

Architecture and morphodynamics of subcritical sediment waves in an ancient channel-lobe transition zone

Journal:	Sedimentology
Manuscript ID	SED-2016-OM-260.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Hofstra, Menno; University of Leeds, School of Earth and Environment Peakall, Jeff; University of Leeds, Earth and Environment Hodgson, David; University of Leeds, Stevenson, Christopher; University of Liverpool, School of Earth, Ocean and Ecological Sciences
Keywords:	Karoo Basin, base-of-slope, channel-lobe transition, facies characteristics, process record, subcritical, sediment wave

SCHOLARONE[™] Manuscripts

2		
3	1	Architecture and morphodynamics of subcritical sediment waves in an ancient
4		
5	C	channel John transition zone
6	2	
/		
8	3	
9 10	Ū	
10		
12	4	
13		
14	5	M. Hofstra ¹⁺ , J. Peakall ¹ , D.M. Hodgson ¹ , C.J. Stevenson ²
15	-	
16	0	
1/	0	"Stratigraphy Group, School of Earth and Environment, University of Leeds, Leeds, LS2 9J1, UK
18		
20	7	² School of Earth, Ocean and Ecological Sciences, University of Liverpool, L69 3GP, UK
21		
22	8	
23	Ū	
24		
25	9	<pre>tcorresponding author [Email: menno.hofstra.1@gmail.com]</pre>
26		
2/	10	
20 29		
30		
31	11	Running title: Subcritical sediment wave architecture in a CLTZ
32		
33	12	Keywords: channel-lobe transition: subcritical: sediment wave: base-of-slope: Karoo Basin:
34		-,,,,,,,,
35	13	facies characteristics: process record
30 27		
38		
39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50		
51		
52 52		
55 54		
55		
56		
57		
58		
59		
60		

14 ABSTRACT

In modern systems, submarine channel-lobe transition zones (CLTZs) show a well-documented assemblage of depositional and erosional bedforms. In contrast, the stratigraphic record of CLTZs is poorly constrained, because preservation potential is low, and criteria have not been established to identify depositional bedforms in these settings. Several locations from an exhumed fine-grained base-of-slope system (Unit B, Laingsburg depocentre, Karoo Basin) show exceptional preservation of sandstone beds with distinctive morphologies and internal facies distributions. The regional stratigraphy, lack of a basal confining surface, wave-like morphology in dip section, size, and facies characteristics support an interpretation of subcritical sediment waves within a CLTZ setting. Some sediment waves show steep (10-25°) unevenly spaced (10-100 m) internal truncation surfaces that are dominantly upstream-facing, which suggests significant spatio-temporal fluctuations in flow character. Their architecture indicates individual sediment wave beds accrete upstream, in which each swell initiates individually. Lateral switching of the flow core is invoked to explain the sporadic upstream-facing truncation surfaces, and complex facies distributions vertically within each sediment wave. Variations in bedform character are related to the axial to marginal positions within a CLTZ. The depositional processes documented do not correspond with known bedform development under supercritical conditions. The proposed process model departs from established mechanisms of sediment wave formation by emphasising the evidence for subcritical rather than supercritical conditions, and highlights the significance of lateral and temporal variability in flow dynamics and resulting depositional architecture.

34 INTRODUCTION

Bedforms are rhythmic features that develop at the interface of fluid flow and a moveable bed (e.g.
Southard, 1991; Van der Mark *et al.*, 2008; Baas *et al.*, 2016). Sediment waves are a type of long
wavelength (tens of ms to kms) depositional bedform that vary in grain size from mud- to graveldominated, linked to their depositional setting (Fig. 1) (Wynn & Stow, 2002). They have been

Sedimentology

39	identified in numerous modern channel-lobe transition zones (CLTZs) (Normark & Dickson, 1976;
40	Damuth, 1979; Lonsdale & Hollister, 1979; Normark et al., 1980; Piper et al., 1985; Malinverno et al.,
41	1988; Praeg & Schafer, 1989; Howe, 1996; Kidd <i>et al.</i> , 1998; Morris <i>et al.</i> , 1998; McHugh & Ryan,
42	2000; Migeon <i>et al.</i> , 2001; Normark <i>et al.</i> , 2002; Wynn & Stow, 2002; Wynn <i>et al.</i> , 2002a,b; Heiniö &
43	Davies, 2009), where they form part of a distinctive assemblage of depositional and erosional
44	bedforms (Mutti & Normark, 1987, 1991; Normark & Piper, 1991; Palanques et al., 1995; Morris et
45	al., 1998; Wynn et al., 2002a,b; Macdonald et al., 2011). However, the detailed sedimentological and
46	stratigraphic record of sediment waves from CLTZ and channel-mouth settings is not widely
47	documented.
48	Vicente Bravo & Robles (1995) described hummock-like and wave-like depositional bedforms from
49	the Albian Black Flysch, NE Spain. The hummock-like bedforms (5 to 40 m wavelength and a few
50	decimetres to 1.5 m high) were interpreted to be genetically related to local scours. The wave-like
51	bedforms (5 and 30 m wavelength and a few cm to 0.7 m high) seen in longitudinal sections exhibit
52	symmetric to slightly asymmetric gravel-rich bedforms. Ponce & Carmona (2011) identified sandy
53	conglomeratic sediment waves with amplitudes up to 5 m and wavelengths ranging between 10 to
54	40 m at the northeast Atlantic coast of Tierra del Fuego, Argentina. Ito et al. (2014) described
55	medium- to very coarse-grained sandstone tractional structures from a Pleistocene canyon-mouth
56	setting within the Boso Peninsula, Japan, with wavelengths up to 40 m and crest heights up to 2 m.
57	These coarse-grained examples from Japan, Argentina, and Spain lack detailed internal facies
58	descriptions and structure. Data on long wavelength finer-grained sediment waves in the rock record
59	are largely missing (Fig. 1), ascribed to their wavelength and poor exposure potential (Piper $\&$
60	Kontopoulos, 1994). Modern examples that are dominantly fine grained (silt to mud) and show
61	substantial wavelengths (Fig. 1) are typically interpreted as large supercritical bedforms (Symonds et
62	al., 2016), similar to cyclic steps. This is due to observations from geophysical data of their short lee-
63	sides and long depositional stoss-sides, and apparent single bedform structures with upstream
64	sediment wave migration as a sinusoidal wave (Cartigny et al., 2014; Hughes-Clark, 2016; Covault et

al., 2017). Indeed, upstream migration of sediment waves is taken as an indicator of bedform evolution under supercritical flow conditions (Symonds et al., 2016). However, the processes responsible for the inception and morphological evolution of sediment waves within CLTZ settings remain poorly constrained, and high-resolution observations of their sedimentology are needed to explore the balance of subcritical and supercritical processes in their inception, evolution, and depositional record. Here, we aim to improve understanding of sediment wave development in CLTZs through studying multiple stratigraphic sections from well-constrained base-of-slope systems (Unit B, Laingsburg depocentre, Karoo Basin) where distinctive fine to very-fine-grained sandstone depositional bedforms with complex architecture, facies and stacking patterns are exposed. The objectives are: 1) to document and interpret the depositional architecture and facies patterns of these sandstone bedforms, 2) to discuss the topographic controls on their inception, 3) to propose a process model

for sediment wave development under subcritical rather than supercritical flow conditions, and, 4) toconsider the controls on the preservation potential of sediment wave fields in channel-lobe

79 transition zones.

REGIONAL SETTING

The southwest Karoo Basin is subdivided into the Laingsburg and the Tanqua depocentres. The Ecca Group comprises a ~2 km-thick shallowing-upward succession from distal basin-floor through submarine slope to shelf-edge and shelf deltaic settings (Wickens, 1994; Flint et al., 2011). The deep-water deposits of the Karoo Basin have a narrow grain size range from clay to upper fine sand. Within the Laingsburg depocentre (Figs 2A and 3A), Unit B, the focus of this study, is stratigraphically positioned between underlying proximal basin-floor fan deposits of Unit A (e.g. Sixsmith et al., 2004; Prélat & Hodgson, 2013) and the overlying channelised slope deposits of the Fort Brown Formation (Unit C-G; e.g. Hodgson et al., 2011; Van der Merwe et al., 2014). Unit B comprises a 200 m thick section at the top of the Laingsburg Formation (Grecula et al., 2003; Flint et al., 2011; Brunt et al.,

90	2013), and is subdivided in three subunits, B1, B2 and B3 (Fig. 3A; Flint et al., 2011; Brunt et al.,
91	2013). Unit B is well-exposed for more than 350 km ² providing both down dip and across strike
92	control (Brunt et al., 2013) with over 15 km long exposed sections along the limbs of the Baviaans
93	and Zoutkloof synclines and Faberskraal anticline (Fig. 2A). The study area is situated between well-
94	defined up-dip slope channels and down-dip basin-floor lobes (Figs 3B and 3C; Grecula et al., 2003;
95	Pringle et al., 2010; Brunt et al., 2013). Therefore, the palaeogeographic setting is interpreted to be a
96	base-of-slope setting, where CLTZ-elements are more likely to be preserved (Figs 3B and 3C).

97 METHODOLOGY AND DATASET

Two areas of Unit B exposure were studied in detail: one located in the southern limb of the Zoutkloof Syncline (Doornkloof) and one located in the southern limb of the Baviaans Syncline (Old Railway) (Fig. 2). Stratigraphic correlations using closely-spaced sedimentary logs (m's to tens of m's), photomontages, and walking out key surfaces and individual beds with a handheld GPS enabled construction of architectural panels. Where the exposure allowed collection of sub-metre-scale sedimentary logs individual beds were correlated over multiple kilometres. Within the Doornkloof area (Fig. 2B) 11 long (>20-200 m) sedimentary logs, supported by 31 short (<5 m) detailed sedimentary logs, were collected along a 2 km long E-W section. Particular emphasis was placed on bed-scale changes in facies to construct detailed correlation panels. Additionally, a research borehole drilled 330 m north of the studied outcrop section (DK01; 460983-6331775 UTM; Hofstra, 2016) intersected the lower 92 m of Unit B (Figs 2A and 2B). Within the Old Railway area (Fig. 2C), eight short and closely spaced (5-20 m distance) detailed sedimentary sections were collected. Palaeocurrents were collected from ripple-laminated bed tops and re-orientated, with 117 palaeoflow measurements at Doornkloof and 87 from the Old Railway area. FACIES AND ARCHITECTURE Both study areas contain sandstone-prone packages that comprise bedforms with substantial

114 downdip thickness and facies changes without evidence for confinement by an incision surface. The

2	115	rate of thickness change and the range of sedimentary facies are markedly different from that
4 5	116	documented in basin-floor lobes (e.g. Prélat & Hodgson, 2013). Bed thicknesses change (metre scale)
0 7 8	117	in a downstream-orientated direction on short spatial-scales (tens of metres), compared to lateral
9 10	118	continuous bed thickness (hundreds of metres) known from lobes (e.g. Prélat et al., 2010). Similarly,
11 12	119	facies change markedly over metre scales, in contrast to lobes where facies changes are transitional
13 14	120	over hundreds of metres (e.g. Prélat et al., 2009). Depositional bedforms in both study areas are
15 16	121	present within a sandstone-prone (>90%) package of dominantly medium-bedded structured
17 18	122	sandstones, interbedded with thin-bedded and planar-laminated siltstones. The grain size range is
19 20	123	narrow, from siltstone to fine-grained sandstone, with a dominance of very-fine-grained sandstone.
21 22 23	124	Facies characteristics
24 25 26	125	The sedimentary facies within the bedforms are subdivided into four types: structureless (F1),
20 27 28	126	banded to planar-laminated (F2), small-scale bedform structures (F3), and mudstone clast
29 30	127	conglomerates (F4).
31 32	128	F1: Structureless sandstones show minimal variation or internal structure and are uniform in
33 34 25	129	grainsize (fine-grained sandstone). Locally, they may contain minor amounts of dispersed sub-
35 36 37	130	angular mudstone clasts (1-10 cm in diameter) and flame structures at bed bases.
38 39	131	Interpretation: These sandstones are interpreted as rapid fallout deposits from sand rich high-
40 41	132	density turbidity currents (Kneller & Branney, 1995; Stow & Johansson, 2000; Talling et al., 2012)
42 43	133	with mudstone clasts representing traction-transported bedload. Flame structures at the bases of
44 45 46	134	structureless beds are associated with syn-depositional dewatering (Stow & Johansson, 2000).
47 48	135	F2: Banded and planar-laminated sandstones show large variations in character. The differentiation
49 50	136	between planar-laminated and banded facies is based on the thickness and character of the laminae
51 52	137	or bands. In banded sandstones, the bands are 0.5-3 cm thick and defined by alternations of clean
53 54	138	sand bands, and dirty sand bands rich in mudstone clasts and/or plant fragments. Planar-laminations
55 56 57 58	139	show <1 cm thick laminae that are defined by clear sand-to-silt grain-size changes. Furthermore,

Page 7 of 121

Sedimentology

2 3	140	bands can be wavy or convolute, show substantial spatial thickness variations (<1 cm) at small (<1 m)
4 5	141	spatial scales, and exhibit subtle truncation at the bases of darker bands. Banded facies are
7 8	142	mudstone clast-rich where close to underlying mudstone clast conglomerates. In some places,
9 10	143	banded sandstone beds can be traced upstream into mudstone clast conglomerates. Where this
11 12 13	144	facies is observed, bed thicknesses typically exceed 0.5 m.
14 15	145	Interpretation: Planar-lamination and banding are closely associated, and in many cases are difficult
16 17	146	to distinguish. This suggests that their depositional processes are closely related and are therefore
18 19	147	combined here into a single facies group. Planar laminated sandstones can be formed under dilute
20 21	148	flow conditions via the migration of low-amplitude bedwaves (Allen, 1984; Best & Bridge, 1992), or
22 23	149	under high-concentration conditions from traction carpets (Lowe, 1982; Sumner et al., 2008; Talling
24 25	150	et al., 2012; Cartigny et al., 2013). The banded facies may be formed as traction carpet deposits from
26 27	151	high-density turbidity currents and are comparable to the Type 2 tractional structures of Ito et al.
28 29	152	(2014) and the H2 division of Haughton et al. (2009). Deposits related to traction carpets can show
30 31	153	significant variation in facies characteristics (e.g. Sohn, 1997; Cartigny et al., 2013). Alternatively, the
32 33 34	154	banded facies may represent low-amplitude bedwave migration that formed under mud-rich
35 36 37	155	transitional flows (Baas <i>et al.</i> , 2016).
37 38 39	156	F3: Fine-grained sandstones with decimetre-scale bedform structures. The majority (~80%) of this
40 41	157	facies is represented by climbing ripple-lamination, commonly with stoss-side preservation. Locally,
42 43	158	small-scale (wavelengths of decimetre-scale, and heights of a few cm) bedforms are present that
44 45	159	show convex-up laminae, biconvex tops, erosive to non-erosive basal surfaces, and laminae that can
46 47	160	thicken downwards (Figs 4A and 4C). In some cases, the bedforms show distinct low-angle climbing
48 49	161	(Fig. 5A). Isolated trains of decimetre-scale bedforms are present between banded/planar-laminated
50 51	162	facies (Figs 4B and 4C), whereas those exhibiting low-angle climbing can form above banded/planar-
52 53	163	laminated sandstone and in some cases transition into small-scale hummock-like features (Fig. 4A).
54 55 56 57 58 59	164	These hummock-like bedforms consist of erosively based, cross-cutting, concave- and convex-up,

165	low- to high-angle (up to 25°) laminae sets (Fig. 4A). They have decimetre to centimetre
166	wavelengths, and amplitudes up to 10 cm. Locally, internal laminae drape the lower bounding
167	surfaces and these tend to be low angle surfaces, whereas elsewhere laminae downlap onto the
168	basal surface, typically at higher angles (Fig. 4A). Where laminae are asymmetric they have accreted
169	in a downslope direction.
170	Furthermore, sinusoidal laminations are observed (Fig. 4A) with exceptional wavelengths (>20 cm)
171	and angles-of-climb (>45°) in comparison to conventional stoss-side preserved climbing ripples (15-
172	45°; 10-20 cm). These features also differ from convolute laminae/banding as they do show a
173	consistent wavelength and asymmetry. However, it is difficult to consistently make clear distinctions
174	between stoss-side preserved ripples and sinusoidal laminations. Hence, they are grouped together
175	into 'wavy bedform structures'.
176	F3 facies is most common at bed tops, but is also observed at bed bases, where laterally they are
177	overlain by an amalgamation surface. Locally, mudstone clasts (<1-4 cm) have been observed within
178	ripple-laminated segments.
179	Interpretation: Climbing ripple-lamination is interpreted as high rates of sediment fallout with
180	tractional reworking from flows within the lower flow regime (Allen, 1973; Southard & Boguchwal,
181	1990). The mudstone clasts are interpreted to be the result of overpassing of sediments on the bed
182	(Raudkivi, 1998; Garcia, 2008). When sedimentation rate exceeds the rate of erosion at the ripple
183	reattachment point, the stoss-side deposition is preserved and aggradational bedforms develop
184	(Allen, 1973). This is indicative of high rates of sediment fallout (Jopling & Walker, 1968; Allen, 1973;
185	Jobe et al., 2012), attributed to rapid flow deceleration from moderate-to-low concentration
186	turbidity currents (Allen, 1973). Sinusoidal lamination is interpreted as a type of climbing ripple
187	lamination, marked by very high sedimentation rates, leading to similarity in thickness between stoss
188	and lee sides (Jopling & Walker, 1968; Allen, 1973; Jobe et al., 2012).

Page 9 of 121

Sedimentology

The more convex bedforms (Figs 4A and 4C) bear similarities with washed out ripples that are formed under high near-bed sediment concentration conditions at the transition from ripples to upper stage plane beds in very fine sands (Baas & de Koning, 1995), and with combined-flow ripples that have rounded tops and convex-up lee slopes (Harms, 1969; Yokokawa et al., 1995; Tinterri, 2011). In turbidites, these bedforms have been termed 'rounded biconvex ripples with sigmoidal laminae', and have been associated with reflected flow facies where turbidity currents have interacted with topography (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011; Zecchin et al., 2013; Tinterri & Tagliaferri, 2015). A third possibility is that these are decimetre-scale stable antidunes since these can exhibit biconvex tops and in some cases convex-up cross-lamination (Alexander et al., 2001; Cartigny et al., 2014; Fedele et al., 2017), although these bedforms may also frequently show concave laminae (Cartigny et al., 2014). Typically, antidune laminae dip upstream (e.g., Alexander et al., 2001; Cartigny et al., 2014), although downstream migrating antidunes are known from both open-channel flows (e.g., Kennedy, 1969) and gravity currents (Fedele *et al.*, 2017). The 'hummocky-type' structures (Fig. 4A) with high-dip angles (up to 25°), draping of laminae, and limited variation in laminae thickness, show similarities with anisotropic hummocky cross stratification (HCS) from combined oscillatory-unidirectional flows (e.g., Dumas et al., 2005; Dumas & Arnott, 2006). Maximum dip angles of laminae in strongly anisotropic HCS can be around 25-30° (Dumas et al., 2005; Dumas & Arnott, 2006) much higher than for symmetrical forms, which are typically less than 15° (Harms et al., 1975; Tinterri, 2011). However, thickening and thinning of laminae are expected in HCS (Harms et al., 1975) and are not clearly observed in the hummocky-like bedforms here. Such HCS-like hummocky bedforms have been interpreted from basin plain turbidites to be related to reflected flows from topographic barriers (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011). Hummock-like bedforms in turbidites have also been interpreted as antidunes (e.g., Skipper, 1971; Prave & Duke, 1990; Cartigny et al., 2014). Antidunes are typically associated with concave upward erosive surfaces, extensive cross-cutting sets if they are unstable antidunes, bundles of upstream dipping laminae (if upstream migrating), laminae with low dip angles, low angle

terminations against the lower set boundary, some convex bedding, and structureless parts of fills (e.g., Alexander et al., 2001; Cartigny et al., 2014; Fedele et al., 2017). The hummock-like bedforms in the present study share many similarities with these antidunes, however there is an absence of structureless components, the draping of surfaces is more pronounced and more typical of HCS, the approximately parallel nature of laminae within sets is more pronounced and the number of laminae is greater. Furthermore, set bundles accrete downstream suggesting that if these are antidunes then they are downstream-migrating forms. In summary, the hummock-like bedforms show greater similarity to those HCS-like structures described from reflected flows (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), rather than features associated with downstream migrating antidunes.

The observed combination of biconvex ripples and anisotropic hummock-like features, and the transitions between these bedforms in some vertical sections, is also in agreement with that observed in some turbidity currents interacting with topography (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), further suggesting that the hummock-like features may be related to combined flows, rather than the product of antidunes. This possibility of topographic-interaction induced hummock-like and biconvex ripple forms is discussed further, after the topography of the sediment waves is introduced.

F4: Mudstone clast conglomerate deposits form discrete patches (<20 m long and <0.3 m thick),

which commonly overlie erosion surfaces. Mudstone clasts (<1 cm – 10 cm diameter) vary from

233 subangular to well-rounded. They are dominantly clast supported with a matrix of fine-grained

- 234 sandstone.
- 235 Interpretation: Mudstone clast conglomerates are interpreted as lag deposits (e.g. Stevenson *et al.*,
 - 236 2015) from energetic and bypassing high-density turbidity currents.
 - 237 Bed architecture and facies distribution: Doornkloof Subunit B1

Page 11 of 121

Sedimentology

2		
2 3	238	At Doornkloof (Fig. 2), subunit B1 has an average thickness of \sim 5 m (Fig. 5) and comprises thin- to
4 5	239	thick-bedded sandstones, thin-bedded siltstones and lenticular mudstone clast conglomerates (0.1-
0 7 8	240	0.3 m thick, 1-70 m wide) (Figs 5 and 6A-E). There are substantial variations in bed thicknesses and
8 9 10	241	sandstone-to-siltstone proportions along the 1.5 km long dip section (Fig. 5). Locally, medium- to
10 11 12	242	thick-bedded sandstones occur, which comprise bedforms within a package of thin-bedded siltstones
13 14	243	and sandstones. These bedforms show regional changes to more tabular thin-bedded sandstones
15 16	244	and siltstones (log 01/log 08, Fig. 5). Within the exposed section (~ 2 km), there are three sandstone-
17 18	245	prone bedform-dominated sections (200 m to 300 m in length) separated by siltstone-prone sections
19 20	246	(150 to 400 m in length), which have an overall tabular appearance (Fig. 6). The DK01 core (Figs 5 and
21 22	247	6) is located 330 m to the north of the western limit of Section I where subunit B1 is a $^{-5}$ m thick
23 24	248	package of interbedded thin structured sandstones and laminated siltstones (Fig. 6). Multiple erosion
25 26	249	surfaces are present at the base, and overall in the DK01 core the subunit B1 succession fines- and
27 28	250	thins-upward. Palaeoflow of the B1 subunit is dominantly ENE-orientated (082°) (Fig. 2B) but shows
29 30 21	251	some deviation within the eastern part of the section (log 42 – Figs 2B and 5) towards the NNE
31 32 33	252	(023°).
33		
35 36	253	The medium- to thick-bedded sandstones within the sandstone-prone sections of Section I,
37 38	254	orientated (079°-259°) subparallel to palaeoflow, show large lateral variations in thickness and facies.
39 40	255	The bedforms comprise structureless (F1), planar-laminated to banded (F2), and ripple-laminated
41 42	256	(F3) sandstones (Fig. 6A-E). The facies, architecture and thickness changes of one amalgamated bed
43 44	257	(Bedform a) are described in detail (Fig. 5). Bedform a thickens (up to 2.5 m) and thins (<20 cm)
45 46 47 48 49 50	258	multiple times, forming a down-dip pinch-and-swell morphology. Locally, the base of Bedform a is
	259	marked by shallow erosion (<0.5 m deep; <30 m long) and in some places is amalgamated with the
	260	underlying sandstone beds (Figs 5 and 7). Where <i>Bedform a</i> exceeds 0.5 m in thickness, banded (F2)
51 52	261	sandstone facies is dominant, and is in some places underlain by structureless (F1) divisions, or
53 54	262	exhibits climbing ripple-lamination at the bed top (F3). Where <i>Bedform a</i> is thin (<0.5 m thick), it is
55 56 57 58	263	dominated by climbing-ripple lamination (F3). Below Bedform a, lenses of mudstone conglomerate

3	264	(<30 m long; 5-30 cm thick) can be observed at various locations over the complete section. In some
4 5	265	locations (e.g. log 16/18, Fig. 5), banded sandstone (F2) beds (Fig. 6D) can be observed intercalated
o 7 8	266	with mudstone clast conglomerate lenses (Fig. 7). These banded beds pinch out or show a transition
9 10	267	towards mudstone clast conglomerates upstream, and are amalgamated with Bedform a
11 12	268	downstream. At the same stratigraphic level as <i>Bedform a</i> , the DK01 core shows one pronounced 20
13 14	269	cm thick bed with angular mudstone clasts (<1-5 cm diameter) that can be correlated to <i>Bedform a</i> .
15 16 17	270	In Bedform a, six truncation surfaces (10-25°) are identified within the eastern limit of the section
18 19	271	(Fig. 5), at places where the bedform exceeds 1 m in thickness. All truncation surfaces are sigmoid-
20 21	272	shaped and flatten out upstream and downstream within the bed (Fig. 6E). One eastward
22 23	273	(downstream) orientated truncation surface (Fig. 6B) in the lower part of the bed is observed at log
24 25	274	17 (Fig. 5). However, sigmoidal westward (upstream) facing truncation surfaces are most common in
26 27	275	the upper portion of the bed and are spaced 15-20 m apart. They cut banded (F2) and ripple-
28 29	276	laminated (F3) sandstone facies, and are sharply overlain by banded sandstone facies (F2) with bands
30 31	277	aligned parallel to the truncation surface, or by climbing-ripple laminated segments (Fig. 6E). Abrupt
32 33	278	upstream thinning (SW) and more gradual downstream thickening (NE) give Bedform a, an
34 35 36	279	asymmetric wave-like morphology in dip section. Small-scale bedforms (F3) are solely present at the
37 38	280	top of the wave-like morphology, and dominantly comprise climbing-ripple lamination, with
39 40	281	occasional wavy bedforms (stoss-side preserved climbing ripples and/or sinusoidal laminations) at
41 42	282	the thicker sections of the bedform (Fig. 5). At abrupt bed thickness changes associated with steep
43 44	283	westward-facing truncation surfaces (>15°) (logs 16/19/21, Fig. 5), shallow scour surfaces (<0.35 cm)
45 46	284	can be observed that cut into the top surface of Bedform a, overlain and onlapped by thin-bedded
47 48	285	siltstones and sandstones. Within the banded facies (F2), isolated lenses of ripple-lamination (F3) are
49 50	286	present (up to 30-40 cm long and 10 cm thick) (Fig. 5 – log 19). Mudstone and siltstone clasts (0.2-5
51 52	287	cm diameter) dispersed throughout structureless (F1) sections are typically well rounded, and rarely
53 54	288	sub-angular. At the eastern limit of Section I, stratigraphically below Bedform a, another 'pinch-and-
55 56 57 58	289	swell' sandstone bed abruptly increases in thickness downstream where <i>Bedform a</i> is amalgamated

Sedimentology

1		
2 3	290	with this bed below (log 21, Fig. 5). Where the bed thickens, <i>Bedform a</i> thins abruptly (log 23/24, Fig.
5	291	5). The thin-bedded and siltstone-prone deposits overlying <i>Bedform a</i> show more laterally constant
7 8	292	geometries, thicknesses and facies.
9 10 11	293	At the upstream end (SW) of Section 1, around log 02-07 (Fig. 5, middle panel), a package of
12 13	294	sandstone beds thickens locally (>100 m long, <5 m thick) above <i>Bedform a</i> (Fig. 8). <i>Bedform a</i>
14 15	295	pinches and swells multiple times within this log 02-07 interval to a maximum of 0.5 m thickness and
16 17	296	comprises similar facies as downstream (F1, F2, F3), but lacks internal truncation surfaces. The bed
18 19	297	directly above Bedform a thickens where Bedform a thins and vice versa (Fig. 8). Sandstone beds
20 21	298	above both this bed and Bedform a, in the top of the package, show only limited thickness variations
22 23	299	(~10 cm) and dominantly comprise climbing ripple-laminated sandstone (F2). All sandstone beds
24 25	300	above Bedform a either pinch-out or show a facies transition towards fine siltstone in both western
26 27	301	and eastern directions (Fig. 5).
28 29 30 31	302	Bed architecture and facies distribution: Doornkloof – Subunit B2
32 33	303	The sandstone bed morphology and facies characteristics at the base of subunit B2 share many
34 35	304	affinities with the deposits described within subunit B1 (Fig. 9). Palaeoflow of subunit B2 is generally
36 37	305	NE-orientated (040°) (n=68; Figs 2B and 9B) but with a high degree of dispersion, and a shift from
38 39	306	ENE (062°) in the western part of the section, to more northwards in the middle (19°) and eastern
40 41 42	307	part of the section (030°). This indicates that the section is dominantly subparallel to palaeoflow (dip
42 43	308	section) (Fig. 2B). Subunit B2 dominantly comprises medium-bedded (0.1-0.5 m thick) structured
44 45 46	309	sandstone (Fig. 9B). Closely spaced logs (m's to tens of m's) collected from the main face at the base
47 48	310	of B2 (Section II – Fig. 2B) permit tracing out of individual beds over a distance of 230 m and tracking
49 50	311	of internal facies changes (Fig. 6F-J). Two beds (Bedform b and Bedform c) change in thickness (0.5-2
51 52	312	m for Bedform b and 0.3-1.2 m for Bedform c) and contain multiple internal truncation surfaces of
53 54	313	which six are westward (upstream) facing and one is eastward (downstream) facing. Truncation
55 56 57 58	314	surfaces cut climbing ripple-laminated facies (F3) and banded facies (F2) with maximum angles

2 3	315	varying between 20-30° that shallow out and merge with the base of the bed (Figs 6G, 6H and 6J).
4 5 6	316	They flatten out in the downstream direction within the bed and are overlain by banded sandstone
7 8	317	facies (F2). In Bedform b, the rate of westward thinning is more abrupt than eastward, giving an
9 10	318	asymmetric wave-like morphology (Fig. 9B). This abrupt westward thinning is coincident with
11 12	319	locations of westward (upstream) orientated truncation surfaces. In the eastern part, 110 m
13 14	320	separates two truncation surfaces, in an area associated with bed thinning. However, towards the
15 16	321	western part of Bedform b, there is only 25-30 m between the westward (upstream) orientated
17 18 19	322	truncation surfaces, with no abrupt bed thinning.
20 21	323	There is a high degree of longitudinal and vertical facies variability within <i>Bedform b</i> and c (Figs 4 and
22 23	324	9B). Commonly, longitudinal facies changes are accompanied by bed thickness changes. Locally, the
24 25	325	bases of thicker parts of the bedforms are mudstone clast-rich. Bed tops show small-scale bedform
26 27	326	structures (F3) at most locations. Banded sandstone facies overlie the truncation surfaces (Figs 6G,
28 29	327	6H and 6J). Ripple-laminated facies (F3) within the middle or lower parts of <i>Bedform b</i> and <i>c</i> indicate
30 31	328	flow directions that deviate (NW to N) from the regional palaeoflow (NE) (Figs 4A, 6F and 6H),
32 33	329	whereas the palaeoflow direction of the ripples at the top of the bedforms are consistent with the
34 35 26	330	regional palaeoflow. Detailed analysis of well-exposed sections (Fig. 4) indicates that many
30 37 38	331	laminated and banded sections are wavy and separated by low angle truncation or depositional
39 40	332	surfaces. Locally, small-scale bedform structures (F3) are present in patches (Figs 4B and 4C) (<10 cm
41 42	333	thick; couple of metres wide), which show downstream and/or upstream facies transitions to
43 44	334	banded/planar-laminated facies (F2), as well as examples of flame structures (Fig. 4C). The small-
45 46	335	scale bedform structures (F3) show a lot of variability, with hummock-like features observed above
47 48	336	biconvex ripples at both the downstream end of swells, and directly below truncation surfaces at the
49 50	337	upstream end of swells (Fig. 4A). Additionally, both hummock-like features and biconvex ripples
51 52	338	have been observed at the base of <i>Bedform</i> b (log 38; Fig. 9B). Similar to <i>Bedform a, Bedform b & c</i>
53 54	339	show wavy bedform structures at the top of swells, particularly where they are the thickest. Bedform
55 56 57 58 59	340	<i>b</i> is topped in the easternmost exposure by a scour surface that cuts at least 0.5 m into <i>Bedform b</i>

Page 15 of 121

60

Sedimentology

1		
2 3	341	and is amalgamated with an overlying pinch-and-swell sandstone bed (Fig. 9B). Medium- to thin-
4 5	342	bedded structured sandstones are present above and below Bedform b and c, which do not show
7 8	343	any facies or thickness changes over the exposed section.
9 10	344	The basal succession of subunit B2 in the DK01 core, at the same stratigraphic level as Bedform b
11 12	345	and c, comprises thick-bedded structureless (F1) to banded (F2) (>3 m) sandstones. Bed bases are
13 14	346	sharp and structureless and contain a variable amount of mudstone clasts (<1 cm). The middle to
15 16	347	upper parts of these beds show banded facies (F2) with clear mudstone clast-rich and -poor bands,
17 18 19	348	which pass through wavy lamination to climbing ripple (F3) and planar lamination at bed tops.
20 21	349	Above Section II, in both outcrop and core, a 15 m thick sandstone package shows a substantial
22 23	350	increase in bed thicknesses (max. 4.5 m), mainly due to bed amalgamation (Fig. 9A). Some of these
24 25	351	beds show a wave-like (asymmetric) morphology, similar to that observed in Bedforms b and c.
26 27	352	Abrupt bed thinning or pinch-out is common. These pinch-outs are primarily associated with
28 29	353	depositional geometry, with rare examples of bed truncation by erosion surfaces. Bounding surfaces
30 31 32	354	can be identified within the sandstone package, which are defined by successive upstream
32 33 34	355	depositional bed pinch-out points (Fig. 10), with local (<2 m long) shallow (<0.3 m) erosion surfaces.
35 36	356	These bounding surfaces separate multiple packages of downstream shingling (three to four)
37 38	357	sandstone beds. The packages of pinch-and-swell beds are stacked in an aggradational to slightly
39 40	358	upstream orientated manner (Fig. 10) and are topped by a >60 m thick package of tabular and
41 42	359	laterally continuous medium- to thin-bedded structured sandstones. At the same interval in the
43 44	360	DK01 core a transition can be observed from thick- to medium-bedded, dominantly banded (F2),
45 46 47	361	sandstones towards more medium- to thin-bedded structured (F3) sandstones.
48 49	362	Bed architecture: Old Railway – Subunit B2
50 51 52	363	At this locality on the southern limb of the Baviaans Syncline, the lower 10 m of subunit B2 is
52 53 54	364	exposed for 100 m EW (Fig. 2C). Here, B2 is a medium- to thin-bedded sandstone-prone unit that
55 56 57 58 59	365	shows substantial lateral thickness changes without evidence of a basal erosion surface (Fig. 11).

1		
2 3 4	366	Mean palaeoflow is ESE (121°) (Fig. 2C), indicating the exposure is sub-parallel to depositional dip.
5	367	The sandstone beds are dominantly climbing ripple laminated (F3), with some banded/planar
7 8	368	laminated (F2) and structureless divisions (F1).
9 10	369	Multiple climbing ripple laminated beds contain dispersed small mudstone and siltstone clasts (Fig.
11 12	370	11C). The section is characterised by an alternation of beds showing typical pinch-and-swell
13 14	371	geometries (0.5-2 m) and more tabular thin-bedded (<0.5 m) sandstones. Locally, individual beds
15 16	372	pinch-and-swell multiple times over a distance of \sim 40 m, with wavelengths varying from 15 m to >40
17 18 10	373	m. Where there are swells, bed bases truncate underlying beds (Fig. 11D). Siltstones comprise only
20 21	374	$^{\sim}$ 10% of the succession and are thin-bedded and planar-laminated, with intercalated thin very fine-
22 23	375	grained sandstones (<1 cm).
24 25	376	Towards the top of the section, a 40 cm thick very fine-grained sandstone bed abruptly fines and
26 27	377	thins downstream to a centimetre-thick siltstone bed (Fig. 12). This bed thickens and thins along a
28 29	378	~20 m distance (Fig. 12) forming sandstone lenses, before regaining original thickness (40 cm).
30 31 22	379	Locally, within this zone, the bed longitudinally grades to siltstone and is perturbed from the top by
32 33 34	380	decimetre-scale scour surfaces (0.2-3 m long, couple of cm's deep). At log 04 (Fig. 11A), a bed that
35 36	381	pinches downstream has a downstream-orientated scour on its top surface, which is overlain by
37 38	382	thin-bedded sandstones and siltstones that pass upstream beyond the confines of the scour surface.
39 40	383	A downstream thickening bed with an erosive base truncates these beds. The majority of the
41 42	384	observed pinch-and-swell bedforms stack in a downstream direction (Fig. 11A). However, in the
43 44	385	middle of the package at log 1, one bed stacks in an upstream manner, giving the overall package an
45 46	386	aggradational character. This is similar to the stacking patterns observed within subunit B2 at the
47 48	387	Doornkloof section (Fig. 10).
49 50 51 52	388	Sediment waves within channel-lobe transition zones
52 53 54	389	The Doornkloof and Old Railway sections show bedforms with clear pinch-and-swell morphology
55 56 57 58 59 60	390	that are subparallel to flow direction. These bedforms developed in a base-of-slope setting without

Sedimentology

_		
2 3	391	any evidence of a large-scale basal confining surface. Bed-scale amalgamation and scouring are
4 5	392	common in the two study areas, however the more significant component of downstream bed
6 7 0	393	thickness changes is depositional. Their geometry and dimensions (>1 m height; 10-100 m
9 10	394	wavelength), support their classification as sediment waves (Wynn & Stow, 2002). The bedforms
11 12	395	described from the Doornkloof area (Beds a-c) show clear asymmetric pinch-and-swell
13 14	396	morphologies, related to internal upstream-facing truncation surfaces (Figs 5 and 9). The well-
15 16	397	constrained base-of-slope setting (Brunt et al., 2013), the lack of confining erosion surfaces, and the
17 18	398	lobe-dominated nature of Unit B downdip (Figs 3B and 3C) are consistent with an interpretation that
19 20	399	the sediment waves formed within a CLTZ setting.
21 22 23	400	DISCUSSION
24 25 26	401	Topographic control on sediment wave inception
27 28	402	The interpreted CLTZ setting for the sediment waves means that initial deposition is most likely
29 30	403	related to flow expansion at the channel-mouth (e.g. Hiscott, 1994a; Kneller, 1995; Mulder &
31 32	404	Alexander, 2001). The occurrence of abrupt downstream bedform thickening (e.g. <i>Bedform a</i> , Fig. 5),
33 34	405	indicates a marked decrease in flow capacity resulting in a temporary increase of deposition rates
35 36 37	406	(e.g. Hiscott, 1994a). Although deposition is expected in areas of flow expansion, this does not
37 38 30	407	explain why sediment wave deposition appears to be localised (e.g. log 02-07; Fig. 5). Both the
40 41	408	inception and development of the sediment waves are interpreted to be related to the presence of
42 43	409	seabed relief (dm's to m's amplitude). Seabed irregularities are common in base-of-slope settings,
44 45	410	and minor defects (such as scours lined with mudstone clast conglomerates; Fig. 7) could have
46 47	411	triggered deposition from flows close to the depositional threshold (Wynn et al., 2002a). The
48 49	412	presence of bedforms overlying swells of older bedforms, such as at the upstream location of
50 51	413	Bedform a (Figs 5 (logs 2-7) and 8) or the sediment waves overlying Bedform b in subunit B2 (Fig. 10),
52 53	414	suggest that relief of older bedforms, and consequent flow deceleration, may also act as a nucleus
54 55 56 57	415	for later sediment wave development. The locally observed decimetre-scale deep scours probably

416	had a more variable effect on sediment wave development. In some cases it resulted in topographic
417	relief that could help sediment wave nucleation (e.g. log 4, Fig. 11) and in other cases the scours
418	remove positive depositional relief (e.g. Fig. 12) and therefore they will have a slight negative effect
419	on sediment wave nucleation. The aggradational character of the sediment wave packages (Figs 10
420	and 11A) supports a depositional feedback mechanism. Depositional bedforms form positive
421	topography, which may help to nucleate sites of deposition and the development of composite
422	sediment waves forming the complicated larger-scale sediment wave architecture (Figs 10 and 11A).
423	
424	Bed-scale process record
425	The sediment wave deposits from CLTZ settings in Unit B are diverse and show significant facies
426	variations on the sub-metre scale. The characteristics of the sediment wave deposits from the two
427	Unit B datasets are discussed and compared.
428	Bed-scale process record - Doornkloof section
429	Facies of the sediment waves identified at the Doornkloof section are characterised by an
430	assemblage of structureless (F1), banded and planar laminated (F2), and climbing ripple laminated
431	(F3) sandstones. Local patches of structureless sandstone facies (F1) (Figs 5 and 9B) at bed bases,
432	suggest periods of more enhanced deposition rates (e.g. Stow & Johansson, 2000). However, the
433	sediment waves are dominated by banded facies, likely related either to traction-carpet deposition
434	(Sumner et al., 2008; Cartigny et al., 2013) or low-amplitude bedwave migration under transitional
435	flows (Baas et al., 2016). This suggests deposition from high concentration flows during bedform
436	development. The high degree of F2 variation (band thickness, presence of shallow truncations,
437	wavy nature) is explained by: 1) turbulent bursts interacting with a traction carpet (Hiscott, 1994b);
438	2) waves forming at the density interface between a traction carpet and the overlying lower-
439	concentration flow, possibly as a result of Kelvin-Helmholtz instabilities (Figs 4 and 6) (Sumner et al.,
440	2008; Cartigny et al., 2013); 3) the presence of bedwaves and associated development beneath

Page 19 of 121

Sedimentology

•		
3	441	mixed-load, mud-rich, transitional flows (Baas et al., 2016), or some combination of these processes.
4 5	442	There is a strong spatial and stratigraphic relationship between mudstone clast conglomerates (F4)
6 7	443	(Figs 7 and 8) and banded sandstone facies (F2) with a high proportion of mudstone clasts. As the
8 9	444	deposits underlying the shallow erosion surfaces are predominantly siltstones, the mudstone clast
10 11 12	445	materials must have been entrained farther upstream, and are therefore interpreted as lag deposits
12 13 14	446	from bypass-dominated high-concentration flows (e.g. Stevenson et al., 2015). As scours are typically
15 16	447	documented upstream of sediment waves in modern CLTZs (Wynn et al., 2002a), the source of these
17 18	448	mudstone clasts is likely linked to local upstream scouring, supported by the angularity of the clasts
19 20	449	(Johansson & Stow, 1995). The transition from banded facies (F2) to climbing ripple-laminated facies
21 22	450	(F3), common at the top of individual beds, likely represents a change from net depositional high
23 24	451	concentration flows, to steady deposition from moderate to low concentration flows, and / or a
25 26	452	corresponding change from mud-rich transitional flows to mud-poor flows. The dominance of this
27 28	453	facies group (F3) at bed tops (Figs 5 and 9B) is interpreted as the product of less-energetic and more
29 30	454	depositional tails of bypassing flows.
31 32	155	To understand the process record and evolution of the Unit P codiment waves, it is important to be
33 34	400	To understand the process record and evolution of the Onit B sediment waves, it is important to be
35 36	456	able to distinguish the record of a single flow event from a composite body comprised of deposits
37 38	457	from multiple flow events. The majority of the observed bed thickness changes within the sediment
39 40	458	waves at the Doornkloof section are attributed to depositional relief although internally they show
41 42	459	steep internal truncation surfaces (Figs 5, 6 and 9). The erosion surfaces may suggest that this
43 44	460	depositional architecture is the result of multiple depositional and erosional flow events. However,
45 46	461	several lines of evidence suggest these are deposits produced from a single flow event. The
47 48	462	preservation of upstream-facing truncation surfaces (Figs 5 and 9B), implies a significant component
49 50	463	of bedform accretion at the upstream end (Figs 13 and 14A). To be able to preserve upstream
51 52	464	younging truncation surfaces with angles up to 25° (close to the angle-of-repose), the erosion and
53 54	465	deposition within each bedform is likely to be the result of a single flow event. Within subunit B2, no
55 56 57 58	466	bed splitting is observed and all truncation surfaces of <i>Bedform b</i> and <i>c</i> merge towards the bed base

20

1		
2 3 4	467	as a single surface (Fig. 9B), leaving underlying strata untouched. This suggests an origin from a
5 6	468	single flow event for the entire bedform.
7 8	469	In subunit B1, all upstream facing truncation surfaces in the main sandstone body of <i>Bedform a</i>
9 10	470	merge onto a single surface within the composite deposit, in a similar manner to Bedform b and c,
11 12	471	further suggesting a single flow origin for the main sediment wave morphology. Additionally,
13 14	472	Bedform a can be followed out for \sim 1 km in the upstream direction, and shows many small-scale (<5
15 16 17	473	m longitudinal distance) purely depositional undulations at the western end (Figs 5 and 8). These
17 18 19	474	flow parallel undulations are stratigraphically equivalent to the deposits above the most upstream
20 21	475	truncation surface and therefore, represent the youngest depositional phase of Bedform a
22 23	476	development. The absence of erosion surfaces or bedding planes between these undulations further
24 25	477	suggests that the main body of <i>Bedform a</i> was formed as a single event bed. The evidence therefore
26 27	478	supports the initiation and development of each wave-like bedform in the Doornkloof section
28 29	479	(Bedform a, b and c) to be during the passage of a single flow event. Therefore, the internal scour
30 31	480	surfaces and bedform undulations are interpreted to be the result of spatio-temporal flow
32 33	481	fluctuations from a single flow event. In contrast, the mudstone clast patches that underlie Bedform
34 35	482	a show upstream pinch-out of sandstone beds and downstream amalgamation (Fig. 7) indicating
30 37 29	483	multiple flow events formed these patches and the lower sandstone body prior to the initiation of
39 40	484	the main bedform. The presence of these mudstone clast patches results in a marked difference in
41 42	485	bedform architecture and bed thickness for <i>Bedform a</i> compared to <i>Bedform b</i> and c.
43 44 45	486	Bed-scale process record - Old Railway section
46 47	487	In the Old Railway section (Fig. 11), erosional bed bases and bed amalgamation are common,
48 49	488	particularly where there is depositional thinning of underlying beds, indicating that the 'pinch-and-
50 51	489	swell' bedforms present at this section are the result of multiple flow events in contrast to the
52 53	490	Doornkloof area. However, bed amalgamation has limited impact on bedform thickness, as thickness
54 55	491	increase dominantly occurs downdip of the point of amalgamation and is therefore of a depositional
56 57		

Sedimentology

2		
2 3	492	nature. The Old Railway bedforms classify as sediment waves (Wynn & Stow, 2002) with dimensions
4 5	493	of 15 to >40 m wavelength (extending outside outcrop limits) and 1-2 m amplitude. However, the
6 7	494	maximum bed thicknesses (1-1.5 m) are more limited than at the Doornkloof area (>2.5 m), climbing
8 9 10	495	ripple-laminated facies (F3) is more dominant, and banded facies (F2) are almost absent. The
10 11 12	496	sediment waves have a more uniform facies distribution and there is an absence of internal
12 13 14	497	truncation surfaces (Fig. 11). The dominance of F3 indicates rapid deposition from dilute turbulent
15 16 17	498	flows, which contrasts with the Doornkloof area.
17 18 19	499	
20 21 22	500	Subcritical sediment waves: comparison with supercritical bedforms
22 23 24	501	The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves.
25 26	502	However, there are distinct differences between both areas. The Old Railway examples exhibit
27 28	503	comparatively simple sediment waves, composed of multiple event beds, and dominated by lower
29 30	504	flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant
31 32	505	internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides
33 34	506	(Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are
35 36	507	characterized by short stoss sides, long lee sides, and exhibit erosion and more energetic facies (F1,
37 38	508	F2, F4), with climbing ripple deposition (F3) becoming more dominant at the top of the beds (Fig.
39 40 41	509	13A). The Doornkloof waves migrate upstream through erosional truncation and draping at bed
41 42 43	510	swelling locations (up to >10 m; Fig. 9) followed by the development of another bed swell upstream
43 44 45	511	(Fig. 13A). This means that each swell initiates individually, rather than simultaneously as a
46 47	512	sinusoidal wave.
48 49	513	The architecture of the Doornkloof sediment waves most closely resembles the smaller-scale type II
50 51	514	and type III antidunal bedforms described by Schminke et al. (1973). However, these bedform
52 53	515	architectures, which are an order of magnitude smaller, are interpreted to migrate through stoss-
54 55	540	
56 57 58	010	side deposition by supercritical flows based on the field observations, and have never been
59		

517	produced experimentally. In contrast, Kubo & Nakajima (2002) and Kubo (2004) observed sediment
518	wave architectures with short stoss sides, long lee sides and variable wavelengths, similar to the
519	Doornkloof sediment waves, under subcritical flow conditions in physical and numerical
520	experiments. The depositional patterns of these sediment waves were defined by upstream
521	migration of waveforms by individual growing mounds (Kubo & Nakajima, 2002; Kubo, 2004), and
522	are therefore highly analogous to the observations from the Doornkloof waves.
523	The nature and variability of small-scale bedform structures (F3) (e.g., Fig. 13A for the Doornkloof
524	waves) provide key indicators of flow type. This facies group consists of climbing ripples, sinusoidal
525	lamination, biconvex ripples, and hummock-like structures, with biconvex ripples sometimes
526	transitioning upwards into the hummocks. Climbing ripples and sinusoidal lamination are indicators
527	of subcritical flow (Allen, 1973; Southard & Boguchwal, 1990), and the biconvex ripples and
528	hummock-like structures have greater affinities with combined-flow ripples and hummocky cross
529	stratification than with antidunes, again suggesting deposition under subcritical flow conditions. In
530	particular, the vertical change from biconvex ripples to hummock-like bedforms observed in the
531	Doornkloof sediment waves is strongly analogous to structures associated with reflected flows in
532	other turbidites (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), rather than deposits associated
533	with supercritical flow conditions. The presence of topography in the form of the large-scale
534	sediment wave may have led to flow reflection (Tinterri, 2011) and deflection as and when the flow
535	waned. Importantly, these subcritical small-scale bedforms are observed over the full length of the
536	sediment waves, both on the stoss- and lee-side, at Doornkloof and the Old Railway (Figs 5, 9 and
537	11). This indicates subcritical deposition occurred across the entire sediment wave, and that the flow
538	remained subcritical throughout the depositional period over which the decimetre bedforms were
539	formed.
540	The morphology and architecture of the sediment waves in this study contrast with large
541	supercritical bedforms, such as cyclic steps, since these exhibit short erosional lee-sides and long
542	depositional stoss-sides (Cartigny <i>et al.</i> , 2014; Hughes-Clark, 2016), and display upstream sediment

Page 23 of 121

Sedimentology

-		
2 3	543	wave migration as a sinusoidal wave (Cartigny et al. 2014). Additionally, the sediment waves
4 5	544	described here are not single bedform structures such as described from supercritical bedforms
6 7	545	(e.g., Cartigny et al., 2014; Covault et al., 2017), but are composed of stacked smaller-scale
8 9 10	546	bedforms. The spatial and temporal extent of subcritical deposits also contrasts strongly with
10 11 12	547	'supercritical' bedforms where subcritical deposition can be expected only in some or all of the
13 14	548	stoss-side, downdip of a hydraulic jump (Vellinga et al., 2018). Furthermore, tractional subcritical
15 16	549	bedforms are predicted to be limited to the downstream parts of the stoss side in aggradational
17 18	550	cyclic steps, or to be mixed-in with supercritical and non-tractional subcritical facies in
19 20	551	transportational cyclic steps (Vellinga et al., 2018; their Fig. 9). Note that decimeter-scale bedforms
21 22	552	themselves could not be modelled in the CFD simulations of Vellinga et al. (2018). Lastly, the overall
23 24	553	signature of subcritical deposits within dominantly supercritical bedforms was one dominated by
25 26	554	amalgamation of concave-up erosional surfaces and low-angle foresets and backsets creating
27 28	555	lenticular bodies (Vellinga et al., 2018). These bodies scale with the size of the overall bedform, and
29 30 31	556	the backsets show clear downstream fining (Vellinga et al., 2018). Again, the sediment waves studied
32 33	557	herein show radically different architecture to that formed in cyclic steps, characterised by stacked
34 35	558	decimeter-scale bedforms and an absence of large-scale (scaling with the sediment wave) foresets,
36 37	559	backsets and lenticular bodies.
38 39	560	In summary, the morphology, architecture, composite nature, and small-scale bedform types, all
40 41 42	561	indicate that the sediment waves were clearly deposited under subcritical conditions. The subcritical
42 43 44	562	nature of these sediment waves, the observation of upstream accretion via deposition on the stoss
45 46	563	side, and the associated upstream migration of the crestline, observed at Doornkloof, challenge the
47 48	564	assumption that all upstream-orientated expansion of sediment waves is the product of supercritical
49 50	565	conditions (Wynn & Stow, 2002; Symons et al., 2016). That said, the Doornkloof bedforms appear to
51 52	566	have migrated sporadically over short distances (m's to tens of m's) through upstream accretion (Fig.
53 54	567	9B), before undergoing growth of new sediment wave lenses upstream, thus the entire bedform
55 56 57 58	568	does not continuously migrate as observed in some modern sediment wave examples (e.g., Hughes-

2 3	569	Clark, 2016). The presence of these subcritical sediment waves in the downstream parts of CLTZs
4 5	570	also challenges the idea that mid-sized fans, like those in the Karoo, likely exhibit flows close to
o 7	571	critical Froude numbers, at and beyond the CLTZ (Hamilton et al., 2017), although such conditions
8 9	572	are likely in upstream parts of CLTZ where scouring occurs.
10 11 12 13	573	
14 15	574	Spatio-temporal flow fluctuations
16 17 19	575	The large-scale erosive truncations, and the wide variability of decimetre-scale bedforms in space
19 20	576	and time, observed in the Doornkloof waves indicate marked spatio-temporal flow fluctuations from
20 21 22	577	a single flow event. In contrast, the continuity of facies and absence of significant erosive surfaces
23 24	578	suggests that the Old Railway sediment waves were formed by flows with very limited spatio-
25 26	579	temporal variation. Here, we focus on these spatio-temporal fluctuations indicated by the
27 28	580	Doornkloof waves, and later address the issue of how the different types of sediment waves shown
29 30 21	581	in the Doornkloof and Old Railway outcrops could coexist.
32 33	582	Fluctuations in velocity and concentration can be expected in environments where turbidity currents
34 35	583	exit confinement (e.g. Kneller & McCaffrey, 1999, 2003; Ito, 2008; Kane et al., 2009; Ponce &
36 37	584	Carmona, 2011), and where flows pass over depositional and erosional relief on the seabed (e.g.
38 39	585	Groenenberg et al., 2010; Eggenhuisen et al., 2011). Similar steep internal scour surfaces to those
40 41	586	observed in the Doornkloof bedforms were interpreted to be generated by energetic sweeps from a
42 43	587	stratified flow (Hiscott, 1994b). Furthermore, a similar depositional history of waxing and waning
44 45	588	behaviour within a single flow was inferred from the sediment waves of the Miocene Austral
46 47	589	foreland Basin, Argentina (Ponce & Carmona, 2011). However, the depositional model proposed by
48 49	590	Ponce & Carmona (2011) assumes each independent lens-shaped geometry is created and reworked
50 51	591	simultaneously, and subsequently draped as a result of flow deceleration. The Doornkloof sediment
52 53 54	592	wave architecture cannot be explained by this process as the 'lenses' are clearly not disconnected
55 56 57	593	(Figs 5 and 13). The distribution of truncation surfaces within the sediment waves of subunit B2 does

Sedimentology

however suggest there can be both phases of upstream swell formation as well as upstream migration of the crest line (e.g. Bedform c at log 34-35). To explain the large fluctuations in flow concentration and depositional behaviour in CLTZ settings (Fig. 13), a number of factors can be considered. Here, we consider each of these factors in turn, and assess their potential for explaining the development of the sediment waves observed in this study. Flow splitting in updip channel-levée systems Waxing and waning flow behaviour can be induced by splitting of the flow in the channel-levée system updip, where the primary 'channelised' flow may reach the sediment wave field earlier than the secondary 'overbank' flow (Peakall et al., 2000). However, this would imply significant velocity and concentration differences and therefore significant depositional facies differences between the two stages, which does not fit the observations (Figs 13 and 14A). Furthermore, it would not explain the number of flow fluctuations interpreted within a single flow event bed (Figs 13 and 14A). Mixed load (sand-clay) bedforms An alternative explanation for the sediment wave architecture could be that these bedforms formed by flows with sand-clay mixtures. Complicated bedform architectures with both erosional and depositional components have been created experimentally (Baas et al., 2016). However, there are a number of issues with this hypothesis: 1) the bedforms described from the two case studies are one to two orders of magnitude larger than the 'muddy' bedforms described within flume tanks (Baas et al., 2016), and 2) the presence of clean climbing ripple-lamination suggests that at least part of the flow was not clay-rich during deposition (Baas et al., 2013; Schindler et al., 2015). Froude number fluctuations The net-depositional record of waxing and waning flow conditions (Fig. 14A) observed at a single given location within the Doornkloof sediment waves (Fig. 13) could be hypothesised to be a record of temporal fluctuations around the critical Froude number separating sub- and supercritical flow

618	conditions. However, the evidence for subcritical deposition across the full length of the sediment
619	waves, and over the timescale of bedform development, demonstrates that fluctuations around the
620	critical Froude number cannot be directly responsible for the formation of these sediment waves.
621	That said, fluctuations in velocity and capacity within a subcritical flow downstream of a zone of
622	hydraulic jumps may still play a role in controlling the observed sedimentation patterns. Fluctuations
623	of the turbidity current Froude number are expected in areas of abrupt flow expansion such as at
624	the base-of-slope (Garcia, 1993; Wynn <i>et al.</i> , 2002b). Turbidity currents that undergo rapid
625	transitions from supercritical to subcritical conditions forming a single hydraulic jump, or repeated
626	hydraulic jumps across a CLTZ (Sumner et al., 2013; Dorrell et al., 2016), have been linked to
627	bedform formation (Vicente Bravo & Robles, 1995; Wynn & Stow, 2002; Wynn et al., 2002b; Symons
628	et al., 2016), and have been linked to the formation of erosive scours in upstream parts of CLTZs in
629	the Karoo Basin (Hofstra et al., 2015). Due to the presence of multiple interacting hydraulic jumps
630	across a CLTZ, Froude number fluctuations around unity may be expected (Sumner et al., 2013;
631	Dorrell et al., 2016). Such velocity fluctuations would change the capacity of the flow (Fig. 14A),
632	however whether this would translate to periodic changes in sediment concentration is less clear
633	due in part to the lack of concentration measurements from natural and experimental subaqueous
634	hydraulic jumps. That said, in turbidity currents generally, there is a close coupling between velocity
635	and concentration changes (Felix et al., 2005). Fluctuating velocities, and potentially concentration,
636	related to variations in Froude numbers around critical may enable complicated and variable
637	bedform architectures to be formed.
638	The 'hose effect'
639	A spatial control in flow character could also be invoked to explain the development of sediment
640	waves, based on flow-deposit interactions and the momentum of the flow core (Fig. 14B). As a
641	turbidity current exits channel confinement it does not directly lose its momentum (e.g. Choi &
642	Garcia, 2001). The flow core may shift around during bedform aggradation due to interactions with

Page 27 of 121

 Sedimentology

-		
2 3	643	depositional and erosional relief around the channel-mouth. Most studies on flow-deposit
4 5	644	interactions focus on temporal changes in flow conditions (e.g. Kneller & McCaffrey, 2003;
6 7 9	645	Groenenberg et al., 2010), but rarely consider lateral changes within a single turbidity current
9 10	646	(Hiscott, 1994a). A single location within a sediment wave field may receive periods of high and low
10 11 12	647	energy linked to the lateral shifting of the flow core, where the energetic flow core can be linked to
13 14	648	periods of erosion and/or high concentration flow deposition, and the flow margin to deposition
15 16	649	from the less energetic and dilute parts of the flow. In this scenario, the upstream-orientated
17 18	650	truncation surfaces are the result of the interaction of the flow core with its self-produced obstacle
19 20	651	(Fig. 14B), linked to the inability to sustain the compensation process over time. Upstream
21 22	652	fluctuations in Froude number, related to an area of scour formation and hydraulic jumps, would
23 24	653	result in longitudinal waxing and waning flow behaviour downstream and could explain the
25 26 27	654	combination of both erosion and high concentration flow deposition of the flow core.
27 28 29	655	The compensational effects will form a stratigraphic record of fluctuating energy levels (Figs 13A and
30 31	656	14A). The lateral flow movement may explain deviation in palaeoflow direction between intra-bed
32 33	657	ripple-laminated intervals compared to sediment wave bed tops, observed within the Doornkloof
34 35	658	subunit B2 sediment waves (Figs 4A, 6F, 13 and 14), as it could represent (partial) flow deflection
36 37	659	affected by the evolving sediment wave morphology. Similar behaviour within a single unconfined
38 39 40	660	flow has been invoked in basin-floor settings of the Cloridorme Formation (Parkash, 1970; Parkash &
40 41 42	661	Middleton, 1970) and at levée settings of the Amazon Channel (Hiscott et al., 1997). The 'hose
43 44	662	effect' would result in a composite depositional record as the core of the flow sporadically moves
45 46	663	laterally, repeatedly superimposing high energy conditions onto lower energy conditions, therefore
47 48	664	explaining the inconsistency in sediment wave wavelengths. With this spatial process, the locus of
49 50	665	deposition will move laterally whilst the waning flow can lead to deposition progressively migrating
51 52	666	upstream. The hose effect may explain how sediment waves are able to build upstream accreting
53 54	667	geobodies without being deposited under supercritical conditions. The mechanism also provides an
55 56 57	668	explanation for the range and spatial variability of the observed small-scale bedform structures (F3),

669	and for the similarities with small-scale bedforms interpreted to have been formed by turbidity
670	currents interacting with topography (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011). As the flow
671	migrates laterally, flows will interact at an angle with the growing sediment wave, thus encouraging
672	interaction of incident and reflected flow.
673	As noted earlier, there is strong field-evidence (Parkash, 1970; Parkash & Middleton, 1970; Hiscott et
674	al., 1997) for the 'hose effect' mechanism. However, the hose effect has not been experimentally or
675	numerically modelled, which reflects the ubiquity of bedform experiments in two-dimensional
676	flumes, and a paucity of three-dimensional flow effects on bedform development.
677	Spatio-temporal flow fluctuations - summary
678	In summary, the combination of waxing and waning flow behaviour in the subcritical flow core,
679	downstream of a zone of hydraulic jumps (Dorrell et al., 2016), as well as spatial compensational
680	processes (hose effect) are invoked as the most probable mechanisms to explain the complicated
681	architecture and facies patterns of the Doornkloof sediment waves
001	
682	
682 683	Spatial variations within a sediment wave field
682 683 684	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway
682 683 684 685	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal
 682 683 684 685 686 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such
 682 683 684 685 686 687 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such variation between sediment waves in the same system. One potential mechanism is the character of
 682 683 684 685 686 687 688 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such variation between sediment waves in the same system. One potential mechanism is the character of the feeder channel, including factors such as channel dimensions and magnitude of the incoming
 682 683 684 685 686 687 688 689 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such variation between sediment waves in the same system. One potential mechanism is the character of the feeder channel, including factors such as channel dimensions and magnitude of the incoming flows. However, previous studies (Brunt <i>et al.</i> , 2013) suggest that the dimensions of feeder channels
 682 683 684 685 686 687 688 689 690 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such variation between sediment waves in the same system. One potential mechanism is the character of the feeder channel, including factors such as channel dimensions and magnitude of the incoming flows. However, previous studies (Brunt <i>et al.</i> , 2013) suggest that the dimensions of feeder channels within the Unit B base-of-slope system were similar, implying that the character of sediment waves
 682 683 684 685 686 687 688 689 690 691 	Spatial variations within a sediment wave field As noted earlier, there are major differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment waves. Here, we will attempt to explain such variation between sediment waves in the same system. One potential mechanism is the character of the feeder channel, including factors such as channel dimensions and magnitude of the incoming flows. However, previous studies (Brunt <i>et al.</i> , 2013) suggest that the dimensions of feeder channels within the Unit B base-of-slope system were similar, implying that the character of sediment waves is unrelated to variations in feeder channel character.

Page 29 of 121

Sedimentology

2 3	692	Alternatively, the differences between the Doornkloof and Old Railway areas may be related to their
4 5	693	position relative to the mouth of the feeder channel. A dominance of lower flow-regime facies (F3)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	694	such as climbing ripple-lamination is commonly associated with overbank or off-axis environments
	695	(e.g. Kane & Hodgson, 2011; Brunt et al., 2013; Rotzien et al., 2014). As the Old Railway is
	696	characterised by such facies, it could represent a fringe position through a sediment wave field (Fig.
	697	15). In contrast, the Doornkloof section is characterized by erosion and more energetic facies (F1, F2,
	698	F4), suggesting it was situated in a more axial position in the sediment wave field (Fig. 15A).
	699	Furthermore, within the Doornkloof area, climbing ripple deposition (F3) becomes more dominant at
	700	the top of the beds, likely reflecting progressive decrease in flow velocity and concentration (Figs 5,
21 22	701	8 and 9B). These spatial and temporal variations can be integrated with the hypothesised lateral
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	702	shifting of the flow core (the hose effect). The hose effect is likely to have more influence on
	703	deposits within axial parts of the channel-mouth, such as within the Doornkloof area, where the flow
	704	is most powerful. In contrast, the lateral fringes of the channel-mouth are most likely subject to
	705	deposition from flow margins (Fig. 15B), such as at the Old Railway section. This results in more
	706	steady flow conditions and relatively uniform deposition of facies and explains the difference in
	707	characteristics between the Old Railway sediment waves, which are dominated by F3 facies and
	708	shows little evidence of erosion, and the Doornkloof sediment waves, which are dominated by F1
38 39	709	and F2 facies with substantial evidence of erosion.
40 41 42	710	The differences in the expression of the Unit B sediment waves suggest that the stratigraphic record
42 43 44	711	of CLTZ environments exhibit substantial spatial variability. The process model shows that initial
45 46	712	sediment wave architecture can involve both upstream orientated accretion (Doornkloof area), and
47 48 49 50 51 52	713	downstream orientated accretion (Old Railway section), depending on the position with respect to
	714	the channel mouth. Despite the lack of 3D control on morphology, we predict that this variance in
	715	depositional behaviour between axial and fringe areas will have influence on planform crest
53 54	716	morphology and will lead to the crest curvatures, which are commonly observed within the modern
55 56 57	717	seafloor (e.g. Wynn et al., 2002b). Similar observations on the importance of spatial variation have

718	been made for the erosional bedform area (Fig. 15) of channel lobe transition zones (Hofstra et al.,
719	2015).
720	
721	Preservation of sediment waves in channel lobe transition zones
722	Two questions that remain unanswered are: 1) what conditions promoted stratigraphic preservation
723	of the sediment waves in the examples herein, and 2) how likely is preservation of sediment waves
724	in the stratigraphic record of channel lobe transition zones? Here, we interpret that the preservation
725	of the sediment waves in the two field areas is related to the strongly aggradational character of
726	subunits B1 and B2. This is also evident from the lobe deposits downdip that show strong
727	aggradation and limited progradation (Fig. 3; Brunt et al., 2013), in comparison to lobe deposits
728	elsewhere in the Karoo Basin (e.g., Hodgson <i>et al.</i> , 2006; van der Merwe <i>et al.</i> , 2014). Furthermore,
729	subunit B1 is abruptly overlain by a regional mudstone aiding preservation, whereas subunit B2 is
730	overlain by thick levée successions (subunit B3), marking the progradation of the slope system across
731	the CLTZ (Brunt et al., 2013). This scenario has similarities to that proposed by Pemberton et al.
732	(2016) who suggested that preservation of scours in a CLTZ was linked to a rapidly prograding slope
733	system.
734	For sediment waves in CLTZ settings in general, there are several scenarios that can be proposed to
735	facilitate their preservation. During system initiation at the start of a waxing-to-waning sediment
736	supply cycle, possibly driven by a relative sea-level fall and initial slope incision, the position of the
737	CLTZ on the base-of-slope might be relatively stable as slope conduits evolve prior to slope
738	progradation. The stratigraphic record of the resulting deposits is likely limited in thickness, and
739	probably preferentially associated with scour-fills (e.g., Pemberton et al., 2016). The position of the
740	CLTZ could be fixed through physiographic features, such as a tectonic or diapiric break-in-slope,
741	which would aid the stratigraphic preservation of the CLTZ. Several studies have shown that when
742	submarine channel-levee systems avulse they do not return to their original route (e.g. Armitage <i>et</i>

Sedimentology

743	al., 2012; Ortiz-Karpf et al., 2015; Morris et al., 2016), which would help to preserve sediment waves
744	in an abandoned CLTZ. The stratigraphic evidence for this control would be in the sediment waves
745	abruptly overlain by mudstone or thin-bedded successions indicative of overbank deposition. Finally,
746	the preservation potential of sediment waves in CLTZs will be higher at the point of maximum
747	regression/progradation of the system (Hodgson et al., 2016). Similar arguments were applied to the
748	preservation of scour-fills in CLTZ by Hofstra et al. (2015).
749	In summary, we hypothesise that preservation of sediment waves may require i) updip avulsion, ii)
750	represent the point of maximum system progradation, or iii) form during a period of relative spatial
751	stability, followed by system progradation. Subsequent rapid progradation of a slope system is then
752	important for long-term preservation, though an off-axis location relative to large-scale slope
753	channels is critical in order to avoid cannibalisation of the CLTZ deposits (e.g., Hofstra et al., 2015).
754	Such propagation of channel-levée systems (e.g. Hodgson et al., 2016), suggests that the
755	preservation potential of sediment waves in axial positions, for example the interpreted position of
756	the Doornkloof section, is lower than sediment wave deposits in fringe positions, such as the
757	interpreted position of the Old Railway section (Fig. 15A).
758	
759	CONCLUSIONS
760	Detailed morphologies, architectures and facies of fine-sand grained sediment waves are reported
761	from an ancient channel-lobe transition zone. The sediment waves are constructed from banded and
762	planar-laminated sandstones, as well as from progressive aggradation of a range of small-scale
763	bedforms, including climbing ripples, sinusoidal lamination, biconvex ripples, and hummocky-like
764	structures, interpreted as the products of subcritical deposition, with periods of flow reflection and
765	deflection forming the biconvex ripples and hummocks. Morphologically, the sediment waves
766	exhibit long-lee sides, and short erosively-cut stoss sides, and show upstream accretion over short
767	distances (m's to tens of m's), punctuated by the upstream development of new sediment wave
	 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

768	lenses. Consequently, the observations from these exhumed deposits challenge some current
769	models of sediment wave development, which suggest that entire sediment waves continuously
770	migrate upstream under supercritical conditions. In particular, the outcrops demonstrate that the
771	formation of sediment waves in an upstream direction, as well as upstream migration of crestlines, is
772	not solely the product of supercritical flows, but can also occur in subcritical conditions. The
773	progressive development of the sediment waves is argued to be the product of lateral migration of
774	the expanding flow across the channel-lobe transition zone, potentially coupled to fluctuations in
775	velocity and flow capacity related to upstream hydraulic jumps. Variations in sediment waves, from
776	more complex forms with multiple erosive surfaces and complex internal facies, to simple
777	accretionary forms with abundant climbing ripples, is linked to position across the channel-lobe
778	transition zone, from axial to lateral fringes respectively. The preservation potential of sediment
779	waves in CLTZs into the stratigraphic record is low due to subsequent system progradation and
780	erosion. However, preservation is higher where there is updip avulsion and abandonment of a CLTZ,
781	in off axis areas where sediment waves might be overlain by overbank sediments, and / or at the
782	point of maximum system progradation.

783	ACKNOWLEDGEMENTS
-----	------------------

2 3 4	783	ACKNOWLEDGEMENTS
5 6	784	This work forms part of the results of the LOBE 2 joint industry consortium research project. We are
7 8	785	grateful for the financial support from: Anadarko, Bayerngas Norge, BG Group, BHP Billiton, BP,
9 10	786	Chevron, Dong Energy, E.ON, GDF Suez, Maersk Oil, Marathon Oil, Petrobras, Shell, Statoil, Total,
11 12	787	VNG Norge, and Woodside. We are grateful to Matthieu Cartigny, Brian Romans and an anonymous
13 14 15	788	reviewer for the constructive reviews and for the input of Associate Editor Jaco Baas, which greatly
15 16 17	789	improved this manuscript. We also acknowledge the landowners from the Laingsburg area for access
17 18 19	790	to their land. Finally, Renée de Bruijn, Nienke Lips and Yvonne Spychala are thanked for their
20 21	791	assistance in the field.
22		
23		
24		
25		
20 27		
27		
29		
30		
31		
32		
33		
34		
35		
36 27		
37 38		
39		
40		
41		
42		
43		
44		
45		
40		
48		
49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

REFERENCES

Alexander, J., Bridge, J.S., Cheel, R.J. and Leclair, S.F. (2001) Bedforms and associated sedimentary
structures formed under supercritical water flows over aggrading sand beds. *Sedimentology*, 48,
133-152.

Allen, J.R.L. (1973) A classification of climbing-ripple cross-lamination. *Journal of the Geological*Society of London, 129, 537-541.

- 798 Allen, J.R.L. (1984) Parallel lamination developed from upper-stage plane beds: a model based on
- the larger coherent structures of the turbulent boundary layer. *Sedimentary Geology*, **39**, 227-242.

800 Armitage, D.A., McHargue, T., Fildani, A. and Graham, S.A. (2012) Postavulsion channel evolution:

- 801 Niger Delta continental slope. *AAPG Bulletin*, **96**, 823-843.
- 802 Baas, J.H. and de Koning, H. (1995) Washed-out ripples: Their equilibrium dimensions, migration
 803 rate, and relation to suspended-sediment concentration in very fine sand. *Journal of Sedimentary*804 *Research*, 65, 431-435.
- **Baas, J.H., Davies, A.G.** and **Malarkey, J.** (2013) Bedform development in mixed sand-mud: The 806 contrasting role of cohesive forces in flow and bed. *Geomorphology*, **182**, 19-32.
- 807 Baas, J.H., Best, J.L. and Peakall, J. (2016) Predicting bedforms and primary current stratification in
- 808 cohesive mixtures of mud and sand. *Journal of the Geological Society*, 173, 12-45.
- 809 Best, J. and Bridge, J. (1992) The morphology and dynamics of low amplitude bedwaves upon upper
- 810 stage plane beds and the preservation of planar laminae. *Sedimentology*, **39**, 737-752.
- 811 Bouma, A.H. and Boerma, J.A.K. (1968) Vertical disturbances in piston cores. *Marine Geology*, 6,
 - 231-241.

Sedimentology

\sim	
·	h
.)	

1		
2 3	813	Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prélat, A. and Grecula, M. (2013)
5	814	Confined to unconfined: Anatomy of a base of slope succession, Karoo Basin, South Africa. Marine
7 8	815	and Petroleum Geology, 41 , 206-221.
9 10	816	Campion, K.T., Dixon, B.T. and Scott, E.D. (2011) Sediment waves and depositional implications for
11 12	817	fine-grained rocks in the Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Chile. Marine and
13 14 15	818	Petroleum Geology, 28 , 761-784.
16 17	819	Cartigny, M.J., Eggenhuisen, J.T., Hansen, E.W. and Postma, G. (2013) Concentration-dependent
18 19	820	flow stratification in experimental high-density turbidity currents and their relevance to turbidite
20 21 22	821	facies models. Journal of Sedimentary Research, 83, 1047-1065.
23 24	822	Cartigny, M.J.B., Ventra, D., Postma, G. and Van Den Berg, J.H. (2014) Morphodynamics and
25 26	823	sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume
27 28 29	824	experiments. Sedimentology, 61, 712-748.
30 31	825	Choi, S.U. and Garcia, M.H. (2001) Spreading of gravity plumes on an incline. Coastal Engineering
32 33	826	Journal, 43 , 221-237.
34 35 26	827	Covault, J.A., Kostic, S., Paull, C.K., Sylvester, Z. and Fildani, A. (2017) Cyclic steps and related
37 38	828	supercritical bedforms: Building blocks of deep-water depositional systems, western North America.
39 40	829	Marine Geology, 393 , 4-20, doi:10.1016/j.margeo.2016.12.009
41 42	830	Damuth, J.E. (1979) Migrating sediment waves created by turbidite currents in northern South China
43 44 45	831	Basin. <i>Geology</i> , 7 , 520-523.
46 47	832	Dorrell, R.M., Peakall, J., Sumner, E.J., Parsons, D.R., Darby, S.E., Wynn, R.B., Özsoy, E. and Tezcan,
48 49	833	D. (2016) Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-
50 51 52 53	834	lobe transition zones. <i>Marine Geology</i> , 381 , 181-193.
54 55		
56 57		
57		
3		
----------	--	
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
20 21		
27		
22		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
5/		
20 50		
59 60		
00		

1 2

B35 Dumas, S. and Arnott, R.W.C. (2006) Origin of hummocky and swaley cross-stratification— The
controlling influence of unidirectional current strength and aggradation rate. *Geology*, 34, 10731076.

838 **Dumas, S., Arnott, R.W.C.** and **Southard, J.B.** (2005) Experiments on oscillatory-flow and combined-839 flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record.

- 840 Journal of Sedimentary Research, **75**, 501-513.
- 841 Eggenhuisen, J.T., McCaffrey, W.D., Haughton, P.D. and Butler, R.W. (2011) Shallow erosion
- 842 beneath turbidity currents and its impact on the architectural development of turbidite sheet
- 843 systems. *Sedimentology*, **58**, 936-959.
- 844 Fedele, J.J., Hoyal, D., Barnaal, Z., Tulenko, J. and Awatt, S. (2017) Bedforms created by gravity
 - flows. In: Budd, D.A., Hajek, E.A. and Purkis, S.J. (Eds) *Autogenic Dynamics and Self-organization in Sedimentary Systems*. SEPM Special Publication 106, 95-121.
- Felix, M., Sturton, S. and Peakall, J. (2005) Combined measurements of velocity and concentration
 in experimental turbidity currents. *Sedimentary Geology*, **179**, 31-47.
- 849 Flint, S.S., Hodgson, D.M., Sprague, A., Brunt, R.L., Van Der Merwe, W.C., Figueiredo, J., Prélat, A.,
- 850 Box, D., Di Celma, C. and Kavanagh, J.P. (2011) Depositional architecture and sequence stratigraphy
- 851 of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. *Marine and*
- 852 *Petroleum Geology,* 28, 658-674.
- 853 Garcia, M.H. (1993) Hydraulic jumps in sediment-driven bottom currents. *Journal of Hydraulic*
- 854 *Engineering*, **119**, 1094-1117.
 - 855 Garcia, M.H. (2008) Sedimentation Engineering: Process, Measurements, Modeling and Practice.
 - 856 American Society of Civil Engineers, Reston, Virginia.

Sedimentology

3	7
---	---

1		
2 3	857	Grecula, M., Flint, S.S., Wickens, H.DeV. and Johnson, S.D. (2003) Upward-thickening patterns and
4 5	858	lateral continuity of Permian sand-rich turbidite channel fills, Laingsburg Karoo, South Africa.
6 7 8	859	Sedimentology, 50 , 831-853.
9 10	860	Groenenberg, R.M., Hodgson, D.M., Prélat, A., Luthi, S.M. and Flint, S.S. (2010) Flow-deposit
11 12	861	interaction in submarine lobes: insights from outcrop observations and realizations of a process-
13 14 15	862	based numerical model. Journal of Sedimentary Research, 80, 252-267.
16 17	863	Hamilton, P., Gaillot, G., Strom, K., Fedele, J. and Hoyal, D. (2017) Linking hydraulic properties in
18 19	864	supercritical submarine distributary channels to depositional lobe geometry. Journal of Sedimentary
20 21 22	865	Research, 87 , 935-950.
22 23 24	866	Harms, J.C. (1969) Hydraulic significance of some sand ripples. Geological Society of America
25 26 27	867	Bulletin, 80 , 363-396.
28 29	868	Harms, J.C., Southard, J.B., Spearing, D.R. and Walker, R.G. (1975) Depositional environments as
30 31	869	interpreted from primary sedimentary structures and stratification sequences. Society for
32 33 34	870	Sedimentary Geology (SEPM) Short Course 2, pp. 161.
35 36	871	Haughton, P., Davis, C., McCaffrey, W. and Barker, S. (2009) Hybrid sediment gravity flow deposits-
37 38	872	classification, origin and significance. Marine and Petroleum Geology, 26, 1900-1918.
39 40 41	873	Heiniö, P. and Davies R.J. (2009) Trails of depressions and sediment waves along submarine
41 42 43	874	channels on the continental margin of Espirito Santo Basin, Brazil. Geological Society of America
44 45	875	Bulletin, 121 , 698-711.
46 47	876	Hiscott, R.N. (1994a) Loss of capacity, not competence, as the fundamental process governing
48 49 50	877	deposition from turbidity currents. Journal of Sedimentary Research, 64, 209-214.
51 52	878	Hiscott, R.N. (1994b) Traction-carpet stratification in turbidites-fact or fiction? Journal of
53 54 55 56	879	Sedimentary Research, 64 , 204-208.
57 58 59		

1		
2 3 4	880	Hiscott, R.N., Hall, F.R., and Pirmez, C. (1997) Turbidity-current overspill from the Amazon Channel:
5	881	texture of the silt/sand load, paleoflow from anisotropy of magnetic susceptibility, and implications
7 8	882	for flow processes. In: Proceedings of the Ocean Drilling Program, Scientific Results (Eds. Flood, R.D.,
9 10	883	Piper, D.J.W., Klaus, A. and Peterson, I.C.), 155 , 53-78.
11 12	884	Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. and Luthi, S.M. (2006)
13 14 15	885	Stratigraphic evolution of fine-grained submarine fan systems, Tanqua depocenter, Karoo Basin,
16 17	886	South Africa. Journal of Sedimentary Research, 76, 20-40.
18 19	887	Hodgson, D.M., Di Celma, C.N., Brunt, R.L. and Flint, S.S. (2011) Submarine slope degradation and
20 21	888	aggradation and the stratigraphic evolution of channel-levee systems. Journal of the Geological
22 23 24	889	Society, 168 , 625-628.
25 26	890	Hodgson, D.M., Kane, I.A., Flint, S.S., Brunt, R.L. and Ortiz-Karpf, A. (2016). Time-transgressive
27 28	891	confinement on the slope and the progradation of basin-floor fans: Implications for the sequence
29 30 21	892	stratigraphy of deep-water deposits. Journal of Sedimentary Research, 86, 73-86.
31 32 33	893	Hofstra, M. (2016) The Stratigraphic Record of Submarine Channel-lobe Transition Zones.
34 35	894	Unpublished PhD thesis, University of Leeds, Leeds, 331p.
36 37	895	Hofstra, M., Hodgson, D.M., Peakall, J. and Flint, S.S. (2015) Giant scour-fills in ancient channel-lobe
38 39 40	896	transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98-
40 41 42	897	114.
43 44	898	Howe, J.A. (1996) Turbidite and contourite sediment waves in the northern Rockall Trough, North
45 46	899	Atlantic Ocean. Sedimentology, 43, 219-234.
47 48 49	900	Hughes Clarke, J.E. (2016) First wide-angle view of channelized turbidity currents links migrating
50 51 52 53 54	901	cyclic steps to flow characteristics. <i>Nature Communications</i> , 7:11896, doi: 10.1038/ncomms11896.
55 56		
57 58		
59		

Sedimentology

~~

1		
2 3 4	902	Ito, M. (2008) Downfan transformation from turbidity currents to debris flows at a channel-to-lobe
5	903	transitional zone: the lower Pleistocene Otadai Formation, Boso Peninsula, Japan. Journal of
7 8	904	Sedimentary Research, 78 , 668-682.
9 10	905	Ito, M. (2010) Are coarse-grained sediment waves formed as downstream-migrating antidunes?
11 12	906	Insight from an early Pleistocene submarine canyon on the Boso Peninsula, Japan. Sedimentary
13 14 15	907	Geology, 226 , 1-8.
16 17	908	Ito, M. and Saito, T. (2006) Gravel waves in an ancient canyon: Analogous features and formative
18 19	909	processes of coarse-grained bedforms in a submarine-fan system, the lower Pleistocene of the Boso
20 21 22	910	Peninsula, Japan. Journal of Sedimentary Research, 76, 1274-1283.
22 23 24	911	Ito, M., Ishikawa, K. and Nishida, N. (2014) Distinctive erosional and depositional structures formed
25 26	912	at a canyon mouth: A lower Pleistocene deep-water succession in the Kasuza forearc basin on the
27 28	913	Boso Peninsula, Japan. Sedimentology, 61, 2042-2062.
29 30 31	914	Jobe, Z.R., Lowe, D.R. and Morris, W.R. (2012) Climbing-ripple successions in turbidite systems:
32 33	915	depositional environments, sedimentation rates and accumulation times. Sedimentology, 59, 867-
34 35	916	898.
36 37	917	Johansson, M. and Stow, D.A.V. (1995) A classification scheme for shale clasts in deep water
38 39 40	918	sandstones. In: Hartley, A.J. and Prosser, D.J. (eds.) Characterization of Deep Marine Clastic Systems,
40 41 42	919	Geological Society Special Publication 94, 221-241.
43 44	920	Jopling, A.V. and Walker, R.G. (1968) Morphology and origin of ripple-drift cross-lamination, with
45 46 47	921	examples from the Pleistocene of Massachusetts. Journal of Sedimentary Research, 38, 971-984.
47 48 49	922	Kane, I.A. and Hodgson, D.M. (2011) Sedimentological criteria to differentiate submarine channel
50 51	923	levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja
52 53	924	California, Mexico, and the Fort Brown Fm. (Permian), Karoo basin, S. Africa. Marine and Petroleum
54 55 56 57 58 59	925	Geology, 28 , 807-823.

926	Kane, I.A., McCaffrey, W.D. and Martinsen, O.J. (2009) Allogenic vs. autogenic controls on
927	megaflute formation. Journal of Sedimentary Research, 79, 643-651.
928	Kennedy, J.F. (1969) The formation of sediment ripples, dunes and antidunes. Annual Review of
929	Fluid Mechanics, 1 , 147-168.

930 Kidd, R.B., Lucchi, R.G., Gee, M. and Woodside, J.M. (1998) Sedimentary processes in the Stromboli

931 Canyon and Marsili Basin, SE Tyrrhenian Sea: results from side-scan sonar surveys. *Geo-Marine*

Letters, **18**, 146-154.

933 Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and

934 their implications for reservoir prediction. In: *Characterization of Deep Marine Clastic Systems* (Eds.

935 Hartley, A.J. and Prosser, D.J.) *Geol. Soc. London, Spec. Publ.*, 94, 31-49.

Kneller, B.C. and Branney, M.J. (1995) Sustained high-density turbidity currents and the deposition
of thick massive sands. *Sedimentology*, 42, 607-616.

938 Kneller, B.C. and McCaffrey, W.D. (1999) Depositional effects of flow nonuniformity and

939 stratification within turbidity currents approaching a bounding slope: deflection, reflection, and

940 facies variation. *Journal of Sedimentary Research*, **69**, 980-991.

941 Kneller, B.C. and McCaffrey, W.D. (2003) The interpretation of vertical sequences in turbidite beds:

942 the influence of longitudinal flow structure. *Journal of Sedimentary Research*, **73**, 706-713.

Kubo, Y. (2004) Experimental and numerical study of topographic effects on deposition from two-

944 dimensional, particulate-driven density currents. *Sedimentary Geology*, **164**, 311-326.

945 Kubo, Y. and Nakajima, T. (2002) Laboratory experiments and numerical simulation of sediment-

946 wave formation by turbidity currents. *Marine Geology*, **192**, 105-121.

947 Lonsdale, P. and Hollister, C.D. (1979) Near-bottom traverse of Rockall Trough-Hydrographic and

948 geological inferences. *Oceanologica Acta*, **2**, 91-105.

Sedimentology

1		
2 3	949	Lowe, D.R. (1982) Sediment gravity flows: II Depositional models with special reference to the
4 5 6	950	deposits of high-density turbidity currents. Journal of Sedimentary Research, 52, 279-297.
7 8	951	Macdonald, H.A., Wynn, R.B., Huvenne, V.A., Peakall, J., Masson, D.G., Weaver, P.P. and McPhail,
9 10	952	S.D. (2011) New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern
11 12 13	953	deep-water erosional scours along the northeast Atlantic margin. Geosphere, 7, 845-867.
14 15	954	Malinverno, A., Ryan, W.B., Auffret, G. and Pautot, G. (1988) Sonar images of the path of recent
16 17	955	failure events on the continental margin off Nice, France. In: Sedimentological Consequences of
18 19	956	Convulsive Geologic Events, (Ed. Clifton, H.E.), Geological Society of America Special Paper, 229, 59-
20 21 22	957	76.
23 24	958	McHugh, C.M. and Ryan, W.B. (2000) Sedimentary features associated with channel overbank flow:
25 26	959	examples from the Monterey Fan. Marine Geology, 163, 199-215.
27 28 29	960	Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugères, J.C. and Weber, O. (2001) Detailed seismic-
30 31	961	reflection and sedimentary study of turbidite waves on the Var Sedimentary Ridge (SE France):
32 33	962	significance for sediment transport and deposition and for the mechanisms of sediment-wave
34 35	963	construction. Marine and Petroleum Geology, 18, 179-208.
36 37	964	Morris, S.A., Kenyon, N.H., Limonov, A.F. and Alexander, J. (1998) Downstream changes of large-
38 39 40	965	scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean:
41 42	966	implications for palaeoflow reconstruction. Sedimentology, 45, 365-377.
43 44	967	Morris, E.A., Hodgson, D.M., Brunt, R.L. and Flint, S.S. (2014) Origin, evolution and anatomy of silt-
45 46	968	prone submarine external levées. Sedimentology, 61, 1734-1763.
47 48 49	969	Morris, E.A., Hodgson, D.M., Flint, S., Brunt, R.L., Luthi, S.M. and Kolenberg, Y. (2016) Integrating
50 51	970	outcrop and subsurface data to assess the temporal evolution of a submarine channel-levee system.
52 53	971	AAPG Bulletin, 100 , 1663-1691.
54 55		
56 57		
58		

2	
3	
4	
5	
6	
7	
, 8	
0 0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
17	
47 10	
0 1	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

- 972 Mulder, T. and Alexander, J. (2001) The physical character of subaqueous sedimentary density flows
- 973 and their deposits. Sedimentology, 48, 269-299.
- 974 Mukti, M.M.R. and Ito, M. (2010) Discovery of outcrop-scale fine-grained sediment waves in the
- 975 lower Halang Formation, an upper Miocene submarine-fan succession in West Java. Sedimentary
- 976 *Geology*, **231**, 55-62.
- 977 Mutti, E. and Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems:
- 978 problems and concepts. In: Marine Clastic Sedimentology: Concepts and Case Studies (Eds. Leggett,
- 979 J.K. and Zuffa, G.G.) Graham and Trotman, Oxford, pp. 1-38.
- 980 Mutti, E. and Normark, W.R. (1991) An integrated approach to the study of turbidite systems. In:
- 981 Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Eds. Weimer, P.
- 982 and Link, M.H.) Springer, New York, pp. 75-106.
- 983 Nakajima, T., Satoh, M. and Okamura, Y. (1998) Channel-levee complexes, terminal deep-sea fan 984 and sediment wave fields associated with the Toyama Deep-Sea Channel system in the Japan Sea.
 - 985 *Marine Geology*, **147**, 25-41.
 - 986 Normark, W.R. and Dickson, F.H. (1976) Sublacustrine fan morphology in Lake Superior. AAPG 987 Bulletin, 60, 1021-1036.
- 988 Normark, W.R. and Piper, D.J.W. (1991) Initiation processes and flow evolution of turbidity currents:
 - 989 Implications for the depositional record. In: From Shoreline to Abyss: Contributions in Marine
 - 990 Geology in Honor of Francis Parker Shepard (Ed. Osborne, R.H.), SEPM Special Publication, 46, 207-
 - 991 230.
- 992 Normark W.R., Hess, G.R., Stow, D.A.V. and Bowen, A.J. (1980) Sediment waves on the Monterey 993 Fan levee: a preliminary physical interpretation. *Marine Geology*, **37**, 1-18.
- 994 Normark, W.R., Piper, D.J., Posamentier, H. Pirmez, C. and Migeon, S. (2002) Variability in form and
 - 995 growth of sediment waves on turbidite channel levees. Marine Geology, 192, 23-58.

Λ	Q
+	J

1		
2 3 4	996	Ortiz-Karpf, A., Hodgson, D.M. and McCaffrey, W.D. (2015) The role of mass-transport complexes in
5	997	controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin:
7 8	998	the Magdalena Fan, offshore Colombia. <i>Marine and Petroleum Geology</i> , 64 , 58-75.
9 10	999	Palanques, A., Kenyon, N.H., Alonso, B. and Limonov, A. (1995) Erosional and depositional patterns
11	1000	in the Valencia mouth: An example of a modern channel-lobe transition zone channel. Marine
13 14 15	1001	Geophysical Researches, 17 , 503-517.
16 17	1002	Parkash, B. (1970) Downcurrent changes in sedimentary structures in Ordovician turbidite
18 19	1003	greywackes. Journal of Sedimentary Research, 40, 572-590.
20 21 22	1004	Parkash, B. and Middleton, G.V. (1970) Downcurrent textural changes in Ordovician turbidite
22 23 24	1005	greywackes. Sedimentology, 14, 259-293.
25 26	1006	Peakall, J., McCaffrey, W.D. and Kneller, B.C. (2000) A process model for the evolution, morphology,
27 28 20	1007	and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448.
30 31	1008	Pemberton, E.A.L., Hubbard, S.M., Fildani, A., Romans, B. and Stright, L. (2016) The stratigraphic
32 33	1009	expression of decreasing confinement along a deep-water sediment routing system: Outcrop
34 35 36	1010	example from southern Chile. <i>Geosphere</i> , 12 , 114-134.
37 38	1011	Piper, D.J.W. and Kontopoulos, N. (1994) Bed forms in submarine channels: comparison of ancient
39 40 41	1012	examples from Greece with studies of Recent turbidite systems. Journal of Sedimentary Research,
42 43	1013	64 , 247-252.
44 45	1014	Piper, D.J.W., Shor, A.N., Farre, J.A., O'Connell, S. and Jacobi, R. (1985) Sediment slides and
46 47	1015	turbidity currents on the Laurentian Fan: Sidescan sonar investigations near the epicenter of the
48 49 50	1016	1929 Grand Banks earthquake. Geology, 13, 538-541.
51 52	1017	Ponce, J.J. and Carmona, N. (2011) Coarse-grained sediment waves in hyperpycnal clinoform
53 54 55	1018	systems, Miocene of the Austral foreland basin, Argentina. <i>Geology</i> , 39 , 763-766.
56 57		
58 59		

1		
2 3 4	1019	Postma, G., Kleverlaan, K. and Cartigny, M.J.B. (2014) Recognition of cyclic steps in sandy and
5 6	1020	gravelly turbidite sequences and consequences for the Bouma facies. Sedimentology, 61, 2268-2290.
7 8	1021	Praeg, D.B. and Schafer, C.T. (1989) Seabed features of the Labrador slope and rise near 55° N
9 10 11	1022	revealed by SEAMARC I sidescan sonar imagery. Atlantic Geoscience Centre, Bedford Institute of
12 13	1023	Oceanography.
14 15	1024	Prave, A.R. and Duke, W.L. (1990) Small-scale hummocky cross-stratification in turbidites: a form of
16 17	1025	antidune stratification? Sedimentology, 37, 531-539.
18 19 20	1026	Prélat, A. and Hodgson, D.M. (2013) The full range of turbidite bed thickness patterns in submarine
21 22	1027	lobes: controls and implications. Journal of the Geological Society, 170, 209-214.
23 24 25	1028	Prélat, A., Hodgson D.M. and Flint, S.S. (2009) Evolution, architecture and hierarchy of distributary
25 26 27	1029	deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South
28 29	1030	Africa. Sedimentology, 56, 2132-2154.
30 31	1031	Prélat, A., Covault J.A., Hodgson D.M., Fildani, A. and Flint, S.S. (2010) Intrinsic controls on the
32 33 34	1032	range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66-
35 36	1033	76.
37 38	1034	Pringle, J.K., Brunt, R.L., Hodgson, D.M. and Flint, S.S. (2010) Capturing stratigraphic and
39 40 41	1035	sedimentological complexity from submarine channel complex outcrops to digital 3D models, Karoo
42 43	1036	Basin, South Africa. Petroleum Geoscience, 16, 307-330.
44 45	1037	Raudkivi, A.J. (1998) Loose Boundary Hydraulics. A.A. Balkema, Rotterdam, The Netherlands, pp 260.
46 47 48	1038	Rotzien, J.R., Lowe, D.R., King, P.R. and Browne, G.H. (2014) Stratigraphic architecture and
49 50	1039	evolution of a deep-water slope channel-levee and overbank apron: The Upper Miocene Upper
51 52	1040	Mount Messenger Formation, Taranaki Basin. Marine and Petroleum Geology, 52, 22-41.
53 54	1041	Schindler, R.J., Parsons, D.R., Ye, L., Hope, J.A., Baas, J.H., Peakall, J., Manning, A.J., Aspden, R.J.,
55 56 57 58 59 60	1042	Malarkey, J., Simmons, S., Paterson, D.M., Lichtman, I.D., Davies, A.G., Thorne, P.D. and Bass, S.J.

1		
2 3 4	1043	(2015) Sticky stuff: Redefining bedform prediction in modern and ancient environments. Geology,
5 6	1044	43 , 399-402.
7 8	1045	Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the
9 10 11	1046	base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574.
12 13	1047	Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic
14 15	1048	development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South
16 17 18	1049	Africa. Journal of Sedimentary Research, 74, 239-254.
19 20	1050	Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation,
21 22	1051	Gaspé, Quebec. Sedimentology, 17, 51-68.
23 24 25	1052	Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509.
26 27	1053	Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and
28 29 30	1054	Planetary Sciences, 19 , 423-455.
31 32	1055	Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows.
33 34 25	1056	Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679.
35 36 37	1057	Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon
38 39	1058	implications. Marine and Petroleum Geology, 17, 145-174.
40 41	1059	Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep-
42 43 44	1060	water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081.
45 46	1061	Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition
47 48 40	1062	from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547.
50 51	1063	Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D.,
52 53	1064	Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active
54 55 56 57 58 59	1065	submarine density current. <i>Geophysical Research Letters</i> , 40 , 5904-5908.

2		
3	1066	Symons, W.O., Sumner, E.J., Talling, P.J., Cartigny, M.J. and Clare, M.A. (2016) Large-scale sediment
4 5 6	1067	waves and scours on the modern seafloor and their implications for the prevalence of supercritical
7 8	1068	flows. <i>Marine Geology</i> , 371 , 130-148.
9 10	1069	Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G. (2012) Subaqueous sediment density
11 12 13	1070	flows: Depositional processes and deposit types. Sedimentology, 59, 1937-2003.
14 15	1071	Tinterri, R. (2011). Combined flow sedimentary structures and the genetic link between sigmoidal
16 17 18	1072	and hummocky cross-stratification. GeoActa (Bologna), 10 , 1-43.
19 20	1073	Tinterri, R. and Muzzi Magalhaes, P. (2011) Synsedimentary structural control on foredeep
21 22	1074	turbidites: An example from Miocene Marnoso-arenacea Formation, Northern Apennines, Italy.
23 24 25	1075	Marine and Petroleum Geology, 28 , 629-657.
26 27	1076	Tinterri, R. and Tagliaferri, A. (2015) The syntectonic evolution of foredeep turbidites related to
28 29	1077	basin segmentation: Facies response to the increase in tectonic confinement (Marnoso-arenacea
30 31 32	1078	Formation, Miocene, Northern Apennines, Italy). <i>Marine and Petroleum Geology</i> , 67 , 81-110.
33 34	1079	Van der Mark, C.F., Blom, A. and Hulscher, S.J.M.H. (2008) Quantification of variability in bedform
35 36 37	1080	geometry. Journal of Geophysical Research: Earth Surface, 113 , F03020, doi:10.1029/2007JF000940.
38 39	1081	Van Der Merwe, W.C., Hodgson, D.M., Brunt, R.L. and Flint, S.S. (2014) Depositional architecture of
40 41	1082	sand-attached and sand-detached channel-lobe transition zones on an exhumed stepped slope
42 43	1083	mapped over a 2500 km ² area. <i>Geosphere</i> , 10 , 1076-1093.
45 46	1084	Vellinga, A.J., Cartigny, M.J.B., Eggenhuisen, J.T. and Hansen, E.W.M. (2018) Morphodynamics and
47 48	1085	depositional signature of low-aggradation cyclic steps: New insights from a depth resolved model.
49 50	1086	Sedimentology, 65 , 540-560.
51 52 53	1087	Vicente Bravo, J.V. and Robles, S. (1995) Large-scale mesotopographic bedforms from the Albian
55 54 55	1088	Black Flysch, northern Spain: characterization, setting and comparison with recent analogues. In:
56 57 58 59 60	1089	Atlas of Deep Water Environments; Architectural Style in Turbidite Systems (Eds. Pickering, K.T.,

1		
2 3 4	1090	Hiscott, R.N., Kenyon, N.H., Ricci-Lucchi, F. and Smith, R.D.A.), Chapman and Hall, London, pp. 216-
5 6	1091	226.
7 8	1092	Wickens H.DeV. (1994) Basin floor fan building turbidites of the southwestern Karoo Basin, Permian
9 10 11	1093	Ecca Group, South Africa. PhD-Thesis. University of Port Elizabeth.
12 13	1094	Winn, R.D. and Dott, R.H. (1977) Large-scale traction-produced structures in deep-water fan-
14 15	1095	channel conglomerates in southern Chile. Geology, 5, 41-44.
16 17 18	1096	Wynn, R.B. and Stow, D.A. (2002) Classification and characterisation of deep-water sediment waves.
19 20	1097	Marine Geology, 192 , 7-22.
21 22	1098	Wynn, R.B., Kenyon, N.H., Masson, D.G., Stow D.A. and Weaver, P.P. (2002a) Characterization and
23 24 25	1099	recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86, 1441-1462.
26 27	1100	Wynn, R.B., Piper, D.J.W. and Gee, M.J.R. (2002b) Generation and migration of coarse-grained
28 29	1101	sediment waves in turbidity current channels and channel-lobe transition zones. Marine Geology,
30 31 32	1102	192 , 59-78.
33 34	1103	Yokokawa, M., Matsuda, F. and Endo, N. (1995) Sand particle movement on migrating combined-
35 36	1104	flow ripples. Journal of Sedimentary Research, A65, 40-44.
37 38 39	1105	Zecchin, M., Caffau, M., Di Stefano, A., Maniscalco, R., Lenaz, D., Civile, D., Muto, F. and Crantelli,
40 41	1106	S. (2013) The Messinian succession of the Crotone Basin (southern Italy) II: Facies architecture and
42 43	1107	stratal surfaces across the Miocene-Pliocene boundary. Marine and Petroleum Geology, 48, 474-492.
44 45 46		
47		
48 40		
49 50		
51		
52		
53		
54 55		
56		
57		
58		
59		
60		

1108 FIGURE CAPTIONS

5 6 7	1109	Figure 1. Sediment wave dimensions (crest height versus wavelength) from modern and ancient
7 8	1110	systems grouped on the basis of type of dataset (A), setting (B) and grain size (C). Data taken from
9 10	1111	Normark & Dickson (1976); Winn & Dott (1977); Damuth (1979); Lonsdale & Hollister (1979); Piper et
11 12 12	1112	al. (1985); Malinverno et al. (1988); Praeg & Schafer (1989); Piper & Kontopoulos (1994); Vicente
13 14 15	1113	Bravo & Robles (1995); Howe (1996); Kidd <i>et al.</i> (1998); Morris <i>et al.</i> (1998); Nakajima <i>et al.</i> (1998);
15 16 17	1114	McHugh & Ryan (2000); Migeon <i>et al.</i> (2001); Wynn <i>et al.</i> (2002a,b); Normark <i>et al.</i> (2002); Ito &
17 18 19	1115	Saito (2006); Heinïo & Davies (2009); Ito (2010); Mukti & Ito (2010); Campion <i>et al.</i> (2011); Ponce &
20 21	1116	Carmona (2011); Ito et al. (2014); Morris et al. (2014); Postma et al. (2014). Note that a lack of sand-
22 23	1117	prone sediment waves in modern examples can be ascribed to difficulties in retrieving piston cores
24 25	1118	within such sediments (e.g. Bouma & Boerma, 1968). The raw data are available as supplementary
26 27 28	1119	material to this manuscript.
28 29 30	1120	Figure 2. (A) Location map of the Laingsburg depocentre within the Western Cape. The transparent
31 32	1121	overlay with black lining indicates the total exposed area of Unit B. Important outcrop areas are
33 34	1122	highlighted, including the sections studied in this paper: Doornkloof and Old Railway; white
35 36	1123	diamonds indicate locations discussed in Brunt et al. (2013). (B) Zoomed-in map of the Doornkloof
37 38	1124	section including palaeocurrent distributions, sub-divided into subunit B1 and subunit B2. The
39 40	1125	outcrop outlines are indicated by solid lines. Red line indicates Section I (Figure 5), blue line on DK-
41 42	1126	unit B2 represents Section II (Figure 9). (C) Zoomed-in map of the Old Railway section including
43 44 45	1127	palaeocurrent distributions.
46 47	1128	Figure 3. (A) Simplified stratigraphic column of the deep-water stratigraphy within the Laingsburg
48 49	1129	depocentre, based on Flint et al. (2011). (B-C) Palaeogeographic reconstruction of subunit B2 (B) and
50 51	1130	subunit B1 (C) based on the regional study of Brunt et al. (2013). The two outcrop locations
52 53 54 55 56 57	1131	discussed in this paper are indicated by the diamonds.

Sedimentology

49

1		
2 3 4	1132	Figure 4. Examples of Internal bed structure and facies changes within subunit B2 (Doornkloof), with
5	1133	one example from <i>Bedform c</i> (A) and two from <i>Bedform b</i> (B and C) (see Fig. 9B for locations). All
7 8	1134	these examples show vertical internal facies changes, which include planar-lamination, wavy-
9 10	1135	lamination/banding and ripple-lamination.
11 12	1136	Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,
13 14	1137	the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The
15 16	1138	thin siltstone interval (TSI; Brunt et al., 2013) between the AB interfan and subunit B1 has been used
17 18 10	1139	as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of
20 21	1140	Bedform a and the palaeoflow patterns have been indicated, as well as the location of the
21 22 23	1141	correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution
24 25	1142	within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure
26 27 28	1143	6 (A-D) and Figure 7 have been indicated.
20 29 30	1144	Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of
31 32	1145	subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast
33 34	1146	conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded
35 36	1147	division within <i>Bedform a</i> ; (C) Mudstone clast conglomerate layer below <i>Bedform a</i> ; (D) Mudstone
37 38	1148	clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted
39 40	1149	line) with climbing ripple-laminated facies within <i>Bedform a</i> ; (F) Climbing ripple-lamination in
41 42	1150	between banded sandstone and sigmoidal lamination, as part of <i>Bedform b</i> ; (G) Lower section of
43 44	1151	westward orientated truncation surface in <i>Bedform b;</i> (H) Upper section of westward orientated
45 46	1152	truncation surface in <i>Bedform b;</i> (I) Banded sandstone division in <i>Bedform b</i> ; (J) West-facing
47 48	1153	truncation surface in <i>Bedform c</i> . See Figure 5 and Figure 9B for locations. Interpreted position of
49 50	1154	Bedform a is indicated (by an asterisk) within the DK01 core log.
51 52	1155	Figure 7. Mudstone clast conglomerate patch at the bottom of <i>Bedform a</i> , with clean true-scale
55 55 56 57 58 59	1156	photopanel (top) and interpreted vertically exaggerated (Ve = 1.8) photopanel (bottom). It shows a

Page 50 of 121

basal erosion surface overlying thin-bedded sandstones, multiple 'floating' sandstone patches, upstream orientated pinch-out and downstream orientated amalgamation. Location of photograph is shown in the lowest panel of Figure 5. Figure 8. Facies correlation panel of local sandstone swell in subunit B1. Bedform a is located at the base of the package. Top panel shows its location within subunit B1. See middle panel of Figure 5 for more detailed facies correlation panel of the complete subunit B1, log locations, and lower panel of Figure 5 for symbol explanations. Figure 9. (A) Panoramic view of the base of subunit B2 at the DK-section. The outlines of Bedform b and c are indicated with white lines. Numbers indicate the position of sedimentary logs. (B) Facies correlation of the II-section with Bedform b and c. The top panel shows the thickness variability of these beds and the surrounding stratigraphy, comprised of structured sandstones (ripple- or planar-laminated); the lower panel shows the internal facies distribution of *Bedform b* and c. Rose diagrams show palaeoflow measurements around Section II. Internal truncation surfaces and location of the facies photos shown in Figure 4 and Figure 6 (F-J) have been indicated. See Figure 2B and Figure 5 for location of section II and for meaning of log symbols. Figure 10. Bedset architecture within the main subunit B2 outcrop face in the Doornkloof area. Bounding surfaces have been defined based on successive bed pinch-out with multiple (3-4) downstream-orientated stacked and weakly amalgamated bedforms. Figure 11. Subunit B2 within the Old Railway area. A- Facies correlation panels of the section with bedform distribution (top) and facies distribution (bottom). B- Zoomed-in facies correlation panel of most eastern section with C – mudstone clasts within a climbing-ripple laminated bed, indicating sediment overpassing, and D - bed splitting indicating erosion and amalgamation. See Figure 2 for location and lowest panel in Figure 5 for meaning of log symbols. Location of Figure 12 is indicated. Figure 12. Sketch of bed showing transient pinch-out to a thin siltstone bed (see Figure 11B for location), with (A1) pinch-out to siltstone, and (A2) local scouring of bed top.

Page 51 of 121

Sedimentology

Figure 13. (A) Idealised model to illustrate the variation in sedimentary structure within sediment wave swells in the Doornkloof area. (B) Interpretation of changes in depositional behaviour through time, linked to the observed internal facies changes in (A). T1-T7 refer to successive time periods, and show the evolution of the sediment waves, and what this means in terms of flow conditions over time. F1 consists of structureless sands. Figure 14. (A) Process explanation of the upstream-orientated accretion process, linked to flow capacity changes over time. Flow capacity may be linked to temporal variations in velocity from upstream hydraulic jumps, and/or to the lateral migration of the flow, shown in part B. (B) Illustration of the inferred spatial contribution (hose effect) during formation of the sediment waves. Lateral migration of the flow core during a single event is linked to capacity changes at a single location, as well as the formation of new swells upstream. The steps are interlinked between A and B; 'x' marks the same location throughout. Step 5 represents another phase of erosion, and thus a return to step 2. Figure 15. (A) Spatial division within a channel-lobe transition zone between a depositional bedform area (DB) and an erosional bedform area (EB) following Wynn et al. (2002a). Differences in sediment wave deposit facies and architecture are explained by spatial differences between the axis and fringe areas of the deposition-dominated fields (DB) of a CLTZ. (B) Sketch model showing how the 'hose effect' within an active flow will dominantly influence sediment wave development in axial areas.

1		
2		
3		
1		1
s c		
0	1	Architecture and morphodynamics of subcritical sediment waves in an ancient
/	-	
8	•	
9	2	channel-lobe transition zone
10		
11	3	
12	5	
13		
14	4	
15		
16	5	M Hofstra ¹ t I Peakall ¹ D M Hodgson ¹ C I Stevenson ²
17	U	
18	-	
19	6	*Stratigraphy Group, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
20		
21	7	² School of Earth, Ocean and Ecological Sciences, University of Liverpool, L69 3GP, UK
22		
23	8	
24	0	
25		
26	9	<pre>tcorresponding author [Email:</pre>
27		
28	10	eemh@leeds.ac.ukmenno.hofstra.1@gmail.com]
20		
30	11	
30		
22		
J∠ 22	12	Running title: SedimentSubcritical sediment wave architecture in a CLTZ
22 24		
54 25	13	Keywords: channel-lobe transition: subcritical: sediment wave: hase-of-slope: Karoo Basin:
22		
30 77	14	facies characteristics: process record
3/	• •	
38		
39		
4U 41		
41		
42		
43		
44		
45		
46		
4/		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

1		
2 3		
4		2
5 6	45	
7	15	ABSIRACI
8 9	16	In modern systems, submarine channel-lobe transition zones (CLTZs) show a well-documented
10 11	17	assemblage of depositional and erosional bedforms. In contrast, the stratigraphic record of CLTZs is
12 12	18	poorly constrained, because preservation potential is low, and criteria have not been established to
13 14 15	19	identify depositional bedforms in these settings. Several locations from an exhumed fine-grained
15	20	base-of-slope system (Unit B, Laingsburg depocentre, Karoo Basin) show exceptional preservation of
17 18	21	sandstone beds with distinctive morphologies and internal facies distributions. The regional
19 20	22	stratigraphy, lack of a basal confining surface, wave-like morphology in dip section, size, and facies
21 22	23	characteristics support an interpretation of subcritical sediment waves within a CLTZ setting. Some
23 24	24	sediment waves show steep (10-25°) unevenly spaced (10-100 m) internal truncation surfaces that
25	25	are dominantly upstream-facing, which suggests significant spatio-temporal fluctuations in flow
20	26	character. Their architecture indicates individual sediment wave beds accrete upstream, in which
28 29	27	each swell initiates individually. These depositional processes do not correspond with known
30 31	28	bedform development under supercritical conditions. Lateral switching of the flow core is invoked to
32 33	29	explain the sporadic upstream-facing truncation surfaces, and complex facies distributions vertically
34 35	30	within each sediment wave. Variations in bedform character are related to the axial to marginal
36 37	31	positions within a CLTZ. This The depositional processes documented do not correspond with known
38	32	bedform development under supercritical conditions. The proposed process model departs from
39 40	33	established mechanisms of sediment wave formation by emphasising the evidence for subcritical
41 42	34	rather than supercritical conditions, and highlights the significance of lateral and temporal variability
43 44	35	in flow dynamics and resulting depositional architecture.
45 46 47	36	INTRODUCTION
47	37	Bedforms are rhythmic features that develop at the interface of fluid flow and a moveable bed (e.g.
49 50	38	Southard, 1991; Van der Mark et al., 2008; Baas et al., 2016). Sediment waves are a type of long
51 52 53 54 55 56 57	39	wavelength (tens of ms to kms) depositional bedform that vary in grain size from mud- to gravel-
58		
59		
60		

3 4		3
5 6 7	40	dominated, linked to their depositional setting (Fig. 1) (Wynn & Stow, 2002). They have been
/ 8	41	identified in numerous modern channel-lobe transition zones (CLTZs) (Normark & Dickson, 1976;
9 10	42	Damuth, 1979; Lonsdale & Hollister, 1979; Normark et al., 1980; Piper et al., 1985; Malinverno et al.,
11 12	43	1988; Praeg & Schafer, 1989; Howe, 1996; Kidd et al., 1998; Morris et al., 1998; McHugh & Ryan,
13 14	44	2000; Migeon et al., 2001; Normark et al., 2002; Wynn & Stow, 2002; Wynn et al., 2002a,b;
15 16	45	Heinïo <u>Heiniö</u> & Davies, 2009), where they form part of a distinctive assemblage of depositional and
17 18	46	erosional bedforms (Mutti & Normark, 1987, 1991; Normark & Piper, 1991; Palanques et al., 1995;
19 20	47	Morris et al., 1998; Wynn et al., 2002a,b; Macdonald et al., 2011). However, the detailed
21 22	48	sedimentological and stratigraphic record of sediment waves from CLTZ and channel-mouth settings
23	49	is not widely documented.
25 25	50	Vicente Bravo & Robles (1995) described hummock-like and wave-like depositional bedforms from
20 27 28	51	the Albian Black Flysch, NE Spain. The hummock-like bedforms (5 to 40 m wavelength and a few
28 29	52	decimetres to 1.5 m high) were interpreted to be genetically related to local scours. The wave-like
30 31	53	bedforms (5 and 30 m wavelength and a few cm to 0.7 m high) seen in longitudinal sections exhibit
32 33	54	symmetric to slightly asymmetric gravel-rich bedforms. Ponce & Carmona (2011) identified sandy
34 35	55	conglomeratic sediment waves with amplitudes up to 5 m and wavelengths ranging between 10 to
36 37	56	40 m at the northeast Atlantic coast of Tierra del Fuego, Argentina. Ito et al. (2014) described
38 30	57	medium- to very coarse-grained sandstone tractional structures from a Pleistocene canyon-mouth
40	58	setting within the Boso Peninsula, Japan, with wavelengths up to 40 m and crest heights up to 2 m.
41	59	These coarse-grained examples from Japan, Argentina, and Spain lack detailed internal facies
43 44	60	descriptions and structure. Therefore, the processes responsible for the inception and morphological
45 46	61	evolution of sediment waves within CLTZ settings remain poorly constrained. Furthermore, dataData
47 48	62	on long wavelength finer-grained sediment waves in the rock record are largely missing (Fig. 1),
49 50	63	ascribed to their wavelength and poor exposure potential (Piper & Kontopoulos, 1994), in contrast
51 52	64	to modern). Modern examples that are dominantly fine grained (silt to mud) and show substantial
53 54	65	wavelengths (Fig. 1). are typically interpreted as large supercritical bedforms (Symonds et al.,
55		

2		
3 4 5		4
5 6 7	66	2016), similar to cyclic steps. This is due to observations from geophysical data of their short lee-
/ 8 0	67	sides and long depositional stoss-sides, and apparent single bedform structures with upstream
9 10	68	sediment wave migration as a sinusoidal wave (Cartigny et al., 2014; Hughes-Clark, 2016; Covault et
11 12	69	al., 2017). Indeed, upstream migration of sediment waves is taken as an indicator of bedform
13 14	70	evolution under supercritical flow conditions (Symonds et al., 2016). However, the processes
15 16	71	responsible for the inception and morphological evolution of sediment waves within CLTZ settings
17 18	72	remain poorly constrained, and high-resolution observations of their sedimentology are needed to
19 20	73	explore the balance of subcritical and supercritical processes in their inception, evolution, and
20 21 22	74	depositional record.
22 23 24	75	Here, we aim to improve understanding of sediment wave development in CLTZs through studying
25	76	multiple stratigraphic sections from well-constrained base-of-slope systems (Unit B, Laingsburg
26 27	77	depocentre, Karoo Basin) where distinctive fine to very-fine-grained sandstone depositional
28 29	78	bedforms with complex architecture, facies and stacking patterns are exposed. The objectives are: 1)
30 31	79	to document and interpret the depositional architecture and facies patterns of these sandstone
32 33	80	bedforms, and 2) to discuss their origin and formative processes2) to discuss the topographic
34 35	81	controls on their inception, 3) to propose a process model for sediment wave development under
36 27	82	subcritical rather than supercritical flow conditions, and, 4) to consider the controls on the
38	83	preservation potential of sediment wave fields in channel-lobe transition zones.
39 40 41	84	REGIONAL SETTING
41 42 43	85	The southwest Karoo Basin is subdivided into the Laingsburg and the Tanqua depocentres. The Ecca
44 45	86	Group comprises a ~2 km-thick shallowing-upward succession from distal basin-floor through
45 46 47 48	87	submarine slope to shelf-edge and shelf deltaic settings (Wickens, 1994; Flint et al., 2011). The deep-
	88	water deposits of the Karoo Basin have a narrow grain size range from clay to upper fine sand. Within
49 50	89	the Laingsburg depocentre , (Figs 2A and 3A), Unit B, the focus of this study, is stratigraphically
51 52 53 54 55 56	90	positioned between underlying proximal basin-floor fan deposits of Unit A (e.g. Sixsmith <i>et al.,</i> 2004;

Prélat & Hodgson, 2013) and the overlying channelised slope deposits of the Fort Brown Formation (Unit C-G; e.g. Hodgson et al., 2011; Van der Merwe et al., 2014). Unit B comprises a 200 m thick section at the top of the Laingsburg Formation (Grecula et al., 2003; Flint et al., 2011; Brunt et al., 2013), and is subdivided in three subunits, B1, B2 and B3 (Fig. 3A; Flint et al., 2011; Brunt et al., 2013). Unit B is well-exposed for more than 350 km² providing both down dip and across strike control (Brunt et al., 2013) with over 15 km long exposed sections along the limbs of the Baviaans and Zoutkloof synclines and Faberskraal anticline (Fig. 2A). The study area is situated between well-defined up-dip slope channels and down-dip basin-floor lobes (Fig. 3Figs 3B and 3C; Grecula et al., 2003; Pringle et al., 2010; Brunt et al., 2013). Therefore, the palaeogeographic setting is interpreted to be a base-of-slope setting, where CLTZ-elements are more likely to be preserved (Fig. 3 Figs 3B and <u>3C</u>). METHODOLOGY AND DATASET Two areas of Unit B exposure were studied in detail: one located in the southern limb of the Zoutkloof Syncline (Doornkloof) and one located in the southern limb of the Baviaans Syncline (Old Railway) (Fig. 2). Stratigraphic correlations using closely-spaced sedimentary logs, (m's to tens of m's), photomontages, and walking out key surfaces and individual beds with a handheld GPS enabled construction of architectural panels. Where the exposure allowed collection of sub-metre-scale sedimentary logs individual beds were correlated over multiple kilometres. Within the Doornkloof area (Fig. 2B) 11 long (>20-200 m) sedimentary logs, supported by 31 short (<5 m) detailed sedimentary logs, were collected along a 2 km long E-W section. Particular emphasis was placed on bed-scale changes in facies to construct detailed correlation panels. Additionally, a research borehole drilled 330 m north of the studied outcrop section (DK01; 460983-6331775 UTM; Hofstra, 2016) intersected the lower 92 m of Unit B (Figs 2A and 2B). Within the Old Railway area (Fig. 2C), eight short and closely spaced (5-20 m distance) detailed sedimentary sections were collected.

1		
2		
3		
4 5		6
6 7	115	Palaeocurrents were collected from ripple-laminated bed tops and re-orientated, with 117
, 8 9 10 11	116	palaeoflow measurements at Doornkloof and 87 from the Old Railway area.
	117	FACIES AND ARCHITECTURE
12 13	118	Both study areas contain sandstone-prone packages that comprise bedforms with substantial
14 15	119	downdip thickness and facies changes without evidence for confinement by an incision surface. The
16 17 18 19 20 21 22 23	120	rate of thickness change and the range of sedimentary facies are markedly different from that
	121	documented in basin-floor lobes (e.g. Prélat & Hodgson, 2013). Bed thicknesses change (metre scale)
	122	in a downstream-orientated direction on short spatial-scales (tens of metres), compared to lateral
	123	continuous bed thickness (hundreds of metres) known from lobes (e.g. Prélat et al., 2010). Similarly,
24	124	facies change markedly over metre scales, in contrast to lobes where facies changes are transitional
25 26 27 28 29 30 31 32 33 34 35 36 37 38	125	over hundreds of metres (e.g. Prélat et al., 2009). Depositional bedforms in both study areas are
	126	present within a sandstone-prone (>90%) package of dominantly medium-bedded structured
	127	sandstones, interbedded with thin-bedded and planar-laminated siltstones. The grain size range is
	128	narrow, from siltstone to fine-grained sandstone, with a dominance of very-fine-grained sandstone.
	129	Facies characteristics
	130	The sedimentary facies within the bedforms are subdivided into four types: structureless (F1),
	131	banded to planar-laminated (F2), small-scale bedform structures (F3), and mudstone clast
39 40	132	conglomerates (F4).
41 42	133	F1: Structureless sandstones show minimal variation or internal structure and are uniform in
43 44	134	grainsize (fine-grained sandstone). Locally, they may contain minor amounts of dispersed sub-
45 46	135	angular mudstone clasts (1-10 cm). in diameter) and flame structures at bed bases.
47 48	136	Interpretation: These sandstones are interpreted as rapid fallout deposits from sand rich high-
49	137	density turbidity currents (Kneller & Branney, 1995; Stow & Johansson, 2000; Talling et al., 2012)
50 51	138	with mudstone clasts representing traction-transported bedload. Flame structures at the bases of
52 53	139	structureless beds are associated with syn-depositional dewatering (Stow & Johansson, 2000).
54 55		
56		
57		
58		

2		
3 4		7
5		
6 7	140	F2: Banded and planar-laminated sandstones show large variations in character. The differentiation
8 9	141	between planar-laminated and banded facies is based on the thickness and character of the laminae
10 11	142	or bands. In banded sandstones, the bands are 0.5-3 cm thick and defined by alternations of clean
12	143	sand bands, and dirty sand bands rich in mudstone chipsclasts and/or plant fragments. Planar-
13 14	144	laminations show <1 cm thick laminae that are defined by clear sand-to-silt grain-size changes.
15 16	145	Furthermore, bands can be wavy or convolute, show substantial spatial thickness variations (<1 cm)
17 18	146	at small (<1 m) spatial scales, and exhibit subtle truncation at the bases of darker bands. Banded
19 20	147	facies are mudstone clast-rich where close to underlying mudstone clast conglomerates.
21	148	OccasionallyIn some places, banded sandstone beds can be traced upstream into mudstone clast
22 23 24	149	conglomerates. Where this facies is observed, bed thicknesses typically exceed 0.5 m.
25 26	150	Interpretation: Planar-lamination and banding are closely associated, and in many cases are difficult
27 28	151	to distinguish. This suggests that their depositional processes are closely related and are therefore
20 29 20	152	combined here into a single facies group. Planar laminated sandstones can be formed under dilute
31	153	flow conditions via the migration of low-amplitude bedwaves (Allen, 1984; Best & Bridge, 1992), or
32 33	154	under high-concentration conditions from traction carpets (Lowe, 1982; Sumner et al., 2008; Talling
34 35	155	et al., 2012; Cartigny et al., 2013). The banded facies are interpretedmay be formed as traction
36 37 38 39 40	156	carpet deposits from high-density turbidity currents and are comparable to the Type 2 tractional
	157	structures of Ito et al. (2014) and the H2 division of Haughton et al. (2009). Deposits related to
	158	traction carpets can show largesignificant variation in facies characteristics (e.g. Sohn, 1997; Cartigny
41 42	159	et al., 2013). Alternatively, the banded facies may represent low-amplitude bedwave migration that
43 44	160	formed under mud-rich transitional flows (Baas et al., 2016).
45 46	161	F3: Fine-grained sandstones with decimetre-scale bedform structures. The majority (~80%) of this
47 48	162	facies is represented by climbing ripple-lamination, commonly with stoss-side preservation. Locally,
49 50	163	small-scale (wavelengths of decimetre-scale, and heights of a few cm) bedforms are present that
51 52	164	show convex-up laminae, biconvex tops, erosive to non-erosive basal surfaces, and laminae that can
53 54		
55		
56 57		
58		
59		
60		

1 2			
3 4 5			8
6 7	165		thicken downwards (Figs 4A and 4C). In some cases, the bedforms show distinct low-angle climbing
, 8 0	166		(Fig. 5A). Isolated trains of decimetre-scale bedforms are present between banded/planar-laminated
9 10 11 12	167		facies (Figs 4B and 4C), whilstwhereas those exhibiting low-angle climbing can form above
	168	l	banded/planar-laminated sandstone and in some cases transition into small-scale hummock-like
13 14	169		features (Fig. 4A). These hummock-like bedforms consist of erosively based, cross-cutting, concave-
15 16	170		and convex-up, low- to high-angle (up to 25°) laminae sets (Fig. 4A). They have decimetre to
17 18	171		centimetre wavelengths, and amplitudes up to 10 cm. Locally, internal laminae drape the lower
19 20	172		bounding surfaces and these tend to be low angle surfaces, whilstwhereas elsewhere laminae
21	173	I	downlap onto the basal surface, typically at higher angles (Fig. 4A). Where laminae are asymmetric
23	174		they accretehave accreted in a downslope direction.
24 25 26	175		Furthermore, sinusoidal laminations are observed (Fig. 4A) with exceptional wavelengths (>20 cm)
27 28	176		and angles-of-climb (>45°) in comparison to conventional stoss-side preserved climbing ripples (15-
29 30	177		45°; 10-20 cm). These features also differ from convolute laminae/banding as they do show a
31	178		consistent wavelength and asymmetry. However, it is difficult to consistently make clear distinctions
32 33	179		between stoss-side preserved ripples and sinusoidal laminations. Hence, they are grouped together
34 35 36	180		into 'wavy bedform structures'.
37 38	181		F3 facies is most common at bed tops, but is also observed at bed bases, where laterally they are
39	182		overlain by an amalgamation surface. Locally, mudstone clasts (<1-4 cm) have been observed within
40 41	183		ripple-laminated segments.
42 43 44	184		Interpretation: Climbing ripple-lamination is interpreted as high rates of sediment fallout with
45	185		tractional reworking from flows within the lower flow regime (Allen, 1973; Southard & Boguchwal,
40	186		1990). The mudstone-clasts are interpreted to be the result of overpassing of sediments on the bed
48 49	187	I	(Raudkivi, 1998; Garcia, 2008). When sedimentation rate exceeds the rate of erosion at the ripple
50 51	188		reattachment point, the stoss-side deposition is preserved and aggradational bedforms develop
52 53	189		(Allen, 1973). This is indicative of high rates of sediment fallout (Jopling & Walker, 1968; Allen, 1973;
54 55 56 57			
58 59			
60			

Jobe *et al.*, 2012), attributed to rapid flow deceleration from moderate-to-low concentration
turbidity currents (Allen, 1973). Sinusoidal lamination is interpreted as a type of climbing ripple
lamination, marked by very high sedimentation rates, leading to similarity in thickness between stoss
and lee sides (Jopling & Walker, 1968; Allen, 1973; Jobe *et al.*, 2012).

The more convex bedforms (Figs 4A and 4C) bear similarities with washed out ripples that are formed under high near-bed sediment concentration conditions at the transition from ripples to upper stage plane beds in very fine sands (Baas & de Koning, 1995), and with combined-flow ripples that have rounded tops and convex-up lee slopes (Harms, 1969; Yokokawa et al., 1995; Tinterri, 2011). In turbidites, these bedforms have been termed 'rounded biconvex ripples with sigmoidal laminae', and have been associated with reflected flow facies where turbidity currents have interacted with topography (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011; Zecchin et al., 2013; Tinterri & Tagliaferri, 2015). A third possibility is that these are decimetre-scale stable antidunes since these can exhibit biconvex tops and in some cases convex-up cross-lamination (Alexander et al., 2001; Cartigny et al., 2014; Fedele et al., 2017), although these bedforms may also frequently show concave laminae (Cartigny et al., 2014). Typically, antidune laminae dip upstream (e.g., Alexander et al., 2001; Cartigny et al., 2014), although downstream migrating antidunes are known from both open-channel flows (e.g., Kennedy, 1969) and gravity currents (Fedele et al., 2017).

The 'hummocky-type' structures (Fig. 4A) with high-dip angles (up to 25°), draping of laminae, and limited variation in laminae thickness, show similarities with anisotropic hummocky cross stratification (HCS) from combined oscillatory-unidirectional flows (e.g., Dumas et al., 2005; Dumas & Arnott, 2006). Maximum dip angles of laminae in strongly anisotropic HCS can be around 25-30° (Dumas et al., 2005; Dumas & Arnott, 2006) much higher than for symmetrical forms, which are typically less than 15° (Harms et al., 1975; Tinterri, 2011). However, thickening and thinning of laminae are expected in HCS (Harms et al., 1975) and are not clearly observed in the hummocky-like bedforms here. Such HCS-like hummocky bedforms have been interpreted from basin plain

2		
3		
4		10
5		
6 7	215	turbidites to be related to reflected flows from topographic barriers (Tinterri, 2011; Tinterri & Muzzi
8 9	216	Magalhaes, 2011). Hummock-like bedforms in turbidites have also been interpreted as antidunes
10	217	(e.g., Skipper, 1971; Prave & Duke, 1990; Cartigny et al., 2014). Antidunes are typically associated
12	218	with concave upward erosive surfaces, extensive cross-cutting sets if they are unstable antidunes,
13 14	219	bundles of upstream dipping laminae (if upstream migrating), laminae with low dip angles, low angle
15 16	220	terminations against the lower set boundary, some convex bedding, and structureless parts of fills
17 18	221	(e.g., Alexander et al., 2001; Cartigny et al., 2014; Fedele et al., 2017). The hummock-like bedforms
19 20	222	in the present study share many similarities with these antidunes, however there is an absence of
21	223	structureless components, the draping of surfaces is more pronounced and more typical of HCS, the
22	224	approximately parallel nature of laminae within sets is more pronounced and the number of laminae
24 25	225	is greater. Furthermore, set bundles accrete downstream suggesting that if these are antidunes then
26 27	226	they are downstream-migrating forms. In summary, the hummock-like bedforms show greater
28 29	227	similarity to those HCS-like structures described from reflected flows (Tinterri, 2011; Tinterri & Muzzi
 30 31	228	Magalhaes, 2011), rather than features associated with downstream migrating antidunes.
32	220	The observed combination of bicenvey rinnles and anisetronic hummers like features, and the

The observed combination of biconvex ripples and anisotropic hummock-like features, and the transitions between these bedforms in some vertical sections, is also in agreement with that observed in some turbidity currents interacting with topography (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), further suggesting that the hummock-like features may be related to combined flows, rather than the product of antidunes. This possibility of topographic-interaction induced hummock-like and biconvex ripple forms is discussed further, after the topography of the sediment waves is introduced.

45
46
47
47
43
47
48
49
238
48
49
238
50
51
239
49
30
41
42
43
44
44
45
45
46
47
48
49
49
49
50
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51
51</li

Interpretation: Mudstone clast conglomerates are interpreted as lag deposits (e.g. Stevenson et al., 2015) from energetic and bypassing high-density turbidity currents. Bed architecture and facies distribution: Doornkloof - Subunit B1 At Doornkloof (Fig. 2), subunit B1 has an average thickness of ~5 m (Fig. 5) and comprises thin- to thick-bedded sandstones, thin-bedded siltstones and lenticular mudstone clast conglomerates (0.1-0.3 m thick, 1-70 m wide) (Figs 5 and 6A-E). There are substantial variations in bed thicknesses and sandstone-to-siltstone proportions along the 1.5 km long dip section (Fig. 5). Locally, medium- to thick-bedded sandstones occur, which comprise bedforms within a package of thin-bedded siltstones and sandstones. These bedforms show regional changes to more tabular thin-bedded sandstones and siltstones (log 01/log 08, Fig. 5). Within the exposed section (~ 2 km), there are three sandstone-prone bedform-dominated sections (200 m to 300 m in length) separated by siltstone-prone sections (150 to 400 m in length), which have an overall tabular appearance (Fig. 6). The DK01DK01 core (Figs 5 and 6) is located 330 m to the north of the western limit of Section I where subunit B1 is a ~5 m thick package of interbedded thin structured sandstones and laminated siltstones (Fig. 6). Multiple erosion surfaces are present at the base, and overall in the DK01 core the subunit B1 succession fines- and thins-upward. Palaeoflow of the B1 subunit is dominantly ENE-orientated (082°) (Fig. 2B) but shows some deviation within the eastern part of the section (log 42 - Figs 2B and 5) towards the NNE (023°). The medium- to thick-bedded sandstones within the sandstone-prone sections of Section I, orientated (079°-259°) subparallel to palaeoflow, show large lateral variations in thickness and facies. The bedforms comprise structureless (F1), planar-laminated to banded (F2), and ripple-laminated (F3) sandstones (Fig. 6A-E). The facies, architecture and thickness changes of one amalgamated bed (Bedform a) are described in detail (Fig. 5). Bedform a thickens (up to 2.5 m) and thins (<20 cm) multiple times, forming a down-dip pinch-and-swell morphology. Locally, the base of Bedform a is marked by shallow erosion (<0.5 m deep; <30 m long) and occasionally amalgamates in some places

1 2			
3 4 5		12	
6 7	265	is amalgamated with the underlying sandstone beds (Figs 5 and 7). Where Bedform a exceeds 0.5 m	
8	266	in thickness, banded (F2) sandstone facies is dominant, and is occasionallyin some places underlain	
9 10	267	by structureless (F1) divisions, or exhibits climbing ripple-lamination at the bed top (F3). Where	
11 12	268	Bedform a is thin (<0.5 m thick), it is dominated by climbing-ripple lamination (F3). Below Bedform a,	
13 14	269	lenses of mudstone conglomerate (<30 m long; 5-30 cm thick) can be observed at various locations	
15 16	270	over the complete section. In some locations (e.g. log 16/18, Fig. 5), banded sandstone (F2) beds	
17 18	271	(Fig. 6D) can be observed intercalated with mudstone clast conglomerate lenses (Fig. 7). These	
19	272	banded beds pinch out or show a transition towards mudstone clast conglomerates upstream, and	
20 21	273	amalgamateare amalgamated with Bedform a downstream. At the same stratigraphic level as	
22 23	274	Bedform a, the DK01 core shows one pronounced 20 cm thick bed with angular mudstone clasts (<1-	
24 25	275	5 cm diameter) that can be correlated to <i>Bedform a</i> .	
20 27 28	276	In Bedform a, six truncation surfaces (10-25°) are identified within the eastern limit of the section	
29 30	277	(Fig. 5), at places where the bedform exceeds 1 m in thickness. All truncation surfaces are sigmoid-	
31	278	shaped and flatten out upstream and downstream within the bed (Fig. 6E). One eastward	
32 33	279	(downstream) orientated truncation surface (Fig. 6B) in the lower part of the bed is observed at log	
34 35	280	17 (Fig. 5). However, sigmoidal westward (upstream) facing truncation surfaces are most common in	
36 37	281	the upper portion of the bed and are spaced 15-20 m apart. They cut banded (F2) and ripple-	
38	282	laminated (F3) sandstone facies, and are sharply overlain by banded sandstone facies (F2) with bands	
40	283	aligned parallel to the truncation surface, or by climbing-ripple laminated segments (Fig. 6E). Abrupt	
41 42	284	upstream thinning (SW) and more gradual downstream thickening (NE) givesgive Bedform a, an	
43 44	285	asymmetric wave-like morphology in dip section. Small-scale bedforms (F3) are solely present at the	
45 46	286	top of the wave-like morphology, and dominantly comprise climbing-ripple lamination, with	
47 48	287	occasional wavy bedforms (stoss-side preserved climbing ripples and/or sinusoidal laminations) at	
49	288	the thicker sections of the bedform (Fig. 5). At abrupt bed thickness changes associated with steep	
50 51	289	westward-facing truncation surfaces (>15°) (logs 16/19/21, Fig. 5), shallow scour surfaces (<0.35 cm)	
52 53 54	290	can be observed cutting that cut into the top surface of <i>Bedform a</i> , overlain and onlapped by thin-	
55 56			

13
le-lamination
iltstone clasts
ounded, and
nother
lform a
ns, Bedform a
ıg Bedform a
ge of
form a
thickness and
es. The bed
one beds
ess variations
one beds
oth western
re many
2 is generally
of dispersion,
ie middle
y subparallel
led (0.1-0.5 m
from the
ge fc th es or ot re control of the second s

2 3 4 5		14
6 7	316	main face at the base of B2 (Section II – Fig. 2B) permit tracing out of individual beds over a distance
8 9	317	of 230 m and tracktracking of internal facies changes (Fig. 6F-J). Two beds (Bedform b and Bedform
10	318	c) change in thickness (0.5-2 m for <i>Bedform b</i> and 0.3-1.2 m for <i>Bedform c</i>) and contain multiple
12	319	internal truncation surfaces of which six are westward (upstream) facing and one is eastward
13 14	320	(downstream) facing. Truncation surfaces cut climbing ripple-laminated facies (F3) and banded facies
15 16	321	(F2) with maximum angles varying between 20-30° that shallow out and merge with the base of the
17 18	322	bed (Figs 6G, 6H and 6J). They flatten out in the downstream direction within the bed and are
19 20	323	overlain by banded sandstone facies (F2). In <i>Bedform b</i> , the rate of westward thinning is more
21	324	abrupt than eastward, giving an asymmetric wave-like morphology (Fig. 9B). This abrupt westward
23	325	thinning is coincident with locations of westward (upstream) orientated truncation surfaces. In the
24 25	326	eastern part, 110 m separates two truncation surfaces, in an area associated with bed thinning.
26 27	327	However, towards the western part of <i>Bedform b</i> , there is only 25-30 m between the westward
28 29	328	(upstream) orientated truncation surfaces, with no abrupt bed thinning.
30 31	329	There is a high degree of longitudinal and vertical facies variability within <i>Bedform</i> b and c (Figs 4 and
32 33	330	9B). Commonly, longitudinal facies changes are accompanied by bed thickness changes. Locally, the
34 35	331	bases of thicker parts of the bedforms are mudstone clast-rich. Bed tops show small-scale bedform
36 37	332	structures (F3) at most locations. Banded sandstone facies overlie the truncation surfaces (Figs 6G,
38	333	6H and 6J). Ripple-laminated facies (F3) within the middle or lower parts of <i>Bedform b</i> and <i>c</i> indicate
39 40	334	flow directions that deviate (NW to N) from the regional palaeoflow (NE) (Figs 4A, 6F and 6H),
41 42	335	while whereas the palae of low direction of the ripples at the top of the bedforms are consistent with
43 44	336	the regional palaeoflow. Detailed analysis of well-exposed sections (Fig. 4) indicates that many
45 46	337	laminated and banded sections are wavy and separated by low angle truncation or depositional
47 48	338	surfaces. Locally, small-scale bedform structures (F3) are present in patches (Figs 4B and 4C) (<10 cm
49	339	thick; couple of metres wide), which show downstream and/or upstream facies transitions to
50	340	banded/planar-laminated facies (F2), as well as examples of flame structures (Fig. 4C). The small-
52 53 54 55 56 57	341	scale bedform structures (F3) show a lot of variability, with hummock-like features observed above

1 2 3		
4 5		15
6 7	342	biconvex ripples at both the downstream end of swells, and directly below truncation surfaces at the
8 9	343	upstream end of swells (Fig. 4A). Additionally, both hummock-like features and biconvex ripples
10 11	344	have been observed at the base of <i>Bedform</i> b (log 38; Fig. 9B). Similar to <i>Bedform a, Bedform b & c</i>
12	345	show wavy bedform structures at the top of swells, particularly where they are the thickest. Bedform
13 14	346	b is topped in the easternmost exposure by a scour surface that cuts at least 0.5 m into Bedform b
15 16	347	and is amalgamated with an overlying pinch-and-swell sandstone bed (Fig. 9B). Medium- to thin-
17 18	348	bedded structured sandstones are present above and below Bedform b and c, which do not show
19 20	349	any facies or thickness changes over the exposed section.
21 22	350	The basal succession of subunit B2 in the DK01 core, at the same stratigraphic level as Bedform b
23 24	351	and c, comprises thick-bedded structureless (F1) to banded (F2) (>3 m) sandstones. Bed bases are
25	352	sharp and structureless and contain a variable amount of mudstone clasts (<1 cm). The middle to
20	353	upper parts of these beds show banded facies (F2) with clear mudstone clast-rich and -poor bands,
28 29	354	which pass through wavy lamination to climbing ripple (F3) and planar lamination at bed tops.
30 31	355	Above Section II, in both outcrop and core, a 15 m thick sandstone package shows a substantial
32 33	356	increase in bed thicknesses (max. 4.5 m), mainly due to bed amalgamation (Fig. 9A). Some of these
34 35	357	beds show a wave-like (asymmetric) morphology, similar to that observed in Bedforms b and c.
36 37	358	Abrupt bed thinning or pinch-out is common. These pinch-outs are primarily associated with
38 39	359	depositional geometry, with rare examples of bed truncation by erosion surfaces. Bounding surfaces
40 41	360	can be identified within the sandstone package, which are defined by successive upstream
42	361	depositional bed pinchoutpinch-out points (Fig. 10), with local (<2 m long) shallow (<0.3 m) erosion
43	362	surfaces. These bounding surfaces separate multiple packages of downstream shingling (three to
45 46	363	four) sandstone beds. The packages of pinch-and-swell beds are stacked in an aggradational to
47 48	364	slightly upstream orientated manner (Fig. 10) and are topped by a >60 m thick package of tabular
49 50	365	and laterally continuous medium- to thin-bedded structured sandstones. At the same interval in the
51 52	366	Dk01DK01 core a transition can be observed from thick- to medium-bedded, dominantly banded
52 53 54 55 56 57	367	(F2), sandstones towards more medium- to thin-bedded structured (F3) sandstones.

1			
2 3			
4 5		16	
5 6 7	368	Bed architecture: Old Railway – Subunit B2	
8 9	369	At this locality on the southern limb of the Baviaans Syncline, the lower 10 m of subunit B2 is	
10 11	370	exposed for 100 m EW (Fig. 2C). Here, B2 is a medium- to thin-bedded sandstone-prone unit that	
12 13	371	shows substantial lateral thickness changes without evidence of a basal erosion surface (Fig. 11).	
14	372	Mean palaeoflow is ESE (121°) (Fig. 2C), indicating the exposure is sub-parallel to depositional dip.	
16	373	The sandstone beds are dominantly climbing ripple laminated (F3), with some banded/planar	
17	374	laminated (F2) and structureless divisions (F1).	
19 20	375	Multiple climbing ripple laminated beds contain dispersed small mudstone and siltstone clasts (Fig.	
21 22	376	11C). The section is characterised by an alternation of beds showing typical pinch-and-swell	
23 24	377	geometries (0.5-2 m) and more tabular thin-bedded (<0.5 m) sandstones. Locally, individual beds	
25 26	378	pinch-and-swell multiple times over a distance of \sim 40 m, with wavelengths varying from 15 m to >40	
27 28	379	m. Where there are swells, bed bases truncate underlying beds (Fig. 11D). Siltstones comprise only	
29 30	380	$^{\sim}$ 10% of the succession and are thin-bedded and planar-laminated, with intercalated thin very fine-	
31 22	381	grained sandstones (<1 cm).	
33	382	Towards the top of the section, a 40 cm thick very fine-grained sandstone bed abruptly fines and	
34 35	383	thins downstream to a centimetre-thick siltstone bed (Fig. 12). This bed thickens and thins along a	
36 37	384	~20 m distance (Fig. 12) forming sandstone lenses, before regaining original thickness (40 cm).	
38 39	385	Locally, within this zone, the bed longitudinally grades to siltstone and is perturbed from the top by	
40 41	386	decimetre-scale scour surfaces (0.2-3 m long, couple of cm's deep). At log 04 (Fig. 11A), a bed that	
42 43	387	pinches downstream has a downstream-orientated scour on its top surface, which is overlain by	
44 45	388	thin-bedded sandstones and siltstones that pass upstream beyond the confines of the scour surface.	
46	389	A downstream thickening bed with an erosive base truncates these beds. The majority of the	
48	390	observed pinch-and-swell bedforms stack in a downstream direction (Fig. 11A). However, in the	
49 50	391	middle of the package at log 1, one bed stacks in an upstream manner, giving the overall package an	
51 52			
53 54			
55			
56			
57 50			
оо 59			
60			

2			
3 ⊿		17	
5			
6 7	392	aggradational character. This is similar to the stacking patterns observed within subunit B2 at the	
8 9	393	Doornkloof section (Fig. 10).	
10 11	394	Sediment waves within channel-lobe transition zones	
12 13	395	The Doornkloof and Old Railway sections show bedforms with clear pinch-and-swell morphology	
14 15	396	that are subparallel to flow direction. These bedforms developed in a base-of-slope setting without	
16 17	397	any evidence of a large-scale basal confining surface. Bed-scale amalgamation and scouring are	
18 19	398	common in the two study areas, however the more significant component of downstream bed	
20 21	399	thickness changes is depositional. Their geometry and dimensions (>1 m height; 10-100 m	
22	400	wavelength), support their classification as sediment waves (Wynn & Stow, 2002). The bedforms	
23	401	described from the Doornkloof area (Beds a-c) show clear asymmetric pinch-and-swell	
25 26	402	morphologies, related to internal upstream-facing truncation surfaces (Figs 5 and 9). The well-	
27 28	403	constrained base-of-slope setting (Brunt et al., 2013), the lack of confining erosion surfaces, and the	
29 30	404	lobe-dominated nature of Unit B downdip (Figs 3B and 3CFig-3) are consistent with an	Formatted: Font: Calibri
31 32	405	interpretation that the sediment waves formed within a CLTZ setting.	
33 34	406	DISCUSSION	
35 36	407	Topographic control on sediment wave inception	
37 38	408	The interpreted CLTZ setting for the sediment waves means that initial deposition is most likely	
39 40	409	related to flow expansion at the channel-mouth (e.g. Hiscott, 1994a; Kneller, 1995; Mulder &	
41 42	410	Alexander, 2001). The occurrence of abrupt downstream bedform thickening (e.g. Bedform a, Fig. 5),	
43 44	411	indicates a marked decrease in flow capacity resulting in a temporary increase of deposition rates	
45 46	412	(e.g. Hiscott, 1994a). Although deposition is expected in areas of flow expansion, this does not	
47 48	413	explain why sediment wave deposition appears to be localised (e.g. log 02-07; Fig. 5). Both the	
49	414	inception and localised deposition <u>development</u> of the sediment waves are interpreted to be related	
50 51	415	to subtle and evolving the presence of seabed relief at the time of deposition. (dm's to m's	
52 53	416	amplitude). Seabed irregularities are common in base-of-slope settings, and minor defects (such as	
54	I		
55 56			
50 57			
58			
59			
60			

1			
2 3			
4 5		18	
6 7	417	scours lined with mudstone clast conglomerates; Fig. 7) could have triggered deposition from flows	
8 9	418	close to the depositional threshold (Wynn et al., 2002a). The presence of bedforms overlying swells	
10 11 12 13 14	419	of older bedforms, such as at the upstream location of <i>Bedform a</i> (Figs 5 (logs 2-7) and 8) or the	
	420	sediment waves overlying <i>Bedform b</i> in subunit B2 (Fig. 10), suggest that relief of older bedforms,	
	421	and consequent flow deceleration, may also act as a nucleus for later sediment wave development.	
15 16	422	The locally observed decimetre-scale deep scours probably had a more variable effect on sediment	
17 18	423	wave development. In some cases it resulted in topographic relief that could help sediment wave	
19 20	424	nucleation (e.g. log 4, Fig. 11) and in other cases the scours remove positive depositional relief (e.g.	
21	425	Fig. 12) and therefore they will have a slight negative effect on sediment wave nucleation. The	Formatted: Font: Calibri
22	426	aggradational character of the sediment wave packages (Figs 10 and 11A) supports a depositional	
24 25	427	feedback mechanism. Depositional bedforms form positive topography, which may help to nucleate	
26 27	428	sites of deposition and the development of composite sediment waves forming the complicated	
28 29	429	larger-scale sediment wave architecture (Figs 10 and 11A).	
30 31	430		
32 33	431	Bed-scale process record	
34	122	The endineent wave demosite from CLTZ estations in Unit Dama diverse and show similiant fasion	
35 36	432	The sediment wave deposits from CLT2 settings in Unit B are diverse and show significant facies	
37 38	400	Variations on the sub-metre scale. The characteristics of the sediment wave deposits from the two	
39 40	404	Unit B datasets are discussed and compared.	
41	435	Bed-scale process record - Doornkloof section	
42 43	436	Facies of the sediment waves identified at the Doornkloof section are characterised by an	
44	437	assemblage of structureless (F1), banded and planar laminated (F2), and climbing ripple laminated	
46	438	(F3) sandstones. Local patches of structureless sandstone facies (F1) (Figs 5 and 9B) at bed bases,	
47	439	suggest periods of more enhanced deposition rates (e.g. Stow & Johansson, 2000). However, the	
49 50	440	sediment waves are dominated by banded facies, <u>likely</u> related <u>either</u> to traction-carpet deposition	
51 52	441	(Sumner et al., 2008; Cartigny et al., 2013) or low-amplitude bedwave migration under transitional	
53	I		
54			
55 56			
57			
58			
59			

3 4 5		19
6 7	442	flows (Baas et al., 2016). This suggests deposition from high concentration flows during bedform
8 9	443	development. The high degree of F2 variation (band thickness, presence of shallow truncations,
10	444	wavy nature) is explained by either: 1) turbulent bursts interacting with thea traction carpet (Hiscott,
11 12	445	1994b), or); 2) waves forming at the density interface between the <u>a</u> traction carpet and the
13 14	446	overlying lower-concentration flow, possibly as a result of Kelvin-Helmholtz instabilities, or a
15 16	447	combination of both processes (Figs 4 and 6) (Sumner et al., 2008; Cartigny et al., 2013).); 3) the
17 18	448	presence of bedwaves and associated development beneath mixed-load, mud-rich, transitional flows
19 20	449	(Baas et al., 2016), or some combination of these processes. There is a strong spatial and
21	450	stratigraphic relationship between mudstone clast conglomerates (F4) (Figs 7 and 8) and banded
22	451	sandstone facies (F2) with a high proportion of mudstone clasts. As the deposits underlying the
24 25	452	shallow erosion surfaces are predominantly siltstones, the mudstone clast materials must have been
26 27	453	entrained farther upstream, and are therefore interpreted as lag deposits from bypass-dominated
28 29	454	high-concentration flows (e.g. Stevenson et al., 2015). As scours are typically documented upstream
30 31	455	of sediment waves in modern CLTZs (Wynn et al., 2002a), the source of these mudstone clasts is
32	456	likely linked to local upstream scouring, supported by the angularity of the clasts (Johansson & Stow,
33 34	457	1995). The transition from banded facies (F2) to climbing ripple-laminated facies (F3), common at
35 36	458	the top of individual beds, <u>likely</u> represents a transition <u>change</u> from net depositional high
37 38	459	concentration flows, to steady deposition from moderate to low concentration flows, $\frac{1}{2}$, and / or a
39 40	460	corresponding change from mud-rich transitional flows to mud-poor flows. The dominance of this
41 42	461	facies group <u>(F3)</u> at bed tops (Figs 5 and 9B) is interpreted as the product of less-energetic and more
43	462	depositional tails of bypassing flows.
45	463	To understand the process record and evolution of the Unit B sediment waves, it is important to be
40 47	464	able to distinguish the record of a single flow event, from a composite body comprised of deposits
48 49	465	from multiple flow events. The majority of the observed bed thickness changes within the sediment
50 51	466	waves at the Doornkloof section are attributed to depositional relief although internally they show
52 53 54 55 56	467	steep internal truncation surfaces (Figs 5, 6 and 9). The erosion surfaces may suggest that this
57		

1 2		
3 4 5		20
6 7	468	depositional architecture is the result of multiple depositional and erosional flow events. However,
, 8 9 10	469	several lines of evidence suggest these are deposits produced from a single flow event. The
	470	preservation of upstream-facing truncation surfaces (Figs 5 and 9B), implies a significant component
11 12	471	of bedform accretion at the upstream end (Figs 13 and 14A). To be able to preserve upstream
13 14	472	younging truncation surfaces with angles up to 25° (close to the angle-of-repose), the erosion and
15 16	473	deposition within each bedform, is likely to be the result of a single flow event. Within subunit B2,
17 18	474	no bed splitting is observed and all truncation surfaces of <i>Bedform b</i> and <i>c</i> merge towards the bed
19	475	base as a single surface (Fig. 9B), leaving underlying strata untouched. This suggests an origin from a
20	476	single flow event for the entire bedform.
22	477	In subunit B1, all upstream facing truncation surfaces in the main sandstone body of Bedform a
24 25	478	merge onto a single surface within the composite deposit, in a similar manner to Bedform b and c,
26 27 28 29	479	further suggesting a single flow origin for the main sediment wave morphology. Additionally,
	480	Bedform a can be followed out for \sim 1 km in the upstream direction, and shows many small-scale (<5
30 31	481	m longitudinal distance) purely depositional undulations at the western end (Figs 5 and 8). These
32 33	482	flow parallel undulations are stratigraphically equivalent to the deposits above the most upstream
34 25	483	truncation surface and therefore, represent the youngest depositional phase of Bedform a
36	484	development. The absence of erosion surfaces or bedding planes between these undulations further
37 38	485	suggests that the main body of <i>Bedform a</i> was formed as a single event bed. The evidence therefore
39 40	486	supports the initiation and development of each wave-like bedform in the Doornkloof section
41 42	487	(Bedform a, b and c) to be during the passage of a single flow event. Therefore, the internal scour
43 44	488	surfaces and bedform undulations are interpreted to be the result of spatio-temporal flow
45 46	489	fluctuations from a single flow event. In contrast, the mudstone clast patches that underlie Bedform
40	490	a show upstream pinch-out of sandstone beds and downstream amalgamation (Fig. 7) indicating
48 49	491	multiple flow events formed these patches and the lower sandstone body prior to the initiation of
50 51	492	the main bedform. The presence of these mudstone clast patches results in a marked difference in
52 53 54 55 56 57	493	bedform architecture and bed thickness for <i>Bedform a</i> compared to <i>Bedform b</i> and <i>c</i> .
1		
----------	-----	
2		
3		
4		
5 6		
7	494	
8	495	
9 10	406	
11	490	
12	497	
14 15	498	
16	499	
17 18	500	
19	501	
20 21	502	
22 23	502	
23 24	503	
25 26	504	
27	505	
28 29	506	
30 21	507	
32	507	
33 34	508	
35	509	
30 37	510	
38 39	511	
40	540	
41 42	512	
43	513	
44 45	514	
46 47	515	
48	516	
49 50	517	
51 52	518	
52		
54		
55		
56		
57 58		
59		

Bed-scale	process	record	- Old	Railwa	v section

In the Old Railway section (Fig. 11), erosional bed bases and bed amalgamation are common,
particularly where there is depositional thinning of underlying beds, indicating that the 'pinch-and-
swell' bedforms present at this section are the result of multiple flow events in contrast to the
Doornkloof area. However, bed amalgamation has limited impact on bedform thickness, as thickness
increase dominantly occurs downdip of the point of amalgamation and is therefore of a depositional
nature. The Old Railway bedforms classify as sediment waves (Wynn & Stow, 2002) with dimensions
of 15 to >40 m wavelength (extending outside outcrop limits) and 1-2 m amplitude. However, the
maximum bed thicknesses (1-1.5 m) are more limited than at the Doornkloof area (>2.5 m), climbing
ripple-laminated facies (F3) is more dominant, and banded facies (F2) are almost absent. The
sediment waves have a more uniform facies distribution and there is an absence of internal
truncation surfaces (Fig. 11). The dominance of F3 indicates rapid deposition from dilute turbulent
flows, which contrasts with the Doornkloof area.
Subcritical sediment waves: comparison with supercritical bedforms
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves.
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides (Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides (Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are characterized by short stoss sides, long lee sides, and exhibit erosion and more energetic facies (F1,
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides (Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are characterized by short stoss sides, long lee sides, and exhibit erosion and more energetic facies (F1, F2, F4), with climbing ripple deposition (F3) becoming more dominant at the top of the beds (Fig.
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides (Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are characterized by short stoss sides, long lee sides, and exhibit erosion and more energetic facies (F1, F2, F4), with climbing ripple deposition (F3) becoming more dominant at the top of the beds (Fig. 13A). The Doornkloof waves migrate upstream through erosional truncation and draping at bed
Subcritical sediment waves: comparison with supercritical bedforms The Doornkloof and Old Railway outcrops are both characterised by composite sediment waves. However, there are distinct differences between both areas. The Old Railway examples exhibit comparatively simple sediment waves, composed of multiple event beds, and dominated by lower flow-regime facies (F3) such as climbing ripple-lamination, accrete downstream, and lack significant internal erosive surfaces. Morphologically, stoss sides can be comparable to or longer than lee sides (Fig. 11). In contrast, the Doornkloof sediment waves were formed as single event beds and are characterized by short stoss sides, long lee sides, and exhibit erosion and more energetic facies (F1, F2, F4), with climbing ripple deposition (F3) becoming more dominant at the top of the beds (Fig. 13A). The Doornkloof waves migrate upstream through erosional truncation and draping at bed swelling locations (up to >10 m; Fig. 9) followed by the development of another bed swell upstream

2			
3 ⊿		22	
5			
6 7	519	(Fig. 13A). This means that each swell initiates individually, rather than simultaneously as a	
8 9	520	sinusoidal wave.	
10 11	521	The architecture of the Doornkloof sediment waves most closely resembles the smaller-scale type II	
12 13	522	and type III antidunal bedforms described by Schminke et al. (1973). However, these bedform	
14 15	523	architectures, which are an order of magnitude smaller, are interpreted to migrate through stoss-	
16 17	524	side deposition by supercritical flows based on the field observations, and have never been	
18	525	produced experimentally, In contrast, Kubo & Nakajima (2002) and Kubo (2004) observed sediment	Formatted: Font: Calibri
20	526	wave architectures with short stoss sides, long lee sides and variable wavelengths, similar to the	
21 22	527	Doornkloof sediment waves, under subcritical flow conditions in physical and numerical	
23 24	528	experiments. The depositional patterns of these sediment waves were defined by upstream	
25 26	529	migration of waveforms by individual growing mounds (Kubo & Nakajima, 2002; Kubo, 2004), and	
27 28	530	are therefore highly analogous to the observations from the Doornkloof waves.	
29 30	531	The nature and variability of small-scale bedform structures (F3) (e.g., Fig. 13A for the Doornkloof	
31 32	532	waves) provide key indicators of flow type. This facies group consists of climbing ripples, sinusoidal	
33	533	lamination, biconvex ripples, and hummock-like structures, with biconvex ripples sometimes	
34 35	534	transitioning upwards into the hummocks. Climbing ripples and sinusoidal lamination are indicators	
36 37	535	of subcritical flow (Allen, 1973; Southard & Boguchwal, 1990), and the biconvex ripples and	
38 39	536	hummock-like structures have greater affinities with combined-flow ripples and hummocky cross	
40	537	stratification than with antidunes, again suggesting deposition under subcritical flow conditions.	
41 42 43	538	Spatio-temporal flow fluctuations – Doornkloof section	
44 45	539	In particular, the vertical change from biconvex ripples to hummock-like bedforms observed in the	
46	540	Doornkloof sediment waves is strongly analogous to structures associated with reflected flows in	
47	541	other turbidites (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), rather than deposits associated	
49 50	542	with supercritical flow conditions. The presence of topography in the form of the large-scale	
51 52	543	sediment wave may have led to flow reflection (Tinterri, 2011) and deflection as and when the flow	
53 54	Į		
54 55			
56			

23
waned. Importantly, these subcritical small-scale bedforms are observed over the full length of the
sediment waves, both on the stoss- and lee-side, at Doornkloof and the Old Railway (Figs 5, 9 and
11). This indicates subcritical deposition occurred across the entire sediment wave, and that the flow
remained subcritical throughout the depositional period over which the decimetre bedforms were
formed.
The morphology and architecture of the sediment waves in this study contrast with large
supercritical bedforms, such as cyclic steps, since these exhibit short erosional lee-sides and long
depositional stoss-sides (Cartigny et al., 2014; Hughes-Clark, 2016), and display upstream sediment
wave migration as a sinusoidal wave (Cartigny et al. 2014). Additionally, the sediment waves
described here are not single bedform structures such as described from supercritical bedforms
(e.g., Cartigny et al., 2014; Covault et al., 2017), but are composed of stacked smaller-scale
bedforms. The spatial and temporal extent of subcritical deposits also contrasts strongly with
'supercritical' bedforms where subcritical deposition can be expected only in some or all of the
stoss-side, downdip of a hydraulic jump (Vellinga et al., 2018). Furthermore, tractional subcritical
bedforms are predicted to be limited to the downstream parts of the stoss side in aggradational
cyclic steps, or to be mixed-in with supercritical and non-tractional subcritical facies in
transportational cyclic steps (Vellinga et al., 2018; their Fig. 9). Note that decimeter-scale bedforms
themselves could not be modelled in the CFD simulations of Vellinga et al. (2018). Lastly, the overall
signature of subcritical deposits within dominantly supercritical bedforms was one dominated by
amalgamation of concave-up erosional surfaces and low-angle foresets and backsets creating
lenticular bodies (Vellinga et al., 2018). These bodies scale with the size of the overall bedform, and
the backsets show clear downstream fining (Vellinga et al., 2018). Again, the sediment waves studied
herein show radically different architecture to that formed in cyclic steps, characterised by stacked
decimeter-scale bedforms and an absence of large-scale (scaling with the sediment wave) foresets,
backsets and lenticular bodies.

2			
3 4		24	
5			
6 7	569	In summary, the morphology, architecture, composite nature, and small-scale bedform types, all	
8 9	570	indicate that the sediment waves were clearly deposited under subcritical conditions. The subcritical	
10	571	nature of these sediment waves, the observation of upstream accretion via deposition on the stoss	
12	572	side, and the associated upstream migration of the crestline, observed at Doornkloof, challenge the	
13 14	573	assumption that all upstream-orientated expansion of sediment waves is the product of supercritical	
15 16	574	conditions (Wynn & Stow, 2002; Symons et al., 2016). That said, the Doornkloof bedforms appear to	
17	575	have migrated sporadically over short distances (m's to tens of m's) through upstream accretion (Fig.	
19	576	9B), before undergoing growth of new sediment wave lenses upstream, thus the entire bedform	
20 21	577	does not continuously migrate as observed in some modern sediment wave examples (e.g., Hughes-	
22 23	578	Clark, 2016). The presence of these subcritical sediment waves in the downstream parts of CLTZs	
24 25	579	also challenges the idea that mid-sized fans, like those in the Karoo, likely exhibit flows close to	
26	580	critical Froude numbers, at and beyond the CLTZ (Hamilton et al., 2017), although such conditions	
28	581	are likely in upstream parts of CLTZ where scouring occurs.	
29 30	582		
31 32	002		
33	583	Spatio-temporal flow fluctuations	Formatted: Font: Bold
34 35	584	The large-scale erosive truncations, and the wide variability of decimetre-scale bedforms in space	
36 37	585	and time, observed in the Doornkloof waves indicate marked spatio-temporal flow fluctuations from	
38	586	a single flow event. In contrast, the continuity of facies and absence of significant erosive surfaces	
39 40	587	suggests that the Old Railway sediment wayes were formed by flows with very limited spatio-	
41 42	588	temporal variation. Here, we focus on these spatio-temporal fluctuations indicated by the	
43 44	580	Doorpkloof wayes, and later address the issue of how the different types of sediment wayes shown	
45	500	in the Deernkloof and Old Pailway outcrons could convict	
40 47	590	in the boomkioor and Old Kallway outcrops could coexist.	
48 49	591	Fluctuations in velocity and concentration can be expected in environments where turbidity currents	
50 51	592	exit confinement (e.g. Kneller & McCaffrey, 1999, 2003; Ito, 2008; Kane et al., 2009; Ponce &	
52	593	Carmona, 2011), and where flows pass over depositional and erosional relief on the seabed (e.g.	
55 54			
55			
56			
57			
го			

	25
594	Groenenberg et al., 2010; Eggenhuisen et al., 2011). Similar steep internal scour surfaces to those
595	observed in the Doornkloof bedforms were interpreted to be generated by energetic sweeps from a
596	stratified flow (Hiscott, 1994b). Furthermore, a similar depositional history of waxing and waning
597	behaviour within a single flow was inferred from the sediment waves of the Miocene Austral
598	foreland Basin, Argentina (Ponce & Carmona, 2011). However, the depositional model proposed by
599	Ponce & Carmona (2011) assumes each independent lens-shaped geometry is created and reworked
600	simultaneously, and subsequently draped as a result of flow deceleration. The Doornkloof sediment
601	wave architecture cannot be explained by this process as the 'lenses' are clearly not disconnected
602	(Figs 5 and 13). The distribution of truncation surfaces within the sediment waves of subunit B2 does
603	however suggest there can be both phases of upstream swell formation as well as upstream
604	migration of the crest line (e.g. <i>Bedform c</i> at log 34-35).
605	_To explain the large fluctuations in flow concentration and depositional behaviour in CLTZ settings
606	(Fig. 13), a number of factors can be considered. Here, we consider each of these factors in turn, and
607	assess their potential for explaining the development of the sediment waves observed in this study.
608	Flow splitting in updip channel-levée systems
609	Waxing and waning flow behaviour can be induced by splitting of the flow in the channel-levée
610	system updip, where the primary 'channelised' flow may reach the sediment wave field earlier than
611	the secondary 'overbank' flow (Peakall et al., 2000). However, this would imply significant velocity
612	and concentration differences and therefore significant depositional facies differences between the
613	two stages, which does not fit the observations (Figs 13 and 14A). Furthermore, it would not explain
614	the number of flow fluctuations interpreted within a single flow event bed (Figs 13 and 14A).
615	Therefore, other mechanisms need to be proposed.
616	<u>Mixed load (sand-clay) bedforms</u>

1 2			
3		26	
4 5		20	
6 7	617	An alternative explanation for the sediment wave architecture could be that these bedforms formed	Formatted: Space After: 10 pt, Don't
8 9	618	by flows with sand-clay mixtures. Complicated bedform architectures with both erosional and	nypnenate
10	619	depositional components have been created experimentally (Baas et al., 2016). However, there are a	
12	620	number of issues with this hypothesis: 1) the bedforms described from the two case studies are one	
13 14	621	to two orders of magnitude larger than the 'muddy' bedforms described within flume tanks (Baas et	
15 16	622	al., 2016), and 2) the presence of clean climbing ripple-lamination suggests that at least part of the	
17 18	623	flow was not clay-rich during deposition (Baas et al., 2013; Schindler et al., 2015).	Formatted: Font: Calibri
19 20 21	624	Froude number fluctuations	
21 22 23	625	The net-depositional record of waxing and waning flow conditions (Fig. Froude number fluctuations	
24 25	626	The net-depositional record of waxing and waning flow conditions (Fig. 14A) observed at a single	
26 27	627	given location within the Doornkloof sediment waves (Fig. 13) could be hypothesised to be a record	
28	628	of temporal fluctuations around the critical Froude number separating sub- and super-supercritical	
29 30	629	flow conditions. However, the evidence for subcritical deposition across the full length of the	
31 32	630	sediment waves, and over the timescale of bedform development, demonstrates that fluctuations	
33 34	631	around the critical flow Froude number cannot be directly responsible for the formation of these	
35 36 37 38 39 40 41 42 43 44 45 46 47 489 50 51 52 53 54 55	632	sediment waves. That said, fluctuations in velocity and capacity within a subcritical flow downstream	
	633	of a zone of hydraulic jumps may still play a role in controlling the observed sedimentation patterns.	
	634	Fluctuations of the turbidity current Froude number are expected in areas of abrupt flow expansion	
	635	such as at the base-of-slope (Garcia, 1993; Wynn et al., 2002b). Turbidity currents that undergo	
	636	rapid transitions from supercritical to subcritical conditions forming a single hydraulic jump, or	
	637	repeated hydraulic jumps across a CLTZ (Sumner et al., 2013; Dorrell et al., 2016), have been linked	
	638	to bedform formation (Vicente Bravo & Robles, 1995; Wynn & Stow, 2002; Wynn et al., 2002b;	
	639	Symons et al., 2016), and have been linked to the formation of erosive scours in upstream parts of	
	640	CLTZs in the Karoo Basin (Hofstra et al., 2015). Due to the presence of multiple interacting hydraulic	
	641	jumps across a CLTZ, Froude number fluctuations around unity may be expected (Sumner <i>et al.,</i>	
57			

2 3			
4 5		27	
6 7	642	2013; Dorrell et al., 2016). Such velocity fluctuations would change the capacity of the flow (Fig.	
8 9	643	14A}], however, whether this would translate to periodic changes in sediment concentration is less	
10	644	clear due in part to the lack of concentration measurements from natural and experimental	
12	645	subaqueous hydraulic jumps. That said, in turbidity currents generally, there is a close coupling	
13 14	646	between velocity and concentration changes (Felix et al., 2005). Fluctuating velocities, and	
15 16	647	potentially concentration, related to variations in Froude numbers around critical may enable	
17 18	648	complicated and variable bedform architectures to be formed. Here we examine the field evidence	
19 20	649	for such fluctuations.	
20 21 22	650	The Doornkloof sediment waves (Fig. 13A) are composite features that show long depositional lee	
23	651	sides and short erosional stoss sides, and migrate upstream through truncation and draping at bed	
24	652	swelling locations (up to >10 m; Fig. 9) followed by the development of another bed swell upstream	
26 27	653	(Fig. 13A)This means that each swell initiates individually rather than simultaneously as a sinusoidal	
28 29	654	wave. The architecture-most closely resembles the smaller-scale type II and type III antidunal	
30 31	655	bedforms described by Schminke et al. (1973). However, these bedform architectures, which are an	
32 33	656	order of magnitude smaller, are interpreted to migrate through stoss side deposition by supercritical	
34 35	657	flows based on the field observations, and have never been produced experimentally. In contrast,	Formatted: Font: Calibri
36	658	Kubo & Nakajima (2002) observed somewhat similar depositional patterns for sediment wave	
37 38	659	development, with individual growing mounds due to preferential deposition in combination with	
39 40	660	upstream migration of the waveform due to differential deposition, under subcritical flow conditions	
41 42	661	in physical and numerical experiments.	
43 44	662	The morphology and architecture of the Doornkloof sediment waves contrast with large supercritical	
45 46	663	bedforms such as cyclic steps since these exhibit short erosional lee-sides and long depositional	
47	664	stoss sides (Cartigny et al., 2014; Hughes Clark, 2016), and form a single bedform structure rather	
49	665	than being composed of stacked smaller-scale bedforms (e.g., Cartigny et al., 2014; Covault et al.,	
50 51	666	2017).	
52 53			
54			
55 56			
57			

2		
3		
4		28
5		
6 7	667	In addition to the larger scale morphology and architecture, the nature and variability of small-scale
8 9	668	bedform structures (F3) (Fig. 13A) provide key indicators of flow type. This facies group (see Facies
10 11	669	Characteristics) -consists of climbing ripples, sinusoidal lamination, biconvex ripples, and hummock-
12	670	like structures, with biconvex ripples sometimes transitioning upwards into the hummocks. Climbing
14	671	ripples and sinusoidal lamination are indicators of subcritical flow (Allen, 1973; Southard &
15 16	672	Boguchwal, 1990), and the biconvex ripples and hummock-like structures have greater affinities with
17 18	673	combined-flow ripples and hummocky cross stratification than with antidunes, again suggesting
19 20	674	deposition under subcritical flow conditions. In particular, the vertical change from biconvex ripples
21 22	675	to hummock-like bedforms is strongly analogous to structures associated with reflected flows in
23 24	676	other turbidites (Tinterri, 2011; Tinterri & Muzzi Magalhaes, 2011), rather than with supercritical
25	677	flow. The presence of topography in the form of the large-scale sediment wave may have led to flow
20	678	reflection and deflection as and when the flow waned, in a similar manner to that envisaged by
28 29	679	Tinterri (2011) for larger-scale topography.
30 31	680	The morphology, architecture, composite nature, and small-scale bedform types, all suggest that the
32 33	681	sediment waves were clearly deposited under subcritical conditions. Consequently, fluctuations
34 35	682	around the critical Froude number cannot be directly responsible for the formation of the sediment
36 37	683	waves, albeit fluctuations in velocity and capacity within a subcritical flow downstream of a zone of
38 39	684	hydraulic jumps may still play a role in controlling the observed sedimentation patterns.
40 41	685	The subcritical nature of these sediment waves, the observation of upstream accretion via
42 43	686	deposition on the stoss side, and the associated upstream migration of the crestline, challenges the
44 45	687	assumption that all upstream-orientated expansion of sediment waves is the product of supercritical
45 46	688	conditions (Wynn & Stow, 2002; Symons et al., 2016). That said, these bedforms appear to have
47 48	689	sporadically migrated short distances (m's to tens of m's) through upstream accretion (Fig. 9B),
49 50	690	before undergoing growth of new sediment wave lenses upstream (Fig.14A), thus the entire
51 52	691	bedform does not continuously migrate as observed in some modern sediment wave examples (e.g.,
53 54	692	Hughes-Clark, 2016).
55	I	
56		

2
3
1
4
5
6
7
/
8
9
10
10
11
12
12
15
14
15
16
10
17
18
10
12
20
21
22
~~
23
24
25
25
26
27
28
20
29
30
31
22
32
33
34
25
22
36
37
20
20
39
40
<u>⊿1</u>
42
42
43
44
45
45
46
47
10
48
49
50
50 E 1
21
52
53
51
54
55
56
57
57
58

60

1

693

694

695

696

697

698

699

700

701

Mixed load (sand-clay) bedforms

An alternative explanation for the sediment wave architecture could be that these bedforms have

been formed by flows with sand-clay mixtures. Complicated bedform architectures with both

erosional and depositional components have been created experimentally (Baas et al., 2016).

However, there are a number of issues with this hypothesis: 1) the bedforms described from the two

case studies are of order of magnitude larger than the 'muddy' bedforms described within flume

tanks (Baas et al., 2016), and 2) the presence of clean climbing ripple-lamination suggests that at

least part of the flow was not clay rich during deposition (Baas et al., 2013; Schindler et al., 2015).

Formatted: Space After: 10 pt, Don't hyphenate

Formatted: Font: Calibri

29

The 'hose effect' - Doornkloof section

702 A spatial control in flow character could also be invoked to explain the development of sediment 703 waves, based on flow-deposit interactions and the momentum of the flow core (Fig. 14B). As a 704 turbidity current exits channel confinement it does not directly lose its momentum (e.g. Choi & 705 Garcia, 2001). The flow core may shift around during bedform aggradation due to interactions with 706 depositional and erosional relief around the channel-mouth. Most studies on flow-deposit 707 interactions focus on temporal changes in flow conditions (e.g. Kneller & McCaffrey, 2003; 708 Groenenberg et al., 2010), but rarely consider lateral changes within a single turbidity current 709 (Hiscott, 1994a). A single location within a sediment wave field may receive periods of high and low 710 energy linked to the lateral shifting of the flow core, where the energetic flow core can be linked to 711 periods of erosion and/or high concentration flow deposition, and the flow margin to deposition 712 from the less energetic and dilute parts of the flow. In this scenario, the upstream-orientated 713 truncation surfaces are the result of the interaction of the flow core with its self-produced obstacle 714 (Fig. 14B), linked to the inability to sustain the compensation process over time. Upstream 715 fluctuations in Froude number, related to an area of scour formation and hydraulic jumps, would 716 result in longitudinal waxing and waning flow behaviour downstream and could explain the 717 combination of both erosion and high concentration flow deposition of the flow core.

60

2			
4		30	
5 6	740		
7	/18	The compensational effects will form a stratigraphic record of fluctuating energy levels (Figs 13A and	
8 9	719	14A). The lateral flow movement may explain deviation in palaeoflow direction between intra-bed	
10 11	720	ripple-laminated intervals compared to sediment wave bed tops, observed within the Doornkloof	
12	721	subunit B2 sediment waves (Figs 4A, 6F, 13 and 14A14B14), as it could represent (partial) flow	
13 14	722	deflection affected by the evolving sediment wave morphology. Similar behaviour within a single	
15 16	723	unconfined flow has been invoked in basin-floor settings of the Cloridorme Formation (Parkash,	
17 18	724	1970; Parkash & Middleton, 1970) and at levée settings of the Amazon Channel (Hiscott et al., 1997).	
19 20	725	The 'hose effect' would result in a composite depositional record as the core of the flow sporadically	
21	726	moves laterally, repeatedly superimposing high energy conditions onto lower energy conditions,	
22	727	therefore explaining the inconsistency in wavelength.sediment wave wavelengths. With this spatial	
24 25	728	process, the locus of deposition will move laterally whilst the waning flow can lead to deposition	
26 27	729	progressively migrating upstream. This mechanism <u>The hose effect</u> may explain how sediment waves	
28 29	730	are able to build upstream accreting geobodies without being deposited under supercritical	
30 31	731	conditions. The mechanism also provides an explanation for the range and spatial variability of the	
32	732	observed small-scale bedform structures (F3), and for the similarities with small-scale bedforms	
34 35	733	interpreted to have been formed by turbidity currents interacting with topography (Tinterri, 2011;	
35 36	734	Tinterri & Muzzi Magalhaes, 2011). As the flow migrates laterally, flows will interact at an angle with	
37 38	735	the growing sediment wave, thus encouraging interaction of incident and reflected flow.	Formattee
39 40	736	As noted earlier, there is strong field-evidence (Parkash, 1970; Parkash & Middleton, 1970; Hiscott et	
41 42	737	al., 1997) for the 'hose effect' mechanism. However, the hose effect has not been experimentally or	
43 44	738	numerically modelled, which reflects the ubiquity of bedform experiments in two-dimensional	
45 46	739	flumes, and a paucity of three-dimensional flow effects on bedform development.	
40 47 48	740	Spatio-temporal flow fluctuations - summary	
49 50	741	In summary, the combination of waxing and waning flow behaviour in the subcritical flow core,	
51 52	742	downstream of a zone of hydraulic jumps (Dorrell et al., 2016), as well as spatial compensational	
53			
54 55			
56			
57			
58 59			

Formatted: Font: +Body (Calibri)

2			
3			
4		31	
5			
6 7	743	processes (hose effect) are invoked as the most probable mechanisms to explain the complicated	
8 9	744	architecture and facies patterns of the Doornkloof sediment waves.	
10 11 12	745		
12 13	746	Bed scale process record—Old Railway section	
15	747	In the Old Railway section (Fig. 11), erosional bed bases and bed amalgamation are common,	
16 17	748	particularly where there is depositional thinning of underlying beds, indicating that the 'pinch and	
18 19	749	swell' bedforms present at this section are the result of multiple flow events. However, bed	
20 21	750	amalgamation has limited impact on bedform thickness as thickness increase dominantly occurs	
22 23	751	downdip of the point of amalgamation and is therefore of a depositional nature. The Old Railway	
24 25	752	bedforms classify as sediment waves (Wynn & Stow, 2002) with dimensions of 15 to >40 m	
26 27	753	wavelength (extending outside outcrop limits) and 1-2 m amplitude, however their maximum bed	
28	754	thicknesses (1 1.5 m) is more limited than at the Doornkloof area (>2.5 m), climbing ripple laminated	
29 30	755	facies (F3) is more dominant, and banded facies (F2) are almost absent. The sediment waves have a	
31 32	756	more uniform facies distribution and there is an absence of internal truncation surfaces (Fig. 11).	
33 34	757	This suggests less spatial temporal fluctuations of flows compared to the Doornkloof area. The	
35 36	758	dominance of F3 indicates rapid deposition from dilute turbulent flows, which contrasts with the	
37 38	759	Deernkloof area.	
39 40	760	Spatial variations within a sediment wave field	Formatted: Font: 11 pt
41 42	761	The character of the feeder channel could explain differences observed in CLTZ sediment wave	
43 44	762	character between the Doornkloof and Old Railway sections As noted earlier, there are major	
45	763	differences between the sediment waves at the Old Railway outcrop with a low degree of spatial and	
40	764	temporal variability, and the high spatio-temporal variability observed in the Doornkloof sediment	
48 49	765	waves. Here, we will attempt to explain such variation between sediment waves in the same system.	
50 51	766	One potential mechanism is the character of the feeder channel, including factors such as channel	
52	767	dimensions and magnitude of the incoming flows. However, previous studies (Brunt et al., 2013)	
53			
54			
55 56			
50 57			
<i>_ i</i>			

1		
2 3		
4		32
5 6 7	768	suggest that the dimensions of feeder channels within the Unit B base-of-slope system were similar,
8	769	suggestingimplying that the character of sediment waves is unrelated to variations in feeder channel
9 10 11	770	character.
12	771	Alternatively, the differences between the Doornkloof and Old Railway areas may be related to their
13 14	772	position relative to the mouth of the feeder channel. A dominance of lower flow-regime facies (F3)
15 16	773	such as climbing ripple-lamination is commonly associated with overbank or off-axis environments
17 18	774	(e.g. Kane & Hodgson, 2011; Brunt <i>et al.</i> , 2013; Rotzien <i>et al.</i> , 2014). As the Old Railway is
19	775	characterized characterised by such facies, it could represent a fringe position through a sediment
20 21	776	wave field (Fig. 15). In contrast, the Doornkloof section is characterized by erosion and more
22 23	777	energetic facies (F1, F2, F4), suggesting it was situated in a more axial position in the sediment wave
24 25	778	field (Fig. 15 15A). Furthermore, within the Doornkloof area, climbing ripple deposition (F3) becomes
26 27	779	more dominant at the top of the beds likely reflecting progressive decrease in flow velocity and
28	780	concentration (Figs 5, 8 and 9B)
29 30	100	
31 32	781	Lateral These spatial and temporal variations can be integrated with the hypothesised lateral shifting
33	782	of the flow core (the 'hose <u>effect')effect). The hose effect</u> is likely to have more influence on
34 35	783	deposits within axial parts of the channel-mouth, such as within the Doornkloof area, where the flow
36 37	784	is most powerful. In contrast, the lateral fringes of the channel-mouth are most likely subject to
38 39	785	deposition from flow margins (Fig. 15), 15B), such as at the Old Railway section. This results in more
40	786	steady flow conditions and relatively uniform deposition of facies and explains the difference in
41 42	787	characteristics between the Old Railway sediment waves, which are dominated by F3 facies and
43 44	788	shows little evidence of erosion, and the Doornkloof sediment waves, which are dominated by F1
45 46	789	and F2 facies with substantial evidence of erosion.
47 48	790	The differences in the expression of the Unit B sediment waves suggest that the stratigraphic record
49 50	791	of CLTZ environments exhibit substantial spatial variability. The process model shows that initial
51 52 53	792	sediment wave architecture can involve both upstream orientated accretion (Doornkloof area), and
54 55		
56		
57 58		
59		
60		

33	
downstream orientated accretion (Old railwayRailway section) within a single flow,), depending on	
the position with respect to the channel mouth. Despite the lack of 3D control on morphology, we	
predict that this variance in depositional behaviour between axial and fringe areas will have	
influence on planform crest morphology and will lead to the crest curvatures, which are commonly	
observed within the modern seafloor (e.g. Wynn <i>et al.</i> , 2002b). Furthermore, due to the propagation	
of channel-levée systems (e.g. Hodgson <i>et al.</i> 2016), the preservation potential of sediment waves	Formatted: Font: Not Italic
in axial positions, such as those from the Doornkloof section, is lower than sediment wave deposits	
in fringe positions, such as the Old Railway section (Fig. 15). Similar observations on the importance	
of spatial variation have been made for the erosional bedform area (Fig. 15) of channel lobe	
transition zones (Hofstra et al., 2015).	
Preservation of sediment waves in channel lobe transition zones	
Two questions that remain unanswered are: 1) what conditions promoted stratigraphic preservation	
of the sediment waves in the examples herein, and 2) how likely is preservation of sediment waves	
in the stratigraphic record of channel lobe transition zones? Here, we interpret that the preservation	
of the sediment waves in the two field areas is related to the strongly aggradational character of	
subunits B1 and B2. This is also evident from the lobe deposits downdip that show strong	
aggradation and limited progradation (Fig. 3; Brunt et al., 2013), in comparison to lobe deposits	
elsewhere in the Karoo Basin (e.g., Hodgson et al., The preservation of the sediment waves in the	Formatted: Font: Not Italic
Doornkloof area is interpreted to be related to the strong aggradational character of Unit B, also	
evident from the lobe deposits downdip (Brunt <i>et al.,</i> 2013). 2006; van der Merwe <i>et al.,</i> 2014).	
Furthermore, subunit B1 is abruptly overlain by a regional mudstone aiding preservation, whereas	
subunit B2 is overlain by thick levée successions (subunit B3), marking the progradation of the slope	
system across the CLTZ (Brunt et al., 2013). This scenario has similarities to that proposed by	

1	
2	
3 4	
5	
6 7	817
8	818
9 10	819
12	820
13 14	821
15 16	822
17	823
18 19	824
20 21	024
22 23	020
23	826
25 26	827
27 28	828
29	829
30 31	830
32 33	831
34 35	832
36 27	833
38	834
39 40	835
41 42	836
43 44	837
45 46	838
47	839
40 49	840
50 51	841
52 53	842
54	
55 56	
57	
58	
59 60	

prog	grading slope system.
<u>For s</u>	sediment waves in CLTZ settings in general, there are several scenarios that can be proposed to
<u>facili</u>	itate their preservation. During system initiation at the start of a waxing-to-waning sediment
<u>supp</u>	bly cycle, possibly driven by a relative sea-level fall and initial slope incision, the position of the
<u>CLTZ</u>	on the base-of-slope might be relatively stable as slope conduits evolve prior to slope
prog	radation. The stratigraphic record of the resulting deposits is likely limited in thickness, and
prob	bably preferentially associated with scour-fills (e.g., Pemberton et al., 2016). The position of the
<u>CLTZ</u>	Z could be fixed through physiographic features, such as a tectonic or diapiric break-in-slope,
<u>whic</u>	ch would aid the stratigraphic preservation of the CLTZ. Several studies have shown that when
<u>subn</u>	narine channel-levee systems avulse they do not return to their original route (e.g. Armitage <i>et</i>
<u>al., 2</u>	2012; Ortiz-Karpf et al., 2015; Morris et al., 2016), which would help to preserve sediment wave
<u>in ar</u>	n abandoned CLTZ. The stratigraphic evidence for this control would be in the sediment waves
<u>abru</u>	uptly overlain by mudstone or thin-bedded successions indicative of overbank deposition. Finally
<u>the p</u>	preservation potential of sediment waves in CLTZs will be higher at the point of maximum
regre	ession/progradation of the system (Hodgson <i>et al.</i> , 2016). Similar arguments were applied to th
<u>pres</u>	ervation of scour-fills in CLTZ by Hofstra et al. (2015).
<u>In su</u>	Immary, we hypothesise that preservation of sediment waves may require i) updip avulsion, ii)
repr	esent the point of maximum system progradation, or iii) form during a period of relative spatial
<u>stab</u>	ility, followed by system progradation. Subsequent rapid progradation of a slope system is then
<u>impo</u>	ortant for long-term preservation, though an off-axis location relative to large-scale slope
<u>chan</u>	nnels is critical in order to avoid cannibalisation of the CLTZ deposits (e.g., Hofstra et al., 2015).
<u>Such</u>	n propagation of channel-levée systems (e.g. Hodgson <i>et al.,</i> 2016), suggests that the
<u>pres</u>	ervation potential of sediment waves in axial positions, for example the interpreted position of
<u>the [</u>	Doornkloof section, is lower than sediment wave deposits in fringe positions, such as the
inter	rpreted position of the Old Railway section (Fig. 15A).

CONCLUSIONS Detailed morphologies, architectures and facies of fine-sand grained sediment waves are reported from an ancient channel-lobe transition zone. -The sediment waves are constructed from banded and planar-laminated sandstones, as well as from progressive aggradation of a range of small-scale bedforms, including climbing ripples, sinusoidal lamination, biconvex ripples, and hummocky-like structures, interpreted as the products of subcritical deposition, with periods of flow reflection and deflection forming the biconvex ripples and hummocks. Morphologically, the sediment waves exhibit long-lee sides, and short erosively-cut stoss sides, and show upstream accretion over short distances (m's to tens of m's), punctuated by the upstream development of new sediment wave lenses. Consequently, the observations from these exhumed deposits challenge some current models of sediment wave development, which suggest that entire sediment waves continuously migrate upstream under supercritical conditions. In particular, the outcrops demonstrate that the formation of sediment waves in an upstream direction, as well as upstream migration of crestlines, is not solely the product of supercritical flows, but can also occur in subcritical conditions. The progressive development of the sediment waves is argued to be the product of lateral migration of the expanding flow across the channel-lobe transition zone, potentially coupled to fluctuations in velocity and flow capacity related to upstream hydraulic jumps. Variations in sediment waves, from more complex forms with multiple erosive surfaces and complex internal facies, to simple accretionary forms with abundant climbing ripples, is linked to position across the channel-lobe transition zone, from axial to lateral fringes respectively. -The preservation potential of sediment waves in CLTZs into the stratigraphic record is low due to subsequent system progradation and erosion. However, preservation is higher where there is updip avulsion and abandonment of a CLTZ, in off axis areas where sediment waves might be overlain by overbank sediments, and / or at the point of maximum system progradation.

1 2		
3 4 5		36
6 7	868	ACKNOWLEDGEMENTS
8 9	869	This work forms part of the results of the LOBE 2 joint industry consortium research project. We are
10 11	870	grateful for the financial support from: Anadarko, Bayerngas Norge, BG Group, BHP Billiton, BP,
12 13	871	Chevron, Dong Energy, E.ON, GDF Suez, Maersk Oil, Marathon Oil, Petrobras, Shell, Statoil, Total,
14 15	872	VNG Norge, and Woodside. We are grateful to Matthieu Cartigny, Brian Romans and an anonymous
16	873	reviewer for the constructive reviews, which greatly improved this manuscript, and for the input of
17	874	Associate Editor Jaco Baas., which greatly improved this manuscript. We also acknowledge the
19 20	875	landowners from the Laingsburg area for access to their land. Finally, Renée de Bruijn, Nienke Lips
21 22	876	and Yvonne Spychala are thanked for their assistance in the field.
23 24		
25		
26 27		
28 20		
29 30		
31		
32		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 ⊿o		
50		
51		
52		
53 54		
55		
56		
57 58		
59		
60		

1		
2		
3 ⊿		37
5		
6 7	877	REFERENCES
8 9	878	Alexander, J., Bridge, J.S., Cheel, R.J. and Leclair, S.F. (2001) Bedforms and associated sedimentary
10 11	879	structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48,
12 13	880	133-152.
14 15	881	Allen, J.R.L. (1973) A classification of climbing-ripple cross-lamination. Journal of the Geological
16 17	882	Society of London, 129 , 537-541.
18 19	883	Allen, J.R.L. (1984) Parallel lamination developed from upper-stage plane beds: a model based on
20 21	884	the larger coherent structures of the turbulent boundary layer. Sedimentary Geology, 39 , 227-242.
22 23	885	Armitage, D.A., McHargue, T., Fildani, A. and Graham, S.A. (2012) Postavulsion channel evolution:
24 25 26 27 28 29 30 31 32 33 34 35 36	886	Niger Delta continental slope. AAPG Bulletin, 96, 823-843.
	887	Baas, J.H. and de Koning, H. (1995) Washed-out ripples: Their equilibrium dimensions, migration
	888	rate, and relation to suspended-sediment concentration in very fine sand. Journal of Sedimentary
	889	Research, 65 , 431-435.
	890	Baas, J.H., Davies, A.G. and Malarkey, J. (2013) Bedform development in mixed sand-mud: The
	891	contrasting role of cohesive forces in flow and bed. <i>Geomorphology</i> , 182 , 19-32.
37 38	892	Baas, J.H., Best, J.L. and Peakall, J. (2016) Predicting bedforms and primary current stratification in
39 40	893	cohesive mixtures of mud and sand. Journal of the Geological Society, 173, 12-45.
41 42	894	Best, J. and Bridge, J. (1992) The morphology and dynamics of low amplitude bedwaves upon upper
43 44	895	stage plane beds and the preservation of planar laminae. Sedimentology, 39 , 737-752.
45 46	896	Bouma, A.H. and Boerma, J.A.K. (1968) Vertical disturbances in piston cores. Marine Geology, 6,
47 48	897	231-241.
49		
50		
51		
52 52		
55 51		
54 55		
56		
57		
58		
59		

2 3 4		38
5 6	808	Prunt P.L. Hadreen D.M. Elint S.S. Dringla, LK. Di Colma, C. Drélat A. and Gracula, M. (2012)
7	090	Brunt, K.L., Hougson, D.M., Fint, S.S., Fringle, J.K., Di Cenna, C., Freiat, A. and Grecula, M. (2013)
o 9	899	Confined to unconfined: Anatomy of a base of slope succession, Karoo Basin, South Africa. Marine
10 11	900	and Petroleum Geology, 41 , 206-221.
12 13	901	Campion, K.T., Dixon, B.T. and Scott, E.D. (2011) Sediment waves and depositional implications for
14 15	902	fine-grained rocks in the Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Chile. Marine and
16 17	903	Petroleum Geology, 28 , 761-784.
18 19	904	Cartigny, M.J., Eggenhuisen, J.T., Hansen, E.W. and Postma, G. (2013) Concentration-dependent
20	905	flow stratification in experimental high-density turbidity currents and their relevance to turbidite
21 22 23	906	facies models. Journal of Sedimentary Research, 83, 1047-1065.
24	907	Cartigny, M.J.B., Ventra, D., Postma, G. and Van Den Berg, J.H. (2014) Morphodynamics and
25 26	908	sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume
27 28 29	909	experiments. <i>Sedimentology</i> , 61 , 712-748.
30 31	910	Choi, S.U. and Garcia, M.H. (2001) Spreading of gravity plumes on an incline. Coastal Engineering
32 33	911	Journal, 43 , 221-237.
34 35	912	Covault, J.A., Kostic, S., Paull, C.K., Sylvester, Z. and Fildani, A. (2017) Cyclic steps and related
36 37	913	supercritical bedforms: Building blocks of deep-water depositional systems, western North America.
38 39	914	Marine Geology, 393 , 4-20, doi:10.1016/j.margeo.2016.12.009
40 41	915	Damuth, J.E. (1979) Migrating sediment waves created by turbidite currents in northern South China
42 43	916	Basin. <i>Geology</i> , 7 , 520-523.
44 45	917	Dorrell, R.M., Peakall, J., Sumner, E.J., Parsons, D.R., Darby, S.E., Wynn, R.B., Özsoy, E. and Tezcan,
46	918	D. (2016) Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-
47	919	lobe transition zones. Marine Geology, 381 , 181-193.
49 50		
51 52		
53		
54		
55 56		
57		
58		
59 60		

1		
2 3		
4		39
5		
6 7	920	Dumas, S. and Arnott, R.W.C. (2006) Origin of hummocky and swaley cross-stratification- The
8 9	921	controlling influence of unidirectional current strength and aggradation rate. Geology, 34, 1073-
10 11	922	1076.
12 13	923	Dumas, S., Arnott, R.W.C. and Southard, J.B. (2005) Experiments on oscillatory-flow and combined-
14 15	924	flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record.
16 17	925	Journal of Sedimentary Research, 75 , 501-513.
18 19	926	Eggenhuisen, J.T., McCaffrey, W.D., Haughton, P.D. and Butler, R.W. (2011) Shallow erosion
20 21	927	beneath turbidity currents and its impact on the architectural development of turbidite sheet
22 23	928	systems. Sedimentology, 58 , 936-959.
24 25	929	Fedele, J.J., Hoyal, D., Barnaal, Z., Tulenko, J. and Awatt, S. (2017) Bedforms created by gravity
26 27	930	flows. In: Budd, D.A., Hajek, E.A. and Purkis, S.J. (Eds) Autogenic Dynamics and Self-organization in
28 29	931	Sedimentary Systems. SEPM Special Publication 106, 95-121.
30 31	932	Felix, M., Sturton, S. and Peakall, J. (2005) Combined measurements of velocity and concentration
32 33 34	933	in experimental turbidity currents. Sedimentary Geology, 179, 31-47.
35	934	Flint, S.S., Hodgson, D.M., Sprague, A., Brunt, R.L., Van Der Merwe, W.C., Figueiredo, J., Prélat, A.,
37	935	Box, D., Di Celma, C. and Kavanagh, J.P. (2011) Depositional architecture and sequence stratigraphy
38 39	936	of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. Marine and
40 41 42	937	Petroleum Geology, 28 , 658-674.
42	938	Garcia, M.H. (1993) Hydraulic jumps in sediment-driven bottom currents. Journal of Hydraulic
44 45 46	939	Engineering, 119 , 1094-1117.
40 47	940	Garcia, M.H. (2008) Sedimentation Engineering: Process, Measurements, Modeling and Practice.
48 49 50 51 52 53 54	941	American Society of Civil Engineers, Reston, Virginia.
55 56		
57		
58		

1		
2		
3 4		40
5		
6 7	942	Grecula, M., Flint, S.S., Wickens, H.DeV. and Johnson, S.D. (2003) Upward-thickening patterns and
8 9	943	lateral continuity of Permian sand-rich turbidite channel fills, Laingsburg Karoo, South Africa.
10 11	944	Sedimentology, 50 , 831-853.
12 13	945	Groenenberg, R.M., Hodgson, D.M., Prélat, A., Luthi, S.M. and Flint, S.S. (2010) Flow-deposit
14 15	946	interaction in submarine lobes: insights from outcrop observations and realizations of a process-
16 17	947	based numerical model. Journal of Sedimentary Research, 80, 252-267.
18 19	948	Hamilton, P., Gaillot, G., Strom, K., Fedele, J. and Hoyal, D. (2017) Linking hydraulic properties in
20 21	949	supercritical submarine distributary channels to depositional lobe geometry. Journal of Sedimentary
22	950	<u>Research</u> , 87 , 935-950.
23 24 25	951	Harms, J.C. (1969) Hydraulic significance of some sand ripples. Geological Society of America
26 27	952	Bulletin, 80 , 363-396.
28 28	953	Harms, J.C., Southard, J.B., Spearing, D.R. and Walker, R.G. (1975) Depositional environments as
30 31	954	interpreted from primary sedimentary structures and stratification sequences. Society for
32 33	955	Sedimentary Geology (SEPM) Short Course 2, pp. 161.
34 35	956	Haughton, P., Davis, C., McCaffrey, W. and Barker, S. (2009) Hybrid sediment gravity flow deposits-
36 37	957	classification, origin and significance. Marine and Petroleum Geology, 26, 1900-1918.
38 39	958	Heiniö, P. and Davies R.J. (2009) Trails of depressions and sediment waves along submarine
40 41	959	channels on the continental margin of Espirito Santo Basin, Brazil. Geological Society of America
42 43	960	Bulletin, 121 , 698-711.
44 45	961	Hiscott, R.N. (1994a) Loss of capacity, not competence, as the fundamental process governing
46 47	962	deposition from turbidity currentsJournal of Sedimentary Research,64, 209-214.
48 49	963	Hiscott, R.N. (1994b) Traction-carpet stratification in turbidites-fact or fiction? Journal of
50 51 52 53 54 55 56	964	Sedimentary Research, 64, 204-208.
57		
58		
59 60		

1			
2			
3 4		41	
5			
6 7	965	Hiscott, R.N., Hall, F.R., and Pirmez, C. (1997) Turbidity-current overspill from the Amazon Channel:	
8 9	966	texture of the silt/sand load, paleoflow from anisotropy of magnetic susceptibility, and implications	
10 11	967	for flow processes. In: Proceedings of the Ocean Drilling Program, Scientific Results (Eds. Flood, R.D.,	
12	968	Piper, D.J.W., Klaus, A. and Peterson, I.C.), 155 , 53-78.	
13 14 15	969	Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. and Luthi, S.M. (2006)	
16	970	Stratigraphic evolution of fine-grained submarine fan systems, Tanqua depocenter, Karoo Basin,	
17	971	South Africa. Journal of Sedimentary Research, 76, 20-40.	
19 20	972	Hodgson, D.M., Di Celma, C.N., Brunt, R.L. and Flint, S.S. (2011) Submarine slope degradation and	
21	973	aggradation and the stratigraphic evolution of channel-levee systems. Journal of the Geological	
23 24	974	Society, 168 , 625-628.	
25 26	975	Hodgson, D.M., Kane, I.A., Flint, S.S., Brunt, R.L. and Ortiz-Karpf, A. (2016). Time-transgressive	
27 28	976	confinement on the slope and the progradation of basin-floor fans: Implications for the sequence	
29 30	977	stratigraphy of deep-water deposits. Journal of Sedimentary Research, 86, 73-86.	
31 32	978	Hofstra, M. (2016) The Stratigraphic Record of Submarine Channel-lobe Transition Zones.	
33 34	979	Unpublished PhD thesis, University of Leeds, Leeds, 331p.	
35 36	980	Hofstra, M., Hodgson, D.M., Peakall, J. and Flint, S.S. (2015) Giant scour-fills in ancient channel-lobe	
37 38	981	transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98-	
39 40	982	114.	
41 42	983	Howe, J.A. (1996) Turbidite and contourite sediment waves in the northern Rockall Trough, North	
43 44	984	Atlantic Ocean. Sedimentology, 43, 219-234.	
45 46	985	Hughes Clarke, J.E. (2016) First wide-angle view of channelized turbidity currents links migrating	
47 48	986	cyclic steps to flow characteristics. Nature Communications, 7:11896, doi: 10.1038/ncomms11896.	
49 50			
51			
52			
53			
54			
55			
56			
57			
58			
29			

1		
2 3		
4		42
5 6 7	987	Ito, M. (2008) Downfan transformation from turbidity currents to debris flows at a channel-to-lobe
8	988	transitional zone: the lower Pleistocene Otadai Formation, Boso Peninsula, Japan. Journal of
9 10 11	989	Sedimentary Research, 78 , 668-682.
12 13	990	Ito, M. (2010) Are coarse-grained sediment waves formed as downstream-migrating antidunes?
14	991	Insight from an early Pleistocene submarine canyon on the Boso Peninsula, Japan. Sedimentary
15 16 17	992	Geology, 226 , 1-8.
18 19	993	Ito, M. and Saito, T. (2006) Gravel waves in an ancient canyon: Analogous features and formative
20	994	processes of coarse-grained bedforms in a submarine-fan system, the lower Pleistocene of the Boso
21	995	Peninsula, Japan. Journal of Sedimentary Research, 76, 1274-1283.
23 24	996	Ito, M., Ishikawa, K. and Nishida, N. (2014) Distinctive erosional and depositional structures formed
25 26	997	at a canyon mouth: A lower Pleistocene deep-water succession in the Kasuza forearc basin on the
27 28	998	Boso Peninsula, Japan. Sedimentology, 61, 2042-2062.
29 30	999	Jobe, Z.R., Lowe, D.R. and Morris, W.R. (2012) Climbing-ripple successions in turbidite systems:
31 32	1000	depositional environments, sedimentation rates and accumulation times. Sedimentology, 59, 867-
33 34	1001	898.
36	1002	Johansson, M. and Stow, D.A.V. (1995) A classification scheme for shale clasts in deep water
37 38	1003	sandstones. In: Hartley, A.J. and Prosser, D.J. (eds.) Characterization of Deep Marine Clastic Systems,
39 40	1004	Geological Society Special Publication 94, 221-241.
41 42	1005	Jopling, A.V. and Walker, R.G. (1968) Morphology and origin of ripple-drift cross-lamination, with
43 44	1006	examples from the Pleistocene of Massachusetts. Journal of Sedimentary Research, 38, 971-984.
45 46	1007	Kane, I.A. and Hodgson, D.M. (2011) Sedimentological criteria to differentiate submarine channel
47 48	1008	levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja
49 50	1009	California, Mexico, and the Fort Brown Fm. (Permian), Karoo basin, S. Africa. Marine and Petroleum
51 52	1010	Geology, 28 , 807-823.
53		
54 55		
56		
57 58		
59		

1			
2			
3 1		43	
5		т о	
6 7	1011	Kane, I.A., McCaffrey, W.D. and Martinsen, O.J. (2009) Allogenic vs. autogenic controls on	
8 9	1012	megaflute formation. Journal of Sedimentary Research, 79, 643-651.	
10 11	1013	Kennedy, J.F. (1969) The formation of sediment ripples, dunes and antidunes. Annual Review of	
12 13	1014	Fluid Mechanics, 1 , 147-168.	
14 15	1015	Kidd, R.B., Lucchi, R.G., Gee, M. and Woodside, J.M. (1998) Sedimentary processes in the Stromboli	
16 17	1016	Canyon and Marsili Basin, SE Tyrrhenian Sea: results from side-scan sonar surveys. Geo-Marine	
18 19	1017	Letters, 18 , 146-154.	
20 21	1018	Kneller, B. (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and	
22 23	1019	their implications for reservoir prediction. In: Characterization of Deep Marine Clastic Systems (Eds.	
24 25	1020	Hartley, A.J. and Prosser, D.J.) Geol. Soc. London, Spec. Publ., 94, 31-49.	
26 27	1021	Kneller, B.C. and Branney, M.J. (1995) Sustained high-density turbidity currents and the deposition	
28 29	1022	of thick massive sands. Sedimentology, 42, 607-616.	
30 31	1023	Kneller, B.C. and McCaffrey, W.D. (1999) Depositional effects of flow nonuniformity and	
32 33	1024	stratification within turbidity currents approaching a bounding slope: deflection, reflection, and	
34 35	1025	facies variation. Journal of Sedimentary Research, 69, 980-991.	
36 37	1026	Kneller, B.C. and McCaffrey, W.D. (2003) The interpretation of vertical sequences in turbidite beds:	
38 39	1027	the influence of longitudinal flow structure. Journal of Sedimentary Research, 73, 706-713.	
40 41	1028	Kubo, Y. (2004) Experimental and numerical study of topographic effects on deposition from two-	
42 43	1029	dimensional, particulate-driven density currents. Sedimentary Geology, 164, 311-326.	
44 45	1030	Kubo, Y. and Nakajima, T. (2002) Laboratory experiments and numerical simulation of sediment-	
46 47	1031	wave formation by turbidity currents. <i>Marine Geology</i> , 192 , 105-121.	
48 49	1032	Lonsdale, P. and Hollister, C.D. (1979) Near-bottom traverse of Rockall Trough-Hydrographic and	
50 51 52 53 54 55	1033	geological inferences. <i>Oceanologica Acta</i> , 2 , 91-105.	
56 57			
58			
59			
00			

1		
2 3		
4		44
5 6 7	1034	Lowe, D.R. (1982) Sediment gravity flows: II Depositional models with special reference to the
/ 8 9	1035	deposits of high-density turbidity currents. Journal of Sedimentary Research, 52, 279-297.
10 11	1036	Macdonald, H.A., Wynn, R.B., Huvenne, V.A., Peakall, J., Masson, D.G., Weaver, P.P. and McPhail,
12 13	1037	S.D. (2011) New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern
14 15	1038	deep-water erosional scours along the northeast Atlantic margin. Geosphere, 7, 845-867.
16 17	1039	Malinverno, A., Ryan, W.B., Auffret, G. and Pautot, G. (1988) Sonar images of the path of recent
18 19	1040	failure events on the continental margin off Nice, France. In: Sedimentological Consequences of
20 21	1041	Convulsive Geologic Events, (Ed. Clifton, H.E.), Geological Society of America Special Paper, 229, 59-
22 23	1042	76.
24 25	1043	McHugh, C.M. and Ryan, W.B. (2000) Sedimentary features associated with channel overbank flow:
26 27	1044	examples from the Monterey Fan. Marine Geology, 163, 199-215.
27 28 29 30 31 32 33 34	1045	Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugères, J.C. and Weber, O. (2001) Detailed seismic-
	1046	reflection and sedimentary study of turbidite waves on the Var Sedimentary Ridge (SE France):
	1047	significance for sediment transport and deposition and for the mechanisms of sediment-wave
	1048	construction. <i>Marine and Petroleum Geology</i> , 18 , 179-208.
36	1049	Morris, S.A., Kenyon, N.H., Limonov, A.F. and Alexander, J. (1998) Downstream changes of large-
38	1050	scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean:
40	1051	implications for palaeoflow reconstruction. <i>Sedimentology</i> , 45 , 365-377.
41	1052	Morris, E.A., Hodgson, D.M., Brunt, R.L. and Flint, S.S. (2014) Origin, evolution and anatomy of silt-
43 44	1053	prone submarine external levées. Sedimentology, 61, 1734-1763.
45 46	1054	Morris, E.A., Hodgson, D.M., Flint, S., Brunt, R.L., Luthi, S.M. and Kolenberg, Y. (2016) Integrating
47	1055	outcrop and subsurface data to assess the temporal evolution of a submarine channel-levee system.
49 50	1056	<u>AAPG Bulletin, 100, 1663-1691.</u>
51 52		
53		
54 55		
56		
57 50		
59		

1		
2		
4		45
5 6	1057	Mulder, T. and Alexander, J. (2001) The physical character of subaqueous sedimentary density flows
7 8	4050	
9	1058	and their deposits. Sedimentology, 48, 269-299.
10 11	1059	Mukti, M.M.R. and Ito, M. (2010) Discovery of outcrop-scale fine-grained sediment waves in the
12 13	1060	lower Halang Formation, an upper Miocene submarine-fan succession in West Java. Sedimentary
14 15	1061	Geology, 231 , 55-62.
16 17	1062	Mutti, E. and Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems:
18	1063	problems and concepts. In: Marine Clastic Sedimentology: Concepts and Case Studies (Eds. Leggett,
19 20 21	1064	J.K. and Zuffa, G.G.) Graham and Trotman, Oxford, pp. 1-38.
22 23	1065	Mutti, E. and Normark, W.R. (1991) An integrated approach to the study of turbidite systems. In:
24	1066	Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Eds. Weimer, P.
25 26 27	1067	and Link, M.H.) Springer, New York, pp. 75-106.
27 28 29	1068	Nakajima, T., Satoh, M. and Okamura, Y. (1998) Channel-levee complexes, terminal deep-sea fan
30	1069	and sediment wave fields associated with the Toyama Deep-Sea Channel system in the Japan Sea.
31 32	1070	Marine Geology, 147 , 25-41.
33 34	1071	Normark, W.R. and Dickson, F.H. (1976) Sublacustrine fan morphology in Lake Superior. AAPG
35 36 37	1072	Bulletin, 60, 1021-1036.
38 39	1073	Normark, W.R. and Piper, D.J.W. (1991) Initiation processes and flow evolution of turbidity currents:
40	1074	Implications for the depositional record. In: From Shoreline to Abyss: Contributions in Marine
41 42	1075	Geology in Honor of Francis Parker Shepard (Ed. Osborne, R.H.), SEPM Special Publication, 46, 207-
43 44	1076	230.
45 46	1077	Normark W.R., Hess, G.R., Stow, D.A.V. and Bowen, A.J. (1980) Sediment waves on the Monterey
47 48	1078	Fan levee: a preliminary physical interpretation. <i>Marine Geology</i> , 37 , 1-18.
49 50	1079	Normark, W.R., Piper, D.J., Posamentier, H. Pirmez, C. and Migeon, S. (2002) Variability in form and
51 52	1080	growth of sediment waves on turbidite channel levees. Marine Geology, 192, 23-58.
53 54		
55		
56		
57 58		
59		

1 2	
2 3 4	46
5	
⁶ 1081 7	Ortiz-Karpf, A., Hodgson, D.M. and McCaffrey, W.D. (2015) The role of mass-transport complexes in
⁸ 1082 9	controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin:
10 1083 11	the Magdalena Fan, offshore Colombia. Marine and Petroleum Geology, 64, 58-75.
¹² 1084 13	Palanques, A., Kenyon, N.H., Alonso, B. and Limonov, A. (1995) Erosional and depositional patterns
14 1085	in the Valencia mouth: An example of a modern channel-lobe transition zone channel. Marine
16 1086 17	Geophysical Researches, 17 , 503-517.
18 1087 19	Parkash, B. (1970) Downcurrent changes in sedimentary structures in Ordovician turbidite
20 1088 21	greywackes. Journal of Sedimentary Research, 40, 572-590.
22 1089 23	Parkash, B. and Middleton, G.V. (1970) Downcurrent textural changes in Ordovician turbidite
24 1090 25	greywackes. Sedimentology, 14, 259-293.
²⁶ 1091 27	Peakall, J., McCaffrey, W.D. and Kneller, B.C. (2000) A process model for the evolution, morphology,
28 1092 29	and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448.
30 31 1093	Pemberton, E.A.L., Hubbard, S.M., Fildani, A., Romans, B. and Stright, L. (2016) The stratigraphic
³² 1094	expression of decreasing confinement along a deep-water sediment routing system: Outcrop
³⁴ 1095 35	example from southern Chile. Geosphere, 12 , 114-134.
36 37 1096 38	Piper, D.J.W. and Kontopoulos, N. (1994) Bed forms in submarine channels: comparison of ancient
39 1097	examples from Greece with studies of Recent turbidite systems. Journal of Sedimentary Research,
40 41 42	64 , 247-252.
43 1099	Piper, D.J.W., Shor, A.N., Farre, J.A., O'Connell, S. and Jacobi, R. (1985) Sediment slides and
⁴⁴ 1100 45	turbidity currents on the Laurentian Fan: Sidescan sonar investigations near the epicenter of the
46 1101 47	1929 Grand Banks earthquake. Geology, 13, 538-541.
48 49 1102	Ponce, J.J. and Carmona, N. (2011) Coarse-grained sediment waves in hyperpycnal clinoform
50 1103 51 52 53 54 55	systems, Miocene of the Austral foreland basin, Argentina. <i>Geology</i> , 39 , 763-766.
56	
57 58	
59 60	

1		
2		
3 ⊿		47
5		
6 7	1104	Postma, G., Kleverlaan, K. and Cartigny, M.J.B. (2014) Recognition of cyclic steps in sandy and
8 9	1105	gravelly turbidite sequences and consequences for the Bouma facies. Sedimentology, 61, 2268-2290.
10 11	1106	Praeg, D.B. and Schafer, C.T. (1989) Seabed features of the Labrador slope and rise near 55° N
12 13	1107	revealed by SEAMARC I sidescan sonar imagery. Atlantic Geoscience Centre, Bedford Institute of
14 15	1108	Oceanography.
16 17	1109	Prave, A.R. and Duke, W.L. (1990) Small-scale hummocky cross-stratification in turbidites: a form of
18 19	1110	antidune stratification? Sedimentology, 37, 531-539.
20 21	1111	Prélat, A. and Hodgson, D.M. (2013) The full range of turbidite bed thickness patterns in submarine
22 23	1112	lobes: controls and implications. Journal of the Geological Society, 170 , 209-214.
24 25	1113	Prélat, A., Hodgson D.M. and Flint, S.S. (2009) Evolution, architecture and hierarchy of distributary
26 27	1114	deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South
28 29	1115	Africa. Sedimentology, 56, 2132-2154.
30 31	1116	Prélat, A., Covault J.A., Hodgson D.M., Fildani, A. and Flint, S.S. (2010) Intrinsic controls on the
32 33	1117	range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66-
34 35	1118	<u>76.</u>
36 37	1119	Pringle, J.K., Brunt, R.L., Hodgson, D.M. and Flint, S.S. (2010) Capturing stratigraphic and
38 39	1120	sedimentological complexity from submarine channel complex outcrops to digital 3D models, Karoo
40 41	1121	Basin, South Africa. Petroleum Geoscience, 16, 307-330.
42 43	1122	Raudkivi, A.J. (1998) Loose Boundary Hydraulics. A.A. Balkema, Rotterdam, The Netherlands, pp 260.
44 45	1123	Rotzien, J.R., Lowe, D.R., King, P.R. and Browne, G.H. (2014) Stratigraphic architecture and
46 47	1124	evolution of a deep-water slope channel-levee and overbank apron: The Upper Miocene Upper
48 49	1125	Mount Messenger Formation, Taranaki Basin. Marine and Petroleum Geology, 52, 22-41.
50 51	1126	Schindler, R.J., Parsons, D.R., Ye, L., Hope, J.A., Baas, J.H., Peakall, J., Manning, A.J., Aspden, R.J.,
52 53	1127	Malarkey, J., Simmons, S., Paterson, D.M., Lichtman, I.D., Davies, A.G., Thorne, P.D. and Bass, S.J.
54		
55		
56 57		
58		
59		
60		

 1128 1128 1129 120 1219 1219 1219 123 124 125 125 125 125 125 125 126 127 128 129 129 120 120 120 120 120 120 121 121 121 122 123 123 124 123 125 125 125 125 126 126 127 128 128 128 129 120 120 120 120 120 120 120 121 121 121 123 124 124 125 125 126 126 127 128 128 128 128 128 128 129 120 120 120 120 121 121 121 121 121 121 122 123 124 124 125 126 126 127 128 128 128 128 129 120 120 120 121 121	1	
 1128 (2015) Sticky stuff: Redefining bedform prediction in modern and ancient environments. <i>Geology</i>, 1129 43, 399-402. 1130 Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the 1131 base surge deposits of the Laacher See area, Germany. <i>Sedimentology</i>, 20, 553-574. 1132 Sissmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karco Basin, South 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. <i>Sedimentology</i>, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. <i>Journal of Sedimentary Research</i>, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. <i>Annual Review of Earth and</i> 1139 <i>Planetary Sciences</i>, 19, 423-455. 1140 Southard, J.B. and Boguchwai, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. <i>Journal of Sedimentary Research</i>, 60, 658-679. 1142 Stevenson, C.J., Jackson, C.AL. Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 1143 transment bypass. <i>Journal of Sedimentary Research</i>, 78, 529-547. 1144 Stevenson, C.J., Jackson, C.AL., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 1145 summer, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 1146 Parret, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 1150 submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 	2	
 1128 (2015) Sticky stuff: Redefining bedform prediction in modern and ancient environments. <i>Geology</i>, 1129 43, 399-402. 1130 Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the 1131 base surge deposits of the Laacher See area, Germany. <i>Sedimentology</i>, 20, 553-574. 1132 Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. <i>Journal of Sedimentary Research</i>, 74, 239-254. 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. <i>Sedimentology</i>, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. <i>Journal of Sedimentary Research</i>, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. <i>Annual Review of Earth and</i> 1139 <i>Planetary Sciences</i>, 19, 423-455. 1140 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady undirectional water flows. 1143 Ital Arite. Journal of Sedimentary Research, 60, 658-679. 1143 Ital Arite Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 1143 implications. <i>Marine and Petroleum Geology</i>, 17, 145-174. 1144 Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 1145 water sediment bypass. <i>Journal of Sedimentary Research</i>, 78, 529-547. 1145 Summer, E.J., Paekall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 1150 submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 	3	48
6 1128 (2015) Sticky stuff: Redefining bedform prediction in modern and ancient environments. Geology, 8 1129 43, 399-402. 111 1130 Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidume and chute and pool structures in the 1131 base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574. 1131 Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. Journal of Sedimentary Research, 74, 239-254. 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. Sedimentology, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 1149 Planetary Sciences, 19, 423-455. 1141 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 1142 Stevenson, C.J., Jackson, C.AL., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep-	4 5	Ŭ
1129 43, 399-402. 1110 Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the 111 base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574. 112 Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1131 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. Journal of Sedimentary Research, 74, 239-254. 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. Sedimentology, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 1139 Planetary Sciences, 19, 423-455. 1140 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 1142 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 1141 implications	6 7 1128	(2015) Sticky stuff: Redefining bedform prediction in modern and ancient environments. Geology,
 1130 Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the 1131 base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574. 1132 Sixmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. Journal of Sedimentary Research, 74, 239-254. 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1137 Gaspé, Quebec. Sedimentology, 17, 51-68. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 1139 Planetary Sciences, 19, 423-455. 1140 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 1142 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 1143 implications. Marine and Petroleum Geology, 17, 145-174. 1144 Stevenson, C.J., Jackson, C.AL., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 1145 water sediment bypass. Journal of Sedimentary Research, 78, 529-547. 1146 Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 1147 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 1148 Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 1150 submarine density current. Geophysical Research Letters, 40, 5904-5908. 	8 1129 9	43 , 399-402.
 12 1131 base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574. 1132 Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. Journal of Sedimentary Research, 74, 239-254. 1135 Skipper, K., (1971) Antidume cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. Sedimentology, 17, 51-68. 21137 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. 25 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 21139 Planetary Sciences, 19, 423-455. 23 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 23 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 24 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 25 implications. Marine and Petroleum Geology, 17, 145-174. 26 Stevenson, C.J., Jackson, C.A.L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 27 traditions. Marine and Petroleum Geology, 17, 145-174. 28 Stevenson, C.J., Jackson, C.A.L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 29 traditions. Marine and Petroleum Geology, 17, 145-174. 20 Summer, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 20 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 20 Summer, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 21 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 23 submarine density current. Geophysical Resear	¹⁰ 1130 11	Schminke, H.U., Fisher, R.V. and Waters, A.C. (1973) Antidune and chute and pool structures in the
 1132 Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. <i>Journal of Sedimentary Research</i>, 74, 239-254. 1135 Skipper, K., (1971) Antidume cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. <i>Sedimentology</i>, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. <i>Journal of Sedimentary Research</i>, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. <i>Annual Review of Earth and</i> 1139 <i>Planetary Sciences</i>, 19, 423-455. 1140 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. <i>Journal of Sedimentary Research</i>, 60, 658-679. 1142 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 1143 implications. <i>Marine and Petroleum Geology</i>, 17, 145-174. 1144 Stevenson, C.J., Jackson, C.AL, Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 1145 water sediment bypass. <i>Journal of Sedimentary Research</i>, 85, 1058-1081. 1146 Summer, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 1147 from decelerating sediment suspensions. <i>Journal of Sedimentary Research</i>, 78, 529-547. 1148 Summer, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 1150 submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 	¹² 1131 13	base surge deposits of the Laacher See area, Germany. Sedimentology, 20, 553-574.
16 1133 development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South 1134 Africa. Journal of Sedimentary Research, 74, 239-254. 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 21 Gaspé, Quebec. Sedimentology, 17, 51-68. 23 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. 24 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 29 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and 29 1139 Planetary Sciences, 19, 423-455. 30 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 21 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 31 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 37 1142 Stow, D.A. and Jetroleum Geology, 17, 145-174. 38 Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 40 water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. 41 Summer, E.J., Amy, L.A. and Talling, P.J	14 15 1132	Sixsmith, P., Flint, S.S., Wickens, H.D. and Johnson, S. (2004) Anatomy and stratigraphic
 Africa. Journal of Sedimentary Research, 74, 239-254. Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, Gaspé, Quebec. Sedimentology, 17, 51-68. Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 78, 529-547. from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	¹⁶ 1133 17	development of a basin floor turbidite system in the Laingsburg Formation, main Karoo Basin, South
 1135 Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation, 1136 Gaspé, Quebec. Sedimentology, 17, 51-68. 1137 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. 1138 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. 1140 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 1142 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 1143 implications. Marine and Petroleum Geology, 17, 145-174. 1144 Stevenson, C.J., Jackson, C.AL., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep-40 1145 water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. 1146 Summer, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 1147 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 1148 Summer, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 1150 submarine density current. Geophysical Research Letters, 40, 5904-5908. 	18 1134 19	Africa. Journal of Sedimentary Research, 74 , 239-254.
 Gaspé, Quebec. Sedimentology, 17, 51-68. Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L, Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	²⁰ 1135 21	Skipper, K., (1971) Antidune cross-stratification in a turbidite sequence, Cloridorme Formation,
 Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509. Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	²² 1136 23	Gaspé, Quebec. Sedimentology, 17, 51-68.
 Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	24 25 1137	Sohn, Y.K. (1997) On traction-carpet sedimentation. Journal of Sedimentary Research, 67, 502-509.
 Planetary Sciences, 19, 423-455. Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	20 27 1138 28	Southard, J.B. (1991) Experimental determination of bed-form stability. Annual Review of Earth and
 Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows. 1141 Part 2. Synthesis of flume data. <i>Journal of Sedimentary Research</i>, 60, 658-679. Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. <i>Marine and Petroleum Geology</i>, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. <i>Journal of Sedimentary Research</i>, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. <i>Journal of Sedimentary Research</i>, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 	20 29 1139 30	Planetary Sciences, 19 , 423-455.
 33 1141 Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679. 34 35 1142 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon 36 implications. Marine and Petroleum Geology, 17, 145-174. 38 39 1144 Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- 40 water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. 43 1146 Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 44 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 46 47 1148 Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 49 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 submarine density current. Geophysical Research Letters, 40, 5904-5908. 	31 1140 32	Southard, J.B. and Boguchwal, L.A. (1990) Bed configurations in steady unidirectional water flows.
 Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	33 1141 34	Part 2. Synthesis of flume data. Journal of Sedimentary Research, 60, 658-679.
 implications. Marine and Petroleum Geology, 17, 145-174. Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep- water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 40, 5904-5908. 	35 1142 36	Stow, D.A. and Johansson, M. (2000) Deep-water massive sands: nature, origin and hydrocarbon
 Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep-40 water sediment bypass. <i>Journal of Sedimentary Research</i>, 85, 1058-1081. Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspensions. <i>Journal of Sedimentary Research</i>, 78, 529-547. Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 	37 1143 38	implications. <i>Marine and Petroleum Geology</i> , 17 , 145-174.
 41 1145 water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081. 42 43 1146 Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition 44 45 1147 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 46 47 1148 Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 48 49 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 51 1150 submarine density current. Geophysical Research Letters, 40, 5904-5908. 52 53 54 55 56 57 58 59 	39 1144 40	Stevenson, C.J., Jackson, C.A-L., Hodgson, D.M., Hubbard, S.M. and Eggenhuisen, J.T. (2015) Deep-
 43 1146 43 1146 44 45 1147 46 47 1148 48 49 1149 49 1149 49 rerett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 51 1150 51 1150 52 53 54 55 56 57 58 59 	41 1145 42	water sediment bypass. Journal of Sedimentary Research, 85, 1058-1081.
 45 1147 from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547. 46 47 1148 Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 48 49 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 51 1150 submarine density current. Geophysical Research Letters, 40, 5904-5908. 52 53 54 55 56 57 58 59 	43 1146 44	Sumner, E.J., Amy, L.A. and Talling, P.J. (2008) Deposit structure and processes of sand deposition
 47 1148 Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D., 49 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 52 53 54 55 56 57 58 59 	45 1147 46	from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529-547.
 49 1149 Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active 50 51 1150 submarine density current. <i>Geophysical Research Letters</i>, 40, 5904-5908. 52 53 54 55 56 57 58 59 60 	47 1148 48	Sumner, E.J., Peakall, J., Parsons, D.R., Wynn, R.B., Darby, S.E., Dorrell, R.M., McPhail, S.D.,
51 1150 submarine density current. Geophysical Research Letters, 40, 5904-5908. 52 53 53 54 55 56 57 58 59 60	49 1149 50	Perrett, J., Webb, A. and White, D. (2013) First direct measurements of hydraulic jumps in an active
53 54 55 56 57 58 59	51 1150 52	submarine density current. <i>Geophysical Research Letters</i> , 40 , 5904-5908.
54 55 56 57 58 59	53	
56 57 58 59	54 55	
57 58 59	56	
58 59 60	57	
59	58	
	59	

1			
2 3			
4		49	
5 6 7	1151	Symons, W.O., Sumner, E.J., Talling, P.J., Cartigny, M.J. and Clare, M.A. (2016) Large-scale sediment	
8	1152	waves and scours on the modern seafloor and their implications for the prevalence of supercritical	
9 10 11	1153	flows. <i>Marine Geology</i> , 371 , 130-148.	
12	1154	Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G. (2012) Subaqueous sediment density	
13 14 14 15 16 17 18 19 21 22 22 24 25 27 20 31 33 34 36 37 39 41 42 44 45 46 47 46	1155	flows: Depositional processes and deposit types. Sedimentology, 59, 1937-2003.	
	1156	Tinterri, R. (2011). Combined flow sedimentary structures and the genetic link between sigmoidal	
	1157	and hummocky cross-stratification. GeoActa (Bologna), 10, 1-43.	
	1158	Tinterri, R. and Muzzi Magalhaes, P. (2011) Synsedimentary structural control on foredeep	
	1159	turbidites: An example from Miocene Marnoso-arenacea Formation, Northern Apennines, Italy.	
	1160	Marine and Petroleum Geology, 28 , 629-657.	
	1161	Tinterri, R. and Tagliaferri, A. (2015) The syntectonic evolution of foredeep turbidites related to	
	1162	basin segmentation: Facies response to the increase in tectonic confinement (Marnoso-arenacea	
	1163	Formation, Miocene, Northern Apennines, Italy). Marine and Petroleum Geology, 67, 81-110.	
	1164	Van der Mark, C.F., Blom, A. and Hulscher, S.J.M.H. (2008) Quantification of variability in bedform	
	1165	geometry. Journal of Geophysical Research: Earth Surface, 113 , F03020, doi:10.1029/2007JF000940.	
	1166	Van Der Merwe, W.C., Hodgson, D.M., Brunt, R.L. and Flint, S.S. (2014) Depositional architecture of	
	1167	sand-attached and sand-detached channel-lobe transition zones on an exhumed stepped slope	
	1168	mapped over a 2500 km ² area. <i>Geosphere</i> , 10 , 1076-1093.	
	1169	Vellinga, A.J., Cartigny, M.J.B., Eggenhuisen, J.T. and Hansen, E.W.M. (2018) Morphodynamics and	
	1170	depositional signature of low-aggradation cyclic steps: New insights from a depth resolved model.	
	1171	<u>Sedimentology</u> , 65 , 540-560.	
49	1172	Vicente Bravo, J.V. and Robles, S. (1995) Large-scale mesotopographic bedforms from the Albian	
50 51 52 53	1173	Black Flysch, northern Spain: characterization, setting and comparison with recent analogues. In:	
	1174	Atlas of Deep Water Environments; Architectural Style in Turbidite Systems (Eds. Pickering, K.T.,	
54 55			
56 57			
58			
59 60			

1	
2	
3 1	50
5	
6 1175 7	Hiscott, R.N., Kenyon, N.H., Ricci-Lucchi, F. and Smith, R.D.A.), Chapman and Hall, London, pp. 216-
⁸ 1176 9	226.
¹⁰ 1177 11	Wickens H.DeV. (1994) Basin floor fan building turbidites of the southwestern Karoo Basin, Permian
¹² 1178 13	Ecca Group, South Africa. PhD-Thesis. University of Port Elizabeth.
¹⁴ 15 1179	Winn, R.D. and Dott, R.H. (1977) Large-scale traction-produced structures in deep-water fan-
¹⁶ 1180 17	channel conglomerates in southern Chile. <i>Geology</i> , 5 , 41-44.
18 19 1181	Wynn, R.B. and Stow, D.A. (2002) Classification and characterisation of deep-water sediment waves.
²⁰ 1182 21	Marine Geology, 192 , 7-22.
22 23 1183	Wynn, R.B., Kenyon, N.H., Masson, D.G., Stow D.A. and Weaver, P.P. (2002a) Characterization and
²⁴ 1184 25	recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86, 1441-1462.
26 27 1185	Wynn, R.B., Piper, D.J.W. and Gee, M.J.R. (2002b) Generation and migration of coarse-grained
²⁸ 29 1186	sediment waves in turbidity current channels and channel-lobe transition zones. Marine Geology,
³⁰ 1187 31	192 , 59-78.
³² 33 1188	Yokokawa, M., Matsuda, F. and Endo, N. (1995) Sand particle movement on migrating combined-
³⁴ 1189 35	flow ripples. Journal of Sedimentary Research, A65, 40-44.
36 37 1190	Zecchin, M., Caffau, M., Di Stefano, A., Maniscalco, R., Lenaz, D., Civile, D., Muto, F. and Crantelli,
38 39 1191	S. (2013) The Messinian succession of the Crotone Basin (southern Italy) II: Facies architecture and
40 41 1192	stratal surfaces across the Miocene-Pliocene boundary. Marine and Petroleum Geology, 48, 474-492.
42 43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55	
56 57	
58	
59	
60	

FIGURE CAPTIONS Figure 1. Sediment wave dimensions (crest height versus wavelength) from modern and ancient systems grouped on the basis of type of dataset (A), setting (B) and grain size (C). Data taken from Normark & Dickson (1976); Winn & Dott (1977); Damuth (1979); Lonsdale & Hollister (1979); Piper et al. (1985); Malinverno et al. (1988); Praeg & Schafer (1989); Piper & Kontopoulos (1994); Vicente Bravo & Robles (1995); Howe (1996); Kidd et al. (1998); Morris et al. (1998); Nakajima et al. (1998); 18 1199 McHugh & Ryan (2000); Migeon et al. (2001); Wynn et al. (2002a,b); Normark et al. (2002); Ito & 20 1200 Saito (2006); Heinïo & Davies (2009); Ito (2010); Mukti & Ito (2010); Campion et al. (2011); Ponce & Carmona (2011); Ito et al. (2014); Morris et al. (2014); Postma et al. (2014). Note that a lack of sand-prone sediment waves in modern examples can be ascribed to difficulties in retrieving piston cores within such sediments (e.g. Bouma & Boerma, 1968). The raw data are available as supplementary 27 1204 material to this manuscript. Figure 2. (A) Location map of the Laingsburg depocentre within the Western Cape. The transparent overlay with black lining indicates the total exposed area of Unit B. Important outcrop areas are 33 1207 highlighted, including the sections studied in this paper: Doornkloof and Old Railway; white 35 1208 diamonds indicate locations discussed in Brunt et al. (2013). (B) Zoomed-in map of the Doornkloof section including palaeocurrent distributions, sub-divided into subunit B1 and subunit B2. The outcrop outlines are indicated by solid lines. Red line indicates Section I (Figure 5), blue line on DK-unit B2 represents Section II (Figure 9). (C) Zoomed-in map of the Old Railway section including 42 1212 palaeocurrent distributions. Figure 3. (A) Simplified stratigraphic column of the deep-water stratigraphy within the Laingsburg ⁴⁶ 1214 depocentre, based on Flint et al. (2011). (B-C) Palaeogeographic reconstruction of subunit B1 (topB2 48 1215 (B) and subunit B2 (bottomB1 (C) based on the regional study of Brunt et al. (2013). The two outcrop 50 1216 locations discussed in this paper are indicated by the diamonds.

52 6 1217 Figure 4. Examples of Internal bed structure and facies changes within subunit B2 (Doornkloof), with 8 1218 one example from <i>Bedform c</i> (A) and two from <i>Bedform b</i> (B and C) (see Fig. 9B for locations). All 10 1219 these examples show vertical internal facies changes, which include planar-lamination, wavy- 11 1210 lamination/banding and ripple-lamination. 14 1221 Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B, 16 1222 the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The 17 18 1223 thin siltstone interval (TSI; Brunt <i>et al.</i> , 2013) between the AB interfan and subunit B1 has been used 19 1224 as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of 11 1225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the 12 correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution 12 1228 6 (A-D) and Figure 7 have been indicated. 12 1229 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of 1231 1230 <td< th=""></td<>
51217Figure 4. Examples of Internal bed structure and facies changes within subunit B2 (Doornkloof), with81218one example from <i>Bedform c</i> (A) and two from <i>Bedform b</i> (B and C) (see Fig. 9B for locations). All101219these examples show vertical internal facies changes, which include planar-lamination, wavy-111220lamination/banding and ripple-lamination.12Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,161222the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The171223thin siltstone interval (TSI; Brunt <i>et al.</i> , 2013) between the AB interfan and subunit B1 has been used191224as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of111225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the12correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution12within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure12figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of12subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast12conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded13division within <i>Bedform a</i> ; (C) Mudstone clast conglomerate layer below <i>Bedform a</i> ; (D) Mudstone14figure 1, with climbing cinple.laminated facies within <i>Bedform a</i> ;
o1217Figure 4. Examples of Internal bed structure and facies changes within subunit B2 (Doornkloof), with81218one example from <i>Bedform c</i> (A) and two from <i>Bedform b</i> (B and C) (see Fig. 9B for locations). All101219these examples show vertical internal facies changes, which include planar-lamination, wavy-111220lamination/banding and ripple-lamination.12Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,161222the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The17this siltstone interval (TSI; Brunt <i>et al.</i> , 2013) between the AB interfan and subunit B1 has been used12as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of12the plaeoflow patterns have been indicated, as well as the location of the12correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution12within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure12figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of13usubnit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast12conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded13division within <i>Bedform a</i> ; (C) Mudstone clast conglomerate layer below <i>Bedform a</i> ; (D) Mudstone14clast-rich banded section of <i>Bedform a</i> ; (E) Westward-orientated internal truncation surface (dotted
 8 1218 one example from <i>Bedform c</i> (A) and two from <i>Bedform b</i> (B and C) (see Fig. 9B for locations). All 1219 these examples show vertical internal facies changes, which include planar-lamination, wavy- 1210 lamination/banding and ripple-lamination. 131 1221 Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B, 1222 the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The 1223 thin siltstone interval (TSI; Brunt <i>et al.</i>, 2013) between the AB interfan and subunit B1 has been used 1224 as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of 1225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the 1226 correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution 1227 within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated. 1230 subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast 1231 conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded 1232 division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
101219these examples show vertical internal facies changes, which include planar-lamination, wavy-111220lamination/banding and ripple-lamination.121220lamination/banding and ripple-lamination.141221Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,151222the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The17this siltstone interval (TSI; Brunt <i>et al.</i> , 2013) between the AB interfan and subunit B1 has been used19as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of211225Bedform a and the palaeoflow patterns have been indicated, as well as the location of the231226correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution24within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure2712286 (A-D) and Figure 7 have been indicated.281230subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast231231conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded341232division within Bedform a; (C) Mudstone clast conglomerate layer below Bedform a; (D) Mudstone351232clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted361233clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted
111220lamination/banding and ripple-lamination.13Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,151221Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,161222the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The17thin siltstone interval (TSI; Brunt <i>et al.</i> , 2013) between the AB interfan and subunit B1 has been used19as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of211225Bedform a and the palaeoflow patterns have been indicated, as well as the location of the231226correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution24within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure266 (A-D) and Figure 7 have been indicated.2712286 (A-D) and Figure 7 have been indicated.281230subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast23conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded341232division within Bedform a; (C) Mudstone clast conglomerate layer below Bedform a; (D) Mudstone361233clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted
13141221Figure 5. Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B,1516122218the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The171812231224as a stratigraphic datum. The middle correlation panel shows section I of subunit B1 has been used19as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of211225Bedform a and the palaeoflow patterns have been indicated, as well as the location of the231226correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution24within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure266 (A-D) and Figure 7 have been indicated.291229Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of311230subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast321231conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded341232division within Bedform a; (C) Mudstone clast conglomerate layer below Bedform a; (D) Mudstone361233clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted
 ingure 3. complete stratigraphic panel of the Boormatoo section showing the subdivision of on B, 5, 1211 ingure 3. complete stratigraphic panel of the Boormatoo section showing the subdivision of on B, 5, 1212 the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The thin siltstone interval (TSI; Brunt <i>et al.</i>, 2013) between the AB interfan and subunit B1 has been used as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated. Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted line) in panel 4, 2012
 16 1222 the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The 178 1223 thin siltstone interval (TSI; Brunt <i>et al.</i>, 2013) between the AB interfan and subunit B1 has been used 19 1224 as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of 1225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the 23 1226 correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated. Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
 18 1223 thin siltstone interval (TSI; Brunt <i>et al.</i>, 2013) between the AB interfan and subunit B1 has been used as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of 1225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated. Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
 ¹⁹ 1224 as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of ²¹ 1225 <i>Bedform a</i> and the palaeoflow patterns have been indicated, as well as the location of the ²³ 1226 correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution ²⁴ within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure ²⁶ 6 (A-D) and Figure 7 have been indicated. ²⁷ 1228 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of ³⁰ subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast ³² conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded ³⁴ division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone ³⁶ 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
21 221225Bedform a and the palaeoflow patterns have been indicated, as well as the location of the23 241226correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution24 251227within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure26 2712286 (A-D) and Figure 7 have been indicated.28 29 291229Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast23 23 311231conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded34 35 371233clast-rich banded section of Bedform a; (E) Westward-orientated internal truncation surface (dotted
 1226 correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution 1227 within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 1228 6 (A-D) and Figure 7 have been indicated. 1229 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of 1230 subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast 1231 conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded 1232 division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
 within <i>Bedform a</i> and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated. Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
 26 27 1228 6 (A-D) and Figure 7 have been indicated. 28 29 1229 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of 30 31 1230 subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast 32 conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded 34 1232 division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone 36 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted
 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted with climbing ripple-laminated facies within <i>Bedform a</i>; (E) Climbing ripple-lamination in
 Figure 6. Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted with climbing ripple-laminated facies within <i>Bedform a</i>; (E) Climbing ripple-lamination in
 subunit B1, with (A) <i>Bedform a</i> with ripple-top morphology on top of a local mudstone clast conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted with climbing ripple-laminated facies within <i>Bedform a</i>; (E) Climbing ripple-lamination in
 conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded conglomerate deposit; (B) Eastward-orientated internal truncation surface (dotted line) in banded division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted unable laminated facies within <i>Bedform a</i>; (E) Climbing ripple lamination in
 division within <i>Bedform a</i>; (C) Mudstone clast conglomerate layer below <i>Bedform a</i>; (D) Mudstone 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted 1234 line) with climbing ripple-laminated facies within <i>Bedform a</i>; (E) Climbing ripple-lamination in
 36 1233 clast-rich banded section of <i>Bedform a</i>; (E) Westward-orientated internal truncation surface (dotted 37 38 1234 line) with climbing ripple-laminated facies within <i>Bedform a</i>; (E) Climbing ripple-lamination in
37 38 1234 line) with climbing ripple-laminated facies within <i>Bedform a</i> : (E) Climbing ripple-lamination in
1207 IIIC WITCHINNER INDICIALINATED ATTACES WITHIN DEVICITIES TO THE INDICIALINATION IN
39 40 1235 between handed sandstone and sigmoidal lamination as part of <i>Bedform h</i> : (G) Lower section of
41 1226 - verticed and significant and significant in an intraction, as part of <i>Bedjorni b</i> , (d) Lower settlem of
42 1230 westward orientated truncation surface in <i>Bedform b;</i> (H) Upper section of westward orientated 43
truncation surface in <i>Bedform b;</i> (I) Banded sandstone division in <i>Bedform b;</i> (J) West-facing
 truncation surface in <i>Bedform c</i>. See Figure 5 and Figure 9B for locations. Interpreted position of
 47 1239 Bedform a is indicated (by an asterisk) within the DK01 core log. 48
49
50
photopanel (top) and interpreted vertically exaggerated (Ve = 1.8) photopanel (bottom). It shows a photopanel (bottom) is the shows a
53 54
55
56
57
58
59 60

2		
4		53
5 6		
7	1242	basal erosion surface overlying thin-bedded sandstones, multiple 'floating' sandstone patches,
8 9	1243	upstream orientated pinchoutpinch-out and downstream orientated amalgamation. Location of
10 11	1244	photograph is shown in the lowest panel of Figure 5.
12 13	1245	Figure 8. Facies correlation panel of local sandstone swell in subunit B1. Bedform a is located at the
14	1246	base of the package. Top panel shows its location within subunit B1. See middle panel of Figure 5 for
16	1247	more detailed facies correlation panel of the complete subunit B1, log locations, and lower panel of
17	1248	Figure 5 for symbol explanations.
19 20	1249	Figure 9. (A) Panoramic view of the base of subunit B2 at the DK-section. The outlines of Bedform b
21	1250	and c are indicated with white lines. Numbers indicate the position of sedimentary logs. (B) Facies
23 24	1251	correlation of the II-section with <i>Bedform b</i> and <i>c</i> . The top panel shows the thickness variability of
25 26	1252	these beds and the surrounding stratigraphy, comprised of structured sandstones (ripple- or planar-
27 28	1253	laminated); the lower panel shows the internal facies distribution of <i>Bedform b</i> and <i>c</i> . Rose diagrams
29 30	1254	show palaeoflow measurements around Section II. Internal truncation surfaces and location of the
31 32	1255	facies photos shown in Figure 4 and Figure 6 (F-J) have been indicated. See Figure 2B and Figure 5 for
33 34	1256	location of section II and for meaning of log symbols.
35 36	1257	Figure 10. Bedset architecture within the main subunit B2 outcrop face in the Doornkloof area.
37	1258	Bounding surfaces have been defined based on successive bed pinch-out with multiple (3-4)
39	1259	downstream-orientated stacked and weakly amalgamated bedforms.
40	1260	Figure 11. Subunit B2 within the Old Railway area. A- Facies correlation panels of the section with
42 43	1261	bedform distribution (top) and facies distribution (bottom). B- Zoomed-in facies correlation panel of
44 45	1262	most eastern section with C – mudstone clasts within a climbing-ripple laminated bed, indicating
46 47	1263	sediment overpassing, and D – bed splitting indicating erosion and amalgamation. See Figure 2 for
48 49	1264	location and lowest panel in Figure 5 for meaning of log symbols. Location of Figure 12 is indicated.
50 51	1265	Figure 12. Sketch of bed showing transient pinch-out to a thin siltstone bed (see Figure 11B for
52 53	1266	location), with (A1) pinch-out to siltstone, and (A2) local scouring of bed top.
54		
55 56		
57		
58		
59 60		

1 2		
2 3 4 5		54
5 6 7	1267	Figure 13. (A) Idealised model to illustrate the variation in sedimentary structure within sediment
8	1268	wave swells in the Doornkloof area. (B) Interpretation of changes in depositional behaviour through
10	1269	time, linked to the observed internal facies changes in (A). T1-T7 refer to successive time periods,
11 12	1270	and show the evolution of the sediment waves, and what this means in terms of flow conditions
13 14	1271	over time. F1 consists of structureless sands.
15 16	1272	Figure 14. (A) Process explanation of the upstream-orientated accretion process, linked to flow
17	1273	capacity changes over time. Flow capacity may be linked to temporal variations in velocity from
19 20	1274	upstream hydraulic jumps, and/or to the lateral migration of the flow, shown in part B. (B)
21 22	1275	Illustration of the inferred spatial contribution (hose effect) during formation of the sediment waves.
23 24	1276	Lateral migration of the flow core during a single event is linked to capacity changes at a single
25 26	1277	location, as well as the formation of new swells upstream. The steps are interlinked between A and
27	1278	B; 'x' marks the same location throughout. Step 5 represents another phase of erosion, and thus a
28 29 30	1279	return to step 2.
30 31 32 33	1280	Figure 15. (A) Spatial division within a channel-lobe transition zone between a depositional bedform
	1281	area (DB) and an erosional bedform area (EB) following Wynn et al. (2002a). Differences in sediment
34 35	1282	wave deposit facies and architecture are explained by spatial differences between the axis and fringe
36 37	1283	areas of the deposition-dominated fields (DB) of a CLTZ. (B) Sketch model showing how the 'hose
38 39	1284	effect' within an active flow will dominantly influence sediment wave development in axial areas.
40 41		
42		
43 44		
45 46		
40 47		
48 40		
49 50		
51		
52 53		
54		
55		
56 57		
57 58		
59		
60		

Figure 1: Sediment wave dimensions (crest height versus wavelength) from modern and ancient systems grouped on the basis of type of dataset (A), setting (B) and grain size (C). Data taken from Normark & Dickson (1976); Winn & Dott (1977); Damuth (1979); Lonsdale & Hollister (1979); Piper et al. (1985); Malinverno et al. (1988); Praeg & Schafer (1989); Piper & Kontopoulos (1994); Vicente Bravo & Robles (1995); Howe (1996); Kidd et al. (1998); Morris et al. (1998); Nakajima et al. (1998); McHugh & Ryan (2000); Migeon et al. (2001); Wynn et al. (2002a,b); Normark et al. (2002); Ito & Saito (2006); Heinïo & Davies (2009); Ito (2010); Mukti & Ito (2010); Campion et al. (2011); Ponce & Carmona (2011); Ito et al. (2014); Morris et al. (2014); Postma et al. (2014). Note that a lack of sand-prone sediment waves in modern examples can be ascribed to difficulties in retrieving piston cores within such sediments (e.g. Bouma & Boerma, 1968). The raw data are available as supplementary material to this manuscript.

222x509mm (300 x 300 DPI)

Figure 2: (A) Location map of the Laingsburg depocentre within the Western Cape. The transparent overlay with black lining indicates the total exposed area of Unit B. Important outcrop areas are highlighted, including the sections studied in this paper: Doornkloof and Old Railway; white diamonds indicate locations discussed in Brunt et al. (2013). (B) Zoomed-in map of the Doornkloof section including palaeocurrent distributions, sub-divided into subunit B1 and subunit B2. The outcrop outlines are indicated by solid lines.
Red line indicates Section I (Figure 5), blue line on DK-unit B2 represents Section II (Figure 9). (C) Zoomed-in map of the Old Railway section including palaeocurrent distributions.

212x345mm (300 x 300 DPI)

Figure 3: (A) Simplified stratigraphic column of the deep-water stratigraphy within the Laingsburg depocentre, based on Flint et al. (2011). (B-C) Palaeogeographic reconstruction of subunit B2 (B) and subunit B1 (C) based on the regional study of Brunt et al. (2013). The two outcrop locations discussed in this paper are indicated by the diamonds.

125x96mm (300 x 300 DPI)

Figure 4: Examples of Internal bed structure and facies changes within subunit B2 (Doornkloof), with one example from Bedform c (A) and two from Bedform b (B and C) (see Fig. 9B for locations). All these examples show vertical internal facies changes, which include planar-lamination, wavy-lamination/banding and ripple-lamination.

122x54mm (300 x 300 DPI)

Figure 5: Complete stratigraphic panel of the Doornkloof section showing the subdivision of Unit B, the location of the two detailed sedimentary sections (I, II), and the position of the DK01 core. The thin siltstone interval (TSI; Brunt et al., 2013) between the AB interfan and subunit B1 has been used as a stratigraphic datum. The middle correlation panel shows section I of subunit B1; the position of Bedform a and the palaeoflow patterns have been indicated, as well as the location of the correlation panel in Figure 8. The bottom correlation panel shows the detailed facies distribution within Bedform a and its internal truncation surfaces. Outcrop photograph locations shown in Figure 6 (A-D) and Figure 7 have been indicated.

287x453mm (300 x 300 DPI)

Figure 6: Representative outcrop photographs from Section I and II and descriptive DK01 core log of subunit B1, with (A) Bedform a with ripple-top morphology on top of a local mudstone clast conglomerate deposit;
(B) Eastward-orientated internal truncation surface (dotted line) in banded division within Bedform a; (C) Mudstone clast conglomerate layer below Bedform a; (D) Mudstone clast-rich banded section of Bedform a;
(E) Westward-orientated internal truncation surface (dotted line) with climbing ripple-laminated facies within Bedform a; (F) Climbing ripple-lamination in between banded sandstone and sigmoidal lamination, as part of Bedform b; (G) Lower section of westward orientated truncation surface in Bedform b; (I) Banded sandstone division in Bedform b; (J) Westfacing truncation surface in Bedform c. See Figure 5 and Figure 9B for locations. Interpreted position of Bedform a is indicated (by an asterisk) within the DK01 core log.

446x653mm (300 x 300 DPI)

Figure 7: Mudstone clast conglomerate patch at the bottom of Bedform a, with clean true-scale photopanel (top) and interpreted vertically exaggerated (Ve = 1.8) photopanel (bottom). It shows a basal erosion surface overlying thin-bedded sandstones, multiple 'floating' sandstone patches, upstream orientated pinchout and downstream orientated amalgamation. Location of photograph is shown in the lowest panel of Figure 5.

73x31mm (300 x 300 DPI)

Figure 8: Facies correlation panel of local sandstone swell in subunit B1. Bedform a is located at the base of the package. Top panel shows its location within subunit B1. See middle panel of Figure 5 for more detailed facies correlation panel of the complete subunit B1, log locations, and lower panel of Figure 5 for symbol explanations.

60x20mm (300 x 300 DPI)

Figure 9: (A) Panoramic view of the base of subunit B2 at the DK-section. The outlines of Bedform b and c are indicated with white lines. Numbers indicate the position of sedimentary logs. (B) Facies correlation of the II-section with Bedform b and c. The top panel shows the thickness variability of these beds and the surrounding stratigraphy, comprised of structured sandstones (ripple- or planar-laminated); the lower panel shows the internal facies distribution of Bedform b and c. Rose diagrams show palaeoflow measurements around Section II. Internal truncation surfaces and location of the facies photos shown in Figure 4 and Figure 6 (F-J) have been indicated. See Figure 2B and Figure 5 for location of section II and for meaning of log symbols.

286x440mm (300 x 300 DPI)

Figure 10: Bedset architecture within the main subunit B2 outcrop face in the Doornkloof area. Bounding surfaces have been defined based on successive bed pinch-out with multiple (3-4) downstream-orientated stacked and weakly amalgamated bedforms.

57x16mm (300 x 300 DPI)

Figure 11: Subunit B2 within the Old Railway area. A- Facies correlation panels of the section with bedform distribution (top) and facies distribution (bottom). B- Zoomed-in facies correlation panel of most eastern section with C – mudstone clasts within a climbing-ripple laminated bed, indicating sediment overpassing, and D – bed splitting indicating erosion and amalgamation. See Figure 2 for location and lowest panel in Figure 5 for meaning of log symbols. Location of Figure 12 is indicated.

196x151mm (300 x 300 DPI)

Figure 12: Sketch of bed showing transient pinch-out to a thin siltstone bed (see Figure 11B for location), with (A1) pinch-out to siltstone, and (A2) local scouring of bed top.

60x20mm (300 x 300 DPI)

59

60

Figure 13: (A) Idealised model to illustrate the variation in sedimentary structure within sediment wave swells in the Doornkloof area. (B) Interpretation of changes in depositional behaviour through time, linked to the observed internal facies changes in (A). T1-T7 refer to successive time periods, and show the evolution of the sediment waves, and what this means in terms of flow conditions over time. F1 consists of structureless sands.

105x50mm (300 x 300 DPI)

Sedimentology

Figure 14: (A) Process explanation of the upstream-orientated accretion process, linked to flow capacity changes over time. Flow capacity may be linked to temporal variations in velocity from upstream hydraulic jumps, and/or to the lateral migration of the flow, shown in part B. (B) Illustration of the inferred spatial contribution (hose effect) during formation of the sediment waves. Lateral migration of the flow core during a single event is linked to capacity changes at a single location, as well as the formation of new swells upstream. The steps are interlinked between A and B; 'x' marks the same location throughout. Step 5 represents another phase of erosion, and thus a return to step 2.

173x145mm (300 x 300 DPI)

Figure 15: (A) Spatial division within a channel-lobe transition zone between a depositional bedform area (DB) and an erosional bedform area (EB) following Wynn et al. (2002a). Differences in sediment wave deposit facies and architecture are explained by spatial differences between the axis and fringe areas of the deposition-dominated fields (DB) of a CLTZ. (B) Sketch model showing how the 'hose effect' within an active flow will dominantly influence sediment wave development in axial areas.

81x38mm (300 x 300 DPI)

Sedimentology

Publication	Dataset type	Formation/System	<u>Environment</u>	Dimensions (WL = Wavelength; CH = Crest Height)	(Average) grain size
Campion et al. (2011)	Outcrop	Cerro Toro Formation	Channel-levee	CH 1.5-15 m, WL 60-200 m	mud to very fine san
Ito, Saito (2006); Ito (2010)	Outcrop	Boso Peninsula	Canyon	CH 0.4-2 m; WL 7-60 m	gravel
Ito et al. (2014)	Outcrop	Boso Peninsula	Canyon-mouth	CH <2 m; WL <20 m	medium to very coar
Morris et al. (2014)	Outcrop	Laingsburg Formation	Channel-levee	CH 0.8 m; WL > 100 m	very fine sandstone
Mukti, Ito (2010)	Outcrop	Halang Formation	Channel-levee	CH 0.13 m; WL 10.7 m	mud-dominated
Piper, Kontopoules (1994)	Outcrop	Pleistocene south side Gulf of Corinth	Confined channel	CH 8 m; WL 80 m	pebbly sands to grav
Ponce, Carmona (2011)	Outcrop	Austral foreland Basin	CLTZ	CH < 5 m, WL 10-40 m	coarse-grained
Postma et al. (2014)	Outcrop	Tabernas Basin	Canyon/channel	CH 3-8 m; WL 20-100 m	coarse sands to grav
Vicento-Bravo, Robles (1995)	Outcrop	Albian Black Flysch	Channel-fill; CLTZ	CH 0.3-1.5 m; WL 5-40 m	pebbly sands to grav
Winn, Dott (1977)	Outcrop	Cerro Toro Formation	Confined channel	CH <4 m; WL 8-12 m	gravel
Damuth (1979)	Modern	Manila trench	Channel-levee	CH 5-20 m; WL 300-3000 m	silt-dominated
Heinïo, Davies (2009)	Modern	Espirito Santo Basin	Channel/CLTZ	CH 10-30 m ; WL 100-300 m	coarse-grained
Howe (1996)	Modern	Barra Fan	Channel-levee	CH 5 m; WL 1750 m	silt-dominated
Kidd et al. (1998)	Modern	Stromboli Canyon	Canyon	CH 3-4m high; WL 200m long; CH 18 m, WL 800 m	sand-dominated
Lonsdale, Hollister (1979)	Modern	Reynidsjup Fan	Channel-levee	CH 20 m; WL 500 m	silt-dominated
Malinverno et al. (1988)	Modern	Var Cayon	Canyon	CH <5 m; WL 35-100 m	sand to boulders
McHugh, Ryan (2000)	Modern	Monterey Fan	Channel-levee	CH 10-25 m; WL 300-2500 m	silt-dominated
Migeon et al. (2001)	Modern	Var Fan	Channel-levee	CH 7-46 m high, WL 900-5500 m	silt-dominated
Morris et al. (1998)	Modern	Valencia Channel mouth	Channel-mouth	CH m-scale; WL 70-80 m	coarse-grained
Nakajima et al. (1998)	Modern	Toyama Fan	Channel-levee	CH <70 m; WL <3000 m	silt-dominated
Normark, Dickson (1976)	Modern	Reserve Fan	Channel-levee	WL 120-400 m	silt-dominated
Normark et al. (2002)	Modern	Hueneme Fan	Channel-levee	CH 1-8 m; WL 150 - 550 m	silt-dominated
Piper et al. (1985)	Modern	Laurentian Fan	Channel-mouth	CH 2-5 m; WL 50-100 m	gravel and gravelly sa
Praeg, Schafer (1989)	Modern	Labrador Sea	Channel-levee	CH 5-30 m; WL 500-3000 m	silt-dominated
Wynn et al. (2000a)	Modern	Selvage Fan	Channel-levee	CH <5 m, WL <1100 m	silt-dominated
Wynn et al. (2000b)	Modern	La Palma Fan	Slope/levee	CH 5-70 m; WL 400-2400 m	silt-dominated
Wynn et al. (2000b)	Modern	El Hierro Fan	Channel	CH 6m; WL <1200 m	coarse-grained