract

High accuracy forecasts are essential to �nancial risk management, where

machine learning algorithms are frequently employed. We derive a new theo-

retical bound on the sample complexity for Probably Approximately Correct

(PAC) learning in the presence of noise, and does not require speci�cation of

the hypothesis set |H|. We demonstrate that for realistic �nancial applications

where |H| is typically in�nite. This is contrary to prior theoretical conclusions.
We further show that noise, which is a non-trivial component of big data, has a

dominating impact on the data size required for PAC learning. Consequently,

contrary to current big data trends, we argue that high quality data is more im-

portant than large volumes of data. This paper additionally demonstrates that

the level of algorithmic sophistication, speci�cally the Vapnik�Chervonenkis

(VC) dimension, needs to be traded-o� against data requirements to ensure

optimal algorithmic performance. Finally, our new Theorem can be applied

to a wider range of machine learning algorithms, as it does not impose �nite

|H| requirements. This paper contributes to theoretical and applied research

in the domain of machine learning for �nancial applications.

keywords: Big Data ; Risk Management ; Noisy Data ; Machine Learn-

ing ; VC Dimension ; Sample Complexity.

Mathematics Subject Classi�cation: 68Q32, 60J20, 68T05.

1



1 Introduction

Forecasting plays a fundamental role for �nancial risk management and is most
crucially concerned with random and unknown events that may have substantial
impacts upon a �rm or a �nancial system. Examples include stock market crashes
[16], the recent Global Financial Crisis with its prolonged e�ect, and exchange rate
risks resulting from political elections, etc [13]. Machine learning algorithms are
increasingly used to improve forecasts in �nancial risk management [17, 20, 9, 28].
Machine leaning provides a modelling and predicting methodology for data exhibit-
ing non-trivial properties that other modelling approaches are not be able to cope
with [27]. The ability of machine learning algorithms to create hypotheses from
data, rather than from a �xed set of instructions, o�ers high �exibility to compu-
tational modelling. A particularly advantageous aspect of machine learning is that
it can engage in iterative learning, where learning and modelling are adapted to
newly introduced data [4, 19]. This property alone has led to the development of
a wide range of important applications [3, 6], such as sophisticated fraud detection
and learning human behaviour in investing or purchasing decisions.

PAC learning [24, 25] provides a mathematical framework for machine learning.
PAC learning determines if a potential hypothesis, arising from a classi�er or oracle,
is deemed to have learnt the correct function that maps inputs to their associated
outputs. Valiant [23] also proved that a minimum bound exists for the (training)
data required to obtain a hypothesis within quanti�ed bounds of accuracy. PAC
learning is important to �nancial risk management as poor learning impacts the
accuracy of forecasts. Incapable modeling has been cited as one of the key causes
for the Global Financial Crisis. The issue of sample complexity is fundamental in
machine and PAC learning. It is still not completely known how many examples
(size of the training data) are needed for learning successfully in PAC learning [22].
This is concerned with the total number of training samples m required to achieve
su�cient learning accuracy, under the PAC learning framework and its respective
assumptions. The fundamental importance of sample complexity or m is due to
PAC learning theory implying that the probability and amount of accuracy possible
for a learning function is limited by m. If we wish to obtain better learning, then
this requires more training data m.

In addition to the impact of training data on the quality of learning, the training
data size m itself is important due to its impact on algorithmic implementation and
analysis. Firstly, a large m may be practically infeasible due to insu�cient data
availability. This can occur when a new �nancial product is created, as well as in
other �nancial applications associated with limited data available. Hence, m tells us
the feasibility of implementing some algorithms. Secondly, a largem value could lead
to large computational complexity, which requires powerful computational resources
to enable that su�cient data can be processed at a feasible timescale. Such issues
are important in many real world applications, where computational resources and
timescales are limited.

The majority of the work in machine learning is empirical research where the
performance of the algorithms are evaluated by their performance on the sample data
sets. Even though this is a useful simple approach for evaluating the individual
algorithm's performance, it is di�cult to compare di�erent algorithms rigorously.
The standard PAC framework o�ers a useful analytical concept for machine learning.
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Earlier theorems in the literature consider learning bounds for �nite hypothesis set
with noise free training data sets. However the theory associated currently with
this framework makes a number of restrictive assumptions that negate usefulness to
�nancial risk management applications. Firstly, some theorems typically require the
hypothesis set |H| to be �nite in order to obtain informative bounds on m. Most
machine learning algorithms, however, typically have |H| = ∞, particularly in the
case in �nancial risk management, where a wide and sophisticated range of machine
learning algorithms are employed to forecast future events. Therefore, in the case
of such applications, bounds on sample complexity are not realistic. Secondly, a
signi�cant volume of literature on learning theory assumes that little or no noise
exists [15, 7]. It is assumed that the input data to a classi�er is not corrupted by
any noise [8]. This is not a realistic assumption in �nancial applications, as variables
are frequently modelled with noisy components. Stock market prices are typically
modelled with a Brownian motion to incorporating noise.

The presence of noise impacts the learning ability of any algorithm, since it is
necessarily harder to learn any relationship between input and output data. A simple
analogy is identifying a line of best �t, which is more challenging with noisy data
compared to noiseless data. For reasons such as feasibility of algorithms and impact
on computational resources, it is important to understand the impact of noise upon
sample complexity. A key question concerns the extent to which algorithms' learning
ability is a�ected by noise, particularly for machine learning algorithms with in�nite
hypotheses sets. We would like to understand m for such algorithms.

This paper investigates PAC learning in the presence of noise. We focus on PAC
learning when a noisy oracle or classi�er exists and assigns, based on some noise
level, an incorrect output to an associated input. PAC learning in the presence of
noise has been addressed in a number of papers, due to the relevance of noise in
real world applications. In particular, Angluin and Laird's seminal paper [1] intro-
duces new results in the presence of (classi�cation) noise, however requires a �nite
|H| for their Theorem to be informative. Hence, their Theorem is not applicable
in �nancial risk management. Our paper makes the following contributions to the
body of research on PAC learning. Firstly, we derive a new bound on the sample
complexity, speci�cally the minimum sample length m, for a given level of learning
accuracy in the presence of noise classi�cation. We further extend and generalize
the results of Angluin and Laird's classic Theorem, because we do not require |H|
in order to determine m as sample-size bound. Secondly, using our bound we show
that, contrary to the classic Theorem [1] that assumes �nite |H|, machine learning
algorithms require very large values for m. Our results show that even for very low
levels of noise data, very large data sizes are required in order to produce su�ciently
accurate forecasts. Thirdly, this paper shows that the noise term signi�cantly im-
pacts the amount of data required for forecasting, and that the required big data
increases substantially with noise. We argue that data cleaning techniques, or con-
versely high-quality or low-noise data, can be more important than greater volumes
of big data. This conclusion does not align entirely with current trends in big data
research, which emphasize greater volume of data rather than higher-quality data
(and cleaning techniques).

The paper is organized as follows. The next section provides the background of
the problem in focus, and introduces preliminaries and notations for the paper. In
Section 3, we provide the main results and our contributions to PAC learning in the
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presence of classi�cation noise. The implications of our Theorem for �nancial risk
management applications are demonstrated in Section 4. Finally, Section 5 provides
conclusions and directions for further research.

2 Preliminaries

2.1 Introduction to Big Data and Machine Learning

Big data is currently receiving signi�cant attention, due to the proliferation of data in
the modern world and due to the technological advances in capturing large volumes
of data. It is posited that big data will lead to a paradigm shift in data analysis and
forecasting. There is no consensus de�nition for the term 'big data', but it typically
refers to sizes beyond the capabilities of traditional data-processing software, at
least 1TB or higher [12]. Big data brings new challenges to storage, analysis, and
research.

Machine learning concerns the design of algorithms for learning mapping func-
tions among data domains [11]. Typically, this involves some input data and its
associated output data, and the aim of a learning algorithm is identifying the func-
tion that relates inputs to outputs for all possible values. The algorithm is supplied
with some training data of length m and it is typically assumed that the data is
supplied with the correct output, also called classi�cation or label, for each input
data point. Let there exists some sample data consisting of a pair (xi, yi), where
xi is an input, i is an index, xi ∈ X, and X is the instance space. Also, yi is the
associated output, label, or classi�cation of xi in (xi, yi), where yi ∈ Y and Y is
the output set. Typically, the classi�cation is Boolean, yi ∈ {0, 1} ∀i, though it is
possible to specify the classi�cation as taking values in R, yi ∈ R ∀i. Since in this
work we concentrate on learning Boolean functions, in the remainder of this paper,
it is assume that the output set Y is Boolean unless stated otherwise.

The true relation between input and output data points is expressed with the
target function or target concept, denoted with t(.):

yi = t(xi),∀i. (1)

The target function is unknown and the aim is to discover or "learn" this function,
by employing a learning algorithm. Here, t(.) ∈ C, and C is a set of possible target
functions, where C is the concept class. Let there exists a learning algorithm L that
produces a function or hypothesis h(.), where h(.) ∈ H and H is the hypothesis set:
the set of all hypotheses that can be computed by the algorithm L). The ultimate
aim of L is to produce a hypothesis h(.) that is as close to t(.) as possible. Let
Z = X × Y , zi = (xi, yi) and zi ∈ Z, L receives a sequence of training data z of
length m:

z = (z1, z2, . . . , zm) = ((x1, y1), (x2, y2), . . . , (xm, ym)), (2)

where z ∈ Zm. The sample (x1, x2, . . . , xm) is drawn from Xm, and X is an asso-
ciated probability P (.), and so Xm is de�ned with a probability Pm(.) (see [2] for
more detail). After observing a su�ciently high number of training datapoints, the
learning algorithm L must output a hypothesis h estimating the target hypothesis
t. Therefore, the algorithm can be considered as a function mapping the set of all
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training samples Zm, for all m, onto the hypothesis set H:

L : ∪∞m=1Z
m → H. (3)

An error in hypothesis h(.) is de�ned as a misclassi�cation, that is

h(xi) 6= t(xi), xi ∈ X. (4)

We can consider an error in our hypothesis h(.) as a measure of the performance of
h. Errors tell us how accurate h(.) will be in correctly determining the outputs. We
de�ne erP (h) as the error function for h(.), under the probability measure P :

erP (h) = P{h(xi) 6= t(xi)}, xi ∈ X. (5)

The sample error of hypothesis h, denoted with erz(h), is de�ned as follows:

erz(h) =
1

m

i=m∑
i=1

1{h(xi)6=yi}, (6)

where 1{.} is the indicator function. The sample error is also a measure of perfor-
mance of the hypothesis h(.) in terms of error. The function erz(h) is simple to
determine and can be used as an approximate estimate of erP (h), which is akin to
the 'true' error. Note that erz(h) is an error measure over the (training) data z of
length m. Consequently, erz(h) as a measure of performance or error is dependent
upon m, and so does not measure the full error in the sense that it does not measure
the error over the entire data.

2.2 PAC Learning and Noise

In order to determine whether a potential hypothesis has learnt a function to a
su�cient standard, we require some criterion. Valiant introduced in his seminal
paper the concept of PAC learning [23], and de�ned a good hypothesis as having
a speci�cally low classi�cation error, for a speci�ed level of probability. A key
contribution of the PAC learning theory was the relation between machine learning
and computational complexity, essentially the intensiveness of the computational
resources required to implement a learning algorithm. Valiant proved that a good
hypothesis can exist, provided that the training data of length m is su�ciently
large. Hence, m and sample complexity become critical aspects in PAC learning.
PAC learning is a standard criterion for supervised learning, and has been a major
area of research in the past 30 years.

In PAC learning, a good hypothesis is de�ned as follows: there exists some chosen
(small) constant ε > 0, and a constant 0 < δ < 1 relating to probability, so that

P (erP (h) ≤ ε) > 1− δ. (7)

Valiant also proved that the minimum training sample length m required to obtain
a good hypothesis is given with

m ≥ 1

ε
log

(
|H|
δ

)
. (8)
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Notice that the minimum sample length value is a function of ε and δ, hence the
level and probability of accuracy required in our hypothesis is directly related to
the training data used. The learning algorithm L can produce hypotheses from
the hypothesis set H, and it is of interest to have some measure of the capability
of the set of functions in H. The capability is intuitively de�ned as meaning the
complexity, �exibility and general richness of functions. The Vapnik-Chervonenkis
(VC) dimension provides such a method for measuring capability and is denoted here
with V C(H). The VC dimension is also important because a larger VC dimension
implies that it is harder to learn all the correct functions possible. So more data
samples will be needed to identify the correct function.

So far we have assumed that a perfect labelling is received from the target func-
tion t(.), and so the training data provided to L is uncorrupted. In many real world
applications, however, the training data is corrupted and yi 6= t(xi) for some i val-
ues. This is known as classi�cation noise. To make this principle clear, we say that
there is either a normal oracle EX or a corrupted oracle EXη. The normal oracle
means that the training data is not corrupted: yi = t(xi), ∀i. For a corrupted oracle:
yi 6= t(xi) for some i values. The noise parameter η, where 0 < η < 1

2
, determines

the level of corruption. In the case of binomial probability: P (yi = t(xi)) = 1 − η,
and P (yi 6= t(xi)) = η. The noise η can be used to model any generic noise in
the data or our system. Given that training data has yi 6= t(xi) for some i, the
disagreement number is de�ned as the number of labelled instances (xi, yi) in the
training sample which are such that yi 6= t(xi). By de�nition, a corrupted Oracle
must have a disagreement number larger than 0.

In order for classi�cation methods to be e�ective, it is essential that data is cor-
rectly labelled. Zhu and Wu [29], as well as many other authors, have demonstrated
that noise can adversely a�ects the performance of classi�ers. In �nancial risk man-
agement applications, data or measurement systems may be corrupted by noise and
so the learning algorithms receive corrupted labels. It is also typically impractical,
too time consuming or uneconomical to obtain training data without noise. Hence,
it is of great practical importance to develop learning algorithms in the presence of
noise, and this has been of signi�cant interest to the machine learning community.
A number of such approaches have been proposed [15, 30]. Some of the methods are
based on designing learning algorithms that are naturally robust to noise, so that
the noise itself cannot a�ect the learning [7]. There exist practical algorithms that
are resistant to noise, however such algorithms are not always applicable to �nancial
forecasting and risk management. Furthermore, in cases where Pr(yi 6= t(xi)) = η,
the algorithm cannot simply be made insensitive to the noise. A second type of ap-
proaches to deal with noise and improve learning is to provide better-quality training
data. This is e�ectively achieved by applying a �lter to the data to remove or at-
tenuate noise. Noisy data is either eliminated from the training data, or assigned
a di�erent (and more correct) value. For �nancial risk management applications,
�lters are cheap and simple to implement, however a major disadvantage is that
�lters typically remove too much data prior to training [21, 14]. Thus, the reduction
in data-size can impair the learning algorithm's performance.

A more �exible approach is to understand learning algorithms and assume that
some data will be noisy, due to corruptly labelled data. In such a situation, it is
important to understand the sample complexity and related issues for reasons pre-
viously outlined, such as the impact on computational resources, data requirements
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and feasible computation times. The seminal paper on PAC learning under classi-
�cation noise [1] provides the following result that relates the noise parameter η to
the disagreement number, when the output labels are Boolean.

Theorem 1 (Angluin and Laird) Let ηb be a known upper bound on η, where
η ≤ ηb, and ηb <

1
2
. If we draw a sample of size m from EXη(t, P ) , where t ∈ H,

m is given by

m ≥ 2

ε2(1− 2ηb)2
ln

(
2|H|
δ

)
, (9)

and �nd any hypothesis h ∈ H with a minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ. (10)

Angluin and Laird's (AL) Theorem answers the fundamental question, under its
given assumptions about the sample complexity (size m), for a given ε and δ, in the
presence of a corrupted oracle EXη(t, P ). It is also worth pointing out that more
than one h can exist with a minimal disagreement number.

3 Main Results

The AL Theorem is important equation understanding learning under noise. How-
ever, it requires �nite |H| for the bound to be informative. For �nancial applications,
this is a signi�cant disadvantage, since there typically |H| = ∞. We alternatively
derive here a Theorem that provides a bound on m and does not require |H|. Our
main contribution is stated next, in terms of Theorem 2:

Theorem 2 Let d be the VC dimension of the hypothesis set H. Let us also assume
that the output set Y is Boolean valued, that is Y ∈ {0, 1}. For an oracle EXη(t, P ),
where η < 1

2
, if we draw a sample of size m, where

m ≥ 64

(1− 2η)2ε2

[
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

)]
, (11)

and we �nd any hypothesis h ∈ H with minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ. (12)

Theorem 2 provides a useful result, which gives the minimum sample length m,
for a given level of error, hence we have quanti�ed the sample complexity. Our
Theorem further involves the VC dimension d, rather than |H|, and so is more widely
applicable to �nancial risk applications. The following Sub-sections will discuss and
elaborate on each step in deriving our Theorem.

3.1 Probability Bounds for the Error Function
in the Presence of Noise

In this Sub-section, we derive in detail the PAC bound in the presence of noise, which
also helps with deriving the main new Theorem in the subsequent Sub-section. We
begin with deriving a relation between erQ(h) and erP (h), that is the error term for
the noisy (or corrupt) oracle in terms of the noiseless oracle.
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Lemma 1 Let Q in erQ(h) be the probability measure equivalent to the probabilities
obtained when the inputs in X are corrupted by noise. From the construction of the
probability measure Q, it is clear that ∀ h ∈ H,

erQ(h) = η + (1− 2η)erP (h). (13)

Proof:
Under a noiseless oracle EX, we have ∀xi ∈ X , erP (h) = P{h(xi) 6= t(xi)}. Under
a noisy oracle we receive noisy data, so that t(xi) :7→ t′(xi). Similarly, the error
function for EXη can be written as

erQ(h) = Q{h(xi) 6= t(xi)}. (14)

Alternatively, this can be written as

erQ(h) = P{h(xi) 6= t′(xi)}, (15)

and w can rewrite this equation as:

erQ(h) = P{h(xi) 6= t(xi)}(1− η) + P{h(xi) = t(xi)}η (16)

The last equation can be explained as follows. Here, erQ(h) can have errors, h(xi) 6=
t′(xi), due to 2 sources. Firstly, t(xi) = t′(xi) when the corrupt oracle EXη does
not alter the output compared to EX, however the hypothesis h itself is wrong.
Hence, h(xi) 6= t(xi) and this occurs with probability 1 − η. Secondly, when the
corrupt oracle EXη alters the output compared to EX, this is when t′(xi) 6= t(xi) or
alternatively when h(xi) = t(xi), and this occurs with probability η. A minor note
here is that observing the �rst and third de�nition of erQ(h), it is apparent that

Q(.) = P (.)(1− η) + (1− P (.))η). (17)

We can now re-write the equation for erQ(h) using

P{h(xi) 6= t(xi)} = erP (h) =⇒ P{h(xi) = t(xi)} = 1− erP (h), (18)

so that

erQ(h) = (1− η)erP (h) + η(1− erP (h)). (19)

and rearrange to obtain the �nal solution expressed as

erQ(h) = erP (h)− ηerP (h) + η − ηerP (h),
= η + (1− 2η)erP (h). �

Let us assume that erP (h) ≥ ε, where ε is some arbitrarily chosen small constant,
using our Lemma 1 to obtain

erQ(h) = η + (1− 2η)erP (h),

erQ(h) ≥ η + (1− 2η)ε,

≥ η + s,
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where s denotes s = (1− 2η)ε. Hence,

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
= Pm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
,

where P (a, b) denotes the joint probability of events a and b, under P . Now, given
that Q(.) = η + (1− 2η)P (.), then Q(.) is linear in η, 0 < η < 0.5. Therefore, with
respect to η, Q(.) is a minimum at η = 0 and Q(.) = P (.), and Q(.) is a maximum
at η = 0.5 where Q(.) = 0.5, ∀ P (.). In PAC learning, we assume P (.) ≤ υ, where
0 < υ < 0.5, to ensure a good learning algorithm. Therefore, Q(.) ≥ P (.), and we
can substitute with Qm in the last equation to obtain

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
≤ Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

We next express an upper bound on Pm(erP (h) > ε) as

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+ Pm

(
erP (h) ≥ ε, erz(h) < η +

s

2

)
,

Using a result in [1], this upper bound can be explained as follows. The probability
Pm(erP (h) > ε) must be bounded above by (i) �rstly the probability of the sample

error of t′ for erz(t
′) ≥ η+

s

2
, as well as by (ii) the probability that the hypothesis h

has error function erP (h) ≥ ε, when the sample error of h is erz(h) ≤ η +
s

2
. With

this upper bound, the right hand term is now expressed in terms of Qm, producing

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

The second term on the right hand side is next re-written, considering the condition

erz(h) < η +
s

2
or alternatively

η > erz(h)−
s

2
, (20)

Therefore,

erQ(h) ≥ η + s,

erQ(h) ≥ erz(h)−
s

2
+ s,

≥ erz(h) +
s

2
.

and

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
erQ(h) ≥ erz(h) +

s

2

)
,

≤ Pm
(
erz(t

′) ≥ η +
s

2

)
+Qm

(
|erQ(h)− erz(h)| ≥

s

2

)
,

which gives us a bound on the probability for Pm(erP (h) > ε). Thus, the probability
that the error function will exceed ε for a hypothesis h, is bounded above by the
two probabilities on the right hand side. This useful inequality gives us a means
to quantify the accuracy or error of our hypothesis h with a degree of statistical
con�dence. Such quanti�cation is important in �nancial forecasting applications.
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The inequality also demonstrates that the probability of the error function ex-
ceeding ε is not only dependent on the sample error erz(h) but also on the level of
noise itself. Both +η and −η related terms (such as s) are present in the inequal-
ity, and so noise impacs on the probability of the error function in both directions.
This is a reassuring result, as one would expect noise to a�ect algorithms' accuracy,
demonstrating the importance of noise for algorithmic performance.

3.2 Application of the Vapnik-Chervonenkis Inequality

In the previous Sub-section, we have derived a bound on the probability of the error
function, providing a useful quantity in terms of the accuracy of a learning algo-
rithm. However, this quantity does not tell us about sample complexity or training
data length (m) required for PAC learning. Sample complexity is fundamental to
machine learning, and to �nancial forecasting applications involving machine learn-
ing, and has signi�cant implications on various aspects of algorithms. The Vapnik
and Chervonenkis inequality [26, 24] is an important Theorem in machine learning
theory (see Theorem 4.3 in [2] for more information), and helps quantify sample
complexity. The VC inequality relates to the last term in our equation for m, and
provides useful information anout m. The VC inequality, as given in [2], is as follows:

Lemma 2 (Vapnik and Chervonenkis Inequality) Suppose that H is a set of
{0, 1} - valued functions de�ned on a set X and that P is a probability on Z =
X×{0, 1}. For 0 < ε < 1, m a positive integer, with VC dimension d, then we have
for every h ∈ H

Pm{|erP (h)− erz(h)| ≥ ε} ≤ 4

(
2κm

d

)d
e

−ε2m
8 , (21)

where κ = e is the exponential constant (we use a di�erent letter from e for clarity
in derivation), and d denotes the VC dimension of the hypothesis set H (as de�ned
earlier).

The VC inequality importantly shows that provided the training sample is large
enough, then with a su�ciently high probability we can conclude that for any h ∈ H
the sample error of h and the "true" error of h are extremely close. Additionally, the
inequality is bounded by a negative exponential in m, implying that the boundary
will rapidly approach 0 as m increases, assuming the bracketed expression grows
at a slower pace. Hence, training data m is important to reducing error in any
learning algorithm. This is a key result for ensuring that one is able to obtain good
estimations in forecasting applications. The VC Inequality is a particularly relevant
Theorem to �nancial forecasting applications, because this inequality is independent
of any probability distribution. Hence, the inequality is pertinent to a wide range of
forecasting applications in �nance, where a diverse range of distributions exists. We
would like our learning algorithms to be distribution independent, as dependency
would impose a signi�cant constraint on forecasting applications.

Next, we apply the VC inequality in derivating our new Theorem. Since s =
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(1− 2η)ε⇒ ε > s⇒ e−ε < e−s. Therefore, thenusing Lemma 2 produces

Pm (|erP (h)− erz(h)| ≥ ε) ≤ 4

(
2κm

d

)d
e

−ε2m
8 ⇒

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

(s/2)2m
8 .

If we rewrite the last inequality then then the result is that ∃ h ∈ H, such that

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

s2m
32 . (22)

Let us assume that δ is bounded below by

4

(
2κm

d

)d
e−

s2m
32 ≤ δ

2
, (23)

which in a rearranged version is

s2

4
≥ 8

m
ln

(
8

(
2κm
d

)d
δ

)
, (24)

or rearranging alternatively gives us

m ≥ 32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

))
. (25)

Using the VC inequality, we have therefore now derived a bound on m. A bound on
m is typically more useful than a probability bound, asm has signi�cant implications
on computation and forecasting.

The application of the VC inequality provides interesting insights. Firstly, our
equation shows that the bound on m is dependent on the VC dimension d, implying
that the VC dimension is important to forecasting regardless of any distributions.
Secondly, the inequality contains s in such a way that as noise increases, the required
training-data length (m) also increases. Therefore, algorithms achieve PAC learning
in the presence of noise only if the training-data size m increases.

3.3 Sample Complexity Bound in the Presence of Noise

Though our Eq. (25) provides an inequality for m, it does not provide a particularly
tractable boundary on m. Eq. (25) contains m on both sides of the inequality, and
one cannot easily understand the behaviour and impact of m. Further, it is not
possible to separate out terms, so that m's boundary is expressed in terms of other
variables. Therefore, the boundary on m is not easily tractable or understandable,
particularly if we wish to understand the impact on �nancial forecasting applications
in risk management. In order to obtain a more useful bound on m and to prove our
main Theorem, we �rst introduce and prove our Lemma 3.

Lemma 3 (Logarithmic Bound on m) The following logarithmic bound on m
exists:

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1. (26)
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Proof: First, let us consider the function

f(y) = ey − y,

and di�erentiate it to produce

f ′(y) = ey − 1 =⇒ f ′(0) = 0.

Therefore, the minimum value of f is at y = 0, with f(0) = 1, and for any other y,

f(y) ≥ 1.

Next, by substitution,

ey − y ≥ 1,

and by rearrangement, we have ∀y ∈ R,

1 + y ≤ ey.

Let us substitute y with y = αx − 1, ∀x where x > 0 and α is a positive constant
α > 0. Therefore,

1 + (αx− 1) ≤ eαx−1,

αx ≤ eαx−1.

Now take logarithms on both sides of the expression, and rearrange

ln(αx) ≤ αx− 1,

ln(α) + ln(x) ≤ αx− 1,

lnx ≤ αx− lnα− 1.

Next, we make the substitutions x = m and α =
s2

64d
, and produce

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1. (27)

This proves Lemma 3. �
Now we will prove our Theorem 2. The logarithmic inequality in m is applied to

Eq. (25), so that

32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

) )
≤ m

2
+

32d

s2
ln

(
64d

s2

)
− 32d

s2

+
32d

s2
ln

(
2κ

d

)
+

32

s2
ln

(
8

δ

)
.

If we now simplify further the right hand side, then

32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

) )
≤ m

2
+

32d

s2
ln

(
128

s2

)
+

32

s2
ln

(
8

δ
,

)
.(28)
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and using Eq. (3), the inequality on m from Eq.(25)) now becomes:

m ≥ m

2
+

32d

s2
ln

(
128

s2

)
+

32

s2
ln

(
8

δ

)
,

m

2
≥ 32

s2

(
d ln

(
128

s2

)
+ ln

(
8

δ

))
,

m ≥ 64

s2

(
d ln

(
128

s2

)
+ ln

(
8

δ

))
.

Finally, we derive
m ≥ m0,

where recalling that s = (1− 2η)ε), we obtain

m0 =
64

(1− 2η)2ε2

(
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

))
. �

This proves our main Theorem and tells us the minimum sample lengthm required to
achieve learning within the PAC framework. The sample length signi�cantly impacts
the practicability of any computation. A large m may mean large computation
times, signi�cant computational resources, and may render a method impractical or
unworkable.

4 Implications for Financial Risk Management

In this section we analyse the implications of our Theorem in terms of �nancial risk
management applications. In order to examine PAC learning for algorithms used
in such applications, we must �rst consider the requirements for ε and δ. They
both should be as small as possible, as ε denotes the error in the algorithm, and δ
denotes the percentage of bad hypotheses. Consequently, ε and δ represent a source
of model risk in our algorithms. In the �nancial sector, risk is typically measured
in terms of Value at Risk (VaR) and usually set at the 99th percentile. By analogy,
although there is no fundamental theory for choosing the 99th percentile, we apply
this percentile choice to our model for ε and δ and set ε < 0.01, δ < 0.01.

4.1 PAC Learning: Big Data Implications

Theorem 2 does not require |H|, which is a key advantage. The AL Theorem
requires |H|, and can only be informative for �nite |H|. However, machine learning
algorithms typically work with |H| = ∞ (see [18], for example). Consequently,
a the requirement for a �nite |H| is highly restrictive. In �nancial applications,
there further exist highly complex and non-trivial patterns and data sources, and
typically non-trivial algorithms are employed [6, 4]. An assumption of �nite |H|
is unrealistic for �nancial risk maangement applications. Furthermore, Theorem
2 does not require |H| but rather involves d. Although d is related is to |H|, a
condition |H| = ∞ does not imply d = ∞. For a wider class of algorithms, it is
more likely that |H| =∞ than d =∞. Hence, our Theorem is more applicable to a
wider range of algorithms than the AL Theorem, and provides us with the �exibility
to determine m or data bounds for a wider range of algorithms in �nance.
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Table 1: Sample size mT according to our Theorem, for di�erent δ and ε values

ε δ mT

0.01 0.01 22,278,928
0.01 0.1 20,805,215
0.01 0.3 20,102,075
0.01 0.5 19,775,133
0.01 0.7 19,559,783
0.01 0.9 19,398,935
0.02 0.01 5,126,100
0.04 0.01 1,170,617
0.05 0.01 726,344
0.08 0.01 264,927
0.1 0.01 163,841

Using our Theorem, we now calculate m, or the number of datapoints required,
for PAC learning. For the bene�t of clarity, we set η = 0.00001 and d=2, and do
not vary them. We will investigate d and η later on, and note that varying either
parameters would not signi�cantly a�ect the results in Table 1. The calculation of
m is perfomred for di�erent values of ε and δ, noting that their typical values for
�nancial risk management applications would be set to ε = 0.01 and δ = 0.01.(Note
that AL also assumed values for ε and δ in [1].) Table 1 provides the values of m,
according Theorem (mT ), for di�erent vales of ε and δ, and it is observed that mT is
in the order of millions. We also observe that mT is in the order of 100, 000 only if ε
is of the order of 0.1 or above. However, �nancial applications require high accuracy
and expect ε ≤ 0.01.

Figure 1: Graph of mT (y − axis) against δ (x− axis) for ε = 0.01
.

The fact that mT is in the order of millions has important implications. For
�nancial data for example, given that a stock price is typically quoted to 4-6 signi�-
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Figure 2: Graph of mT (y − axis) against ε (x− axis) for δ = 0.01
.

cant �gures, the learning algorithms will require approximately 1TB of data [5, 10].
As mentioned earlier, there is currently no strict de�nition of big data but 1TB
has been a proposed de�nition. Therefore, our Theorem implies that learning algo-
rithms in the presence of noise require big data, for the purposes of �nancial risk
management applications. This big data requirement is a revealing conclusion, since
such conclusion is not necessarily revealed using the AL Theorem. Table 2 provides
m according to the AL Theorem (mA), for di�erent ε and δ values. We set ε = 0.01,
δ = 0.01, and η = 0.1, to give more realistic values. The results show that mA is in
the range of 10, 000− 100, 000, and so AL does not imply that big data is required
for �nancial applications. We expect |H| to be large for �nancial applications, due
to the sophisticated algorithms required to analyse complex data. However, Table 2
shows that even when |H| increases exponentially, its impact on datapoints required
(mA), according to AL, does not increase signi�cantly and hardly reaches 1 million.
This is due to the logarithmic dependence on |H| in ln(2|H|/δ) in the AL inequality,
which leads to |H| having little impact on mA.

If m is calculated using our Theorem, which does not depend on |H|, then the
equivalent value of mT for all di�erent values of mA in Table 2 is mT = 35, 701, 927.
In this calculation, we set d = 2 so that mT gets a lower limit value. In real world
applications, d>2 and mT increases further (this can be understood by examining
the equation). In summary, AL does not imply big data and our Theorem does
conclude big data is required. The implication that big data is required for �nancial
risk management applications is signi�cant. In such applications, risk may be re-
evaluated frequently, i.e. calculating VaR on a daily basis, which implies that not
only good-learning algorithms but also fast algorithms are required. Big data can
require signi�cant processing time and so fast learning algorithms are a must in
�nance. A second implication is that fast computation time will require higher-
end hardware to cope with learning algorithms for big data on �nancial risks. Data
storage issues and data curation (organisation and collation) also need consideration
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Table 2: Sample size mA according to Angluin and Laird's Theorem

|H| mA

5 215,867
10 237,528
100 309,484
1000 381,440
104 453,396
105 525,351
106 597,307
107 669,263
108 741,219
1010 885,130
1012 1,029,042

when 1TB is required just for learning purposes in 1 round. A third implication of
our Theorem is that some types of �nancial forecasting may not be possible with
learning algorithms, due to limited historic data-points.

4.2 Impact of Big Data Quality (Noise)

Noise or corruption of data can occur for a number of reasons in real world applica-
tions. A conclusion in [29] is that noise is unavoidable in a�ecting data. Noise exists
in any measurement or recording system, distorting the original data. Sometimes,
data can be transformed, e.g. discretising data or converting it into a binary form,
which can lead to noise in the data in various ways [31]. To understand the im-
pact of noise on data requirements, we calculate mT for di�erent values of η, where
we recall that 0 < η < 0.5. As before, the other parameters are set to ε = 0.01,
δ = 0.01, and d = 2. For comparison, we also calculate mA and set |H| = 1012 to
give an optimistic calculation of mA. Table 3 gives the m values under AL (mA)
and under our Theorem (mT ), with the �nal column giving the percentage increase.
The results show that the impact of noise is signi�cant. Approaching η = 0.4− 0.45
leads to the required data reaching the billion datapoint range, hence the demands
for big data processing become even more important for noisy data. However, it
should be noted that it is unlikely �nancial data will approach a level of 50% noise.

An insight from our Theorem is that the impact of noise is far more signi�cant
than what may be assumed under AL. Under AL, though the requirement for data
is in the order of millions when η approaches 0.1, the bound for mA is still in the
millions range until η = 0.49, and such a �gure is unrealistic with �nancial data. We
also note that this is an optimistic estimate from AL, as we have set |H| at a high
value. However AL assume �nite |H|, which is unrealistic for �nancial applications.
On the other hand, our Theorem does not assume �nite |H| and we have provided
a conservative estimate by setting d to 2. The impact of noise increases the data
requirements from multi-millions to billions, and the incremental increase in mT

is far higher than in mT . The di�erence on noise dependence by examining the
equations. This is due to mT having a logarithmic dependence on the reciprocal of
1 − 2η in our Theorem, and mA depending only on the reciprocal of 1 − 2η in the
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Table 3: Sample sizes mA and mT for di�erent levels of noise

η mT mA Percentage increase (%)

10−5 22,278,928 658,613 3283
10−4 22,287,412 658,850 3283
0.01 23,250,422 685,742 3291
0.1 35,701,927 1,029,042 3369
0.15 47,328,722 1,344,055 3421
0.2 65,515,832 1,829,408 3481
0.25 96,209,771 2,634,347 3552
0.3 153,898,064 4,116,167 3639
0.35 281,779,514 7,317,631 3751
0.4 659,953,674 16,464,669 3908
0.45 2,817,260,376 65,858,677 4178
0.49 80,731,912,034 1,646,466,924 4803

Figure 3: Graph of percentage di�erence between mT and mA (y − axis) against
noise (x− axis)

AL Theorem.
Given that noise is practically always present in real world applications, our

Theorem provides an insight into impact of noise. This is particularly important
when dealing with big data volumes, because noise is typically far more complex in
big data than in conventional data sizes. A larger dataset is more likely to contain
more complex noise processes than shorter datasets. Additionally, the quality of
data captured in big data can vary far more than in traditional data, with more
gaps and potential distortions in the data. Hence, eliminating noise from big data
is typically harder to achieve than in smaller datasets. It is further well known
that noise in �nancial data is highly non-trivial; in fact, many analysts have stated
it is the noisiness of �nancial data that prevents identifying their patterns, and so
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prevents managing risk better.
Another insight from our Theorem is that noise, or equivalently data quality, can

have a more signi�cant impact on computational productivity than assumed before
by other authors. In other words, having high-quality data (η = 0.1) rather than
low-quality data (η = 0.4) leads to a reduction of data by a factor of approximately
20. With all other factors equal, this would lead to a processing speed of 20 times
faster and a signi�cant productivity gain. This is an important conclusion as the
current trend in big data analysis is that higher volume is generally better. Our
analysis shows that data quality is rather signi�cantly e�ective in providing for better
learning outcomes. Consequently, we suggest that big data applications should focus
more on data cleaning applications and producing high-quality data, rather than
focussing on higher-volume data that can be very noisy. The additional advantage
of focussing on data cleaning methods is that they are normally cheap and easy to
implement, unlike other big data techniques.

4.3 Impact of Algorithmic Capability

The dependence of training data upon the VC dimension d, is also a new insight
from our Theorem. The VC dimension d captures the capabilities of the algorithms
used for learning, in terms of general sophistication and �exibility. Given that �nan-
cial data is non-trivial and that incorrect modelling can lead to signi�cant �nancial
losses, highly sophisticated algorithms are typically required to ensure better �nan-
cial risk management. on the other hand, the AL Theorem does not include the
VC dimension and does not tell us how d impacts data requirements. This in itself
could be more harmful to �nancial risk management than using more simplistic al-
gorithmics, since a sophisticated but badly trained or calibrated model can perform
worse than a simple but well calibrated model. In fact, such issues have been cited
as a major cause of poor risk management. It is also well known in the �nancial
sector that many parsimonious models are preferred to more sophisticated models,
due to the data requirements imposed by them.

To investigate the impact of d on data requirements, we calculate mT next using
our Theorem, for di�erent values of d. For the bene�t of clarity, we set η = 0.1, ε =
0.01, δ = 0.01, and then vary d from 1 to 30 to observe the impact of VC dimension
upon data requirements. We chose the upper limit at 30, similar to the range used in
the analysis of VC dimension of neural networks in [19]. Given that neural networks
are used in �nancial applications and represent more sophisticated algorithms, the
upper limit of 30 is a suitable value for our study. The results are presented in Table
4, and show that the data required grows proportionately with d. Therefore, d is
important in big data. For the bene�t of comparison, we also calculate mA using
the AL Theorem for the equivalent parameter values, and set |H| = 1012 to provide
optimistic calculations. For all values of d in Table 4, the AL data requirement
is mA = 1, 029, 042. Therefore, even for large |H|, the AL does not provide an
adequate estimate of data requirements. An important insight from our Theorem is
that the data required is signi�cantly dependent on d.

Furthermore, our Theorem reveals that d provides a direct "proxy" on the data
requirements, as mTm increases linearly with d. This is important in �nancial
risk applications, because non-trivial relationships in �nancial data call for complex
learning algorithms but the more complex algorithms lead to larger data require-
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Table 4: VC dimension d and sample size mT

d mT

1 21,193,269
2 35,701,927
5 79,227,900
7 108,245,216
10 151,771,189
12 180,788,505
15 224,314,478
20 296,857,766
25 369,401,055
30 441,944,344

ments (through increasing d) and may not be preferable. Hence, our Theorem tells
that the linear relation between mT and d implies there is a direct trade-o� between
algorithmic complexity and sample complexity.

5 Conclusion

In this paper we investigate Probably Approximate Correct learning in the presence
of noise. We derive new theoretical results in relation to big data Probably Approx-
imate Correct learning. In particular, we derive a new a Theorem on the theoretical
bounds on the training data required for Probably Approximate learning, in the
presence of noise. A direct consequence of this derivation is that we extend the
classic Theorem of Angluin and Laird, by including algorithms that do not require
�nite |H|. Hence our Theorem is more widely applicable.

This paper makes the following contributions. Firstly, contrary to prior theo-
retical analyses, we show that big data is necessary for training algorithms used for
realistic �nancial applications where |H| =∞. Secondly, we demonstrate that noise
has a more substantial impact on the data size required for PAC learning. Con-
sequently, contrary to current big data trends, we demonstrate that higher quality
data can be more important than larger volumes of data. Thirdly, we show that the
level of algorithmic sophistication, speci�cally the Vapnik�Chervonenkis dimension,
is not necessarily advantageous to learning algorithms, as it can impose high training
data requirements. Hence, a trade-o� is required between the Vapnik�Chervonenkis
dimension and the data required for training.

In terms of future areas of work, we would like to develop our model for speci�c
computational applications eg. fraud detection, marketing applications, transporta-
tion applications etc.. Whilst computational methods have applications for a range
of areas, many computational methods can be optimised, in terms of processing
speed and quality of results, by adapting their methods for speci�c tasks. This can
potentially produce a new line of research with high impact.

Another potential area of future research that we would like to investigate is
methods with respect to data �ltering, to reduce noise in any given set of data. As
mentioned and analysed in our paper, the issue of noise (especially in the context of
big data) is a key topic, and the nature of the noise itself can fundamentally di�er

19



compared to small sample datasets. Moreover, the removal of noise from data is an
important factor in improving the learning performance for Probably Approximate
Learning algorithms.

Finally, we would like to develop our results further for the purposes of �nancial
risk management. For example, we would like to apply our results to Extreme Value
Theory, and examine the impact of Probably Approximate Correct learning theory
upon modelling extreme value events. Given that extreme events, such as the Global
Financial Crisis, have a signi�cant impact on economic, political and social issues,
this would also be a productive research area. Our paper provides a more realistic
learning model, taking into account non-�nite |H| and noise. Therefore our paper
will be of interest to commercial industry, where PAC based machine learning and
noisy data have important applications.
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